

for all

ROR Fly Downsky epubcn

Developing ASP Components

,TITLE.22004 Page 1 Thursday, February 22, 2001 1:39 PM

,TITLE.22004 Page 2 Thursday, February 22, 2001 1:39 PM

Developing ASP Components
Second Edition

Shelley Powers

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.22004 Page 3 Thursday, February 22, 2001 1:39 PM

Developing ASP Components, Second Edition
by Shelley Powers

Copyright © 2001, 1999 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Ron Petrusha

Production Editor: Leanne Clarke Soylemez

Cover Designer: Hanna Dyer

Printing History:

April 1999: First Edition.

March 2001: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. ActiveX, JScript, Microsoft, MSDN, Visual Basic,
Visual C++, Win32, Windows, and Windows NT are registered trademarks and Active
Directory is a trademark of Microsoft Corporation. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association
between the image of an asp and developing ASP components is a trademark of O’Reilly &
Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-750-8

[M]

,COPYRIGHT.21880 Page 1 Thursday, February 22, 2001 1:39 PM

About the Author
Shelley Powers is a consultant/author with her own company, Burning Bird Enter-
prises. In the last several years, she has worked with a variety of distributed,
Internet, and Web development applications, for different platforms and using a
variety of tools. Shelley has authored or coauthored books on Dynamic HTML,
JavaScript, Java, CGI, Perl, P2P, general Web technologies, and more. Shelley can
be reached at shelleyp@yasd.com, and her book support site can be found at
http://www.burningbirdenterprises.com.

Colophon
Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Developing ASP Components, Second Edition, is an asp,
which is a term applied to various venomous snakes, including the depicted asp
viper (Vipera aspis) of Europe as well as the Egyptian cobra (Naja haje), thought
to have been the means of Cleopatra’s suicide.

Needing to eat at least 50-60% of their body weight in food per week, European
asp vipers hunt by lying in wait for approaching prey. After grabbing and biting a
small rodent or other prey, they release it and wait several minutes for it to stop
moving; the generally sluggish viper rarely chases prey. Vipers know their home
territory very well, which allows quick escape from their asp-kicking natural
enemies, serpent eagles, and hedgehogs. This trick hasn’t helped them escape
from their greatest threat, the expansion of human civilization, which frequently
wipes out large sections of their territory.

The chemical composition of asp viper venom can vary from one population to
the next, hampering initial antivenin development until 1896, but few viper bite
fatalities occur in Europe today.

Leanne Soylemez was the production editor and proofreader for Developing ASP
Components, Second Edition. Norma Emory was the copyeditor, Mary Anne Weeks
Mayo and Colleen Gorman provided quality control, and John Bickelhaupt wrote
the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial

,AUTHOR.COLO.21750 Page 1 Thursday, February 22, 2001 1:39 PM

Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest.
Judy Hoer converted the files from MSWord to FrameMaker 5.5 using tools created
by Mike Sierra. The text and heading fonts are ITC Garamond Light and Gara-
mond Book; the code font is Constant Willison. The illustrations that appear in the
book were produced by Robert Romano using Macromedia FreeHand 8 and
Adobe Photoshop 5. This colophon was written by Nancy Wolfe Kotary.

Whenever possible, our books use a durable and flexible lay-flat binding. If the
page count exceeds this binding’s limit, perfect binding is used.

,AUTHOR.COLO.21750 Page 2 Thursday, February 22, 2001 1:39 PM

v
Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Table of Contents

Preface ... xi

1. Writing ASP Components ... 1
The Role ASP Components Play ... 2

Why Use ASP Components? .. 3

COM+ Services and ASP Components .. 5

Accessing Data with ASP Components ... 8

Windows 2000 Technologies Accessible from ASP Components 10

A Rose by Any Other Name: Programming Language Choice 11

What About ASP.NET? ... 13

2. Setting Up the ASP Development Environment 14
Configuring the IIS Environment .. 15

Remote Administration of IIS .. 27

Using ADSI to Administer IIS Programmatically .. 29

IIS Admin Object Overview .. 46

The IIS Base Admin Objects .. 59

3. ASP Components and COM .. 69
Overview of COM for ASP Component Developers 70

How COM Is Implemented ... 76

Notable COM Interfaces .. 80

COM Datatypes .. 87

4. ASP Components, Threads, and Contexts 91
What Are Threads? ... 92

Threads and Apartments .. 95

,aspcTOC.fm.21592 Page v Thursday, February 22, 2001 1:38 PM

vi Table of Contents

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Threading Models ... 96

What Are COM+ Contexts? .. 110

5. COM+ Services and ASP Components and Applications 114
Developing Component-Based Systems ... 114

The COM+ Interfaces ... 116

Porting MTS Packages to COM+ Applications .. 124

Activating COM+ Applications .. 125

COM+ Services ... 127

6. ASP Interaction: Scripting and ASP Components 136
Scripting Language Support Within ASP ... 136

Instantiating Components .. 139

COM+ Datatypes and Script/Component Interaction 145

Passing Arrays as Parameters .. 159

Error Handling Between Component and Script 174

7. Creating a Simple Visual Basic ASP Component 180
Creating an In-Process or Out-Of-Process Component 181

Component Instancing ... 182

Component Execution and Threads ... 184

Creating an ASP Project ... 187

Creating Component Methods ... 188

Generating, Registering, Installing, and Testing the Component 190

Adding Support for COM+ Services .. 191

Converting MTS Components for Use with COM+ 201

Accessing the ASP Built-in Objects ... 202

Error Handling .. 220

Debugging .. 222

Performance Issues .. 222

8. Creating ASP/ADO Components ... 225
Accessing ADO from a VB Component .. 226

Creating a Simple ADO Component ... 227

The ADO Model ... 233

File and Directory Access with ADO Streams and the Record Object 256

Persisting Data .. 262

9. Creating an ASP Middle Tier with ADO 266
How Separate Should the Layers Be? ... 267

Creating ADO Data Wrappers ... 268

,aspcTOC.fm.21592 Page vi Thursday, February 22, 2001 1:38 PM

Table of Contents vii

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Defining Business Objects ... 281

Other Data Integrity Issues .. 295

10. Server-Side XML Through VB ASP Components 298
XML Basics ... 298

Formatting XML .. 302

Working with XML in ASP Applications ... 307

XML and ADO: Saving Recordsets as XML ... 315

11. Take a Message: Accessing CDO from ASP Components 321
A Brief Overview of CDO ... 322

The CDO Object Model ... 322

Send This URL to a Friend ... 324

Working with the Message Body .. 328

Retrieving and Reading Messages ... 338

12. Working with Active Directory from ASP Applications 344
A Brief Overview of Active Directory in Windows 2000 345

Setting Up an Isolated Active Directory Environment 345

A Refresher on ADSI .. 347

Binding to Active Directory Objects ... 349

Using the Active Directory Services Viewer ... 355

Manipulating Containers .. 357

Searching Active Directory with ADO .. 362

ASP Example: Add and Manage Users Through the Web 366

13. Working with MSMQ Components ... 380
MSMQ/ASP Basics .. 380

Working with Queues .. 382

Working with MSMQ Messages ... 389

Using Transactions ... 394

Journaling ... 407

A Brief Word on Message Security ... 412

14. Creating C++ ASP Components .. 414
ATL or MFC .. 415

Using ATL AppWizard to Generate the Basic ASP Component Project 416

Adding an ATL Object ... 421

Code Changes Based on Adding a New Object ... 426

Adding Methods to the Interface .. 427

Adding Support for COM+ Services .. 432

,aspcTOC.fm.21592 Page vii Thursday, February 22, 2001 1:38 PM

viii Table of Contents

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Converting MTS Components for Use with COM+ 440

Accessing the ASP Built-in Objects ... 444

Error Handling .. 463

15. Adding Data Access to C++ Components with ADO 468
ADO Access in Visual C++ .. 468

The ADO Object Model ... 469

The Connection Object .. 470

The Recordset Object ... 479

The IADORecordBinding Interface ... 486

The Command Object .. 490

Stream and Record Objects ... 497

16. The CDO Interfaces from C++ Components 506
Accessing CDO Interfaces in C++ ... 506

Creating and Sending a Message .. 509

Retrieving and Reading Messages ... 521

17. Accessing Active Directory from C++ Components 528
Binding to Active Directory Objects ... 529

ADSI Helper Functions .. 536

Filtering Collections ... 538

Creating and Removing Active Directory Objects Using ADSI 540

Searching Active Directory with IDirectorySearch 544

18. Accessing MSMQ from C++ ASP Components 550
Adding Support for MSMQ to the C++ Project ... 550

Working with Queues .. 553

Searching for a Specific Queue ... 560

Working with MSMQ Messages ... 568

Using Transactions ... 574

19. Persistence with ASP Components Using ATL and MFC 581
Combining MFC and ATL .. 581

File Access from ASP Components ... 584

Creating a Serializable Class .. 588

Persistence Through Object Serialization ... 591

20. ASP Components Created with Java ... 596
Creating Java Components .. 597

Invoking a COM Object in a Java Component ... 606

,aspcTOC.fm.21592 Page viii Thursday, February 22, 2001 1:38 PM

Table of Contents ix

Oracle 8i Internal Services for Waits, Latches, Locks, and Memory, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Working with COM+ Services ... 611

The ASP Built-in Object and Helper Interfaces .. 619

Accessing ADO from Java Components ... 633

21. Creating ASP Components with Delphi 642
Using the COM Wizards to Create ASP Components 642

Manually Adding Support for COM+/ASP .. 653

Working with the ASP Objects .. 660

Working with ADO .. 668

Working with Windows 2000 Functionality: CDO 672

22. Perl-Based Components Using ActiveState’s PDK 677
Setting Up PDK .. 678

Building a Basic Perl Component ... 679

Accessing the ASP Built-in Objects ... 689

Working with Data ... 709

Working with the Win2K Environment .. 716

23. Creating Scripting Language Components 719
The Windows Script Components Architecture ... 719

Elements of a WSC File ... 722

Script Components and ADO .. 733

The WSC Wizard .. 736

Creating Script Components with JScript .. 741

Accessing Windows 2000 Functionality .. 744

A. ASP Built-in Object Quick Reference ... 751

B. The Weaver Database ... 776

Index .. 791

,aspcTOC.fm.21592 Page ix Thursday, February 22, 2001 1:38 PM

,aspcTOC.fm.21592 Page x Thursday, February 22, 2001 1:38 PM

xi
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Preface

Developing ASP components requires knowledge not just of one tool or of one
technology, but of many. You have to become familiar with one or more develop-
ment tools, such as Visual Basic or Visual C++ (this book covers both, along with
Visual J++, Delphi, and Perl), and of course you also have to become familiar with
the tools’ underlying language. However, you can’t stop there.

ASP components are nothing more than specific types of COM-based compo-
nents; that is, they’re COM components designed to interface with Active Server
Pages and, most commonly, with Microsoft’s Internet Information Server (IIS).
Consequently, you need to develop a certain level of familiarity with COM, the
Component Object Model that underlies much of Microsoft’s technology. Becom-
ing familiar with COM development in turn requires that you become familiar with
threads, so that you can understand how a COM component interacts with a cli-
ent as well as the performance issues involved with clients and components that
are based on different threading models.

Once you’ve become familiar with working with a tool that supports COM compo-
nent development and you’re aware of some of the issues involved with COM
development, you still have other new technologies to learn. As you develop ASP
components, you need to become familiar with web-based development in gen-
eral and with the ASP environment in particular. The way in which your compo-
nents interact with the “world” they find themselves in—with the web server, the
browser, or the web page reader—occurs through built-in objects that Microsoft
has provided for ASP development.

Originally, the built-in objects could only be instantiated based on specific event
handlers. In IIS 4.0, however, the built-in objects could be accessed from Microsoft
Transaction Server (MTS) objects. And now, in IIS 5.0, the ASP built-in objects can
be accessed from COM+ objects. In addition, COM+ Services provides a number of

,ch00.17820 Page xi Thursday, February 22, 2001 1:27 PM

xii Preface

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

features (such as transaction management, just-in-time activation, and object pool-
ing) that are increasingly important for middle-tier components. So you are going
to need to become familiar with COM+ as well.

This seems like a very formidable list of tools and technologies, and it is. But
we’re not finished yet. Most applications—including more and more ASP applica-
tions—require some form of data access. If you need to provide support for data
access, then you need to become familiar with ActiveX Data Objects (ADO), the
data access technology from Microsoft that’s built on top of OLE DB. Frequently,
the content of an ASP page is assembled from data found in a message store, or
conversely the data gathered from the user’s interaction with an ASP page is sent
in an email or placed in a message store. For applications such as these, you need
to become familiar with Collaborative Data Objects for Windows 2000 (CDO).
Under Windows 2000 and IIS, a good deal of system information is stored in
Active Directory; to retrieve information from and write information to Active
Directory, you should know the Active Directory Service Interface (ADSI). Finally,
ASP applications, and particularly ASP e-commerce applications, often require
communication across systems and involve events that can occur at different times
(as, for example, when a user orders products online and a pick list is needed by
a system in the warehouse for printing). To take advantage of such loosely cou-
pled events, you should be familiar with Microsoft Message Queue (MSMQ).

Finally, once you know the programming language used for the component, the
tool used to build the component, the implications of developing a COM-based
component, the functionality available through built-in and COM+–supplied
objects, and how you can access data and the other services needed by your
application, then and only then you can take on the functionality that your com-
ponent needs to provide. Then, you add additional functionality such as file input
and output, object serialization, access to other Windows functionality, and so on.

So, do you feel tired before you even start? Well, I want to tell you that develop-
ing ASP components really isn’t all that bad, and in fact, you are about to start hav-
ing some fun. Not only that, you are also going to learn to work with technology
that faces directly on that road racing to the future: the road to distributed and
component-based development.

This book introduces you to working with COM development as well as working
with threads and those pesky little “not threads, not processes”—apartments. It
also provides an overview of the ASP operating environment as well as some
things you need to know about COM+ and how to work with it. Finally, to com-
plete this environment overview, the book explores the interaction between the
component and the script used to instantiate and invoke the methods of that com-
ponent.

,ch00.17820 Page xii Thursday, February 22, 2001 1:27 PM

Preface xiii

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Following this introduction, the book then covers component development using
Visual Basic and Visual C++. In the case of Visual Basic, chapters include access-
ing the intrinsic ASP objects from a Visual Basic component, accessing data using
ADO, incorporating messaging with CDO for Windows 2000, using MSMQ, and
using components to generate XML. The Visual C++ chapters discuss some of this
same material (accessing ASP intrinsics, data access using ADO, using MSMQ),
along with persistence using the Microsoft Foundation Classes (MFC) and the
ActiveX Template Library (ATL). But if your organization is like so many others
nowadays, your group is probably not using just one tool in its web development
efforts. It’s just not that unusual for shops to program in Visual C++ and Java,
Visual Basic and Delphi, or Visual Basic and Perl. Rather than focus this book on
one or two languages, I picked the tools/languages most likely to be used. Conse-
quently, separate chapters examine issues in component development using Java,
Delphi, and Perl. Each of these chapters is based on the earlier chapters that cover
component development using Visual Basic and explores techniques and issues in
component development using that language or tool.

Who This Book Is For
This book is geared to the developer who has worked with one of the target lan-
guages/tools but either has not created COM objects before or has not worked
with developing ASP components or ASP applications. I hope that the book pro-
vides enough of an introduction to COM and threads to make you feel more com-
fortable with these topics if you haven’t worked with them before and to provide a
good review if you have. The book does not provide an exhaustive overview of
COM+ and developing COM+ components but does provide, again, enough of an
overview so you feel comfortable working as a developer in a COM+ environ-
ment.

The book also provides a comprehensive overview of the ASP component envi-
ronment, including using tools and wizards in each language/tool to assist in creat-
ing the components, and covering every aspect of accessing the built-in ASP
components essential for your development effort. In addition, the book also pro-
vides good coverage of data access using ADO, messaging using CDO for Win-
dows 2000, and message queuing using MSMQ.

How This Book Is Structured
Informally, this book is divided into four parts. The first part introduces ASP com-
ponent development and covers topics that are of concern to all component devel-
opers, regardless of the language they use. This part consists of six chapters.
Chapter 1, Writing ASP Components, examines some of the reasons that you'd

,ch00.17820 Page xiii Thursday, February 22, 2001 1:27 PM

xiv Preface

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

want to develop an ASP component rather than rely on a simple ASP script. It also
mentions some of the technologies (COM+ services, ActiveX Data Objects, and
Active Directory, to name just three) that you can draw on in developing your
components. Chapter 2, Setting Up the ASP Development Environment, examines
how to set up your development environment to insure that you can develop with
maximum productivity and that your testing doesn't impact on a production sys-
tem. In addition, the chapter covers programmatic administration of IIS using
Active Directory and the IIS Admin Objects. Chapter 3, ASP Components and COM,
examines Microsoft's Component Object Model (COM), which provides the basis
for developing all types of components. Chapter 4, ASP Components, Threads, and
Contexts, provides developers with the information that they need to know about
threading models when developing ASP components, and particularly when
accessing global data from the ASP Application object. It also examines the notion
of context (a grouping of objects that share the same requirements), an under-
standing of which is essential to working successfully with COM+. Chapter 5,
COM+ Services and ASP Components and Applications, examines the new inter-
faces supported by COM+, shows how components written to take advantage of
COM+'s predecessor, Microsoft Transaction Server (MTS), can be ported to COM+,
and examines range of services provided by COM+. Chapter 6, ASP Interaction:
Scripting and ASP Components, covers an often-neglected component develop-
ment topic: your component may be accessed by any of a number of scripting lan-
guages—VBScript, JScript, PerlScript, Python, Rexx, etc.—and communication
between script and component is often not as seamless as you'd like. The chapter
looks at what you can do when developing your ASP component to insure that it
can work with as many scripting languages as possible.

The second portion of the book, which consists of seven chapters, focuses on
component development using Visual Basic. In addition, its chapters serve as a
kind of model for how to develop ASP components if you're using a high-level
language like Visual Basic that masks much of the complexity of COM and COM+.
Chapter 7, Creating a Simple Visual Basic ASP Component, introduces Visual Basic
as a tool for ASP component development and examines how to access the ASP
object model from Visual Basic. Chapter 8, Creating ASP/ADO Components, looks
at accessing data in heterogeneous sources using ActiveX Data Objects (ADO).
Chapter 9, Creating an ASP Middle Tier with ADO, discusses component design for
multi-tier applications, focusing particularly on the degree of separation between
the middle tier and the client tier. The remaining chapters focus on individual
technologies that developers frequently use when creating ASP Components.
These include the following:

• XML is discussed in Chapter 10, Server-Side XML Through VB ASP Components.

• Collaborative Data Objects (CDO) for Windows 2000 is covered in Chapter 11,
Take a Message: Accessing CDO from ASP Components.

,ch00.17820 Page xiv Thursday, February 22, 2001 1:27 PM

Preface xv

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• Active Directory is discussed in Chapter 12, Working with Active Directory
from ASP Applications.

• Microsoft Message Queue (MSMQ) is examined in Chapter 13, Working with
MSMQ Components.

The third portion of the book, consisting of six chapters, treats component devel-
opment using Visual C++. In addition, its chapters serve as a kind of model for
ASP component development using a high-level language like Visual C++ that
exposes much of the complexity of COM and COM+. Chapter 14, Creating C++
ASP Components, introduces Visual C++ as a tool for ASP component develop-
ment and examines how to access the ASP intrinsic objects from a Visual C++
component. Chapter 15, Adding Data Access to C++ Components with ADO, exam-
ines accessing data in heterogeneous sources using ADO. The next three chapters
cover the following individual technologies that are often used in developing com-
ponents for IIS 5.0:

• Collaborative Data Objects (CDO) for Windows 2000 is covered in Chapter 16,
The CDO Interfaces from C++ Components.

• Active Directory is discussed in Chapter 17, Accessing Active Directory from
C++ Components.

• Microsoft Message Queue (MSMQ) is examined in Chapter 18, Accessing
MSMQ from C++ ASP Components.

Finally, coverage of Visual C++ and ASP component development ends with
Chapter 19, Persistence with ASP Components Using ATL and MFC, which dis-
cusses ways in which your component can save its data to the filesystem.

The final portion of this book features individual chapters on component develop-
ment using the following programming languages and environments:

• Java is covered in Chapter 20, ASP Components Created with Java.

• Delphi is discussed in Chapter 21, Creating ASP Components with Delphi.

• Perl is covered in Chapter 22, Perl-Based Components Using ActiveState’s PDK.

• Windows Script Components (WSC), a scriptable yet powerful development
environment for creating ASP components, is discussed in Chapter 23, Creat-
ing Scripting Language Components.

Finally, the book includes two appendixes. Appendix A, ASP Built-in Object Quick
Reference, provides a handy guide to the objects, properties, methods, and events
of the ASP object model. Appendix B, The Weaver Database, examines the tables
contained in the sample Weaver database, which is used in the book's examples.
It can be downloaded from http://vb.oreilly.com.

,ch00.17820 Page xv Thursday, February 22, 2001 1:27 PM

xvi Preface

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Obtaining the Sample Code
All of the example source code from Developing ASP Components, Second Edition,
along with the sample Weaver database discussed in Appendix A, is freely down-
loadable from the O’Reilly & Associates web site at http://vb.oreilly.com. Just fol-
low the link to the book’s title page, then click on the Examples link.

Conventions Used in This Book
Throughout this book, we have used the following typographic conventions:

Italic
Represents intrinsic and application-defined functions, the names of system
elements such as directories and files, and Internet resources such as web doc-
uments. New terms are also italicized when they are first introduced.

Constant width
Indicates a language construct such as a language statement, a constant, or an
expression. Interface names appear in constant width. Lines of code also
appear in constant width, as do function and method prototypes.

Constant width italic
Indicates replaceable parameter names in prototypes or command syntax and
indicates variable and parameter names in body text.

Indicates a note or tip.

Indicates a warning.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472

,ch00.17820 Page xvi Thursday, February 22, 2001 1:27 PM

Preface xvii

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/devaspcom2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.oreilly.com

For technical information on Visual Basic programming, to participate in VB dis-
cussion forums, or to acquaint yourself with O’Reilly’s line of Visual Basic books,
you can access the O’Reilly Visual Basic web site at:

http://vb.oreilly.com

Acknowledgments
I want to thank the book’s tech reviewers, Daniel Creeron and Matt Childs, for
their thorough reviews and helpful comments. I also want to thank Bob Herbst-
man and Tatiana Diaz, members of the O’Reilly editorial staff, for their hard work
and dedication to this project.

I also want to thank my long-suffering editor, Ron Petrusha. This is the second edi-
tion of this particular book, and he’s done a terrific job of editing both of them. I
also want to thank my coworkers at Skyfish.com for being a terrific group of peo-
ple. Specifically, I want to thank a certain group of Australians in the company—
guys, the best to you all, and may your dreams find you.

Finally, thanks to my readers—I’m here because you’re here.

,ch00.17820 Page xvii Thursday, February 22, 2001 1:27 PM

,ch00.17820 Page xviii Thursday, February 22, 2001 1:27 PM

1
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

1
Writing ASP
Components

When Microsoft first released Active Server Pages (ASP) with the company’s web
server, Internet Information Services (IIS), the functionality included with this early
release amounted to little more than an ability to handle server-side scripting. If
you haven’t worked with server-side scripting, it is the inclusion of script, such as
VBScript or JScript, in web pages so that the script is processed on the server
rather than on the client. This early ASP release soon gave way to the ASP we
have now, a sophisticated server-side application-building environment that still
supports server-side scripting, but also includes integration with other Microsoft
server products such as COM+ Services and allows ASP pages to access COM/
COM+ objects.

This book is about writing COM/COM+ objects to work within this ASP environ-
ment. Since they are COM/COM+-based, you know that whatever functionality
you can implement with COM/COM+ components, you can also implement with
ASP components. This means that you can create an instance of an ASP compo-
nent and use that component instance to do things such as query a database, open
a file, or send an email to a client. However, ASP components are created for a
specialized environment, and there are certain things you might consider doing
with COM objects that you probably wouldn’t consider doing with ASP compo-
nents. For instance, because an ASP component resides on the server, you aren’t
going to use any message windows to communicate with the user; all communica-
tion is handled through IIS.

In addition, by being part of the ASP environment, ASP components have access
to built-in objects that contain information not normally available to a “standard”
COM object—information such as form field values submitted from an HTML form,
the type of browser being used to access the page, or even the language, such as
English, preferred by the client.

,ch01.17972 Page 1 Thursday, February 22, 2001 1:27 PM

2 Chapter 1: Writing ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The information available to an ASP component is also available to ASP scripting
blocks, so why use components when you can use scripting, especially since
scripting is fairly simple to use and can be learned relatively quickly?

The first and foremost reason to use ASP components instead of in-page ASP
scripting blocks is reusability. It’s difficult to package an ASP script in such a way
that it can be used over and over again in many different pages. Additionally, if
you or your company is considering packaging some ASP functionality for resale
or distribution, the use of ASP scripting becomes insupportable. You probably
won’t be in business long if people can both see and modify your source code.

Another reason to use ASP components is that the components themselves can
reside virtually anywhere, even on different machines. You can create an ASP
application that may update a customer database and that uses one component to
update the person’s address and another component to update the person’s prefer-
ences. One or both of these components can reside on the same machine as the
web server, but one or both of these components can as easily reside on other
machines, with remote COM+ being used to access the component. While you can
distribute web pages containing script on various machines, the maintenance and
access issues become much more complicated and usually require hardcoding the
physical addresses of the pages within the application. With COM+-based func-
tionality, only the operating system COM+ manager needs to know where the ASP
components reside. Moving components is a matter of changing the location of a
component once on the client machine; all accesses to the component now occur
at its new location.

An additional reason to use ASP components is that they can incorporate the full-
est range of functionality on the server, including database access, file access,
archiving, messaging, and other functionality difficult or impossible to do with
script. You can even transcend object systems and access CORBA-based compo-
nents with the support of products such as Iona’s COM-CORBA Bridge and others.

The Role ASP Components Play
As stated earlier, ASP components are COM+-based components that encapsulate a
specific functionality and that are invoked either directly from an ASP page or indi-
rectly via some other ASP component. If you have worked with COM+ before, ASP
components don’t use any additional technology, but they can use additional
objects available only within the context of an ASP application. However, if a com-
ponent does not access the ASP-specific objects provided through the ASP object
model, it can be used within a distributed application, from other components
(whether or not they’re part of an ASP application), or even within a flat one-tier
application that has no involvement with ASP, IIS, or the Internet. From this point

,ch01.17972 Page 2 Thursday, February 22, 2001 1:27 PM

Why Use ASP Components? 3

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

of view, this book could actually be about writing COM+ components, albeit with
a specific focus.

Having said that an ASP component is really no different than any other COM+
component, I want to add that the focus of writing an ASP component can alter
how that component is created. First, the component will usually reside on the
same server as the client of the component, with the client for ASP being the web
server. I say usually with some reservation, since there is no requirement that ASP
components must reside on the same machine as the client application.

In addition, an ASP component is almost always an in-process (ActiveX DLL) com-
ponent, though you can use out-of-process components if you wish. However,
ASP is optimized for in-process access of components.

As in-process COM+ objects, ASP components are usually created using the apart-
ment- or both-threaded model or the new neutral-threaded apartment model. ASP
components are not and should not be created using the single-threaded model,
since the component locks down all access to a single thread, which causes access
problems in a multiuser environment such as the Web and a multiuser application
such as a web server. The component shouldn’t be created using the free-threaded
model either, since all communication between the ASP page and the component
must then be marshaled, a process that can impact on the ASP application’s per-
formance.

There is an additional constraint if you’re using a multithreaded model such as the
both-threaded model: the ASP components must be thread-safe. What’s a thread-
safe ASP component? One that does not contain global data, that does not yield
control internal to the processing of the component, and that is safely reentrant.
Chapter 4, ASP Components, Threads, and Contexts, goes into more depth on
threads and apartments. That chapter also covers how threads and the new COM+
contexts work together to provide optimized management of the components.

Now that you have a basic idea of what ASP components are, the next section dis-
cusses why you would use ASP components instead of creating the ASP applica-
tion using scripting exclusively.

Why Use ASP Components?
In the beginning of the chapter, I started listing some reasons to use ASP compo-
nents instead of scripting. In this section, I want to discuss this topic in a little
more detail.

An ASP component can be used in place of scripting where scripting is just not
workable or efficient. For example, your ASP application may need to make direct
calls to the Windows internals through the Win32 API or manage file input and

,ch01.17972 Page 3 Thursday, February 22, 2001 1:27 PM

4 Chapter 1: Writing ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

output. These operations cannot be done from within a scripting language such as
JScript or VBScript. The IIS scripting engine can be extended to other scripting lan-
guages, such as Tcl or PerlScript, which do support direct filesystem access or calls
to the Win32 API. However, the use of these scripting languages comes at a cost:
the code is a little more difficult to read, a little more difficult to maintain, and a
whole lot more difficult to secure against editing from external sources. If the code
needs to remain unaltered, perhaps to enforce standards compliance or universal
data access, the code should be contained within binary components.

Along with implementing functionality that is either unsupported or not easily sup-
ported by scripting languages, ASP components are also developed to be reusable
and to wrap routines that are commonly called in ASP applications, something that
isn’t as easy to implement with script. This means that, if the code needs to
change, the change then needs to be propagated to all the pages that use the
code. In contrast, reusable code is more easily and efficiently managed through
components. All ASP applications can access a single physical component. And
when that component needs to be modified or revised, the change needs to be
made in just a single place. So for code that needs to be reusable, an ASP compo-
nent is a better choice than ASP scripting.

ASP components can be used to modularize an application, splitting off discrete,
manageable bits of functionality that can then be coded by several people in paral-
lel or even purchased from some other party. An additional advantage to modular-
ization of code in components is that the components can themselves be
distributed on different machines, and component access can be handled remotely
through DCOM or some other equivalent technology. This approach ensures that
the application is more scalable and will be able to handle increasingly larger
numbers of accesses. If the ASP components are also configured and coded as
COM+ components, transaction management for all of the components can be
handled directly by COM+ regardless of where the component resides. Though
transactions can be used with scripting and ASP pages can be located on other
machines, the management of pages containing straight scripting blocks instead of
components under such conditions can become more complicated.

If an organization is considering building an application that is n-tier rather than
fitting within the traditional client-server paradigm, ASP components are an excel-
lent tool to use to implement one or more of the application layers. A classic
approach is to implement the business layer of an ASP application as one or more
ASP components and handle the presentation layer in the web page using HTML
and client-side scripting, including the newer Dynamic HTML (DHTML). The data
access layer would be contained within the database used in the application.

Finally, ASP components are a handy way of ensuring uniformity of an applica-
tion. For example, if database queries are formatted for output into HTML tables

,ch01.17972 Page 4 Thursday, February 22, 2001 1:27 PM

COM+ Services and ASP Components 5

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

with a certain look, the data presentation functionality can be maintained within
ASP components in a layer between the web pages and the business logic and
used for all database queries.

COM+ Services and ASP Components
ASP Components within the Windows 2000 environment can use one of several
COM+-managed services to enhance the performance of both the component and
the component’s ASP application.

One popular COM+ service is just-in-time (JIT) activation. JIT is used to instanti-
ate the component when the component’s methods are called, not when it’s
instantiated in the ASP script. JIT also deactivates the component when it’s no
longer active, though the ASP page may still be processing other component
method calls. This late instantiation/early release model helps free up scarce sys-
tem resources such as memory and database connections, as described in more
detail in Chapter 5, COM+ Services and ASP Components and Applications.

Another COM+ service is object pooling. Object pooling is used to create a pool of
ASP components that are then used to process component method requests, rather
than creating a new component for every request. Object pooling can increase the
speed with which components are instantiated. However, only components that
meet certain criteria, as described in Chapter 5, can take advantage of object
pooling.

Resource Management

Resource pooling recognizes that some resources—such as database connections,
threads, and other finite resources—are expensive. By preallocating a pool of
resources, access to the resource happens more quickly. Since quick allocation of
the resource is assured, the developer will most likely write code that allocates the
resource, uses it, and releases it as soon as possible. When the developer uses this
type of coding practice, the pool of available resources can be kept as small as
possible. By keeping the resource pool as small as possible, the whole system per-
forms better, and the developer receives positive feedback—a nicely performing
application or component—encouraging the developer to continue using the
sound coding practices that actually assist in the well-behaved application or com-
ponent. This is just the kind of cycle that should be encouraged with development.

By utilizing resource pooling, expensive and time-consuming resources such as
database connections can be created when the application is started and can be
used for all resource access, rather than having to create a new reference every
time the application wants to create a new connection. Based on resource pool-
ing, the connection happens more quickly, and the system is more scalable, since

,ch01.17972 Page 5 Thursday, February 22, 2001 1:27 PM

6 Chapter 1: Writing ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

limited resources are managed finitely and controls are maintained on the number
of resources allocated.

Database connections are the most widely known resource that participates in
resource pooling, but any resource can be managed in this manner by creating the
appropriate resource dispenser. COM+ provides for resource pooling of ASP or
other components by providing an object called ObjectControl that actually allows
the component to be used within a resource-pooling context. Additionally, for spe-
cific resources, developers can actually create resource dispensers that manage
allocation of the resource connections for any resource they believe would bene-
fit from this process.

In addition to supporting resource pooling, COM+ also provides for just-in-time
activation, which means that when a client makes a connection to a component
managed by COM+, it is really getting a connection provided by COM+ and not
directly by the component. If the component signals that it is finished with its pro-
cess using the SetComplete or SetAbort methods on the component’s associated
ObjectContext object (discussed in the next section) COM+ knows that it can mark
the component for release, even while the client still maintains the connection to
the component. When the client next accesses a method on the component,
COM+ loads a new instance of the component, and the client is never aware that
it is no longer using the original “component reference.”

COM+ also provides for transaction management, as described in the next section.

Transaction Management

If an ASP component performs a task that begins and finishes within a single func-
tion call, transaction management is not that much of an issue. However, ASP
components can call other components and perform other actions such as data-
base activity, each of which requires some form of overall transaction support.

One of the problems with a distributed application (and an ASP application can be
distributed) is transaction management across several different application compo-
nents and potentially across several different machines. For instance, one compo-
nent can update an address in a database, and another component can update an
associated name. If the address update fails, the associated name update should
also fail in order to maintain consistency of the data. If both the updates occur
within the same component, this isn’t a problem, since both database transactions
can be rolled back. Rolling back a change means that the impacted database data
exists in the same state as it did before the change was attempted.

If the updates occur with two different components, transaction management
becomes more complex. One possibility is to use one database connection for
both components, and one of the components—the one making the name

,ch01.17972 Page 6 Thursday, February 22, 2001 1:27 PM

COM+ Services and ASP Components 7

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

update—calls the other component that performs the address updating. The com-
ponent performing the address update returns a value signifying success or failure
of its operation. If the update failed, the first component would not make its
update. Though workable, the approach is cumbersome, and neither component is
able to work independently of the other.

Another approach is to handle transaction management within an ASP page or by
a third component that creates both updating components, tests the return state of
both components, and commits or rolls back all of the changes based on the
results returned by either component. This is a better solution, since now both
components can make their updates without having to worry about what is hap-
pening with any other component. However, in a larger application that makes
multiple changes of this type, having the application itself maintain consistency
between the data updates of all the components can become overwhelming at
some point.

The best solution of all is to have some other process manage the transaction state
of the components and test to see whether each component has succeeded in its
operation or whether one of the components has failed. If any one of the compo-
nents fails, then the changes made by all of the components are rolled back. This
is where COM+ comes in.

COM+ provides a two-phase commit transaction management scheme that ensures
that, unless all participants in a transaction complete successfully, none of the par-
ticipant updates are committed. You might say that this first phase of the commit
operation consists of a pass made of all participants in a transaction to ask if they
are ready to commit their changes. The second pass then checks to make sure all
of the components have made updates without errors.

ASP applications can participate in COM+ transactions, and transaction manage-
ment can occur within an ASP page, an ASP component, or both. A transaction
can be created within an ASP page and then used for all of the components cre-
ated directly from the page or created from within another component accessed in
that page. Failure in any one component means all of the updates made by all of
the components within the transaction are rolled back. Components themselves do
not have to create transactions directly but can be registered with COM+ in such a
way as to participate in an existing transaction or have COM+ automatically create
a new transaction for the component when the component is created.

To facilitate transaction management from within the component, there are COM/
COM+ objects with methods the component can call to signal to COM+ the state
of both the component and the transaction. If the component uses the COM+
IObjectContext or IContextState interface methods, such as SetAbort or Set-
Complete, the component is basically providing information to COM+ that it has

,ch01.17972 Page 7 Thursday, February 22, 2001 1:27 PM

8 Chapter 1: Writing ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

finished its processing and can be unloaded from memory. The following code is
an example of using the ObjectContext SetAbort method from within a Visual
Basic component:

Dim objContext As ObjectContext
Set objContext = GetObjectContext()
...
objContext.SetAbort

By using the ObjectContext object’s SetAbort method, COM+ knows that the com-
ponent has finished its processing but that the processing was not successful. In a
two-phase commit paradigm, the object passes the first phase successfully—it is
finished with its processing. The second pass of the process would operate on the
information that this component failed, which means that the transaction failed
and that none of the updates made by any component in the transaction are com-
mitted.

Using the SetAbort method also lets COM+ know that it can unload the compo-
nent from memory even if the client of the component still maintains a pointer to
the component. When the client next accesses the component, COM+ loads a new
version of it and passes all component references to the new component. This is
an example of JIT that was discussed earlier.

Each of the language-specific chapters of the book (Chapters 7, 14, and 20–23)
covers the use of transactions from within components.

Transactions are particularly important if your ASP components are making
updates to a persistent data source using data objects such as ActiveX Data Objects
(ADO), discussed next.

Accessing Data with ASP Components
There are few applications, Internet-based or otherwise, that do not perform data
access in one form or another. ASP applications are no exception. There are actu-
ally several methodologies that an ASP application and an ASP component can use
to manage or query data.

RDO and DAO: Earlier Data Access Techniques

First, an ASP component may access data through a set of APIs provided by the
data source engine that allows direct access to the data. Though efficient, the
problem with this approach is that the data access is locked into the particular
database engine. An additional problem is that there is no guarantee that the API
may not change over time, forcing changes to the component using it. An exam-
ple of using a direct call-level interface is DB Library for SQL Server.

,ch01.17972 Page 8 Thursday, February 22, 2001 1:27 PM

Accessing Data with ASP Components 9

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If the data source has an ODBC driver, the ODBC call-level interface could be
used instead. The advantage to using ODBC is that the same techniques used to
query and manage data for one data source can also be used for another data
source, as long as both data sources provide a compliant and compatible ODBC
driver. However, this technique requires a fairly in-depth understanding of ODBC.

Microsoft provided Data Access Objects (DAO) for access to the Jet database
engine that ships with Visual Basic and Access. The advantages of DAO are that it
is optimized for ISAM or Jet database access, and it can support single queries
against multiple data sources. The disadvantages to using DAO are that it is not an
optimum approach to access data from relational data sources, and it requires
more memory than other approaches, such as the Remote Data Objects (RDO) dis-
cussed next. Also, before the release of ODBCDirect, DAO could not be used with
ODBC data sources. ODBCDirect now provides RDO functionality from DAO
objects, though the other limitations remain.

RDO objects are really wrapper objects for the ODBC API that lessen the complex-
ity of using ODBC. RDO provides for powerful functionality, including the use of
local cursors and batch operations. RDO is also fast and efficient, but its perfor-
mance can actually degrade or it can even fail when used with ISAM data sources.

The previous generation of data access techniques tended to support particular
types of data access. Some, like DAO, are geared for ISAM data access, and oth-
ers, like RDO, are geared more toward relational database access. In addition,
none of the approaches are designed to access data from text files, email, or any
other of the many data sources that we use on a day-to-day basis. To address the
gaps in data access, Microsoft proposed the concept of Universal Data Access, dis-
cussed next.

Universal Data Access

Universal Data Access is nothing more than a single data access technology that
can be used with different types of data, regardless of the format or structure of
the data source. This means that the same objects can be used to access an ISAM
data source, a relational database, a text file, and even data from an email.

To support the concept of Universal Data Access, Microsoft used COM as an
implementation paradigm and created OLE DB. OLE DB is a set of interfaces
based on COM that provide for data access through data providers that produce
and control data and data consumers that use the data. In this context, SQL Server
is considered a data provider, and an ASP component that uses OLE DB directly is
a data consumer.

OLE DB is very fast and efficient, but it is not necessarily simple to understand or
use outside of the OLE DB templates for Visual C++. To assist developers in using

,ch01.17972 Page 9 Thursday, February 22, 2001 1:27 PM

10 Chapter 1: Writing ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

OLE DB, Microsoft also provided ActiveX Data Objects (ADO), a set of objects
implemented on top of OLE DB that can be used with any programming language
or tool that has COM access.

ADO consists of a very small set of objects that can be accessed either hierarchi-
cally or directly. One of the disadvantages of both DAO and RDO is that their
objects form an enforced hierarchy, and any one object can only be accessed from
its parent objects within the hierarchy. With ADO, an object like a result set can be
accessed and used directly without having to access it from either a command or a
database connection, unless this hierarchical access is what you want.

In Chapter 8, Creating ASP/ADO Components, ADO is used to demonstrate basic
data access techniques with ASP components created using Visual Basic, though
the techniques can apply to ADO access from any language. Chapter 9, Creating
an ASP Middle Tier with ADO, describes some of the techniques and issues to be
aware of when developing a component for the middle tier. In addition,
Chapter 15, Adding Data Access to C++ Components with ADO, covers the use of
ADO from Visual C++, and the other language chapters in the final section of the
book each demonstrate how to use ADO with that specific language.

Windows 2000 Technologies Accessible
from ASP Components
An ASP component within the Windows 2000 operating system environment has
access to a wealth of technologies that can be used to send or read emails, post
deferred messages, manage an LDAP directory, and so on.

Microsoft has provided the Active Directory Service Interface (ADSI) to work with
Active Directory. Directory services are used to manage users, groups, and system
resources, including controlling application access, and issues of security. The
ADSI is used to manage the IIS environment, as detailed in Chapter 2, Setting Up
the ASP Development Environment. ADSI can also be used to provide LDAP direc-
tory service functionality to an ASP application. Using ADSI is demonstrated using
Visual Basic in Chapter 12, Working with Active Directory from ASP Applications;
using ADSI with Visual C++ is discussed in Chapter 17, Accessing Active Directory
from C++ Components.

Collaborative Data Objects (CDO) for Windows 2000 can be used from within
your ASP components to send and retrieve email messages. The messages can be
as simple as a single text string or can include complex hierarchical multipart mes-
sages with MIME formatting. Chapter 11, Take a Message: Accessing CDO from ASP
Components, and Chapter 16, The CDO Interfaces from C++ Components, demon-
strate the use of CDO from Visual Basic and Visual C++, respectively.

,ch01.17972 Page 10 Thursday, February 22, 2001 1:27 PM

A Rose by Any Other Name: Programming Language Choice 11

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Microsoft Message Queue (MSMQ) technology is used to create deferred
application-specific messages. For instance, a salesperson in the field can get sev-
eral orders that are stored in his laptop. At some point he can connect to the com-
pany’s server process and upload the orders as MSMQ messages, to be processed
immediately or at a later time.

To work with MSMQ technology, you can use MSMQ COM objects, as described in
Chapter 13, Working with MSMQ Components, or you can access the MSMQ func-
tions from Visual C++, as described in Chapter 18, Accessing MSMQ from C++ ASP
Components.

The mechanics of using each of these technologies is covered in the Visual Basic
chapters of this book, and demonstrations of how to use them within an environ-
ment where more of the COM+ infrastructure is exposed is covered in the chap-
ters devoted to demonstrating C++.

Though much of the Windows 2000 functionality covered in this book is demon-
strated with Visual Basic or Visual C++, you can implement the same functionality
in your COM-compliant language. Each of the languages covered in the final por-
tion of the book—Delphi’s Pascal, Perl, and Java—as well as scripting languages
can access any of the functionality just discussed. To do so, read the Visual Basic
chapters first in order to get an overview of the technology. Then apply the tech-
niques exposed in either Visual Basic or Visual C++ to your own language.

Each of the language chapters takes one aspect of the Windows 2000 technolo-
gies and demonstrates how it can be accessed in the specific language.

A Rose by Any Other Name:
Programming Language Choice
In actuality, there is no “right” tool or language to use for writing ASP compo-
nents. Any tool that is capable of creating COM-compatible objects can be used to
create ASP components. This includes C++ (through tools such as Visual C++ or
Inprise’s C++ Builder), Visual Basic, and Java (through Visual J++ or through the
Java SDK, depending on the functionality you include in your component).

This also includes languages considered as “not traditional” ASP programming lan-
guages, such as Pascal, through Delphi from Inprise (formerly Borland), and Perl,
with the help of the Perl Dev Kit from ActiveState.

As for which language to write the component in, there is no one choice that
stands out clearly over the others. Writing ASP components using Visual Basic
exposes less of the underlying functionality than writing the same component
using Delphi or Visual C++. Because of this, Visual Basic is the easiest tool to use,

,ch01.17972 Page 11 Thursday, February 22, 2001 1:27 PM

12 Chapter 1: Writing ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

particularly for a shop that has primarily used tools such as PowerBuilder or Visual
Basic for most application development. If a shop is porting a traditional Visual
Basic client/server application to an n-tier system, the continued use of Visual
Basic also makes sense.

However, for a Delphi or Perl shop, it makes no sense to switch to Visual Basic
when you can use either of these languages in your component development.
Both provide modules or wizards you can use to facilitate your ASP component
development.

For Delphi or Perl developers, the Visual Basic chapters in this book
provide overviews of the technology being demonstrated in the
chapter, such as CDO, as well as examples of using CDO with VB
components. You can benefit from both the overview and the dem-
onstrations in these chapters, even though you program in a differ-
ent language. Consider Visual Basic as the closest “pseudocode”
language we can find when it comes to demonstrating techniques.

If your exposure to development has been primarily with scripting, then you can
also use scripting languages such as JavaScript/JScript or VBScript to create your
components, by using the Windows Script Components (WSC). How to use the
WSC is described in Chapter 23, Creating Scripting Language Components.

Visual C++ exposes more of an ASP component’s underlying COM architecture
and can be used to create efficient and speedy components. However, that same
exposure to COM also makes using Visual C++ a more difficult choice. If the shop
creating the components has no C++ or Visual C++ experience, this approach
becomes prohibitive. However, if a shop has used Visual C++, then Microsoft has
provided the ActiveX Template Library (ATL) to assist in implementing ASP com-
ponents; it handles almost all of the details associated with the implementation of
a COM component. Using ATL and accessing the ASP built-in objects are covered
in Chapter 14, Creating C++ ASP Components. In addition, Chapter 19, Persistence
with ASP Components Using ATL and MFC, provides coverage of file I/O in addi-
tion to serializing information for persistence beyond the life span of an ASP appli-
cation.

As for concerns about interoperability, considering that ASP components are COM
components, they are by their very nature interoperable within a COM environ-
ment. Even within an organization that uses CORBA rather than COM+, there are
COM/COM+-to-CORBA bridges to handle communication between the two com-
ponent management/communication approaches.

The underlying language used to create the component does not matter because
ASP components are based on a binary interface, not a language-specific interface.

,ch01.17972 Page 12 Thursday, February 22, 2001 1:27 PM

What About ASP.NET? 13

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

What About ASP.NET?
As you move into the future with your ASP development, you’ll eventually start
moving your applications over to ASP.NET rather than the existing ASP. How will
this new environment and framework impact on your component development?

Actually, you’ll find that ASP components work equally well in an ASP.NET envi-
ronment as in an ASP environment. In fact, the whole concept of ASP.NET is that
any language—including those demonstrated in this book—can be used to create
ASP.NET applications.

Instead of using separate script blocks using JScript and VBScript, you can use
programming languages such as C++, Perl, Visual Basic, or the new C# (pro-
nounced “C sharp”) to create functionality within an ASP.NET page or within an
externally accessed COM+ component. The underlying infrastructure compiles the
language code into a common Intermediate Language (IL) code.

The ASP objects change with ASP.NET, so you’ll want to consider using the ASP
built-in objects from your component code sparingly, if at all.

Regardless of how fast you move to the ASP.NET environment, Microsoft realizes
that it must support components created using classic COM/COM+ functionality—
which means that the components you create now will continue to function into
the future.

,ch01.17972 Page 13 Thursday, February 22, 2001 1:27 PM

14
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

2
Setting Up the ASP Development
Environment

ASP is a web development tool and environment and thus requires that a web
server be available. Originally, only Microsoft supplied web servers that provided
the necessary support to run an ASP application. It wasn’t long, though, before
companies such as Chili!Soft extended support for ASP to other web servers such
as Apache, Netscape’s servers, and even O’Reilly’s web server, all of which
increased the popularity of ASP as a web development tool. However, IIS is still
the primary web server used with ASP.

IIS can be installed as an option when you install Windows 2000. If you’re upgrad-
ing, IIS is installed automatically if the upgrade process detects an existing copy of
the web server. You can also install IIS at a later time. Once IIS is installed,
though, additional work is necessary to configure the environment to support ASP,
depending on whether the web server is a standalone server set up for develop-
ment or a production machine accessed internally through an intranet or exter-
nally through the Internet.

IIS can be configured and administered locally or remotely through the use of
tools that Microsoft has provided. In addition, IIS also has a support data structure
known as the IIS Metabase, which can be manipulated programmatically using
objects provided with IIS or using the Active Directory Services Interface (ADSI).

Once IIS is installed and configured, the next step is to create an ASP application to
act as the development test environment. Specifically, there are configuration set-
tings that can help the ASP component developer during the development process.
These and all of the other issues just mentioned will be covered in this chapter.

,ch02.18096 Page 14 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 15

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Though this chapter focuses exclusively on IIS, you should be able
to install another web server and add support for ASP with Chili!Soft
or another comparable ASP support application. The components
discussed in this book have been tested only within a Windows 2000
environment, in both Advanced Server and Professional installa-
tions. Many of the components use features and facilities that are
specific to Windows 2000, such as COM+ support. Because of this,
there is no guarantee that the components demonstrated throughout
the book will work with any other operating system.

Configuring the IIS Environment
ASP first appeared as an ISAPI extension with Version 3.0 of IIS. Since that time,
the capabilities of ASP have grown from a server-side scripting technique to a rich
n-tier and web-based application development environment. As ASP has grown in
functionality, so has the support environment, and this includes IIS.

IIS 5.0, included with Windows 2000, provides for a high degree of control of the
web server environment, including being able to create more than one web site in
the same IIS administration context, as well as being able to create one or more
virtual directories, each of which can emulate a totally separate web environment.
In addition, each web site can be configured to handle specific numbers of con-
nections and allow open or restricted access; each virtual directory can have its
access constrained; and both the web site and virtual directories can be opened
for general or restricted access based on NT roles.

Each of these options and others are discussed in this section, but first, let’s make
sure IIS is installed correctly.

You will need Administrative privileges to install and set up IIS on a
particular machine.

Installing IIS

To develop ASP components, you need to have a test environment, and for Win-
dows 2000 this most likely means having access to an IIS test installation. You
could be sharing a test environment with other folks, something that IIS supports
quite nicely, or you might have your own version of IIS to use for development.

,ch02.18096 Page 15 Thursday, February 22, 2001 1:27 PM

16 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You’re given the choice whether to install IIS when you do a clean Windows 2000
installation. If, however, you install Windows 2000 as an upgrade to an existing
system, IIS is installed automatically only if the previous installation also had IIS
installed. As such, an automatic installation of IIS occurs only when you’re upgrad-
ing an NT 4.0 server. Then the Windows 2000 installation tries to match, as closely
as possible, the configuration of your existing server. If you’re installing Windows
2000 Professional over Windows 95 or 98, you’ll need to install IIS as a separate
component at a later time.

The procedure to install IIS is, fortunately, relatively simple. First, make sure IIS 5.0
isn’t already installed by checking for the Internet Services Manager menu item,
located in the Administrative Tools menu folder if you are using Windows 2000
Server. If you are using Windows 2000 Professional or Server, you can access the
Internet Services Manager from the Administrative Tools folder contained in the
Control Panel.

To install IIS, access the Add/Remove Application option in the Control Panel.
Select the option to add or remove Windows components. From the window that
opens, click on the checkbox next to Internet Information Services to install the IIS
component, or click the Details button to fine-tune your selection. If disk space is
at a premium, you might want to skip the installation of FTP, NNTP, and other
web applications. You should, though, choose to install the default web server,
checked by default.

Once you’ve made your choice, the Windows Components Wizard installs IIS with
default values. You can test your installation by accessing the IIS introduction page
using the following URL:

http://localhost/localstart.asp

This opens a page introducing IIS and also opens a separate window containing
IIS documentation. Become familiar with this page and the documentation, since
you will be using it throughout this book and in your development efforts.

After IIS is installed and you’ve had a chance to become familiar with the startup
page and documentation, the next step to setting up a development environment
is to create a separate development web server. In the Internet Information Ser-
vices snap-in service component, you should see the name of your IIS server (the
machine’s name), and below this you should see the default web server and
administration web server, which are already defined.

For the purposes of this book, we’ll redefine the default web server as the Devel-
opment server. To do this, you’ll rename the server and also point it to your devel-
opment subdirectory.

First, use Windows Explorer to create a new top-level directory named
development. Next, you’ll set up the web server to point to this new directory.

,ch02.18096 Page 16 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 17

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Right-click on the default web server name and select Properties from the menu
that opens. In the Properties window, select the Web Site tab, and type in the new
web server name, Development. You can also turn off logging, unless your devel-
opment effort is dependent on web logs.

After renaming the web server, select the Home Directory tab. Find the Local Path
text box in the page and type in or browse for the location of the development
directory you created. In addition, rename the Application name to Development.
You’re now ready to access the development content using the localhost IP alias.

If you are working with Windows 2000 Professional, the version of
IIS installed in this environment will not let you create separate
Administration and default web servers, nor can you create a new
web server—only one server is allowed. However, you can change
the location of this server to point to the directory where you will be
creating your test ASP pages. Additionally, you can also create multi-
ple virtual directories as detailed in the later section, “Creating Sepa-
rate ASP Applications with Virtual Directories.”

If the default web server is being used for other purposes, you can create a sepa-
rate development server. To do this, right-click on the Windows 2000 server
name—the topmost object in the Console window—and from the pop-up menu,
select New, then select Web Site. The Web Site Creation Wizard opens up and will
guide you through the server setup.

Stepping through the Wizard pages, you’ll enter a description of the web server
first—in this case, you’ll type in Development. Next, you’ll need to specify IP and
port settings. Unless the web server needs to be accessed from an intranet, for
shared access, or from the Internet (not a good idea for a development test
server), you’ll want to leave the setting of All Unassigned as is, or use the IP of
127.0.0.1, also known as the local loopback address. You’ll be able to access your
web site using the uniquely defined DNS value of localhost with either of these
settings.

If you want to support more than one web server using the same IP address but
with a different physical location and with different property settings, you can cre-
ate the new server with a different TCP port number. Then, to access each web
server, you specify the port number, as follows:

http://localhost:8000/default.asp

The only limitation with specifying separate ports is you can’t specify one already
being used. Checking your installation, you’ll find that the default web server is
already using port number 80, the default port, and the administration web server
uses a port assigned a randomly generated number between 2000 and 9999. If

,ch02.18096 Page 17 Thursday, February 22, 2001 1:27 PM

18 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

you’re using the separate port approach to create a development web server, use
port number 8000 unless it’s already assigned to another service.

As an alternative, if you are setting up a site with multiple IP addresses, you can
take advantage of site socket pooling implemented with IIS 5.0. With socket pool-
ing, web sites served from different IPs can use the same port, which, in turn,
allows each of the sites to use the same socket. This decreases the overhead
required for all of the sites. However, if you have only one IP address, such as on
a standalone machine, and you want to try different sites, use different ports.

The next setup option is to pick the physical directory where your host will reside.
You’ll want to type in or browse for the development directory, created earlier.
You’ll also want to leave the checkbox labeled Allow Anonymous Access checked,
unless you’re in a shared or exposed environment.

Going on to last setup page, the Web Site Creation Wizard provides you with
options to set the Access Permissions for the web site. You’ll want to accept the
default values of Read and Run Scripts at this time.

Access permissions and user and role security issues will be dis-
cussed a bit later in this chapter, in the section titled “Securing the
Development Environment.”

Once the web server is created, you can configure it to fit your needs. Since we’re
setting up a development environment, the next step is to configure the server to
run in an isolated environment, discussed next.

Domain Names and the HOSTS File
Localhost is predefined in the HOSTS file in Windows 2000. You can see this
file in the Windows OS directory, under \system32\drivers\etc. HOSTS con-
tains the IP-to-name mapping; the first entry will be “localhost,” and its IP
address will be 127.0.0.1. In a small intranet, you can use the HOSTS file to
specify domain name aliases and IPs for all members of the intranet, without
having to use DNS.

For fun, and if your computer is isolated from a network, rename localhost to
whatever name you would like to use with your development effort, such as
devaspcomp.com. Just be forewarned that if you use a name that is available
on the Internet, redefining localhost on your machine to that name will mean
you’re going to get your web server, not the site on the Net, when you access
the name in a web page.

,ch02.18096 Page 18 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 19

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating an Isolated ASP Development Environment

ASP became very popular primarily because of its ease of use—all a developer
needed to do to add server processing was embed a few lines of script within an
HTML page. To make the environment even more attractive for developers,
Microsoft added support for ASP components in IIS 3.0. By adding in support for
components—basically COM server objects—developers could create objects in a
variety of programming languages and access these components from more than
one web page.

As powerful as ASP components are, folks quickly encountered a problem with
them: if a developer loads a web page into a browser that accesses a component
and then tries to make a code change and recompile the component, the follow-
ing error results:

Permission Denied

The reason is that IIS, in an effort to improve performance, keeps the component
loaded, hence locked, even when you are no longer accessing the page that con-
tains the component. In fact, IIS will continue to hold the component until the
web service is shut down—notice I say web service and not web server—or some
other event causes the component to be unloaded.

With IIS 3.0, ASP component developers tried shutting down the web server they
used to access the component, but the permission problem still remained. The rea-
son is that shutting down the web server won’t release the hold on the compo-
nent; it is the actual web service, IISADMIN, that maintains the lock on the
component, and it is this service that must be shut down.

The most common way to stop this service and release the locks on any compo-
nents was to issue a network stop command, for example:

NET STOP IISADMIN /y
NET START W3SVC

The NET STOP command stops a network service—the IISADMIN service—and the
/y option forces a release of all resources the service had when it was stopped.
The web service and server are then both started with the second network service
command, NET START, giving it the overall web server name W3SVC.

Stopping and starting the web service releases the server, but there is a major
drawback to this approach: shutting down the web service just to release a lock
on a component is equivalent to cutting down a walnut tree in order to get one
nut to chop for your hot fudge sundae—it’s a bad case of overkill. In a shared
environment, with more than one developer developing to the same web server
and service, not only is the approach overkill, it’s downright rude.

,ch02.18096 Page 19 Thursday, February 22, 2001 1:27 PM

20 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To address this problem, Microsoft added the ability to IIS Version 4.0 to run an
ASP application in isolation in order to be able to unload a specific application.
Once the application was unloaded, the component accessed by the application
was unlocked and could then be recompiled.

With IIS Version 5.0, you have three options to control ASP application isolation:

• You can create a new web server that runs within the shared IIS process envi-
ronment (through Inetinfo.exe).

• You can set your application to run within a pooled environment (through
dllhost.exe).

• Your application can run as an isolated application (again, through dllhost.exe).

By default, the web server is set up to run within a pooled environment, but this
can be changed in the server’s Properties page. To change the setting for the new
development web server, right-click on the server in the Internet Information Ser-
vices console snap-in, and pick Properties from the menu that opens. Then, select
the Home Directory tab from the window that opens, as shown in Figure 2-1. The
program isolation setting is an option labeled Application Protection. Set this to
High (Isolated) to be able to unload the application and release any locks on com-
ponents without having to shut down either the web server or the web service.

You can change several other properties for the server, including performance tun-
ing and setting security for the site, from the Properties window. But first, time to
try out your test environment. To do this, you’ll need a test ASP component.

To test the environment, you’ll need an ASP component you can use to make sure
the application isolation is set correctly and you can unload the web site without
having to shut it down. Then you’ll need to create a simple ASP page that accesses
the component. For this example, we’ll create a component using Visual Basic.

If you aren’t using Visual Basic and are running this test using the
component copied from the code examples, you can still test out the
application isolation feature. Instead of trying to recompile the com-
ponent, try deleting it. Without unloading the server application first,
you should get a Sharing Violation error and a message about the
component being in use. Unload the server application and then try
again to delete the component—this time you shouldn’t have any
problems removing it.

The details of creating a Visual Basic ASP component are covered in Chapter 7,
Creating a Simple Visual Basic ASP Component, but for now create the compo-
nent project as an ActiveX DLL, and name the project asp0201 and the project file

,ch02.18096 Page 20 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 21

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

asp0201.vbp. A class is automatically created for a project such as this; rename this
class tstweb and the class file tstweb.cls. Accept all the defaults for the project and
the class.

The next step in creating the test component is to add in the class code, in this
example a very simple function that returns a very traditional message to the ASP
page, as shown in Example 2-1.

Once you’ve added the code to the class, compile the component by accessing the
File menu and clicking on the “Make asp0201.dll” menu item. A dialog box opens

Figure 2-1. Setting the isolation level for the new development web server using the server
Properties dialog box

Example 2-1. Simple Visual Basic Component to Return a “Hello, World!” Message

Option Explicit

' tests new Development Web
Function tstNewWeb() As String

 tstNewWeb = "Hello, World!"

End Function

,ch02.18096 Page 21 Thursday, February 22, 2001 1:27 PM

22 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

that contains a default name for the component (the name of the project with a
DLL extension). In this dialog box, you can change the component’s name and
location and other application options, which we won’t go into until Chapter 7. For
now, accept everything at its default value and compile the component.

Visual Basic creates the component file and also registers it as a COM object acces-
sible from applications. If you don’t have Visual Basic, you can also copy the test
component from the downloadable code examples and register in on your
machine using the regsvr32 utility as follows:

regsvr32 asp0201.dll

Performance Issues with Application Isolation
As you’ll read in Chapter 3, ASP Components and COM, IIS applications require
a runtime executable in order to work. An ASP application running in the IIS
process environment operates within a shared-environment executable that
has been tuned to work efficiently in the IIS environment. Therefore it per-
forms better and has much less overhead then an application defined to be
pooled or isolated.

Pooled and isolated web servers use a standard COM/COM+ host, dllhost.exe,
which provides an individual executable environment, one for all pooled
applications and one for each isolated ASP application. However, dllhost.exe
is not the most efficient runtime environment to work in. In addition, each iso-
lated web server requires its own instance of dllhost.exe, which in turn requires
a completely separate desktop environment in order to run. This puts a burden
on the NT host supporting the IIS environment and requires special configura-
tion to support more than a small number of separate web servers.

You can see this for yourself if you add two web servers, each running as an
isolated application. If you access the processes for the system, you should see
two different instances of dllhost.exe running. Add another instance of an iso-
lated web server or virtual directory, which you’ll read about a little later, and
you’ll add another instance of dllhost.exe.

The isolated option is still the best approach to use for the ASP application
when developing ASP components. However, for a production environment,
you’ll want to use the shared or pooled environments for more efficient per-
formance.

Running the web server in isolation allows you to unload the server to recom-
pile components. An additional benefit to this type of web application is that
problems within the one application won’t impact other applications. Problems
within a shared or pooled environment can be propagated to other web servers.

,ch02.18096 Page 22 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 23

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Next, create the ASP page that accesses the component, calling it asp0201.asp.
Without going into too much detail on what is happening, the ASP page creates an
instance of the component and invokes the component’s one and only method.
The text returned from the method is written out using one of the ASP built-in
objects, the Response object (discussed in Chapter 7 and detailed in Appendix A,
Quick ASP Built-In Object Reference).

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-1</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp0201.tstweb")

Dim str
str = obj.tstNewWeb
Response.Write str
%>
</BODY>
</HTML>

When you access the ASP page through your web server, use syntax similar to the
following:

http://localhost/asp0201.asp

Or if you set up a new web server with a different port number, use this syntax
instead:

http://localhost:8000/asp0201.asp

If the web server is set up correctly, you should see the message, “Hello, World!”

To make sure that the application isolation feature is working properly, try recom-
piling the ASP component. You should get a Permission Denied error. To release
the component, access the Development Web Server Properties dialog box again,
go to the Home Directory page, and click the Unload button. Now try to recom-
pile—this time you shouldn’t have any problems.

At this point you’ve set up your development web server and have modified it to
run as an isolated application. What’s next? Well, in a development environment,
you might need to have different versions of an application accessible at any time,
or you might have more than one developer sharing the same environment. You
could create new web servers for every instance of the ASP application or for
every developer, but then you would have to find and assign different IPs and/or
port numbers for all of the servers.

An alternative approach to creating separate web servers for more than one ASP
application is to create the applications in their own virtual directory. This

,ch02.18096 Page 23 Thursday, February 22, 2001 1:27 PM

24 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

approach is used throughout the book for all of the code examples and is dis-
cussed next.

Creating Separate ASP Applications with
Virtual Directories

IIS virtual directories are used to add different directories to a web server, includ-
ing directories located on other machines. Virtual directories are also a terrific way
to create separate ASP applications, each of which lives in its own location, with-
out having to access different IP addresses and port numbers.

A limitation to virtual directories is that they cannot have their own
domain name and must be accessed using the domain of the web
server.

You’ll create a separate virtual directory for every chapter in this book, starting by
creating one for the Chapter 2 examples and naming it chap2. To create the vir-
tual directory, right-click on the development web server and select New, then Vir-
tual Directory. The Virtual Directory Creation Wizard pops up and guides you
through the directory creation process.

The first page the Wizard displays asks for the alias used for the directory; type in
chap2. Next, you’ll be asked for a physical location for the directory. For the book
examples, you’ll most likely want to create a subdirectory to the development web
site directory (created earlier) for each chapter. If you use this approach, create a
new subdirectory now and name it chap2. You’ll then specify this new subdirec-
tory as the physical location for the virtual directory.

The wizard then asks for the Access Permissions for the virtual directory—accept
the default of Read and Run Scripts (such as ASP Scripts) for now.

At this point, you’re done with creating the virtual directory. However, you still
have one more task in setting up your separate ASP application environment: you
need to change the application isolation for the directory, otherwise you’ll con-
tinue to have the component locking problem even if you’ve set the parent web
server to run as an isolated application.

Change the application isolation for the virtual directory by right-clicking on the
virtual directory name and choosing Properties from the menu. Select the Virtual
Directory tab and change the Application Protection value from its default of
Medium (Pooled) to High (Isolated), as shown in Figure 2-2.

,ch02.18096 Page 24 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 25

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the application isolation of the new virtual directory by copying asp0201.asp
from the web server main directory to the new chap2 subdirectory and running
the chap2 application using syntax similar to the following:

http://localhost/chap2/asp0201.asp

Again, the page should show as before, with the words “Hello, World!” displayed
in the upper-left corner. Also, as before, trying to recompile the component at this
point should result in a Permission Denied error. However, accessing the Proper-
ties for the chap2 virtual directory, then accessing the Virtual Directory tab and
clicking the Unload button should unload the ASP application; the component can
then be recompiled.

So now you have your development web server and your first ASP application vir-
tual directory and have had a chance to test both. The next step you’ll take is to
fine-tune the security settings for both.

Securing the Development Environment

You probably noticed that the Properties windows for both the development web
server and the Chapter 2 virtual directory had several pages, among them a page

Figure 2-2. Setting the application isolation to High in the directory’s properties

,ch02.18096 Page 25 Thursday, February 22, 2001 1:27 PM

26 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

labeled Directory Security. Clicking on this for both, you should see the same page
with three different control areas: one labeled “Anonymous access and authentica-
tion control,” one labeled “IP address and domain name restrictions,” and one
labeled “Secure Communications.” We won’t cover the latter two options, which
have to do with restricting access to certain domains and working with server cer-
tifications, but opening the “Anonymous access” option, you should see a win-
dow similar to that shown in Figure 2-3.

With anonymous access, a default user is created for the machine, consisting of
the prefix IUSR_ and appended with the name of the machine. My machine is
named flame, so my anonymous user is defined as IUSR_FLAME. With this user-
name, folks can access pages and content from my site without having to specify a
username and password.

One of the problems with the anonymous user, though, is that you can run into
inexplicable and unexpected permission problems when you move your ASP
application between machines.

For instance, if you develop on the same machine you test with (using localhost),
chances are you’re logged into the machine under a specific username and set of
permissions. When you test pages at your web site on this machine, you don’t
have any problems with access. However, when you move the pages and the
associated resources for the pages, such as ASP components, to a different
machine (such as your production box), you can run into permission problems.
The reason? Windows is using integrated authentication when you access the

Figure 2-3. Authentication Methods dialog box for the virtual directory

,ch02.18096 Page 26 Thursday, February 22, 2001 1:27 PM

Remote Administration of IIS 27

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

page, which means it’s using your username and permissions when you test pages
locally, and your permissions can be drastically different than those of the anony-
mous user.

To ensure consistent test results, you’ll want either to move your ASP application
to a separate test machine or create another user for your machine that has very
limited access—equivalent to an anonymous user.

If your development environment is accessible externally, make sure your web
server and virtual directories are secured if there is the possibility of access to the
site externally, such as through an intranet or through the Internet if you connect
to the Net through a modem. Remember that an IP connection is two-way: you
can access out, and others can access your machine through the assigned IP.

Finally, you have to ensure that the access permissions are also set for your com-
ponents. These can be set by accessing the Properties for the component or the
component’s subdirectory and setting the permissions to Read and Read & Exe-
cute for Everyone or for the IUSR account. If you set the permissions on the direc-
tory and check the option to allow inheritance of permissions from the parent for
all components within the directory, you can assign the same security settings to a
group of components in one location, and the permissions propagate to all of the
components, as shown in Figure 2-4.

Remote Administration of IIS
You can administer IIS using a variety of techniques. For example, all of the work
you’ve performed in setting up your development web server and the Chapter 2 vir-
tual directory has occurred through the console snap-in designed for IIS. You also
could have used the default Administration server installed with IIS on Windows
2000 Server. In addition, on Windows 2000 Professional, you have access to an
interface modeled on the interface provided with the Personal Web Server (PWS).

Managing ASP Applications with the Internet
Services Manager

You can administer an IIS installation in Windows 2000 servers using the HTML-
based Internet Services Manager. This manager is installed as the administration
web server within the IIS installation. Access the properties for this site to find the
IP address and port number necessary to access the manager, then use these as
the URL to pull the site up in a web browser.

For instance, if the IP address is 153.34.34.1, and the port number assigned to the
administration web server is 4990, you can access the site with the following URL:

http://153.34.34.1:4990

,ch02.18096 Page 27 Thursday, February 22, 2001 1:27 PM

28 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can also access the site using the name assigned through the DNS (Domain
Name Service) for the specific IP address. For instance, if the IP address were con-
figured with the alias myweb.com through DNS, you would access the site using
something such as the following URL:

http://www.myweb.com:4990

Note that in either case you need to provide a username and valid password to
enter the site, and the username must be mapped to the Administrator role. If
you’ve logged in as Administrator, no username and password will be requested.

If more than one domain is mapped to a specific IIS server—if more than one web
server on separate IPs is hosted through one installation of IIS—you can adminis-
ter the site remotely if the IIS installation adds you to the Web Site Operator group
for the server. With this group membership, you can then access the administra-
tion for the site using an URL such as the following:

http://www.myweb.com/iisadmin

You can try this with your local installation by using the following URL:

http://localhost/iisadmin

This should open the administration pages for the default web server.

Figure 2-4. Setting the permissions to access the ASP components

,ch02.18096 Page 28 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 29

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can also connect to your site for administration using the Terminal Service. If
you’re connected through an intranet and your client can support it, you can
remotely administer your site using the IIS Console snap-in. Note, though, that
your client needs to have Windows Console support through Windows 2000 or NT.

Finally, you can create your own administration programs using ASP pages and
ASP components. The tools to do this are your favorite programming and script-
ing languages, ADSI, and the IIS Admin and Base Admin objects, covered in the
next several sections.

Using ADSI to Administer IIS
Programmatically

Use a great deal of caution when altering IIS programmatically.
Incorrect settings can damage the Metabase and force a reinstalla-
tion of IIS.

There might be times when administrating IIS through the Windows Console IIS
snap-in or through the web interface provided by Microsoft does not work for
your needs. For instance, you and your organization may need to do a sequence
of activities rather than individual ones, and the only way to accomplish this is to
create an application that performs the entire sequence.

Microsoft has opened up IIS administration through two sets of objects: the IIS
Admin objects (which can be accessed through script using any of the automation
support languages or through Visual Basic and other COM-capable languages) and
the IIS Base Admin objects (which can be accessed only through C++).

Both sets of objects—the IIS Admin and the IIS Base Admin—are accessed through
ADSI, and both work with the IIS Metabase.

Working with the IIS Metabase

Prior to the release of IIS 4.0, administrative information for the web service was
stored in the Windows Registry, an online binary database containing name-value
pairs accessible via paths. Starting with IIS 4.0 and continuing with IIS 5.0,
Microsoft added the IIS Metabase, a memory-resident data store that is quickly
accessible and contains configuration and administration information for IIS.

As with the Registry, Metabase entries are found via paths, or keys, similar to those
used with file paths. These key paths, also referred to as ADsPaths, have the same

,ch02.18096 Page 29 Thursday, February 22, 2001 1:27 PM

30 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

structure as the paths used within ADSI and comply with the following general
structure:

IIS://machinename/service/service_instance

In this line, machinename can be either LocalHost for the local machine or a
specific name, service can be something such as W3SVC (a web service), and
service_instance can be a specific instance of that service, such as a web site.

To access the Metabase object associated with the chap2 web directory created
earlier, you would use the following ADsPath:

IIS://localhost/W3SVC/1/root/chap2

This path breaks down into the virtual directory called chap2 located off the root
subdirectory of the first (1) web server instance on the local machine.

Metabase properties are small enough in size that they can be memory resident
because they are based on inheritance by default. This means that information
about all properties for all objects does not need to be maintained in memory
except when the default property value is overridden. As an example, if the top-
level web service has a ConnectionTimeout property set to 900 seconds, all child
nodes, such as virtual directory sites created from this top-level service, automati-
cally inherit a timeout of 900 seconds unless a different value has been explicitly
defined for the node.

The Metabase objects, as well as their properties and methods, can be accessed
from within an ASP script or an ASP component using the IIS Admin objects, dis-
cussed next.

The demonstrations of the IIS Admin objects are all shown in Visual
Basic. However, you can re-create the examples with any program-
ming language and tool that allows you to access COM objects.

The section later in this chapter on the IIS Base Admin objects dem-
onstrates how to access IIS Administration data with C++.

Programmatically Administering IIS with ADSI

The IIS Admin objects support the ADSI interface by implementing the Name,
ADSI Path, Class, GUID, Parent, and Schema properties. To demonstrate these
properties, we’ll create an ASP component project and add several methods to it,
each demonstrating one of the properties.

To start, create a new ActiveX DLL project in Visual Basic and call it asp0202.vbp.
Rename the generated class to tstAdmin. You’ll be adding new methods to this
new component throughout this section.

,ch02.18096 Page 30 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 31

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you don’t have Visual Basic, you can use the asp0202.dll compo-
nent that comes with the book examples. If you’re using a different
tool, such as Delphi, Perl, or Java, then you might want to read the
chapter based on your language first (Chapter 20, ASP Components
Created with Java; Chapter 21, Creating ASP Components with Del-
phi; or Chapter 22, Perl-Based Components Using ActiveState’s PDK),
then alter the following examples to work with your tool/language.

Name

The Name Admin object is the attribute used to refer to the object within a given
namespace. As an example, the name W3SVC refers to the IISWebService class,
which is the web service. The name is also used to represent specific instances of
any particular service, except that name in this case represents the number of the
instance rather than a user-defined name. For example, if more than one web ser-
vice is running on a machine, each individual web service can be accessed by a
number representing its location within the web service listing, as well as a
descriptive name mapped to the instance.

For example, in your development environment, you should now have three web
servers defined: the default web server, the development web server, and the
administration web server. The default web server is located first, so it is given the
label 1. The administration web server is next, and it has a name of 2, followed by
the development web server with a name of 3.

If you’re using Windows Professional 2000, you should have one
default web server. You’ll need to adjust the examples shown in the
following sections to match your environment.

The Name property can be accessed from ASP components as well as from an ASP
scripting block. Example 2-2 shows a method that accesses the IIS Admin object
and returns the object’s ADSI Name. Try this by creating the method in the
tstAdmin class of the asp0202 project, name the method adminName, and define
it to return a String value.

Example 2-2. Returning the IISWebService Object’s ADSI Name Property

Function adminName() As String
 Dim myObject
 Set myObject = GetObject("IIS://localhost/W3SVC")
 adminName = myObject.Name
End Function

,ch02.18096 Page 31 Thursday, February 22, 2001 1:27 PM

32 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To use this object, create an ASP page named asp0202.asp that instantiates the
object and calls the object’s methods. Place this ASP page, shown next, in the
chap2 virtual directory location.

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-2</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp0202.tstAdmin")

Dim str
str = obj.adminName
Response.Write str
%>
</BODY>
</HTML>

Accessing the test page and the component method should result in a page that
displays W3SVC, the name of the IISWebService. Instead, however, a web server
error (500) occurs. Why is this?

IIS Admin objects must be accessed from within an administrative environment,
and the current location for the test page is chap2, which is accessible by every-
one. To make this example work, the ASP test page—not the component, the
page—must be moved to an administrative location, or the physical directory’s
security must be changed to administrative access only.

You can move the component to the IISAdmin location. Find this by accessing the
IISAdmin virtual directory or by accessing the administration web server and check-
ing out the location of its home directory. You can also change the security for
chap2 by accessing the Directory Security tag in the Properties dialog box, clicking
the “Anonymous access and authentication control” button, and unchecking the
Anonymous Access checkbox when the Authentication Methods dialog box opens.

Once you’ve secured the ASP application, access the test page and component
again, and the application should work this time.

The rest of the examples in this chapter involve modifying or access-
ing IIS Administration properties using the IIS Admin objects or the
IIS Admin Base Objects. Based on this, all ASP test pages need to be
located within an administration server location. For development
purposes, the best approach to take is to modify the security set-
tings for the IIS application—either the development web server or
the virtual directory—to restrict access.

,ch02.18096 Page 32 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 33

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ADSI path

Access to IIS Admin objects occurs via the ADSI path, which Microsoft refers to as
the ADsPath. This path usually has the configuration of IIS:// followed by the
computer name (or LocalHost for the local IIS installation), followed by the spe-
cific service, such as W3SVC for the web service. To access the first web site on the
local machine, the following path would be given:

IIS://LocalHost/W3SVC/1

The 1 at the end of the path accesses the first web site installed on the local
machine, a value of 2 accesses the second, a value of 3 accesses the third, and so
on. If you have NNTP or FTP installed, this numbering system may change.

From the specific web instance, extending the path provides access to virtual
directories contained within the specific web server, as the following demon-
strates for the chap2 virtual directory:

IIS://LocalHost/W3SVC/1/root/chap2

The different services, such as W3SVC, are equivalent to the different IIS Admin
objects. These services are examined in more detail in the section “The IIS Admin
Objects,” later in the chapter.

Class

The class is the name of the schema class and is not unique for service instances.
For example, each virtual web service, such as chap2, has a class name of
IIsWebVirtualDir; each top-level web service, such as Development, has a
class name of IIsWebServer.

GUID

The globally unique identifier (GUID) is the unique identifier for the specific class.
Like the class, the GUID is unique only for the specific schema class, not for each
instance. For example, the GUID for the IIsWebServer class is:

{8B645280-7BA4-11CF-B03D-00AA006E0975}

To find the GUID for the web service, add a new method to the asp0202.
tstAdmin component. The method, shown in Example 2-3 and named admin-
GUID, accesses this value and returns it to the calling program.

Example 2-3. Accessing the IISWebService Class-Unique GUID

Function adminGUID() As String
 Dim myObject
 Set myObject = GetObject("IIS://localhost/W3SVC")
 adminGUID = myObject.Guid
End Function

,ch02.18096 Page 33 Thursday, February 22, 2001 1:27 PM

34 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The following test ASP page, named asp0203.asp, accesses the new method to get
the GUID and then displays it:

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-3</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp0202.tstAdmin")

Dim str
str = obj.adminGUID
Response.Write str
%>
</BODY>
</HTML>

Parent

The parent for an administrative object is the ADsPath of the IIS administrative
object that contains it. For example, the parent for the local machine LocalHost is
shown only as IIS:. Since the ADsPath for the top-level web service is:

IIS://LocalHost/W3SVC

the parent for this object would then be:

IIS://LocalHost

The parent-child relationship is important because the IIS Metabase is based on
inheritance. Most properties are inherited from an object at a higher level, and this
object can be found by retrieving each object’s Parent property.

Schema

The Schema property is the ADsPath of the object representing the schema class
for the Admin object. For instance, the value for the Schema property for the top-
level web service is:

IIS://localhost/schema/IIsWebService

The ADSI Object Methods

The ADSI IIS Admin object methods are used to access and set the IIS Admin
object properties. The ADSI properties are accessible directly from the ADSI object,
but the IIS Admin object properties must be set or accessed using ADSI methods.

Any of the ADSI methods can be used with any IIS Admin object and can be used
to access or set any property, as demonstrated in the following sections.

,ch02.18096 Page 34 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 35

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Get

The Get method returns the value for a specific property. The property name is
passed as an argument to this ADSI method, and its value is returned in a datatype
that is appropriate for the property.

To demonstrate Get, add the adminScriptLanguage method shown in Example 2-4
to the asp0202.tstAdmin component. The adminScriptLanguage method dis-
plays the value of the AspScriptLanguage property for the chap2 virtual directory.
Currently, this value should be VBScript, which is the default scripting language
used for ASP pages.

Next, create the test ASP page, named asp0204.asp, to display the name of the
default scripting language. Since the AspScriptLanguage property has a datatype of
String, the return value for the function is defined to be String—other properties
will have other datatypes. The ASP test page uses VBScript, which supports only
variants; as a result, the processing to display the return value can be the same
regardless of the datatype returned.

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-4</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp0202.tstAdmin")

Dim str
str = obj.adminScriptLanguage
Response.Write str
%>
</BODY>
</HTML>

With VBScript and Visual Basic, the property can also be accessed with the object.
property syntax, using something similar to the following:

codePageValue = myObject.AspCodepage

Example 2-4. Using the ADSI Get Method to Access the AspScriptLanguage Property Value

Function adminScriptLanguage() As String
 Dim myObject
 Set myObject = GetObject("IIS://localhost/W3SVC/1/root/chap2")

 adminScriptLanguage = myObject.Get("AspScriptLanguage")
End Function

,ch02.18096 Page 35 Thursday, February 22, 2001 1:27 PM

36 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

GetEx

The GetEx method can be used to access single or multivalue properties. An
example of a multivalue property is HttpErrors, which returns a list of formatted
HTTP error strings. These strings are returned as an array of Variants.

Example 2-5 shows a new method, adminErrors, that uses GetEx to access the
HttpErrors property for the chap2 virtual directory and returns the results as an
array of variants to the ASP page.

The ASP test page, shown in the following block of code and named asp0205.asp,
takes the results returned from calling the adminErrors method and displays each
element from the variant array:

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-5</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Dim vAry
Dim l,u
Dim ct

Set obj = Server.CreateObject("asp0202.tstAdmin")
vAry = obj.adminErrors

' set boundaries of array

l = LBound(vAry)
u = UBound(vAry)

' access each list item, print out to page
For ct = l to u
 Response.Write vAry(ct) & "
"
Next
%>
</BODY>
</HTML>

The results will be shown as separate lines and will have the following format:

• Error number, such as 400 for Not Found

• Error subnumber, such as 3

Example 2-5. Using the ADSI GetEx Method to Access the HttpErrors List

Function adminErrors() As Variant
 Dim myObject
 Set myObject = GetObject("IIS://localhost/W3SVC/1/root/chap2")
 adminErrors = myObject.GetEx("HttpErrors")
End Function

,ch02.18096 Page 36 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 37

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• A value of FILE or URL to designate whether a file or an URL is returned to
the client

• The URL or the filename, depending on whether the URL or file is returned

The following is an example of one of the lines returned:

401,3,FILE,E:\WINNT\help\iisHelp\common\401-3.htm

If you look at this line and then access the Custom Errors tab of the chap2 Proper-
ties dialog box, you’ll see that this line appears in the list box on this tab.

Other IIS Admin object properties will be discussed in the later sec-
tion “The IIS Admin Objects.”

GetInfo

The GetInfo method refreshes the IIS Admin object by requerying the Metabase
and resetting the property values to those found in the Metabase. When you cre-
ate an IIS Admin object, its properties are initialized to those that existed in the
Metabase at the time the object was created. If you hold an object for a time and
want to set the properties to those currently in the Metabase, you use GetInfo to
refresh the object.

GetDataPaths

The GetDataPaths method can be used to traverse a hierarchy of web objects to
see which objects have a specific property. It then returns a list of ADsPath values
of each of the objects. A developer uses this method to quickly check whether a
specific property is set and inherited throughout an entire IIS installation or within
a specific web server or Virtual Directory.

The GetDataPaths method can also be used to traverse web objects and retrieve
the ADsPath of each object where the property is implemented. Once you have
access to an object’s ADsPath, you can use this to access that object specifically. To
demonstrate this, add two new methods to asp0202.tstAdmin: adminPropAccess
and objProperty. The adminPropAccess function has two parameters, the ADsPath
for the top-level object and the name of the property for which you are searching.
The objProperty function takes an ADsPath and a property name as parameters
and returns the property value. Example 2-6 shows both of these new methods.

Example 2-6. Methods to Retrieve a Collection of AdsPaths Whose Objects Implement a Property
and to Get the Property Value for an Object Property

Function adminPropAccess(ByVal obj As String, ByVal prop As String) _
 As Variant

,ch02.18096 Page 37 Thursday, February 22, 2001 1:27 PM

38 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The GetDataPaths method takes two parameters: the IIS Admin object and a con-
stant that indicates whether to return a path only if the property is inheritable. The
two allowable values for this constant parameter are the following:

The adminPropAccess method uses the IIS_ANY_PROPERTY constant, which
means the ADsPath will be returned regardless of whether the property is inherita-
ble. If the constant IIS_INHERITABLE_ONLY is specified and the property is not
inheritable, an MD_ERROR_DATA_NOT_FOUND error is returned.

The ASP test page calls both of these new methods, accessing each item in the
collection returned from adminPropAccess and using this item in a call to the
objProperty method. The objProperty method returns the value for the specified
property. The ADsPath, the property, and the property value are then displayed. In
the page, named asp0206.asp, the property we are searching for is AuthAnony-
mous, which is set to a value of TRUE when anonymous access is allowed for the
IIS Admin Object and FALSE otherwise.

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-6</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Dim cPaths, Path
Dim prop
prop = "AuthAnonymous"
Set obj = Server.CreateObject("asp0202.tstAdmin")

 Const IIS_ANY_PROPERTY = 0

 Dim myObject
 Set myObject = GetObject(obj)
 adminPropAccess = myObject.GetDataPaths(prop,IIS_ANY_PROPERTY)
End Function

Function objProperty(ByVal obj As String, ByVal prop As String) _
 As Variant
 Dim myObject
 Set myObject = GetObject(obj)
 objProperty = myObject.Get(prop)
End Function

Value Constant

0 IIS_ANY_PROPERTY

1 IIS_INHERITABLE_ONLY

Example 2-6. Methods to Retrieve a Collection of AdsPaths Whose Objects Implement a Property
and to Get the Property Value for an Object Property (continued)

,ch02.18096 Page 38 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 39

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

cPaths = obj.adminPropAccess("IIS://localhost/W3SVC", prop)

' access each path, print out to page
For each Path in cPaths
 Response.Write Path & " "
 Dim prp
 prp = obj.objProperty(Path, prop)
 Response.Write prop & " value of " & prp & "
"
Next
%>
</BODY>
</HTML>

The results of running this ASP page with the top-level IIWebService object is a
listing of several IIS Admin object paths and the value of the AuthAnonymous
property for each object. The development web server and the chap2 virtual direc-
tory appear in the list as follows:

IIS://localhost/W3SVC/1/Root AuthAnonymous value of True
IIS://localhost/W3SVC/1/Root/chap2 AuthAnonymous value of False

GetPropertyAttribObj

The GetPropertyAttribObj method returns a specified IIS Admin object property as
an object rather than as a value; that is, it returns a Property object, rather than a
property’s value. This object can then be used to access information about the
property, such as whether the property is inherited or if a partial path is present.
The syntax for the method is:

Set obj = adminObj.GetPropertyAttribObj("some_property_name")
Var = obj.attribute

where attribute is one of the following:

Inherit
Whether the property is inheritable

PartialPath
Whether a partial path is present

Secure
Whether the property is secure

Reference
Whether the property is received by reference

Volatile
Whether the property is volatile

IsInherited
Whether the property is inherited

,ch02.18096 Page 39 Thursday, February 22, 2001 1:27 PM

40 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

InsertPath
Whether there is a specific, special character in the property

AllAttributes
All property attributes, represented by a long value

The ADSI methods implemented for the IIS Admin objects can also set property
values as well as retrieve them, as demonstrated with the Put method, described
next.

Put and SetInfo

The Put method sets the value for a specific property. As with Get, the property
name is passed as the first parameter to the method, and the new value, which
must be a datatype that is appropriate for that property, is passed as the second
parameter.

To save the results back to the Metabase, you use the ADSI SetInfo method. With-
out using SetInfo, the properties changed using Put (or using the VBScript and
Visual Basic object.property method) are not saved.

As an example of using Put to alter an Admin object property and SetInfo to save
the property change, Example 2-7 shows a new method, adminAllowAnon, which
takes an IIS Admin object ADsPath and a Boolean value to alter the authAnony-
mous authorization for the specified IIS Admin object. The method uses the
object.property approach to setting the value rather than using Put specifi-
cally. Add this new method to your test ADSI component.

The ASP test page, named asp0207.asp, calls the method and passes the ADsPath
for the virtual directory chap2. Sending a value of True turns on anonymous
access authorization for the directory, allowing anonymous access to the directory.

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-7</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp0202.tstAdmin")

Example 2-7. Using Put and SetInfo to Alter the authAnonymous Property

Sub adminAllowAnon(ByVal obj As String, ByVal bl As Boolean)
 Dim myObject
 Set myObject = GetObject(obj)
 myObject.AuthAnonymous = bl
 myObject.SetInfo
End Sub

,ch02.18096 Page 40 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 41

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

On Error Resume Next
Dim adspath
adspath = "IIS://localhost/W3SVC/1/Root/chap2"

obj.adminAllowAnon adspath, True
%>
<H1>Changing Properties with Put</H1>
</BODY>
</HTML>

After running this example page, access the ASP page, asp0206.asp. You would
expect to see that the AuthAnonymous value is now True for chap2, where before
the value was False. However, what is most likely to happen is that you’ll get an
error, especially if you close the browser after running the asp0207.asp test page,
open the browser again, and then access asp0206.asp.

Why the error? By setting the authAnonymous property of chap2 to True, you’ve
removed the security restriction necessary to run an ASP page that accesses the IIS
Admin properties. Even if you change the text in asp0207.asp to set the authAnon-
ymous property to False, you can’t run asp0207.asp again—it also accesses the
IIS Admin objects. You’ll need to open the IIS Console or IIS Admin web site to
change the property back to False before you can run an ASP page that access
IIS Admin objects and properties from chap2 again.

PutEx

The PutEx method is similar to Put, in that you can use the method to alter prop-
erties of existing IIS Admin objects. However, unlike Put, PutEx allows you to alter
properties that are multivalued in addition to altering single-valued properties.

As a demonstration, we’ll combine a previous example, Example 2-5, which
returned a list of HTTP error messages for chap2, with a new method, adminSetEr-
rors, to write a modified list of error messages back to the Metabase. Then we’ll
use SetInfo to save any changes to this list. Example 2-8 shows the new method,
which updates the Metabase with the new HttpErrors property list.

The second parameter to PutEx is the name of the property being updated, and the
third parameter is the Variant array of HTTP error messages that were originally
retrieved using the adminErrors method from Example 2-5. The first parameter is a

Example 2-8. Put the HTTP Errors Back to the Metabase, and Use SetInfo to Save the Changes

Sub adminSetErrors(ByVal obj As String, ByVal vAry As Variant)
 Const ADS_PROPERTY_UPDATE = 2
 Dim myObject
 Set myObject = GetObject(obj)
 myObject.PutEx ADS_PROPERTY_UPDATE, "HttpErrors", vAry
 myObject.SetInfo
End Sub

,ch02.18096 Page 41 Thursday, February 22, 2001 1:27 PM

42 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

constant value that determines how the property is to be altered. The two possible
values that can be used in the first parameter of adminSetErrors are shown in the
following table:

The example uses ADS_PROPERTY_UPDATE to update the existing list rather than
clear it.

The ASP test page that calls this new method is named asp0208.asp. Notice that
the adminErrors method from Example 2-5 is called first to get the Variant list of
HTTP error messages. These values are displayed, and the first three characters of
each line are examined for the match to 404. When found, a new entry with a
changed filename replaces the existing array entry, and adminSetErrors is called to
update the messages. Afterward, the HTTP messages are again accessed with
adminErrors to display the “after” values. Make sure you change the page values to
reflect your own environment.

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-8</TITLE>
</HEAD>
<BODY>
<%
Response.Write "<h3>Before Changes</H3>"

Dim obj
Dim vAry
Set obj = Server.CreateObject("asp0202.tstAdmin")
vAry = obj.adminErrors

' set boundaries of array
l = LBound(vAry)
u = UBound(vAry)

' access each list item, print out to page
Dim str, val
For ct = l To u
 Response.Write vAry(ct) & "
"
 str = Left(vAry(ct),3)
 if str = "404" Then

vAry(ct) = "404,*,FILE,E:\devaspcomp\web\chap2\asperrors.htm"
 End If
Next

Response.Write "<h3>After Changes</H3>"

' update HTTP error messages

Constant Value Description

ADS_PROPERTY_CLEAR 1 Clear property values.

ADS_PROPERTY_UPDATE 2 Update property with new value.

,ch02.18096 Page 42 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 43

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

obj.adminSetErrors "IIS://localhost/W3SVC/1/root/chap2", vAry

' get error messages again
vAry = obj.adminErrors

' set boundaries of array again
l = LBound(vAry)
u = UBound(vAry)

' access each list item, print out to page
For ct = l To u
 Response.Write vAry(ct) & "
"
Next
%>
</BODY>
</HTML>

In this section you had a chance to access and set various IIS Admin object prop-
erties using methods such as Get and Put, GetEx and PutEx. These methods are
actually implementations of the primary ADSI interface, IADs. However, there are
also IIS Admin objects that can contain other objects, and these collection-type
objects also implement the IADsContainer interface, to provide for collection
member access. The methods to work with these collections using ADSI are dis-
cussed in the next section.

The ADSI Container Object Properties and Methods

Certain IIS Admin objects can contain other objects, which means that they sup-
port the IADSContainer interface in addition to the IADs interface. Because these
objects implement the container interface, they can support certain container func-
tionality, such as a count of contained objects and a method of enumerating these
objects.

The ADSI Container object properties are the following:

_NewEnum
For automation languages such as Visual Basic, this property returns an enu-
merator that allows the language to retrieve the contained objects. An enumer-
ator in Visual Basic is an object that provides built-in functionality to iterate or
enumerate the objects in a collection. Visual Basic Collection objects automati-
cally have this enumerator capability built in through the use of _NewEnum.
This means that each object can be accessed using the following syntax:

For each obj in ObjectCollection
 ...do something
Next

Count
Returns a count of contained objects.

,ch02.18096 Page 43 Thursday, February 22, 2001 1:27 PM

44 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The following are the ADSI Container object methods:

CopyHere
Copies an object into a container and returns a pointer to the object.

Create
Creates a new object of a given type and name within the container.

Delete
Removes an object of a given type and name from a container.

GetObject
Returns the ADSI object of a given class and name.

MoveHere
Removes an object from its source and places it in the container.

These Container methods and properties allow you to add or remove new virtual
web sites, access information about any aspect of an IIS installation, and, most
particularly, traverse a hierarchy of IIS objects.

Since you’re going to need to create virtual directories for each of the chapters of
this book, we’ll create the virtual directory you’ll use for Chapter 3. Once it’s cre-
ated, we’ll list the development web server’s virtual directories again to the web
page to ensure the new directory has been created.

Example 2-9 modifies the basic characteristics of the development
web server, so use it cautiously and only in a development environ-
ment—preferably one that’s isolated. In addition, you must run these
examples from another web server, such as the Administration
server, as you cannot modify the characteristics of a web site you’re
currently using. Just make sure that the server you use has the secu-
rity configuration necessary to run administration applications.
Finally, if you’re working with Windows 2000 Professional, you’ll
want to skip running this example altogether, because you can have
only one web server in this operating system version, and this exam-
ples requires two.

Since we’re using a different set of objects, we’ll create a different component. Cre-
ate a new Visual Basic ActiveX DLL project, and name the project asp0203 and
the class that’s generated tstContainer. Create a subroutine method in this com-
ponent and call it createDirectory. This method will access the development web
server and then create a new virtual directory on this server using the Create
method. Once the new virtual directory is created, its path is assigned to a physi-
cal location with a subdirectory named the same as the virtual directory, as shown
in Example 2-9.

,ch02.18096 Page 44 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 45

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method will be called once for each virtual directory we’re going to create.
Notice that the SetInfo ADSI object method is used to update the Metabase after
the virtual directory is created, after the path and access permissions are added for
the new virtual directory, and after the new in-process application is added to the
virtual directory using IIsWeb

The ASP script page that calls this method only creates virtual directories for Chap-
ters 3 through 10, which should be enough to get us through almost half the book.
The ASP script page shown in Example 2-10 also displays the contents of the
Development Web server, creates the new virtual directories, and then displays the
contents of the web server again by using the container implementation of For
Each…In that is implemented in both VBScript and Visual Basic. This will create
an object for each contained object within the target container and allow us to
manipulate this object. In the case of the ASP page, the script displays the object’s
Name property.

Example 2-9. Method to Create a New Virtual Directory on the Development Web Server

Sub createDirectory(ByVal name As String)
 Dim iisAdminObj
 Dim iisDirObj

 ' Access IIsWebServer object for Development
 Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root")

 ' create virtual directory
 Set iisDirObj = iisAdminObj.Create("IIsWebVirtualDir", name)
 iisAdminObj.SetInfo

 ' set virtual directory’s name and access
 iisDirObj.Put "Path", "E:\devaspcomp\web\" & name
 iisDirObj.Put "AccessRead", True
 iisDirObj.Put "AccessScript", True
 iisDirObj.SetInfo

 ' create inproc application
 iisDirObj.AppCreate True
 iisDirObj.SetInfo

 ' set inproc’s process isolation and name
 iisDirObj.Put "AppIsolated", 1
 iisDirObj.Put "AppFriendlyName", name
 iisDirObj.SetInfo

End Sub

Example 2-10. ASP Page That Prints Out the ADSI Container Object’s Name, Calls Method to
Create Virtual Directories, and Then Prints the Container Object’s Contents Again

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-10</TITLE>

,ch02.18096 Page 45 Thursday, February 22, 2001 1:27 PM

46 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Before running the ASP page and creating the chap3 virtual directory and applica-
tion, the physical location has to be created; otherwise, an error will result when
you try to access the directories. Figure 2-5 shows the web page that results from
running Example 2-10. Notice that chap3 is now added to the virtual directories
for the development web server.

Throughout this section you’ve had a chance to work with several IIS Admin
objects and properties. The next section lists all of the IIS Admin objects and sev-
eral of the more interesting properties.

IIS Admin Object Overview
IIS can be administered using IIS Admin objects, which can be accessed the same
way any other active ASP object is accessed. The advantage of exposing adminis-
tration tasks to ASP applications is that organizations can create their own ASP

</HEAD>
<BODY>
<%
Dim obj
Dim ct
On Error Resume Next

Set obj = Server.CreateObject("asp0203.tstContainer")

Dim iisAdminObj

Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root")

Response.Write("<h3>Existing Virtual Directories</H3>")
For Each adminobj In iisAdminObj
 Response.Write adminobj.Class & " " & adminobj.Name & "
"
Next

For i = 3 To 10
obj.createDirectory "chap" & i

Next

Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root")

Response.Write("<h3>New Directories</H3>")
For Each adminobj In iisAdminObj
 Response.Write adminobj.Class & " " & adminobj.Name & "
"
Next

%>
</BODY>
</HTML>

Example 2-10. ASP Page That Prints Out the ADSI Container Object’s Name, Calls Method to
Create Virtual Directories, and Then Prints the Container Object’s Contents Again (continued)

,ch02.18096 Page 46 Thursday, February 22, 2001 1:27 PM

IIS Admin Object Overview 47

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

administration applications, customized to the organization’s needs or to a specific
application’s needs. Another advantage is that the ASP application and the IIS
installation can actually be configured and managed remotely.

The biggest disadvantage to using the IIS Admin objects is that they expose IIS
administration tasks to remote access, so the objects should be used with care.
Microsoft recommends placing the applications accessing the objects in a secure
subdirectory and setting the permissions to that subdirectory to NT Challenge/
Response, which means that anonymous access is disallowed and NTFS security is
used to verify access to the subdirectory.

The IIS Admin Objects

The IIS Admin objects form a hierarchy, with many objects contained within another
object, and so on. You saw this demonstrated in Example 2-9 and Example 2-10 in
the last section. The hierarchy of these objects is shown in Figure 2-6.

Figure 2-5. Adding a new virtual directory

,ch02.18096 Page 47 Thursday, February 22, 2001 1:27 PM

48 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the interests of brevity, we won’t cover all of the IIS Admin objects in the fol-
lowing sections, just those that impact on ASP web development the most: IIsWeb-
Service, IIsWebServer, IIsWebInfo, and IIsWebVirtualDirectory. You can check
Microsoft’s documentation to read more on the ones not covered.

The ADsPaths in the rest of this book use localhost to represent
the name of the machine. If you’re accessing the IIS Admin objects
on your local machine, you can use localhost; otherwise, use the
machine’s name or URL.

IIsWebService

In the previous examples in the book, you accessed the IIsWebService object any
time you supplied an ADsPath similar to the following:

IIS://localhost/W3SVC

The IIsWebService object is the object that contains all of the web servers for an
installation, and it is through this object that you can set all inheritable properties
for all web servers, virtual directories, and so on. For instance, you can use the fol-
lowing to change the AuthAnonymous property for the web service and have this
setting trickle down to all contained objects, unless they override this property:

Figure 2-6. Hierarchy of IIS Admin objects

,ch02.18096 Page 48 Thursday, February 22, 2001 1:27 PM

IIS Admin Object Overview 49

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set iisAdminObj = GetObject("IIS://localhost/W3SVC")
iisAdminObj.Put "AuthAnonymous",True

The IIsWebService contains direct references to all of the web servers set up for an
IIS installation, and these are discussed next.

IIsWebServer

The IIsWebServer is the object representing a specific web server for a machine. It
is accessed through a browser using a unique combination of IP address and port
number, such as the following:

http://localhost
http://www.someurl.com
http://localhost:90

As with IIsWebService, you can set properties for an IIsWebServer object and
they’ll propagate to all contained elements, or at least to the ones to which the
property applies. For instance, you can set the AccessRead property for a web
server, and it will apply to all contained virtual directories, web directories, and
web files:

Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1")
iisAdminObj.Put "AccessRead",True

You can also create objects off the IIsWebServer, as demonstrated in Example 2-9,
when we created a new virtual directory using the Create method. Other methods
unique to IIsWebServer are the following:

Stop
Stops the web server.

Start
Restarts the web server.

Status
Determines the status of the web server.

Pause
Pauses the web server.

Continue
Resumes the web server after it has been paused.

In addition to accessing the IIsWebServer objects through the higher-level IIsWeb-
Service, you can also access IIsWebInfo.

IIsWebInfo

General information about the web service is contained in the IIsWebInfo object.
This can include information such as custom error messages and whether encryp-
tion is enabled, and it includes values that are set when the service is first installed.

,ch02.18096 Page 49 Thursday, February 22, 2001 1:27 PM

50 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IIsWebInfo IIS Admin object implements IADs but not IADsContainer, which
means you can’t use any of the container methods, but you can use Get and Put
and the other noncontainer methods. For instance, Example 2-11 shows an ASP
page, asp0210.asp, created using VBScript that uses Get to access one property of
the IIsWebInfo object, CustomErrorDescriptions. This property contains a list of
custom error messages installed when IIS was installed. In the example, this list of
messages is accessed and displayed one at a time, similar to the results shown
when accessing the component created in Example 2-8.

IIsWebVirtualDirectory

The IIsWebVirtualDirectory object can apply to all virtual directories contained
within a web server or to a specific one, depending on how it is accessed. To set
or get properties that apply to all virtual directories, access the object using syntax
similar to the following:

IIS://localhost/1/Root

However, to access properties for one specific virtual directory, use the following:

IIS://localhost/1/Root/chap2

As you saw in Example 2-9, you can add an in-process (“inproc”) application to a
specific virtual directory with the AppCreate method. Using this method, you can
create an application that can exist independently of other applications running

Example 2-11. Accessing CustomErrorDescriptions from the IIsWebInfo Object

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-11</TITLE>
</HEAD>
<BODY>
<%
Dim iisAdminObj
Set iisAdminObj = GetObject("IIS://localhost/W3SVC/INFO")

Dim customErrors
customErrors = iisAdminObj.get("CustomErrorDescriptions")

' set boundaries of array
Dim l,u
l = LBound(customErrors)
u = UBound(customErrors)

' access each list item, print out to page
For ct = l To u
 Response.Write customErrors(ct) & "
"
Next
%>
</BODY>
</HTML>

,ch02.18096 Page 50 Thursday, February 22, 2001 1:27 PM

IIS Admin Object Overview 51

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

from the same virtual directory. You can then manipulate this application using
ADSI, or you can manipulate it using Component Services, discussed in more
detail in Chapter 5, COM+ Services and ASP Components and Applications. Other
methods available for use programmatically are the following:

AppCreate2
Creates an application and marks it as running in-process, out-of-process, or
pooled.

AppDelete
Deletes the application and releases resources if none are currently being
accessed.

AppDeleteRecursive
Deletes the application and all contained object applications; resources are not
released.

AppDisable
Disables an out-of-process application and releases its resources.

AppDisableRecursive
Disables an out-of-process application and all contained objects.

AppEnable
Reenables an out-of-process application.

AppEnableRecursive
Enables an out-of-process application for the object and all contained objects.

AppGetStatus
Gets the status of an application.

AppUnload
Unloads the application and releases resources if out-of-process or if in-pro-
cess and no longer being accessed.

AppUnloadRecursive
Unloads the application for the object and any contained objects.

AspAppRestart
Restarts the application.

A very useful method for ASP component developers is the AppUnload method,
which unloads the existing ASP application so that the component can be com-
piled. To demonstrate, Example 2-12 shows an ASP page named asp0211.asp that
will unload the ASP application that runs in the chap2 virtual directory.

Example 2-12. Unloading an ASP Application with the AppUnload Method

<HTML>
<HEAD>

,ch02.18096 Page 51 Thursday, February 22, 2001 1:27 PM

52 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To run this ASP page and unload the chap2 application, access this page from
some administrative server other than the chap2 virtual directory, such as the fol-
lowing URL that accesses the page from a new web site (note the different port
number):

http://localhost:8000/asp0211.asp

The reason this page must be run from some location other than chap2 is that the
application can be unloaded and all resources released only if the application is
not being accessed directly.

Remove anonymous access from the web server before accessing
asp0211.asp, or you’ll get a permission error when your page calls
GetObject.

In addition to several IIS Admin objects, there are also several dozen properties
which you can access and set using ADSI methods. Several have been demon-
strated in the last sections, and others are covered in the next section.

The IIS Admin Object Properties

An IIS Admin object property can apply to only one IIS Admin object, such as the
AdminServer property for IIsWebInfo, or a property can apply to several types of
objects, such as AccessRead. Each of the IIS Admin objects and its respective prop-
erties is listed in the documentation that comes with IIS. However, the ASP-specific
properties of the IIsWebServer/IIsWebService and IIsWebVirtualDir objects can be
especially useful when setting up the IIS test environment or when creating ASP
components for Internet or intranet development. These properties are discussed
and demonstrated in the following sections.

<TITLE>Developing ASP Components - Example 2-12</TITLE>
</HEAD>
<BODY>
<%
Dim iisAdminObj
Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root/chap2")
Response.Write "<H3>Unloading Application..."
iisAdminObj.AppUnload
%>
<H3> Application Unloaded</H3>
</BODY>
</HTML>

Example 2-12. Unloading an ASP Application with the AppUnload Method (continued)

,ch02.18096 Page 52 Thursday, February 22, 2001 1:27 PM

IIS Admin Object Overview 53

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

AspAllowOutOfProcComponents

In IIS 4.0, by default, only in-process components could be accessed from within
ASP scripting blocks. To access out-of-process components—components com-
piled into ActiveX executables—you had to set the AspAllowOutOfProcCompo-
nents property to True.

However, with IIS 5.0, AspAllowOutOfProcComponents is set to True by default,
which means all in-process IIS web servers or virtual directories—those set to run in
low (IIS process) or medium (pooled) application protection—can access execut-
able components. In addition, all high (isolated) IIS applications can also access out-
of-process components regardless of how AspAllowOutOfProcComponents is set.

To illustrate the AspAllowOutOfProcComponents property, create a new Visual
Basic project, except this time use the Visual Basic ActiveX EXE project type.
Name the project asp0204.vbp and the generated class tstProc.cls.

The tstProc component has a single method, outOfProc, that takes a String param-
eter and concatenates it to another string to create a personalized variation of the
traditional “Hello, World!”, as shown in Example 2-13.

After creating the component, compile it and place the resulting executable in the
chap2 virtual directory. In addition, change the Execute Permissions on this direc-
tory to Scripts and Executables.

Next, create an ASP page named asp0212.asp and place this page in chap2. The
page accesses and prints out the value of the AspAllowOutOfProcComponents
property and then accesses and runs the out-of-process component asp0204, as
shown in Example 2-14.

Example 2-13. An Out-of-Process Component

Function outOfProc(ByVal strName As String) As String
 outOfProc = "Hello, " & strName & "!"
End Function

Example 2-14. ASP Page That Accesses an Out-of-Process Component

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-14</TITLE>
</HEAD>
<BODY>
<%

Dim iisAdminObj
Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root/chap2")

Dim val
val = iisAdminObj.Get("AspAllowOutOfProcComponents")

,ch02.18096 Page 53 Thursday, February 22, 2001 1:27 PM

54 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The only way to set the value to False is to access and change the property. This
property can be applied to the IIsWebService, IIsWebServer, IIsWebVirtualDir, and
IIsWebDirectory IIS Admin objects.

AspAllowSessionState

When a user accesses a web page from an ASP application for the first time within
an Internet session, an ASP Session object is created. This object can be used to
store and access session-level information, making this information available while
the ASP session is in effect.

The AspAllowSessionState property can be used to enable or disable the session
state. If the property is set to the default of True, the session state is created, and
session information can be maintained. In addition, the Session_OnStart and
Session_OnEnd event handlers can be included in global.asa, a file that maintains
global scripting for an ASP application.

However, if no session-level information needs to be tracked for the application,
the AspAllowSessionState property can be set to False to stop session state mainte-
nance. This value can also be overridden with the ENABLESESSIONSTATE directive:

<%@ ENABLESESSIONSTATE = False %>

AspBufferingOn

ASP buffering prevents any output from being sent to the client until all the out-
put is collected. This approach can be used to throw away output for an incom-
plete transaction or to discard or modify output based on application results. ASP
buffering can be turned on or off using the Response object, discussed in more
detail in Chapter 6, ASP Interaction: Scripting and ASP Components; setting the
AspBufferingOn Metabase property can also alter it.

The AspBufferingOn property is set to True by default, which means buffering is
enabled and output is not sent directly to the web client as it is generated. This
differs from the property in IIS 4.0, where AspBufferingOn was set to False by
default.

Response.Write("out of proc is " & val & "
")

Dim myObject
Set myObject = Server.CreateObject("asp0204.tstProc")

Dim hello
hello = myObject.outOfProc("Shelley")
Response.Write hello
%>
</BODY>
</HTML>

Example 2-14. ASP Page That Accesses an Out-of-Process Component (continued)

,ch02.18096 Page 54 Thursday, February 22, 2001 1:27 PM

IIS Admin Object Overview 55

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

AspCodepage

Specifying the codepage controls what character language mapping is used within
a web page. By default, the value of the codepage for an ASP application is zero
(0), which is designated as CP_ACP, System ANSI.

Individual ASP applications can alter this by supplying a codepage specification
within a scripting block or by setting the CodePage property of the built-in Ses-
sion object. However, overall control of the codepage for a specific web or virtual
web server can be handled through the use of the AspCodepage property. Setting
this property overrides any other codepage specification for an ASP application
page accessed by the web service, server, or virtual web server.

Setting a property at the web server that overrides local settings
within ASP pages can cause a frustrating experience for the ASP
developer, especially if the developer is not aware of the global set-
ting. Use global settings with caution, and document and publish the
settings when the default values are altered.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspEnableParentPaths

By default, relative paths can be used when specifying URL locations relative to a
given location. As an example, a web page can be located using the absolute path
http://www. someurl.com/devaspcomp/.

To access a web page within the scripting subdirectory, a reference can use a rela-
tive notation such as ../index.htm. This is equivalent to providing the full path,
http://www. someurl.com/index.htm.

However, relative paths can actually cause a security risk, since pages can be
accessed outside of the directory defined for the virtual web site. To prevent the
use of relative paths, the AspEnableParentPaths property can be set to False.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspExceptionCatchEnable

To enable the Microsoft Script Debugger, the ASP component developer can turn
on debugging from within the IIS administration tools, or the developer can set the
AspExceptionCatchEnable property to True, the default value. This turns on the
script debugger until the property is specifically set to False.

,ch02.18096 Page 55 Thursday, February 22, 2001 1:27 PM

56 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspLogErrorRequests

In order to track client access errors within an ASP application, error codes can be
written to a log file. This logging is enabled by default, but setting the AspLogEr-
rorRequests property to False can turn off logging.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspQueueTimeout

The AspQueueTimeout property specifies the amount of time an ASP script will
wait to be executed in a queue. If you have ever received a message from an ASP-
based server that the server is too busy or the request has expired, the time the
script waited to run exceeded the time allowed for it to run.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptEngineCacheMax

More than one scripting language can be supported for use with ASP. Engines can
be loaded and cached in memory for Perl, Tcl, REXX, and other scripting lan-
guages. The AspScriptEngineCacheMax property is used to specify the number of
scripting engines cached in memory; it is set to 30 by default.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptErrorSentToBrowser and AspScriptErrorMessage

When a scripting error occurs, details about the error, such as the error line num-
ber, are returned to the browser. If debugging error messages are not sent to the
client, a default error message can be set using the AspScriptErrorMessage prop-
erty. Example 2-15, created in an ASP page named asp0213.asp, illustrates setting
the AspScriptErrorSentToBrowser property to False and providing an error mes-
sage in AspScriptErrorMessage.

Example 2-15. ASP Script to Override Standard Script Error Message

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-15</TITLE>
</HEAD>
<BODY>

,ch02.18096 Page 56 Thursday, February 22, 2001 1:27 PM

IIS Admin Object Overview 57

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can trigger the error by doing something like this:

iisAdminObj.Put "SomeProperty", True
iisAdminObj.SetInfo

The AspScriptErrorSentToBrowser and AspScriptErrorMessage properties can be
applied to the IIsWebService, IIsWebServer, IIsWebVirtualDir, and IIsWebDirec-
tory IIS Admin objects.

AspScriptFileCacheSize

IIS has the ability to cache ASP scripts. Changing this value can change how much
caching occurs. Setting AspScriptFileCacheSize to –1, the default, caches all scripts.
Setting the property to 0 turns caching off. A value other than these two will cache
that number of scripts. For instance, the VBScript code in Example 2-16, in an ASP
page named asp0214.asp, lets the cache store 10 scripts only.

<%

Dim iisAdminObj
Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root/chap2")

iisAdminObj.Put "AspScriptErrorSentToBrowser", FALSE
iisAdminObj.SetInfo

Dim strErrormessage
strErrormessage = "Something broke"
iisAdminObj.Put "AspScriptErrorMessage", strErrormessage
iisAdminObj.SetInfo

Response.Write(iisAdminObj.Get("AspScriptErrorSentToBrowser"))

%>
</BODY>
</HTML>

Example 2-16. Changing the Script Caching Size

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-16</TITLE>
</HEAD>
<BODY>
<%

Dim iisAdminObj
Set iisAdminObj = GetObject("IIS://localhost/W3SVC/1/Root/chap2")

iisAdminObj.Put "AspScriptFileCacheSize", 10
iisAdminObj.SetInfo

Example 2-15. ASP Script to Override Standard Script Error Message (continued)

,ch02.18096 Page 57 Thursday, February 22, 2001 1:27 PM

58 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Adjusting this value dynamically is an effective technique to fine-tune the perfor-
mance of a web site based on current usage.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptLanguage

VBScript is the default scripting language used for an ASP application. Setting the
AspScriptLanguage property can alter this default scripting language. The follow-
ing code sets the default scripting language to JScript:

iisAdminObj.AspScriptLanguage="JScript"

This property can be overridden with the use of a directive, such as the following:

<%@LANGUAGE = "JScript"%>

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptTimeout

By default, scripts have 90 seconds until a timeout occurs and the script is termi-
nated. This timeout value can be changed either by using the ScriptTimeout
method for the built-in Server object or by setting the AspScriptTimeout property
to a different value.

If an ASP application has components that can take considerable time, such as
components that access a database, the AspScriptTimeout property should be
changed to prevent the script accessing the component from timing out.

AspSessionTimeout

Each request to an ASP application from a single web page reader resets the timer
for the Session object timeout. If another request from the same reader exceeds
this timeout time, an error message is returned to the reader. The Session timeout
time can be reset using the AspSessionTimeout property.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

There are several more properties that can be accessed and set within the IIS
Admin objects, described in the documentation that comes with IIS 5.0.

%>
</BODY>
</HTML>

Example 2-16. Changing the Script Caching Size (continued)

,ch02.18096 Page 58 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 59

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IIS Base Admin Objects
Up to now, we’ve been programmatically altering IIS using the relatively friendly
IIS Admin objects with the help of ADSI. Now it’s time to go one step lower into
the workings of the Metabase and the IIS administration objects and plunge both
hands deep into the IIS Base Admin objects. In other words, it’s time to bring out
the C++.

The IIS Admin object works directly from an ASP script, or it can be accessed in
Visual Basic. However, to administer IIS from a C++ application requires access-
ing the IMSAdminBase interface. This interface supports several different methods
similar to those provided by ADSI for the IIS Admin objects. These methods are
listed in Table 2-1.

Table 2-1. IMSAdminBase Methods

Method Description

AddKey Adds a key to the Metabase. AddKey is similar to the IIS
Admin object Create method, which can add new IIS
objects.

Backup Backs up the entire Metabase to a location you specify.

ChangePermissions Normally, you obtain a handle to an IIS Base Admin object
(a key) and open the handle for read or write permission or
both. ChangePermissions allows you to change this permis-
sion on an open handle.

CloseKey Closes an open handle.

CopyData Copies the data from one Metabase key to another.

CopyKey Copies the keys from one Metabase key to another.

DeleteAllData Deletes all data contained in the Metabase key and any sub-
keys.

DeleteBackup Deletes a Metabase backup.

DeleteChildKeys Recursively deletes all keys of the Metabase key.

DeleteData Deletes all data for the Metabase key.

DeleteKey Deletes a specific Metabase key.

EnumBackups Enumerates through the backups at a given location.

EnumData Enumerates all data for a given key.

EnumKey Enumerates all subkeys for a given key.

GetAllData Gets all data associated with key.

GetData Gets data for a specified key and property.

GetDataPaths Gets the path associated with a specific data identifier.

GetDataSetNumber Gets the unique numbers associated with a data item in a
key..

GetHandleInfo Gets information about an associated Metabase key handle.

GetLastChangeTime Gets the time when the key was last changed.

,ch02.18096 Page 59 Thursday, February 22, 2001 1:27 PM

60 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To demonstrate how the IMSAdminBase interface works, we’ll create one last ASP
component for this chapter, but this time the component will be created with
Visual C++ and not Visual Basic.

Creating Visual C++ ASP components is covered in more extensive
detail in Chapter 14, Creating C++ ASP Components.

Creating the ASP Component

The component will have two methods, one to set a specific Metabase property
and one to retrieve it. The property used in this example is the AspScriptTimeout
value, which controls how long a script will process before it times out. The prop-
erty will be accessed for the chap2 virtual directory, which is the key we will
access using IMSAdminBase.

To create the component, you first need to create a new Visual C++ project. Cre-
ate the project using the ATL COM Wizard and name the project asp0205. When
the wizard runs, select Dynamic Link Library from Step 1 and do not check any of
the options at the end of the page, and click the Finish button.

Once Visual C++ has automatically generated the framework code for the compo-
nent, you’ll next need to add a component class. Select Insert from the main menu
and then select New ATL Object. From the dialog box that opens, select Simple
Object as the type of component to create. In the next page, select the Names tab
and give the component a Short Name of tstBase. The other fields will automati-
cally be filled in.

Select the Attributes tab next, make the component both-threaded with a dual
interface, and choose to aggregate the component by selecting Yes from the
Aggregation radio box. Click on the OK button to generate the component class.

GetSystemChangeNumber Gets the number of times a key’s data was changed.

OpenKey Obtains a handle to a specific key.

RenameKey Renames the specified key

Restore Restores the Metabase from a backup.

SaveData Saves changes made to Metabase data.

SetData Changes the value of a data item for a specific key.

SetLastChangeTime Sets the last time data associated with the key was changed.

Table 2-1. IMSAdminBase Methods (continued)

Method Description

,ch02.18096 Page 60 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 61

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the class is created, access the Class View page for the project and right-click
on the interface created for the new component, ItstBase. From the menu that
opens, select Add Method. In the Add Method to Interface dialog box, give the
method a name of getTimeout and provide the following for the Parameters field:

[out,retval] VARIANT *pvarScriptTimeout

The getTimeout method returns a Variant that contains the value of the AspScript-
Timeout property. Clicking on the OK button will add the method to the compo-
nent’s IDL file and will add a method signature to the component’s C++ file,
tstBase.cpp.

You need to add support for IMSAdminBase, so you’ll need to open the compo-
nent’s header file, tstBase.h, and include three header files, iadw.h and iisconfig.h
(both necessary to support IMSAdminBase) and comdef.h, to add support for
COM-based objects. Add these directly below the resource.h file:

#include "resource.h" // main symbols

#include <iadmw.h>
#include <iiscnfg.h>
#include <comdef.h>

Close tstBase.h. Open the component’s class file, tstBase.cpp, next.

At this time, the tstBase.cpp file contains the method signature (method name and
parameter and return type), a return value, and the opening and closing method
brackets:

STDMETHODIMP CtstBase::getTimeout(VARIANT *pvarScriptTimeout)
{
return S_OK;
}

To access the AspScriptTimeout property for chap2, you first need to obtain a han-
dle to the chap2 Metabase key and then use GetData to get the property informa-
tion. However, before you can use the GetData method, there is a structure you
need to be aware of: METADATA_RECORD.

The METADATA_RECORD Structure

You’ll be using the GetData and PutData methods with the IMSAdminBase inter-
face to get and set the AspScriptTimeout property value. However, to access a
property from the Metabase using IMSAdminBase, you need to specify informa-
tion about the property, such as the size of the variable used to get the data, the
datatype, and so on. This exchange of information about datatypes of properties is
handled behind the scenes within the IIS Admin object methods, but it is exposed
with the IIS Base Admin objects. Based on this exposure, you’ll need to pass infor-

,ch02.18096 Page 61 Thursday, February 22, 2001 1:27 PM

62 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

mation with the GetData and PutData methods; the METADATA_RECORD structure is
used for this purpose.

METADATA_RECORD has the following structure definition:

typedef struct _METADATA_RECORD {
 DWORD dwMDIdentifier;
 DWORD dwMDAttributes;
 DWORD dwMDUserType;
 DWORD dwMDDataType;
 DWORD dwMDDataLen;
 unsigned char *pbMDData;
 DWORD dwMDDataTag;
} METADATA_RECORD;

The dwMDIdentifier member contains the Metabase identifier for the property.
This value can be found in the IIS 5.0 documentation pages, and the value for
AspScriptTimeout is MD_ASP_SCRIPTTIMEOUT. dwMDAttributes contains addi-
tional information about the property, such as whether it is inherited (METADATA_
INHERIT) or whether there are no attributes (METADATA_NO_ATTRIBUTES). For the
example, you’ll be using METADATA_INHERIT.

A complete listing of values for dwMDAttributes and the other
METADATA_RECORD fields can be found in the Visual C++ documen-
tation or at Microsoft’s web site by looking up METADATA_RECORD.

dwMDUserType specifies whether the information is about an ASP application, a
file, or a server. Possible values are specified in the IIS 5.0 documentation for the
Metabase property. For AspScriptTimeout, the value used is ASP_MD_UT_APP.

dwMDDataType and dwMDDataLen specify information specific to the property,
such as its datatype and the size of the variable used to set or get the property
value. The AspScriptTimeout value is a Long datatype, which equates to the
DWORD_METADATA type value, and this is used for the dwMDDataType field. In
addition, the sizeof operator is used to get the size, in bytes, of the variable used
to hold the data, and this size is passed in the dwMDDataLen field.

Lastly, the pbMDData field is used to hold a reference to the variable that either
contains the property value, if SetData is being used, or to get the property value,
if GetData is used. Variables of different types can be used to set this field as long
as the storage is preallocated for the variable if GetData is being used and the vari-
able is cast to a byte pointer (PBYTE).

Now that you’ve had a chance to review the METADATA_RECORD structure, you can
create the getTimeout method on your new component.

,ch02.18096 Page 62 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 63

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating the getTimeout Method

You access the Base Admin objects using a technique similar to the technique you
used to access the Admin objects—you specify the ADsPath for the object. How-
ever, unlike the Admin objects, you can use a shortcut keyword, LM, to represent
IIS://localhost. So, to access the root directory of the development web
server, you would use an ADsPath of:

/LM/W3SVC/1/Root

The first code you’ll add to the getTimeout method is to create an instance of
IMSAdminBase, using the template CComPtr to wrap the interface pointer. You’ll
use coCreateInstance to create the IMSAdminBase reference:

// get a pointer to the IIS Admin Base Object
hr = CoCreateInstance(CLSID_MSAdminBase, NULL, CLSCTX_ALL,

IID_IMSAdminBase, (void **) &spAdminBase);

Once you have a reference to the IMSAdminBase interface, you’ll use this to
access the IIS Base Admin object for the development web server, using the Open-
Key method:

// open key - access IIsWebServer
 hr = spAdminBase->OpenKey(
 METADATA_MASTER_ROOT_HANDLE,
 b,
 METADATA_PERMISSION_READ|METADATA_PERMISSION_WRITE,
 60000,
 &hMetaData
);

The OpenKey method takes a Metabase handle, the ADsPath for the Metabase
key, permissions, a method timeout value, and a reference to a Metabase handle
for the newly opened key. For the example code, the METADATA_MASTER_ROOT_
HANDLE is used for the first parameter.

The METADATA_MASTER_ROOT_HANDLE is a defined value that repre-
sents the master root for the IIS installation. Instead of using this pre-
defined value, you can also specify a previously opened Metabase
key handle in OpenKey.

The OpenKey method then returns a handle for the key specified in the ADsPath.
Once you’ve opened the Metabase key for the development web server, you can
use this to both set and get data from the key, delete the key, or do any number
of other operations. For getTimeout, you’ll use the key to get the value of Asp-
ScriptTimeout by first defining the METABASE_RECORD values and then calling the

,ch02.18096 Page 63 Thursday, February 22, 2001 1:27 PM

64 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

GetData method. The accessed value is then returned to the ASP application page.
The complete code for the getTimeout method is shown in Example 2-17.

Example 2-17. getTimeout Method Using IMSAdminBase

STDMETHODIMP CtstBase::getTimeout(VARIANT *pvarScriptTimeout)
{
 HRESULT hr = S_OK;
 CComBSTR b("/LM/W3SVC/1/Root");
 CComBSTR c ("/chap2");
 METADATA_HANDLE hMetaData;
 METADATA_RECORD mdRecord;
 DWORD lnth;
 DWORD dwTime;
 CComPtr <IMSAdminBase> spAdminBase;
 CComVariant vtResponse;

 // get a pointer to the IIS Admin Base Object
 hr = CoCreateInstance(CLSID_MSAdminBase, NULL, CLSCTX_ALL,
 IID_IMSAdminBase, (void **) &spAdminBase);

 if (FAILED(hr))
 return hr;

 // open the key for the Development Web Server
 hr = spAdminBase->OpenKey(
 METADATA_MASTER_ROOT_HANDLE,
 b,
 METADATA_PERMISSION_READ,
 60000,
 &hMetaData
);

 if (FAILED(hr))
 return hr;

 // define the METABASE_RECORD values for AspScriptTimeout
 mdRecord.dwMDIdentifier = MD_ASP_SCRIPTTIMEOUT;
 mdRecord.dwMDUserType = ASP_MD_UT_APP;
 mdRecord.pbMDData = (PBYTE)&dwTime;
 mdRecord.dwMDDataLen = sizeof(dwTime);
 mdRecord.dwMDDataType = DWORD_METADATA;
 mdRecord.dwMDAttributes = METADATA_INHERIT;

 // get the property value
 hr = spAdminBase->GetData(hMetaData, c, &mdRecord, &lnth);

 if (FAILED(hr))
 return hr;

 // assign the property value to the component return variable
 vtResponse = (long)dwTime;
 vtResponse.Detach(pvarScriptTimeout);

,ch02.18096 Page 64 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 65

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice in the call to GetData that the virtual directory name for chap2 is passed
within the method call. Also notice that the fourth parameter for the method is a
pointer to a DWORD variable. This variable is set if the variable used in the
METABASE_RECORD structure is not large enough to contain the property value
being returned. If this happens, an ERROR_INSUFFICIENT_BUFFER error is
returned, and the size of buffer necessary to hold the data is returned in the fourth
parameter. Otherwise, this value will be 0.

Example 2-17 does not show error handling, but you can access
error codes from the HRESULT value set with the method call.

Once the code for the asp0205.tstBase component’s getTimeout method is fin-
ished, it is compiled and accessed within an ASP page. The page, named asp0215.
asp, creates a reference to asp0205.tstBase and then calls the getTimeout
method, which is then displayed to the browser.

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-17</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp0205.tstBase")

Dim timeout
timeout = obj.getTimeout

Response.Write "<H3>Script Timeout is " & timeout & "</H3>"
%>
</BODY>
</HTML>

The result of running this ASP script is a web page with the following:

Script Timeout is 90

You can verify the script timeout value by accessing the Properties page for chap2,
then clicking on the Configuration button in the Virtual Directory tab. Another dia-
log box opens containing information about the ASP application associated with

 // close the metabase key
 spAdminBase->CloseKey(hMetaData);

 return S_OK;
}

Example 2-17. getTimeout Method Using IMSAdminBase (continued)

,ch02.18096 Page 65 Thursday, February 22, 2001 1:27 PM

66 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the directory. Access the App Options tab in this dialog box, and you can see an
ASP Script Timeout field in the page, with a value of 90 seconds.

Now that you’ve been able to get the ASP script timeout value, you can try chang-
ing this with the IIS Base Admin objects. This is covered in the next section, where
you’ll create the putTimeout method.

Creating the putTimeout Method

To change the AspScriptTimeout value, you’ll create a new method called put-
Timeout. To create the method, you’ll again access the Class View page of the
tstBase component within the asp0205 project, and you’ll add the new method,
named putTimeout, with one parameter, DWORD dwTimeout:

[in] DWORD dwTimeout

In the method, you’ll still access the IMSAdminBase interface and use this to get a
handle to the development web server key with OpenKey, but you’ll be setting
the AspScriptTimeout value with SetData instead of accessing it with GetData. The
definition for the METABASE_RECORD structure is similar, as is the use of the Open-
Key and CloseKey methods. What differs is the use of SetData to set the property
value and the use of SaveData to save the changes to the Metabase.

When you make changes to the Metabase, you need to save them. You did this
with SetInfo with the IIS Admin objects, and you’ll use SaveData to save the
changes with the IIS Base Admin objects. However, one important piece of infor-
mation to keep in mind when working with IMSAdminBase is that you must close
the Metabase key before you try to save any changes to it. Trying to save to an
open key will result in an error. Other than that, the methods for getTimeout and
putTimeout are very similar. The code for putTimeout is shown in Example 2-18.

Example 2-18. putTimeout Method That Sets the AspScriptTimeout Property Using the
IMSAdminBase Interface

STDMETHODIMP CtstBase::setTimeout(DWORD dwTimeout)
{
 HRESULT hr = S_OK;
 CComBSTR b("/LM/W3SVC/1/Root");
 CComBSTR c ("/chap2");
 METADATA_HANDLE hMetaData;
 METADATA_RECORD mdRecord;
 CComPtr <IMSAdminBase> spAdminBase;
 CComVariant vtResponse;

 // get a pointer to the IIS Admin Base Object
 hr = CoCreateInstance(CLSID_MSAdminBase, NULL, CLSCTX_ALL,
 IID_IMSAdminBase, (void **) &spAdminBase);

 // open key - access IIsWebServer

,ch02.18096 Page 66 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 67

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the code for putTimeout is added to tstBase, the project is again recom-
piled. To try the new method, create another ASP test page, named asp0216.asp,
that accesses the asp0205.tstBase component and calls the putTimeout method.
The value passed to this method will be 180, doubling the current value:

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-18 </TITLE>
</HEAD>
<BODY>
<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp0205.tstBase")

Dim timeout
timeout = 180

 hr = spAdminBase->OpenKey(
 METADATA_MASTER_ROOT_HANDLE,
 b,
 METADATA_PERMISSION_WRITE,
 60000,
 &hMetaData
);

 if (FAILED(hr))
 return hr;

 // set METADATA_RECORD values
 mdRecord.dwMDIdentifier = MD_ASP_SCRIPTTIMEOUT;
 mdRecord.dwMDUserType = ASP_MD_UT_APP;
 mdRecord.pbMDData = (PBYTE)&dwTimeout;
 mdRecord.dwMDDataLen = sizeof(dwTimeout);
 mdRecord.dwMDDataType = DWORD_METADATA;
 mdRecord.dwMDAttributes = METADATA_INHERIT;

 // set property
 hr = spAdminBase->SetData(hMetaData, c, &mdRecord);

 if (FAILED(hr))
 return hr;

 // close key before saving
 spAdminBase->CloseKey(hMetaData);

 // save change to metabase
 hr = spAdminBase->SaveData();

 return hr;
}

Example 2-18. putTimeout Method That Sets the AspScriptTimeout Property Using the
IMSAdminBase Interface (continued)

,ch02.18096 Page 67 Thursday, February 22, 2001 1:27 PM

68 Chapter 2: Setting Up the ASP Development Environment

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

obj.setTimeout timeout
If Err.Number <> 0 Then
 Response.Write Err.Description
End If
%>
timeout = obj.getTimeout
%>
<H3>Changed Script Timeout to <%= timeout %> seconds</H3>
 </BODY>
</HTML>

The ASP page shows that the scripting timeout property has now been set to 180
seconds.

,ch02.18096 Page 68 Thursday, February 22, 2001 1:27 PM

69
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3

3
ASP Components

and COM

ASP components are dependent on an architecture being in place to support com-
ponent communication, and COM, or the Component Object Model, is the
approach Microsoft has taken for this type of communication. With Windows 2000,
Microsoft extended the COM architecture to include the services provided by MTS
(Microsoft Transaction Server) as well as other services, but the basics of COM are
still present.

COM is based on a binary and network standard that transcends any dependence
on computer language. By using machine-level communication, a component writ-
ten in Visual C++ can invoke functions exposed on a component written in Java,
for example, and a Java component can invoke a function within a C++ object. All
that is required is that the underlying COM implementation be installed for the
operating system where the components reside.

This chapter does not provide an in-depth description of how COM works, since
entire books have been written about this subject. However, it does cover some of
the information that component developers should understand about COM before
beginning to write components.

The chapter begins with a brief overview of how COM works and how it is imple-
mented, then progresses into those features of COM that are incorporated into
COM-compliant components.

,ch03.18221 Page 69 Thursday, February 22, 2001 1:28 PM

70 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Beginning with Windows 2000, the basic services provided by COM
have been extended, and these new services are called COM+.
Chapter 4, ASP Components, Threads, and Contexts, discusses one
architectural change made to COM—the addition of the COM+ con-
text. Now, components not only live within specific threads, they
also live within specific contexts. The chapter also discusses the new
neutral-apartment threading model. Chapter 5, COM+ Services and
ASP Components and Applications, discusses other COM+ services,
such as role-based security, just-in-time activation, transaction sup-
port, pooling, and others.

Overview of COM for ASP
Component Developers
One important aspect you should know about COM is that implementation details
are hidden, and COM components are usually seen as black boxes with no expo-
sure at all of the component internals. A component exposes its functionality
through interfaces, which can be considered “strongly typed semantic contracts
between the client and the object,” according to the documentation on the COM
specification provided by Microsoft. When a COM developer provides an inter-
face, she is saying that the interface will perform in the same manner throughout
all time or at least for the life of the component, whichever ends first. What this
means is that an application developer can create a client that accesses the compo-
nent’s functionality, and the developer does not need to know how the functional-
ity is implemented. Moreover, by saying that an interface is a “semantic” contract,
there is a defined behavior for each interface, a behavior that is guaranteed to
exist regardless of future changes to the component.

To ensure that one component’s interfaces are unique to that component, regard-
less of the interface names used, each component is assigned a unique identifier,
hence the term strongly typed.

The COM specification provides for the following:

• Binary communication between components

• A unique class identifier to represent a unique component

• Functionality accessible through interfaces

• Interfaces that are never changed and are considered immutable

• A method to query for interfaces if a component contains more than one

• A method to track references to an object, to determine when an object is no
longer being referenced, and to remove a reference to an object

,ch03.18221 Page 70 Thursday, February 22, 2001 1:28 PM

Overview of COM for ASP Component Developers 71

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There are other aspects to COM, but at a minimum this list captures the fundamen-
tals, which are covered in more detail in the following sections.

Binary Communication

The COM specification is a binary and network specification, which means that the
components are not language-dependent. They are, however, dependent on the
implementation of the COM infrastructure, an implementation that is at this time
primarily limited to Microsoft operating systems, such as Windows 2000. How-
ever, as IIS is limited to this same environmental constraint, this should not pose a
problem unless you want to create a remote component on some operating sys-
tem other than a Windows 32-bit operating system.

Companies such as Software AG have provided programmatic sup-
port for COM/DCOM within Unix environments. In addition, the
company Chili!Soft has provided software support for ASP from web
servers such as Netscape’s Enterprise Server. Based on these, one
can’t assume that an ASP application will be running within a Win-
dows 32-bit environment. However, the majority of ASP applications
and ASP components are created for Windows NT/2000, so I’ll con-
centrate on the Windows platform in this book.

One of the most powerful features of COM is that, when a client accesses a COM
component, the actual location of that component is transparent to the client. This
means that the component can exist locally, on the same machine as the client, or
remotely, on some other machine. This location independence makes a COM-
based application highly scalable, since components can be moved to separate
machines to decrease the load on one machine for better performance without
requiring changes within the application using the component.

If the component is an in-process component, it runs within the same process as
the client; this type of component is created as a dynamic link library, or DLL. An
out-of-process component is one that runs in its own process space. COM further
specifies two versions of out-of-process components: those that run locally and
those that run remotely. A local out-of-process component is created as a separate
executable with an EXE extension. A remote component can be created as either
an executable or as a DLL. If it is created as a DLL, accessing the component
remotely actually creates a surrogate client on the remote machine in order to load
the component.

How does the operating system know which component is being accessed? Each
component is registered on the machine containing the client and on the machine
containing the component if the component is accessed remotely. The most

,ch03.18221 Page 71 Thursday, February 22, 2001 1:28 PM

72 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

common tool used to register COM components is the regsvr32.exe utility. Other
tools for viewing component registry information are oleview.exe, included with
Visual Studio or downloadable from Microsoft, and dcomcnfg.exe, used to man-
age remote components and found in the Windows subdirectory, usually c:\
windows or c:\winnt.

Since more than one component can be used within an application, and compo-
nents can have the same interface names, how do the application and the operat-
ing system know which specific component is being accessed? The use of class
identifiers ensures access to a specific component, and they are discussed next.

Strong Typing Through Unique Identifiers

Each COM component has an identifier, called a class identifier (CLSID), also
known as a globally unique identifier (GUID). Because of this, no two compo-
nents with the same object or interface names can be mistakenly used for each
other, since each is identified by its own unique CLSID. The concept of the unique
identifier first arose in the Open Software Foundation (OSF) Distributed Comput-
ing Environment (DCE) specification. The DCE has a concept called the univer-
sally unique identifier (UUID), which is a 128-bit integer guaranteed to be unique
(at least virtually guaranteed to be unique) across time and space.

The COM CLSID can be generated using a variety of tools, or it is created as part
of building a COM component using Visual C++, Visual Basic, and other tools. In
fact, with these tools, you won’t have to perform any special activities in order to
access and include the CLSID within the component; the tool handles this for you.
For objects created with other tools or versions of these tools that don’t support
automatic handling of the CLSID, the utilities UUIDGEN.EXE and GUIDGEN.EXE
can be run separately to create unique identifiers. These utilities can usually be
found in the /bin subdirectory of one of the Visual Studio tools or can be down-
loaded from the Microsoft web site.

A real key to the power of COM is the use of interfaces, detailed in the next section.

If this is your first exposure to working with COM, you should take
the time to read at least the first two chapters of the Component
Object Model specification, accessible from the Web at http://www.
microsoft.com/com/, in addition to reading this chapter.

Interfaces

By using interfaces, COM provides support for objects that can be accessed exter-
nally, but without having to publish the object’s implementation. The interface

,ch03.18221 Page 72 Thursday, February 22, 2001 1:28 PM

Overview of COM for ASP Component Developers 73

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

itself never changes and basically does nothing more than provide a pointer to the
actual implementation. However, by providing this layer of separation between the
client of the component and the component implementation, the component
developer can make changes internally to the component without requiring any
changes at all to the client. The client doesn’t even need to be recompiled, since
all of its access to the component occurs through the interface.

This separation of interface and implementation provides support for true object-
oriented encapsulation or implementation hiding, though COM itself is not object-
oriented in the purest sense. Based on this, the COM component developer can
implement the object using any technique or even any programming language, as
long as the technique and language support COM.

In the last paragraph, I stated that COM is not object-oriented in the purest sense.
What I meant by this is that COM is not based on code source reusability, with a
new object derived by inheritance from an existing object. It is based on binary
reusability, with a component or application using the existing functionality of a
component by including a reference to the component within code, rather than
inheriting from the component.

One aspect of COM that can be difficult to work with at first is the fact that COM
interfaces are not mutable, which means that different versions of an interface can-
not be created. For example, I can create an interface called IAddress with a
method called AddAddress. In the beginning, I could have four parameters for the
AddAddress method: street address, city, state, and ZIP Code. However, let’s say
that I open the interface up for international use. In this case, I would want an
address to consist of items such as street address, city, region, country, and postal
code. I couldn’t just modify IAddress’s existing AddAddress method and redistrib-
ute it as Version 2.0, since this would cause havoc with existing customers using
the original address interface. What I would do instead is create a new interface—
let’s call it IInternationalAddress—to support international customers. This
new interface inherits from my existing interface and expands on it as needed. By
following this approach I “keep the faith” with my existing clients, so to speak, as
well as providing the necessary new functionality for my new clients.

When I first worked with COM, I was not used to this concept of multiple inter-
faces. Like most developers, I had spent considerable time creating different ver-
sions of the same software, going from revision 1.0 to revision 2.0 and so on. I
was not comfortable at first with the concept of creating a whole new interface
whenever a change was needed. However, it is this quality that is absolutely
essential for the success of COM.

First, components are not applications, but instead are grouped functions and data
created for a specific purpose and having methods that are guaranteed to work in

,ch03.18221 Page 73 Thursday, February 22, 2001 1:28 PM

74 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

a specified manner. Based on this, whenever an application developer has need of
the same behavior in more than one application, the same component can be
used again and again. If the component creators decided to support a new set of
behaviors and altered the component methods as well as added new methods, the
application developers would have to upgrade all applications using the compo-
nent to use the newer version, even if they want to use only the new functionality
for some of the applications.

However, if the component developers add a new interface to the component that
contains the new functionality, then the application developer could access the new
interface only when needing to use the new functionality. The applications that
don’t need the new functionality continue to use the same, unchanged interface.

In order to support multiple interfaces, applications need to have some method of
querying a component’s interfaces to see what it supports and what it doesn’t sup-
port. A basic COM feature is the ability to return a pointer to an interface based on
a request, discussed next.

Referencing an Interface

To return a reference to an interface, each COM object must implement a function
that allows the client to query for a specific interface. In the COM system, this
function is called QueryInterface. QueryInterface takes a unique identifier of the
interface as the first argument and an interface pointer as the second argument. If
the QueryInterface call is successful, this second argument will contain the pointer
to the interface when the method returns.

Rather than adding to the complexity and size of a component by adding auto-
mated garbage collection routines, COM utilizes a manual process of freeing com-
ponent resources. When a component interface is first accessed, the component is
loaded into memory and remains in memory as long as at least one interface is
accessed. However, when the last interface is released, the component can then
be unloaded.

A component can provide pointers to the same interface to more than one applica-
tion, so how does COM know when there are no longer any references to any
component interfaces so that it can unload the component from memory? The
answer is that, in addition to having to implement the QueryInterface method,
each component must also implement a method to increment some form of a
counter when an interface is accessed. When a pointer to an interface is success-
fully accessed, a counter associated with the interface is incremented by one. This
counter is then used by COM to determine when all references to an interface
have been released so that the component can be released from memory. So, in
addition to the function to query for the interface, another function, AddRef, adds

,ch03.18221 Page 74 Thursday, February 22, 2001 1:28 PM

Overview of COM for ASP Component Developers 75

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

to the reference count, and a third function, Release, decrements this reference
count. When the component’s reference count reaches zero (0), the component is
marked for removal from memory.

If a COM-based component—ASP or otherwise—supports no other methods, it
must support the ability to query for a specific interface, to increment the count
when an interface reference is returned, and to decrement the interface reference
count when an interface reference is released. However, as you will see in the
other section on COM implementation, much of this functionality is added to a
component automatically, just by inheriting from one specific interface. Other
aspects of COM functionality are discussed next.

Additional COM Functionality

In addition to the major COM specifications for immutable interfaces that can be
queried and for maintaining reference counts for interfaces, other basic COM func-
tionality has to do with maintaining state for a component, known as persistent
storage, as well as the use of monikers. Persistent storage is the ability of an object
to write state information about itself to storage and later retrieve this state infor-
mation from storage.

Monikers are an interesting concept. Without going into too much detail, a moni-
ker can be thought of as an intelligent name. By this I mean that not only does a
moniker maintain a reference to some object, it also has information about how to
access the object. For example, consider an application that accesses a compo-
nent on a remote server using a moniker to maintain a reference to the pointer to
the component interface. While the application was off doing other things, the
connection to the server component was lost. However, the moniker would not
only know what component interface to access, it would have enough informa-
tion to reinitialize the reference to the component interface if the interface pointer
is no longer valid.

Since a moniker must have enough information about the component interface to
re-create the interface pointer, monikers are actually created by the interface
instance itself and are made available to clients.

In addition to persistence and monikers, COM also contains processes for dealing
with data transfer through its Uniform Data Transfer (UDT) specification. This
specification provides for an interface that separates the transfer protocol from the
actual data itself and also provides definitions for transfer medium and a mecha-
nism to determine what data is being transferred and whether the data of interest
has changed. UDT serves to provide a standard for data transfer regardless of the
medium used to make the transfer.

,ch03.18221 Page 75 Thursday, February 22, 2001 1:28 PM

76 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

How COM Is Implemented
COM is a specification and an implementation. It consists of interfaces that sepa-
rate client access from component implementation, a defining language to describe
these interfaces in a tool/language-neutral manner, and a predefined set of inter-
faces that are used to derive all other COM interfaces.

What Is an Interface?

Interfaces are abstract base classes. As such, they are not implemented but instead
contain virtual functions that are themselves pointers to the actual functions that
implement this functionality. Pointers to the actual functions are contained in what
is known as the virtual function table, or vtbl for short.

The concept of virtual functions arose in C++ object-based programming, not with
COM. When a C++ compiler finds a reference to a virtual function, it generates an
entry into an array that contains a function pointer for every virtual function. For
example, if the C++ compiler finds this definition in a C++ source code file:

class someclass {
public:
 virtual void somefunction();
};

the compiler creates an entry into the vtbl for somefunction. How does a client
access the function pointer to invoke the actual implemented function? Each time
an instance of the class someclass is created, a pointer is also created within the
instance that points to the first entry of the vtbl for the class. The C++ compiler
implements this pointer for every instance derived from a class that contains vir-
tual functions. The C++ compiler also handles all of the details for the virtual-to-
real function call, which makes this type of functionality doubly attractive. Addi-
tionally, the overhead for this functionality is equivalent to an indirect function
call—in other words, it is minor at most.

So for the example class just shown, if I write client code that calls the function
somefunction, the C++ compiler generates the code that accesses the pointer to
the class vtbl. The C++ compiler also generates the code to access the index for
the function—again with no intervention by the C++ class developer—which then
returns the function pointer to the real function.

This use of virtual functions enables polymorphism within C++, and this same con-
cept of virtual functions is used to separate the interface from the implementation
within COM. However, what happens when you use some programming lan-
guage other than C++ to create the COM component or the client? You can’t use
C++ programming language datatypes directly, since these might not map cleanly
between the client and the component.

,ch03.18221 Page 76 Thursday, February 22, 2001 1:28 PM

How COM Is Implemented 77

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

What is needed is a language-neutral method to define objects, methods, method
parameters, and return types; for this task, Microsoft uses the Interface Definition
Language (IDL) for COM.

Using IDL to Define the Interfaces

Interfaces are usually, but are not required to be, defined in a separate file using a
language called Interface Definition Language (IDL). IDL is itself a subset of the
Object Definition Language (ODL) used in OLE, which in turn is derived from the
Open Software Foundation’s (OSF) Distributed Computing Environment (DCE)
Remote Procedure Call (RPC) IDL.

IDL provides a neutral language to describe interfaces, their parameters, and their
results. The IDL that Microsoft supports for COM is similar to the IDL that the
OMG group supports for CORBA, though not identical. As an example of a fairly
neutral IDL, the following is the definition of a method that takes two long values
and returns a short value:

short somefunction (in long lParamOne,
 in long lParamTwo);

The modifier [in] is used to denote a parameter that is passed by value only.
Another modifier is [out], used to denote a parameter passed by reference.

As stated, Microsoft has its own version of IDL that has COM-specific annotation
or decoration. The Microsoft-specific version of the IDL for the function shown
previously is:

HRESULT somefunction([in] long lParamOne, [in] long lParamTwo,
 [out,retval]short retVal);

To explain this example, Microsoft requires that the return type of all COM meth-
ods is defined to be HRESULT, a macro for an OLE data value that returns the suc-
cess or failure of the method call. However, you can actually return, literally, a
different datatype to the calling program by using the modifier [retval]. For the
method somefunction, the parameters are two long values passed in by value
and one return value of type short.

Though the IDL defines three parameters, and the function within the COM com-
ponent would code for three parameters, you would actually code for only two
parameters and a short result in the client, as the VBScript shows in the next
block:

Dim retValue
Dim lParam1, lParam2
lParam1 = 2
lParam2 = 3
retValue = somefunction(lParam1,lParam2)

,ch03.18221 Page 77 Thursday, February 22, 2001 1:28 PM

78 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If the method were coded in Visual Basic, the return value parameter would be
listed as the actual return value for the method instead of as one of the parame-
ters, as shown in the following Visual Basic code fragment:

Public Function somefunction(ByVal lParam1 As Long, ByVal lParam2 As Long) _
 As Integer

How IDL is used to handle parameter typing and method description within COM
is discussed later in this chapter, in the section titled “Notable COM Interfaces.”

Implementing the Interface

Once an interface is defined, it’s implemented using whatever approach works
with the language you’re currently using. For instance, when you add a new com-
ponent class to a Visual C++ project, the tool creates an interface for the compo-
nent. You then add the interface methods and properties to this generated
interface.

Figure 3-1 shows an ASP component created in Visual C++ in Chapter 18, Access-
ing MSMQ from C++ ASP Components. Notice the component’s interface,
Imsgqueue, and all of its defined methods in the left side of Figure 3-1.

In Visual Basic, you don’t have to create the interface directly, since the tool han-
dles this for you. In fact, even if you wanted to modify the IDL for the interface for
a Visual Basic component directly, you can’t.

In Perl with the Perl Dev Kit (PDK), an interface is created in the same manner as
any other Perl module—depending on whether you’re using PerlCtrl to wrap the
Perl module in a COM DLL or using PerlCOM to access the module’s methods and
properties. Delphi provides a Type Library Editor that allows you to manipulate

Figure 3-1. C++ interface and its methods

,ch03.18221 Page 78 Thursday, February 22, 2001 1:28 PM

How COM Is Implemented 79

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the methods and properties of an interface and then export the information to the
IDL file. In the actual component code, the only reference made to the interface is
within the class definition:

 TFirst = class(TASPMTSObject, IFirst)

Again, the tool determines the level of exposure of the interface to the developer.

Another key to the COM architecture is that components can implement more than
one interface.

Multiple Interface Support in Components

If a component could implement only one interface, it would be useful—but the
real power of COM comes from a component’s ability to implement more than
one interface.

In Visual Basic, when you create a VB class, you’re implementing the VB interface
associated with the class—but the implementation isn’t exposed. If you also
wanted to implement another interface, such as IObjectControl (discussed in
Chapter 5), you can, just by using the following line:

Implements IObjectControl

The Implements keyword allows you to implement more than one interface
within your component in order to “absorb” the behaviors from more than one
interface.

In Delphi, this is shown, again, in the class definition statement. For instance, if
you want to implement IObjectControl, you would use:

 TManual = class(TAutoObject, IManual, ObjectControl)

In C++ when using ATL, you would add the interface to the class definition:

class ATL_NO_VTABLE Cnewguys :
public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<Cnewguys, &CLSID_newguys>,

 public IObjectControl,
public IDispatchImpl<Inewguys, &IID_Inewguys, &LIBID_ASP1504Lib>

You would also add the interface to the COM map defined for the component:

BEGIN_COM_MAP(Cnewguys)
COM_INTERFACE_ENTRY(Inewguys)

 COM_INTERFACE_ENTRY(IObjectControl)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

By providing support for multiple interfaces, your component isn’t limited to one
set of behaviors, but can incorporate many.

,ch03.18221 Page 79 Thursday, February 22, 2001 1:28 PM

80 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Speaking of interfaces, let’s take a look at the key interfaces you’ll use when
developing the ASP components in this book and in your own ASP applications.

Notable COM Interfaces
There are a great number of COM interfaces—interfaces provided by Microsoft to
support the COM architecture. There are even more defined for the support of
COM+ (which will be discussed in Chapter 5). However, there are some interfaces
that are key to your (and all) component development efforts. This section will
take a look at these most important interfaces.

IUnknown

In order to support a multiple immutable interface approach, COM has provided
an interface, IUnknown, and all component interfaces must be derived, directly or
indirectly, from it. IUnknown has three abstract methods, QueryInterface, AddRef,
and Release, which provide references to the necessary functionality for querying
for a specific interface, adding a reference to the interface from within an applica-
tion, and releasing the reference when the interface pointer is no longer needed.

IUnknown is an abstract base class, which means it contains nothing but virtual
functions and has no implementation itself. You cannot directly create an instance
of IUnknown. In addition, each of the IUnknown functions is a pure virtual func-
tion, which means that each of these functions must be implemented within any
interface that inherits from IUnknown.

IUnknown provides the methods to access an interface and update the interface
reference counter, but a problem with runtime access of an interface and its meth-
ods is determining the structure of a particular method call, including the number
and types of parameters passed in the call. To address this problem, Microsoft also
provided another standard interface, itself derived from IUnknown, that is called
IDispatch. IDispatch is also known as the COM automation object.

IDispatch

As mentioned earlier, interfaces can be defined in IDL to provide a language-
independent description of the interface. However, IDL doesn’t just define the
interface and its methods as an esoteric exercise. An IDL file can be used to gener-
ate a type library. A type library contains information about a COM object, such as
the interface object’s methods and parameters. This information can then be used
whenever an interface method is invoked.

If the client does not have access to the type library, does it mean it can’t access
the component? No, but extra effort is necessary to allow access to a component’s

,ch03.18221 Page 80 Thursday, February 22, 2001 1:28 PM

Notable COM Interfaces 81

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

methods. If the client does not have information about the component interface
method, it must first call a method to get identifiers for the method and each of
the method’s parameters, and then pass this information along on each call to the
method. The functionality to make this call resides with another basic COM inter-
face, IDispatch.

The earliest implementations of IDispatch performed two function calls for every
method called on the interface that was derived from IDispatch (current imple-
mentations are discussed in the next section). The first call was to a function called
GetIDsOfNames, which returned a special ID, called the DISPID, for the method.
The DISPID is then passed as the first parameter of another IDispatch method,
Invoke, which used to actually invoke the derived interface method. So if you had
a component with a method called getTestScores, calling this method from an
application or another component resulted in two method calls on IDispatch:
one to GetIDsOfNames to get the DISPID of getTestScores and one to Invoke with
the DISPID to actually call the method. In addition to the DISPID passed to the
IDispatch Invoke method, a structure containing the parameters for getTest-
Scores is also passed to Invoke. This structure is of type DISPPARAMS and is gener-
ated by default using a standard proxy/stub implemented by Microsoft specifically
for default marshaling.

A Brief Word on Early and Late Binding

As you can imagine, having to call two functions for every interface method call, a
process known as late binding, could become a bit of a performance issue, partic-
ularly if the component exists across a network. In answer to performance con-
cerns, Microsoft provided the type library, discussed earlier. What was not
discussed earlier was how the type library can be used in place of the IDispatch
GetIDsOfNames function.

Instead of having to call GetIDsOfNames to get the DISPID of the method, the
type library provides the DISPIDs for each of the interface methods; IDispatch
can use these to pass to the Invoke method, rather than having to call GetIDs-
OfNames. Because the binding information is retrieved early on, it is known as—
what else?—early binding.

However, using IDispatch is not the only technique that can be used to access
an interface method. Another technique to invoke a method on an interface is to
access the vtbl entry for the method directly, rather than accessing it through
IDispatch. Accessing the vtbl directly is supported for most programming lan-
guages and tools, including Visual Basic, Visual C++, Java (with help from the
Microsoft COM Java wrapping), Delphi, and Perl, but it is not supported for script-
ing languages such as VBScript and JScript. Because of this, vtable binding is not
supported in ASP scripting blocks. Since not all COM clients support vtbl binding,

,ch03.18221 Page 81 Thursday, February 22, 2001 1:28 PM

82 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

most COM-based components, including ones created specifically for use in ASP
applications, use a method known as the dual interface. A dual interface compo-
nent is one that has support for vtable binding as well as IDispatch in cases in
which vtbl binding is not supported. The components in this book all use the dual
interface.

At a minimum, a COM-based component can be created using just IUnknown and,
usually, IDispatch, and in a later section, we’ll use Visual C++ to create just such
a simple component. However, for the client to retrieve a reference to a class
instance through an interface, the instance must be created, and this is where
IClassFactory enters the picture.

IClassFactory

IUnknown defines a method that can be used to query for an interface, and
IDispatch can be used to invoke a method on the interface, but we are missing
something here. Something, somewhere has to create the instance of the class
associated with the interface.

When a client wants to create an instance of a component and query for an inter-
face on that component, it must do two things. First, it must initialize COM—call it
waking COM up—by calling a method named CoInitialize or CoInitializeEx.
CoInitialize takes one parameter, a value of NULL, and CoInitializeEx takes two
parameters, the first again being NULL and the second containing a flag describing
the thread’s concurrency model. Either of these functions is called only once on a
thread and basically initializes the COM library on that thread.

Threads are discussed in more detail in Chapter 4.

After the function call to kick COM awake, so to speak, the next function the cli-
ent must call is either CoCreateInstance or CoCreateInstanceEx. CoCreateInstance
takes as parameters the CLSID for the object (either a pointer to an object for
aggregation or NULL), the context of the component (whether the component is in
process or not, or running remotely or locally), the identifier of the interface refer-
ence used to communicate with the object, and finally, the pointer to hold this
interface reference. The more modern version of CoCreateInstance, CoCreate-
InstanceEx, takes the same first three parameters, but then it takes the name of the
component server as a fourth parameter (or NULL if the component is local), the
number of query interface structures passed in the last parameter, and an array of
query interface structures in the last parameter. CoCreateInstance can return only

,ch03.18221 Page 82 Thursday, February 22, 2001 1:28 PM

Notable COM Interfaces 83

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

one interface on the local machine. CoCreateInstanceEx can return an array of
interfaces on either the local or a remote machine.

As CoCreateInstance implies, the purpose of this method is to create an instance
of the object identified by the CLSID. For this to work, the component must have
some associated technique to provide for class construction; this technique is
implemented through the IClassFactory interface. Each method invokes the
IClassFactory interface method CreateInstance internally, with either CoCre-
ateInstance or CoCreateInstanceEx.

When a call to CreateInstance is made for an interface, it is the component’s
implementation of the IClassFactory interface that generates the new instance
of the component, becoming literally the component’s class factory, hence the
name.

So what happens when a client creates an instance of a COM object and calls one
of its methods? The client first of all initializes COM (CoInitialize) and then it cre-
ates an instance of the component (CoCreateInstance), which in turn creates an
instance of the component (through IClassFactory’s CreateInstance). Next, it
queries the component for a specific interface (IUnknown’s QueryInterface), and
once the interface is returned, it invokes a method on the interface (IDispatch
Invoke). If the client does not have a type library associated with the interface,
COM must obtain the dispatch identifiers for the method (IDispatch GetIDs-
OfNames). If a dual interface is supported, the client may make a call to get the
function pointer for the method directly.

A Brief Word on Containment/Aggregation

If you are just learning about COM and writing COM-based components, you are
probably concerned first of all with creating a component that doesn’t break and,
second, with creating one that actually works. Your component’s reusability is
probably a distant concern at this time. Eventually, though, you may want to
extend an existing component, and reusability is the key to doing this.

COM provides not just one but two mechanisms for reusability. The first is known
as containment/delegation; the second is known as aggregation.

Containment/delegation basically wraps one component around another, with the
outer component intercepting all of its own interface method calls and those of the
contained object. The outer component then uses whatever interfaces of the con-
tained component it needs to create its own implementation.

Aggregation is used when the outer component exposes an inner component’s
interfaces as if they were its own. The advantage of this approach is that the outer
component only implements extended functionality, rather than having to imple-
ment its own functionality and that of its contained component. However,

,ch03.18221 Page 83 Thursday, February 22, 2001 1:28 PM

84 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

problems occur with the handling of IUnknown calls to the inner component inter-
face. IUnknown calls increment or decrement a reference count, and when made
by the client, they should go to the outer component, not to the inner compo-
nent. Yet with exposure of the inner component directly to the client, IUnknown
calls are made to the inner component.

To prevent this, COM provides a mechanism so that, when the outer component
creates the inner component, it passes its own IUnknown interface to the inner
component. If you remember from the section on IClassFactory, the inner com-
ponent is created with CoCreateInstance or CoCreateInstanceEx, except instead of
passing in NULL as the second parameter, the pointer to the outer component is
passed. Sending a non-NULL value serves as a signal to the inner component that it
is being aggregated. If the inner component supports this, it then creates two
IUnknown interfaces, one that is nondelegating and one that delegating. When the
client makes IUnknown calls, these are made on the delegating IUnknown inter-
face and are delegated to the outer component. When the outer component itself,
though, makes a request for the IUnknown interface from the inner component,
the component knows to return the nondelegating IUnknown interface. With this,
the IUnknown calls from the client are correctly routed to the outer component,
and the outer component can control the lifetime of the inner component by its
own IUnknown calls.

The Enumerator Interfaces: IEnumXXXX

The IEnumXXXX interfaces (the XXXX being replaced by specific datatypes) aren’t
absolutely essential for your ASP component development, but there is a strong
possibility you will be working with them. The main reason is that Microsoft has
implemented several collections for many of its technology APIs (such as the ASP
built-in objects, the CDO objects, and so on), and enumerators are what you’ll use
to iterate through these collections.

A collection is a related group of like objects along with an associated set of meth-
ods that can be used to access specific objects or to iterate through the collection
of objects. For instance, if your component is processing the contents of an HTML
form, you could access these contents through the Forms collection of the ASP
Request object.

Instead of having to find a count of the objects and then manually create a loop to
access each item, you can use the built-in enumeration methods to access all of
the items sequentially.

Enumeration is implemented in different ways in different languages, but whether
the actual details of enumeration are exposed or not, the actual implementation
occurs through the IEnumXXXX interfaces.

,ch03.18221 Page 84 Thursday, February 22, 2001 1:28 PM

Notable COM Interfaces 85

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IEnumXXXX interfaces support a specific set of methods used to enumerate
through the collection. For instance, use the Next method to go to the next item in
the collection, use Skip to skip over an item, and use Reset to reset the collection
back to the beginning.

Though all of these methods are implemented for the IEnumXXXX interfaces, the
actual implementation details can vary based on the language. In Visual Basic, you
enumerate through a collection using the For Each…Next statement, as the fol-
lowing code example demonstrates with the ASP Request object’s ServerVariables
collection:

For Each x In rqstObject.ServerVariables
 rspnseObject.Write x & " = " & rqstObject.ServerVariables(x)
Next

In this code block, each item in the ServerVariables collection is assigned to
rqstObject, the variable contained within the For Each…Next statement.

In Delphi and C++, you’ll have to access the enumerator from the IUnknown inter-
face. In C++, this looks like:

 // get ServerVariables
 hr = m_piRequest->get_ServerVariables(&piDict);
 if (FAILED(hr)) return hr;

 // get enumerator
 hr = piDict->get__NewEnum(&piUnk);
 if (FAILED(hr)) return hr;

 hr = piUnk->QueryInterface(IID_IEnumVARIANT, (void **)&piEnum);
 if (FAILED(hr)) return hr;

 // enumerate through collection, printing out values
 _variant_t vtItem, vtValue;
 while (S_OK == piEnum->Next(1,&vtItem,&lValue)) {

 m_piResponse->Write(vtItem);
 ...
 }

Calling the get_ServerVariables method returns the ServerVariables collection.
Then you access an IUnknown interface pointer to the collection’s enumerator
interface and call QueryInterface on it to get the actual IEnumXXXX interface, in
this case, a pointer to IEnumVARIANT.

For the ASP objects and most other object models, you’ll almost
always use the IEnumVARIANT enumerator, since the collections
contain variant datatypes.

,ch03.18221 Page 85 Thursday, February 22, 2001 1:28 PM

86 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Within Delphi, the sequence of events is almost identical to that within C++,
except you can use the Delphi As keyword instead of QueryInterface:

 // get ServerVariables and enum for variables
 piReqDict := m_piRequest.Get_ServerVariables;
 piIUnknown := piReqDict.Get__NewEnum;
 piIEnum := piIUnknown As IEnumVariant;

 // while S_OK get name and value, print
 while piIEnum.Next(1,ovName,liReturn) = S_OK do
 begin;
 m_piResponse.Write(ovName);
 ...
 end;

In Java, the Next method actually returns all elements into an array, and you then
traverse the array:

 iRqstDict = iRequest.getServerVariables();

 // get enumerator
 IEnumVariant ienum;
 ienum = (IEnumVariant) iRqstDict.get_NewEnum();

 // set up enumeration
 int[] iItems = new int[1];
 iItems[0] = 0;

 int iCount = iRqstDict.getCount();
 Variant[] vt = new Variant[iCount];
 ienum.Next(iCount,vt,iItems);

ActiveState (the company that provides ActivePerl and the Perl Dev Kit, enabling
Perl for ASP and PerlScript) has implemented a Perl Enum package that can be
used to traverse the collection:

 # access ServerVariables collection as a list
 @lst = Win32::OLE::Enum->All($request->ServerVariables);

 # iterate through each list item, printing out
 # item name and its value
 foreach my $item(@lst) {
 $response->Write($request->ServerVariables($item)->item);
 ...
 }

Regardless of how each language implements enumeration, the key to each is that
you can access the collection as a group and process each collection element
rather than having to access each element individually.

In the examples, the IEnumVARIANT interface was used to access the elements in
the Request object’s ServerVariables collection. The IEnumVARIANT interface
returns objects as VARIANTs, the most commonly used datatype with COM/COM+
components. This and other COM datatypes are discussed in the next section.

,ch03.18221 Page 86 Thursday, February 22, 2001 1:28 PM

COM Datatypes 87

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

COM Datatypes
One of the problems with an interface-based system such as COM is managing
datatypes between languages. For instance, the C++ and Java integers are 32-bit
values, while the integer is 16 bits in VBScript and Visual Basic. Strings and string
allocation are handled differently in all of the languages, as is the implementation
of most datatypes.

The way that Microsoft dealt with language issues in the implementation of COM
was to define a set of datatypes that are COM-compatible. This means that any
language (or any development tool) that supports COM supports at least some of
the most basic of the COM-compatible datatypes.

How datatypes are handled internally within a component method isn’t important.
However, when passing data to and from the component through parameters,
your component should use only COM-compatible datatypes.

A further limitation when creating ASP components is that VBScript, the most com-
monly used ASP scripting language, supports only the COM VARIANT datatype.
Based on this, all methods that return values as output parameters must be defined
to be the VARIANT datatype.

Chapter 6, ASP Interaction: Scripting and ASP Components, provides
details of the interaction between your components and the script-
ing environments, including the datatypes of parameters.

The VARIANT datatype isn’t a scalar value. It’s a structure that contains informa-
tion about the variable as well as the variable value itself. The complete VARIANT
structure (as defined in C++) is:

typedef struct tagVARIANT {
 VARTYPE vt;
 unsigned short wReserved1;
 unsigned short wReserved2;
 unsigned short wReserved3;
 union {
 Byte bVal; // VT_UI1.
 Short iVal; // VT_I2.
 long lVal; // VT_I4.
 float fltVal; // VT_R4.
 double dblVal; // VT_R8.
 VARIANT_BOOL boolVal; // VT_BOOL.
 SCODE scode; // VT_ERROR.
 CY cyVal; // VT_CY.
 DATE date; // VT_DATE.
 BSTR bstrVal; // VT_BSTR.

,ch03.18221 Page 87 Thursday, February 22, 2001 1:28 PM

88 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 DECIMAL FAR* pdecVal; // VT_BYREF|VT_DECIMAL.
 IUnknown FAR* punkVal; // VT_UNKNOWN.
 IDispatch FAR* pdispVal; // VT_DISPATCH.
 SAFEARRAY FAR* parray; // VT_ARRAY|*.
 Byte FAR* pbVal; // VT_BYREF|VT_UI1.
 short FAR* piVal; // VT_BYREF|VT_I2.
 long FAR* plVal; // VT_BYREF|VT_I4.
 float FAR* pfltVal; // VT_BYREF|VT_R4.
 double FAR* pdblVal; // VT_BYREF|VT_R8.
 VARIANT_BOOL FAR* pboolVal; // VT_BYREF|VT_BOOL.
 SCODE FAR* pscode; // VT_BYREF|VT_ERROR.
 CY FAR* pcyVal; // VT_BYREF|VT_CY.
 DATE FAR* pdate; // VT_BYREF|VT_DATE.
 BSTR FAR* pbstrVal; // VT_BYREF|VT_BSTR.
 IUnknown FAR* FAR* ppunkVal; // VT_BYREF|VT_UNKNOWN.
 IDispatch FAR* FAR* ppdispVal; // VT_BYREF|VT_DISPATCH.
 SAFEARRAY FAR* FAR* pparray; // VT_ARRAY|*.
 VARIANT FAR* pvarVal; // VT_BYREF|VT_VARIANT.
 void FAR* byref; // Generic ByRef.
 char cVal; // VT_I1.
 unsigned short uiVal; // VT_UI2.
 unsigned long ulVal; // VT_UI4.
 int intVal; // VT_INT.
 unsigned int uintVal; // VT_UINT.
 char FAR * pcVal; // VT_BYREF|VT_I1.
 unsigned short FAR * puiVal; // VT_BYREF|VT_UI2.
 unsigned long FAR * pulVal; // VT_BYREF|VT_UI4.
 int FAR * pintVal; // VT_BYREF|VT_INT.
 unsigned int FAR * puintVal; // VT_BYREF|VT_UINT.
 };

Information about the VARIANT’s datatype can be found in the vt structure vari-
able. If the VARIANT contains a string, vt is set to a value of VT_BSTR. If the
VARIANT is an integer, vt is set to VT_I2. The setting in vt provides information
about where the VARIANT’s actual value is set. A string value is assigned to the
VARIANT structure’s bstrVal data member or to the pbstrVal if the element con-
tains a pointer to a string. Other datatypes, including objects, are assigned to the
VARIANT structure member of the appropriate type. As you can see, the VARIANT
structure is capable of dealing with all datatypes you could possibly need when
writing ASP components.

Some languages handle conversion of data to and from the VARIANT without your
having to do anything specific in your code. Visual Basic is a language that han-
dles all conversion automatically, for the most part. However, within Visual Basic,
you can use the VarType function to test for a specific datatype before processing
the VARIANT:

' test for variant array
 If VarType(vArray) = (vbVariant + vbArray) Then

In other languages, you’ll usually have to add code to handle most of your conver-
sions or assignments when working with the VARIANT datatype. In C++, you can

,ch03.18221 Page 88 Thursday, February 22, 2001 1:28 PM

COM Datatypes 89

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

assign a string to a VARIANT directly when that VARIANT is used to output a value
to the web page through the Response object:

vt = "this is the string";

However, for the most part, you’ll have to set the VARIANT’s data members
directly:

var.vt = VT_BSTR;
char * s1 = "weaver";
_bstr_t str = s1;
var.bstrVal=str;

If you use any of the other COM-compatible datatypes for your input or return
value parameters, COM handles all conversion between the value and a VARIANT
type when the component is called from VBScript. The only conversion COM
doesn’t handle is converting output parameters (parameters returned by refer-
ence), which is why you’ll always have to use VARIANT as the datatype for
method parameters passed by reference.

What’s the cost of the VARIANT datatype in size? It’s 16 bytes—the
first 8 bytes define the datatype; the second 8 bytes hold the value.

Two of these datatypes are of special note: BSTR and SAFEARRAY. The BSTR
datatype is a string type that was originally defined for use with Visual Basic. It not
only contains the string value itself, but it also has information about the string,
such as the string’s length. BSTR is defined as a 32-bit character pointer and is
defined in C++ as the following:

typedef OLECHAR FAR* BSTR;

In C++, you can work with BSTR datatypes directly, though you’ll need to provide
memory allocation for the BSTR value unless you use the C++ COM helper classes
found in the comdef.h library. In this library, the BSTR datatype is wrapped in a
class called _bstr_t, which handles all memory allocation and deallocation; all
you have to do is use the value:

_bstr_t bstrValue;
bstrValue = "this is a string"

In Visual Basic, you use the String datatype to work with BSTR, and VB handles all
memory allocation. In Delphi, you would use the WideString datatype, and in
Java, you’d use the Java String type (though String in Java is immutable—see
Chapter 20, ASP Components Created with Java, for more information on this). In
Perl, you can create a BSTR value directly using the Win32::OLE::Variant module,
or you can use Perl strings.

,ch03.18221 Page 89 Thursday, February 22, 2001 1:28 PM

90 Chapter 3: ASP Components and COM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The SAFEARRAY is a structure that encapsulates arrays, providing not only a refer-
ence to the array elements, but also a count of the number of elements. Chapter 6
has more information on SAFEARRAYs and how to pass parameters of this type to
and from components.

Other COM datatypes are more basic, such as the integer values (INT, FLOAT,
DECIMAL), single character values (CHAR), dates (DATE), and so on. Additionally,
pointers to the IUknown and IDispatch interfaces are common within COM
methods, as are pointers to other interfaces that aren’t defined until runtime (desig-
nated by a pointer to a void datatype, as in (void **)).

If you’re in doubt about whether a datatype is COM-compatible, check the COM
documentation that Microsoft provides at its developer web site (http://msdn.
microsoft.com).

,ch03.18221 Page 90 Thursday, February 22, 2001 1:28 PM

91
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4

4
ASP Components,

Threads, and Contexts

I first had a chance to really learn about threads and NT when I attended a Bos-
ton University WinDev conference outside of Boston years ago. The big story at
the conference was Microsoft’s brand new operating system, which many of us
had not seen yet. The operating system later became NT, and though I didn’t nec-
essarily realize it at the time, I was learning about NT from the masters.

I have never attended another conference that had so many well-known Win-
dows development people. I attended one session given by Charles Petzold, prob-
ably the undisputed father of Windows API programming, who invited the whole
group to join him for beers at the end of the day. I also attended sessions on OLE
given by Kraig Brockschmidt. All the sessions were terrific, but one of my favor-
ites was on threads and was given by none other than Jeffrey Richter, author of
the well-known book Advanced Windows NT, published by Microsoft Press. If you
are going to learn about something, there’s nothing like learning from the best.

When I mention threads in this chapter, I mean the threads that Richter defines as
“units of execution in a process.” I don’t mean threads of communication between
client browser and web server. Multithreaded applications are ones that take
advantage of a threaded environment to split off part of their functionality into
separate executable chunks. On a multiple-CPU system, these can run simulta-
neously. On a single-CPU system, the operating system kernel gives each thread a
period of time to run, then cycles through each thread in a round-robin fashion.

ASP components are first and foremost COM components. This means that what-
ever works and doesn’t work with COM components will and won’t work with
ASP components. One aspect of COM that can either speed up performance or
bring your application crashing to the ground is the use of threads. Because of
this, this chapter provides an overview of threads, threading models, and the
impact each of the models has on ASP components.

,ch04.18342 Page 91 Thursday, February 22, 2001 1:28 PM

92 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Beginning with Windows 2000, the model of threads and apartments imple-
mented and controlled by COM/COM+ has been joined by the context. Contexts
group components based on requirements and replaces the thread as the smallest
unit of execution for the component. This chapter introduces the concept of con-
texts when used with ASP components. First, though, a look at threads.

What Are Threads?
Threads are the smallest unit of execution, and a process (or an application) can
execute its functionality using one thread or many threads executing at the same
time.

Threads can enhance application performance by assigning I/O-intensive opera-
tions such as file or database access to one thread while other threads continue
with other processing. These types of operations are ideal for creation on separate
threads because most time in I/O operations is spent waiting and listening for a
response, whether from you or from the printer. While these operations are wait-
ing, other operations can continue with their work.

On 32-bit Windows platforms (9x, NT, 2000), if you run a process in the back-
ground, chances are good that the application has been programmed to create a
new thread for the background process. By assigning the process to a back-
ground thread, the user can continue to work with the application and do other
tasks while waiting for the background process to complete. For example, if you
are out browsing the Internet using a browser such as IE or Navigator and you
find a file to download, this downloading process is actually performed in the
background on a separate thread. Because the download occurs separately from
the main browser thread, you can continue browsing other pages while the down-
load occurs. As each new page is downloaded to the browser, synchronization
occurs between the thread handling the file download and the thread handling the
download of a page to the browser. The thread performing the file download
shares bandwidth and CPU with the browser thread, and both actions seem to
occur simultaneously. If this didn’t happen, you would not be able to see the new
page until the file finished downloading.

You can actually see something like this happening. To demonstrate, go to the
Microsoft web site and select a file for downloading. An excellent place to get
such files is the COM web site at http://www.microsoft.com/com/. Pick a larger file.
Once the file starts to download, browse through the rest of the site, but always
bring the download dialog up after clicking on a new URL. You can actually see
the download progress “hesitate” each time the browser page receives content and
vice versa. When the file is finished downloading, depending on the browser, a
message may open that states the download is finished, or the download dialog

,ch04.18342 Page 92 Thursday, February 22, 2001 1:28 PM

What Are Threads? 93

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

may be removed. This is a preemptive action on the part of the new thread to
inform you that the action is finished and to perform any cleanup necessary after
the action is complete.

On a single-processor system, multiple threads can only work one at a time. The
system provides a bit of time for each thread to work and then moves on to the
next. This “round-robin” approach of assigning time to each process running on a
separate thread in turn prevents one operation from holding up all others. It is this
type of process that allows you to continue typing into a Word document while
another document is printing or that allows a file to be downloaded from the
Internet while you continue to browse. This activity occurs even in a single-
processor system and with an operating system such as Windows 9x that allows
only single processors.

Using multiple threads in a single-processor system can improve performance with
I/O-bound operations, such as printing or opening a document. However, using
multiple threads with a single processor for an operation that is CPU-intensive can
actually degrade the performance of the operation. This type of thread, also called
a compute-bound thread, competes for scarce system resources and, unlike I/O
operations, does not normally spend periods of time awaiting responses. If the
system contains only one CPU, a context switch must occur to allow each
compute-bound thread its opportunity at the CPU. This effort adds a small mea-
sure of activity to the load on the CPU that would normally be offset by the advan-
tages of using multiple threads. If the compute-bound thread’s activities are short
and over quickly, the overhead for managing the different threads is not offset by
the overall result, and performance can actually degrade in comparison to serial
requests to the CPU.

In a multiprocessor system, a thread can be running in the background by actu-
ally using a different CPU than the thread currently handling interactive com-
mands. If a system has multiple processors and an application uses threads to take
advantage of them, the application can be very fast. That is, up until a point of
diminishing returns is reached, and the overhead of maintaining all the different
processors and threads actually diminishes performance. Other unexpected results
from using multiple threads occurs when threads access the same resource, dis-
cussed in the next section.

Of Deadlocks, Odd Results, and
Thread Synchronization

When threads access the same resource, their activity must be synchronized. When
synchronization is used correctly, the results are definitely an improvement over
serial access of the resource. However, the lack of synchronization can lead to

,ch04.18342 Page 93 Thursday, February 22, 2001 1:28 PM

94 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

problems. When two threads compete for the same resource at the same time, a
deadlock condition may result, and both threads can become suspended, each
waiting for access to the resource. Or worse, if multiple threads access the same
resource and modify the resource in some way, the results may be unwanted.

For instance, imagine that a file contains a string with a value of 10. Two threads
access the file at the same time and read the current value. The first thread incre-
ments the value by 5 and writes the results to the file. The second thread incre-
ments its value by 10 and then writes the results. But in the meantime, the first
thread has already written a value of 15. What is the final value in the file? The file
now contains a value of 20, not the value of 25 that you’d expect by incrementing
the original value by 5 and then by 10. Why is this? Because the first thread modi-
fied the value between the time the second thread accessed the original value of
10 and the time that the second thread wrote the new value of 20. In the process
of doing this, the second thread overwrote the value of 15 that the first thread
wrote. I know this may sound as clear as mud, but a demonstration of something
like this occurring within an ASP application is given later in this chapter.

To ensure reliable and consistent results and to prevent deadlock, certain synchro-
nization mechanisms can be used, some of them beyond the scope of a book on
writing ASP components. However, measures can be taken to prevent such prob-
lems. They include obtaining an exclusive lock on a file before allowing the con-
tents to be modified and releasing that lock as soon as possible, as well as using
caution with global data.

One other consideration with the use of multiple threads, or multiple processes for
that matter, is that communication between components that exist on different
threads or processes requires some special handling. This is discussed in the next
section, which covers marshaling.

Marshaling

A component and a client that reside in the same process and on the same thread
share the same address space, which means they share the same address space
stack. This means that when a client calls a component’s method and passes
parameters with the method call, the component can access these values directly
from the stack. When the method finishes, if it returns a value or if the parameters
are passed by reference, the client can also access the values directly from the
stack. This is an efficient and fast way to access parameter data. However, if a cli-
ent and a component execute on different threads or in different processes, the
two no longer share the same address space stack. Instead, the parameters passed
to the method and returned from the method must be marshaled. Marshaling is
the process whereby values passed as parameters are accessed on the client stack,
placed into a stream, and pushed onto the component stack.

,ch04.18342 Page 94 Thursday, February 22, 2001 1:28 PM

Threads and Apartments 95

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When a client calls a component method on a different thread or process, it is a
client proxy that pulls the values for the parameters from the client’s address space
stack and creates a stream of data that is sent to the component. On the compo-
nent side, a stub function then accesses this stream and pulls the separate parame-
ter values from the stream, pushing these values on the component’s stack. The
component method then accesses the parameters from the stack.

Marshaling can occur when a client and a component are on different threads,
known as cross-thread marshaling, or when a client and a component are in dif-
ferent processes, known as cross-process marshaling. Even if the component
resides on a separate machine, the same type of process occurs; it’s just that other
players, such as the DCOM runtime and the Service Control Manager (SCM),
become involved. In addition, information about the component’s methods must
be installed on the client, usually by installing the component’s type library.

The process of cross-process or cross-thread local communication can be
improved with the use of aggregation, which uses a free-threaded marshaler to
allow direct access to an object, rather than having to go through marshaling.
When using the free-threaded marshaler, a pointer to the actual component (rather
than a pointer to the proxy) is passed to the client, even if the component resides
on a different thread. Aggregation provides the best overall performance because
the component can be created on a separate thread but can still be accessed
directly. Of course, the cost of using the free-threaded marshaler is that the com-
ponent must be made thread-safe, something that does add a burden to the com-
ponent developer.

Threading models in the Windows environments are based on the concept of
apartments, conceptual units that determine which thread handles a component’s
tasks. Threads and apartments are discussed next.

Threads and Apartments
In the next section, we’ll take a look at the threading models, but first, let’s take a
brief look at how the concept of an apartment is implemented. If an in-process
component is defined as apartment-threaded (or as a single-threaded apartment),
it’s instantiated on the same single-threaded apartment (STA) thread as the client, if
the client is also STA. What apartment means in this context is that the compo-
nent’s methods are always implemented on the thread that created it—it must
“live” within the apartment where it was first instantiated. No other threads can call
into the apartment because of the threading model. The concept of apartment
basically specifies exactly which thread can call into the component. Consider the
apartment as being similar to the doorman at a five-star hotel: there is only one
door, and you have to meet the doorman’s criteria before you can enter. Taking

,ch04.18342 Page 95 Thursday, February 22, 2001 1:28 PM

96 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

this analogy a bit further, the STA model states that not only does a doorman exist
to prevent unauthorized access, but by using STA with your component, you can
live only within this same hotel. In other words, if other threads don’t have access
to your component, the reverse is true—your component’s methods can’t be pro-
cessed by any other thread.

If the component is defined as belonging to a multithreaded apartment, specifi-
cally a free-threaded component, it can live only within another type of apart-
ment—the multithreaded apartment. This type of apartment means that any thread
within this apartment can call into the component, rather than being limited to the
thread in which the component is first instantiated. This type of apartment is simi-
lar to a hotel with no doorman and no security: anyone can enter at any time.
Along with the freedom of access from other threads within the multithreaded
apartment (MTA), your component’s methods can also be implemented by any
one of the threads.

The point is that apartments aren’t real constructs. They are, instead, the rules (and
the implementation of these rules) that COM follows to determine what thread can
or cannot implement your component’s methods. More on the threading models in
the next section.

The Threading Models
There are five threading models, with the newest model having been released only
with Windows 2000:

The single-threaded model
Each instance of a component is created on a single main thread. This model
locks the component down to a specific thread, different from the threads that
process the ASP pages. Using this approach, your ASP application will quickly
run into performance bottlenecks as your component waits until the main
thread is free in order for its methods to be called. Add to this the proxy han-
dling that must occur between the ASP page and the component (the page
will be implemented on a different thread), and you can see why this
approach is not viable for ASP.

The apartment-threaded model
In this model, an instance of the component is created in the same thread of
the client that created the instance. Thread safety is guaranteed, since all calls
to the component are serialized through the client thread. ASP applications
accessed directly through IIS or processed through a COM+ application that’s
defined as a library application can successfully use the STA model, and the
thread that processes the ASP page is also the same thread that processes the
component.

,ch04.18342 Page 96 Thursday, February 22, 2001 1:28 PM

The Threading Models 97

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The free-threaded model
This is the least constrained of all the threading models and is not recom-
mended for ASP. When an instance of a component is created, COM creates
the instance on a different thread than the one that created the instance and
then marshals all calls to this thread. As ASP pages are implemented as STA,
using the free-threaded model means that proxy communication is always
used between the ASP page and the component—which is why this threading
model is not recommended.

The both-threaded model
The component is treated as both apartment-threaded and free-threaded, and,
as seen later, it is accessed directly by clients created using either threading
model. A component defined as both-threaded can be implemented and
accessed on either an STA or an MTA thread—it can be accessed anywhere.

The neutral-apartment model
This is similar to the both-threaded model in that the in-process component
can be accessed by a client based in any threading model without the neces-
sity of using proxies—clients can call the component from threads other than
the one the component is created in. An additional advantage of the neutral-
threading model is that if certain flags are set within the COM+ application
that manages it, the component is thread safe but can still be called by multi-
ple threads. MTA threads can be called by multiple threads, but there isn’t
anything guaranteeing thread safety, putting the burden of thread safety on the
component developer.

When a client application such as a browser window is created, the system cre-
ates one main thread, which becomes the apartment the process resides in. It may
create additional threads to handle other tasks within the process, or, if the appli-
cation is single-threaded, all tasks of the process are run within this main thread.

Threads work differently depending on whether the component is created as an
in-process component or an out-of-process component. An in-process component
is created as a DLL and marks the type of threading model it uses in its
InProcServer32 key in the registry. An out-of-process component calls one of
the COM initialization methods (CoInitialize, CoInitializeEx, or OleInitialize) in
order to initialize the COM library, and all calls to the component occur as cross-
process calls and are marshaled.

If the component is in-process, its interaction with the client depends on both the
client’s and the component’s threading models. If both the component and the cli-
ent are single-threaded, the component is created on the client’s main thread. If,
however, the client is multithreaded and the component is single-threaded, the
component is created on the client’s main thread, and all calls to the component
from the client occur through the client proxy.

,ch04.18342 Page 97 Thursday, February 22, 2001 1:28 PM

98 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If the client is free-threaded and the component is apartment-threaded, a single
apartment thread is created to house the component, and an interface pointer is
returned to the client. All calls to the component then occur through this pointer.
The same is true, but in an opposite manner, if the client is single-threaded and
the component is multithreaded, except that, in this case, a free-threaded apart-
ment thread is created and returned to the client. In all of these cases, calls to
methods are marshaled.

If the component and client use the same threading model, the client has direct
access to the component and can call the component’s methods directly. Based on
this, components created as both-threaded can be accessed directly by a client
regardless of which threading model the client implements. The reason is that
both-threaded components support both the single-threaded and the free-threaded
threading models. If the component is accessed from a single-threaded client, it is
created in the single-threaded client’s thread. If a multithreaded client accesses the
component, it is created in the multithreaded client’s main thread. However,
access to the component must occur within the apartment in which the compo-
nent is created, even though other threads within the same process may try to
access that component.

To speed access to both-threaded components, aggregation can be implemented
using a special function (CoCreateFreeThreadedMarshaler), which basically allows
all threads of one process to access the component directly. This and the results of
implementing in-process components using the different threading models are
demonstrated in the following sections.

The components demonstrated in the rest of this chapter are all in-
process components. Which threading model is used is particularly
significant with in-process components and less significant with out-
of-process components. Access to out-of-process components must
be marshaled regardless of what type of threading model the com-
ponent is based on. However, the performance of an in-process
component can differ dramatically based on the threading model of
the client and the threading model of the component.

With the neutral-threaded model, if the client is apartment-threaded (STA), the
component is created on the client’s STA. If the client is free-threaded, the compo-
nent is created within the client’s MTA. This behavior is similar to that of a both-
threaded model. However, if the client is both-threaded or neutral-threaded, the
component is created within the neutral apartment and any thread can then access
the component.

,ch04.18342 Page 98 Thursday, February 22, 2001 1:28 PM

The Threading Models 99

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Are Single-Threaded or Multithreaded
Components Better?

I have one word for you if you are considering creating a single-threaded compo-
nent: don’t. By their very nature, web applications are multiuser, and a single-
threaded ASP component basically restricts all access to the component to one
main thread, the one started when the first call to CoInitialize or CoInitializeEx is
made. If an application wants to access a COM object, a call must be made to the
CoInitialize or CoInitializeEx method before the application can make use of
COM features. With ASP, IIS creates a thread that calls CoInitialize and then directs
all object calls to this thread. When an application accesses an ASP component, IIS
must marshal all calls to the component through this single, main thread. So if one
page is accessing the component, another access to the component from within
the same page or from another page has to wait until the component is finished
processing the earlier page request. All requests to the component are queued, a
situation quickly leading to a bottleneck condition.

To demonstrate this, create a new Visual Basic ActiveX DLL component (using
techniques discussed in Chapter 7, Creating a Simple Visual Basic ASP Compo-
nent) and name it asp0401. Name the generated class threads.

If you don’t have Visual Basic, you can use the version of asp0401.dll
included in the examples. It’s been compiled using single-threading.

Add a component method named threadTest that has no parameters; its code is
shown in Example 4-1. The component method contains one loop that, in turn,
contains another loop. The outer loop cycles 32,000 times, and the inner loop
cycles 10,000 times, basically forcing the component to take a visually noticeable
amount of time to run.

Example 4-1. Visual Basic Code Testing Queuing of Requests with Single-Threaded
Component

' test method
Public Sub threadTest()
 Dim count As Integer, count2 As Integer
 count2 = 0

 ' outer loop
 For count = 1 To 32000
 count2 = count2 + 1
 Dim count3 As Integer

 ' inner loop

,ch04.18342 Page 99 Thursday, February 22, 2001 1:28 PM

100 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Compile the component as a single-threaded component by selecting the Single
Threaded option from the General tab of the Project Properties dialog.

The following ASP test page, asp0401.asp, has script that writes out the system
time before and after the component’s method is executed:

<%
Dim tst
Set tst = Server.CreateObject("asp0401.Threads")
Response.Write Time & "<P>"
tst.threadTest()
Response.Write Time
%>

Open two different browser windows and call the test ASP page from both. Open
the page first in one browser and then immediately switch over to the second
browser and open the test page in it without waiting for the first browser to finish.

Figure 4-1 shows the result of running the same ASP page in both browsers at the
same time, with both accessing the same single-threaded component. As you can
see from the figure, the process takes 9 seconds to run, and the process in the sec-
ond browser window does not begin until the first process is finished, no matter
how quickly you access the page. The beginning timer is the same because it is
called from an apartment-threaded process that handles the ASP page—and the
pages are processed on different threads.

No matter how many times the same test is run, the effect is the same: the second
ASP page cannot run until the first is finished. The reason for this is that the ASP
component created from the code in Example 4-1 is first instantiated by the ASP
application based on the call to CreateObject in the page for the first browser, and
the component’s only method is called. Since the component is single-threaded, all
other requests to this component are queued until the current request is finished
processing, which does not occur until after the method is finished. This means
that the request to create the new object using CreateObject in the same ASP page
accessed in the second browser is queued until the ASP page in the first browser
is finished being processed. Since the value in the page is written for the first time
after the component is created, this value is not accessed and added to the page
until the second browser’s CreateObject request is finally processed.

 For count3 = 1 To 1000
 '
 Next
 Next count
End Sub

Example 4-1. Visual Basic Code Testing Queuing of Requests with Single-Threaded Component
(continued)

,ch04.18342 Page 100 Thursday, February 22, 2001 1:28 PM

The Threading Models 101

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Next, recompile the component, except this time as an apartment-threaded in-pro-
cess component by using the Apartment Threaded option in the General tab of the
Project Properties dialog. This means that the component is created within each
thread that creates the object and that each of the two separate browser windows
creates a separate instance of the ASP component.

Again, if you don’t have VB, use the precompiled component named
asp1401b.dll, contained in the examples for this book.

Running the same test by accessing the ASP page that instantiates the component
in two separate browser windows at the same time has a different result when the
component is based on the apartment-threaded model. Figure 4-2 shows the two
browsers with the results of running this new version of the component. Notice
from the figure that the first time value in the second browser window appears
during the time that the first browser’s ASP page is being processed, rather than
after the component has finished in the first page. Running the test several times
has virtually the same results. The reason is that the component in the second
page is created before the first page is finished because the two requests are being
handled by two different components on two different threads.

As a comparison of Figure 4-1 and Figure 4-2 shows, the accumulated time for
both processes to run is about the same as each running separately, one after the
other. That’s because, in this case, the machine running the ASP component has
only a single processor. However, if the machine had multiple processors, each

Figure 4-1. Two separate browser windows accessing the same ASP page and the same single-
threaded ASP component

,ch04.18342 Page 101 Thursday, February 22, 2001 1:28 PM

102 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

thread would run on a different processor and the component runtime should be
correspondingly less.

Even with a single processor machine, if a component method invoked in one ASP
page is involved in an IO intensive operation such as accessing a database, com-
ponent methods invoked in other ASP pages, even those belonging to the same
component object, can be processed while waiting for the IO operation to com-
plete. Additionally, if the component method is itself accessing another compo-
nent method that resides on a remote machine, the process can continue without
waiting for the remote method to finish.

In summary, ASP components should not be created as single-threaded
components.

The Single-Threaded and Multithreaded
Apartment Schemes

A form of thread classification builds on the concept of apartment threading, and
classifies threading into single-threaded apartment (STA) and multithreaded apart-
ment (MTA) schemes. STA is equivalent to the original classification of single-
threaded and apartment-threaded models, and MTA contains the free-threaded
model. When a combination of STA and MTA models is used, the threading
scheme encompasses the threading model known as both-threading or mixed-
model threading.

In Windows 2000, a new threading model that is apartment (and thread) neutral is
the neutral-apartment threading model (hence the name).

Figure 4-2. Two separate browser windows accessing the same ASP page and the same
apartment-threaded ASP component

,ch04.18342 Page 102 Thursday, February 22, 2001 1:28 PM

The Threading Models 103

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The single-threaded model just demonstrated is considered an STA main thread
only, as all instances of the component are created on the same, main thread. As
stated in the last section, this type of threading model is not appropriate for use
with ASP components. The other threading models are discussed in the next four
sections.

The Apartment-Threading Model

The apartment-threading model is the only multiple-threading model that Visual
Basic 6.0 supports.

Apartment-threading within an ASP environment is fairly straightforward. When IIS
processes an ASP page, an available thread is assigned to that specific page to pro-
cess any ASP script. When an instance of the apartment-threaded component is
created, it’s created on this same thread because the thread assigned to the page is
also apartment-threaded.

Because the thread processing the ASP page and the component are the same
type, all calls to the component on this thread are not marshaled. (Again, marshal-
ing is the process of pulling the parameters for the called function from the cli-
ent’s stack and sending this data to the server, which unmarshals the data and
adds these parameters to the component’s own stack.)

The STA model is also a relatively safe model to use, since any global data for the
component is created in its own global data area within the thread containing it
and is protected from corruption by processes running on any other thread. The
only potential problem with global data for a component built using the apart-
ment-threading model occurs when a call is made to the component from within
the same session, and the component is added to the Session object’s collections.
Since apartment-threaded components can be accessed only by the thread they are
created on, you as the component developer don’t have to add code to protect the
component from being accessed by more than one thread at a time.

In addition, if the component is added to one of the Session object’s collections,
the session is locked down to the particular thread where the component was
originally created. So, when the client accesses another ASP page, it’ll still get the
same thread—even if that thread is currently processing another request, and even
if other threads are available to handle the page request. Why? Because the Ses-
sion contents contain an object that was apartment-threaded and was created on
that specific thread—apartment-threaded component methods can be accessed
only by the same thread that originally created it.

Additionally, you can’t attach an apartment-threaded component to an Application
object’s collections. If you try with IIS 5.0, you’ll receive an error.

,ch04.18342 Page 103 Thursday, February 22, 2001 1:28 PM

104 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Free-Threaded Model

When IIS receives a new ASP request, it creates a new thread to handle the
request. If the requested page instantiates an ASP component built based on the
free-threaded model, the component is created in the IIS multithreaded apart-
ment. Each application can have, at most, one multithreaded apartment, and free-
threaded components must be created within a multithreaded apartment. This
means that the component will reside on a different thread than the client thread
that created it. Because of this, all calls to the component’s methods must be mar-
shaled, reducing the overall performance of the object.

If a free-threaded component is created as an application-level element, all
accesses to this object from any ASP page are locked down to this single thread.
This also means that all ASP application pages accessing the same component
basically share the same global data. A free-threaded component must ensure that
its data is safe, since threads accessing any one of the component’s methods can
change global data, even while one thread is processing one of the method calls.
The component can be accessed by multiple threads, and there are no controls
about which thread accesses the component or when. Based on this, the compo-
nent developer must ensure that the component is thread-safe.

To demonstrate the problems that can occur with a free-threaded component that
has global data, create a Visual C++ COM Wizard project named asp0402. Once
the project files are generated, insert a new ATL object using the Simple Object
option in the ATL Object Wizard dialog (it appears when you select the New ATL
Object option from the Insert menu) and name the object tstThread in the Short
Name text box. Change the threading model to free-threaded in the Attributes tab,
and leave all other options at their default values.

If you don’t have Visual C++, you can use asp0402.dll, which is
included in the examples for the book, and skip over the next few
pages and the code block shown in Example 4-2 if you wish. For
more information on creating a Visual C++ component, see
Chapter 14, Creating C++ ASP Components.

This class has three methods: two of the methods modify a value created as a
member of the C++ class, basically creating a data value global to all the compo-
nents in the class; the third method returns this value to the client. Add the meth-
ods from Page View by right clicking on the ItstThread interface and selecting
the Add Method option from the context menu. The first two methods, named set-
Value and tstAfterLoop, don’t have parameters.

,ch04.18342 Page 104 Thursday, February 22, 2001 1:28 PM

The Threading Models 105

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The third method created for the component, getValue, takes one parameter:

[out, retval] int * iTstValue

Next, add a data member to the class by changing to File View and opening the
header file generated for the component, tstThread.h, and adding the following to
the public members for the new class:

int iValue;

Finally, add the code for the three component methods shown in Example 4-2 to
the generated class prototypes.

To test the component, create two ASP pages. The first ASP page, asp0402.asp,
calls the tstAfterLoop method to set the public data variable and then calls the
getValue method to output its value:

<%
' first page
Dim tst
Set tst = Server.CreateObject(“asp0402.tstThread”)

Example 4-2. Visual C++ Component Methods, Used for Testing Threading and Global Data

STDMETHODIMP CtstThread::setValue()
{

iValue = 4334;
return S_OK;

}

STDMETHODIMP CtstThread::tstAfterLoop()
{
 // set tstValue, but after long loop
 int count2;
 iValue = 0;
 count2 = 0;
 while (count2 < 32000) {
 count2++;
 int tst = 0;
 while (tst < 10000)
 tst++;

}

 // set value - should be 32,000
 iValue=iValue + count2;
 return S_OK;
}

STDMETHODIMP CtstThread::getValue(int *iTstValue)
{
 // return tstValue
 *iTstValue = iValue;
 return S_OK;
}

,ch04.18342 Page 105 Thursday, February 22, 2001 1:28 PM

106 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

// call looped method
tst.tstAfterLoop

Dim iValue
iValue = tst.getValue
Response.Write CStr(iValue)
%>

The second ASP page, asp0403.asp, calls the setValue method to set the public
data member and then calls getValue to print out the results:

<%
' second page
Dim tst
Set tst = Server.CreateObject(“asp0402.tstThread”)
tst.setValue

Dim iValue
iValue = tst.getValue
Response.Write CStr(iValue)
%>

Running both pages at the same time using two separate browsers results in one
browser showing the value of 32000 in its page and the second browser showing
the value of 4334 in its page. Though the two components ran virtually at the same
time, the results are as expected, since each component was created on a new
thread, the free-threaded component was created in a separate multithreaded apart-
ment, and the global data area for both component instances was kept separate.

Next, test the components by creating an instance of the component as an applica-
tion-level element in the first ASP test page, as found in asp0404.asp. Call the
method’s tstAfterLoop and getValue methods and print out the value returned as
well as the time before and after the component is accessed:

<%
' first page
Response.Write CStr(Time) + "<p>"

Dim tst
Set tst = Server.CreateObject("asp0402.tstThread")

// add to Application
Set Application("tst") = tst

// call looped method
tst.tstAfterLoop

Dim iValue
iValue = tst.getValue
Response.Write CStr(iValue)
Response.Write "<p>" + CStr(Time)
%>

,ch04.18342 Page 106 Thursday, February 22, 2001 1:28 PM

The Threading Models 107

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The second ASP test page, asp0405.asp, accesses the component from the Appli-
cation object and calls setValue to set the global data and then getValue to get the
value to print. It, too, prints out the start and end times:

<%
' second page
Response.Write CStr(Time) + "<p>"

Dim tst
Set tst = Application("tst")
tst.setValue

Dim iValue
iValue = tst.getValue

Response.Write CStr(iValue)
Response.Write "<p>" + CStr(Time)
%>

By showing beginning and ending times, the time taken for each script block to
run is also displayed on the web page.

Open two browsers, each with an independent session, by accessing the browser
icon on the desktop for each or by accessing the browser from the Start menu
twice. (Using File ➝ New ➝ Window usually opens the browser in the same ses-
sion, depending on which browser you use.)

The first browser should run the first scripting block, which sets the application-
level object and runs the longer method, tstAfterLoop. The second browser runs
the page containing the block that accesses the application-level object and then
runs the short method, the one that just assigns the global data member a con-
stant value.

Unlike the results when the component was instantiated by two different brows-
ers, the results of this test are definitely unexpected. Instead of a value of 32000
showing in the first browser page, it shows a value of 36334, as shown in
Figure 4-3.

The first page shows an “incorrect” value because the components run on totally
separate threads, which means that the calls to the component’s methods are not
serialized and happen asynchronously. However, both browsers are accessing the
same instance of the component, which is created as an application-level compo-
nent. The method calls from both ASP pages are made directly to this application-
level component, and methods in both pages share the same global data area. The
result is that the component data member iValue is set to 0 in the tstAfterLoop
method called in the first page, but while the loop is being performed in this
method, a second ASP page calls the setValue method on this same component.

,ch04.18342 Page 107 Thursday, February 22, 2001 1:28 PM

108 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This second method sets iValue to 4334. As you can see from the timestamps in
Figure 4-3, the second ASP page method has a chance to finish before the first ASP
page finishes. When the long loop in the first method finally does finish, it sets
tstValue to the sum of tstValue and the counter. Instead of tstValue having a
beginning value of zero, which it received when the method first started, it has
been changed to 4334 based on the results of the method call from the second
ASP page.

For a further test, open a browser page and then open a second one using File ➝

New ➝ Window, which effectively places both pages in the same session. This
means that both browsers are accessing the same component from the same cli-
ent thread. Running the first ASP page in the first browser window and the sec-
ond ASP page in the second browser window does not have any unexpected
consequences. The reason is that both browsers run in the same session and effec-
tively on the same thread (unless there is a lot of contention for threads, in which
case the pages may use different threads), and method calls to the same compo-
nent for both browsers are serialized. The method calls to the component for the
first ASP page have a chance to finish before the method calls from the second
ASP page are run.

Figure 4-3. Two browser windows accessing methods of the same free-threaded ASP
component, at the same time, impacting on the same global data member

,ch04.18342 Page 108 Thursday, February 22, 2001 1:28 PM

The Threading Models 109

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Due to problems such as the global data issue just demonstrated,
and due to performance and resource considerations, you should
avoid adding ASP components to either the Session or the Applica-
tion object whenever possible. Limit these objects’ collections to sim-
ple scalar values—or don’t use them at all. If you don’t use the
Session object, you can disable its creation in IIS and actually
improve performance when processing the ASP pages.

Any Apartment (Both-Threaded) Model

Another recommended threading model to use with ASP components is the both-
threading model. Components created with this threading model actually adapt to
the type of thread creating the component. If the client is running as a single-
threaded apartment, the component is created in that same apartment, and all
accesses to the component from the client are direct. If the client is a free-threaded
component, the component is created in the client’s multithreaded apartment and
can support multiple thread requests from the same client process—all accesses to
the component from the same client thread occur directly. The one disadvantage
to the both-threaded model, though, is that requests to the component coming
from the same client process but from other threads have to be marshaled, which
can impact access performance.

However, since ASP components are primarily accessed by apartment-threaded cli-
ents (through the ASP pages), you shouldn’t have to be concerned about a client
with multiple threads trying to access the component.

If there is a possibility of a multithreaded client accessing the component, you can
solve the marshaling problem through the use of aggregation, handled through the
special function CoCreateFreeThreadedMarshaler. Fortunately, when creating a
component in C++ using the ATL wizard, the use of aggregation and this function
can be added to the component just by checking two boxes.

Note that using the free-threaded marshaling object with a both-
threaded component means that the component can respond to calls
from more than one thread. Based on this, the component must be
thread-safe, with protection provided for the global data.

If you wish to create a component that is poolable, then your component should
be marked as both-threaded, and support for aggregation must be included.

,ch04.18342 Page 109 Thursday, February 22, 2001 1:28 PM

110 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

However, you can’t use the free-threaded marshaler with a component that is
pooled, so you can’t use this option with these types of components.

In addition, as with the free-threaded component, you have to protect global data
if you add the both-threaded component to the Application object.

The Neutral-Apartment-Threading Model

The neutral-apartment-threading model has many of the same characteristics of the
both-threaded model in that no marshaling is required for accessing the compo-
nent’s methods, regardless of the threading model of the client. However, instead
of creating the component within the client’s thread, the component may be cre-
ated within the process’s single neutral apartment, depending on the type of
threading model used with the client.

If the client is apartment-threaded, as it would be if the component were accessed
directly from an ASP page, the neutral-apartment-threaded component is also cre-
ated on that client’s STA thread. If the client were free-threaded (unlikely within an
ASP scenario), the component would be created within the process’s MTA thread.
However, if the component is accessed from a both-threaded client (as it would be
if the component is created within a COM+ application and the application is
defined as a Server application), then the component is created within the neutral
apartment. The same holds true if the client is also neutral-threaded.

The reason that the component is created within this different apartment is that a
neutral-threaded component can avoid the issues of global data corruption and
unsynchronized thread access that plagues both-threaded components by having
its access synchronized through the use of COM+ services when the component is
added to a COM+ application.

I didn’t test the neutral-threaded model, since Visual C++ 6.0 doesn’t
support this threading option. Technically, it is possible to change
the model in the Registry, but there could be issues, especially when
using ATL, that make this a particularly risky operation to attempt.

What Are COM+ Contexts?
In Windows NT, contexts were implemented by MTS; the concept of context is not
an integral part of COM. However, in Windows 2000, contexts have now been
added to the COM/COM+ architecture.

,ch04.18342 Page 110 Thursday, February 22, 2001 1:28 PM

What Are COM+ Contexts? 111

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As stated earlier, a context is a grouping of objects based on the same require-
ments. For instance, if several components support the same transaction through
the use of COM+ Services and all other context-specific properties are shareable,
the components should share the same context—as long as the threading models
(and hence apartments) between the components are compatible.

Each context has a unique object—the object context—that defines it. It is the
object context that allows component code to interact with the context through the
use of context services. In Windows NT, the object context was created by MTS as
a wrapper for a component, and you could access the object context with a
method call such as the following:

Set obj = GetObjectContext

You can still use GetObjectContext to access the object context, but the context
the object represents is now a part of the COM architecture. In fact, it’s now the
smallest unit of execution containment, as you’ll see in the next section.

For more information on the COM+ Services, see Chapter 5, COM+
Services and ASP Components and Applications.

Relationships Between Contexts and Apartments

Apartments are still supported in the new COM+ environment, except that instead
of being the smallest unit of execution containment as they were in Windows NT
(or Windows 9x), they may now contain one or more contexts. The context is
now the smallest unit of execution.

The new hierarchy of containment with Windows 2000 and COM+ means a pro-
cess can contain more than one apartment, and an apartment can contain more
than one context, as shown in Figure 4-4.

If a component isn’t configured (through COM+ Services, discussed in more detail
in the next chapter), it is always implemented within the same context as the cli-
ent that created it. So an ASP component would be implemented within the con-
text created for the ASP page that accesses it.

Each apartment has at least one context, the default context that’s created when
the apartment is created.

If the component is configured, it is created within the context of the client only if
the two—the client and the component—share enough configuration parameters
to ensure that they can share a context. When a component isn’t configured

,ch04.18342 Page 111 Thursday, February 22, 2001 1:28 PM

112 Chapter 4: ASP Components, Threads, and Contexts

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

(through a COM+ application), it’s automatically created within the thread’s default
context.

If the client and the component don’t share the same context, then communica-
tion between the two must occur through interception, discussed next.

Interception (Cross-Apartment, Cross-Context Calls)

With COM, communication between a client and a component that live in differ-
ent apartments must occur through proxies, and the component methods must be
marshaled.

In Windows 2000, and with COM+, communication between a client and a com-
ponent that live in different contexts must occur through proxies. If the client and
the component live in different apartments, they’ll also live in different contexts,
and, again, the client/component communication must be marshaled.

However, there is a difference between proxies used to handle cross-thread (apart-
ment) and cross-context method calls. Cross-thread proxies must use thread
switching to handle communication between the client and the component. In
Windows 2000, cross-context method calls are handled by what is known as light-
weight proxies—proxies that handle any differences between the two contexts.
This process of intercepting method calls and channeling them to a proxy is
known as interception. Though performance isn’t as good as direct raw communi-
cation between the component and the client, cross-context communication
through proxies isn’t as expensive in terms of performance as cross-thread com-
munication.

In the case of ASP components, if the context of the object processing the ASP
page satisfies all the runtime requirements of the component that it accesses, the
component should be created within the same context as the client object. So how
do you know if the ASP page context and the component context are the same?

Figure 4-4. Hierarchical structure of process, apartment, and contexts

Process

STA Apartment

Context

MTA Apartment

Context

Context

,ch04.18342 Page 112 Thursday, February 22, 2001 1:28 PM

What Are COM+ Contexts? 113

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Well, this depends on how you set up the ASP application and how you config-
ure the ASP component.

At the time this was written, there was no documentation about how
ASP, ASP components, IIS, and COM+ work as an integrated whole.
In other words, I’m making a best-guess interpretation of what I’m
finding in the environment in this section.

For instance, if you set up the ASP application to run within its own process, an
interesting thing happens with Component Services: a default COM+ application is
created for the newly isolated process. Contained within the process is a version of
the IISWAM component, the object used to process the ASP page script. You’ll
also find that this component is defined with a free-threading object model. If your
component isn’t configured in its own COM+ application or if it is and the applica-
tion is created as a library application (implemented within the client’s process)
and the component can be created within the isolated process’s MTA thread, then
the component should be instantiated within the client’s context. Otherwise, the
component will be created either in a different apartment (if the threading models
are incompatible) or in a different context (if the client context doesn’t satisfy the
component’s runtime requirements).

One thing you can do to force a component to be created within a client’s con-
text is to configure the component with this option. Do this by checking the “Must
be activated in caller’s context” option, found on the Activation tab of the COM+
application component’s Properties dialog. However, if you do this and access the
component from an ASP page and get the following error:

The specified activation could not occur in the client context as specified

then you know that the component can’t be created within the ASP page’s
IISWAM component’s context, and all communication between the client (the ASP
page) and the component occurs through interception:

Regardless of whether your ASP client and the component communicate directly
or through the cross-context proxy, your page performance shouldn’t be adversely
impacted—at least, not as much as cross-thread communication would impact per-
formance.

,ch04.18342 Page 113 Thursday, February 22, 2001 1:28 PM

114
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5

5
COM+ Services and

ASP Components and
Applications

You can create your ASP components and use them successfully without directly
accessing any of the COM+ services. However, these same services can make the
difference between an ASP application that performs OK and one that scales well
and can keep up with the demands on it—regardless of what those demands are.

The COM+ services you’ll most likely use with your ASP components are transac-
tion management, just-in-time activation, and pooling. In addition, new interfaces
have been created to handle much of the functionality of these new services.
However, before we take a look at these, we’ll first look at using components
within an application.

Developing Component-Based Systems
A component-based system is one that separates individual processes into reus-
able chunks of code and data and then uses one or more of these components to
build a complete application. Among the different types of applications that can be
built are client/server, distributed, and n-tier systems. A client/server system is one
in which processing is split between the client and the server, with the client han-
dling all user interaction, display, and client-side validation, and the server han-
dling most database access, server-side validation, and business rule enforcement.
A distributed system is one in which the application’s components can exist on dif-
ferent machines and may exist in different geographical locations. In addition,
more than one instance of a component can be created in order to handle multi-
ple requests and provide the same service to multiple clients. An n-tier system
combines elements of the client/server system and the distributed system; there is
a hierarchy of components, as with a client/server system, but the components
themselves can be duplicated to distribute processing load and distributed across
many machines and locations, as with a distributed system. The traditional n-tier

,ch05.18477 Page 114 Thursday, February 22, 2001 1:29 PM

Developing Component-Based Systems 115

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

system can consist of the client, which handles all user interaction, client-side vali-
dation, and display; the business layer, which enforces all business rules and per-
forms overall transaction management and validation; and the data layer, which
handles all the direct data access.

The use of components facilitates distributed systems, primarily because compo-
nents are small, compact, and portable (as long as the host machine provides the
framework the component needs). If an access load on one server begins to
impact the machine, and the machine’s overall performance starts to degrade, the
component or group of components is easily moved to another server with no
impact to the code accessing the component. Additionally, because the compo-
nents are modularized, one or more can be moved to one new server and others
moved to other servers until the load processing of all servers is balanced. Appli-
cations created without this modularization cannot be split up and cannot be dis-
tributed across many machines.

Another advantage of components is that more generic functions can be split into
separate components and used throughout the system. Additionally, the use of
components facilitates the design and construction of an n-tier system. An exam-
ple of an n-tier system is one where an interface component accesses and vali-
dates address information. The validation is generic and confirms that all the
necessary fields, such as city and ZIP Code, are filled in. The business layer can
then process the address information for the application based on the type of busi-
ness. It can do things such as perform lookups based on the address information,
such as finding shipping zones for a component used in a shipping application or
delivery zones for a online ordering system. The component can then access the
data layer to store the address information, retrieve additional information, or even
trigger other online business components to perform additional work on the infor-
mation. The data layer itself can be split over separate machines, separate data-
bases, or even different types of data stores, with some information going into
long-term storage and some short-term storage to be used for a specific task and
then discarded.

However the components perform their task, the concept is to separate more
generic functions, such as accessing and validating address information necessary
for many applications, from the more business-specific functions, such as finding
shipping zones for a shipping application. In addition, an n-tier application also
looks to separate the user interface components, which should contain only
enough processing to successfully acquire the information needed, from the busi-
ness layer, which understands how the information relates to other information in
order to perform a business function. The business layer is separate from the data
layer, which concerns itself only with having enough information to successfully
make a data transaction and does not care how the information is acquired or the
purpose of the information being acquired.

,ch05.18477 Page 115 Thursday, February 22, 2001 1:29 PM

116 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ASP components participate in this type of system by providing functionality at
either the business level or the data level, with the user interface handled in the
browser that is accessing the ASP application.

In Windows 2000, component usage is further facilitated through the use of COM+
services to handle such things as component pooling and transactions. To provide
this functionality, new interfaces have been added to the traditional COM inter-
faces (see Chapter 3, ASP Components and COM), discussed next.

The COM+ Interfaces
Most of the important interfaces necessary for COM, such as IUnknown and
IDispatch, still perform the same purpose within the new COM+ environment.
The major difference between COM and COM+ is that the functionality provided
by MTS in Windows NT and Windows 9x is now integrated into the COM architec-
ture with COM+. This integration not only adds new functionality through COM+
services, it also improves the performance of components.

See Chapter 3 for more on the COM interfaces such as IUnknown
and IDispatch.

To support the new COM+ services, several new interfaces have been added to
those already provided by the original MTS implementation. The key ones that
impact most on your development of ASP components are discussed in the next
several sections.

IObjectContext

Chapter 4, ASP Components, Threads, and Contexts, discusses the concept of con-
texts as a grouping of objects based on the same requirements. Among some of
the shared requirements can be whether a component is pooled or whether a
component participates in a transaction with other components.

In Windows 2000, a component’s context is a set of runtime properties that can be
accessed or changed through the component’s associated ObjectContext—an
object that manages the context information for the component. The interface you
use to access the ObjectContext properties is IObjectContext, and you can
access this interface through the COM+ Services type library.

How you access ObjectContext differs a little based on the type of programming
language you use. For instance, in Visual Basic, you first import a reference to the

,ch05.18477 Page 116 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 117

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

COM+ Services into the project, and then you can create a reference to ObjectCon-
text and call GetObjectContext to instantiate it:

Dim objContext As ObjectContext
Set objContext = GetObjectContext

In Visual C++ under Windows NT, you would also use GetObjectContext to access
ObjectContext:

CComPtr<IObjectContext> m_spObjectContext;
hr = GetObjectContext(&m_spObjectContext);

However, in Visual C++ under Windows 2000, you use CoGetObjectContext
instead, passing in the GUID for the interface:

hr = CoGetObjectContext(IID_IObjectContextInfo,
 (void **)&m_spObjectContext);

The same behavior results regardless of whether you use GetObjectContext or
CoGetObjectContext, because GetObjectContext in COM+ wraps a call to CoGet-
ObjectContext. In Visual C++, you would also have to add a reference to the
COM+ Services header file (comsvcs.h) as well as add a reference to the associ-
ated object file (comsvcs.lib) to the component’s library path.

Once you have a reference to IObjectContext, you can call its methods, listed in
Table 5-1.

IObjectContext also has properties, such as the following:

ContextInfo
Returns a reference to the context information object associated with the com-
ponent

Table 5-1. IObjectContext Methods

Method Description

CreateInstance Instantiates an object

DisableCommit Indicates that the component is not ready to commit a transaction

EnableCommit Indicates that the component is in process still, but transactions can
be committed

IsCallerInRole Indicates whether the caller is within a specified role (role-based
security)

IsInTransaction Indicates whether the component is within a transaction

IsSecurityEnabled Indicates whether security is enabled

SetAbort Indicates that the component is finished with its work and the trans-
action is aborted

SetComplete Indicates that the component is finished with its work and the trans-
action is ready to be committed

,ch05.18477 Page 117 Thursday, February 22, 2001 1:29 PM

118 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Count
Indicates the number of named properties for the object

Item
Contains the named properties

Security
Returns a reference to the Security object associated with the ObjectContext

We’ll look at the context information interface, IObjectContextInfo, in more
detail in the next section. The Item collection is used to access the ASP built-in
objects. You can access it directly within Visual Basic:

Dim oc As ObjectContext
Dim app As Application
Set oc = GetObjectConext
Set app = oc.Item("Application")

You can also access the ASP objects via ObjectContext:

Set app = oc("Application")

In other programming languages, you’ll have to access the ASP objects using other
techniques. For instance, in C++, you’ll need to query for an instance of the
IGetContextProperties interface in order to access a specific ASP object:

 CComPtr<IGetContextProperties> pProps; //Context Properties

 // get ObjectContext
 hr = CoGetObjectContext(IID_IObjectContext,
 (void **)&m_spObjectContext);
 if (FAILED(hr)) return hr;

 // get context properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr)) return hr;

 // get Response property
 bstrProp = "Response";
 hr = pProps->GetProperty(bstrProp, &vt) ;
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

The documentation for IGetContextProperties states that it is valid only within
the Windows NT environment, but it can still be used to access the ASP built-in
objects within Windows 2000.

,ch05.18477 Page 118 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 119

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7, Creating a Simple Visual Basic ASP Component, demon-
strates how to access ObjectContext within Visual Basic, including
using this object to access the ASP built-in objects. Chapter 14, Cre-
ating C++ ASP Components demonstrates the same for Visual C++,
and Chapters 20, 21, and 22 describe how to access ObjectContext
within Java, Delphi, and Perl components. Each uses different tech-
niques, but the result is the same—a reference to the component’s
associated ObjectContext and the ability to use this object to commit
or abort transactions, as well as to access the ASP objects.

IObjectContextInfo

The IObjectContextInfo interface is used to get transaction, activity, and con-
text information about the current component. With this interface you can access a
pointer to the ITransaction interface. Table 5-2 shows the IObjectContext-
Info methods.

If you’re using synchronization with your COM+ component (described later),
using GetActivityId returns the identifier of the current activity; otherwise, you’ll
receive a null value.

The GetTransaction method actually returns a reference to the ITransaction
interface. You can use this interface to commit and abort the transaction, though
you should perform these functions through ObjectContext or through the
IContextState interface, discussed next.

IContextState

IContextState gives you finer control of transactions and activation than
IObjectContext. For instance, with IObjectContext, you mark that a compo-
nent is finished with its processing and wants to commit a transaction using Set-
Complete; you use SetAbort to mark that a component is finished processing and
wants to abort the current transaction.

Table 5-2. IObjectContextInfo Methods

Method Description

GetActivityId Returns the current activity identifier

GetContextId Returns the current context identifier

GetTransaction Returns pointer to the ITransaction interface

GetTransactionId Returns the current transaction identifier

IsInTransaction Indicates whether the component is running within a transaction

,ch05.18477 Page 119 Thursday, February 22, 2001 1:29 PM

120 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There are actually two conditional bits that are set when you use SetComplete or
SetAbort. The first is the done bit, and setting it indicates to COM+ that the compo-
nent is finished processing. The second is the consistency bit. Setting this bit con-
trols whether the component’s transaction can be committed or must be aborted.

The IObjectContext SetAbort and SetComplete methods set both bits at a time—
both set the done bit to True, indicating that the component is finished with its
processing. However, with IContextState, you can mark that a component is
finished processing and mark its transaction state separately.

IContextState has four methods, shown in Table 5-3.

You can get and set the done bit using the SetDeactivateOnReturn and GetDeacti-
vateOnReturn methods. If the value of the done bit is True, the component deacti-
vates when the component’s method finishes; otherwise, the component is not
deactivated.

To try this out, you’ll create a Visual Basic component that implements IObject-
Control in order to capture the JIT events (IObjectControl is described in detail
in the next section). The component will have two methods, both of which call
IContextState’s SetDeactivateOnReturn method. The first function will call the
method, passing in a Boolean value of False; the second one will pass in a Bool-
ean value of True.

If you don’t have Visual Basic, you can access the component
described in this section from the examples included with the book.
All you need to do is register the component using regsvr32.exe
before accessing the ASP test page.

Create a Visual Basic project, name it asp0501, and name the generated compo-
nent class done. Attach the COM+ Services and Microsoft Active Server Pages type
libraries to the project. Once the type libraries are added as resources, implement
the IObjectControl JIT methods Activate, Deactivate, and CanBePooled, as
shown in Example 5-1

Table 5-3. IContextState Methods

Method Description

GetDeactivateOnReturn Gets the status of the done bit

GetMyTransactionVote Gets the status of the consistency bit

SetDeactivateOnReturn Signals that the component is finished

SetMyTransactionVote Indicates whether the component’s transaction can be
committed or aborted

,ch05.18477 Page 120 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 121

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the Activate method, a reference to the ASP built-in Response object is created
and used to display a message that the component is activated. In the Deactivate
method, a message is written to the web page that the component is deactivated.
By examining these messages, we can determine when the component is acti-
vated and deactivated.

Next, add the two component functions that are called by the ASP page. The first,
named function1, accesses IContextState and calls its SetDeactivateOnReturn
method, passing in a value of False. The second function, function2, also calls
SetDeactivateOnReturn, but this time it passes in a value of True. Example 5-2
shows the code for both functions, which you should add to your component.

Example 5-1. Implementing the IObjectControl JIT Functions

Implements ObjectControl

Dim objResponse As Response

Private Sub ObjectControl_Activate()
 Set objResponse = GetObjectContext().Item("Response")
 objResponse.Write "<h3>Activated</h3>"
End Sub

Private Sub ObjectControl_Deactivate()
 objResponse.Write "<h3>Deactivated</h3>"
 Set objResponse = Nothing
End Sub

Private Function ObjectControl_CanBePooled() As Boolean
 ObjectControl_CanBePooled = False
End Function

Example 5-2. Subroutines That Call SetDeactivateOnReturn

Sub function1()

Dim iCntxt As IContextState
Set iCntxt = GetObjectContext

iCntxt.SetDeactivateOnReturn False
End Sub

Sub function2()

Dim iCntxt As IContextState
Set iCntxt = GetObjectContext

iCntxt.SetDeactivateOnReturn True
End Sub

,ch05.18477 Page 121 Thursday, February 22, 2001 1:29 PM

122 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the component project is compiled and added to a COM+ application, test the
new component using ASP script similar to the following (found in asp0501.asp):

<%
Dim obj
Set obj = Server.CreateObject("asp0501.done")

Response.Write "Calling function 2" & "
"

obj.function2

Response.Write "Calling function 1" & "
"

obj.function1

Response.Write "Calling function 2" & "
"

obj.function2
%>

The first function called is function2, which deactivates the component when the
function returns. Because of this, the Activated message should be displayed when
the component function is accessed, and the Deactivated message should be dis-
played when the function returns, before the “Calling function 1” message.

However, when the first function—which doesn’t deactivate the component—is
called, the Deactivated message should not appear when the function returns.

Finally, when function2 is called again, both the Activated and Deactivated mes-
sages should be displayed, generating a web page that has the following messages:

Calling function 2

Activated

Deactivated

Calling function 1

Activated

Calling function 2

Deactivated

As you can see, with IContextState, you can control component activation with-
out impacting on the component’s transaction, whether the component is within a
transaction or not.

IObjectControl

The last section demonstrated how the lifetime of a component is manipulated
using the IContextState interface. The example also used JIT—just-in-time acti-

,ch05.18477 Page 122 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 123

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

vation—to control the component’s instantiation and to write out to the web page
when the component is activated and deactivated through the IObjectControl
interface’s Activate and Deactivate methods.

Enabling support of JIT for a component means that the component isn’t activated
until it’s actually needed, rather than when it is first created within an ASP page. In
addition, the component isn’t deactivated until the component marks that it is
ready to be deactivated, the component is destroyed within the ASP page (i.e., set
to Nothing if you’re using VBScript), or the process leaves the page scope.

The process of activation and deactivation is controlled by COM+, with program-
matic cues provided by developers, such as the one demonstrated in the last sec-
tion when IContextState’s SetDeactivateOnReturn method is called.

As a component developer, you can capture when the component is activated and
deactivated by implementing IObjectControl’s Activate and Deactivate meth-
ods. By using these, you don’t hold on to resources, such as a reference to the
Response object shown in Example 5-1, while the component is idle and waiting
for its methods to be called.

If you implement IObjectControl, you must implement both the Activate and
Deactivate methods in addition to the CanBePooled method. This latter method
defines whether the component is in a state in which it can be pooled. Later in the
chapter, we’ll look more closely at component pooling when we look at the
COM+ Services.

To take advantage of JIT, your component must be installed in a COM+ applica-
tion, and JIT must be enabled. However, support for JIT is enabled by default for
every component within a COM+ application, as shown in Figure 5-1.

The IObjectControl and IObjectContext interfaces were implemented in Win-
dows NT and managed through MTS. In fact, except for components that use spe-
cific NT services, the ASP components that you created for Windows NT should
port without problems to Windows 2000 and COM+, as will be discussed in the
next section.

In Windows NT, you had to avoid using the Initialize and Terminate
event handlers, since you couldn’t access an instance of ObjectCon-
text within these. This limitation has been removed in Windows
2000. However, you should still consider implementing IObject-
Control and trapping the Activate and Deactivate events in order to
access and release globally accessible resources.

,ch05.18477 Page 123 Thursday, February 22, 2001 1:29 PM

124 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Porting MTS Packages to
COM+ Applications
In Windows NT (or Windows 9x), components could be managed as part of MTS
packages. By being a part of an MTS package, a component could take advantage
of several MTS features, such as the use of transactions and JIT. These same fea-
tures and more are also available in COM+, and you can access them with exist-
ing ASP components just by porting the MTS package, the components, or both to
the new environment.

To port an existing MTS package, you first need to export the package into a file
with an extension of .pak (MTS package file). This option is available to you by
right clicking on the existing MTS application and selecting the Export option from
the menu. Follow the directions to export the MTS package file, including whether
to export roles with the package.

You can port your MTS packages to COM+ relatively simply by creating a new
COM+ application (through the Component Services Console) and selecting the
Install Pre-built Application(s) option. When the COM Application Install Wizard

Figure 5-1. Enabling support for JIT

,ch05.18477 Page 124 Thursday, February 22, 2001 1:29 PM

Activating COM+ Applications 125

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

asks for the name of the existing application, find and select the PAK file that you
created earlier.

When you import an existing MTS package into a new COM+ application, the
Component Services Manager also imports the roles and tries to match existing
MTS functionality with new COM+ Services functionality, including any transac-
tion and JIT settings.

Instead of exporting an MTS package and importing it into a COM+ application,
you can instead create the COM+ application as an empty application, then re-
create any existing roles and add in any existing components. With this approach,
you can make sure that the COM+ application’s properties are defined as you
would prefer.

Speaking of COM+ applications, the next section discussions some of the COM+
application settings that can impact on an ASP application.

Access Windows 2000 help to get more information about using the
Component Services Console (in a topic titled “Using Component
Services”).

Activating COM+ Applications
COM+ applications add additional activation, transactional, and security support
for the components included within the application. In particular, COM+ applica-
tions add support for method- as well as component-level security and for in-pro-
cess and out-of-process activation.

Not all of the possible COM+ services are detailed in this section—
just those most pertinent for ASP component development, such as
security, transactions, and object pooling. JIT was detailed in the sec-
tion of the chapter that discussed IObjectControl.

Application Security

You can control the security of your ASP application at a page and resource level
using NTFS security and the security provided by IIS. You can add another layer of
security by using COM+ application role-based security.

When you implement role-based security, you create a role within the COM+
application and add users to that role. Then, when a component or component

,ch05.18477 Page 125 Thursday, February 22, 2001 1:29 PM

126 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

method is accessed, COM+ checks the security privileges of the role that the user
is a member of against the required security for the component or component
method and denies access if the user’s privileges don’t match those required.

Figure 5-2 shows a COM+ application with one role and one component (the
done component you created in Examples 5-1 and 5-2). The standard IUSR_
machinename (IUSR_FLAME on my machine) user has been added to the tester
role, though any user can be added to a specific role. Role-based security can then
be applied to the component or to a specific component method through the
Properties dialog.

A COM+ application can be created using two different activation schemas: activa-
tion within the client’s process or activation as an isolated process.

If you create a COM+ application as a server application, accessing a component
within an ASP page generates a separate dllhost.exe for the component and any
other component that is part of the COM+ application. Because the component is
in a separate process, all calls from the ASP page to the component must be mar-
shaled. However, if the component generates havoc, the havoc is contained within
the dllhost.exe and shouldn’t adversely impact IIS or other ASP applications.

If you create the COM+ application as a library application, when a component is
accessed within the ASP page, the component (and any other component within
that COM+ application) is instantiated within the same process as the ASP page as
long as the component’s threading model is compatible. Since COM+ applications

Figure 5-2. Creating a COM+ application role

,ch05.18477 Page 126 Thursday, February 22, 2001 1:29 PM

COM+ Services 127

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

allow only apartment-threaded, both-threaded, and neutral-threaded components,
the COM+ application component should be instantiated within the ASP page’s
process, and all calls between the page script and the component occur on the
same thread.

COM+ Services
A component that is installed as part of a COM+ application (through the COM+
Services Manager) is known as a configured component and can benefit from
COM+ services, such as support for transactions and JIT (discussed earlier). A
component that isn’t installed as part of a COM+ application and is registered
using the development tool (such as VB) or using regsvr32.exe, is known as an
unconfigured component. This type of component can be used in ASP applica-
tions, but you can’t implement IObjectControl or take advantage of JIT, nor can
you use ObjectContext for transaction support. You can, however, still access the
ASP built-in objects using ObjectContext.

One of the main reasons to add a component to a COM+ application is because
you want the component to participate in transactions, discussed next.

Transaction Support

One of the problems with components based on COM/DCOM is that component
communication, especially remote communication, is not trivial. Compound that
with having to be concerned about tracking whether a component successfully
completes its processing and what to do and how to recover if one component
fails to accomplish its task while others succeed, and a distributed system can soon
become very difficult to create and maintain.

MTS was created to simplify this process by taking care of much of the administra-
tion of a distributed system. It ensures that a transaction completes successfully as
a whole or fails in its entirety. It also manages processing and threads for an appli-
cation, something that becomes very critical when one component calls methods
on another, which calls methods on another, and so on.

MTS also provides resource managers and dispensers that actually control stored
data, such as database data. In fact, any database system that supports OLE trans-
actions, such as SQL Server, can participate in transactions controlled by MTS. This
means that if a component that participates in a transaction fails, not only can the
action of the component and other components be rolled back (reversed), any
database activity can also be rolled back.

The transaction capability of MTS is present in COM+ services and is available for
use with configured components. What’s different in COM+ (and Windows 2000)
is the presence of the IContextState interface, which allows you to separate the

,ch05.18477 Page 127 Thursday, February 22, 2001 1:29 PM

128 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

activation of a component from the transaction control. With this interface, you
can signal whether a component wants to commit or abort a transaction but still
keep the component activated, as was demonstrated earlier in Example 5-1.

What Are Transactions?

If you have had experience with commercial database systems such as Oracle,
Sybase, and Microsoft SQL Server, you are probably aware of what transactions
are. A transaction is one or more tasks, grouped in some logical manner, that are
meant to succeed together or fail together if any one task within the transaction
fails. If a transaction fails, no changes are made to any of the data associated with
the transaction. If the transaction succeeds, changes made to the data are commit-
ted. An example of a transaction containing more than one task is transferring
money from your savings account to your checking account. Though it seems like
one transaction, actually two are happening. The first is that the money must be
taken from the savings account (or debited to the account). The second is that the
money must then be added to your checking account (or credited to your check-
ing account). If the debit operation on your savings account succeeds but the
credit to your checking account doesn’t, you will want the entire transaction to be
reversed and to start over again. Transactions are essential in a system that updates
more than one data structure, such as database tables, based on one action, and
updates must succeed for all of the data structures in order for the one action to
successfully complete.

COM+ expands on this by introducing the concept of transaction management to
component development. It also simplifies the process of developing distributed
component-based applications by handling most of the transaction success/failure
communication.

How Components Participate in Transactions

A component can use COM+ transaction capability if it meets certain criteria. First,
the component must be an in-process server (that is, a .DLL). Second, the compo-
nent must not be free-threaded. Further, if the component is implemented in
Visual C++, it must implement a class factory and use standard marshaling. A type
library must be created for the component.

Once a component meets the minimum requirements, it then needs to be regis-
tered with COM+ to get transaction support. During the registration process, the
type of transaction the component participates in is set as a property of the com-
ponent. For instance, Figure 5-3 shows a component that requires a transaction
and that overrides the transaction timeout—setting a value of 10 seconds for the
transaction to complete.

,ch05.18477 Page 128 Thursday, February 22, 2001 1:29 PM

COM+ Services 129

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To start a transaction within the ASP page, use the transaction directive as the first
line of the page:

<%@ TRANSACTION = required %>

To work with transactions, the component must reference an instance of Object-
Context (or IObjectContext) or an instance of IContextState. You can mark a
component as ready to commit using the ObjectContext object’s SetComplete
method or using IContextState’s SetMyTransactionVote:

objContext.SetComplete

or:

objContext.SetMyTransactionVote adCommit

You can mark a transaction for rollback using the same interfaces:

objContext.SetAbort

or:

objContext.SetMyTransactionVote adAbort

If you want to see transactions in action, Chapter 9, Creating an ASP Middle Tier
with ADO, has examples of COM+ transactions used with database updates—the
traditional use of transactions. Though you can use database transaction capability
(rather than COM+ transaction capability) directly, through the ADO Connection
object, examples in this chapter will show how you’ll want to use COM+ transac-
tion capability for transactions that span components and database connections.

Figure 5-3. Setting a transaction requirement for a component

,ch05.18477 Page 129 Thursday, February 22, 2001 1:29 PM

130 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

COM+ transactions can also be used to control activities on other resources, such
as messages within a message queue. In Chapter 13, Working with MSMQ Compo-
nents, transactions are used to control whether or not a message is permanently
removed from a queue after it’s accessed.

In addition to providing transaction support and support for JIT, COM+ Services
can also be used to provide component pooling, described next.

Object Pooling

Earlier I mentioned that IObjectControl has three methods: Activate, Deacti-
vate, and CanBePooled. You had a chance to work with the Activate and Deacti-
vate methods, but the CanBePooled method is important if you’re using object
pooling.

In object pooling, a minimum set or pool of components is created when a COM+
application is started, and all requests for a component are filled from this pool
through a pool manager. When requests come into the manager for more
instances of the component than are available within the pool, the manager cre-
ates another instance of the component to add to the pool if the maximum pool
size has not been met. If the pool is at its maximum, the new request is queued
until a component is available.

There is a specific set of criteria that must be met before a component can be
pooled. First, the component must not have thread affinity, which means that it
must not be apartment-threaded (leaving out VB components at this time). Next,
the component must support aggregation, but it can’t aggregate the Free-Threaded
Marshaller (FTM).

If the component participates in transactions, it must manually enlist resources and
manually turn off the resources’ autoenlistment (a process that differs from
resource management and one that is outside the scope of this book).

If resources are accessed by the component, the component should implement
Activate, Deactivate, and CanBePooled, the three IObjectControl methods. The
resource can be accessed within the Activate method (when the component is cre-
ated in the client ASP page), and it can be released when the component is
released by the client (in the Deactivate method). In addition, the component must
test whether its resources are at a state in which they can be pooled when it, the
component, is deactivated. If they can, the component’s CanBePooled method
should return True. If not, the component must return a value of False to pre-
vent the component from being returned to the component pool.

Finally, the component must be stateless, meaning that no session-specific state
should be maintained for it.

,ch05.18477 Page 130 Thursday, February 22, 2001 1:29 PM

COM+ Services 131

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can create a poolable component using Visual C++ (or any language that sup-
ports the free- or both-threading models). To demonstrate how to use object pool-
ing, create a new Visual C++ project named asp0502 using the ATL COM
AppWizard. Don’t select any of the MTS/MFC or proxy/stub code options when
given the choice by the wizard.

If you don’t have access to Visual C++, you can use the copy of
asp0502.dll that comes with the examples in this book.

Once the project files are generated, add a new component using the ATL Object
Wizard (how to use the ATL Object Wizard is detailed in Chapter 14), and select
the Simple Object type. Name the component pooledComponent, and on the
Attributes page, select the both-threading model and support for aggregation (but
not support for FTM).

To add support for IObjectControl, add the following to the component class
definitions contained in pooledComponent.h:

public IObjectControl,

Also add a COM entry reference to the COM map:

COM_INTERFACE_ENTRY(IObjectControl)

You’ll be accessing IObjectContext and the ASP built-in Response object in the
component, so you’ll need to add in the COM+ Services and ASP type library
header files:

#include <comsvcs.h>
#include <asptlb.h>

You’ll also need to add the IObjectControl method prototypes as well as a ref-
erence to two private data members of type IObjectContext and IResponse
(the ASP built-in Response object). The complete code for the pooledCompo-
nent’s class definition header file is shown in Example 5-3.

Example 5-3. Poolable Component Header File

// pooledComponent.h : Declaration of the CpooledComponent

#ifndef __POOLEDCOMPONENT_H_
#define __POOLEDCOMPONENT_H_

#include "resource.h" // main symbols
#include <comsvcs.h>
#include <asptlb.h>

,ch05.18477 Page 131 Thursday, February 22, 2001 1:29 PM

132 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Next, add the COM+ Services library (comsvcs.lib) to the project’s linked library list
through the Link tab of the Project Settings dialog.

You’ll have to implement the three IObjectControl methods. In the compo-
nent’s C++ file, add the code shown in Example 5-4 to your component. In this
code, instances of IObjectContext and IResponse are created in the Activate
method and released in the Deactivate method. In addition, the component marks
that it can be pooled by returning True from the CanBePooled method.

///
// CpooledComponent
class ATL_NO_VTABLE CpooledComponent :

public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<CpooledComponent, &CLSID_pooledComponent>,
public IObjectControl,
public IDispatchImpl<IpooledComponent, &IID_IpooledComponent,

 &LIBID_ASP0502Lib>
{
public:

CpooledComponent()
{
}

DECLARE_REGISTRY_RESOURCEID(IDR_POOLEDCOMPONENT)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CpooledComponent)
COM_INTERFACE_ENTRY(IpooledComponent)

 COM_INTERFACE_ENTRY(IObjectControl)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

// IpooledComponent
public:

STDMETHOD(Activate)();
STDMETHOD_(BOOL, CanBePooled)();
STDMETHOD_(void, Deactivate)();

private:
 CComPtr<IObjectContext> m_spObjectContext;
 CComPtr<IResponse> m_piResponse;

};

#endif //__POOLEDCOMPONENT_H_

Example 5-4. Component’s Implementation of IObjectControl’s Methods

HRESULT CpooledComponent::Activate()
{
 HRESULT hr;

Example 5-3. Poolable Component Header File (continued)

,ch05.18477 Page 132 Thursday, February 22, 2001 1:29 PM

COM+ Services 133

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

At this time, compile the component to make sure you’ve added in the necessary
code and library.

Add a method to the new component named testPooledComponent through the
Class View; the method takes no parameters. The method is simple: it only out-
puts a message to the web page using the Response object. Add the component
method code shown in Example 5-5:

 CComBSTR bstrProp;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&m_spObjectContext);
 if (FAILED(hr)) return hr;

 // get ContextProperties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr)) return hr;

 // get Response property
 bstrProp = "Response";
 hr = pProps->GetProperty(bstrProp, &vt) ;
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

return hr;
}

void CpooledComponent::Deactivate()
{
 m_piResponse.Release();

m_spObjectContext.Release();
}

BOOL CpooledComponent::CanBePooled()
{

return TRUE;
}

Example 5-5. Pooled Component’s Lone Method

STDMETHODIMP CpooledComponent::testPooledComponent()
{
 // print message

Example 5-4. Component’s Implementation of IObjectControl’s Methods (continued)

,ch05.18477 Page 133 Thursday, February 22, 2001 1:29 PM

134 Chapter 5: COM+ Services and ASP Components and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To use component pooling, the component will need to be added to a COM+ appli-
cation. Create a new one (using the Component Services Management Console), or
use an existing COM+ application and add the component to the application.

Once the component is added to the COM+ application, access its Properties dia-
log (from its popup menu) and select the Activation tab. In this tab, check the
option to pool the component, and set its minimum pool size to 10 and its maxi-
mum to 20. Figure 5-4 shows the component’s activation settings.

When the COM+ application is first started, it creates a pool of 10 of the compo-
nents you just created. As the components are accessed within ASP pages, they’re
taken from this pool until all of the components are currently activated. At that
point, additional requests for the component add additional instances of the com-
ponent to the pool, until the maximum pool size of 20 is reached.

 CComVariant vt("Hello from pooled component");
 m_piResponse->Write(vt);

return S_OK;
}

Figure 5-4. Activation settings for pooled component

Example 5-5. Pooled Component’s Lone Method (continued)

,ch05.18477 Page 134 Thursday, February 22, 2001 1:29 PM

COM+ Services 135

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the component using the following ASP test page (found in asp0502.asp):

<%
Dim obj(20)

For i = 1 to 20
 Set obj(i) = Server.CreateObject("asp0502.pooledComponent")
 obj(i).testPooledComponent
 Response.Write "
"
Next
%>

In this page, 20 instances of the component are created and the method of each
instance is called. The result of accessing this ASP page is a list of messages with
the line “Hello from pooled component.” The first 10 instances were created when
the COM+ application was first started, and the latter 10 were created when the
ASP page was accessed.

Now, change the number of instances to 21 and then try the ASP page. Then, the
page seems to hang. The page hangs because the pool manager has allocated all
of the components from the available pool and has reached its maximum pool
size. The request for the 21st component is queued until a component is avail-
able. But since no component becomes available until the page is finished, and
the request for the component occurs in the same page, the 21st component can-
not be instantiated and the page hangs. In fact, the page will continue to hang
until the component request timeout is reached. At that point, the ASP page shows
the following error:

COM+ activation failed because the activation could not be
completed in the specified amount of time.

As has been demonstrated, object pooling may be a powerful boost to perfor-
mance, but it can also limit scalability, as well as drain resources (all of the pooled
components are maintained in memory). Use this COM+ service with caution.

,ch05.18477 Page 135 Thursday, February 22, 2001 1:29 PM

136
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6

6
ASP Interaction: Scripting
and ASP Components

An ASP component is technically a server component that can be accessed by any
client application. However, there are some challenges associated with ASP com-
ponents that are unique, not the least of which is an understanding of the environ-
ment in which these components operate, including component/script interaction.

When I refer to component/script interaction, I am talking about components as
they are accessed within script blocks in ASP pages. The script blocks are usually
written in VBScript, but they can also be written in JScript (Microsoft’s version of
JavaScript), as well as the increasingly popular PerlScript (based on the program-
ming language Perl), in addition to other scripting languages. Having a variety of
scripting languages available for use is terrific, but there is a price to this flexibility
when it comes to ASP component development, because not all scripting lan-
guages provide the same support for component instantiation, component meth-
ods, and particularly component method parameters.

For instance, an array passed from VBScript is definitely handled differently in
code than an array passed from JScript. In addition, the results of passing certain
datatypes to and from components can differ, as can error handling.

Scripting Language Support Within ASP
The default scripting language that’s used in ASP pages is VBScript, Microsoft’s
scriptable version of its popular Visual Basic programming language. However,
other scripting languages can be used if support for the Microsoft Windows Script
engine interfaces has been provided for the language. Basically, this means that a
COM object is created that must implement a set of ActiveX scripting interfaces
that provide an interface between the scripting environment and the scripting lan-
guage implementation.

,ch06.18607 Page 136 Thursday, February 22, 2001 1:29 PM

Scripting Language Support Within ASP 137

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Microsoft has extended scripting language support to include a variation of Java-
Script known as JScript. In addition, third-party developers have added scripting
engine support for Perl, implemented as PerlScript, as well as Python and other
languages. This section will discuss how to use VBScript, JScript, and PerlScript
interchangeably in a web page and how to set up your environment to use JScript
or PerlScript as the default scripting language.

Though I don’t go into detail on using Python in ASP, you can
access the Python web site at http://www.python.org, search for
ActiveX scripting, and find out how to download and install Python
for use in ASP pages. You can also download ActivePython for no
charge from the ActiveState web site (http://www.activestate.com).

Support for VBScript and JScript is included with the scripting engine that is
installed with IIS (and Internet Explorer and the Windows Script Host (WSH)).
However, you’ll need to install Perl programming support for Windows to use
PerlScript. You can do this by downloading ActivePerl from the company
ActiveState. ActivePerl is a free, Win32-based Perl package that includes support
for traditional Perl packages, as well as packages created specifically for use in a
Windows environment—including support for PerlScript.

ActivePerl is available without charge and can be accessed at the
ActiveState web site at http://www.activestate.com. Make sure you
download ActivePerl 617 and up, specifically tested with Windows
2000. Follow the instructions included with ActivePerl to install the
package. Once it’s installed, you’re ready to work with VBScript,
JScript, and PerlScript in your ASP pages.

Setting Scripting Language Choice

You can set the scripting language used within an ASP page in two different ways.
First, you can change the default scripting language for all ASP applications using
the Management Console or through the IIS Admin objects. Chapter 2, Setting Up
the ASP Development Environment, covers setting the scripting language program-
matically, but to change the default script language with the Console, open the
Internet Services Manager, right-click on the ASP application, and choose Proper-
ties from the menu that opens. Then, in the Properties dialog, select the Virtual
Directory (or Home Directory) tab. From this page, click on the button labeled
Configuration and then select the App Options tab when the Configuration dialog
opens. The App Options tab has a text field you can modify to change the default

,ch06.18607 Page 137 Thursday, February 22, 2001 1:29 PM

138 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

scripting language from VBScript to another language, such as JScript or PerlScript.
Figure 6-1 shows the App Options tab after the default scripting language for the
default web site has been changed to PerlScript.

A second approach to change the scripting language is to define the scripting lan-
guage directly in an ASP page. To set the scripting language for the page, you
include a scripting directive as the first line of the page. Directives begin and end
with specific characters and provide information for the operating environment,
such as the scripting language (in our current example), the start of a new transac-
tion, the need to maintain session state, or the locale for the page. To change the
scripting language for the page to PerlScript, you would use the following ASP
directive:

<% @LANGUAGE=PerlScript %>

The directive starts with the leading characters “<%@” followed by the directive
command, LANGUAGE=PerlScript, and then the end directive characters “%>”.

Finally, to set the scripting language for just a specific code block, you can use the
<SCRIPT> tag and set the language accordingly using its LANGUAGE attribute. If
you use the <SCRIPT> tag, make sure to set the RUNAT attribute to Server to
ensure that the block is run at the server as ASP rather than at the browser as cli-
ent-side script. For example:

<SCRIPT LANGUAGE=PerlScript RUNAT=Server>
...some script
</SCRIPT>

You can mix scripting languages in one ASP page when using the <SCRIPT> tag
and specifying different languages for each block, but be aware that there is no

Figure 6-1. Changing the default scripting language for all ASP applications

,ch06.18607 Page 138 Thursday, February 22, 2001 1:29 PM

Instantiating Components 139

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

guarantee of the order in which the scripting blocks are processed. Scripts delim-
ited by the <SCRIPT> tag with a language specified are processed before those
using the more widely used “<%” and “%>” script delimiters and before scripts
delimited with the <SCRIPT> tag but using the default scripting language. You
may want to use multiple scripting languages in a page only when you are access-
ing language-specific functions or language-specific functionality and the order of
script execution doesn’t matter.

Once you’ve added support for the scripting language of your choice, you can cre-
ate instances of your ASP components within the ASP blocks using each scripting
language’s specific techniques. These are discussed in the next section.

Instantiating Components
When Microsoft first released ASP, it didn’t include support for accessing exter-
nally built components. This kind of support didn’t occur until Version 2.0 of ASP,
but it quickly made ASP a viable technology to use for Web application develop-
ment. By adding support for COM and for components created using a variety of
programming languages, Microsoft made it possible for developers to create reus-
able code components that could be accessed from many different ASP pages.
Additionally, the code used to build the components is protected from modifica-
tion and view by all but the component developers—providing higher levels of
security and consistency. Precompiled components using languages such as C++
and Visual Basic also tend to be more efficient in execution, increasing the overall
performance of the ASP application.

Regardless of the programming languages used to build components, we want to
ensure that our components can be instantiated and used regardless of the script-
ing language. Because a language exposed as an ASP scripting language must
implement the required functionality, we are guaranteed that the language sup-
ports certain basic functionality such as external component instantiation, though
the method of instantiation may differ based on what is supported in the language.

A component can be created or accessed from an ASP script using three different
techniques (some of which may be specific to the scripting language):

• The ASP built-in Server object’s CreateObject method

• The CreateObject or GetObject function directly in script

• The <OBJECT> tag in the ASP application’s global.asa file

,ch06.18607 Page 139 Thursday, February 22, 2001 1:29 PM

140 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Appendix A, ASP Built-in Object Quick Reference, provides an over-
view of each of the built-in ASP objects (such as the Server object),
including its methods, collections, and properties. If you haven’t
worked with ASP prior to reading this chapter, I suggest you take
some time to review Appendix A first—specifically the sections cov-
ering the Server and Response objects. These objects are used in the
rest of this chapter.

Creating an Object Using CreateObject

The scripting language used most within ASP pages is VBScript, so it’s appropriate
to take a look at component instantiation using VBScript first.

VBScript supports a built-in function, CreateObject, that can be used to instantiate,
or to create an instance of, a component. The method takes as its only parameter a
string with the component’s programmatic identifier (ProgID) or component iden-
tifier. The typical format of a ProgID is either:

LibraryName.ComponentName

or:

LibraryName.ComponentName.Version

as the following illustrates:

ADODB.Connection
asp0601.arry.1

To create a component using VBScript, you could use code like the following:

Dim obj
Set obj = CreateObject("asp0601.arry.1")

Once the component is created, you can then access its methods and properties:

obj.tstArray ' call to tstArray method
obj.prp = 1 ' assignment to prp property

For ASP, Microsoft added CreateObject as a method to the ASP built-in Server
object. When developing ASP applications, instead of calling the VBScript
CreateObject function directly in ASP script, you would call the CreateObject
method from the Server object, as the following demonstrates:

Dim obj
Set obj = Server.CreateObject("asp0601.arry")

Instantiating the object using the Server object exposes the object’s methods and
properties for access in your ASP page, just the same as using the VBScript ver-
sion of CreateObject.

,ch06.18607 Page 140 Thursday, February 22, 2001 1:29 PM

Instantiating Components 141

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you’re writing your scripts in VBScript, you could continue using the VBScript
version of CreateObject, but this isn’t recommended, nor is it favorable for your
application’s performance. The ASP environment can track instances of your object
when you use the Server’s CreateObject method, whereas using CreateObject
directly bypasses this level of integration. Additionally, components created using
the VBScript CreateObject function can’t access the ASP built-in objects them-
selves nor can they participate in transactions.

You don’t have to use CreateObject to instantiate an object. For
instance, you can use the function GetObject to use automation to
retrieve a COM moniker. This approach can be used to access a Java
class within an ASP page without having to wrap the class with COM
registration information. See more on this in Chapter 3, ASP Compo-
nents and COM, and Chapter 20, ASP Components Created with Java.

Of course, if you’re using a scripting language other than VBScript, the Create-
Object function or some equivalent that supports object instantiation may not be
available. But as long as the ASP intrinsic objects are available to the scripting lan-
guage, you can use the Server object’s CreateObject method for object instantia-
tion. For example, you’d instantiate a component in JScript using the Server.
CreateObject method as follows:

var obj;
obj = Server.CreateObject("asp0601.arry");

In PerlScript, you could also create the component using the Server object and its
CreateObject method as follows:

#use strict;
use vars qw($Server $Response);

my $myobj = $Server->CreateObject("asp0601.arry");

Creating a component directly in the script isn’t the only way to instantiate a com-
ponent. For all three scripting languages (and all others), you can also include an
<OBJECT> tag in the global.asa file for the ASP application.

Using the global.asa File to Instantiate Components

Every ASP application has one global.asa file located in the application’s root
directory. The global.asa file can be used to provide event handlers for events
such as the start of an ASP application (when an ASP application is first loaded by
its first user) or the beginning of a new user session. The file can also provide
component instantiation as well as access to type libraries in ASP pages.

,ch06.18607 Page 141 Thursday, February 22, 2001 1:29 PM

142 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

COM/COM+ components can sometimes require access to built-in
constants and enumerators, such as those used with ADO (e.g.,
adCmdText). These predefined values are usually bundled into a
type library to make them easily accessible to component users. To
include a type library within an ASP application, use a statement like
the following in the global.asa file:

<!--METADATA NAME="Microsoft ActiveX Data Objects 2.5
Library" TYPE="TypeLib" UUID="{00000205-0000-0010-8000-
00AA006D2EA4}"-->

This type library definition adds the ADO 2.5 constants and enumer-
ators to the current ASP application.

Component instantiation within the global.asa file is handled through the use of
the <OBJECT> tag. This tag has several parameters that define what the compo-
nent is and when to create it:

<OBJECT RUNAT=Server Scope=scope ID=identifier
{PROGID=progid | CLASSID=classid}>
</OBJECT>

The scope of the object must be set to Application or Session, meaning that
the object is added to either the built-in ASP Application object’s collection or to
the Session object’s collection. In the former case, this means that the component
is accessible within the scope of the entire ASP application, and in the latter case,
it means that it is accessible only within a specific user session. The identifier
is the name given to the component and is used within ASP pages to access the
specific component. The class from which the object instance is to be derived is
identified by either its progid or its classid.

To demonstrate how the <OBJECT> tag works in the global.asa file, we’ll use
Visual Basic to create a simple component. Open a new ActiveX DLL project,
name the project asp0601, and name the class generated with the component
global. The class itself has one method named tstGlobal, which takes a String
parameter by value, concatenates a brief message to the string, and returns it to
the invoking application. The source code for the method is shown in
Example 6-1.

Example 6-1. Simple Method to Concatenate String Message to Name Passed as Parameter

Option Explicit
Function tstGlobal(ByVal strName As String) As String
 Dim strReturn As String
 strReturn = "Hello " & strName
 tstGlobal = strReturn
End Function

,ch06.18607 Page 142 Thursday, February 22, 2001 1:29 PM

Instantiating Components 143

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Compile the Visual Basic component. (This also automatically registers it on your
system.) The ProgID for the new component is asp0601.global, and you can
access the class identifier using a utility such as OLEView, a tool that comes with
Visual Studio (or can be downloaded from Microsoft’s web site). Select the View
TypeLib option from its View menu, then navigate to and select the asp0601.dll
file in the Open dialog. You can determine the CLSID by selecting the coclass
Global item.

If you aren’t using Visual Basic, the example code that comes with
this book has the Visual Basic asp0601.dll included within the code.
All you need to do is install the example code for this chapter and
register asp0601.dll using COM+ services or the older regsvr32
method, both of which are discussed in Chapter 3.

After you find the CLSID for your new component, access (or create) the global.
asa file for your ASP web test environment; add the following two <OBJECT>
entries to this file:

<OBJECT RUNAT=Server Scope=Session ID=test1
 PROGID="asp0601.global">
REM testing global.asa
</OBJECT>

<OBJECT RUNAT=Server Scope=Session ID=test2
 CLASSID="Clsid:7347EB1C-FACA-47EE-BC3E-9D5FFEB402CC">
REM testing global.asa
</OBJECT>

Note that, if you’ve downloaded the asp0601.global component, its CLSID is
{7347EB1C-FACA-47EE-BC3E-9D5FFEB402CC}; if you’ve created it yourself, how-
ever, it will have a different CLSID.

Once the ASP web server is restarted, the first access to the component identified
as test1 or test2 results in instantiation of the component for the current user
session (each session will get its own reference to the component or compo-
nents). You can test this by creating a new ASP page, asp0601.asp, similar to that
shown in Example 6-2. In this page, both identifiers are used to reference the
component, resulting in two instances of the same component being created.

Example 6-2. ASP Page That Accesses a Component Instantiated in the global.asa File

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>global.asa</TITLE>
</HEAD>
<BODY>

,ch06.18607 Page 143 Thursday, February 22, 2001 1:29 PM

144 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Since both test1 and test2 have been defined as session-level components, they
persist until the user’s session terminates. This occurs when the session times out
or the session is deliberately terminated through some programmatically supplied
action, such as the user logging out of the application (and abandoning the ses-
sion by calling Abandon on the built-in ASP Server object).

There are performance issues that impact on whether you should create a compo-
nent as an Application, Session, or page-level component (a component that exists
only within the scope of execution of the specific page). Components created
within an ASP page using CreateObject (through the ASP Server object and the
direct VBScript CreateObject methods) are created with page-level scope. Based
on this the component can be either a both- or apartment-threaded component
and performance is not adversely impacted.

However, if you create a component using global.asa and the <OBJECT> tag, or if
you attach the component created in an ASP page to the Contents collection of the
Application or Session object directly at runtime, then the component should be
marked as both-threaded. Failing to do so will generate an error with the Applica-
tion object and can severely impact performance with the Session object. See
Chapter 4, ASP Components, Threads, and Contexts, for more on thread-based per-
formance issues when working with ASP components.

As you’ve seen, component instantiation is very similar with the three scripting
languages explored in this chapter. Because all three have access to ASP objects,
all three use the Server object, and all three can call the Server object’s CreateOb-
ject method. However, the scripting language used can impact on the design of
your component and particularly on the datatypes of the parameters you use.
These issues are detailed in the next section.

<H1> Testing global.asa</H1>
<%
 Dim strName
 Dim strMessage
 strName = "Shelley"

 ' test component accessed through progid
 strMessage = test1.tstGlobal(strName)
 Response.Write(strMessage & "<p>")

 ' test component access through class ID
 strMessage = test2.tstGlobal(strName)
 Response.Write(strMessage)
%>
</BODY>
</HTML>

Example 6-2. ASP Page That Accesses a Component Instantiated in the global.asa File

,ch06.18607 Page 144 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 145

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

COM+ Datatypes and Script/Component
Interaction
Distributed and component-based systems place some restrictions on how compo-
nents are created, how methods are defined, and what types of data are sup-
ported. Without these restrictions, the infrastructure necessary to support the
environment would be too unwieldy and most likely would not be successful.

However, just because there are limitations on the types of data that are sup-
ported across component boundaries doesn’t mean that a component developer or
user can’t have all the functionality they need in order to create their applications.
For instance, the most common COM datatype is the Variant, which is discussed
next; not only can it be used to hold virtually any type of data, but it also pro-
vides the means to find information about the data beyond just its value.

The Variant Datatype

Henry Ford, the founder of today’s Ford car company, pioneered the mass produc-
tion of automobiles in this country. He once said, “People can have the Model T in
any color—so long as it’s black.”

VBScript has taken Mr. Ford’s concept to heart when it comes to datatypes: you
can have any datatype you want to use in VBScript—so long as it’s a Variant. The
premise for this is that the Variant datatype can hold virtually any kind of data,
provide means to access the data safely, and provide methods to query the Vari-
ant variable to find out information about the data such as its size or the number
of array elements if the variable holds an array. All of this combined makes the
Variant datatype the safest datatype to use.

As discussed more fully in Chapter 3, the Variant datatype is really a structure that
contains fields to hold the actual value being referenced in a variable or parame-
ter. The structure also contains information about the value, such as whether the
value is a BSTR or some other datatype, whether it is an array or a scalar value,
and whether the variant is passed by reference or value when used with a parame-
ter. Whether or not these fields are exposed depends on the language accessing
the variant: Visual Basic and VBScript hide most of the implementation details of
the Variant datatype, while C++ exposes the Variant structure for direct access of
its members in code.

When a Variant is passed as a parameter to an ASP component method, methods
are usually used to extract information about the Variant. For instance, in Visual
Basic, you can access the Variant’s data subtype using the VarType function:

 ' test for variant array
 If VarType(vArray) = (vbVariant + vbArray) Then

,ch06.18607 Page 145 Thursday, February 22, 2001 1:29 PM

146 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The VarType function returns the predefined constant associated with the data
subtype, such as vbLong for a long value, vbString for a string, and so on. Addi-
tionally, you can add the constants together and compare this aggregate to the
value returned by VarType to find out whether the variant contains an array of
variants, as the example just displayed demonstrated.

To access the value of the Variant in Visual Basic, you access the variable directly:

Dim strName As String
strName = varName

Though Visual Basic supports other datatypes, if a variable is declared and not
explicitly given a datatype, it is created as a Variant by default:

Dim tst ' created as a Variant

Within Visual C++ or other languages that expose more of the underlying COM
functionality than Visual Basic, you can also use predefined functions to test the
variant subtype, though the functions will be language-specific. For instance, in
Visual C++, you would determine the data subtype of a variant using the helper
macro V_VT; this macro assigns the variant type to a variable based on the enu-
meration type, VARTYPE. The newly assigned variable can then be used with the
bitwise-AND operator against any of the predefined COM Variant datatype con-
stants to search for a datatype match:

// get variant type
VARTYPE vttype = V_VT(&vtArray);

// if ARRAY, process as SAFEARRAY
if (vttype & VT_ARRAY)

Of the scripting languages, only VBScript supports the Variant type; JScript doesn’t
support the Variant type at all, and PerlScript provides a specialized Perl module
for Variants. How all of this impacts the interaction between script and ASP com-
ponents is discussed in the next section.

Variant Datatypes: From Script to Component

When you create your ASP components in any programming language that sup-
ports COM/COM+ datatypes, you can use the Variant datatype for all of your
parameters: those passed by value, those passed by reference, and those returned
as a result of a method call. This holds true regardless of the scripting language
used, though the results may be unexpected, as you’ll see in this section.

Of the three scripting languages discussed in this chapter, JScript doesn’t support
an explicit Variant datatype, though you can treat parameters sent from JScript as
Variants in components. As an example, you’ll add a second component class to
the Visual Basic component asp0601.dll, which you created earlier in Example 6-1.

,ch06.18607 Page 146 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 147

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Name the new class varcmp, and add a method, tstVariant, as a Visual Basic func-
tion. This new function takes a Variant parameter passed by value and returns a
Variant. In the function, shown in Example 6-3, the data subtype of the Variant
parameter is tested against a subset of the possible Variant subtypes, and the name
of the subtype, if found, is assigned to a string variable. This string variable is then
returned to the ASP script. If the Variant subtype is not in the list, the words
“another type” are returned. Variant coercion, discussed later, handles the conver-
sion of the String datatype to the Variant type returned by the function.

To test the component, create a new ASP page, asp0602.asp, and set the script
language to JScript. The page, which is shown in Example 6-4, creates several vari-
ables of different types and sends them to the tstVariant method. The types tested
are a JScript string, a Date, an integer, a Boolean, and a Number. The datatype is
then printed out to the web page.

Example 6-3. Testing the Type of a Variant

Option Explicit
Function tstVariant(ByVal vrType) As Variant

Dim strType As String

' test type
If varType(vrType) = vbString Then
 strType = "string data type"
ElseIf varType(vrType) = vbDate Then
 strType = "date data type"
ElseIf varType(vrType) = vbLong Then
 strType = "long data type"
ElseIf varType(vrType) = vbDouble Then
 strType = "double data type"
ElseIf varType(vrType) = vbBoolean Then
 strType = "boolean data type"
Else
 strType = "another type"
End If

' assign return value
tstVariant = strType

End Function

Example 6-4. JScript to Create Variant Datatype Test Component

<%@ Language="jscript" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Variant Data Type</TITLE>
<BODY>
<H1>Variants</H1>

,ch06.18607 Page 147 Thursday, February 22, 2001 1:29 PM

148 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The results might surprise you a bit—the values printed out to the page, in the
order they appear in the code in Example 6-4, are:

string data type
string data type
long data type
boolean data type
double data type

The first value is what we would expect. We sent a string, which shows up in the
Visual Basic component as a string. However, after that the results might be unex-
pected. For instance, the Date object in JScript (JavaScript) is treated as a string
within the ASP script engine, and this is reflected in the Variant datatype within
the VB component. The JScript integer value is a Long value in VB—a VB Integer
type is 16 bits long, but a JScript integer is really 32 bits long, equivalent to a VB
Long datatype. (This is reflected as a Long datatype.) The JScript boolean and the
Variant Boolean data subtype agree, and the Number value is handled as a VB
Double—a double-precision floating point value.

Unlike JScript, VBScript uses the Variant datatype for all of its variables. To ensure
that a data value is treated as a specific type in the component method, conver-
sion functions such as CLng are called, to mark the variant subtype as a specific

<%
 var obj = Server.CreateObject("asp0601.varcmp");

 var str = "data type is string";
 var reslt = obj.tstVariant(str);
 Response.Write(reslt + "<p>");

 var dt = new Date(2000,6,18);
 reslt = obj.tstVariant(dt);
 Response.Write(reslt + "<p>");

 var int = 20;
 reslt = obj.tstVariant(int);
 Response.Write(reslt + "<p>");

 var bl = true;
 reslt = obj.tstVariant(bl);
 Response.Write(reslt + "<p>");

 var dec = new Number(30.5);
 reslt = obj.tstVariant(dec);
 Response.Write(reslt);
%>
</BODY>
</HTML>

Example 6-4. JScript to Create Variant Datatype Test Component (continued)

,ch06.18607 Page 148 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 149

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

datatype. With this conversion, the datatypes of the variants displayed by asp0603.
asp, the VBScript page in Example 6-5, should be what we would expect: a string,
a date, a long, a boolean, and a double datatype, in that order.

Example 6-5. VBScript to Create Variant Datatype Test Component

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Variant As Parameter</TITLE>
</HEAD>
<BODY>
<H1>Variants</H1>

<%
 ' create ASP component
 Dim cmp
 Set cmp = Server.CreateObject("asp0601.varcmp")

 Dim str
 Dim reslt
 str = "this is string type"

 reslt = cmp.tstVariant(str)
 Response.Write(reslt & "<p>")

 Dim dt
 dt = Date
 dt = CStr(dt)
 reslt = cmp.tstVariant(dt)
 Response.Write(reslt & "<p>")

 Dim i
 i = 20
 i = CLng(i)
 reslt = cmp.tstVariant(i)
 Response.Write(reslt & "<p>")

 Dim bl
 bl = True
 reslt = cmp.tstVariant(bl)
 Response.Write(reslt & "<p>")

 Dim dec
 dec = 35.50
 reslt = cmp.tstVariant(dec)
 Response.Write(reslt)

%>
</BODY>
</HTML>

,ch06.18607 Page 149 Thursday, February 22, 2001 1:29 PM

150 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The results returned from accessing this new ASP page are:

string data type
date data type
long data type
boolean data type
double data type

Again, the results are what we would expect: the string is defined as a string type,
the Date as a date, and so on. If you didn’t use CLng with the long value, you
would receive a result of “another type,” because the value would have been
passed as an integer subtype—and we’re not testing for integers in the compo-
nent code.

Next, we’ll test the VB variant type component from PerlScript to see how
datatype conversion fares between this scripting language and the ASP compo-
nent. The test page, asp0604.asp, creates the ASP component and calls the tstVari-
ant method with different datatypes, as shown in Example 6-6. However, there is a
problem: there are no explicitly defined Boolean values of true and false in
PerlScript. Instead, the Boolean datatype is implicit. Any string is true in PerlScript
(or Perl for that matter), except for an empty string or a string containing a zero
(0). Additionally, any number is true except for an undefined number or one
containing a value of zero (0). For the example, we’ll send a value of one (1) to
represent the implicit Boolean value of true.

Example 6-6. PerlScript to Create Variant Datatype Test Component

<%@ Language="PerlScript" %>
<HTML>
<HEAD>
<TITLE>Testing Variants</TITLE>
</HEAD>
<BODY>
<H1>Variants</H1>
<%

#use strict;
use vars qw($Server $Response);
use Time::localtime;

my $myobj = $Server->CreateObject("asp0601.varcmp");

my $str = 'this is a string';
$reslt = $myobj->tstVariant($str);
$Response->Write($reslt);
$Response->Write('<p>');

,ch06.18607 Page 150 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 151

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The results produced by this ASP page are:

string data type
string data type
long data type
long data type
double data type

Three of the results—the first, third, and last—are more or less as expected. The
string datatype shows as a string variant in the component, just as it does with
VBScript and JScript. A Perl integer is a 32-bit value, as it is with JScript, so it
shows up in the variant as a VB Long in the component. The same holds true for
the last value, a double.

Where we are faced with differences is the datatype values for the Date and the
value for the Boolean. The ctime function in Perl returns a date string, not an
actual date value, so the datatype is String—the same as it would be with JScript.
Surprisingly though, the Boolean value we’re testing shows as long type. Why is
this? Because there isn’t a true Boolean datatype in Perl or PerlScript; there are
only values that result in true or false if the value is used within a comparison
operation. Testing the value of one (1) results in true, but the value itself is
passed as a Long from PerlScript to the VB component. If we had used the string
“1” to emulate true, we would then get the String data subtype.

my $dt = ctime();
$reslt = $myobj->tstVariant($dt);
$Response->Write($reslt);
$Response->Write('<p>');

my $i = 30;
$reslt = $myobj->tstVariant($i);
$Response->Write($reslt);
$Response->Write('<p>');

my $bl = 1;
$reslt = $myobj->tstVariant($bl);
$Response->Write($reslt);
$Response->Write('<p>');

my $dec = 35.50;
$reslt = $myobj->tstVariant($dec);
$Response->Write($reslt);
$Response->Write('<p>');
%>
</BODY>
</HTML>

Example 6-6. PerlScript to Create Variant Datatype Test Component (continued)

,ch06.18607 Page 151 Thursday, February 22, 2001 1:29 PM

152 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Is there any way to deliberately specify a boolean value from PerlScript? Yes—by
using the Win32::OLE::Variant Perl module. Using Variant, we can explicitly create
a Boolean Variant in PerlScript:

my $bl = Variant(Win32::OLE::Variant::VT_BOOL, 1);
$reslt = $myobj->tstVariant($bl);
$Response->Write($reslt);
$Response->Write('<p>');

The script in Example 6-6 is modified to use the Variant Perl module. Example 6-7
shows the page, asp0605.asp, after the datatypes of the function arguments have
been created using Variant, rather than directly using Perl datatypes.

Example 6-7. Using Win32::OLE::Variant to Coerce Perl Types into COM Variant Subtypes

<%
use strict;
use vars qw($Server $Response);
use Time::localtime;
use Win32::OLE::Variant;

my $myobj = $Server->CreateObject("asp0601.varcmp");

my $str = 'this is a string';
my $reslt = $myobj->tstVariant($str);
$Response->Write($reslt);
$Response->Write('<p>');

my $ldt = localtime->mon() . '/' . localtime->mday() . '/' .
 localtime->year() + 1900;
my $dt = Variant(Win32::OLE::Variant::VT_DATE,$ldt);
$reslt = $myobj->tstVariant($dt);
$Response->Write($reslt);
$Response->Write('<p>');

my $i = 30;
$reslt = $myobj->tstVariant($i);
$Response->Write($reslt);
$Response->Write('<p>');

my $bl = Variant(Win32::OLE::Variant::VT_BOOL, 1);
$reslt = $myobj->tstVariant($bl);
$Response->Write($reslt);
$Response->Write('<p>');

my $dec = 35.50;
$reslt = $myobj->tstVariant($dec);
$Response->Write($reslt);
$Response->Write('<p>');
%>

,ch06.18607 Page 152 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 153

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

With this adjusted script and with the help of Win32::OLE::Variant, the results dis-
played to the page are:

string data type
date data type
long data type
boolean data type
double data type

The Variant Datatype and the LCD

From the last section, it would seem that the use of the Variant datatype could
generate unexpected results if your ASP component is used from different script-
ing languages. However, this doesn’t have to be that serious a problem if you
remember to code to the ASP Scripting LCD—Lowest Common Denominator.

For instance, the String datatype passes from all three scripting languages without
a problem in interpretation within the component, but the same cannot be said for
the Date datatype. However, if your component is expecting a date parameter,
you can test its datatype and process the parameter accordingly. If the data sub-
type of the variant shows as a string, verify that it can be converted into a valid
date (for example, using the Visual Basic IsDate function or an equivalent), parse
out the date elements, and create whatever date structure your programming lan-
guage supports, or use the string to create the Date object directly. If the variant
shows as a Date subtype, then use the object directly, or pull values out of the
object to again construct your “script-safe” version of the date.

Use the Long datatype to process integer-like parameters from script. This will
match the values passed from PerlScript and JScript, and the VBScript Variant inte-
ger subtype can be coerced into a Long using the helper function CLng. Again,
you can test your parameter datatype and perform coercion in your component, or
you could direct that users of your component should pass through long values—
and use the CLng method with integer values in VBScript.

Both JScript and VBScript support a Boolean datatype. PerlScript can also support
the Boolean datatype when using the Win32::OLE::Variant module. Again, you
could test the datatype of the variant parameter in your component and attempt to
coerce the value into a Boolean, but the Boolean value from PerlScript is not like
the datatype in JScript: there is more than one way to pass a true or false value
as a component parameter, and your component may not want to test for both a
string and a numeric. Instead, you’ll most likely want to specify that your compo-
nent is expecting a Boolean value as the parameter and provide instructions for
PerlScript users about how to create a Variant with a data subtype of VT_BOOL.

,ch06.18607 Page 153 Thursday, February 22, 2001 1:29 PM

154 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As a rule of thumb, when you create an ASP component that has
methods with Variant parameters and that could be used by multi-
ple scripting languages, test the component within each of the script-
ing languages you plan on supporting. To not do so may lead to
surprising results.

Using Other COM Datatypes as Parameters

You can use the Variant datatype for all of your ASP component parameters, but
any COM datatype can work—depending on the scripting language you’re using
and depending on whether the value is passed by reference, passed by value, or
returned as a result of a function call. The COM datatypes are detailed in
Chapter 3, but some of the most common are the BSTR for strings, the IDispatch
or IUnknown interfaces for objects, the Date, and the Short, Long, Double, and
other numeric datatypes. Another type of parameter is an array, but this is dis-
cussed a little later in the chapter, in the section on passing arrays as parameters.

However, if you don’t use Variant parameter types, you can get unexpected
results. For instance, you could specify a Date datatype for a parameter, but unless
the structures are the same or similar between the scripting language Date type
and the type supported for COM, the parameter won’t work.

To demonstrate, we’ll add a second function to asp0601.varcmp, the component
we created in the last section. The function, named tstDate, takes a Date by value
and returns a copy of the date from the function call, as shown in Example 6-8.

A new ASP page, asp0606.asp, shown in Example 6-9, uses VBScript to test the
new function by creating a variant of subtype Date and passing this through to the
component. The returned date is then displayed to a web page.

Example 6-8. Assigning Date Passed in by Value to Function Return Call

Function tstDate(ByVal dt As Date) As Date

 ' assign date
 tstDate = dt
End Function

Example 6-9. Testing Passing Date as a Parameter

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Dates</TITLE>
</HEAD>
<BODY>

,ch06.18607 Page 154 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 155

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As expected, the combination of VB component and VBScript works, because the
Date datatype is the same with both VB and VBScript. However, if you create a
second test page, this time in JScript and named asp0607.asp, shown in
Example 6-10, passing a JScript Date from the page to the component generates a
type mismatch error, because the JScript Date is a string and can’t be coerced into
a VB Date datatype.

When this test page is accessed, a datatype mismatch error results.

We have more luck from PerlScript, depending on the approach we use. In
Example 6-11, in a new ASP page named asp0608.asp, we test the new function
using two different PerlScript variables. One is created as a Variant with a Date
type, and the other is created using the Perl function ctime directly.

<H1>Dates</H1>
<%
 ' create asp component
 Dim cmp
 Set cmp = Server.CreateObject("asp0601.varcmp")

 Dim dt,dt2
 dt = Date
 dt2 = cmp.tstDate(dt)
 Response.Write(dt2 & "<p>")
%>
</BODY>
</HTML>

Example 6-10. Passing a JScript Date to a Component Expecting a VB Date

<%@ Language="jscript" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Date</TITLE>
<BODY>
<H1>Date</H1>
<%
 var obj = Server.CreateObject("asp0601.varcmp");

 var dt = new Date(2000,6,18);
 var dt2 = new Date();
 dt2 = obj.tstDate(dt);
 Response.Write(dt2);

%>
</BODY>
</HTML>

Example 6-9. Testing Passing Date as a Parameter (continued)

,ch06.18607 Page 155 Thursday, February 22, 2001 1:29 PM

156 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This script should print out three data variables, but only two actually show on the
page when it’s displayed in the browser:

9/10/2000
Sun Sep 10 10:23:22 2000

In the script, the first time the Visual Basic component is called, we’re passing in a
value that has been coerced into a Variant Date subtype. This date parameter
should work with the Visual Basic component, and it does. The page next dis-
plays the ctime-derived data string. However, the second time the VB component
method is called with the ctime-derived data string, nothing happens. We should
get a mismatch datatype error, but no error occurs. In fact, the function doesn’t
return any data—definitely unexpected results.

The Date datatype is a bit esoteric. What happens if we try a simpler datatype,
such as a string, instead? Again, we’ll create a new method in asp0601.varcmp,
calling it tstString. As with the date test, we’ll pass a string in as a parameter and

Example 6-11. Testing Passing a Date Using a Variant and a PerlScript “date”

<%@ Language="PerlScript" %>
<HTML>
<HEAD>
<TITLE>Testing Dates</TITLE>
</HEAD>
<BODY>
<H1>Date</H1>
<%
use strict;
use vars qw($Server $Response);
use Time::localtime;
use Win32::OLE::Variant;

my $myobj = $Server->CreateObject("asp0601.varcmp");

my $year = localtime->year() + 1900;
my $mon = localtime->mon() + 1;
my $day = localtime->mday();

my $ldt = $mon . '/' . $day . '/' . $year;

my $dt = Variant(Win32::OLE::Variant::VT_DATE,$ldt);
my $dt2 = $myobj->tstDate($dt);
$Response->Write($dt2 . '<p>');

my $dt3 = ctime();
$Response->Write($dt3 . '<p>');
my $dt4 = $myobj->tstDate($dt3);
$Response->Write($dt4);
%>
</BODY>
</HTML>

,ch06.18607 Page 156 Thursday, February 22, 2001 1:29 PM

COM+ Datatypes and Script/Component Interaction 157

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

assign it as a return value. The returned value then is displayed on the web page.
The new component function is shown in Example 6-12.

To test this new function, create test pages in VBScript, JScript, and PerlScript,
naming them asp0609.asp, asp0610.asp, and asp0611.asp, respectively. The script-
ing blocks for all three pages are shown in Example 6-13. (Note that you need to
add a Language directive for the JScript and PerlScript examples.) When you run
the three test pages, you’ll see that with all three pages and all three scripting lan-
guages, COM automation is able to successfully coerce each scripting language’s
version of a string into the COM-compatible datatype of BSTR. The COM BSTR
value is equivalent to Visual Basic’s String datatype, so the parameter coercion was
able to work with a datatype such as BSTR.

Example 6-12. Test of Passing a String in by Value and Returning It from Function Call

Function tstString(ByVal str As String) As String

 ' assign string
 tstString = str

End Function

Example 6-13. Three Scripting Blocks from Three Separate ASP Pages, in VBScript, JScript, and
PerlScript

VBScript:
<%
 ' create ASP component
 Dim cmp
 Set cmp = Server.CreateObject("asp0601.varcmp")

 Dim str, str2
 str = "this is a test"
 str2 = cmp.tstString(str)
 Response.Write(str2)
%>

JScript:
<%
 var obj = Server.CreateObject("asp0601.varcmp");

 var str, str2
 str = "this is a test"
 str2 = obj.tstString(str);
 Response.Write(str2);
%>

PerlScript:
<%
use strict;
use vars qw($Server $Response);

,ch06.18607 Page 157 Thursday, February 22, 2001 1:29 PM

158 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Further testing will show that coercion works with most of the simple types, such
as the numeric types.

Up to now all of the examples have shown the arguments being passed from the
scripting blocks to the components by value. What happens if the argument is
passed by reference?

Arguments passed by reference from VBScript must, and I want to emphasize
must, be a Variant datatype: any other value results in a mismatched datatype
error. Additionally, JScript does not support passing values by reference. You can
pass a value successfully, but the changed value is not reflected back to the ASP
script.

Based on both of these limitations—by reference arguments must be Variant types,
and JScript does not support passing by reference—you should avoid by-reference
parameters if your component must be usable by different scripting languages and
if you want to process parameters as other datatypes. If you do decide to support
passing values by reference, make sure then that the parameter is coded as a Vari-
ant in any programming language that you use.

To summarize, then, this section on parameter passing and compatibility of types
between ASP script and the ASP component, we have found that:

• COM automation handles variant coercion between script and ASP compo-
nents, though the results can be unexpected.

• Coding a component for the LCD of scripting languages, JScript, you should
process date parameters as strings and treat all integers as VB Longs (32-bit
integers).

• Communicate the expected data subtypes of each of a component’s parame-
ters—don’t just specify that the parameters are Variant. With this information,
those using scripting languages such as PerlScript or VBScript can use built-in
functions or modules to ensure that the variant datatype matches exactly.

• Use the Variant datatype for all parameters, including returned values. How-
ever, if you wish to use another datatype, test the parameter in as many script-
ing languages as you wish to support, to ensure the parameter will work with
the language.

my $myobj = $Server->CreateObject("asp0601.varcmp");

my $str = 'this is a test';
my $str2 = $myobj->tstString($str);
$Response->Write($str2);
%>

Example 6-13. Three Scripting Blocks from Three Separate ASP Pages, in VBScript, JScript, and
PerlScript (continued)

,ch06.18607 Page 158 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 159

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• A rule of thumb is that “simple” datatypes such as strings and numeric types
can be passed by value or returned as a return value.

• Avoid passing parameters by reference—this isn’t supported by JScript. If you
must pass a parameter by reference, make sure you set the parameter datatype
to Variant. Not doing so will generate an error in VBScript, the most com-
monly used of the ASP scripting languages.

If you thought there was a lot to learn about scripting language/ASP component
scalar parameters, wait until you see the challenges associated with passing a more
complex parameter such as an array, covered next.

Passing Arrays as Parameters
A popular type of parameter to pass from an ASP script to a component and back
is an array. However, an array is the data structure most heavily impacted by the
scripting language used. As such, when developing ASP components using arrays,
you should test the component in all scripting languages your component can be
referenced from. At a minimum you should test the component using VBScript,
JScript, and PerlScript. Testing in all three of these languages should give you a
high degree of confidence that your component array processing will work with
the most widely used ASP scripting languages. In addition, the use of the three
scripting languages should also drive out any scripting language foibles that can
have an impact on using array parameters—helping you design truly COM/COM+-
compatible ASP components.

Before looking at examples of array parameters, you should first have a good
understanding of how COM/COM+ handles arrays. For this, you need to examine
the COM SAFEARRAY datatype.

The SAFEARRAY

The problem with arrays as method parameters is that the method doesn’t neces-
sarily know anything about the array. For instance, does the array consist of one
dimension or more than one dimension? What is the range for the array elements?
What is the datatype of the array elements, and, more importantly, what is the size
of the datatype? Unlike parameters that contain scalar values (such as integers)
with known size and type information, arrays are one big unknown, and that
makes working with raw arrays a bit dangerous.

To make working with array parameters (or, more accurately, to make working
with arrays in general) a bit safer, Microsoft came up with the concept of the Safe-
Array. The SafeArray (or SAFEARRAY, if you will) is a structure that includes a ref-
erence to the original array data, but that also includes additional information

,ch06.18607 Page 159 Thursday, February 22, 2001 1:29 PM

160 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

about the array, such as the array boundaries and number of dimensions. By pro-
viding information about the array, programmers can query for this information
and process the array safely; hence the name SafeArray.

SafeArrays actually originated with Visual Basic applications, and all arrays within
a VB application, ASP-based or not, are stored as SafeArrays. Since VBScript is
based on a subset of Visual Basic, VBScript arrays are also treated as SafeArrays,
even when the arrays are passed to ASP components written with programming
tools other than Visual Basic.

Encapsulating an array within a SafeArray structure might be a problem with ASP
components written in Visual J++ or Visual C++ or other languages outside of
Visual Basic except for one thing: ASP components are based on COM, and COM
can handle the coercion between the originating source and the target source as
long as the conversion is allowed and the datatypes used to define the method
parameters are allowable COM datatypes. So SafeArrays can be passed to any
other language and tool as long as support for COM automation is provided.

It is COM automation in general, and the Variant datatype in particular, that are
the real keys to passing arrays to ASP components, as you’ll see in the examples.
The Variant datatype is used to define the parameters containing the array refer-
ences, and using the Variant helps get the array through the door, so to speak.
Once in the component method, you can use language-specific techniques, such
as SafeArray functions and methods, to access information about the array and to
access the array data.

We’ll create components using Visual Basic and Visual C++ to perform array
parameter processing as well as to return arrays from functions. First, though, we
need to understand the mechanics of array handling with the scripting languages.

Array Handling in ASP Script

VBScript is a variation of Visual Basic, and as such it handles all arrays as SafeAr-
rays. Passing arrays from VBScript to a component and back again is a fairly sim-
ple process:

 Dim arry(3)
 arry(0) = "pear"
 arry(1) = "orange"
 arry(2) = "banana"
 arry(3) = "grape"

 cmp.tstArray arry

 Dim arry2
 arry2 = cmp.tstArray2()

,ch06.18607 Page 160 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 161

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

However, successfully passing array parameters from a script to a component or
from a component to a script is not such a simple process in JScript or PerlScript.

In JScript (or JavaScript for that matter), an array parameter appears to COM as a
string of concatenated values separated by commas. You can create an array and
access and set its elements in JScript using arraylike notation:

var arry = new Array(3);
arry[0] = "one";
arry[1] = "two";
arry[3] = "three";

However, when you pass the array to an ASP component, the array really appears
as a string:

"one, two, three"

Perl also implements arrays, and you can create and work with arrays in PerlScript.
However, to create SafeArrays in PerlScript—arrays that can be passed to and from
ASP components—you must use the Variant module to create the array. For
instance, the following will create a three-element array of strings in PerlScript:

use Win32::OLE::Variant;

my @item = qw(one two three);
my $arry = Variant(VT_ARRAY|VT_BSTR,[0,3]);

$arry->Put(\@item);

In PerlScript, you must specify that the new object is an array and specify the type
of data stored in the array—in this case the BSTR datatype. You then assign the
Perl array to the new Variant array (SafeArray) using the Variant Put method.

When processing VBScript, JScript, or PerlScript (or any other scripting language)
arrays within components, you use the Variant datatype as the parameter type, and
you should test the datatype of the parameter to see if it is an array or a BSTR. If it
is an array, then you can use whatever SafeArray techniques are available in the
programming language to process the contents. If it is a string, then you can use
string functions to parse the string based on a comma (,) delimiter. This latter pro-
cessing is necessary when handling arrays from JScript. In Visual Basic, for
instance, you can call the IsArray function to determine whether the value passed
to a component is an array.

If your component supports both VBScript and PerlScript, the SafeArray passed as
a parameter should contain Variant datatypes. To ensure that the component can
process both the PerlScript array as well as one passed to and from VBScript, in
PerlScript declare the array as an array of Variants rather than another datatype,
and make sure to pass the array by reference:

my $arry = Variant(VT_ARRAY|VT_BYREF|VT_VARIANT,[0,3]);

,ch06.18607 Page 161 Thursday, February 22, 2001 1:29 PM

162 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This definition for this SafeArray passed as a parameter from PerlScript to the ASP
component matches the characteristics of an array parameter passed from VBScript
to the component, and, as a result, the processing of arrays from both scripting
languages can be the same.

Now that we understand some of the restrictions of creating arrays in scripting lan-
guages, let’s take a look at how arrays are processed in ASP components. In the
next two sections, we’ll look at creating both a Visual Basic and a Visual C++ ASP
Component to process the arrays.

Array Parameter Processing in Visual Basic

To test array parameters in Visual Basic, you create a new component in the exist-
ing asp0601 project. This component takes an array parameter and displays the
array elements to the web page. Additionally, the component creates an array to
return to the ASP script, which in turn processes and displays the array elements.

Name the new component array and add two methods to it:

tstArray
A subroutine that has a Variant parameter

tstArray2
A function that has no parameters but returns a Variant datatype

As the new component makes use of the built-in ASP Response object, you also
add a reference to the COM+ Services Library and a reference to the Microsoft
Active Server Pages Object Library to the project.

Using the ASP built-in objects and attaching references to necessary
type libraries for a Visual Basic component are covered in Chapter 7,
Creating a Simple Visual Basic ASP Component.

Once the supporting type libraries are added to the project, add code for the two
new methods. The first method, tstArray, uses the COM+ GetObjectContext func-
tion to return a reference to an ObjectContext object. The Item collection of this
object contains a reference to each of the built-in ASP objects, so the Response
object is retrieved from this collection.

In tstArray, the Variant parameter that contains the array is tested to see if it is an
array or if the Variant contains a BSTR object. If the Variant contains an array, it is
assigned to a new Variant created in the code. However, if the Variant contains a
BSTR value, the Visual Basic Split function is used to split the concatenated values
in the comma-delimited string into an array, which is assigned to the new Variant
variable. Once the processing to handle the two different parameter types is

,ch06.18607 Page 162 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 163

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

finished, the resulting Variant array (which has either been assigned directly or
generated using Split) is traversed, and each of its element’s values is displayed
using the ASP Response object. The code for tstArray is shown in Example 6-14.

If the argument passed to the tstArray method is neither an array nor a String, an
invalid argument error is returned. The method also uses the Visual Basic LBound
and UBound functions to find the upper and lower boundaries of the array. These
are then used in a For…Next loop to output the array element values.

Arrays can also be passed from Visual Basic back to ASP script blocks. The reverse
process is fairly simple and basically involves creating a Variant array, which is
then returned by the function, as shown in the code for the tstArray2 method in
Example 6-15.

Example 6-14. Visual Basic Method for Processing ASP Array Parameters

Sub tstArray(vArray As Variant)

 ' get Response object for output
 Dim objContext As ObjectContext
 Set objContext = GetObjectContext()

 Dim objResponse As Response
 Set objResponse = objContext.Item("Response")

 ' working array
 Dim v As Variant

 ' if vArray is an array, then assign to variant
 ' otherwise treat as string, with values concatenated with commas
 If VarType(vArray) = (vbVariant + vbArray) Then
 v = vArray
 ElseIf VarType(vArray) = vbString Then
 v = Split(CStr(vArray), ",")
 Else
 Err.Raise 5 'E_INVALIDARG error code
 End If

 ' print out array contents
 Dim lLArray As Long
 Dim lUArray As Long
 Dim l As Long

 lLArray = LBound(v)
 lUArray = UBound(v)

 For l = lLArray To lUArray
 objResponse.Write (v(l))
 objResponse.Write "<p>"
 Next l

End Sub

,ch06.18607 Page 163 Thursday, February 22, 2001 1:29 PM

164 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Instead of having the method return an array, the Variant array can also be passed
back to the ASP block in a ByRef parameter, but then the array values will not be
accessible within a JScript block. (JScript, as you may recall, does not support
passing parameters by reference.)

To test the two Visual Basic methods, recompile the component, then create three
ASP test pages, each using a different scripting language.

The first test page uses VBScript and is called asp0612.asp. The script in this page
creates an array of four elements, each containing a string with the name of a fruit.
In the code, the first component method, tstArray, is called to process the array
elements. When the first component method finishes, the script then calls the sec-
ond component method, which returns an array. The upper boundary for the array
is found (VBScript arrays always start with zero), and this is used in a For…Next
loop to output the new array element values, as shown in Example 6-16.

Example 6-15. Simple Visual Basic Function That Returns a String Array

Function tstArray2() As Variant

 Dim arry(0 To 3) As Variant
 arry(0) = "one"
 arry(1) = "two"
 arry(2) = "three"
 arry(3) = "four"

 tstArray2 = arry
End Function

Example 6-16. ASP Page with VBScript That Implements an Array Parameter to an ASP
Component and Processes an Array Returned from the ASP Component

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Arrays</TITLE>
</HEAD>
<BODY>
<H1> Testing Arrays</H1>

<%
 ' create the component instance
 Dim tmp
 Set tmp = Server.CreateObject("asp0601.arry")

 ' create array
 Dim arry(3)
 arry(0) = "pear"
 arry(1) = "orange"
 arry(2) = "banana"
 arry(3) = "grape"

,ch06.18607 Page 164 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 165

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you run the test page, you’ll see that the results are a list of the four fruit
names found in the first array, followed by the four numbers found in the second
array. Figure 6-2 shows a page that should look similar to the results you’ll get
with the example.

The JScript ASP test page isn’t all that complicated either—except for a slight limi-
tation: JScript doesn’t know how to process a SafeArray. Since the second Visual
Basic component method you are testing returns a SafeArray, this could be a prob-
lem.

To resolve the problem of SafeArrays being passed to JScript, Microsoft enhanced
this scripting language by providing the VBArray function. VBArray converts a
SafeArray into a format that JScript can handle and returns the converted array to
the JScript code.

Unfortunately, there is no reverse function that converts a JScript
array into a SafeArray before passing it as an argument.

Example 6-17 shows the script and HTML to create the JScript test page (named
asp0613.asp). An array is created in the script using the JavaScript Array function,
and the four elements of the array are set to strings. The code then calls the Visual
Basic ASP component tstArray method. Once this method completes, the JScript

 ' process array
 tmp.tstArray arry

 ' call second component to get an array
 Dim ubnd
 Dim lval
 Dim arry2
 arry2 = tmp.tstArray2()

 ' get the second array's boundary and process
 ' results
 ubnd = UBound(arry2)
 ' cycle through array, print out value
 For lval = 0 to ubnd
 Response.Write(arry2(lval))
 Response.Write("<p>")
 Next

%>
</BODY>
</HTML>

Example 6-16. ASP Page with VBScript That Implements an Array Parameter to an ASP
Component and Processes an Array Returned from the ASP Component (continued)

,ch06.18607 Page 165 Thursday, February 22, 2001 1:29 PM

166 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

calls the second method, tstArray2, and gets the SafeArray value back from the
function. This is passed to the built-in VBArray function, which returns a JScript-
compatible array. Finally, the page processes the array results and displays them to
the browser.

Figure 6-2. Results of running array parameter test with a VB component, invoked from a
VBScript page

Example 6-17. ASP Page with JScript That Implements an Array Parameter to an ASP
Component and Processes an Array Returned from the ASP Component

<%@ Language="jscript" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Arrays</TITLE>
<STYLE type="text/css">
 BODY { margin: 0.5in }
</STYLE>
<BODY>
<H1> Testing Arrays</H1>

<%
 tmp = Server.CreateObject("asp0601.arry");

,ch06.18607 Page 166 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 167

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you run the JScript example, you should get a page formatted identically to
the page produced by the VBScript test and shown in Figure 6-2—the only differ-
ences being the order and the names of some fruit.

The PerlScript test page, asp0614.asp, looks quite a bit different from the VBScript
and JScript test pages, primarily because you must explicitly create a Variant array
for the array parameter-passing test. Other than that, the basic functionality is the
same. An array is created and its elements given string values containing the
names of fruit. This array is passed to the ASP component’s tstArray method where
the results are processed. Then, the second component array method, tstArray2, is
called, and the returned array is processed and its element values output.
Example 6-18 shows the code for the PerlScript array parameter test page.

 // create new array
 var arry;
 arry = new Array(4);

 arry[0] = "apples";
 arry[1] = "oranges";
 arry[2] = "pear";
 arry[3] = "grapes";

 // call method to process array
 tmp.tstArray(arry);

 // call second method
 var arry2 = tmp.tstArray2();

 // process second array results
 // first call VBArray to convert SafeArray to
 // jscript array
 var arry3 = new VBArray(arry2)
 var arry4 = arry3.toArray();

 // process array
 for (i =0; i <= arry3.ubound(); i++) {

Response.Write(arry4[i]);
 Response.Write("<P>");

}
%>
</BODY>
</HTML>

Example 6-18. ASP Page with PerlScript That Implements an Array Parameter to an ASP
Component, and Processes an Array Returned from the ASP Component

<%@ Language="PerlScript" %>
<HTML>
<HEAD>

Example 6-17. ASP Page with JScript That Implements an Array Parameter to an ASP
Component and Processes an Array Returned from the ASP Component (continued)

,ch06.18607 Page 167 Thursday, February 22, 2001 1:29 PM

168 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Most of the mechanics in dealing with Variant parameters containing scalar or array
data are hidden with Visual Basic. The same is not necessarily true in C++, though
the steps involved are essentially the same, as you’ll see in the next section.

Array Parameter Processing with Visual C++

The basics of processing array parameters with Visual C++ components are very
similar to those with the Visual Basic components, except there is a whole lot
more code. The details of the processing are more exposed with Visual C++, so
we can see a little more of the underlying mechanisms—whether we really want
to or not.

<TITLE>Arrays</TITLE>
<STYLE type="text/css">
 BODY { margin: 0.5in }
</STYLE>
</HEAD>
<BODY>
<H1> Testing Arrays</H1>
<%

use strict;
use vars qw($Server $Response);
use Win32::OLE::Variant;

create array of fruit names
my @item = qw(apple pear peach grapes);

access component
my $myobj = $Server->CreateObject("asp0601.arry");

create Variant array and assign array as value
my $arry = Variant(VT_ARRAY|VT_BYREF|VT_VARIANT,[0,4]);
$arry->Put(\@item);

call function and pass in array
$myobj->tstArray($arry);

call second function and process array
my $arry2 = $myobj->tstArray2();
my $ct = scalar(@$arry2);

for (my $i = 0; $i < $ct; $i++) {
 $Response->Write($arry2->[$i]);
 $Response->Write("<p>");
}
%>
</BODY>
</HTML>

Example 6-18. ASP Page with PerlScript That Implements an Array Parameter to an ASP
Component, and Processes an Array Returned from the ASP Component (continued)

,ch06.18607 Page 168 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 169

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

We’ll use the ATL COM AppWizard to create a new Visual C++ COM project
named asp0602, following the procedures outlined in Chapter 14, Creating C++
ASP Components.

If you aren’t using Visual C++, the example code that comes with
this book has the Visual C++ asp0602.dll included. All you need to
do is install the example code for this chapter and register asp0602.
dll using COM+ services or the older regsvr32 method, discussed in
Chapter 3 and Chapter 5, COM+ Services and ASP Components and
Applications.

Once the new project is generated, add a new Simple object using the ATL Object
Wizard, name the object arry, and change the threading model of the compo-
nent to be both-threaded. After the C++ class and header files are created, add the
two test methods.

Using the Visual C++ Class View, add a method named tstArray, with one input
parameter defined as a Variant pointer. The method parameter string should look
as follows:

[in] VARIANT * pVariantArray

Once Visual C++ has generated the method prototype, you next need to add in
support for several different C++ libraries, including those for COM+ Services, the
ASP built-in objects, string and algorithm processing, as well as COM datatypes.
Do this by adding a number of lines to the component header file, arry.h, so that
the top of the header looks similar to:

// arry.h : Declaration of the Carry

#ifndef __ARRY_H_
#define __ARRY_H_

#include "resource.h" // main symbols
#include <comsvcs.h>
#include <comdef.h>
#include <asptlb.h>
#include <string>
#include <algorithm>

To prevent compiler errors because of using the wstring class, you’ll need to add
a namespace definition to the component C++ file, arry.cpp :

using namespace std;

The Visual C++ tstArray method performs the same basic functionality as the
Visual Basic component. An instance of the ObjectContext interface is created
(IObjectContext in Visual C++), and this is used to query for (get) a reference to

,ch06.18607 Page 169 Thursday, February 22, 2001 1:29 PM

170 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the Response object (using IResponse), a process covered in Chapter 14. Once
the reference to IResponse is obtained, we can begin to work with the array
parameter.

The macro V_VT is used to determine the variant type of the parameter and to test
whether the parameter is a Variant array or a BSTR. If it is an array, then the object
is copied to a COM helper datatype, _variant_t, which handles all memory allo-
cation for the object. The SafeArray method, SafeArrayCopy, is used to copy the
Variant array into a SafeArray structure, and the SafeArray methods SafeArrayGet-
LBound and SafeArrayGetUBound are used to get the upper and lower boundaries
of the array. Once the boundaries are obtained, these are used to traverse the array,
and the array element values are displayed using the IResponse object reference.

If the Variant parameter is a BSTR value, then the BSTR value is assigned to a BSTR
variable using _bstr_b, a COM helper datatype which handles all memory alloca-
tion. This is then assigned to a standard template (STL) object, wstring. The
wstring template has methods to find a specific character in the string—in this
case the comma (,)—and return a substring of all elements up to that character.
Using this approach, the parameter string is parsed for all array elements, and their
values are then included in the web page returned to the client. The complete
code for tstArray is shown in Example 6-19.

Example 6-19. Visual C++ Component Method That Processes an Array Passed from ASP
Script

// method to parse variant array and print out contents
STDMETHODIMP Carry::tstArray(VARIANT *pVariantArray)
{
 HRESULT hr = S_OK;
 LONG lLBound, lUBound;
 _variant_t vtVal;

 CComVariant vtOut;
 CComPtr<IObjectContext> piObjectContext;
 CComPtr<IResponse> piResponse;
 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
 hr = CoGetObjectContext(IID_IObjectContext,(void **)&piObjectContext);
 if (FAILED(hr))
 return hr;

 // get Context Properties
 hr = piObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);

,ch06.18607 Page 170 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 171

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 if (FAILED(hr))
 return hr;

 // get ASP Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;
 if (FAILED(hr))
 return hr;

 piDispatch = vt.pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&piResponse);

// wrap variant array with _variant_t for resource allocation and
// deallocation
_variant_t vtArray (pVariantArray);

 // get variant type
VARTYPE vttype = V_VT(&vtArray);

// if ARRAY, process as SAFEARRAY
if (vttype & VT_ARRAY)
{

 SAFEARRAY * psa;
 _variant_t vtValue;

 // copy variant array to SAFEARRAY
 hr = SafeArrayCopy(*(vtArray.pparray), &psa);
 if (FAILED(hr)) {

 return hr;
 }

 // get dimensions of array
 // get array bounds
 hr = SafeArrayGetLBound(psa, 1, &lLBound);
 if (FAILED(hr))
 return hr;

 hr = SafeArrayGetUBound(psa, 1, &lUBound);
 if (FAILED(hr))
 return hr;

 // get each value, print out
 vtVal = "<p>";
 for (long l = lLBound; l <= lUBound; l++) {
 SafeArrayGetElement(psa, &l, &vtValue);

 // print out
 piResponse->Write(vtValue);
 piResponse->Write(vtVal);
 }

Example 6-19. Visual C++ Component Method That Processes an Array Passed from ASP Script
(continued)

,ch06.18607 Page 171 Thursday, February 22, 2001 1:29 PM

172 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If the Variant parameter does not contain a Variant array or a BSTR, an invalid
argument error is returned.

The second method that creates and returns an array is not as code-intensive as
the one to process the array. First, add a new method named tstArray2 to the class
interface on the Class View page. The method has one parameter, a return param-
eter of type VARIANT pointer:

[out,retval] VARIANT * pVariantArray

 // clean up
 SafeArrayDestroy(psa);

 }

 // else, if passed in as BSTR
 //(JScript or other as concatenated string)
 else if (vttype & VT_BSTR) {

 // output variant
 _variant_t vtOut;

 char cFind = ',';
 wstring::size_type iPos;
 wstring strFound;

 // pull out variant, convert to BSTR
 _bstr_t bstrMine (vtArray);

 // assign to STL wstring for manipulation
 wstring wstrVariant = bstrMine;

 // parse string
 iPos = wstrVariant.find(cFind,0);
 vtVal = "<p>";
 while (iPos != wstring::npos) {
 strFound = wstrVariant.substr(0,iPos);
 vtOut = strFound.c_str();
 piResponse->Write(vtOut);
 piResponse->Write(vtVal);
 wstrVariant = wstrVariant.substr(iPos + 1);
 iPos = wstrVariant.find(cFind,0);
 }
 vtOut = wstrVariant.c_str();
 piResponse->Write(vtOut);
 piResponse->Write(vtVal);
 }
 else
 return E_INVALIDARG;

 return S_OK;
}

Example 6-19. Visual C++ Component Method That Processes an Array Passed from ASP Script
(continued)

,ch06.18607 Page 172 Thursday, February 22, 2001 1:29 PM

Passing Arrays as Parameters 173

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the case of COM components, all methods have the same return type, HRESULT.
To return a value from a function call, it must be defined as an output, return
value ([out,retval]) in the component IDL.

In the component, a new SafeArray is created using the SafeArrayCreate method,
and values are added to the array elements. The return parameter is defined to be
a Variant array, and the newly created SafeArray is assigned to this parameter and
returned. Example 6-20 shows the complete code for this second function.

Once you add the code for the two methods to the component, compile it; the
DLL is automatically registered for access. To test the page, create three new ASP
pages that are identical to those used to test the Visual Basic component, except
that they create the C++ component (asp0602.arry) rather than the Visual Basic
component (asp0601.arry). Name the files asp0615.asp (the VBScript ASP page),
asp0616.asp (the PerlScript ASP page), and asp0617.asp (the JScript ASP page).

Example 6-20. Visual C++ Component That Creates an Array and Returns It to the ASP Page

STDMETHODIMP Carry::tstArray2(VARIANT *pVariantArray)
{
 HRESULT hr;
 SAFEARRAY * psaiNew;
 SAFEARRAYBOUND aDim[1];
 aDim[0].lLbound = 0;
 aDim[0].cElements = 4;
 long l;
 _variant_t v;

 // equivalent to: Dim aiNew(1 To 8) as integer
 psaiNew = SafeArrayCreate(VT_VARIANT, 1, aDim);
 if (psaiNew != NULL) {
 l = 0;
 v = "one";
 SafeArrayPutElement(psaiNew, &l, &v);
 l = 1;
 v = "two";
 SafeArrayPutElement(psaiNew, &l, &v);
 l = 2;
 v = "three";
 SafeArrayPutElement(psaiNew, &l, &v);
 l = 3;
 v = "four";
 hr = SafeArrayPutElement(psaiNew, &l, &v);
 if (FAILED(hr))
 return hr;
 }
 V_VT(pVariantArray) = VT_ARRAY | VT_VARIANT;
 V_ARRAY(pVariantArray) = psaiNew;

 return S_OK;
}

,ch06.18607 Page 173 Thursday, February 22, 2001 1:29 PM

174 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

(The code and HTML for the pages are omitted here because of the similarity to
those from the pages that test the Visual Basic asp0601.arry component in
Examples 6-16 through 6-18.)

Accessing each of the pages, the results returned are identical to those achieved
when accessing the Visual Basic component. Splitting the process into string and
array manipulation to handle scripting differences is a workable solution in both
programming languages and should continue to be workable in all programming
languages that can be used to create ASP components.

One thing the script-to-component interaction examples in this chapter have not
demonstrated is how to handle errors that occur in the component. This is cov-
ered in the next section.

Error Handling Between
Component and Script
When error conditions occur in the component, the component should handle
them gracefully (or as gracefully as possible). However, the error conditions
should also be returned to the ASP page so that the script can handle them.
VBScript and JScript both have built-in error-processing capability, though the
capability differs between the languages.

In VBScript, you can gracefully handle an error by preceding the call to the com-
ponent method with the following line:

On Error Resume Next

This line directs the ASP scripting engine to continue execution of the script on the
line following the one on which the error occurred. You can then query the Err
object after a method call and test for an error condition:

If Err <> 0 Then

Once you’ve trapped the error you can display the error number, or, preferably,
you can display the error description.

Response.Write Err.Description

With JScript, starting with Version 5 of the scripting engine (included with IIS 5.0),
you can surround a component method call with try…catch statements to trap
an error condition. Unlike VBScript, the next line after the component method call
won’t execute, and control goes immediately to the catch block, but you can con-
tinue processing the rest of the page following the catch block:

try {
 ...
 }

,ch06.18607 Page 174 Thursday, February 22, 2001 1:29 PM

Error Handling Between Component and Script 175

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

catch (exception) {
...
}

The catch block contains a reference to the new JScript Error object. The JScript
Error object, like the VBScript Err object, can be used to retrieve information such
as the error description.

To test error handling with both these scripting languages, create a new compo-
nent named devaspcomperr in the Visual Basic asp0601 project. This compo-
nent will have three simple methods, each of which generates a particular type of
error. The first method, tstError1, will raise an invalid argument error by using the
Visual Basic Err.Raise method and giving the invalid argument value (a value of 5).
The second method, tstError2, raises error 58, or a “File already exists” error. The
third method, tstError, raises error 461, or the method or data member not found
error. The code for three methods is shown in Example 6-21.

To test the error handling, create an ASP page named asp0618.asp that uses
VBScript error handling. This page creates the ASP component and also uses the
Resume Next error handling statement to ensure that the next line of code after
an error occurs is processed. The script, as shown in Example 6-22, invokes the
first error handling method, the one that raises the invalid argument error. In the
script block, the error is accessed and the description is printed out to the page. At
the end, the error value is cleared.

Example 6-21. Raising Three Different Errors Using Three Different Error Values

Sub tstError1()

 err.Raise 5 'E_INVALIDARG error code
End Sub

Sub tstError2()

 err.Raise 58 ' File already exists error

End Sub

Sub tstError()

 err.Raise 461 ' Member not found
End Sub

Example 6-22. ASP Page That Handles Error Conditions Raised in Visual Basic ASP
Component

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Errors</TITLE>

,ch06.18607 Page 175 Thursday, February 22, 2001 1:29 PM

176 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The result of running the page in Example 6-22 is shown in Figure 6-3, where the
error message is displayed along with another message that indicates that the error
handler has finished executing. This demonstrates that the error handling does let
the rest of the page processing finish, rather than abruptly returning an incom-
plete and possibly confusing page to the web page reader.

Next, create a test page named asp0619.asp that uses JScript and JScript error han-
dling. The code and HTML for the second test page is shown in Example 6-23.

</HEAD>
<BODY>

<%
 On Error Resume Next

 ' create ASP component
 Dim cmp
 Set cmp = Server.CreateObject("asp0601.devaspcomperr")

 cmp.tstError1
 If Err <> 0 Then
 Response.Write "Result of function call is "
 Response.Write Err.Description
 Response.Write "<p>"
 Err.Clear
 End If

 Response.Write("After error handling")

%>
</BODY>
</HTML>

Figure 6-3. Error handling using VBScript to print out error message and continue
processing

Example 6-22. ASP Page That Handles Error Conditions Raised in Visual Basic ASP
Component (continued)

,ch06.18607 Page 176 Thursday, February 22, 2001 1:29 PM

Error Handling Between Component and Script 177

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This page encloses the component method call within a try…catch structure and
captures the exception after it has been triggered from the component by the call
to the tstError2 method. In the exception handler, the error message that the file
already exists is displayed.

The page resulting from this test page should be similar to that shown in
Figure 6-3, but with a different error message, of course.

I’ve mentioned JScript and VBScript, and you might be wondering if PerlScript has
error handling capabilities. It does, but the error handling for this scripting lan-
guage actually comes from one of the Win32 Perl modules, Win32::OLE.

The Win32::OLE class has a method named LastError that returns a variable of a
specific type known as a dual type—a value that can be either a numeric or a
string, depending on the context in which it is accessed. Additionally, when an
error condition is raised in a component invoked in PerlScript, the script process-
ing does not automatically fail at the point where the error occurred. Using a com-
bination of both nonfailing script processing and LastError, we can implement
error handling with PerlScript very much like the error handling in JScript and
VBScript.

Example 6-23. ASP Page Handles Error Conditions Raised in Visual Basic ASP Component

<%@ Language="jscript" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>Date</TITLE>
<BODY>
<%
 var cmp = Server.CreateObject("asp0601.devaspcomp");

 // first error
 try {
 cmp.tstError2();
 }
 catch (exception) {
 if (exception instanceof Error) {
 Response.Write("Result of function call is ")

 Response.Write(exception.description);
 Response.Write("<p>");

 }
 }
 Response.Write("After error handling");

%>
</BODY>
</HTML>

,ch06.18607 Page 177 Thursday, February 22, 2001 1:29 PM

178 Chapter 6: ASP Interaction: Scripting and ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test error handling with PerlScript, create another ASP test page and name it
asp0620.asp. Example 6-24 shows the PerlScript error test page. In this page, the
tstError component method, which triggers a member not found error, is called.
The script then accesses the LastError method and concatenates the result with a
string, thereby retrieving the error description rather than the error number. To
clear the error, the error number is deliberately set to zero, which also discards the
error description associated with it.

PerlScript error handling is remarkably similar to that in VBScript and JScript,
except that the error description string is more verbose. Figure 6-4 shows the
result of running this PerlScript ASP.

With error handling, you can provide more meaningful messages for the web page
reader, and you can also provide useful information for yourself, the ASP compo-
nent developer.

Example 6-24. Processing Error Raised in ASP Component, Within PerlScript

<%@ Language="PerlScript" %>
<HTML>
<HEAD>
<TITLE>Testing Dates</TITLE>
</HEAD>
<BODY>
<%

use strict;
use vars qw($Server $Response);
use Win32::OLE;

my $myobj = $Server->CreateObject("asp0601.devaspcomperr");

error
$myobj->tstError();
my $err = 'Result of function call is ' . Win32::OLE->LastError();
$Response->Write($err);
$Response->Write('<p>');

$Response->Write('after error handling');

Win32::OLE->LastError(0);

%>
</BODY>
</HTML>

,ch06.18607 Page 178 Thursday, February 22, 2001 1:29 PM

Error Handling Between Component and Script 179

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Figure 6-4. Result of PerlScript error handling

,ch06.18607 Page 179 Thursday, February 22, 2001 1:29 PM

180
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7

7
Creating a Simple Visual Basic
ASP Component

Visual Basic offers the simplest approach to creating an ASP component. At a mini-
mum, the ASP component developer only needs to create a new project for the
component, add in the class methods and properties, compile the component, and
register it either automatically (through regsvr32.exe) or within a COM+ applica-
tion. However, there are a number of decisions that can impact how the compo-
nent works with the ASP application. Among these are whether the component is
an in-process or an out-of-process component; whether the component is multi-
ple- or single-use; whether the component is multithreaded and, if so, how many
threads it has and when a new thread is created; and what instancing type is used.
Some decisions are made for you based on other decisions. Many you make your-
self, and the decision can literally mean the difference between a component that
assists in the smooth operation of the ASP application and a component that
becomes the worst bottleneck within the application.

By the end of this chapter, you will know the advantages and disadvantages of
creating an in-process component compared to an out-of-process component, the
advantages and disadvantages of a multiple-use component compared to a single-
use and even a global-use component, what Visual Basic does to ensure a thread-
safe component, what factors can influence parameter passing when creating com-
ponent methods, how to register the component, and how to add error handling
and debug the component. We’ll also take a look at performance issues.

ASP components sometimes need to interact directly with the ASP environment,
and this interaction occurs through the use of the ASP built-in objects, such as the
Request and Response objects. You’ll have a chance to work with the core
objects—Application, Session, Response, Request, and Server—in this chapter.

,ch07.18729 Page 180 Thursday, February 22, 2001 1:29 PM

Creating an In-Process or Out-Of-Process Component 181

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating an In-Process or Out-Of-Process
Component
An ASP component in Visual Basic is really an ActiveX object, either a dynamic
link library (DLL) or an executable. An ActiveX DLL is an in-process component,
which means that the component shares the same address space (memory,
resources) and threads as the application that creates the component. An ActiveX
executable is an out-of-process component, which means that this type of compo-
nent has its own threads and resources.

The most common and simplest component to create is the ActiveX DLL, the in-
process component. This type of component shares the same address space as the
client, which can lead to performance gains when the client interacts with the
component. For instance, when a client calls a component method and the com-
ponent and client share the same threading model, as will be discussed, the
method’s arguments are loaded into the client’s own stack. For an out-of-process
component, the method arguments are moved between the two processes through
a process called marshaling—pulling arguments from a stack via a proxy on the
client and putting the arguments onto the component’s stack through a stub. This
extra effort slows the communication process.

Another advantage to in-process components is that if the component is set to use
the apartment-threaded threading model, it will work safely with any client,
including a multithreaded client. The component is created as thread-safe using a
technique discussed later in the chapter.

In spite of the problems with out-of-process components, there are also advan-
tages to using these types of ASP components. First, the component itself can
assign a different thread to each process begun for each client request. Secondly,
out-of-process components do not require the use of the in-process surrogate,
dllhost.exe, to function.

An in-process component must be implemented in the address space
of a client. If the client is remote from the component, the compo-
nent must then be instantiated on some form of surrogate applica-
tion that acts as the component’s client. Microsoft provides dllhost.exe
as the IIS/ASP in-process component surrogate.

The examples using Visual Basic in this and all other chapters are created as in-
process components, primarily because this is the most efficient and most com-
monly used component type.

,ch07.18729 Page 181 Thursday, February 22, 2001 1:29 PM

182 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Component Instancing
A property of ASP components built using Visual Basic is instancing. By default,
the component is set to an instancing value of 5—multiuse. This means that each
request to the component generates a new instance of the object. This type of
instancing enables the component to process more than one request to the object
at any one time by providing a different object instance for each object request, a
behavior that is essential for any component accessed via a web page, as any ASP
component is.

There are six different options for the Instancing property; they may or may not be
available, depending on the type of component that the project creates. The six
different options are the following:

Private
Access to the class is limited to the component itself; no other application can
access the class.

PublicNotCreatable
A class with this instancing type must first be created by the component, usu-
ally as a result of calling a method on a publicly creatable object instance and
a reference to the instance passed to the client.

MultiUse
Probably the most commonly used instancing type, multiuse means that the
component can be instantiated by the client, and it can provide more than one
new object instance for a specific client or multiple object instances for multi-
ple clients.

SingleUse
Creates a new instance of the component, which then provides access to a
single instance of the component class.

GlobalMultiUse
Creates an object instance whose methods and properties can be accessed by
the client without having to create the object and without having to precede
the object’s properties and methods with an object reference. The methods
and properties are treated as if they are global values.

GlobalSingleUse
A new component instance is generated for each component class request,
and the properties and methods of the class are treated as if they are globally
accessible values.

The type of component can determine which instancing types are available for the
component classes. An in-process component (an ActiveX DLL) cannot have a
class that uses SingleUse or GlobalSingleUse instancing, because a component

,ch07.18729 Page 182 Thursday, February 22, 2001 1:29 PM

Component Instancing 183

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

must be able to supply multiple instances of its classes to the client the compo-
nent shares its address space with. Because of this, when assigning a value to the
Instancing property in the Properties window, these two instancing types are not
even displayed in the dropdown list box when an ActiveX DLL is being created.

You can use the global instance types GlobalMultiUse and GlobalSingleUse with
your components to allow for global access to methods and properties. Global
access means that a new object instance does not need to be expressly created,
and the methods and properties are accessed as if they are part of global data.
This requires, however, that a reference to the component be added to a client
project at design time by accessing the References dialog (Project ➝ References).
The component is found within the list of available registered components. Check-
ing the box next to the component adds the component into the project.

Because the client needs a way to attach a reference to a component at design
time, in effect accessing the component’s type library, this also means that the glo-
bal instance types can be used within a Visual Basic project, but not directly within
an ASP page. Based on this latter restriction, using the global instance types is not
really an effective approach with components instantiated within ASP applications.

The PublicNotCreatable instancing type can be used to create a dependent object.
A dependent object is one that is created from within a different object. For exam-
ple, a component can contain a reference to a collection, and each collection
member can actually be another class instance rather than a scalar value. The col-
lection Add method then creates the dependent instance, adds it to the collection,
and returns a reference to the collection element. Access to the dependent object’s
methods and properties occurs through the collection element rather than through
direct access to the object.

The Private instance type is used primarily for classes that are created and
accessed only internally.

For the examples in this book, the other properties, such as Data-
BindingBehavior and Persistable, are kept at their default values.
This includes the MTSTransactionMode property, which, when the
component is used within MTS, controls whether the object runs
within an existing transaction, runs in a new transaction, or can’t be
run within a transaction. This can also be set when the component is
registered with COM+, as discussed in Chapter 5, COM+ Services and
ASP Components and Applications. For now, leave the value at its
default of 0—NotAnMTSObject.

,ch07.18729 Page 183 Thursday, February 22, 2001 1:29 PM

184 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Component Execution and Threads
Visual Basic supports single-threaded ActiveX in-process components, but this is
not an option you want to choose with an ASP component. Using the single-
threaded option means that the ASP component is loaded into IIS’s main STA
rather than on the specific thread that created it. This means that communication
between the component and the page that created it now must occur through a
proxy.

If the object cannot be created on the calling application’s thread, all arguments
passed during method calls must be marshaled. With marshaling, method argu-
ments passed to objects across process or thread (or context) boundaries have to
pass from a proxy on the client side to a stub on the component side, and the
arguments have to be copied into the address space of the component. If the argu-
ment is passed by reference, the argument then has to be sent from the compo-
nent back to the client and copied on the client’s side. This process of passing
arguments from proxy to stub and back again can slow the performance of the
component.

Chapter 4, ASP Components, Threads, and Contexts, discusses the
different threading models.

A preferred choice for ASP in-process components is the STA (single-threaded
apartment) apartment-threading model. This model enforces thread safety because
each thread has its own global data area, which prevents objects on one thread
from contaminating global data for objects on another thread. Additionally, the
component can then be created on the same thread as the calling application if the
models between the two—the client and component—are compatible. In IIS, the
threads that are used to process each page request are based on the STA apart-
ment-threading model, which means that both the page and the component are
created within the same thread.

Out-of-process components also support the apartment-threading model. Built-in
thread safety, the advantage that in-process components have with apartment
threading, is also an advantage of using this threading approach with out-of-
process components. However, out-of-process threads are never created within the
same thread of the client, so function arguments with out-of-process components
are always marshaled.

In addition to the apartment-threading option, the developer can also choose to
create the out-of-process component with a fixed thread pool. With this approach,

,ch07.18729 Page 184 Thursday, February 22, 2001 1:29 PM

Component Execution and Threads 185

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the number of threads available for the component is predetermined at design
time rather than at runtime. Creating a fixed pool of threads and setting the thread
count to greater than a value of 1 uses a round-robin method of assigning the
next object created to the next thread up for assignment. This means that if three
clients create a total of five objects from a single component and the component
has a fixed pool of three threads, the first two threads have two objects each, and
the last has one. The next object created goes onto the last thread. Which object
was assigned to what thread depends only on the order in which the object was
created and which thread was next up for assignment.

An advantage of a fixed thread pool is that the number of threads can be created
to equal the number of processors on a system, if the operating system supports
multiple processors, as Windows NT does. Assigning a fixed pool of threads can
maximize the overall performance of the application utilizing the component.
However, there are also two disadvantages to this threading technique. The first is
that if one object is processing a call, it blocks the thread of execution from any
other object within the thread. If another object also receives a call, it cannot pro-
cess that call until the first object releases the thread after it has finished its own
processing. A second disadvantage to this technique is that load balancing does
not occur. In the previous example, with three clients and five objects, if the two
objects on the first thread are destroyed, the thread no longer has any objects.
However, if a client requests a new object, it is placed on the third thread, which
is the next one up for assignment. This then means that the first thread now has
no objects, the second and third have two objects, and the process load is not bal-
anced evenly across the threads. Combine that with the blocking nature of multi-
ple objects on one thread, and you have some potential degradation in
performance.

A second thread-pooling approach is to assign one thread to each new object cre-
ated by selecting the “Thread per Object” option in the Project Properties dialog.
When the object is destroyed, the thread is also destroyed. This same thread is
also used for dependent objects that are created using an instancing type of
PublicNotCreatable. Unfortunately, dependent objects using their parents’ threads
actually is a major disadvantage to using this threading approach. With dependent
objects, the thread is not destroyed until all objects with a reference to the thread
have released their reference, meaning that the thread is active until all dependent
objects are destroyed. Additionally, without any control over the number of
threads, more threads can be created than processors exist to handle them, and
the performance of the application can actually degrade as the operating system
spends too much time trying to handle thread maintenance in addition to applica-
tion processes.

The explicit use of threads is available only with an ActiveX EXE component. If
the machine that the application runs on has only a single processor, creating a

,ch07.18729 Page 185 Thursday, February 22, 2001 1:29 PM

186 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

fixed pool of one thread is the best approach to take for performance reasons, as
well as the most backward-compatible approach.

Setting a DLL to be apartment-threaded doesn’t mean it can create its own threads.
It just means that when a client creates a component object, that object is created
on the same thread used for the client call. Based on this, no cross-thread marshal-
ing is required. If the client has four threads, each creating a component object,
four object instances are created on four different threads. The thread on which
each object is created is the thread that initiated the object creation. If one client
calls a method on an object that exists in another thread, cross-thread marshaling
is used to ensure that the data is not corrupted by the external call. If multiple
objects are created on the same client thread, the calls to the objects are serial-
ized, which means that one object blocks other objects from receiving and pro-
cessing calls until it is finished performing its own process and releases the thread
of execution.

Note that some actions can force a component to yield control over
the thread of execution before the component is finished perform-
ing its processing. These actions include using a DoEvents function
call, invoking a process or method in an object in another thread,
and raising an event in another object in another thread. You will
want to avoid using DoEvents or any other method that passes exe-
cution control to an object on another thread.

One final note on threads and object creation: if an object is created publicly and
in turn creates a dependent object using the Private instancing type and then pro-
vides a reference to the private object to the client, the private object reference
becomes invalid when the publicly created object is released by the client. If this
invalid reference is accessed, a page fault occurs. To avoid this, use PublicNot-
Creatable for any dependent objects that have methods accessible by the client.

Additionally, if a component object maintains a global reference to another object,
the internally referenced object is not released when the externally referenced
object, the object held by the client, is released. This internally held object is no
longer accessible, but continues to occupy memory and use resources, effectively
creating a memory leak. To avoid this, do not maintain global variable references
to any object internally within a component object.

Future versions of Visual Basic could provide support for a new
threading model, the neutral-apartment threading model. Read more
about this in Chapter 4.

,ch07.18729 Page 186 Thursday, February 22, 2001 1:29 PM

Creating an ASP Project 187

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating an ASP Project
To create an ASP in-process component, open Visual Basic and select the ActiveX
DLL project type, as shown in Figure 7-1. If you were creating an out-of-process
component, you would use the ActiveX EXE option instead.

Visual Basic creates the project files and also creates a default class file. The class
file is where you’ll add your code. The project is named Project1 by default. For
this example, you’ll rename it to asp0701. Additionally, the default class file is
named Class1, and you’ll rename this to First. Rename both the project and the
class by clicking on either and changing the name in the Properties window.

From the Project menu, select the asp0701 Properties menu option. The first prop-
erty page is the General tab, and you’ll see that the component is set to apartment-
threaded by default. At this point, you can add a description for your project that
identifies the component in the Registry; this also is the description used with the
object in the VB Object Browser. Accept all the other settings, but check the Unat-
tended Execution option. This option disables all use of user interface functions,
such as MsgBox. Your component will never interact directly with the client.

The Make tab contains information for making the DLL, and you’ll leave this infor-
mation unchanged. The third tab has compile information. You can adjust the VB

Figure 7-1. Selecting the ActiveX DLL Visual Basic project type

,ch07.18729 Page 187 Thursday, February 22, 2001 1:29 PM

188 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

component code generation and compilation to optimize your component for your
environment. For instance, if your web server is Pentium Pro–based, you could
select the Favor Pentium Pro option. Otherwise, though, leave the values
unchanged.

The fourth tab has component options, including version compatibility. The exam-
ples created for this book are created without compatibility, but you’ll usually
leave the compatibility setting to Project or Binary compatibility. The fifth tab has
debugging options, and you’ll leave these alone at this time.

Once you’ve adjusted the settings for the project, save it by selecting the Save
option in the File menu. This will save the VB project as asp0701.vbp and the
class file as First.cls.

Creating Component Methods
Once you’ve generated the component’s project and class, you can begin to add
methods to your new component.

In Visual Basic, you don’t have to define your variables explicitly before using
them. However, not doing so can cause problems that are difficult to debug. To
force you to always explicitly define your variables, add the Option Explicit
statement as the first line of your class file:

Option Explicit

When this statement is present, any time a variable is used without being defined,
an error results. Option Explicit affects only the module in which it appears. If
you want to require variable declaration in all of the modules of all of your
projects (this is highly recommended), select Tools ➝ Options. In the dialog box
that appears, select the Editor tab and check the Require Variable Declaration box.

Visual Basic component methods are created as either subroutines or functions.
The difference between the two is that subroutines don’t have a return value, but
functions do. The first method you’ll create for your new component is named
sayHello and returns a String.

You can apply modifiers to your methods, such as Public or Private, which
define whether the method is accessible externally (from ASP script). You’ll use
the Public modifier for all component methods exposed to access by script, but
since routines are public by default, you don’t have to add it to your code.

Create the prototype for your component. As you add the prototype header, you’ll
find that Visual Basic adds the closing statement for the method:

Function sayHello(ByVal strName As String) As String

,ch07.18729 Page 188 Thursday, February 22, 2001 1:29 PM

Creating Component Methods 189

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There are two optional argument modifiers, ByVal and ByRef, that indicate
whether the argument is passed by value or by reference. If the argument is
passed by value, a copy of the argument is made and sent to the function. If the
argument is passed by reference, the address to the argument is passed rather than
the value. This means that any changes made to the variable in the routine will be
reflected in the value of the variable once control returns to the calling code. In
contrast, any changes made to a variable passed by value are discarded once con-
trol returns to the calling code. By default, all parameters are passed ByRef unless
explicitly set to ByVal.

How arguments are passed to a method can impact the performance of the object
method, depending on whether the component created is in-process or out-of-pro-
cess. For an out-of-process component, any object that is passed as an argument
by reference won’t work if the client and the component don’t share the same
address space. To allow this type of functionality, the object is copied into the
component’s address space and a pointer to it is then sent as the argument. This
overhead makes this process much slower than if the object is passed by value.
From an opposite perspective, passing an argument by reference can actually
improve performance when passing a reference to larger data, such as a large
string, rather than passing the data itself. However, this performance “gain” actu-
ally degrades in cross-process and cross-thread marshaling, since the data must be
copied via the marshaling process and a pointer created and sent to the method.

For an in-process method call, passing larger strings and arrays by reference can
improve performance, because a pointer for the argument, which is 4 bytes in
size, is sent, rather than the actual data, which is larger than 4 bytes. However, for
passing data such as an Integer, which is only 2 bytes in size, or a Long, which is
4 bytes in size, it is more efficient to pass the argument by value.

A good rule of thumb to follow to achieve good overall performance is to pass
your arguments by value unless you specifically need to modify the parameter
within the component.

The data types of the parameters can be any COM-compatible data type, such as
the String used with your first method. COM is able to convert the data type from
the calling application to the component as long as the conversion is valid. The
Visual Basic String data type is equivalent to the COM-compatible BSTR data type,
so the input and return parameters are created with valid data types.

The most common ASP scripting language used is VBScript. One limitation (or
simplification) with VBScript is that it supports only one data type—the Variant.
This doesn’t impact input or return parameters, since COM can make the neces-
sary conversion between the parameter type and the Variant in the script. How-
ever, this does impact any parameter that you pass by reference, using the ByRef
modifier. If you pass a variable by reference, it must be passed as a Variant.

,ch07.18729 Page 189 Thursday, February 22, 2001 1:29 PM

190 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you’ve created your method prototype, add the code in Example 7-1 to com-
plete the functionality.

After adding the code, create the component DLL, discussed in the next section.

Generating, Registering, Installing,
and Testing the Component
Generating the ActiveX DLL is actually fairly simple. Once you create the class(es)
and their associated methods and properties for the component, save the project.
After saving the project, selecting the “Make componentname.dll” option from
the File menu opens the Make Project dialog to generate the DLL. The name
shown matches the name given to the project. The dialog can be used to name the
DLL that is generated and to find the location where the DLL is placed. The dialog
also has a button labeled Options. This opens a tabbed dialog with the Make tab
selected; it provides a way to add information to the DLL such as a company
name, a title, a version number, and whether there are any command-line argu-
ments or constants for the DLL. Figure 7-2 shows the Make tab with the informa-
tion entered for asp0701.

Returning to the original Make Project dialog, clicking the OK button generates the
DLL. Compiling the component also registers it using the regsvr32.exe utility.

That’s it for creating and registering the DLL. The next step is to test the compo-
nent to make sure the object can be safely created and that its method works. Test
your component using script such as the following:

<%
Dim obj
Set obj = Server.CreateObject("asp0701.First")

Dim msg
msg = obj.sayHello("World!")

Example 7-1. Component Method to Create Hello Message

Option Explicit

Function SayHello(ByVal strName As String) As String

' create message
Dim strMessage As String
strMessage = "Hello " & strName

' return from method
SayHello = strMessage

End Function

,ch07.18729 Page 190 Thursday, February 22, 2001 1:29 PM

Adding Support for COM+ Services 191

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Response.Write "<h3>" & msg & "</h3>"
Set obj = Nothing
%>

In this script, found in asp0701.asp, the object is created using the component’s
ProgID, a combination of the project name and class name, concatenated with a
period. The object’s method is called and the resulting message is printed out to
the web page:

Hello World!

After accessing a component via a web page, you can make modifications to the
code and recompile the object. First, though, you’ll have to unload your component.

When you create your test virtual directory or site for working through these
examples, make sure to set the site to be isolated—running within its own pro-
cess. By doing this, you can unload the ASP application by selecting the applica-
tion’s Properties context menu option in the IIS Management Console and clicking
the Unload button. If you don’t unload the component, you will get a permission
error when you try to compile your object again.

Adding Support for COM+ Services
If your ASP component needs transaction support, or if you want to access the
ASP built-in objects, you’re going to want to access the COM+ Services interfaces.

Figure 7-2. The Make tab with the information for your first ASP VB component

,ch07.18729 Page 191 Thursday, February 22, 2001 1:29 PM

192 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In addition, if you want to add support for just-in-time (JIT) activation, you’re
going to want to use the COM+ Services. Specifically, you’re going to want to
work with the ObjectContext and ObjectControl objects. You could also work with
other interfaces, but we’ll concentrate on these two for the moment.

The ObjectContext Interface

Adding support for ObjectContext to your component adds in transaction support.
When the component is participating in a transaction with other components, all
the components participating in the transaction can mark their effort either a suc-
cess or a failure. Based on any one component failing, the changes all the compo-
nents made can be rolled back. If all components signal successful completion of
their work, then the transaction can be committed as a whole.

The ASP built-in objects are accessed through the ObjectContext object so that
they may be created within the existing context and transaction. In addition, by
creating these components with the use of ObjectContext, COM+ can control
when the ASP built-in object is loaded into memory or released from memory.

The use of COM+, the COM+ interfaces, and the concepts of object
state and just-in-time activation are discussed in Chapter 5.

A constraint to using ObjectContext is that COM+ is multithreaded, which means
that the ASP component must be thread-safe and must be created using the apart-
ment-threading model. Since Visual Basic ASP components should be created only
with the apartment-threaded option, this isn’t going to be a problem.

The COM+ library has a function, GetObjectContext, which returns the ObjectCon-
text object, as shown in the following code:

Dim objContext As ObjectContext
Set objContext = GetObjectContext()

ObjectContext supports several different methods and properties. Two methods
handle transaction support: SetAbort, which aborts the current transaction, and Set-
Complete, which signals that the transaction can be committed if no other process
calls SetAbort. Additional methods are:

Count
Returns a count of the number of ObjectContext properties

CreateInstance
Instantiates an object that has been registered with MTS

,ch07.18729 Page 192 Thursday, February 22, 2001 1:29 PM

Adding Support for COM+ Services 193

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

DisableCommit
Prevents the transaction from being committed

EnableCommit
Allows the transaction to be committed

IsCallerInRole
Determines whether the process calling the server process (that is, a compo-
nent method) is within a specific role

IsInTransaction
Indicates whether a component is within a transaction

IsSecurityEnabled
Indicates whether security is enabled for all components except those running
in the client’s process

Item
Returns one of the built-in objects (Request, Response, Application, Session, or
Server)

Security
Returns the Security property for the object

Chapter 9, Creating an ASP Middle Tier with ADO, and Chapter 13, Working with
MSMQ Components, provide examples of how transaction support works with an
ASP component. In this section, you’ll have a chance to try out some of the other
ObjectContext methods.

To work with ObjectContext, create a new Visual Basic project and name it
asp0702. Name the generated class objcont. To add support for COM+ Services
to your component, click on Project ➝ References from the main menu. In the list
that opens, find and select the COM+ Services type library, as shown in Figure 7-3.

By attaching a reference to the COM+ Services type library, you can access Object-
Context (and other COM+ Services interfaces) through early binding. Early bind-
ing is used whenever you define a variable as a specific type of object:

Dim objContext As ObjectContext

rather than defining the object using the more generic Object:

Dim objContext As Object

You can read more on early binding in Chapter 3, ASP Components and COM.

Once you attach the reference to your component, create a new method, a sub-
routine named testObjContext that has three parameters passed by reference:

Sub testObjContext(vtTrans, vtRole, vtSecurity)

,ch07.18729 Page 193 Thursday, February 22, 2001 1:29 PM

194 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Parameters are passed by reference by default, so the ByRef modifier isn’t neces-
sary. Additionally, parameters are Variants by default, so the data type doesn’t
need to be specified unless you wish to do so for documentation purposes.

After creating the subroutine header, add the code for the rest of the method, as
shown in Example 7-2. In the method, you’ll obtain a reference to ObjectContext
using the GetObjectContext method. Once you’ve obtained the object reference,
call IsInTransaction to see if the component is contained within a transaction, call
IsCallerInRole to see if the user is within a specific role, and call IsSecurityEnabled
to see if security is enabled for the component’s application.

Figure 7-3. Attaching a reference to the COM+ Services type library to your project

Example 7-2. Testing the Environment Using ObjectContext

Sub testObjContext(vtTrans, vtRole, vtSecurity)

Dim objContext As ObjectContext
Set objContext = GetObjectContext()

' get trans status
vtTrans = objContext.IsInTransaction

' get role status
vtRole = objContext.IsCallerInRole("Developer")

' get security
vtSecurity = objContext.IsSecurityEnabled

End Sub

,ch07.18729 Page 194 Thursday, February 22, 2001 1:29 PM

Adding Support for COM+ Services 195

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test your new component by using script such as the following, contained in
asp0702.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp0702.objcont")

Dim blTrans, blRole
obj.testObjContext blTrans, blRole, blSecurity

Set obj = Nothing

' test values
If blTrans Then
 Response.Write "<H3>In Transaction</h3>"
Else
 Response.Write "<H3>Not in Transaction</H3>"
End If

If blRole Then
 Response.Write "<H3>In Role</h3>"
Else
 Response.Write "<H3>Not in Role</H3>"
End If

If blSecurity Then
 Response.Write "<H3>Security Enabled</h3>"
Else
 Response.Write "<H3>Security not enabled</H3>"
End If
%>

Accessing the test ASP page should result in messages that the component is not
in a transaction, that a user who is a member of the Developer role is accessing it,
and that security is not enabled.

To include the component in a transaction, you’ll need to add the transaction
directive to the ASP page to start a new transaction with the page:

<% @ TRANSACTION = required %>

Add this to your ASP test page and then access the page again. Now you should
see that the component is within a transaction.

ObjectContext returned True when you tested for role enrollment even if a person
within that role didn’t access the component. The reason for this is that IsCallerIn-
Role always returns True when the component is an in-process component and
accessed within a client process. You’re accessing the component within the same
thread and process as the ASP page, so IsCallerInRole returns True. To enforce
role-based security, you’ll need to add the component to a COM+ application.

Open the Component Services Administrator, and navigate to and open the COM+
Applications folder. Create a new COM+ server application (name it whatever you

,ch07.18729 Page 195 Thursday, February 22, 2001 1:29 PM

196 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

like), and add asp0702 as a component in the application. Also, create a new role
by right-clicking on the application’s Roles folder and selecting New ➝ Role. You’ll
be asked for the name of the role—give it the name Developer. Next, add users
for the role by right clicking on the Users folder contained within the role and
selecting New ➝ User. You’ll be given a list of users or groups already defined on
your system. Select one or more by clicking the Add button to add each user, as
shown in Figure 7-4. In the figure, I’m adding the default web user for my system
to the Developer role.

To enforce role-based security, access the component properties by right-clicking
on the component and selecting Properties from the menu. Switch to the Security
tab, check the “Enforce component level access checks” option, and check the box
next to the Developer role shown in the bottom of the tab.

When you create a COM+ application, you can choose whether to
run the application as a library or server application. You should
pick the Server option in your development environment in order to
be able to shut down the application when you want to recompile
components. However, when you move your application to test and
production, choose the Library option so that your ASP components
will run in the same thread as the ASP page.

You’ll also need to add security enforcement at the COM+ application level.
Access the application’s Properties, switch to the Security tab, and check the

Figure 7-4. Adding the user IUSR_FLAME to the Developer role

,ch07.18729 Page 196 Thursday, February 22, 2001 1:29 PM

Adding Support for COM+ Services 197

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

“Enforce access checks for this application” option. After making these changes,
access the ASP test page again. Now you’ll see the following in the web page:

In Transaction
In Role
Security Enabled

With the current security settings, if you accessed the web page as someone who
is not in the Developer role, you would get a security violation error instead.

As I said earlier, ObjectContext can control transactions through the SetAbort and
SetComplete method. These methods should always be the last line of code in
your component. The SetAbort method call signals that the component is finished
and that it didn’t succeed in its operation; the SetComplete method also signals
that the component method is finished, but this time the method succeeded. The
signal that the component method is finished is set in one bit, the done bit; the
success of the component is set in another bit. If you want finer control of both
bits, you could access a reference to the IContextState interface through Get-
ObjectContext.

The IContextState interface has methods to set and get the flag to deactivate
the component when the method returns and to commit or abort the transaction.
To set the deactivation for a component, use code similar to the following:

Dim iCntxtSt As IContextState
Set iCntxtSt = GetObjectContext()
iCntxtSt.SetDeactivateOnReturn = True

When the component method finishes, the done bit is set to True and the compo-
nent can be deactivated. To abort a transaction you could use:

iCntxtSt.SetMyTransactionVote (TxAbort)

To commit the transaction, use:

iCntxtSt.SetMyTransactionVote (TxCommit)

If you try to set the done bit to True, but the component is not set up with sup-
port for JIT, you’ll get an error. The next section demonstrates how to add JIT sup-
port for your component and how to work with ObjectControl.

To recompile a component added to a COM+ application defined as
a Server application, right-click on the application name and select
Shut Down from the context menu. To recompile a component that’s
part of a library-based COM+ application, you’ll need to unload the
ASP application from the IIS Management Console.

,ch07.18729 Page 197 Thursday, February 22, 2001 1:29 PM

198 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IObjectControl Interface and JIT

COM+ can control the lifetime of an object based on how the done bit is set when
you return from each component’s method. If the done bit is set, COM+ can deac-
tivate the component; otherwise, COM+ keeps the component active within the
ASP page. With JIT, when the component is deactivated, it isn’t marked for
removal from memory. Instead, it remains in a deactivated state until it is refer-
enced again. Additionally, when an application such as an ASP application creates
an instance of the component, the component isn’t actually created until it’s used.
Both of these actions combined improve the overall performance of the applica-
tion by minimizing how long an application holds a live reference to the compo-
nent. The shorter this time, the less memory used by the application.

To take advantage of JIT activation, your component needs to be installed into a
COM+ application. Once installed, access the component’s Properties dialog,
switch to the Activation tab and make sure the Enable Just-In-Time Activation
option is checked—the JIT option is checked by default, and cannot be unchecked
when transaction support is added.

Normally, global information for a component is set in the Initialize event for the
component, but this won’t work with a component whose lifetime is being man-
aged with JIT activation. However, you can capture the JIT Activate and Deacti-
vate events by implementing IObjectControl within your component.
IObjectControl exposes three methods: Activate, when your component is acti-
vated; Deactivate, when your component is deactivated; and CanBePooled, called
when your component is deactivated, to see if it can be pooled.

Beginning with IIS 5.0 in Windows 2000, you can use the Class_Ini-
tialize event to access ObjectContext or create global objects for your
component, and Class_Terminate for cleanup. These events are now
within the COM+ context processing. However, use Activate and
Deactivate to catch the JIT events.

To see how JIT and ObjectControl work together, create another Visual Basic
project and name it asp0703. Name the class file that’s generated jit. You’ll be
accessing COM+ Services with this component, so attach the COM+ Services type
library to the project. Additionally, you’ll be using the ASP built-in Response
object, so you’ll need to attach a reference to the Microsoft Active Server Pages
object library to the project.

To implement an interface within a component, you’ll use the Implements state-
ment followed by the name of the interface. To implement ObjectControl, add this
line to your component class:

,ch07.18729 Page 198 Thursday, February 22, 2001 1:29 PM

Adding Support for COM+ Services 199

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Implements ObjectControl

You’ll also have to add the three ObjectControl methods: Activate, Deactivate, and
CanBePooled, as shown in Example 7-3. We’ll want to provide feedback when the
Activate and Deactivate methods are called, so create an instance of the Response
object and use it to write out a message in the Activate and Deactivate methods.
You’ll see the reason why when we start testing the new component.

Finally, as shown in Example 7-3, create another method named sayHello but this
time with one String parameter. You’ll use the Response object to write out the
message rather than returning it to the client script.

To test the component, you’ll need to install it into the COM+ application you cre-
ated earlier. Access its properties and make sure that the Enable Just-In-Time Acti-
vation option is selected. Also make sure that the Developer role is checked in the
Security tab. The script that tests the component writes messages to a web page
after the component is created, after the method is called, and after setting the
component to Nothing (releasing it from the application):

Dim obj
Set obj = Server.CreateObject("asp0703.jit")

Response.Write "<p>Before call to message, after creating object</p>"

obj.sayHello "World!"

Response.Write "<p>After call to message</p>"

Example 7-3. Component That Implements ObjectControl for JIT Processing

Implements ObjectControl
Dim objResponse As Response

Private Sub ObjectControl_Activate()
 Set objResponse = GetObjectContext().Item("Response")
 objResponse.Write "<h3>Activated</h3>"
End Sub

Private Sub ObjectControl_Deactivate()
 objResponse.Write "<h3>Deactivated</h3>"
 Set objResponse = Nothing
End Sub

Private Function ObjectControl_CanBePooled() As Boolean
 ObjectControl_CanBePooled = False
End Function

Sub sayHello(ByVal strName As String)
 objResponse.Write "Hello " & strName
End Sub

,ch07.18729 Page 199 Thursday, February 22, 2001 1:29 PM

200 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set obj = Nothing

Response.Write "<p>After setting object to nothing</p>"

The results of accessing the ASP test page, asp0703.asp, is:

Before call to message, after creating object
Activated
Hello World!
After call to message
Deactivated
After setting object to nothing

The messages show that the component is actually activated only when the com-
ponent’s method is called, not when the object is first created. Additionally, the
messages show that the component is deactivated when the object is set to
Nothing, not when the component method is finished. The reason is that there
was no indication to COM+ to deactivate the component.

To indicate to COM+ that the component method is finished, you could create an
instance of ObjectContext or IContextState and use either of these interfaces to
signal that the component is done, as the code fragments earlier show. Alterna-
tively, you can enable Auto-Done for the component’s externally accessible
method by using Component Services to open the reference to the component
until all of its methods are shown. Right click on the sayHello component DLL and
access its Properties dialog. In the General tab, check the “Automatically deacti-
vate this object when this method returns” option.

By enabling support for Auto-Done, the done bit is set for the method as soon as
it returns. After checking the option, try the ASP test page again. This time, the
results are:

Before call to message, after creating object
Activated
Hello World!
Deactivated
After call to message
After setting object to nothing

Now, the Deactivate method is called as soon as the component’s method returns
control to the ASP script.

The use of transactions and JIT are just two of the services provided by COM+ ser-
vices, but they are similar to those provided by MTS in Windows NT. If you’ve
developed ASP components in Windows NT, the next section details how you can
port your MTS components to a COM+ environment.

,ch07.18729 Page 200 Thursday, February 22, 2001 1:29 PM

Converting MTS Components for Use with COM+ 201

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

One other COM+ service, pooling, is not supported with Visual Basic
6.0. The reason is that poolable components must support either the
both-threaded or the neutral-apartment threading model. Neither of
these are supported in VB 6.0.

Converting MTS Components
for Use with COM+
If you’ve worked with ASP components in Windows NT, you might be curious how
they’ll migrate to Windows 2000. Actually, they should migrate relatively easily.

In Windows NT, you attached a reference to the Microsoft Transaction Server
(MTS) library to access ObjectContext and the ASP built-in objects. You’ll find that
the MTS services have been subsumed into COM+. Best of all, your component is
automatically ported into COM+ because the CLSID for COM+ Services is the same
one used with MTS. Open an older NT-based Visual Basic component in Win-
dows 2000, and you’ll see that the MTS type library has been replaced by COM+
Services in the project references.

Your use of ObjectContext for transaction and ASP support remains the same. You
have new options now, such as IContextState, which we just discussed, but
ObjectContext is still supported. You can still use ObjectContext to access the ASP
built-in objects, but you can also access them through another new interface,
IObjectContextInfo. Checking out this interface, you’ll see it has many (but not
all) of the methods and properties of ObjectContext. You create an instance of it
using GetObjectContext as you would ObjectContext.

Between them, IContextState and IObjectContextInfo basi-
cally provide all of the same functionality as ObjectContext, and
more. Microsoft hasn’t officially said that they are replacing Object-
Context, but they do seem to be heading this way.

In COM+, CoGetObjectContext has replaced GetObjectContext. However, Get-
ObjectContext is a wrapper for this new function, so you can continue to use it. In
fact, you have to continue using it, since CoGetObjectContext is not available in
Visual Basic.

In Windows NT, you created an object using the ASP Server’s CreateObject
method or the CreateInstance method in ObjectContext. You didn’t use the VBA

,ch07.18729 Page 201 Thursday, February 22, 2001 1:29 PM

202 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CreateObject function directly, since this created the object outside of the current
object’s context and transaction. In Windows 2000, you can now use CreateObject
directly to create an instance of an object. In fact, there could be performance
gains using this function, as you’ll see in the “Performance Issues” section at the
end of the chapter. If you used CreateInstance, you won’t have to remove this
from your code; the ObjectContext CreateInstance method and the CreateObject
function have exactly the same results in Windows 2000.

Earlier, in Example 7-3, you used the ASP Response object to write out content to
the web page. The next section looks at using the ASP built-in objects from within
Visual Basic components.

Accessing the ASP Built-in Objects
There are several built-in ASP objects you can use to communicate directly with
the environment and with the web page client. Among these are the Application
and Session objects, used to store application- or session-specific information,
respectively; the Response object, to communicate to the client; the Request
object, to get information from the client and the environment; and the Server
object, to handle encoding or to create objects. There is also the ASPError object,
but this is used primarily within ASP script (to provide custom error handling) and
isn’t covered in this chapter.

This section takes a look at accessing the ASP objects using ObjectContext and
demonstrates how to use each of the objects. You can also get a detailed list of
object properties, methods, and collections in Appendix A, ASP Built-in Object
Quick Reference.

The Application Object Interface

This section provides an overview of the Application object, including demonstra-
tions of some of its methods and properties.

An ASP application begins when the first ASP page for the application is accessed
after the web server is started and continues until the web server is shut down or
the application times out after the last person to reference the application logs out.
The built-in ASP Application object can be used to access objects and values that
are defined as application-level objects.

An application-level element can be added to the Application object—specifically
the Application object’s StaticObjects collection—by using an <OBJECT> tag within
the global.asa file, by using script, or from within a component. Each ASP applica-
tion has one global.asa file, located in the root directory of the application, which
contains definitions for both application- and session-level objects. The following

,ch07.18729 Page 202 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 203

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

is an example of an entry within global.asa which adds a reference to a compo-
nent to the Application object’s StaticObjects collection is:

<OBJECT RUNAT=Server SCOPE=Application ID=MyInfo
ProgID = "testmts.mtstest">

</OBJECT>

Separating the Business from the Presentation
Should you use the ASP built-in objects from ASP components? The answer
depends on the purpose of the component.

Many of the components in this book use these objects, primarily the Request
and Response objects. However, the main reason for this is to include as much
of the ASP processing within the component as possible for demonstration pur-
poses. You’ll want to include the ASP objects in your components depending
on the purpose of the component and whether the component must work in
environments other than ASP.

For instance, if you’re creating a business component to access a database and
perform some form of data update or query, you’ll want to restrict the use of
the ASP built-in objects, or not use them at all. By limiting the use of these
objects, your business object can be easily moved to other server-based envi-
ronments.

Additionally, you can modify either the business processing or the presentation
without impacting on the other. If you decide to have your ASP application
output XML instead of HTML, you can make this change without having to
change the business component. If your business processing or data access
changes, this won’t impact your presentation.

However, an advantage of using the ASP objects within your components,
especially for database access, is that you can access form values directly from
the Request object and not have to create a method with several parameters
(or use an array), pull the values from the Request object in your script, and
pass them to the component method.

If your components are part of the presentation layer—such as reusable com-
ponents whose purpose is to generate specific blocks of HTML or XML—then
use the built-in ASP objects within the components.

When you’re developing a business component, you can temporarily use the
ASP built-in objects to assist in the development process. You can then remove
them when the business process works to your satisfaction and you’re ready
to integrate the component into the application environment.

,ch07.18729 Page 203 Thursday, February 22, 2001 1:29 PM

204 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The object defined in the global.asa file can then be accessed from the Applica-
tion object using the StaticObjects collection:

 ' get objects
 Set objContext = GetObjectContext()
 Set objApplication = objContext("Application")

 ' get object from StaticObjects
 Set someObj = objApplication.StaticObjects("MyInfo")

A COM object stored in the Application object’s StaticObjects collection must be
both-threaded or neutral-apartment-threaded, or an error occurs.

Due to memory constraints, avoid adding objects to either the Appli-
cation or Session objects. Use scalar values if possible.

You can alter the global.asa file by removing the definition of an object that uses
the <OBJECT> tag and replacing it with a scripting block that traps the Application
start event and assigns the object to the Application object, as shown in the fol-
lowing code block:

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
' set up application-level constants and variables
Sub Application_OnStart
 Dim value
 value = "some value"
 Application("value") = value
End Sub
</SCRIPT>

This scripting block assigns the scalar value to the Application object’s Contents
collection, rather than the StaticObjects collection. To access the new application-
level object, access the object by name from the Contents collection:

 ' get objects
 Set objContext = GetObjectContext()
 Set objApplication = objContext("Application")

 ' get object from Contents
 value = objApplication.Contents("value")

The difference between these last two code blocks is that the first accesses the
stored value through the Application object’s StaticObjects collection, the second
through the Contents collection. You can also access a value from either the Static-
Objects or the Contents collection directly from the Application object:

Set applApplicationObject = objApplication("MyInfo")

,ch07.18729 Page 204 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 205

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This is actually a shorthand form of accessing an application-level variable from
the Value collection, which combines the Contents and StaticObjects collections:

objApplication.Value("intCounter")

This shorthand syntax works because Value is the default property of the Applica-
tion object.

An application-level variable can be accessed and updated using the Application
object. For instance, within the global.asa file, a script block can be created that is
executed in response to the Application object’s OnStart event. Within this block, a
variable can be added to the Application object’s Contents collection. Then, the
variable’s value can be accessed within script or by a component.

To demonstrate this, adding the following script block to the global.asa file cre-
ates an application-level variable called intCounter:

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
' set up application-level constants and variables
Sub Application_OnStart
 Application("intCounter") = 0
End Sub
</SCRIPT>

The variable intCounter can be accessed within script, but it can also be
accessed from within an ASP component using the Application object and access-
ing the value from the Contents collection.

To try this yourself, create a new Visual Basic project and name it asp0704. Name
the generated class file AppObj. In the component, attach both the COM+ Ser-
vices and the Microsoft Active Server Pages type libraries.

Create a method called OnAccessValue and add the code shown in Example 7-4 to
it. In this code, a reference to ObjectContext is created and used to obtain refer-
ences to both the Application and the Response objects. The counter is accessed
from the Application object’s Contents collection, incremented, and then written
back to the collection. The newly incremented value is then displayed.

Example 7-4. ASP Component That Accesses and Increments a Value from the Application
Contents Collection

Public Sub OnAccessValue()
 Dim intCounter As Integer
 Dim applicationObj As Application
 Dim rspnseObj As Response

 ' access built-in objects
 Dim objContext As ObjectContext
 Set objContext = GetObjectContext()
 Set rspnseObj = objContext("Response")
 Set applicationObj = objContext("Application")

,ch07.18729 Page 205 Thursday, February 22, 2001 1:29 PM

206 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that this code also uses the Application object’s Lock and UnLock methods to
prevent any changes to the Application object until the object is unlocked. This
prevents multiple simultaneous accesses and modifications to the counter object,
which could result in unwanted side effects and corrupted data.

Test the component using the following script, found in asp0704.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp0704.AppObj")

obj.OnAccessValue
%>

To summarize, the Application object has three collections (the StaticObject, Con-
tents, and Value collections) and two methods (Lock and UnLock).

The Application object maintains references to elements at the application level,
but the Session object maintains references to elements for each user session. The
Session object is covered next.

The Session Object Interface

The Session object maintains references to elements for each user session. An ASP
session begins when a user accesses an ASP application page for the first time
since opening a browser or logging unto the application and continues until the
user exits the application (if the application provides this functionality), closes the
browser, or times out.

Many of the Session properties—such as CodePage and LCID—are used specifi-
cally for internationalization. Others have to do with the Session itself, such as its
timeout value and the session identifier used to track the user throughout the

 ' access counter and change value
 applicationObj.Lock
 intCounter = applicationObj.Contents("intCounter")
 intCounter = intCounter + 1
 applicationObj("intCounter") = intCounter
 applicationObj.Unlock

 ' print out new value
 rspnseObj.Write (CStr(intCounter))

 ' clean up
 Set applicationObj = Nothing
 Set rspnseObj = Nothing
 Set objContext = Nothing

End Sub

Example 7-4. ASP Component That Accesses and Increments a Value from the Application
Contents Collection (continued)

,ch07.18729 Page 206 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 207

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

current session. In fact, a limitation of the Session object is that the SessionID is
actually stored as a cookie, which requires that the client browser must support
the use of Netscape-style cookies.

As with the Application object, objects and values can be added to the Session
object and accessed throughout all application pages. You can access a value
directly from the Session object, or you can enumerate or retrieve a specific value
directly from the Contents or StaticObjects collections. To demonstrate this, add a
new class to asp0704 by right-clicking in the Project window and selecting Add ➝

Class Module from the context menu. In the Add Class Module dialog, select the
Class Module option. Name the new class SessnObj.

Unlike the Application object, you can assign apartment-threaded
objects to the Session object’s collections, but to do so ties the Ses-
sion object down to a specific thread—which means that client
requests can be processed only by a specific thread, rather than
whatever thread is next available. This will severely impact perfor-
mance.

In the class, add a method called showContents, which is shown in Example 7-5.
This method enumerates through the Contents collection, tests to make sure the
value being accessed is a string, and, if it is, displays it.

Example 7-5. Enumerating through the Contents collection

Sub showContents()

Dim objContext As ObjectContext
Dim sesnObj As Session
Dim rspnseObj As Response

' access built-in objects
Set objContext = GetObjectContext()
Set rspnseObj = objContext("Response")
Set sesnObj = objContext("Session")

' enumerate through collection
' print out strings
Dim itm
For Each itm In sesnObj.Contents
 If VarType(itm) = vbString Then
 rspnseObj.Write itm
 rspnseObj.Write "
"
 End If
Next

 ' clean up
 Set sesnObj = Nothing

,ch07.18729 Page 207 Thursday, February 22, 2001 1:29 PM

208 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the component, the following ASP script, named asp0705.asp, creates five
entries in the Contents collection and then calls the components method:

<%
Dim obj
Set obj = Server.CreateObject("asp0704.SessnObj")

Session("one") = 1
Session("two") = 2
Session("three") = 3
Session("four") = 4
Session("five") = 5

obj.showContents
%>

The Session object can actually be abandoned and the resources it contains
released. As an example, the following code abandons the Session object and then
accesses the object to invoke the ResponseTest method objWriteHeader:

 Set sessnObject = objContext("Session")
 sessnObject.Abandon
 value = sessnObject.Value("value")

When the Abandon method is called, the Session object is queued for destruction,
but only after the current script is finished. Since the component is invoked within
the script, the component method is finished before the object is destroyed.

In addition to abandoning the Session object, a timeout can be set for the session
to ensure that a session is not left idle for too long. Maintaining an open session
uses server resources, and using a timeout prevents a user from logging onto a
session and then leaving his computer and the session running. Using timers can
also prevent a breach of security for the session, preventing someone else from
accessing the client computer when the user is not present, in turn accessing ses-
sion information that may be confidential. The timeout is set through the TimeOut
property, as follows:

sessnObject.Timeout = 20 ' 20 minute timeout

Once the session has timed out, any of the objects contained within the Session
object are destroyed. Accessing any of the members of a Session object results in
an error, an event that component developers should plan for when creating com-
ponents that depend on Session variables and constants.

Session information can be used to internationalize the application. A user may
select an option to view the ASP application using Russian, and the Session

 Set rspnseObj = Nothing
 Set objContext = Nothing

End Sub

Example 7-5. Enumerating through the Contents collection (continued)

,ch07.18729 Page 208 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 209

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

object’s LCID and CodePage properties reflect the types of strings used in the
application and the type of character set used for the ASP pages, respectively. The
LCID property is used to identify specific information, such as how dates and
times are formatted, how strings are sorted, and other information. The CodePage
property determines how symbols map to a character set. For example, to set the
Russian codepage you would do this:

sessnObject.CodePage = 866

Of course, the client would have to be set up to use the specific CodePage and
LCID values; information on this can be found in the operating system help for
Windows 2000.

The Session object also contains a reference to the Session identi-
fier, SessionID, which should never be used directly by the compo-
nent developer as a database or any other identifier. Its only purpose
is to serve as a session identifier between the client browser and the
web server application.

The Request Object Interface

The Request object contains information about the user request to the web server,
including general browser and client information, as well as specific query string
and form data. Of the ASP objects, the Request object has the most collections:

ClientCertificate collection
Used to retrieve client certificate information

Cookies collection
Used to retrieve cookie information

Form collection
Used to retrieve form element data

QueryString collection
Used to retrieve query string data

ServerVariables collection
Used to access server and client environment information

Unlike the Session and Application objects, the Request object has a short life-
time. A specific instance of a Request object is valid from the time a web page
request is submitted until a response is made from the server back to the browser.
Based on this, component developers should store information that should be per-
sisted beyond a specific page request into component-level variables.

,ch07.18729 Page 209 Thursday, February 22, 2001 1:29 PM

210 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As stated, the Form and QueryString collections contain information passed from a
web page to the application, usually from an HTML form or by concatenating the
information to the URL invoking the ASP application. Which collection is used
depends on how the data is sent.

The Form collection contains all values from a form that has been submitted using
the POST method. The QueryString collection contains all values from a form that
has been submitted using the default GET form posting method or by appending
values directly onto the URL that invokes the ASP application. One characteristic of
this latter type of data transmittal is that you can actually see the data appended as
key-value pairs to the URL.

Regardless of which approach is used and which collection is accessed, the data is
transmitted in key-value pairs. The Request information contained within the Form
and QueryString collections can be accessed by name or by an index number rep-
resenting the value’s location within the collection.

To demonstrate accessing the Form collection, add a new class to asp0704 and
name it ReqObj. Create a method called processForm that accesses the Form col-
lection and lists each name-value pair contained within the form. The code for
your new method can be found in Example 7-6.

Example 7-6. Process Form Elements

' write out Request Form Value
Public Sub processForm()
 Dim objContext As ObjectContext
 Dim rqstObject As Request
 Dim rspnseObject As Response
 Dim x As Variant

 ' access the built-in components
 Set objContext = GetObjectContext
 Set rqstObject = objContext.Item("Request")
 Set rspnseObject = objContext("Response")

 ' for each collection member, print out name
 ' and value
 For Each x In rqstObject.Form
 rspnseObject.Write (x + "=" + rqstObject.Form(x))
 rspnseObject.Write ("
")
 Next

 ' clean up
 Set rqstObject = Nothing
 Set rspnseObject = Nothing
 Set objContext = Nothing

End Sub

,ch07.18729 Page 210 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 211

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the component, you’ll need to create two ASP pages. The first, asp0706.asp,
contains a form with input text elements and a button to submit the form:

<FORM action="asp0707.asp" method=post>
<INPUT type="text" name="field1">
<INPUT type="text" name="field2">
<INPUT type="text" name="field3">
<INPUT type="submit">
</FORM>

After the data elements have values added and the form is submitted, a second
ASP page, asp0707.asp, processes the form results:

<%
Dim obj
Set obj = Server.CreateObject("asp0704.ReqObj")

obj.processForm
%>

The form posting method is POST rather than the default of GET. Using the POST
method results in the field values being added to the Form collection rather than
the QueryString collection, as stated earlier.

The values could also have been submitted as attachments to the URL, using syn-
tax similar to the following:

Test

Regardless of which collection is accessed, the approach is the same as that just
demonstrated.

Another technique to access the posted data is to use the BinaryRead method,
which takes a single parameter, count, that represents the number of bytes of the
client’s posted data to be read, and returns the posted information as raw data
assigned to a SafeArray.

What is a SafeArray? It is a structure that contains the array entries,
but also contains information about the array, such as the number of
dimensions and bounds for the dimensions.

When BinaryRead returns, count is updated to reflect the number of bytes actu-
ally read. Note, though, that using this method precludes the use of the Form col-
lection, and accessing the Form collection precludes the use of BinaryRead. If
using this method, the TotalBytes method provides the size of the data in bytes.
An example of using the BinaryRead function is shown in the following code:

Dim binData As Variant
Dim varCount As Variant

,ch07.18729 Page 211 Thursday, February 22, 2001 1:29 PM

212 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

varCount = rqstObject.TotalBytes
binData = rqstObject.BinaryRead(varCount)

The BinaryRead method can be used to access non-text-based data, to process the
data using some other process or technique, or even to store the raw data for later
access.

When searching through all collections of the Request object using
an implicit search, such as objRequest('somevalue'), if the Form
collection is used within the search, BinaryRead will no longer func-
tion and vice versa.

The Request object also maintains collections for client certificate fields and for
any cookie information sent with the request. The client certificate properties are
defined as key fields; these are:

Certificate
The complete certificate as a binary stream

Flags
The certificate’s flags

Issuer
The certificate’s issuer

SerialNumber
The certificate’s serial number

Subject
The certificate’s subject

ValidFrom
The valid beginning date for the certificate

ValidUntil
The valid ending date for the certificate

To access a client certificate value, use the key name to retrieve the value from the
ClientCertificate collection, as shown in the following code fragment:

subj = rqstObject.ClientCertificate("Subject")

Test to see if the certificate values are present using the IsEmpty function.

To find out about the environment, you can access the ServerVariables collection
and display its name-value pairs. Among the information you’ll see is the raw
HTTP request, path information, server information, encodings, the client browser,
the IP of the URL, and other information.

,ch07.18729 Page 212 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 213

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To find out this information about your own environment, add a second method
to asp0704.RqstObj named showEnvVariables. It enumerates through the Server-
Variables collection and lists each name-value pair, as shown in Example 7-7.

Test the page using the following script, asp0708.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp0704.ReqObj")

obj.showEnvVariables
%>

Figure 7-5 shows some of the results from running this page in my environment.

The Cookies collection contains individual cookies sent with the request. Each
cookie can be a discrete bit of data or can itself contain a hierarchy of cookie
information, stored by keys, and known as a cookie dictionary. The HasKeys
method is used to determine if the cookie information is a single unit (its value is
False) or a cookie dictionary (its value is True).

Cookies are stored on the client and are referenced by the URL of the web page
matching the page being accessed in the current request. The browser searches
the list of cookies for a matching URL and, if found, returns all cookie name-value
pairs as part of the request. These name-value pairs are then stored in the Request
object. If there is a cookie reference at http://www.somecompany.com/first/ and a

Example 7-7. Enumerating Through the ServerVariables Collection and Printing the Values

Sub showEnvVariables()
Dim objContext As ObjectContext
Dim rqstObject As Request
Dim rspnseObject As Response
Dim x As Variant

Set objContext = GetObjectContext()
Set rspnseObject = objContext("Response")
Set rqstObject = objContext("Request")

' for each collection member, print out name
' and value
For Each x In rqstObject.ServerVariables
 rspnseObject.Write x & " = " & rqstObject.ServerVariables(x)
 rspnseObject.Write "
"
Next

' clean up
Set rqstObject = Nothing
Set rspnseObject = Nothing
Set objContext = Nothing

End Sub

,ch07.18729 Page 213 Thursday, February 22, 2001 1:29 PM

214 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

cookie reference for the relative URL (relative to the main web page) of /first, the
browser returns the cookies that match the lowest level URL, which would be the
one at /first/.

Complete documentation on cookies can be found at Netscape’s site
(http://developer.netscape.com/library/documentation/communicator/
jsguide4/index.htm).

The Request object contains references to cookies that have already been created.
The Response object can (among other things) actually set the values of cookies; it
is discussed next.

The Response Object Interface

The Response object has been used throughout this chapter to write output to the
web page; it controls the output returned to the browser after a request. Of all the
built-in objects, the Response object has the most methods and properties:

AddHeader method
Adds an HTTP header to the response.

Figure 7-5. Results of accessing and printing out ServerVariables collection items

,ch07.18729 Page 214 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 215

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

AppendToLog method
Appends a string to the web server log.

BinaryWrite method
Writes the content as raw data without any character conversion.

Buffer property
Defines whether page output is buffered.

CacheControl property
Indicates whether proxy servers can cache output.

Charset property
Appends the character set name to the content type header.

Clear method
Erases buffered output.

ContentType property
Specifies the type of HTTP content; its default is text/html.

Cookies collection
The cookies sent with the response.

End method
Forces ASP to stop processing and return any buffered output.

Expires property
The time until the response expires.

ExpiresAbsolute property
The absolute date and time when the response expires.

Flush method
Sends buffered output immediately.

IsClientConnected property
Indicates whether the client is still connected.

PICS property
The PICS rating.

Redirect method
Sends a 302 redirect status to the browser.

Status property
The HTTP status line.

Write method
Writes output with character conversion to the client browser.

The Write method has been used throughout this chapter to output results to a
web page. However, the Response object’s BinaryWrite method could also have
been used to write output without any character conversion.

,ch07.18729 Page 215 Thursday, February 22, 2001 1:29 PM

216 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Buffering can be controlled from within a component. One limitation, though, is
that the buffering must be turned on before any other output is sent to the page.
Based on this, buffering is usually controlled through scripting by including the
following as the first line in an ASP file:

<% Response.Buffer = True %>

Beginning with IIS 5.0, buffering is now turned on by default. When buffering is
enabled, the Response object’s End method stops any further buffering and forces
an output of the buffer. The Clear method clears the buffer, and the Flush method
forces an output of the buffer.

Should buffering be controlled from within an ASP component? Buff-
ering can control whether any other output is sent to an ASP page or
whether the output is cleared. The buffering methods and proper-
ties should be used sparingly within a component, and their use
should be communicated to component users. A better approach is
to provide error messages and return values and let the ASP applica-
tion developer control buffering from the page.

The ContentType property can be used to specify the type of content being
returned to the client. One use of this property by a component is to determine
whether a person wants to see a web page as it is normally displayed within a
browser, or if she wants to see the actual HTML source. The decision would be
sent as a parameter to the component method:

 ' write content type
 If intDisplayFlag = 1 Then
 rspnseObject.ContentType = "text/HTML"
 Else
 rspnseObject.ContentType = "text/plain"
 End If

The ContentType property can also be used with binary content stored in data-
bases to retrieve the content and display it on the browser in a meaningful for-
mat, such as image/JPEG for a JPEG image.

Most browsers support page caching in some manner, which means that the next
time the page is accessed, the page is pulled from the client cache, not the server,
if the server page has not changed. This can cut down on download times as well
as decrease the load on the web server. However, if an ASP component makes
regular queries to a database and updates a page’s contents at a specified interval,
the component developer can set the page cache to expire in that same interval to
ensure that the most current page is shown to the reader. The Response object has
two properties that control page cache expiration: Expires, which sets the

,ch07.18729 Page 216 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 217

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

expiration to a specific number of minutes, and ExpiresAbsolute, which sets the
expiration to a specific date and time.

You can add an absolute expiration for an ASP page from within a component by
using a line similar to the following:

rspnseObject.ExpiresAbsolute = #12/1/2000 11:00:15 AM#

This tells the browser to add an expiration date of December 1, 2000, at a little
after eleven in the morning, to the page.

In addition to controlling the cache expiration date for a page, the Response object
can set or create a cookie. For example, the following code block adds a cookie
named temp that has two key values, one and two:

rspnseObject.Cookies("temp")("one") = "one"
rspnseObject.Cookies("temp")("two") = "two"
rspnseObject.Cookies("temp").Expires = #5/1/98#

The same string is used for both the key name and key value. In addition, an expi-
ration date is given for the cookie. If a cookie with the name temp did not exist, it
would be created. Otherwise, a new value and expiration date is assigned to the
cookie. Accessing this component from an ASP page displayed by Netscape Navi-
gator generates the following line in Navigator’s cookies file, cookies.txt:

localhostFALSE/FALSE893995200tempTWO=two&ONE=one

If no date is used, the cookie is assumed to expire at the end of the session.

If you try setting a cookie using the Response object and then can’t
see the cookie in Netscape’s cookies.txt file, note that the cookie is
not actually written until the browser is closed. The cookie is actu-
ally maintained in memory until some event forces an output to per-
sist the information.

The AppendToLog method is a great way to record information about the use of
an ASP component. One use of this method is to record information about an
error if one occurs in the component. Based on this approach, an error handler for
a component could have the following code:

ErrorHandler:
' write out error to log
rspnseObject.AppendToLog "Error in rspnseTest: " + CStr(Err.Number) + _
 " " + Err.Description

When an error occurs within the component, a line containing the error number
and error description is written to the server log.

,ch07.18729 Page 217 Thursday, February 22, 2001 1:29 PM

218 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Another Response object method is AddHeader, which adds to an HTTP header
and should be used with caution. This method could be used to ask the client (the
browser) to provide additional authentication for the request, but it could also
result in the page being undeliverable if the header is malformed as a result of
using the AddHeader method. As with other functions that generate header out-
put, the method call must occur before any other page contents are generated,
including the opening <HTML> tag.

The Redirect method sends a status code of 302 with the HTTP response and redi-
rects the browser to another specified URL. This is particularly helpful to direct the
browser based on information extracted from headers accompanying the browser
request, such as the name and version of the browser, and it can be used to pre-
vent older browsers from accessing web pages created with newer technologies.

The Response object’s IsClientConnected checks to see if the client is still con-
nected. This can be used to make sure the client is still connected before perform-
ing any “expensive” operation, such as running a process-intensive calculation or
accessing a database. Don’t put the server through work no one will be receiving.

The Server Object Interface

The built-in Server object is used to create instances of components, as demon-
strated throughout the test scripts in this chapter. In addition, it has methods that
can perform HTML and URL encoding, as well as map a logical location to a phys-
ical location. Beginning with IIS 5.0, the object also has the Transfer method,
which transfers execution to a different web page but still maintains state informa-
tion, including any form or query string information, from the original page.

The Server encoding methods provide ways to convert a string for passing as part
of an URL or for displaying as part of an HTML page. The URLEncode method
uses URL encoding on the string; this does things such as redefining a space as a
plus sign (+). The HTMLEncode method uses HTML encoding on the string passed
to it; this redefines angle brackets such as the left angle bracket (<) into an HTML-
safe string (<), which allows the actual display of the value. The URLPath-
Encode method uses URL path encoding to convert characters, unlike the URLEn-
code method, which is primarily used for converting a query string. The MapPath
method maps the logical path of the ASP page to its physical location in the file-
system.

To try out the encoding methods, add a new class to asp0704 and name it
ServObj. In the class, create a method named encodeStrings that has three input
String parameters. These parameters are used in calls to the encoding methods,
and the results are printed out. Add the code in Example 7-8 to your component.

,ch07.18729 Page 218 Thursday, February 22, 2001 1:29 PM

Accessing the ASP Built-in Objects 219

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the page by passing in three strings to use with each of the encoding meth-
ods, as shown in the following ASP page, asp0709.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp0704.ServObj")

Dim strHTML, strURL, strMap
strHTML = "<H1>This is a test</H1>"
strURL = "% this is a test % ++"
strMap = "/test/test2/"

obj.encodeStrings strHTML, strURL, strMap
%>

The new Transfer method can be used to send a different page to the client based
on some decision. Best of all, this method also preserves the existing state, includ-
ing transactions, cookies, and query string or form information, so that this infor-
mation is available with the new page. Additionally, unlike the Response Redirect
method, the new page is loaded without a round-trip to the client. For example:

Server.Transfer "asp0708.asp"

transfers control from the current page to asp0708.asp.

You should not use Response.Redirect when transferring page control but should
instead use the new Server.Transfer method.

Example 7-8. Using the Server Encoding Methods to Encode Strings

Sub encodeStrings(ByVal strHTML As String, _
 ByVal strURL As String, _
 ByVal strPath As String)

Dim objContext As ObjectContext
Dim srvrObject As Server
Dim rspnseObject As Response

' create objects
Set objContext = GetObjectContext()
Set srvrObject = objContext("Server")
Set rspnseObject = objContext("Response")

rspnseObject.Write srvrObject.HTMLEncode(strHTML) & "
"
rspnseObject.Write srvrObject.URLEncode(strURL) & "
"
rspnseObject.Write srvrObject.MapPath(strPath) & "
"

'clean up
Set rspnseObject = Nothing
Set srvrObject = Nothing
Set objContext = Nothing

End Sub

,ch07.18729 Page 219 Thursday, February 22, 2001 1:29 PM

220 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The only Server property is ScriptTimeout, which can be set to the number of sec-
onds the script containing the component can run before the script times out. This
is primarily used to cancel processing that is taking too long.

Error Handling
The primary purpose of formal error handling using techniques such as raising
errors is to prevent ASP applications from having fatal errors and, if errors occur,
to provide information that can be used to prevent or fix the error.

You and I know that we never create bugs, and errors can never occur with any
code we create, but the powers that be need reassurance to that effect, so this sec-
tion mentions how to provide error handling for the ASP component.

Handling errors within the component follows standard Visual Basic practices of
trapping errors that are raised (also known as exception handling) or using inline
techniques to test return values for errors. The same two techniques can be used
to return error information to the clients that access the component object’s meth-
ods. As a good general practice, the technique of raising an error is preferred,
especially since returning error information as a result of a function call means that
the function result now has to be created as a parameter passed by reference.

Microsoft also now provides exception handling for JavaScript, based
on the ECMAScript third edition inclusion of try…catch exception
handling. Chapter 6, ASP Interaction: Scripting and ASP Compo-
nents, covers error handling within VBScript, JScript, and PerlScript.

Raising errors uses an error data structure, Err, with members such as Number,
Source, and Description. The error numbers and descriptive text are created by the
component developer(s), and the error numbers are communicated to the users
who will use the components within ASP pages. Usually, error-handling codes are
included with whatever documentation is included with the component.

For component-class-to-Visual-Basic-application communication, the base for all
error numbers is a Public constant. This constant is called vbObjectError, and it
returns the correct error number to the class that traps the error, as shown in the
following:

Err.Raise Number:=MY_ERROR + vbObjectError, _
 Description:="custom error"

The code to provide the error handling for the component can be similar to this:

Option Explicit

,ch07.18729 Page 220 Thursday, February 22, 2001 1:29 PM

Error Handling 221

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Const MY_ERROR = 1

...

Err.Raise Number:=MY_ERROR + vbObjectError, "custom error"
End Function

In the ASP page, this particular error can be trapped, and an error message dis-
played, as shown in the following VBScript code:

Const MY_ERROR = 1

strng = tmp.functionCall()
If Err.Number = INVALID_BROWSER + vbObjectError Then
 Response.write("//Error Number: " & Err.Number)
 Response.write("; Error Source: " & Err.Source)
 Response.write("; Error Description: " & Err.Description)
 Err.Clear
Else
 ...
End If

Based on what action should be taken and who should be informed of an error,
the error message can be generated for the page developer as comments, or it can
be displayed as an external message to the person accessing the page. The Clear
method of the Err object is called to clear the error.

Error handling can also occur within the component by using an error handler, or
the error can be passed through to the client without any error handling. To use
an error handler within the component, add in a handler using an On Error Goto
statement similar to the following:

On Error Goto HandleError

The error handler can then handle the error itself, pass the error through to the cli-
ent, or raise a different error number:

HandleError:
 If Err.Number = 11 Then
 ' division by zero
 Err.Raise Number := Err.Number, Description := "some text"
 ...

In this example, the same error number is returned, but the descriptive text can
expand on the error and why it occurred (such as “A division by zero occurred
within an ASP component used . . . ”) so that it’s more descriptive then just
“Divide by zero.”

Error handling can also be especially helpful when debugging complex ASP appli-
cations that include more than one component or include components that them-
selves create other objects, as discussed in the next section.

,ch07.18729 Page 221 Thursday, February 22, 2001 1:29 PM

222 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Debugging
There is more than one approach to debug a Visual Basic ASP component, but the
most common is to use the Visual Basic Debugger.

To debug a component, you first have to isolate the server where the ASP test
page will call the ASP component and then turn off anonymous access. Without
this, you’ll get permission errors because the anonymous user does not have per-
mission to access the DCOM server, used for debugging.

The easiest approach to set up your environment for debugging is to run the
server in isolation (set the ASP application’s isolation level to High) and then
remove the anonymous user by accessing the Security tab of the server’s proper-
ties and unchecking the anonymous user access.

Once you’ve set your environment, compile your Visual Basic component and add
breakpoints to your code (breakpoints are stopping points in your code—the
debugger will stop at these when the component code is run). The Visual Basic
documentation describes how to add breakpoints.

Next, check that your Project Properties Debug setting (within the Properties
Debugging tab) is set to “Wait for component to be created,” and then click the
Run menu option to load the component into memory, waiting to be accessed.

Microsoft has provided an article on debugging ASP components
titled “Debugging ASP Applications, Part 2” and located at http://
msdn.microsoft.com/workshop/server/asp/server04242000-2.asp when
this book was written. Note, though, that most documentation on
debugging is geared to components written for the NT 4.0 environ-
ment, and you may have problems getting debugging to work in
your environment.

Performance Issues
The best performance measure you can take with your Visual Basic ASP compo-
nent is to use good coding practices. These include:

• Access expensive resources such as database connections late, and release
them as soon as possible.

• When implementing your component, avoid using multiple component prop-
erties that the ASP page developer has to set; instead, pass all information to
the component as method parameters. This eliminates the time needed to
access and set each property value individually from the scripted page.

,ch07.18729 Page 222 Thursday, February 22, 2001 1:29 PM

Performance Issues 223

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• Don’t access functions within loops. If you’re accessing a property value such
as a collection’s Count property, access the value in a variable and use the
variable in the loop.

• For the ASP environment, avoid using the Session and Application objects
except for key scalar values. Particularly avoid adding objects to either of
these collections. Adding objects takes memory or can fail if you attempt to
add an apartment-threaded object to the Application object. If you add an
apartment-threaded object to the Session object, you won’t get an error, but
the client’s session is now locked to that particular thread. This means that the
client’s requests can be processed only by that thread, rather than by the next
available thread.

• Use early binding to access external objects by attaching a reference to the
object’s type library to your VB project and accessing the object by name
rather than using the generic Object type. For example:

Dim objConnection As Connection
Set objConnection = CreateObject("ADODB.Connection")

Early binding provides application information ahead of time, eliminating the
need to find this information out at runtime. (See more on early binding in
Chapter 3.)

• In NT, if you created a component that was part of a transaction, you used the
New keyword or the ObjectContext object’s CreateInstance method to instanti-
ate the object to ensure the object would be created within the same context
(and transaction) as the containing object. For example:

Dim someObj As New obj

or:

Dim someObj As obj
Set someObj = New obj

or:

Set someObj = ObjContext.CreateInstance("some.object")

You couldn’t use the VBA CreateObject function, since the component was
created outside of the current context.

In Windows 2000, this has changed. You can now use the VBA CreateObject
function to create the new object within the current context. Not only that, but
you’ll find that using CreateObject can actually be a performance boost over
using the New keyword. The reason is that when you create an object in the
definition line:

Dim someObj As New obj

each time the object is accessed in the code, COM+ does a quick check to
make sure the object’s been created first. If not, it’s created when it’s used. To

,ch07.18729 Page 223 Thursday, February 22, 2001 1:29 PM

224 Chapter 7: Creating a Simple Visual Basic ASP Component

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

avoid this check, use CreateObject or separate the instantiation of the object
and the definition of the object into two lines:

Dim someObj As obj
Set someObj = New obj

If you use CreateInstance, you’re still okay; in Windows 2000, CreateInstance
and CreateObject result in exactly the same behavior.

,ch07.18729 Page 224 Thursday, February 22, 2001 1:29 PM

225
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8

8
Creating ASP/ADO

Components

Ask most people interested in building Internet or intranet applications what they
consider to be the main use for these applications, and chances are they’ll respond
that they want some form of data access. The type of data access can change,
encompassing such applications as online catalogs, transaction systems, or most
forms of information lookup. The key component, however, is that the system
must provide some form of data access on the server.

Microsoft supports a couple of different techniques to access data, including
Remote Data Service (RDS) to access data directly from a client page, as well as
the more traditional Data Access Objects (DAO) to connect to a data source on the
server using the Jet database engine. However, to increase the ease with which
data is accessed from any application, including an ASP one, Microsoft provides
OLE DB, a set of COM interfaces that supports any type of data format as long as
the data source implements an OLE DB provider. To support OLE DB with exist-
ing applications, Microsoft has already provided an OLE DB provider for ODBC,
which means any data source accessed via an ODBC driver can be accessed using
OLE DB.

One of the problems with OLE DB is that it is a relatively complicated technology
to use to access data. To facilitate the use of OLE DB, Microsoft also created
ActiveX Data Objects (ADO), a set of objects built on OLE DB, but hiding most of
the complexity of OLE DB. ADO can be used to access data in multiple formats,
including relational as well as ISAM databases and even plain text.

As for ASP applications, ADO was created originally for use from Internet applica-
tions and can be used directly in server-side scripts as well as within ASP compo-
nents. ADO is used throughout this chapter, and the first section of this chapter
provides a quick overview.

,ch08.18865 Page 225 Thursday, February 22, 2001 1:30 PM

226 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using ADO, data can be accessed directly within the ASP pages, but if the struc-
ture of the data changes—for example, if a column is renamed or removed from a
table, or if a column data type changes—each and every instance of the data item
has to be altered. One very useful implementation of ASP components is to build a
database access layer between the ASP pages and an actual database. So instead of
having several ASP pages making the same direct database access to perform a
recurring operation, such as a customer search, create an ASP component and
have it perform the search and return the results. With this approach, changes to
the underlying data structure, such as the customer table, result in changes to just
the component, rather than to all the pages that use this functionality.

An additional reason to encapsulate data access within ASP components is that
each component can be used many times from many different ASP pages without
having to recode the same data access mechanics each and every time. This
increases the maintainability of the application, as well as making it easier to alter
the access characteristics for the data.

This chapter covers the use of ADO from within Visual Basic ASP components in
order to encapsulate data actions to be used from different ASP pages.

The examples in this chapter use the Weaver database, included
with the examples for the book and described in detail in
Appendix B, The Weaver Database. The examples work with both
Access as well as SQL Server, unless otherwise noted. Note, though,
that the OLE DB providers used—OLE DB Provider for SQL Server
and the OLE DB Provider for ODBC—can generate results different
from yours if you use a different OLE DB Provider.

Accessing ADO from a VB Component
ADO is based on COM, which means you can create the ADO objects directly in
your component using code similar to the following:

Dim objConnection As Object
Set objConnection = CreateObject("ADODB.Connection")

This technique uses late binding to access the ADO Connection object. However,
you’re going to want to take advantage of early binding whenever you can in your
ASP component. Early binding with ADO is implemented within a Visual Basic
component by attaching the ADO type library to the project’s references and then
defining the object as a specific ADO object type, rather than as the more generic
Object datatype:

Dim objConnection As New Connection

,ch08.18865 Page 226 Thursday, February 22, 2001 1:30 PM

Creating a Simple ADO Component 227

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As discussed in Chapter 3, ASP Components and COM, early binding can provide
performance benefits, since information about the object, its properties, and its
methods are known at compile time. If late binding is used instead, this informa-
tion isn’t known and the underlying component implementation must make COM
method calls to find out the information in addition to invoking the object meth-
ods or setting or accessing the object’s properties.

Another reason you’re going to want to attach the ADO type library reference to
your project is to have access to the large number of ADO enumerations provided
by Microsoft in the type library. For instance, to create a forward-only scrolling
Recordset object that uses client-side cursors, you can use the following code:

Dim rs As New Recordset
rs.CursorType = adOpenForwardOnly
rs.CursorLocation = adUseClient

The values used to set the CursorType and CursorLocation properties are enumer-
ated values defined in the ADO type library. Using enumerations is preferable to
hardcoding the actual values because the enumerated values are easier to remem-
ber (since they are mnemonic in nature) and because there is no guarantee that
the underlying values will not change in future versions of ADO (though you’ll
most likely have to recompile your component if the underlying values do change
in the future).

Another indirect benefit of using enumerated values in your code is
that these values are self-documenting, making the code easier to
read as well as maintain.

Based on these two reasons—taking advantage of early binding and access to the
ADO enumerations—you’ll want to add support for the ADO type library to your
ASP components that use ADO.

To add the ADO type library to your component, check the Microsoft ActiveX
Data Objects Library box in the References dialog for the component project.
Figure 8-1 shows the included references for an ASP component that uses the
COM+ Services, Active Server Pages, and ActiveX Data Objects type libraries.

Creating a Simple ADO Component
Before getting into a detailed overview of ADO and looking more closely at the
individual objects in the ADO model, let’s try out a simple ASP component that
connects to a database, performs a query, and processes the results.

,ch08.18865 Page 227 Thursday, February 22, 2001 1:30 PM

228 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Details of using the ADO objects mentioned in this section are pro-
vided later in this chapter, in the section, “The ADO Model.”

Start by creating a new Visual Basic ActiveX DLL project, naming the project
asp0801 and the generated class simple. Next, add in support for COM+ Ser-
vices, the ASP built-in objects, and ADO by adding in the type libraries as shown
in Figure 8-1.

Once you’ve added in support for ADO, you’re ready to start writing your ASP
component.

Creating a Data Source Connection

Regardless of what type of activity you’re performing against a data source, you’re
going to need to connect to it first. You can connect to a data source using a cou-
ple of different methods. You can use the ADO Connection object to make a data
source connection, then perform your data activity on the connection or use one
of the other ADO objects to perform the data activity:

Dim cn As Connection
cn.ConnectionString = "Provider=SQLOLEDB;server=FLAME;database=weaver;
 uid=sa;pwd="
cn.Open

Figure 8-1. Project references after adding in ADO, ASP, and COM+ type libraries

,ch08.18865 Page 228 Thursday, February 22, 2001 1:30 PM

Creating a Simple ADO Component 229

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The connection string just shown breaks down as follows:

Provider
OLE DB provider (the SQL Server OLE DB Provider in this code)

Server
The machine server name

Database
The database name

UID
The user ID of a valid database user

PWD
The user’s password, if any

This connection string specifies all of the connection information necessary to con-
nect to the data source. Other connection strings can reference a DSN (Data
Source Name), configured using the ODBC Administrator within your system (as is
demonstrated with the Access database later in this chapter).

A second technique you can use is to make the connection directly on the Record-
set or Command object, depending on which you’ll need to perform your data
activity. If you’re performing a data source query, then you’ll want to use the
Recordset object, since a recordset is required to process the results.

For our simple component, we’ll connect to the data source using the Recordset
object. In asp0801.simple, define a subroutine named showWebpages and add
the code shown in Example 8-1. In addition to creating the recordset and setting
its ActiveConnection property, the code also creates an instance of ObjectContext
in order to access the ASP built-in Response object. Response is used later to out-
put the results of running the data source query.

Example 8-1. Creating Objects in a Simple Component

Sub showWebpages()

' get ObjectContext
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

' get Respones
Dim objResponse As Response
Set objResponse = objContext("Response")

' create Recordset
Dim rs As New Recordset

' set connection string

,ch08.18865 Page 229 Thursday, February 22, 2001 1:30 PM

230 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the example code, we’re accessing the Weaver database in Access. To work
against the SQL Server version of Weaver, change the ActiveConnection property:

rs.ActiveConnection = "Provider=SQLOLEDB;server=FLAME;database=weaver;
 uid=sa;pwd="

With this code, you still don’t have a connection to the data source because the
recordset has not been opened yet. First, we’ll need to add the text for the query
that generates the recordset.

Building a Simple Query

Connecting to a data source isn’t useful unless you do something once you have
the connection.

The majority of accesses to a data source such as a database usually are based on
queries rather than updates. In your applications, people will create a record (a
unique grouping of data) once, maybe update it a couple of times, and delete it
once. However, during the lifetime of the record, it will probably be involved in
queries more than once, and frequently it will be queried hundreds of times,
depending on the application and the data.

If printing out the words “Hello, World!” is the traditional first test of working with
a new technology, language, or application, then querying data is the traditional
first use of working with data sources.

In asp0801.simple, you’ll modify the existing subroutine to add text for a sim-
ple query against the Weaver database, specifically the WebPage database. The
query text accesses the name, filename, file_size, and page_type_cd columns of
the WebPage table and orders the results by page_type_cd and then by name, as
shown in Example 8-2. (New code that is not found in Example 8-1 appears in
bold.) The query text is assigned to the Recordset object’s Source property, and
the Recordset object’s Open method is called to both make the database connec-
tion and perform the query.

rs.ActiveConnection = "DSN=weaver;uid=sa;pwd="

End Sub

Example 8-2. Component Modified to Include Query and Connection to Database

Sub showWebpages()

' get ObjectContext
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

' get Respones

Example 8-1. Creating Objects in a Simple Component (continued)

,ch08.18865 Page 230 Thursday, February 22, 2001 1:30 PM

Creating a Simple ADO Component 231

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You now have a working ASP/ADO component that connects to the Weaver data-
base and queries the WebPage table. However, your component still isn’t useful
until you process the data that’s returned.

As a quick aside, ordering the result set sorts the records, either
alphabetically, numerically, or both, on the specified columns. You
can order the result set using SQL, as shown in Example 8-2, or you
can use the Sort method on the Recordset object, as will be demon-
strated later in this chapter.

Processing the Returned Result Set

Once the query has been run against the database, your component can now pro-
cess the result. You can process the data directly in the component, return the
data to the client application, or do a little of both by partially processing the
result set and then returning the processed data to the client application.

For asp0801.simple, you’ll process the data directly in the component by tra-
versing the records returned from the query, pulling out the data in all of the
record fields, and then outputting this data to the client in an HTML table. Because
you output the data directly in the component, you need to add support for the
ASP Response object.

Finish the component by modifying the component’s method to add in the query
processing code. As shown in Example 8-3, a While loop is created and the con-
tents are processed until the recordset’s EOF property returns a value of True,
meaning that the last record in the result set has been reached. The data is pulled

Dim objResponse As Response
Set objResponse = objContext("Response")

' create Recordset
Dim rs As New Recordset

' set connction string
rs.ActiveConnection = "DSN=weaver;uid=sa;pwd="

' set query
rs.Source = "SELECT name, filename, page_type_cd, file_size " & _
 "from WebPage " & _
 "order by page_type_cd, name"

' perform query
rs.Open

End Sub

Example 8-2. Component Modified to Include Query and Connection to Database (continued)

,ch08.18865 Page 231 Thursday, February 22, 2001 1:30 PM

232 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

from the recordset’s Fields array by column name. You’ll also add in error han-
dling that traps an error condition and directs the application flow to the code
contained in the error handler. In the handler, the error description is displayed.

Example 8-3. Completed ASP/ADO Component That Performs Query and Processes Results

Sub showWebpages()

' add in error handling
On Error GoTo ErrorHandler

' get ObjectContext
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

' get Respones
Dim objResponse As Response
Set objResponse = objContext("Response")

' create Recordset
Dim rs As New Recordset

' set connction string
rs.ActiveConnection = "DSN=weaver;uid=sa;pwd="

' set query
rs.Source = "SELECT name, filename, page_type_cd, file_size " & _
 "from WebPage " & _
 "order by page_type_cd, name"

' perform query
rs.Open

objResponse.Write "<table>"
While rs.EOF <> True
 objResponse.Write "<tr><td>"
 objResponse.Write rs.Fields("name") & "</td><td>"
 objResponse.Write rs.Fields("filename") & "</td><td>"
 objResponse.Write rs.Fields("file_size") & "</td><td>"
 objResponse.Write rs.Fields("page_type_cd")
 objResponse.Write "</td></tr>"
 rs.MoveNext
Wend
objResponse.Write "</table>"

' clean up
rs.Close
Set rs = Nothing
Exit Sub

ErrorHandler:
 objResponse.Write "While querying against Web Page: " & Err.Description

End Sub

,ch08.18865 Page 232 Thursday, February 22, 2001 1:30 PM

The ADO Model 233

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the component is compiled, all that’s left is to access the component and call
its method, as shown in asp0801.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp0801.simple")

obj.showWebpages
%>

As you can see from this simple component, accessing a data source and process-
ing the results using ADO is not a complex process.

The ADO Model
As was demonstrated in the last section, two key characteristics of ADO are that
the objects are simple to use and that there is no hierarchical dependency of the
objects on each other.

Data Processing Within ASP Components
The simple ASP/ADO component created in Examples 8-1 through 8-3 pro-
cessed the records resulting from the query directly in the component method,
outputting the results to an HTML table. This is a handy technique to use to
test queries while you’re building the component, but it isn’t one you’re going
to want to consider using in your production applications.

One of the primary reasons to create ASP components is to build a layer of
separation between the business processes and the presentation. By enclosing
all accesses to the data source within the component, changes to the ASP appli-
cation code that access the components are lessened. Additionally, if the pre-
sentation changes—perhaps XML is used instead of HTML for building the web
pages—there is little or no impact on the components.

However, when the lines between the presentation layer and the business layer
are blurred, as they were in Example 8-3, then changes in either the data or
the presentation impact both the page that creates the component and on the
component itself.

The bottom line is, while you’re learning how to work with ADO or are testing
out queries or other types of data access, it’s OK to process the results directly
in the ASP component. However, once you start moving your component into
the application environment, pull the presentation code out of the component.

,ch08.18865 Page 233 Thursday, February 22, 2001 1:30 PM

234 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ADO contains only a small number of objects, and therefore it is a relatively easy
technology to begin to use. As an example, you can connect to a database and
perform a SQL command using only a few lines of code, such as the following:

Dim cn As New Connection
cn.Open "DSN=weaver;uid=sa;pwd="
cn.Execute "insert into PageType values('" & _
 UCase(strCode) & "','" & strDesc & "')"

Additionally, ADO has been restricted to handle specific types of data access, such
as data queries and updates to business data. There are no defined objects within
ADO to handle metadata manipulation, and there are no objects to handle more
complex multidimensional queries. Instead, Microsoft created additional, compan-
ion data models to handle both of these (ADOMD for multidimensional data
access, and ADOX for metadata access and updates), keeping ADO itself focused
on the objects necessary to work with business data.

As for the lack of enforced hierarchy of the objects, in ADO there is no require-
ment that you must create one object before you can create another, as there is
with technologies such as DAO. For instance, you can both connect to a data
source and retrieve a result set using just the Recordset object with ADO. DAO, on
the other hand, enforces a hierarchy by allowing access to some objects, such as a
Recordset, to occur only through other objects, such as a Database object. By not
enforcing a hierarchy with ADO, the amount of code is kept to a minimum—con-
taining only that which is necessary to perform the data operation.

ADO consists of a small set of interrelated objects, each designed to perform spe-
cific functionality. Originally, the set of ADO objects—or model—consisted of
seven objects: Connection, Command, Recordset, Field, Parameter, Property, and
Error. Starting with ADO 2.5, two additional objects have been added to the
model: the Record and Stream objects.

Two other objects, DataControl and DataFactory, won’t be covered
in this book. These objects are used to facilitate the use of Remote
Data Service (RDS), a technology that supports remote access of data
from a client facilitated by an intermediary such as IIS. RDS is out-
side the scope of this book.

The Connection Object

Earlier I mentioned that you could connect to a data source directly with a Record-
set object. However, if you’re making more than one access to the same data store
from within a block of code, you should use the ADO Connection object to

,ch08.18865 Page 234 Thursday, February 22, 2001 1:30 PM

The ADO Model 235

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

manage the connection. Additionally, if you need to control other aspects of the
connection such as timeouts, you’ll want to use the Connection object.

The Connection object has several methods and properties, but the most com-
monly used are the ConnectionString property and the Open method. Setting the
ConnectionString property and calling the Open method are used to create a con-
nection to a data source. Alternately, you can simply call the Open method and
pass it a valid connection string as an argument.

The connection string is made up of argument-value pairs, some of which are han-
dled by the Connection object and some of which are passed directly to the OLE
DB provider. Of these, the Provider argument is used to specify a particular OLE
DB provider. To demonstrate, you can create a connection to a SQL Server data-
base by specifying the SQL Server OLE DB Provider and then naming the server,
database, username, and password:

cn.ConnectionString = "Provider=SQLOLEDB;server=FLAME;database=weaver;
 uid=sa;pwd="

In this example, the SQL Server OLE DB Provider, SQLOLEDB, is specified. The
other arguments—server, database, username, and password—are then passed to
the provider directly.

The username used in the examples throughout this chapter is sa,
created as a default user for a SQL Server database. If you’re creat-
ing an application to be used in an intranet or on the Internet, the
first thing you’re going to want to do is remove the default sa user—
it is a known security hole, and hackers have been known to access
data from Internet sites merely by using the sa username.

Instead of specifying an OLE DB provider in the ConnectionString, you can refer-
ence a DSN, or Data Source Name, of a data source configured through the ODBC
Data Administrator. Using a DSN, as the following demonstrates when connecting
to a DSN named weaver, doesn’t require that you code information about the
server and the database name directly in your components:

Cn.ConnectionString = "DSN=weaver;uid=sa;pwd="

By using a DSN, you can change the underlying server and database without hav-
ing to change the component code. However, the downside to this approach is
that you are locked into using ODBC through the generic and less efficient OLE
DB provider for ODBC, rather than an OLE DB provider designed specifically for
the data source and therefore more optimized. You’ll also reference the OLE DB

,ch08.18865 Page 235 Thursday, February 22, 2001 1:30 PM

236 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

provider for ODBC when you create a data source connection string that refer-
ences a specific ODBC provider, as the following demonstrates:

cn.ConnectionString = "driver={SQL Server};server=FLAME;uid=sa;
 pwd=;database=weaver"

Instead of specifying the provider in the ConnectionString property, you can set it
directly with the Provider property:

cn.Provider = "sqloledb"

In addition to setting a connection string or an OLE DB provider, you can also
access or change other Connection object properties.

Several Connection properties (as well as properties of the other ADO objects) are
set with values contained in predefined enumerations. By attaching the ADO type
library to your VB component projects, you can use these enumerations when set-
ting property values. For instance, you can change the CursorLocation for an ADO
connection to use client-side cursors by setting the property to adUseClient
before the connection is opened:

cn.CursorLocation = adUseClient

Instead of specifying connection information in properties, you can also specify a
data source connection string directly as a parameter to the Connection object’s
Open method:

cn.Open "DSN=weaver", "sa"

The Open method has optional parameters for the connection string, the user-
name, the password associated with the username, and an enumerated value,
ConnectOptionEnum, which determines whether the connection method returns
before the connection is made (i.e., it executes asynchronously) or after the con-
nection is made (synchronously). By default, the Open method runs synchro-
nously—the rest of the component code is not executed until after the connection
has been made.

Embedded SQL (SQL hardcoded directly in the component code) or a stored pro-
cedure can be called using the Connection object’s Execute method. The com-
mand or query is passed as a string in the first parameter and an optional long
value to hold the number of affected records when the method call returns can be
passed as the second parameter.

Additionally, a third optional (though recommended) parameter can hold either a
CommandTypeEnum value or an ExecuteOptionEnum value that defines what and
how the command is to be executed. If your component is calling a stored proce-
dure or performing some other action that doesn’t return a recordset, you can

,ch08.18865 Page 236 Thursday, February 22, 2001 1:30 PM

The ADO Model 237

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

improve its performance by setting the Options argument to adExecuteNo-
Records to signal that a returned recordset is not expected:

cn.Execute sqlString, , adExecuteNoRecords

One type of SQL statement that doesn’t return records is a database update. To
insert a record, you could use the following with the Connection object:

' perform database operation
cn.Execute "insert into PageType values('" & _
 UCase(strCode) & "','" & strDesc & "')", ,adExecuteNoRecords

The Connection object’s Execute method always returns a Recordset object unless
adExecuteRecords is specified, though the value can be ignored when process-
ing SQL that doesn’t result in returned data. The returned recordset is defined to
have a forward-only, read-only cursor, which means that you can only scroll for-
ward in the set, and you can only read each record’s field values—they can’t be
changed.

The CommandTypeEnum enumerated value can also be used in the Options
parameter to define what type of command is being executed. By default, the
Connection object is set to a CommandTypeEnum of adCmdUnknown, but you can
change this when you invoke the method:

Set rs = cn.Execute("WebPage", ,adCmdTable)

This Connection query returns a recordset consisting of all of the records from the
Weaver database’s WebPage table. Only the table name needs to be provided
because the adCmdTable value used as the Options argument indicates that
CommandText is to be interpreted as a table name.

If you’re accessing a data source that doesn’t support transactions as they are
defined with COM+ (see Chapter 5, COM+ Services and ASP Components and
Applications), you can still control transactions for a connection using the Connec-
tion object’s BeginTrans, CommitTrans, and RollbackTrans methods. They have the
following syntax:

ConnectionObject.BeginTrans
ConnectionObject.CommitTrans
ConnectionObject.RollbackTrans

To begin a specific transaction, you call BeginTrans, and all activities that then
occur against the connection maintained by the Connection object are added to
the pending transaction. At the end of the transaction, you can then call Commit-
Trans to commit all data updates, as follows:

cn.BeginTrans
... data updates
cn.CommitTrans

,ch08.18865 Page 237 Thursday, February 22, 2001 1:30 PM

238 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Alternately, if one of the operations fails, you can call RollbackTrans to roll back
changes.

The transaction methods won’t work with all data sources. One way to check to
see if transactions are supported for a provider is to access the Connection object’s
Properties collection and see if it contains a name-value pair for “Transaction
DDL”. The Properties collection contains information about the object, in this case
the Connection object, as a provider implements it. Check the documentation
included with your OLE DB provider to see what it supports. Or you can output
the entire contents of the Properties collection and see what’s supported directly.

Use the Connection object’s transaction methods to control transac-
tions with Access, which doesn’t have COM+ transaction support.
For SQL Server, though, you’ll want to use ObjectContext and the
transaction methods supported with COM+.

To output the Properties collection, create a new Visual Basic ActiveX DLL project,
name it asp0802, and name the generated class Conn. In the class, you’ll add a

Asynchronous Commands in ASP Components
ASP is a server-side technology that processes one or more commands on the
server and returns the results of running the commands to the client. Based on
this, the use of asynchronous commands is not usually effective and in fact can
be counterproductive.

For instance, if you execute a database query that returns data that must then
be output to the client in some way, you’re not going to want to execute this
query asynchronously —how will you pass the results of the query to the client
once the query is finished? The ASP page that started the database process has
already returned to the client.

On the other hand, if you have a command that updates data rather than per-
forms a query, and you don’t care about providing any feedback to the client
that the command executed correctly, you can execute the command asyn-
chronously and return the ASP page before the command is finished executing.
However, use caution with this approach—most people want to know if the
results of their effort have bombed or not.

However, not all data source driver providers support all uses of Command-
TypeEnum. The Execute code just shown to access the WebPage table gener-
ates an error if you try the code with Access using the OLE DB Provider for
ODBC but works without a problem with SQL Server.

,ch08.18865 Page 238 Thursday, February 22, 2001 1:30 PM

The ADO Model 239

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

method that traverses the Connection object’s Properties collection, displaying val-
ues using the built-in ASP Response object. To support this code, you’ll need to
add in three type libraries: the COM+ Services library to access ObjectContext, the
Microsoft Active Server Pages Object library to access the built-in ASP objects, and
the Microsoft ActiveX Data Objects library.

Next, add the code for the component’s method. The method, showProperties,
creates an instance of the Connection object and connects to an Access 2000 data-
base version of the Weaver database. The method, which is shown in
Example 8-4, also uses ObjectContext to instantiate the Response object to list
each element in the Connection object’s Properties collection.

Once compiled, when the component is accessed from the following ASP page,
asp0802.asp, the Connection object’s Properties collection is displayed to the client:

<%
Dim obj
Set obj = Server.CreateObject("asp0802.Conn")

obj.showProperties
%>

Example 8-4. Iterating Through Connection Properties Collection for Weaver Database
Implemented in Access

Sub showProperties()

' get ObjectContext
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

' get Respones
Dim objResponse As Response
Set objResponse = objContext("Response")

' connect to database
Dim cn As New Connection
cn.ConnectionString = "DSN=weaver;uid=sa;pwd="
cn.Open

' traverse collection, print out values
Dim prp
For Each prp In cn.Properties
 objResponse.Write prp.Name & " = " & prp.Value
 objResponse.Write "
"
Next

cn.Close
Set cn = Nothing

End Sub

,ch08.18865 Page 239 Thursday, February 22, 2001 1:30 PM

240 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Not all providers have the same entries in the Properties collection. If you modify
the showProperties code to access Weaver from SQL Server, using the SQL Server
OLE DB Provider:

' connect to database
Dim cn As New Connection
cn.Provider = "SQLOLEDB"
cn.ConnectionString = "server=FLAME;uid=sa;pwd"
cn.Open

' set default database
cn.DefaultDatabase = "weaver"

and run the example, you’ll get a different list of properties, as well as different
values for the same properties. For instance, the value defined for the property
“Maximum tables in select” is 256 tables for SQL Server but only 16 tables for
Access using the OLE DB Provider for ODBC.

Another Connection object collection is the Errors collection, which contains any
data source errors or warnings generated as a result of running one or more data-
base statements. These aren’t ADO-specific errors and therefore don’t always trig-
ger the ADO error handling that can be trapped using On Error exception
handling. However, errors that occur with the data source usually generate a trap-
pable error, which can be processed in VB using error handling:

On Error GoTo ErrorHandler
...
ErrorHandler:

 Err.Raise Err.Number, Err.Source, "Accessing PageTypes: " &
 Err.Description

I’ve covered the Connection properties and collections and several of the object’s
methods in this section, but there is one more method of the Connection object
that merits discussion: the OpenSchema method. If you’re creating an application
that uses ad hoc reporting, or if you need to get information about the data source
at a metadata level, than the OpenSchema method should be of particular interest
to you. With this method, you can actually query for information about the data
source itself, such as table or column names, access privileges, indexes, and so on.

What is metadata? Metadata is data about data. In other words, it is
information about the data source itself, usually stored in a database
catalog or administration tables.

OpenSchema takes three parameters, the second two being optional. The first
parameter takes one of the SchemaEnum values, which specify what type of

,ch08.18865 Page 240 Thursday, February 22, 2001 1:30 PM

The ADO Model 241

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

metadata information to return. For instance, to get information about tables in the
database, you would specify the adSchemaTables value when calling Open-
Schema:

Set rs = cn.OpenSchema(adSchemaTables)

The result of this method call is a recordset containing information about the data-
base tables, including table name, its type (i.e., view or table), when it was cre-
ated or last modified, and so on.

The next parameter in OpenSchema is an array containing query criteria that are
applied to the returned data. The number of entries in the array is determined by
which SchemaEnum value is used for the first parameter. For instance, to specify
that OpenSchema return only information about tables associated with the Weaver
database in SQL Server, you would use the following OpenSchema command:

Set rs = cn.OpenSchema(adSchemaTables, Array("weaver", Empty, Empty, Empty))

The final parameter for the method is a schema identifier, if the provider supports
schemas. Usually, this isn’t provided.

To demonstrate the use of OpenSchema, we’ll create a third component, naming
the VB project asp0803 and the generated class schema. After creating the project,
add the type libraries for COM+ Services, ASP, and ADO.

Example 8-5 shows the code used for the component’s method, showColumns. In
it, a connection is made to the SQL Server version of the Weaver database, and the
OpenSchema method is called, passing in the adSchemaColumns SchemaEnum
value. We’re only interested in looking at the columns for the Weaver database, so
weaver is passed as the table catalog name in the first array element of the sec-
ond parameter. When the recordset is returned from the method call, it’s tra-
versed, and the table name, column name, and data type identifier are displayed.
To prevent the repetition of the table name, a string containing the previous table
name is kept, and it’s compared with the table name of the current record—if the
two are the same, the table name is not displayed.

Example 8-5. Component Method That Uses OpenSchema to Pull in Weaver Database Table
and Column Names

Sub showColumns()
' get ObjectContext
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

' get Respones
Dim objResponse As Response
Set objResponse = objContext("Response")

' connect to database

,ch08.18865 Page 241 Thursday, February 22, 2001 1:30 PM

242 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The component is created in an ASP page and the method is called by asp0803.
asp, as follows:

<%
Dim obj
Set obj = Server.CreateObject("asp0803.schema")

obj.showColumns
%>

The result of calling showColumns is a web page with a listing of the Weaver
tables and columns.

The Recordset Object

As you found in the last section, you can connect to a data source with or without
using the Connection object. Unlike the Connection object, though, the Recordset
object is required if you’re expecting returned data that you want to process.

Dim cn As New Connection
cn.Provider = "SQLOLEDB"
cn.ConnectionString = "server=FLAME;database=weaver;uid=sa;pwd="
cn.Open

' query schema
Dim rs As Recordset
Set rs = cn.OpenSchema(adSchemaColumns, Array("weaver",
 Empty, Empty, Empty))

' process schema results
objResponse.Write "<table border=2>"
Dim strTable As String
Dim curTable As String
Do While Not rs.EOF <> True
 objResponse.Write "<tr><td>"
 curTable = rs("TABLE_NAME")
 If curTable <> strTable Then
 strTable = curTable
 objResponse.Write strTable
 End If
 objResponse.Write "</td><td>"
 objResponse.Write rs("COLUMN_NAME") & "</td><td>"
 objResponse.Write rs("DATA_TYPE") & "</td></tr>"
 rs.MoveNext

Loop

End Sub

Example 8-5. Component Method That Uses OpenSchema to Pull in Weaver Database Table
and Column Names (continued)

,ch08.18865 Page 242 Thursday, February 22, 2001 1:30 PM

The ADO Model 243

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

A recordset can be created directly, or it can be created as the result of running a
query with the Command or Connection object. For instance, to perform a simple
query with a recordset, you could use code similar to the following:

rs.Open "select * from WebPage", "DSN=weaver;uid=sa;pwd="

The first parameter in this code is the SQL query, and the second is the connec-
tion string for the database connection.

Alternatively, you can execute the same database query with the Connection object:

cn.Open "DSN=weaver;uid=sa;pwd="
Set rs = cn.Execute "select * from WebPage"

The end result of either query is the same—a returned result set containing all
WebPage records in the Access version of the Weaver database

The Recordset object has more properties and methods than any of the other ADO
objects. You’ve seen the use of the Source property to define the source used to
build the Recordset object. You’ve also seen the database connection coded
directly into the Recordset object’s Open method. Instead, you can also set the
ActiveConnection property of the Recordset object to an open Connection object:

Set rs.ActiveConnection = cn

Notice that the Set statement was used when setting the ActiveConnection prop-
erty. If Set had been omitted, the Connection object’s connection string would be
assigned the ActiveConnection property (since ConnectionString is the default
property of the Connection object), and another connection would be opened
when the Recordset object’s Open method was called:

rs.ActiveConnection = cn
rs.Open

In the recordset examples, no properties other than Source and ActiveConnection
were used when creating the result set. This means that the other properties that
could impact on the behavior and type of recordset returned are set to their
default values.

Two of these other properties control the result set cursor. Cursors are used to
control navigation through the result set, as well as the visibility of the result set to
other applications. The type of cursor can be set through the CursorType prop-
erty. By default this property is set to adOpenForwardOnly, which means that you
can only scroll forward through the recordset. However, you can set this to a dif-
ferent value before the recordset is opened. For example, to create a dynamic cur-
sor through which your application can scroll forward and backward and one in
which all updates, deletions, and insertions into the result set are visible, use the
adOpenDynamic cursor type:

rs.CursorType = adOpenDynamic

,ch08.18865 Page 243 Thursday, February 22, 2001 1:30 PM

244 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The CursorLocation property determines which cursor service is used and is set to
adUseServer, a server-side cursor, by default. You can change this to client-side
cursors using the following syntax:

rs.CursorLocation = adUseClient

Client-side cursors are used with disconnected recordsets.

By default, the records in the result set can only be read—they can’t be modified.
Recordset locking is controlled by the LockType property, which is set to
adLockReadOnly by default. If you’re working with disconnected recordsets,
which use a client-side cursor, the only LockType settings supported are adLock-
BatchOptimistic or adLockReadOnly. If you’re using a server-side cursor, the
adLockOptimistic setting should be sufficient for your ASP applications, unless
there’s a high likelihood of two users trying to update the same record at the same
time. If this is possible, then you’ll want to use the adLockPessimistic setting so
that the application that makes the first modification to the record locks out other
modifications until the modifications are committed to the database.

An online store offers an example of a potentially contentious database update.
Consider the possibility of two people ordering the same product at the same time
when only one of that product is in stock. The first person to submit the order for
processing also has several other items in his shopping cart that he wants to buy.
In the meantime, a second person also submits an order, but she has only one
item in her cart, so her entire order is processed more quickly.

During order processing, the inventory for the product is updated, and only orders
for in-stock items are processed. In fact, triggers on the database won’t allow the
inventory for any item to fall below a count of zero (no items).

If optimistic locking were used, then the second person’s order could access, mod-
ify, and more importantly update the inventory record for the product while the
first person’s order was still being processed. When the inventory record is
updated (that is, when the record is actually being modified), a lock is set on the
record that prohibits other changes. When the order is finished and the record
modifications are committed, then the inventory count is reduced to zero. The sec-
ond person gets the product. When the first person tries to update the inventory
record, even if the second person’s order processing no longer has a lock on the
record, his update is rejected because the inventory is now at zero and no more
orders of the product will be accepted. This means that the first person in this sce-
nario would not get the item, since his order took longer to process because it
included more items. This is not the behavior we want to encourage from our ASP
applications.

However, if pessimistic locking were used, as soon as the order processing for the
first person’s order made an edit to the inventory record for the item (actually

,ch08.18865 Page 244 Thursday, February 22, 2001 1:30 PM

The ADO Model 245

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

made a change to a value in the Recordset’s Field collection for that record), the
record would be locked, even though the rest of the order may take some time to
finish (our shopper has a lot of money to spend). The second shopper’s order pro-
cessing couldn’t update the inventory until the first shopper’s order was finished.
Based on this, the first person to submit the order for the item would get the
item—and the later shopper would then be out of luck.

Of course, a downside to pessimistic locking is that locks are main-
tained on records for a longer time than would occur with optimis-
tic locking—and processing record updates could take longer.

There are also several Recordset properties that have to do with how a result set is
retrieved for the Recordset object. However, many of these aren’t effective in a
web-based application. For instance, you can set a cache size for the recordset
through the CacheSize property, but if your application processes an entire record-
set on the server before returning the web page to the client, you’ve not gained
anything by setting this property. (Caching controls the number of records main-
tained on the client at one time for a query.)

The same applies to paging—paging isn’t effective when you process the entire
result set before returning to the client. However, you can use paging with an ASP
application—the key is to persist the dataset.

To demonstrate working with paging, create a new Visual Basic component and
call the project asp0804. Rename the generated class to page. Add references to
the ADO, ASP, and COM+ Services type libraries to the project. Also add the
Microsoft Scripting Runtime library to the project for access to the FileSystem-
Object object.

This example has two methods: one to create a recordset that is then saved to a
file, and one to use the ASP Response object to list the records for a specific
recordset page. Both methods are called from the same ASP page.

Add the code for the first method, createRecordset, which is shown in
Example 8-6. This method opens a recordset with an embedded SQL query—a join
on the WebPage and Directory tables—and then persists the recordset to a file
using the Recordset object’s Save method. The Save method persists a recordset in
either an XML (Extensible Markup Language) or ADTG (Advanced Data Table-
gram) format to a file or to an ADO Stream (discussed later). Before the query is
made, though, the FileSystemObject object is used to test to see if the file already
exists. If it does, the method exits.

,ch08.18865 Page 245 Thursday, February 22, 2001 1:30 PM

246 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The second method is called showPage and is shown in Example 8-7. This method
takes two parameters—the page size and the page to make current. It opens the
persisted recordset, sets the Recordset object’s PageSize property to generate the
record pages, and then sets the AbsolutePage property to the page selected for
viewing. The WebPage names are pulled from the recordset and listed, embedded
within a hypertext link created by concatenating the page’s directory location and
the page’s filename. Add this code to your own component.

Example 8-6. Create Recordset and Persist to File

Sub createRecordset()

' make sure file doesn't exist first
Dim fsObject As New FileSystemObject
If fsObject.FileExists("c:\datasets\set.adtg") Then
 Exit Sub
End If

Dim rs As New Recordset

' set up recordset
rs.Source="select WebPage.name, filename,page_type_cd, web_location " & _
 "from WebPage, Directory " & _
 "where directory_id = Directory.id"
rs.CursorLocation = adUseClient
rs.ActiveConnection="Provider=SQLOLEDB;server=FLAME;database=weaver;" & _
 "uid=sa;pwd="
rs.Open

' save recordset
rs.Save "c:\datasets\set.adtg"

End Sub

Example 8-7. Show All Records for a Specific Recordset Page

Function showPage(ByVal iPageSize As Integer, _
 ByVal iCurrentPage As Integer) _
 As Integer

On Error GoTo ErrorHandler

Dim objContext As ObjectContext
Dim objResponse As Response

' get object content, response
Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

' get persisted recordset
Dim rs As New Recordset

rs.Open "c:\datasets\set.adtg"

,ch08.18865 Page 246 Thursday, February 22, 2001 1:30 PM

The ADO Model 247

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you’ve compiled the component, you can test it by accessing the asp0804.
asp test page included with the examples and shown in Example 8-8. In the page,
a current page value is taken from the Request object’s QueryString collection. If
this value exists, the records for the current recordset page are shown; otherwise,
the recordset is created and the first page is shown.

' set page size, current page
rs.PageSize = iPageSize
rs.AbsolutePage = iCurrentPage

Dim i As Integer
i = 1
While i <= iPageSize
 objResponse.Write "<p><a href='http://" & rs("web_location") & _
 "/" & rs("filename")
 objResponse.Write "'>" & rs(0) & "</p>"
 rs.MoveNext
 If rs.EOF Then
 i = iPageSize + 1
 Else
 i = i + 1
 End If
Wend
showPage = rs.PageCount

ErrorHandler:
 objResponse.Write Err.Description
End Function

Example 8-8. Using Absolute Page Component to Page Through WebPage Records

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp0804.page")

' get current page, if any
Dim currPage, pageCount
currPage = CInt(Request.QueryString("currPage"))

' if first time accessing page
If currPage <= 0 Then
 currPage = 1
 obj.createRecordset
End IF

' show pages
pageCount = obj.showPage(5,currPage)

' show page index
Response.Write "<hr> Page: "
For i = 1 to pageCount

Example 8-7. Show All Records for a Specific Recordset Page (continued)

,ch08.18865 Page 247 Thursday, February 22, 2001 1:30 PM

248 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This page and the associated components allow a person to scroll through the
web pages currently in the Weaver database and access the page through the
browser if they wish. They can access each individual page by clicking on the
hypertext link associated with each page. Each link has the page number
appended to the link’s query string.

One limitation with the example as written is that all web pages in the Weaver
database will be displayed, including those such as JavaScript files and XML DTD
files—files that shouldn’t be accessed directly from the browser. A better approach
would be to show only those web pages meant to be accessed directly, such as
HTML or ASP application pages.

A second limitation with the application is that the web pages are presented in the
order in which they’re found in the database, rather than an order that might be
friendlier to the application user, such as sorting and displaying the pages alpha-
betically.

Both of these limitations can be fixed with modifications to the original query. The
returned dataset could be refined by using the page type code in the WHERE clause
and returning only HTML or ASP pages. Additionally, an ORDER BY clause could be
appended to the query to sort the pages by name.

However, in the example, we’ll modify the result set directly by using the Record-
set object’s Filter and Sort properties.

The Filter property can fine-tune the result set without permanently changing it.
You can restrict the set based on any criteria, and to all intents and purposes, the
recordset acts as if the only records in it are those that match the filter. However,
you can change or remove the filter to work with a different recordset or to work
with all of the records returned from a query.

The Sort property sorts the records on one or more fields, in ascending or
descending order, without physically rearranging the recordset. Instead, tempo-
rary indexes are created and used for the sort.

To demonstrate both properties, create a new method on the asp0804.page com-
ponent, showSpecificPage, shown in Example 8-9. This method is exactly the same

 If i <> currPage Then
 Response.Write "" & _
 i & ""
 Else
 Response.Write currPage
 End If
 Response.Write " "
Next
%>

Example 8-8. Using Absolute Page Component to Page Through WebPage Records (continued)

,ch08.18865 Page 248 Thursday, February 22, 2001 1:30 PM

The ADO Model 249

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

as that shown in Example 8-7, except that the records are filtered so only those
web pages that have the HTM or APP page types are shown. Additionally, the
records are sorted on the WebPage name, in ascending order. Add the code for
the new method to the component and then recompile the project.

Example 8-9. Filtering and Sorting a Recordset Before Access

Function showSpecificPage(ByVal iPageSize As Integer, _
 ByVal iCurrentPage As Integer) _
 As Integer

On Error GoTo ErrorHandler

Dim objContext As ObjectContext
Dim objResponse As Response

' get object content, response
Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

' get persisted recordset
Dim rs As New Recordset

rs.Open "c:\datasets\set.adtg"

' set page size, filter, sort
rs.Filter = "page_type_cd = 'HTM' or page_type_cd = 'APP'"
rs.Sort = "name ASC"
rs.PageSize = iPageSize

' current page
rs.AbsolutePage = iCurrentPage

' scroll through records, print out info
Dim i As Integer
i = 1
While i <= iPageSize
 objResponse.Write "<p><a href='http://" & rs("web_location") & _
 "/" & rs("filename")
 objResponse.Write "'>" & rs(0) & "</p>"
 rs.MoveNext
 If rs.EOF Then
 i = iPageSize + 1
 Else
 i = i + 1
 End If
Wend
showSpecificPage = rs.PageCount

rs.Close

ErrorHandler:
 objResponse.Write Err.Description
End Function

,ch08.18865 Page 249 Thursday, February 22, 2001 1:30 PM

250 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the component with the asp0805.asp test page. This page has the same script
as that shown in Example 8-8, except that the new method is called instead of
showPage:

pageCount = obj.showSpecificPage(5,currPage)

Depending on the number of records you have in the Weaver database, you’ll
notice that the number of pages you can view has decreased from the first example.

As demonstrated, recordsets can be created either through the Connection object
or directly. A third technique to create a Recordset object is to use the Command
object, discussed next.

The Command Object

You can execute SQL directly using the Connection object, and you can query a
data source either using the Connection object in conjunction with the Recordset
object or using the Recordset object alone. However, neither of these objects has
facilities for passing parameters with SQL other than to embed the parameter val-
ues directly in the SQL command or query. To use mutable parameters—ones that
can change without having to rebuild the SQL query—you’ll need to use the Com-
mand object.

The Command object has properties such as ActiveConnection, used to set the
connection, and CommandText, used to define the text for the command. Addi-
tionally, you can define the type of command you’re making with the Command-
Type property. For instance, to call a stored procedure, you could use code similar
to the following:

Dim cmdObject As New Command
Set cmdObject.ActiveConnection = cn
cmdObject.CommandText = "sp_someprocedure"
cmdObject.CommandType = adCmdStoredProc
cmdObject.Execute

This block of code invokes a stored procedure that takes no input parameters,
returns no recordset, and uses an existing open Connection.

Both the Connection and Recordset objects can invoke stored procedures, but the
strength of the Command object is that it has a Parameters collection used to
change the parameters passed with the command. Additionally, setting the Com-
mand object’s Prepared property to True compiles the command the first time it’s
executed and saves the compiled form for subsequent usage, increasing the over-
all performance of using the command.

To explore the strengths of the Command object within an ASP component, cre-
ate a new Visual Basic project named asp0805, and name the generated class
cmnd. This component has two methods: showPages, which takes a variant array

,ch08.18865 Page 250 Thursday, February 22, 2001 1:30 PM

The ADO Model 251

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

as its parameter, and showPageInfo, which takes a recordset and a variant for its
two parameters.

The showPages method queries the Weaver database for the WebPage records
matching the page type codes passed as entries in the Variant array. To do this
more efficiently, a Command object is used and a parameter is created for the
page type code. Additionally, the command itself is compiled when first executed,
and the compiled version is then used each time the Execute method is called.

Each returned Recordset object is passed to the second component method, show-
PageInfo, for further processing. Add the showPages method code, shown in
Example 8-10, to your component.

Example 8-10. Using a Parameterized Command to Retrieve Several Recordsets

Sub showPages(ByVal varTypes As Variant)

Dim cmndObject As New Command
Dim parm As Parameter
Dim rs As Recordset

' set command properties
cmndObject.ActiveConnection = "Provider=SQLOLEDB;server=FLAME;" & _
 "database=weaver;" & _
 "uid=sa;pwd="
cmndObject.Prepared = True
cmndObject.CommandType = adCmdText
cmndObject.CommandText = "select name, filename from WebPage where " & _
 "page_type_cd = ?"

'set parameter
Set parm = cmndObject.CreateParameter("page_type_cd", _
 adChar, adParamInput, 3)
cmndObject.Parameters.Append parm

' get array boundaries
Dim lLow, lHigh, l
Dim val As Variant
lLow = LBound(varTypes)
lHigh = UBound(varTypes)

' for each entry in array
' set parm value, and execute command
For l = lLow To lHigh

 ' get parameter
 val = varTypes(l)

 ' set parameter and execute
 parm.Value = val
 Set rs = cmndObject.Execute

 ' process results

,ch08.18865 Page 251 Thursday, February 22, 2001 1:30 PM

252 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The second method, showPageInfo, processes the recordset by printing out the
record’s file and filename values using the ASP Response object. Add this second
method, shown in Example 8-11, to your new component.

Once the component is compiled, testing it is relatively simple: create an array
containing page type codes and call the publicly exposed showPages method, as
shown in asp0806.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp0805.cmnd")

Dim ary(2)
ary(0) = "APP"
ary(1) = "HTM"
ary(2) = "STY"

obj.showPages (ary)
%>

 showPageInfo rs, val
Next

Set cmndObject = Nothing

End Sub

Example 8-11. Process Recordset by Printing Out Its Fields Using Response

' display records
Private Sub showPageInfo(rs As Recordset, ByVal val)

Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

' process and display records
objResponse.Write "<h3>" & val & "</h3>"
objResponse.Write "<TABLE border='1' cellpadding='5' cellspacing='0'>"

While rs.EOF <> True
 objResponse.Write "<TR><TD>"
 objResponse.Write rs("name") & "</TD><TD>" & rs("filename")
 objResponse.Write "</TD></TR>"
 rs.MoveNext
Wend

objResponse.Write "</TABLE>"

End Sub

Example 8-10. Using a Parameterized Command to Retrieve Several Recordsets (continued)

,ch08.18865 Page 252 Thursday, February 22, 2001 1:30 PM

The ADO Model 253

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The array variable in the VBScript code is surrounded by parentheses so that it can
be passed by value to the component method. Removing the parentheses results
in an error.

Find out more about passing arrays to components in Chapter 6, ASP
Interaction: Scripting and ASP Components.

Running this example against the Weaver test data generates a web page contain-
ing three HTML tables, each with WebPage records reflected by the associated
page type codes—HTML pages with the HTM type code, ASP pages with the APP
type code, and CSS/XSL type pages with the STY type code.

One of the considerations in using the Prepared property effectively is that the
extra effort to compile the command should be justified by the Command object
being executed more than once. The same could also be said of the Parameters
collection: its effectiveness is directly proportional to the ability to change the
parameters and execute the command more than once.

Instead of using the Parameters collection and the Prepared property, we could
achieve the same effect from this application by accessing all records with type
codes matching those in the array:

where page_type_cd IN ('APP','STY','HTM')

and then sorting and filtering the recordset to display HTML tables with each page
type code.

The Prepared property and the Parameters collection are more effec-
tively used in an interactive environment such as a more traditional
client-server application. In this environment, the command can be
created, the parameters updated, and the results displayed based
directly on the action of the user. In a server environment, such as
ASP, you won’t want to keep the Command object active between
user actions. In fact, you’ll want to create it, use it, and remove the
Command object as soon as possible to free up data source resources.

The Command object is especially effective when used with stored procedures.
Unlike the Connection or Recordset objects, the Command object and its associ-
ated parameters collection can process input and output parameters, as well as
stored procedure return values.

To demonstrate working with both input and output parameters, create a stored
procedure on the SQL Server Weaver database. Example 8-12 contains the code

,ch08.18865 Page 253 Thursday, February 22, 2001 1:30 PM

254 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

for the procedure that returns the file and filename from the WebPage table based
on the page_type_cd passed in as a parameter. The procedure also gets the
count of rows found with the query and returns a value indicating whether rows
were found or not.

Next, add a new method to asp0805.cmnd named showPagesWithParms; it is
shown in Example 8-13. This method takes a single page type code as a parame-
ter and returns a string with the count of rows found in the query, if any. The new
method is similar to the one shown in Example 8-10, except that three parameters
are defined within the Parameters collection: the page type code input parameter,
a return value, and an output parameter. The return and output parameter are cre-
ated directly in the Parameters collection, and the input parameter is created as an
individual Parameter object. The command test is set to the stored procedure
name, and the command type is set to adCmdStoredProc.

Once the command is executed, the recordset is passed to the showPageInfo
method to again output a table with the pages found. Your code can’t access the
output and return parameters until the recordset is fully traversed or is closed. As
the recordset is traversed in another method, and the recordset is passed by value,
it needs to be closed before accessing the return and output parameters. The value
of the return parameter determines which string is returned from the new method.

Example 8-12. Stored Procedure with Input, Output, and Return Parameters

CREATE PROCEDURE [sp_getpages]
(@output integer OUTPUT,
@page_type CHAR(3))
AS
BEGIN
SELECT name, filename FROM WebPage WHERE page_type_cd = @page_type
SELECT @output = COUNT(*) FROM WebPage WHERE page_type_cd = @page_type
IF (@output > 0)
 RETURN 0
ELSE
 RETURN 99
END
GO

Example 8-13. Command Object with Input, Output, and Return Parameters

Function showPagesWithParms(ByVal varType As String) As String

Dim cmndObject As New Command
Dim parm As Parameter
Dim rs As Recordset

' set command properties
cmndObject.ActiveConnection = "Provider=SQLOLEDB;server=FLAME;" & _
 "database=weaver;" & _

,ch08.18865 Page 254 Thursday, February 22, 2001 1:30 PM

The ADO Model 255

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the component is recompiled, test it by passing to the method an existing
and a nonexistent page type code:

On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp0805.cmnd")

Dim code, return

' existing code
code = "SCR"
return = obj.showPagesWithParms(code)
Response.Write "<P>"

 "uid=sa;pwd="

cmndObject.CommandType = adCmdStoredProc
cmndObject.CommandText = "sp_getpages"

'set parameters
cmndObject.Parameters.Append cmndObject.CreateParameter("return", _
 adInteger, adParamReturnValue)
cmndObject.Parameters.Append cmndObject.CreateParameter("output", _
 adInteger, adParamOutput)
Set parm = cmndObject.CreateParameter("page_type_code", _
 adChar, adParamInput, 3)
cmndObject.Parameters.Append parm
parm.Value = varType

' execute stored procedure
' process results
Set rs = cmndObject.Execute
showPageInfo rs, varType
rs.Close

' get return value
Dim lReturn, lRows As Long
Dim strReturn As String
lReturn = cmndObject(0)
lRows = cmndObject(1)

' create return string
If lReturn > 0 Then
 strReturn = "No rows were found for the page type code"
Else
 strReturn = "Number of rows found was " & CStr(lRows)
End If

' clean up
Set cmndObject = Nothing
showPagesWithParms = strReturn

End Function

Example 8-13. Command Object with Input, Output, and Return Parameters (continued)

,ch08.18865 Page 255 Thursday, February 22, 2001 1:30 PM

256 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Response.Write return & "</p>"

' nonexistent code
code = "BRB"
return = obj.showPagesWithParms(code)
Response.Write "<P>"
Response.Write return & "</p>"

The returned web page contains a table with pages for the first page type code, as
well as the number of rows found and a message that no rows were found for the
second page type code. Figure 8-2 shows the result of running the ASP test page,
asp0807.asp.

File and Directory Access with ADO
Streams and the Record Object
So far, we’ve been looking at ADO objects that have existed since ActiveX Data
Objects was released. However, recent releases of ADO have introduced some

Figure 8-2. WebPage record file and filename fields for two page code types

,ch08.18865 Page 256 Thursday, February 22, 2001 1:30 PM

File and Directory Access with ADO Streams and the Record Object 257

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

new objects; we’ll take a quick look at these in this section and see how they
relate to one another and to the older objects.

Both the Stream and Record objects were created to deal with data that doesn’t
exist in traditional database tables, such as files within a directory system. The
Record object can be used to access files and directories or email messages in an
email system. The Stream object is used to work with a specific file or email mes-
sage stream. With the use of a specialized OLE DB provider—the OLE DB Pro-
vider for Internet Publishing—the Record object can even access and manipulate
objects through a URL.

The Record and Recordset objects can be used together. For instance, you can
open a Record object with the contents of a specific recordset row. Additionally,
you can open a filesystem directory with the Record object and then access each
directory element (file) using the Recordset object.

To demonstrate using the Record and Recordset objects together in order to access
the files within a directory, create a new Visual Basic component, name the project
asp0806, and name the generated class newguys—for the new ADO objects. Add
a method to the component called displayFileNames, which is shown in
Example 8-14. This method has a string parameter containing the URL of the web
site you wish to access. You’ll be listing the filenames for this web site using the
ASP Response object, so attach the ASP and COM+ Services type libraries with the
ADO library to the project.

In the component method, open the web site by using the Record object’s Open
method and setting the connection string to a value similar to:

URL=http://localhost/weaver/

If you don’t specify the OLE DB Provider for Internet Publishing, MSDAIPP.DSO,
directly in the connection string, you have to use the URL= prefix or you’ll get an
OLE DB error. Conversely, if you do specify the OLE DB provider directly and use
the URL= prefix, you’ll also get an error.

Once the directory is opened with the Record object, the files collection con-
tained in the directory is assigned to a Recordset object for traversal. The record-
set rows are then traversed and the filename (the first field in the row) is listed to
the web page.

Example 8-14. Using the Record Object to Access a Web Site and the Recordset Object to Print
Out the Filenames

Sub displayFileNames(ByVal strURL As String)

Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()

,ch08.18865 Page 257 Thursday, February 22, 2001 1:30 PM

258 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To access a web site, the site’s (or virtual directory’s) permissions must be altered
to allow access with the OLE DB Provider for Internet Publishing. For instance, to
access the files of the directory, in IIS set the site or virtual directory’s access per-
missions to allow for Directory Browsing and Script. To create a new file or direc-
tory, turn on Write access for the site.

Use caution when allowing Write access to an externally exposed
web site—be sure to use authentication to ensure that only the
appropriate people can write to the site.

To test the component, the ASP test page, asp0808.asp, passes a valid URL to the
method. For the test case, we’ll pass in the Weaver administration application web
site, installed locally:

<%
Dim obj
Set obj = Server.CreateObject("asp0806.newguys")
Dim url
url = "http://localhost/weaver/"
obj.displayFileNames url
%>

Set objResponse = objContext("Response")

On Error GoTo ErrorHandler

Dim grec As New Record
Dim grs As New Recordset

' open directory, get files
strURL = "URL=" & strURL
grec.Open "", strURL
Set grs = grec.GetChildren()

' print out filenames
While Not grs.EOF
 objResponse.Write grs(0) & "
"
 grs.MoveNext
Wend

grec.Close
grs.Close

Exit Sub
ErrorHandler:
 objResponse.Write Err.Description
End Sub

Example 8-14. Using the Record Object to Access a Web Site and the Recordset Object to Print
Out the Filenames (continued)

,ch08.18865 Page 258 Thursday, February 22, 2001 1:30 PM

File and Directory Access with ADO Streams and the Record Object 259

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Before running this example, adjust the Weaver application’s permissions, as
shown in Figure 8-3. Once the permissions are set correctly, the example compo-
nent and ASP page list the Weaver application files to the page.

If the web site is Frontpage-enabled or accessible through web folders via the
WebDAV protocol, the site should already be configured for using OLE DB Pro-
vider for Internet Publishing. If you change the URL for this example to point to a
site external to your machine that has this type of setup, you’ll get an authentica-
tion login to sign in with your valid username and password.

So, if I access one of my web sites as the standard Internet user (IUSR_
MACHINENAME):

Dim obj
Set obj = Server.CreateObject("asp0806.newguys")
Dim url
url = "http://www.yasdbooks.com/devaspcomp/"
obj.displayFileNames url

I’ll get a login box similar to that shown in Figure 8-4. After typing in my user-
name and password, the list of files and directories located in the provided URL is
then displayed.

Figure 8-3. Setting the Weaver application’s permissions

,ch08.18865 Page 259 Thursday, February 22, 2001 1:30 PM

260 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

For more information on using Frontpage, see the documentation
provided by Microsoft for this tool. You can read more about web
folders in the help documentation that’s installed with Windows 2000
or at the Microsoft MSDN site at http://msdn.microsoft.com.

You can do more than just look at filenames and view the contents of a directory
with the Record object—you can also create, open, and read files with a little help
from the Stream object.

The Stream object can read and write text or binary files. To become familiar with
this object, you’ll add a new method to the asp0806.newguys component. The
method is named copyFile, and it takes three string parameters: the URL of an
existing file, the filename, and the name of a new file. The method will contain
code that opens the existing file, reads in the contents, and then writes them out
to the new file.

Add the code shown in Example 8-15 to the component. Notice that in the call to
the Record object’s Open method, the CreateOptions argument (the third argu-
ment) is set to adOpenIfExists Or adCreateStructDoc because you’re now
opening a file rather than a directory. After the record is opened, it’s passed as the
source for the Stream object’s Open method. Other options specified with the
method set the file access to read-only (adModeRead) and create the stream from a
record (adOpenStreamFromRecord). Once the Stream object is created, the con-
tents of the source file are read into a local variable.

Both the Stream and Record objects are closed for reuse. Then the new file is cre-
ated through the Record object’s Open method and passed as a parameter to the
Stream object, where the contents from the previously opened file are written to it.

Figure 8-4. Login authentication when accessing web site as Internet user

,ch08.18865 Page 260 Thursday, February 22, 2001 1:30 PM

File and Directory Access with ADO Streams and the Record Object 261

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When the target file is opened, the record creation option for the Record object’s
Open method is set to adCreateStructDoc Or adCreateOverwrite. With this
setting, if the file had existed, it would be overwritten with the new contents.

The ASP test page to try out the new method, named asp0809.asp, copies a file
from the Weaver ASP application to the local Chapter 8 working directory. Once
the file has been copied, the Server.Transfer method is used to transfer the web
page to the new file:

Dim obj
Set obj = Server.CreateObject("asp0806.newguys")

Example 8-15. Copy File Using Record and Stream Objects

Sub copyFile(ByVal strURL As String, _
 ByVal strFile As String, _
 ByVal strNewFile As String)

Dim recObject As New Record
Dim strmObject As New Stream

' open directory, get file
Dim strModURL As String
strModURL = "URL=" & strURL
recObject.Open strFile, strModURL, adModeRead, _
 adOpenIfExists Or adCreateStructDoc

' open stream, read contents
strmObject.Open recObject, adModeRead, adOpenStreamFromRecord
strmObject.Charset = "ascii"
strmObject.Type = adTypeText

Dim str As String
str = strmObject.ReadText(adReadAll)

' close Record and Stream to reuse
recObject.Close
strmObject.Close

' copy file
recObject.Open strNewFile, strModURL, adModeWrite, _
 adCreateStructDoc Or adCreateOverwrite
strmObject.Open recObject, adModeWrite, adOpenStreamFromRecord
strmObject.WriteText str

' clean up
recObject.Close
strmObject.Close
Set recObject = Nothing
Set strmObject = Nothing

End Sub

,ch08.18865 Page 261 Thursday, February 22, 2001 1:30 PM

262 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim url, file, newfile
url = "http://localhost/chap8/"
file = "asp0808.asp"
newfile = "listfiles.asp"
obj.copyFile url, file, newfile

Server.Transfer "listfiles.asp"

Because the file being opened is a “script” file (with the ASP extension), you’ll
need to modify the Access permissions for the Weaver application to allow for
script source access. In addition, as you’re creating the copy of the source file in
the Chapter 8 directory, you’ll need to set the Chapter 8 virtual directory access
permissions to allow for write access.

Instead of using the Record object to open a new file and then writing the con-
tents of the first file to it, you could have used the Stream object’s SaveToFile
method:

strmObject.SaveToFile strNewFile, adSaveCreateOverwrite

The Stream object can be used with the Recordset object as well as the Record
object to persist data to a stream. This and other persistence techniques are dis-
cussed next.

Persisting Data
For most of your ASP applications you’ll access data from a data source, process
the data in some way, and then discard your reference to it. However, there are
times when it’s more effective to persist the data for a period of time, rather than
retrieving it again and again from the data source. To support this application
need, ADO has techniques you can use to persist a recordset’s data to either a file
or to a Stream object.

When you persist data to a file or stream, you are actually persisting the Recordset
object itself. However, before you do this, you have to make sure that your
Recordset object is defined correctly to support persisting. Recordsets that are
going to be persisted must be disconnected from the data source. A requirement
for disconnected recordsets is they must be defined to use client-side cursors:

rs.CursorLocation = adUseClient

Once the recordset has been opened, to disconnect it you’ll need to set the Active-
Connection to Nothing:

Set rs.ActiveConnection = Nothing

At this point, you can then close the connection if it was created with a Connec-
tion object. If it was created specifically with the recordset, setting the ActiveCon-
nection to Nothing closes the connection.

,ch08.18865 Page 262 Thursday, February 22, 2001 1:30 PM

Persisting Data 263

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you have a disconnected recordset, you can then persist it to either a file or
a stream.

The Recordset object’s Save method is used to save the data to either a file or a
stream, and the Open method is then used to retrieve the data from the file or
stream. Earlier, in Example 8-6, you used the Save method to save data to a spe-
cific file. In Example 8-7, you then used the Open method to retrieve the discon-
nected recordset from the file. These two examples saved the data in the ADTG
format. Instead, you could have saved the data using an XML format.

To demonstrate saving a recordset formatted as XML, create a new Visual Basic
project and call it asp0807.asp. Name the generated class persist. Add refer-
ences to both the ActiveX Data Objects library and the Microsoft Scripting Runt-
ime library. The component has one method, saveRsAsXml, with one parameter, a
string containing the absolute location and filename of a file.

In your new method, add the code shown in Example 8-16. First, the FileSystem-
Object is used to test for the existence of the file and delete it if it does exist. Next,
a Connection object pointing to the SQL Server version of the Weaver database is
opened. The Recordset object is created using the existing connection. For the
example, all of the columns and rows from the WebPage table are returned in the
result set. Once the data is retrieved, the recordset is disconnected from the con-
nection and persisted to the file in an XML format.

Example 8-16. Saving a Recordset in XML Format

Sub saveRsAsXml(ByVal strLoc As String)

' if file exists, delete
Dim fsObject As New FileSystemObject
If fsObject.FileExists(strLoc) Then
 fsObject.DeleteFile strLoc, True
End If

Dim rs As New Recordset
Dim cn As New Connection

' connect to database
cn.ConnectionString = "Provider=SQLOLEDB;server=FLAME;" & _
 "database=weaver;" & _
 "uid=sa;pwd="
cn.Open

' set up and open Recordset
rs.CursorLocation = adUseClient
rs.Open "WebPage", cn, adOpenForwardOnly, _
 adLockReadOnly, adCmdTableDirect

' disconnect/save recordset
Set rs.ActiveConnection = Nothing

,ch08.18865 Page 263 Thursday, February 22, 2001 1:30 PM

264 Chapter 8: Creating ASP/ADO Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the component, use ASP script similar to the following, but with your own
XML filename and location:

<%
Dim obj
Set obj = Server.CreateObject("asp0807.persist")
Dim file
file = "c:\datasets\webpages.xml"
obj.saveRsAsXml file
%>

You can find this script in the ASP test page, asp0810.asp.

Why save recordset data in an XML format? XML has wide industry acceptance,
which translates into a plethora of tools that can work with data in this format. By
saving your data as an XML file, you can then access the individual data elements
using Microsoft’s XML parser (MSXML) or any other XML parser. Additionally, you
could add presentation information with XSL (Extensible Stylesheet Language) or
CSS (Cascading Style Sheets) and display the data directly to the client via an XML-
capable browser.

See more on working with XML and ASP components in Chapter 10,
Server-Side XML Through VB ASP Components.

As with Recordsets persisted as ADTG, you can also reopen the file and reload it
into a Recordset as well as work with the data in its XML format.

In addition to persisting data to a file, you can also persist it to an ADO Stream
object. Once contained in this object, the data can be manipulated, copied to other
Stream objects, or saved to a file.

To persist a Recordset to a Stream object, the only difference from the code shown
in Example 8-16 would be the following:

' create Stream object
Dim strmObject As New Stream

cn.Close
rs.Save strLoc, adPersistXML

' clean up
rs.Close
Set cn = Nothing
Set rs = Nothing

End Sub

Example 8-16. Saving a Recordset in XML Format

,ch08.18865 Page 264 Thursday, February 22, 2001 1:30 PM

Persisting Data 265

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

' save recordset
rs.Save strmObject, adPersistXML

As with saving the data to a file, you can accept the default formatting for the data
(ADTG) or save the data in XML format.

To access the data from the stream, use the following:

rs.Open strmObject

Instead of a filename or SQL statement, pass the Stream object that contains the
data as the first parameter in the Recordset object’s Open method.

,ch08.18865 Page 265 Thursday, February 22, 2001 1:30 PM

266
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9

9
Creating an ASP
Middle Tier with ADO

For years, the most commonly used implementation model for new systems was
either the mainframe “dumb terminal” model, with its whisper-thin client, or the
client/server model, usually containing fat and chunky clients. With these
approaches, the processing tended to congregate totally in the backend of the
application with the mainframe application or on the presentation layer with the
client/server model. The problem with both approaches is that presentation, data,
and business processes become so intertwined that it is virtually impossible to sep-
arate the layers in order to modernize or replace any one of them.

Another approach that is gaining popularity, especially with applications making
use of the Internet/intranet, is the multitier or n-tier application model. This model,
usually implemented in three tiers, splits the business processing from the presen-
tation and data layers. The advantage to this is that the presentation can be
changed or even moved to a new medium without having an impact on the busi-
ness layer. Additionally, the data access can itself be moved to a different data-
base, database model, or machine, again with no impact on the business layer.
The business layer itself can also be replaced without necessarily impacting either
the presentation or data layers.

One of the most common uses of ASP components is to create a middle tier that
separates the presentation layer, which is returned as HTML to the client, and the
database or other data source. Components are ideal for this use because they iso-
late both the data source connectivity (such as user IDs and passwords) as well as
hide the details of the database (which can change over time).

The use of ADO to access the data source is ideal—it simplifies data source access
and provides all of the power and functionality a developer needs.

,ch09.18992 Page 266 Thursday, February 22, 2001 1:30 PM

How Separate Should the Layers Be? 267

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This chapter takes a look at some specific issues of using components as an ASP
middle tier, including data wrappers, using stored procedures, and others. First,
though, we’ll take a closer look at what is meant when folks say separation of
data from presentation.

Though this chapter uses Visual Basic to create the components in
the examples, the concepts that are discussed can be applied to
components written in any programming language.

How Separate Should the Layers Be?
If your business is like most, its most consistent aspect is the data, and the most
stable component of any development environment is the database schema. The
most changeable aspect of your system, on the other hand, is the presentation
layer. This can change based on new technologies, new focus within the com-
pany, or half a dozen other reasons. Because of this, you’ll want to separate the
processing that supports the database schema—the business processing—from that
of the presentation.

Separation of the business data from the presentation can be as extensive as you
wish and depends highly on your type of environment. You can create objects that
update specific database tables, then wrap these in other objects that call these
objects based on business processes and which are, in turn, invoked from within
ASP pages—the presentation layer.

For instance, the administration application included with the Weaver database
(see Appendix B, The Weaver Database, for more information) is highly separated
from not only the presentation but also the environment. However, the presenta-
tion isn’t as highly separated from the data.

In the Weaver administration application, the components used to manage the
data of the database don’t access any part of the ASP environment. Instead of
using the ASP Application object (and the global.asa file) to access the connection
string for the database, the connection string is included directly within the com-
ponents. This means that the connection string needs to be changed if the envi-
ronment changes—but there isn’t any direct access to the environment from the
component.

Instead of using the ASP Response object to display any values, the values are
returned as disconnected recordsets, arrays, or single values. Instead of using the
ASP Request object to pull in HTML form values, the values are passed as parame-
ters to the component methods.

,ch09.18992 Page 267 Thursday, February 22, 2001 1:30 PM

268 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using this approach with the Weaver data components means that these compo-
nents could just as easily be accessed from a Visual Basic frontend application as
from an ASP page.

However, the same level of isolation doesn’t exist between the data and the pre-
sentation layer. By returning disconnected recordsets, there is an assumption that
the client (in this case the ASP page) must know enough about the recordset to
extract the values it, the page, needs from the recordset. Still, the level of isolation
is pretty high—even if you have to pull specific values from the recordset, you still
don’t know how the recordset was created or what the underlying structure of the
database is.

Another approach to separation takes it a bit further. A set of components is cre-
ated to provide direct access to a data source, such as connect to a database, run a
query, call a stored procedure, and so on. However, another layer of components
that implements the actual business rules and processes accesses this set of data
components. Instead of ASP pages directly accessing the data components, they
access the business components, which in turn access the data components.

With this, there really is a true level of separation between the presentation layer
(and the environment, such as the ASP environment) and the data. This approach
is particularly effective if you’re unsure of your data source access or if the data-
base may change or does change frequently (something to avoid, by the way).

That components are used to process business rules and access the business data
doesn’t mean that all presentation issues are handled by ASP pages. Components
can be used to provide presentation layer processing, but these components are
then considered part of the presentation layer. For instance, you can have presen-
tation helper components that do such things as place all HTML form values into
an array that is then returned to the ASP page and passed to the business compo-
nents. Another component can do the same with recordsets—retrieving recordsets
into an array or displaying the recordsets using HTML or XML.

However, for the most part, your ADO components form part of the business/data
layer, and it is this layer that we’ll look at in the rest of this chapter, starting with
the concept of component data wrappers.

Creating ADO Data Wrappers
What’s a data wrapper? A data wrapper is a piece of code wrapped around a spe-
cific data entity—such as a database table—providing access to the entity’s data
through code, without having to use SQL directly to get or set values. They’re called
wrappers rather than business entities because they don’t perform business pro-
cesses per se; business processes usually impact on more than one entity at a time.

,ch09.18992 Page 268 Thursday, February 22, 2001 1:30 PM

Creating ADO Data Wrappers 269

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The advantage to a data wrapper component is that other applications can access
the underlying data entity without having to know how to access the data source
directly. In a larger shop, the people doing the application development may be
somewhat isolated from the database schema and may not have a good idea of
how the database is accessed, or even what tables exist in the database. By pro-
viding data wrappers, the application developers don’t have to know all about the
database schema—they only have to know about the objects they’re accessing in
the specific application they’re creating. An additional advantage to data wrappers
is that the underlying database schema can change, and unless the change impacts
the data wrapper component’s interface, the applications using that component
aren’t impacted.

However, data wrappers can degrade performance. For instance, if your applica-
tion is updating three data entities at once and doing these updates directly on
data wrapper objects, there will be at least three calls made to the database. How-
ever, if the updates to all three entities were contained in one stored procedure,
then the only communication from the application to the database would be the
one stored procedure call, which results in better performance and less stress on
valuable database connections and resources.

Still, wrapping a table with a component can be handy at times, particularly if the
table is usually accessed individually.

Java-based EJB (Enterprise JavaBeans) can be considered the ulti-
mate data wrapper. These Java-based components wrap one data-
base table with code that handles all creation, destruction, access,
and updates of that table. Additionally, the EJB environment han-
dles all management of the bean, including transaction, security, and
life cycle management. You can emulate this in your environment by
providing this same functionality for your significant business tables.

An example of a good use of a data wrapper is to wrap a code table. A code table
usually has two columns: a code and a description. For instance, a table holding
state abbreviations (such as MA or OR) and their associated descriptions (Massa-
chusetts or Oregon) is an example of a code table. The description is the value
that’s shown to the client, but the code is the value that’s stored in any related
tables, such as an address table.

Code tables can also be lookup tables—used to look up and display
a predefined set of values, usually in dropdown or other forms of list
boxes.

,ch09.18992 Page 269 Thursday, February 22, 2001 1:30 PM

270 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you access the higher-level business object, such as the address, you’ll pull
the code table into the query and return the full description rather then the code
(usually). However, if you’re adding a new address and you want to display a list
box with associated states, you’ll need to access the lookup table independently to
get a listing of states (both code and description). You’ll also update and manage
the code table independently of any other table—making it a good candidate for a
data wrapper.

To demonstrate creating a data wrapper, you’ll wrap the MediaType table included
in the Weaver database (see Appendix B for more information on this database).
The MediaType table has a listing of codes representing the multimedia files used
at a particular web site. Currently, the database has the following code/descrip-
tion values:

There are other multimedia types that can be used at the web site, so you’ll need
to create a component that can maintain this table.

To create the MediaType data wrapper, create a new Visual Basic project and
name it asp0901. Name the generated class MediaType. Attach the COM+ Ser-
vices type library (for transaction support) and the latest Microsoft ActiveX Data
Objects type library to your project.

The examples in this chapter use the Access version of the Weaver
database. You can instead use the SQL Server version just by chang-
ing the connection string. See Chapter 8, Creating ASP/ADO Compo-
nents, for an example of the SQL Server OLE DB Provider
connection string I use in my own development environment.

Adding a New Media Type

The first method you’ll create for the data wrapper is the subroutine to create a
new MediaType object as a row within the table. This table has two columns, so
the subroutine, newMediaType, will have two parameters, one for each column.
Both parameters are of the String data type.

Within the subroutine, which is shown in Example 9-1, some data validation
occurs, primarily to make sure that the code is three characters long and the
description isn’t longer than the column length. A connection is made to the data-
base, and the new row is inserted, with both operations using the Connection

Code Description

GIF GIF89a format

JPG JPEG image file

,ch09.18992 Page 270 Thursday, February 22, 2001 1:30 PM

Creating ADO Data Wrappers 271

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

object. If no problem occurs, the ObjectContext object’s SetComplete method is
called to signal that the insertion was successful; otherwise, SetAbort is called.

To test the wrapper’s method, create two ASP pages: one with a form to add the
new media type and one that processes the form and creates the data wrapper
component. Both of the test pages (asp0901.asp and asp0902.asp) can be found
in the examples that come with the book, the ASP script in the second page looks
like the following:

<%
On Error Resume Next

Dim obj

Example 9-1. Data Wrapper Create Method

Sub newMediaType(ByVal strCd As String, _
 ByVal strDesc As String)

' get object context
Dim objContext As ObjectContext
Set objContext = GetObjectContext

On Error GoTo ErrorHandler

' validate data
If Len(strCd) <> 3 Or Len(strDesc) > 50 Then
 Err.Raise E_INVALIDARG
 Return
End If

' create connection
Dim cn As Connection
Set cn = New Connection

' open conn to database
cn.ConnectionString = "DSN=weaver;uid=sa;pwd="
cn.Open

' insert row
cn.Execute "insert into MediaType values('" _
 + strCd + "','" + strDesc + "')"

'commit
objContext.SetComplete
cn.Close

Exit Sub
ErrorHandler:
 objContext.SetAbort
 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

,ch09.18992 Page 271 Thursday, February 22, 2001 1:30 PM

272 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set obj = Server.CreateObject("asp0901.MediaType")

Dim cd, desc
cd = Request("cd")
desc = Request("desc")
obj.newMediaType cd,desc
If Err.Number <> 0 Then
 Response.Write "<h3>" & Err.Description & "</h3>"
Else
 Response.Write "<h3>Media Type added</h3>"
End If
%>

To test, access the form in asp0901.asp, and add the following new media type:

PNG Portable Network Graphics

When you submit the form, if no error occurs, a page with the string “Media Type
added” is output to the page, and the new type should be in the MediaType table.

Maintaining the Media Types

Other maintenance subroutines performed on the MediaType table and accounted
for in the data wrapper delete or update a specific MediaType entry.

To delete a MediaType row, the type’s code value is passed into a new data wrap-
per subroutine called deleteMediaType. As with the method shown in Example 9-1,
the Connection object is again used to execute the SQL directly to perform the
MediaType maintenance operation, as shown in Example 9-2. After adding the
deleteMediaType method, recompile asp0901.MediaType.

Example 9-2. Deleting a Specific Media Type

Sub deleteMediaType(ByVal strCd As String)

' get object context
Dim objContext As ObjectContext
Set objContext = GetObjectContext

On Error GoTo ErrorHandler

' validate data
If Len(strCd) <> 3 Then
 Err.Raise E_INVALIDARG
 Return
End If

' create connection
Dim cn As Connection
Set cn = New Connection

' open conn to database
cn.ConnectionString = "DSN=weaver;uid=sa;pwd="

,ch09.18992 Page 272 Thursday, February 22, 2001 1:30 PM

Creating ADO Data Wrappers 273

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The component code to delete the code value is easy, but the referential integrity
of the underlying database can add complexity to the process of deleting the row.
Depending on your database and the type of referential constraints defined for the
database tables, you may or may not be able to delete a code table row until other
data that references the deleted data is also deleted. For instance, the Weaver
MediaObject table contains a foreign key reference to the MediaType table, and if
you were to delete a MediaType currently used within MediaObject, the table’s ref-
erential integrity would be violated.

What is referential integrity? It is the rules that govern how tables
relate to one another and is usually enforced through foreign key
relationships between the tables. The purpose of referential integrity
is to ensure consistent and reliable data within the database.

Referential integrity rules in both the SQL Server and the Access versions of the
Weaver database will prevent you from deleting any of the MediaType records that
are associated with rows in the MediaObject table. To see what happens when
you try, access the ASP test page, asp0903.asp:

<head>
<title>Weaver: Add new MediaType</title>

<script type="text/javascript" language="javascript">

function check_values() {
var frm = document.forms[0];

if (frm.cd.value.length <= 0) {
 alert("Please Enter Media Type Code");

cn.Open

' delete row
cn.Execute "delete from MediaType where cd = '" _
 + strCd + "'"

'commit
objContext.SetComplete
cn.Close

Exit Sub
ErrorHandler:
 objContext.SetAbort
 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

Example 9-2. Deleting a Specific Media Type (continued)

,ch09.18992 Page 273 Thursday, February 22, 2001 1:30 PM

274 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 return;
 }

frm.submit();

}
</SCRIPT>
</head>
<body style="margin-left: 20px; margin-top: 20px">
<h1> Delete Media Type</h1>
<form method="POST" action="asp0904.asp">
<p>
<input type="text" size="10" name="cd" />
</p>
<p>
<input type="button" value="Delete MediaType" onClick="check_values()" />
<input type="reset" value="Clear Form">
</p>
</form>
</body>

This page contains a form in which you can enter a specific MediaType code to
delete. Enter the code value of GIF and submit the form.

The asp0903.asp test page invokes another ASP test page, asp0904.asp, contain-
ing the following script:

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp0901.MediaType")

Dim cd, desc
cd = Request("cd")
obj.deleteMediaType cd
If Err.Number <> 0 Then
 Response.Write "<h3>" & Err.Description & "</h3>"
Else
 Response.Write "<h3>Media Type deleted</h3>"
End If
%>

If an error occurs, the error message is output to the return page. When you try to
delete the GIF MediaType, you’ll get the following error (if you pointed your ASP
component at the Access version of Weaver):

[Microsoft][ODBC Microsoft Access Driver]
The record cannot be deleted or changed because table
'MediaObject' includes related records.

This type of behavior is exactly what you would want to maintain the integrity of
the MediaObject and MediaType tables. If you try asp0903.asp again, but this time

,ch09.18992 Page 274 Thursday, February 22, 2001 1:30 PM

Creating ADO Data Wrappers 275

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

type in the new PNG media type you just created, you won’t get any errors—there
are no records in MediaObject using this media type.

The same constraints that apply to deleting a media type code that’s used else-
where in the database also apply to updating the media type’s code column value,
though you can update the description without a problem. In fact, for small code
tables such as MediaType, an “update” can be nothing more than a deletion of the
existing record followed by an insertion of the new values.

To demonstrate this, add a third subroutine, named updateMediaType, to the
MediaType data wrapper (asp0902.MediaType); its source code is shown in
Example 9-3. The updateMediaType method has two parameters: the code and the
description. In the method, instead of accessing the database directly, the code
calls the component’s own deleteMediaType method (to delete the existing code
row). Then the code calls the newMediaType method to insert the new row.
(Although the objContext object has been instantiated elsewhere—see Chapter 7,
Creating a Simple Visual Basic ASP Component, for more information about creat-
ing an instance of objContext—the code included in the examples has instantiated
this object.)

Doing a deletion followed by an insertion is a valid technique—but not necessar-
ily for a parent or a code table. Even without testing the component, you can see
a problem occurring with the referential integrity that won’t allow you to delete a
MediaType row that’s referenced in the MediaObject table. So if you try to update
the GIF row using this component method, your update will fail.

Instead of using the delete/insert method of updating, add the code shown in
Example 9-4 to the asp0901.MediaType component. It contains a new version of
updateMediaType, called updateMediaType2, that uses SQL to perform an explicit
update of the description for the row containing the target code.

Example 9-3. Updating Code Table Row by Deletion and Then Insertion

Sub updateMediaType(ByVal strCd As String, _
 ByVal strDesc As String)

On Error GoTo ErrorHandler

deleteMediaType strCd
newMediaType strCd, strDesc

Exit Sub
ErrorHandler:
 objContext.SetAbort
 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

,ch09.18992 Page 275 Thursday, February 22, 2001 1:30 PM

276 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

An assumption is made with this second update method: the description and not
the code is the value to be updated. If the client wanted to update the code and
not the description, the update would fail, since no row would be found in the
MediaType table matching the new code.

To best way prevent a user from trying to update the code itself is to provide a list
of codes for the user to select from. The next section finishes the MediaType data
wrapper by creating functions that return information from the MediaType table.
At that time, you’ll also have a chance to test your new update method.

Example 9-4. Updating the Description for a Specific MediaType Code

Sub updateMediaType2(ByVal strCd As String, _
 ByVal strDesc As String)

' get object context
Dim objContext As ObjectContext
Set objContext = GetObjectContext

On Error GoTo ErrorHandler

' validate data
If Len(strDesc) > 50 Then
 Err.Raise E_INVALIDARG
 Return
End If

' create connection
Dim cn As Connection
Set cn = New Connection

' open conn to database
cn.ConnectionString = "DSN=weaver;uid=sa;pwd="
cn.Open

' insert row
cn.Execute "update MediaType set description = '" _
 & strDesc & "' where cd = '" & strCd & "'"

'commit
objContext.SetComplete
cn.Close

Exit Sub
ErrorHandler:
 objContext.SetAbort
 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

,ch09.18992 Page 276 Thursday, February 22, 2001 1:30 PM

Creating ADO Data Wrappers 277

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

MediaType Data Wrapper Queries

With a code and/or a lookup table, most operations on the data will be queries
rather than updates. In fact, once a code table has initially been populated, modifi-
cations to the table will be rare.

With a code table, the most common queries are to return a description given a
specific code and to return all code and description values. In this section, you’ll
create component methods in asp0901.MediaType for each of these queries.

The first query to implement is one that returns all codes and descriptions from
the MediaType table, which can then be used to populate dropdown list boxes.
Add a new method to asp0901.MediaType called getCodes, as shown in
Example 9-5. There are no parameters, but the method is a function, returning a
Variant data type. You’re accessing a result set, so you’ll use the ADO Recordset
object within this function. In the code, query for all MediaType codes and
descriptions, and assign the values to a Variant array, which is then returned from
the function. You’ll use the Recordset object’s GetRows function to assign the rows
to a two-dimensional array—the first dimension has the field name, the second the
associated value for that field.

One thing about code or other lookup tables is that the number of rows con-
tained in the table is usually small (less than 100). If the table starts to become
large, chances are your database design is mixing code types—the table contains
more than one set of code values. For instance, you wouldn’t combine “states” and
“counties” into the same table. Instead, you’d create your state table and then cre-
ate a county table, with state being part of the county identifier (one county name
can be in more than one state). With this approach, you can access the state

Example 9-5. Getting Codes and Descriptions from MediaType Code Table

Function getCodes() As Variant

' create recordset
Dim rs As Recordset
Set rs = New Recordset

' Recordset properties
rs.ActiveConnection = "DSN=weaver;uid=sa;pwd="
rs.Source = "select cd,description from MediaType"

' query
rs.Open

' process result
getCodes = rs.GetRows

End Function

,ch09.18992 Page 277 Thursday, February 22, 2001 1:30 PM

278 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

values separate from the county, and the two distinctly different types of data
aren’t mixed into the same code table.

To try out getCodes, the following ASP page, asp0905.asp, contains a <SELECT>
form element containing the codes returned by the getCodes method:

<form method="POST" action="asp0906.asp">
<p>
<select name="cd">
<%

Dim obj
Set obj = Server.CreateObject("asp0901.MediaType")

Dim ary, i, ct
ary = obj.getCodes

ct = UBound(ary,2)

For i = 0 to ct
 Response.Write "<option value='"
 Response.Write ary(0,i) & "'>" & ary(0,i)
 Response.Write "</option>"
Next
%>
</select>
 <input type="text" name="description" size="80"></p>
<p>
<input type="submit">
</p>
</form>

In this form, the description values aren’t used, but client-side scripting could be
used to display the current description for the associated code value whenever the
client selects a different code. Select the GIF value from the list, and change the
description to:

A popular form of image used in Web pages

When you submit the form with the changed description, the following ASP page,
asp0906.asp, processes the form calls and updateMediaType2, passing it the exist-
ing code and the new description:

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp0901.MediaType")

Dim cd, desc
cd = Request("cd")
desc = Request("description")
obj.updateMediaType2 cd,desc

,ch09.18992 Page 278 Thursday, February 22, 2001 1:30 PM

Creating ADO Data Wrappers 279

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If Err.Number <> 0 Then
 Response.Write "<h3>" & Err.Description & "</h3>"
Else
 Response.Write "<h3>Media Type updated</h3>"
End If
%>

If you access the data directly in the database manager (using either Access or SQL
Server, or using the Weaver administration application), you’ll see that the descrip-
tion is changed for the GIF code.

Instead of displaying the code values, you could display the descriptions. In the
Weaver administration application, the description for the media types is shown
when adding a new Media object.

The Weaver administration application components return discon-
nected recordsets when populating dropdown list boxes. Both
approaches—the two-dimensional array or the disconnected record-
set—are feasible to use.

In the next query you’ll implement, a description is returned for a specific code
value. Add the method named getDescription, which is shown in Example 9-6, to
the asp0901.MediaType component. The getDescription method has one input
parameter and a string return value. If a row is found that has a matching code
value, the description is returned; otherwise, an empty string is returned.

Example 9-6. Getting Description for Specific Code from MediaType

Function getDescription(ByVal strCode As String) As String

' create recordset
Dim rs As Recordset
Set rs = New Recordset

' Recordset properties
rs.ActiveConnection = "DSN=weaver;uid=sa;pwd="
rs.Source = "select description from MediaType where cd = '" _
 & strCode & "'"

' query
rs.Open

getDescription = rs("description")

rs.Close

End Function

,ch09.18992 Page 279 Thursday, February 22, 2001 1:30 PM

280 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component code, the following ASP test page, asp0907.asp, lists
the MediaType codes in a list box, using code identical to that shown earlier in the
asp0906.asp ASP test page:

<head>
<title>Weaver: Add new MediaType</title>
</head>
<body style="margin-left: 20px; margin-top: 20px">
<form method="POST" action="asp0908.asp">
<p>
<select name="cd">
<%

Dim obj
Set obj = Server.CreateObject("asp0901.MediaType")

Dim ary, i, ct
ary = obj.getCodes

ct = UBound(ary,2)

For i = 0 to ct
 Response.Write "<option value='"
 Response.Write ary(0,i) & "'>" & ary(0,i)
 Response.Write "</option>"
Next
%>
</select>
<p>
<input type="submit">
</p>
</form>
</body>

Select one of the media types and click the Submit button. This requests the sec-
ond ASP test page, asp0908.asp, which calls getDescription, passing it the code
value and displaying the returned string. This is the asp0908.asp test page:

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp0901.MediaType")

Dim cd, desc
cd = Request("cd")
desc = obj.getDescription(cd)
If Err.Number <> 0 Then
 Response.Write "<h3>" & Err.Description & "</h3>"
Else

Response.Write "<h3>" & desc & "</h3>"
End If
%>

,ch09.18992 Page 280 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 281

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The getDescription method shown in Example 9-6 doesn’t test for the existence of
the description, because the code used to find it is taken from the same table.
However, in an environment in which updates are frequently made to the code or
lookup tables, you’ll want to test to make sure that the description is found before
accessing it—the row could have been deleted (unlikely as that is) between the
time the dropdown was populated with the code values and the time the query for
the description was made.

Data wrappers are useful for code or other lookup tables, but for the most part
you’ll create business object components to maintain and query your data source.
A business object differs from a data wrapper because more than one table is
impacted.

Defining Business Objects
Instead of using data wrappers, most applications define components that repre-
sent business objects. These objects can update more than one table. For instance,
if you have customers, you might have a customer table, an address table, an
order table, and so on, each of which is managed or impacted by the Customer
business object.

With business objects, queries are likely based on table joins, with two or more
tables providing information. Updates can be made to two or more tables, with
child or dependent tables updated first and master tables updated only when all
other updates succeed.

In the Weaver database, an HTML web page entity actually references the follow-
ing Weaver tables:

WebPage
 The main web page table

Directory
The directory where the page is located

HTMLWebPage
 Additional information unique to HTML pages only

PageType
 The code for the type of web page

AssistingTool
 A tool used with the WebPage

Other tables can be impacted, such as the PageMedia table, containing the
WebPage/MediaObject associations, and PageStyle, with the WebPage/StyleWeb-
Page associations.

,ch09.18992 Page 281 Thursday, February 22, 2001 1:30 PM

282 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the Weaver Administration application, when you add an HTML web page,
you’ll be supplying information that updates both the WebPage and the HTML-
WebPage tables at once, since HTMLWebPage is a category of WebPage with asso-
ciated information specific to HTML web pages. In fact, you’ll update the
HTMLPage table only if the update to the WebPage table was successful, since the
same identifier used with WebPage is used with the HTMLWebPage table.

The WebPage table has a category relationship with several other
tables, such as HTMLWebPage, AppWebPage, and StyleWebPage.
Each of the child tables has the same identifier as the parent
WebPage table, and the category code that determines which child
table is populated is the page_type_cd.

Category relationships always have one column in the parent that
determines which of the child tables is populated.

To query for information about a specific HTML web page, you’ll retrieve informa-
tion from the WebPage and HTMLPage tables, as you would expect. However,
you’ll also access Directory, to get the description for the directory where the page
is located, as well as AssistingTool, to get the description for any tools, such as
validation tools, used with WebPage. The relationships between all of these tables
are shown in Figure 9-1 using the IDEF1 data-modeling format.

If you open the WebPage component in the administration application and then
access the HTML class, you’ll see that when a new HTML web page is added to
the database, both the WebPage and the HTMLWebPage tables are updated, as
shown in Example 9-7. In this component method, the insertion in the WebPage
table is made, and then the insertion into the HTMLWebPage table is made only if
the insertion into WebPage was successful.

Figure 9-1. Relationships between WebPage and HTMLWebPage, Directory, and AssistingTool

Directory

id
name

WebPage

id
directory_if (FK)
verification_tool_id (FK)

Assisting Tool

id
name

id (FK)

HTMLWebPage

,ch09.18992 Page 282 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 283

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 9-7. Maintaining Parent/Child Dependencies When Creating an HTML Web Page

' create page
Sub createHtmlPage(ByVal varIdentifier As Variant, _
 ByVal strName As String, _
 ByVal strFile As String, _
 ByVal strExt As String, _
 ByVal varDirectoryId As Variant, _
 ByVal strPageType As String, _
 ByVal varFileSize As Variant, _
 ByVal varToolId As Variant, _
 ByVal varVerificationDt As Variant, _
 ByVal varPulledDt As Variant, _
 ByVal strVersion As String)

Dim objCntxt As ObjectContext

On Error GoTo ErrorHandler

Set objCntxt = GetObjectContext()

' open connection
Dim cn As New Connection
cn.ConnectionString = m_connString

cn.Open

' possible null values
If Len(varVerificationDt) = 0 Then
 varVerificationDt = "null"
Else
 varVerificationDt = "'" & varVerificationDt & "'"
End If
If Len(varToolId) = 0 Then
 varToolId = "null"
End If
If Len(varPulledDt) = 0 Then
 varPulledDt = "null"
Else
 varPulledDt = "'" & varPulledDt & "'"
End If

' truncate strings if necessary
strName = UCase(Left(strName, 20))
strFile = Left(strFile, 20)
strVersion = Left(strVersion, 20)

' build insert
Dim str As String
str = "insert into WebPage (id, name, filename, ext, directory_id, " & _
 "page_type_cd, file_size, verification_tool_id, verification_date, " & _
 "pulled_date)" & _
 " values(" & varIdentifier & ",'" & strName & "','" & _
 strFile & "','" & UCase(strExt) & "'," & varDirectoryId & _
 ",'" & strPageType & "'," & varFileSize & "," & varToolId & "," & _

,ch09.18992 Page 283 Thursday, February 22, 2001 1:30 PM

284 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To delete the HTML web page data, the row associated with the HTMLWebPage is
deleted first, or the referential integrity associated with the tables’ association
wouldn’t allow the WebPage row to be deleted. The deletions from both tables are
committed only if both deletions succeed.

Another approach to maintain referential integrity in a parent/child relationship is
to use functionality provided by the database: cascaded deletes. This approach is
discussed in the next section.

Maintaining the Integrity of the Data

Earlier, you had a chance to test referential integrity when you tried to delete a
MediaType row that still had associated records in the MediaObject table. Since
MediaType is a code table, this action was appropriate. However, in a parent/child
or dependent table relationship, another approach that you can use (if it’s sup-
ported by the database engine) is cascaded deletes.

In cascaded deletes, a parent table row is deleted, and any associated child or
dependent table rows are also deleted in one operation. You don’t have to do
anything in the code to enforce cascaded deletes—they’re handled by the data-
base. Because the operation is handled by the database, referential integrity is

 varVerificationDt & "," & varPulledDt & ")"

' execute SQL
cn.Execute str

' associated table insert
str = "insert into HtmlWebPage (webpage_id, html_version) " & _
 "values(" & varIdentifier & ", '" & strVersion & "')"

cn.Execute str

cn.Close

' commit and deactivate object
objCntxt.SetComplete

Exit Sub

ErrorHandler:

 ' abort and raise error and deactivate object
 objCntxt.SetAbort
 Err.Raise Err.Number, Err.Source, str & "Creating Page: " & _
 Err.Description

End Sub

Example 9-7. Maintaining Parent/Child Dependencies When Creating an HTML Web Page

,ch09.18992 Page 284 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 285

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

guaranteed, and you make only one call to the database—the call to delete the
parent table record.

To try this out for yourself, create a new Visual Basic project and name it
asp0902. Name the generated class HTMLPage. Attach both the COM+ Services
and Microsoft ActiveX Data Object type libraries to the project.

In the new component, create a method named deletePage that takes the page
identifier as its only parameter; its source code is shown in Example 9-8. The
method deletes the record in WebPage that matches the page ID.

As you can see from the code with the component, you don’t have to add any
special code to get the benefits of cascaded deletes. You do, however, have to
adjust the database to enforce referential integrity by using cascaded deletes for
the component.

Example 9-8. Using Cascaded Deletes to Maintain Referential Integrity

Sub deletePage(ByVal iPage As Variant)

' get object context
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

On Error GoTo ErrorHandler

' create connection
Dim cn As Connection
Set cn = New Connection

' open conn to database
cn.ConnectionString = "DSN=weaver;uid=sa;pwd="
cn.Open

' delete page
cn.Execute "delete from WebPage where id = " & iPage

'commit
objContext.SetComplete
cn.Close

Exit Sub
ErrorHandler:
 objContext.SetAbort
 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

,ch09.18992 Page 285 Thursday, February 22, 2001 1:30 PM

286 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Of course, the parent table could have more than one dependent
relationship. For instance, if you delete a web page that has associ-
ated entries in PageComponent or PageMedia (other tables depen-
dent on WebPage), you’ll still get a referential integrity error. You
would have to modify the relationship with all of the dependent
tables to support cascaded deletes.

Each database engine has different techniques you’ll need to follow to add sup-
port for cascaded deletes. For the Access version of the Weaver database, you’ll
access the Relationships dialog of the database (available on the toolbar or from
the Tools menu), and then double-click on the relationship between WebPage and
HTMLWebPage. In the Edit Relationships dialog, check the Cascade Delete Related
Records option, as shown in Figure 9-2, and save the change.

To test both the new referential integrity enforcement and the new component,
access the following ASP test page, asp0909.asp, which prints out a line of infor-
mation about each HTML web page using the Weaver administration WebPage.
HTML component:

<head>
<title>Weaver: Display HTML Pages</title>
</head>
<body style="margin-left: 20px; margin-top: 20px">
<h1>Current HTML Pages</h1>
<table width="95%" align="center" border="1" cellpadding="10" cellspacing="0">
<tr style="background-color: #009900">
<th>Page Name</th>
<th>Filename</th>
<th>Directory</th>
<th colspan=3>Action</th>

Figure 9-2. Adding cascade delete referential integrity enforcement

,ch09.18992 Page 286 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 287

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

</tr>
<%
On Error Resume Next

Dim obj
Dim rs

Set obj = Server.CreateObject("WebPage.HTML")
set rs = obj.getPartialPages()
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Dim i, ct
 ct = rs.RecordCount
 For i = 0 to ct
 Response.Write "<tr>"
 Response.Write "<td>" & rs.Fields(1) & "</td>"
 Response.Write "<td>" & rs.Fields(2) & "</td>"
 Response.Write "<td>" & rs.Fields(4) & "</td>"
 Response.Write "<td><a href='asp0910.asp?id=" & rs.Fields(0)
 & "'>Delete Page"
 Response.Write "</TR>"
 rs.MoveNext
 Next
End If
Response.Write ("</table>")

%>
</body>

Pick one of the pages to delete, and click on the link labeled Delete Page. Click-
ing on the link calls another ASP test page, asp0910.asp, that calls the new com-
ponent’s deletePage method; the source for asp0910.asp is as follows:

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp0902.HTMLPage")

Dim id
id = Request.QueryString("id")

obj.deletePage id

If Err.Number <> 0 Then
 Response.Write "<h1 style='color: darkgreen'>Error with Data</h1>"
 Response.Write Err.Description
Else
 Response.Write "<h1 style='color: darkgreen'>
 HTML Page has been deleted</h1>"
End If
%>

,ch09.18992 Page 287 Thursday, February 22, 2001 1:30 PM

288 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When this page is called, if you hadn’t adjusted the referential integrity from pre-
vent (the default) to cascaded delete, you would receive an error when you delete
the page using asp0902.HTMLPage—the child table row would still be in the
database, so you couldn’t delete the parent or master table row. However, with
cascaded deletes, both associated rows are deleted.

Using the database integrity enforcement rules is an exceptionally good idea, as
long as you’re aware of the structure of the database. If you have a sequence of
tables that are related to one another in a parent/child relationship, one deletion
on the highest-level master table is all you’ll need to ensure that all of the tables
are kept in sync with one another. However, you must be sure that there is a par-
ent/child relationship and not a relationship that exists from something such as a
code lookup table and another table. This latter type of hierarchical table relation-
ship should never be maintained with cascaded deletions—the use of this tech-
nique would be inappropriate.

You can also use cascaded updates to update parent/child tables
based on the change of the identifier in the parent. However, paren-
tal identifiers should not change, and cascaded updates should be
used rarely, if at all.

Integrity rules can be enforced by the database engine or by database triggers. For
more complex relationships, you can code the rules enforcement directly within
the component. However, this isn’t the best approach to use, since one database
change can mean changing several components. Instead, you should consider
handling anything beyond the simplest database accesses (update or query) with
stored procedures, discussed next.

Using Stored Procedures

Stored procedures are functions created and stored in a precompiled form in the
database. Instead of embedding a SQL statement such as a query directly in your
ASP component code, you call the procedure instead, passing in any parameters it
might require. Stored procedures can be used for any type of data access, includ-
ing updates to the database.

There are several advantages to using stored procedures. First, developers who are
more familiar with the database organization, as well as more familiar with effi-
cient database access, can create the stored procedures. Component developers
may not have this same level of familiarity with either the database schema or with
database access techniques. Secondly, stored procedures hide much of the physi-
cal implementation of the database schema, making it simpler to make changes to

,ch09.18992 Page 288 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 289

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the schema at a later time, if needed, without necessarily impacting the applica-
tions that access the data. A third reason that stored procedures are efficient is that
they’re stored in a compiled form within the database itself, increasing the speed
with which the database access request is processed. Embedded SQL must go
through the database engine’s SQL engine first before the SQL can be processed.

One downside to stored procedures is that not all databases support them. For
instance, the application I provided to administer the Weaver database included
with this book does not use stored procedures because one version of the data-
base was created in Access. Still, if your organization is using a database that sup-
ports stored procedures, such as Oracle or SQL Server, and has the expertise to
create these procedures, consider using them for anything but the simplest data-
base access.

To demonstrate how to call a stored procedure from an ASP component, create a
new stored procedure, sp_getPageAssocs, shown in Example 9-9, in the SQL Server
version of the Weaver database. This procedure queries for and returns rows con-
taining component, script, image, and stylesheet usage information for a specific
HTML, ASP, or XML web page. If you have access to the SQL Server version of the
Weaver database, create this stored procedure in that database.

Example 9-9. Stored Procedure Returning Multiple Recordsets

CREATE PROCEDURE sp_getPageAssocs
 @pageid int
 AS
BEGIN

/* get component information */
select "Page Components", name, filename,
comp_type_cd, comp_language from
component, PageComponent where page_id = @pageid and
component.id = PageComponent.component_id

/* get script information */
select "Page Scripts", name, filename, script_language from
WebPage, ScrptWebPage, PageScript where
PageScript.page_id = @pageid and
WebPage.id = PageScript.script_page_id and
ScrptWebPage.webpage_id = PageScript.script_page_id

/* get image info */
select "Page Images", name, filename, description from
MediaObject, MediaType, PageMedia where
page_id = @pageid and
MediaObject.id = PageMedia.media_id and
MediaType.cd = MediaObject.media_type_cd

/* get style information */
select "Page Stylesheets", name, filename, description from

,ch09.18992 Page 289 Thursday, February 22, 2001 1:30 PM

290 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the stored procedure, the type of the object being returned is created as the first
field in the recordset. This will be used to create a title for the display of the
objects, as you’ll see next.

Create a new Visual Basic component and name it asp0903. Name the generated
class strproc. Attach the ADO, ASP, and COM+ Services type libraries to the
project.

Add a method to the new component named getPageAssociations that has one
parameter, an integer representing a specific web page; its source code is shown
in Example 9-10. The method creates a connection to the SQL Server Weaver data-
base and calls the stored procedure by using the Connection object’s Execute
method. A Recordset object is returned from the method call. The component
code will access each recordset from the stored procedure call and display the
field values using an HTML table. Each recordset is accessed in turn until the
Recordset object is set to Nothing, which means that the last stored procedure
result set has been processed.

WebPage, StyleWebPage, StyleType, PageStyle where
PageStyle.page_id = @pageid and
WebPage.id = PageStyle.style_page_id and
StyleWebPage.webpage_id = PageStyle.style_page_id and
StyleType.cd = StyleWebPage.style_code

END

Example 9-10. Calling a Stored Procedure and Printing the Result Sets

Sub getPageAssociations(ByVal iPageId As Integer)

Dim cn As Connection
Dim rs As Recordset
Dim connString As String

' connect to database
connString = "Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd="
Set cn = New Connection
cn.ConnectionString = connString
cn.Open

' call stored procedure
Dim cmndString As String
cmndString = "exec sp_getPageAssocs " & CStr(iPageId)
Set rs = cn.Execute(cmndString)

' create Response object
' process Results
Dim objResponse As Response
Set objResponse = GetObjectContext().Item("Response")

Example 9-9. Stored Procedure Returning Multiple Recordsets (continued)

,ch09.18992 Page 290 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 291

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component and the stored procedure, use the Weaver Administra-
tion tool (in the Weaver subdirectory of the examples for the book) to create sev-
eral page/component, page/style, page/media object, and page/script associations
for one of the ASP application web pages, such as the page named Articles Main.
Once you’ve staged your test data, access asp0903.strproc with the following
ASP script, contained in asp0911.asp:

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp0903.strproc")

obj.getPageAssociations 15
If Err.Number <> 0 Then
 Response.Write "<h1 style='color: darkgreen'>Error with Stored Procedure Call</
h1>"
 Response.Write Err.Description
End If
%>

Dim fld As Field
With objResponse

 Do Until rs Is Nothing

 ' get caption
 .Write "<h3>" & rs(0) & "</h3>"
 .Write "<table border='0' cellpadding='10'>"

 ' get next set of objects
 Do While Not rs.EOF
 .Write "<tr>"

 ' get object fields
 For Each fld In rs.Fields
 .Write "<TD>" & fld.Value & "</TD>"
 Next fld
 .Write "</TR>"
 rs.MoveNext
 Loop
 .Write "</TABLE>"

 ' next recordset
 Set rs = rs.NextRecordset
 Loop
End With

cn.Close

End Sub

Example 9-10. Calling a Stored Procedure and Printing the Result Sets (continued)

,ch09.18992 Page 291 Thursday, February 22, 2001 1:30 PM

292 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The results should look similar to those shown in Figure 9-3: the results or each
page association are printed out to the web page with a separate header and in a
separate HTML table.

Instead of embedding each query within the component, you called one stored
procedure that in turn created each query. With this approach, you’ve simplified
your ASP component code, and you’ve increased the performance of the applica-
tion. Instead of several calls made to the database, you made only one, and that to
a precompiled stored procedure.

Earlier in the chapter, you created a component that used cascaded deletes to
maintain the referential integrity between WebPage and HtmlWebPage. You can
use this approach to ensure that the referential integrity is handled correctly for all
WebPage associations, such as those with PageComponent, PageMedia, PageStyle,
and PageScript, as well as with HtmlWebPage. Alternatively, use a stored proce-
dure to handle the referential integrity when you delete a specific page.

Figure 9-3. Accessing a stored procedure with multiple recordsets from an ASP component

,ch09.18992 Page 292 Thursday, February 22, 2001 1:30 PM

Defining Business Objects 293

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You might prefer to handle referential integrity yourself, in order to
perform actions other than just deleting the child dependent rows.
For instance, you might want to update other data based on the
deletion.

To test using a stored procedure to maintain referential integrity when you delete
an HTML page, create a new SQL Server stored procedure named sp_deleteHtml-
PageAssocs, as shown in Example 9-11. In the procedure, individual deletions are
made of each table dependent on WebPage: PageComponent, PageScript, PageMe-
dia, PageStyle, and HtmlWebPage. Lastly, the WebPage table row itself is deleted.

Add a new method to asp0903.strproc called deleteHtmlPage. Add the code
shown in Example 9-12 to your component method. This method, like the first for
the component, takes a page identifier as its only parameter. As with the first com-
ponent method call, the new stored procedure is called, but this time, there is no
recordset returned from the procedure call.

Example 9-11. Stored Procedure to Delete Dependent Table Rows

CREATE PROCEDURE sp_deleteHtmlPageAssocs
 @pageid int
 AS
BEGIN

/* delete page/component associations */
delete from PageComponent where page_id = @pageid

/* delete page/media object associations */
delete from PageMedia where page_id = @pageid

/* delete page/script association */
delete from PageScript where page_id = @pageid

/* delete from page/style association */
delete from PageStyle where page_id = @pageid

/* delete HTML page */
delete from HtmlWebPage where webpage_id = @pageid

/* finally, delete the web page */
delete from WebPage where id = @pageid

END

,ch09.18992 Page 293 Thursday, February 22, 2001 1:30 PM

294 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Actually, there is a Recordset object returned anytime you call the
Connection or Command object’s Execute method—but it is set to
Nothing if no result sets are returned.

Since you’re making database updates, you’ll need to use transactions with the
component, so add asp0903.strproc to an existing (or new) COM+ application,
and set its transaction property to Required. Also add the following Transaction
directive to the ASP page:

<%@ TRANSACTION = required %>

Next call the component in this ASP test page, asp0912.asp, making sure to call
ObjectContent’s SetAbort if you don’t want the table deletions to be permanent:

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp0903.strproc")

obj.deleteHtmlPage 1
ObjectContext.SetAbort
If Err.Number <> 0 Then
 Response.Write "<h1 style='color: darkgreen'>Error with Stored Procedure Call</
h1>"
 Response.Write Err.Description
Else
 Response.Write "<h1 style='color: darkgreen'>HTML Page deleted</h1>"
End If
%>

Example 9-12. Calling Procedure to Delete an HTML Page and Maintain Referential Integrity

Sub deleteHtmlPage(ByVal iPageid As Integer)

Dim cn As Connection
Dim connString As String

' connect to database
connString = "Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd="
Set cn = New Connection
cn.ConnectionString = connString
cn.Open

' call stored procedure
Dim cmndString As String
cmndString = "exec sp_deleteHtmlPageAssocs " & CStr(iPageid)
cn.Execute (cmndString)

cn.Close

End Sub

,ch09.18992 Page 294 Thursday, February 22, 2001 1:30 PM

Other Data Integrity Issues 295

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you want to make sure that the stored procedure is working, you can change
the ObjectContext call to SetComplete—but make sure you use a test page that
you won’t mind deleting, such as the one you created earlier when you tested
queries from stored procedures.

Other Data Integrity Issues
In the last section, you used a stored procedure and cascading deletes to maintain
referential integrity, but there are other types of data integrity that you’ll most
likely have to enforce within application code—but not necessarily within your
component or only within your component.

For instance, you might have a parent/child table dependency that is further
refined to allow only five children table rows. If you have a purchase order form
that only allows five purchase order items, you might enforce this in your compo-
nent code as the items are added to the purchase order item table.

Other types of data integrity are those that test whether a data value provided fits
within a specific format. A Social Security number must consist of numbers only
and be exactly 9 characters wide without the hyphens. This type of data check-
ing, however, should be performed on the client using script when the data is
input, and an error message should be provided before the data is even sent to the
ASP page for processing.

You’ll also usually check the data again within the component just to
ensure that it’s the proper format and data type. This protects data
integrity in the event of a deliberate attempt to bypass client-side
data validation.

Another form of data validation is range checking. For instance, if you’re getting
someone’s age, you might safely test to make sure that the value entered is more
than 0 and less than 150 years. At this time, I’m unaware of anyone falling outside
this age group. Again, this type of check can be made on the client first, or it may
be made on the server based on data pulled from the database.

If you need data from the database in order to validate new data,
your best approach is to attach pre-update or pre-insert triggers on
the target field and use database processing to test the validity of the
data. This should prevent extra network calls for all cases except
when the data validation fails.

,ch09.18992 Page 295 Thursday, February 22, 2001 1:30 PM

296 Chapter 9: Creating an ASP Middle Tier with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

What About ACID?

You’ve probably heard the term ACID referred to when it comes to data opera-
tions. This acronym stands for atomicity, consistency, isolation, and durability, and
it refers to transaction management rather than data integrity—though integrity of
the data is the end result of the successful application of ACID with transactions.

A data source transaction is atomic if every operation to every data source con-
tained within one transaction succeeds as a unit or fails as a unit. The use of
COM+ services transaction management has been used in this chapter and
throughout the book to ensure the atomicity of the data source updates.

A data source transaction is consistent if all component methods call SetAbort or
SetComplete at the end of the method to ensure that the transaction is aborted or
committed, respectively. In the last section, in Example 9-12, the SetAbort or Set-
Complete method was called in the ASP script rather than in the component to
allow you to change whether the stored procedure deletion occurred. However, in
a production system, you should always call the SetAbort or SetComplete (or Set-
MyTransactionVote if you’re using IContextState) within the method, rather
than within the ASP script.

A data source transaction is isolated to ensure that two transactions running at the
same time don’t impact each other’s results, in order to make sure that each can
complete with a consistent state.

Finally, a transaction is durable if all updates that occur with a successful transac-
tion are permanent (can no longer be rolled back or undone).

How can you ensure that your components operate according to the principles of
ACID? Make sure that your components are added to a COM+ application, they
support transactions, and you call ObjectContext’s SetComplete or SetAbort or
IContextState’s SetMyTransactionVote method within your component’s meth-
ods. If your data source can participate in a COM+ transaction, the COM+ transac-
tion (and COM+ services) will take care of the rest.

Historical or Archival Data

I want to discuss one other update technique before ending this chapter.

Today, most companies want to keep track of data, even after it’s been “deleted”
from the system. One way to do this is to have database backups that can be
accessed if needed, but this approach is cumbersome and should be reserved for
database recovery. Another approach, and one commonly used with many data-
base applications, is to do what is known as end dating the table records.

,ch09.18992 Page 296 Thursday, February 22, 2001 1:30 PM

Other Data Integrity Issues 297

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

End dating has to do with creating an end date column for each table whose data
you want to maintain. When you “delete” the table row, what you’re really doing
is adding a date to the end date column, effectively marking that record as no
longer active in the system.

When rows are accessed from the table based on searches, these inactive rows are
excluded from the results, usually by testing to see if the row’s end date column is
null:

select * from target_table where end_date is null

If your database tables are getting large, then another approach is to have a batch
process access the database tables periodically, look for records that have been
end dated, and move these records to a separate archived database. You’ll still
have easy access to the data without having these pseudo-deleted rows within
your active database.

To enforce referential integrity with end dating, you’ll want to use a stored proce-
dure or post-update database triggers to update the end date column of all depen-
dent tables when a parent table row is end dated.

,ch09.18992 Page 297 Thursday, February 22, 2001 1:30 PM

298
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 10

10
Server-Side XML Through VB
ASP Components

There are few technologies that have excited developers as much as XML—Exten-
sible Markup Language. I’ve heard people talk about XML as a replacement for
everything from HTML to SQL. If you view available jobs on the Internet, you’ll
find few having anything to do with web applications that don’t also mention the
use of XML in some capacity.

ASP application developers are not immune to the lure of XML, yet there is confu-
sion about how XML can be used with a server-side technology such as ASP, espe-
cially when writing ASP components.

This chapter provides an overview of XML, as well as XML formatting techniques,
because it’s necessary to have an understanding of XML before working on the
examples in the second part of the chapter. These examples and their related dis-
cussions cover working with XML in ASP components written in Visual Basic.
Some of the examples we’ll look at include accessing and creating XML through
the Microsoft XML parser (MSXML), working with XML through ADO, and mixing
ASP processing with XML content.

XML is a recommended specification from the World Wide Web
Consortium, otherwise known as the W3C. You can access the speci-
fication at the W3C web site at http://www.w3.org.

XML Basics
XML is a simple-to-use basic markup language that is a subset of the more com-
plex SGML—or Standard Generalized Markup Language. The specification was

,ch10.19128 Page 298 Thursday, February 22, 2001 1:31 PM

XML Basics 299

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

created primarily due to insufficiencies of the HTML standard and particularly the
difficulties inherent in introducing a new element into the HTML standard.

For instance, mathematicians have a unique professional grammar and syntax that
they use to describe their work, but there are no tags within the HTML specifica-
tion that could be used for this effort. However, to expand HTML just for mathe-
maticians—or musicians, physicists, and so on—isn’t efficient.

This problem became very apparent when Netscape began to introduce elements
into its rendering of HTML—elements such as FONT for defining font characteris-
tics. By introducing new elements outside of the HTML specification, pages that
were created to work with Netscape Navigator didn’t work well with Internet
Explorer or other browsers.

Another limitation of HTML is that there is an assumed presentation and layout
associated with the elements in an HTML document, but not all rendering engines
(browsers) provide identical element presentations. The HTML standard just
doesn’t provide a means of defining every aspect of how an element is shown on
the page. A problem associated with combining presentation as well as content
within the same specification is that the specification can either become overly
large and complex, or pages created using the specification don’t always look the
same across different browsers, different operating systems, or both.

XML was created as a solution to both of these HTML limitations.

First, XML is a way of creating a document that can contain an arbitrary set of ele-
ments—defined with unique element tags—but still be accessible to document
parsers that weren’t created specifically to work with the page’s elements. The rea-
son that parsers can process the page is that the page and the elements follow a
specific set of rules.

Secondly, there is no presentation or layout associated with XML elements. This is
provided, instead, by separate standards, specifically by Cascading Style Sheets
(CSS) or Extensible Stylesheet language (XSL). Separating presentation from con-
tent enables anyone to create their own set of XML elements, provide their own
presentation with CSS or XSL, and have the page appear the same regardless of
what browser parsed the page.

This chapter barely touches on the subjects of the XML, CSS, and
XSLT specifications—just enough to introduce the examples. For
more detailed information, check the XML SDK that’s available at the
Microsoft web site at http://msdn.microsoft.com/xml/.

,ch10.19128 Page 299 Thursday, February 22, 2001 1:31 PM

300 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

A Well-Formed XML Document

One reason XML has become so popular is that it’s relatively easy to understand
the rules governing this markup language. By following the rules, a web devel-
oper creates a “well-formed” document that can be parsed by any XML parser,
including those built into browsers such as IE, Mozilla, and Navigator 6.0. When
the rules aren’t followed, the parser can’t process the document, and an error
results—the parser does not attempt to recover from the error.

Another problem with HTML parsers is that they can be very forgiv-
ing at times, and web page developers have developed some bad
habits as a consequence. A case in point is people using opening
tags such as the paragraph (<P>) or list () tag in their docu-
ment but without providing a closing tag for the content.

The first line of an XML document can contain the XML declaration, though this
isn’t required:

<? xml version='1.0' ?>

This line consists of the XML document tag, in addition to the version of XML used
in the document. At this time, there is only one version of XML, but you should
use the 1.0 version number to differentiate the XML used in the document from
future versions of XML.

The XML declaration can also include the character encoding used in the docu-
ment, such as UTF-8 or EUC-JP. Not all XML processors can process all encodings,
and an error results if you use an encoding the processor doesn’t recognize.

All XML elements must either be empty tags or have both beginning and closing
tags. For instance, if your XML document has an element such as the following,
with attributes but no content, then the element must be defined as an empty tag
and have a forward slash at the end of the element:

<template attribute="process" />

If your element defines content, then you’ll need to use both a beginning and an
ending element tag:

<city>Boston</city>

Not providing either the forward slash for an empty tag or the closing tag results
in an XML processor error.

Another XML rule is that any Document Type Definition (DTD) files or rules must
be specified before any other element in the document. DTDs provide grammar or
additional application-specific rules that can be applied to the XML document.

,ch10.19128 Page 300 Thursday, February 22, 2001 1:31 PM

XML Basics 301

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Though not required, providing a DTD file makes the XML document valid as well
as well-formed:

<!DOCTYPE template SYSTEM "template.dtd">

An additional rule for the XML document is that the elements contained in it must
not overlap. This means that you can nest elements, but a nested element must be
closed with the appropriate closing tag (or be an empty tag) before the closing tag
of the outer element is reached:

<template>
<inner>
</inner>
</template>

Overlapping elements result in an XML processor error.

XML is case-sensitive, so the case used for the opening tag of an element must
match the case used for the closing tag. Otherwise, again, an XML processor error
results.

Additionally, there are certain characters that should not be used within attribute
values or content, characters such as angle brackets (< and >) or the ampersand (&).
These characters have special meaning in XML, just as they do in HTML documents.

Other rules are that element attributes must not repeat within a tag, and they must
not reference external entities.

A Valid XML Document

Earlier I mentioned that an XML document with an associated DTD file is consid-
ered a valid document. The reason for this is that the DTD file provides the gram-
mar and rules to validate the XML used in the document.

For instance, if an element can contain data, a rule could be added to the DTD file
for the XML document, similar to the following:

<! ELEMENT template (#PCDATA)>

As efficient as DTD files are, a problem with them is that the syntax used to define
the document grammar differs from the syntax for the XML documents, forcing a
person to become familiar with two syntaxes. Efforts are underway to define XML
schemas to provide for XML entity and attribute descriptions. XML schemas, unlike
DTD files, use XML to describe the XML data.

XML Namespaces

XML is first and foremost extensible. This means that more than one set of XML ele-
ments for more than one purpose could be included within the same XML docu-
ment. However, if the same element name is used with two differing components,

,ch10.19128 Page 301 Thursday, February 22, 2001 1:31 PM

302 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

you have element collision. To prevent something like this from happening, the
W3C provided the XML Namespaces specification in 1999.

Namespaces are identified with URIs and are then used as an alias for elements
and element attributes within that namespace. With this approach, a document can
contain elements from several difference namespaces, and though the names of
the elements are the same, the namespaces prevent collision.

For instance, a namespace could be defined with the following:

xmlns:mine='http://www.somecompany.com/namespc'

And used as is shown in the following:

<mine:book>
...
</mine:book>

No document needs exist at the namespace URI—the URI itself is the key to defin-
ing the namespace.

Formatting XML
XML by itself has no presentation or formatting information associated with it. It’s
used to define elements and their relationships with each other (as in container and
contained). Other W3C-recommended specifications are then used to provide for-
matting, layout, and presentation information about the XML document elements.

Using CSS to Format Content

CSS can be used to provide both layout and presentation information to an XML
processor to define how an XML document is presented. CSS has been used with
HTML documents to provide additional formatting information. However, unlike
using CSS with HTML, there is no built-in display information for any XML ele-
ment—you have to provide all display characteristics.

To add CSS to an XML document, add the stylesheet using the following syntax:

<?xml-stylesheet type="text/css" href="asp1001.css" ?>

To demonstrate using XML with CSS, create a new XML document, name it
asp1001.xml, and add the contents of Example 10-1 to it. The document contains
the XML declaration and a statement to include a CSS file. An outer element with a
default namespace is defined to hold the document’s contents.

Example 10-1. XML Document

<?xml version='1.0'?>
<?xml-stylesheet type="text/css" href="asp1001.css" ?>
<doc xmlns='http://www.yasd.com/doc' >

,ch10.19128 Page 302 Thursday, February 22, 2001 1:31 PM

Formatting XML 303

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The elements in this example resemble those found in HTML, such as p for para-
graph and table for table. However, unlike HTML, there is no built-in formatting
for these elements; you have to provide it all in the CSS file.

Create the CSS file next, and name it asp1001.css; Example 10-2 has the complete
contents for the CSS file. The file provides CSS style definitions for all of the ele-
ments, including providing a display attribute setting for each. The display
attribute is used to define whether the element is displayed inline or in block for-
mat or is displayed as a list item, table element, or other. Several other style set-
tings are set to provide borders, margins, and padding.

<p>
Example of "paragraph", as formatted with CSS.
</p>

one
two

<table>
<tr>
<td>first cell</td>
<td>second cell</td>
</tr>
</table>
</doc>

Example 10-2. CSS File to Provide Formatting and Layout Information for an XML Document

p {
 display: block;
 border-style: groove;
 border-width: 2px;
 border-color: red;
 width: 90%;
 margin-left: 20px;
 margin-top: 10px;
 padding: 10px;
 }
UL {

 display: block;
 margin-left: 30px;
 margin-top: 30px;
}
LI {
 display: list-item;
 list-style-type: circle
}
table {
 display: table;

Example 10-1. XML Document (continued)

,ch10.19128 Page 303 Thursday, February 22, 2001 1:31 PM

304 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can open the XML document directly into a browser. However, if you use
Internet Explorer 5.x to open the file, you’ll find that most of the CSS settings have
no impact on the elements. The reason is that Microsoft has not implemented
much of the CSS functionality for XML contents at this time (the company focuses
more on XSL, discussed in the next section).

However, if you open the document with something that has broader CSS support
for XML, like Mozilla or Navigator 6.0, you’ll find that the CSS style settings do
work with the elements, as shown in Figure 10-1.

By the time you read this book, Microsoft may have improved the
support of CSS in XML documents in Internet Explorer, and the
Mozilla browser may have a different look than that shown in
Figure 10-1. Such is life in the web fast lane.

 border-width: 1px;
 border-style: solid;
 border-color: #CCCCCC;
 margin: 50px
 }
tr {
 display: table-row;
 }
td {
 display: table-cell;
 padding: 5px;
 border-style: solid;
 border-width: 1px;
 border-color: #CCCCCC;
 }

Figure 10-1. CSS-formatted XML, displayed in the Mozilla browser

Example 10-2. CSS File to Provide Formatting and Layout Information for an XML Document

,ch10.19128 Page 304 Thursday, February 22, 2001 1:31 PM

Formatting XML 305

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using XSLT to Transform XML

A second technique to format XML documents is XSL—Extensible Stylesheet Lan-
guage. XSL consists of several specifications; we’ll take a look at one of them,
Extensible Stylesheet Language Transformations (XSLT).

Unlike using CSS with XML, XSLT is a template-based specification. You create an
XML document, which is used to provide the data, and then you create the XSLT
document that provides the template to process the data. The template uses HTML
elements to provide data layout information, but the format of the XSLT document
is XML.

The XSLT document begins with the XML declaration line, followed by the
namespace definition for XSLT:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

To begin processing the contents, a root element is defined for the entire docu-
ment. This root element references content with a forward slash:

<xsl:template match="/">

There are specific elements with associated behaviors defined in XSLT. To process
every occurrence of an element in the XML document, you can use the for-each
element:

<xsl:for-each select="element">

The for-each element processes every occurrence of the target element in the
page. To access the value of an element, you can use the value-of element:

<xsl:value-of select="element">

The value-of element differs from the for-each element in that the former
returns only the first occurrence of an element within a given content.

Other XSLT elements can be used to provide decision support as well as process-
ing instructions.

To add an XSLT template to an XML document, use the following line, adjusted for
the name of your own XSLT file:

<?xml-stylesheet type="text/xsl" href="asp1002.xsl"?>

To demonstrate how XML and XSLT work together, create a new XML document,
and name this one asp1002.xml. In the document, add the XML shown in
Example 10-3. Note that the contents are very similar to those shown in
Example 10-1, except that tags surround the contents of the list and table
cell elements, and the CSS stylesheet reference has been replaced by one for the
XSLT document.

,ch10.19128 Page 305 Thursday, February 22, 2001 1:31 PM

306 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create a second document and name it asp1002.xsl. This document contains the
XSLT to process the page contents, providing a visual display similar to that shown
in Figure 10-1; Example 10-4 has the complete contents of the XSLT file.

In the template, the HTML tags to create a document and attach a stylesheet block
are added to the page, just as they would be added to an HTML document. The
differences occur where the XML contents are referenced.

First, the single paragraph element’s value is accessed using an XSLT value-of
element. Since there is only one paragraph element in the page, the value-of
element processes this. If there were more, the additional paragraph elements
would be discarded.

Both the LI and the table elements repeat, so a for-each XSLT element is used
for them. As the elements that repeat are processed in the external for-each
statement, the actual value of the list item or the table cell is output by accessing
the content’s tag. This is why the contents had to be enclosed in another
element, though the element didn’t have to be used—you could make
one of your own.

Example 10-3. An XML Document That Uses an XSLT Document for Presentation

<?xml version='1.0'?>
<?xml-stylesheet type="text/xsl" href="asp1002.xsl"?>
<doc xmlns='http://www.yasd.com/doc' >

<P>
Example of "paragraph", as formatted with XSL.
</P>

one
two

<table>
<tr>
<td>first cell</td>
<td>second cell</td>
</tr>
</table>
</doc>

Example 10-4. An XSLT Document

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <HTML>
 <BODY>
 <STYLE type="text/css">

,ch10.19128 Page 306 Thursday, February 22, 2001 1:31 PM

Working with XML in ASP Applications 307

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In an XSLT-capable browser, when the XML document is accessed, the XSLT tem-
plate is used to process the contents and the results are returned as a web page.
Figure 10-2 shows the results of accessing the XML page shown in Example 10-3
within IE 5.x.

This is a very brief introduction to some of the XML-based technologies, which
you will need as we look at working with XML in ASP applications, next.

Working with XML in ASP Applications
Microsoft has an XML parser, MSXML, that you can access in your ASP compo-
nents or script. With MSXML, you can open and work with existing XML docu-
ments or create new XML content.

 P { border-style: groove;
 border-width: 2px;
 border-color: red;
 width: 90%;
 margin-left: 20px;
 margin-top: 10px;
 padding: 10px;
 }
 UL { margins: 20px }
 LI { list-style-type: circle }
 TABLE { margin: 50px }
 </STYLE>

 <P><xsl:value-of select="doc/P" /></P>

 <xsl:for-each select="doc/UL/LI" >
 <xsl:value-of select="span" />
 </xsl:for-each>

 <table border="1px" cellspacing="0" cellpadding="5px">
 <xsl:for-each select="doc/table/tr">
 <TR>
 <xsl:for-each select="td">
 <td><xsl:value-of select="span" /></td>
 </xsl:for-each>
 </TR>
 </xsl:for-each>
 </table>

 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Example 10-4. An XSLT Document (continued)

,ch10.19128 Page 307 Thursday, February 22, 2001 1:31 PM

308 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The MSXML parser is based on the W3C’s DOM (Document Object Model) specifi-
cation, though Microsoft has extended the DOM to provide additional methods,
properties, and objects to support XML processing efforts.

You can access the objects defined in MSXML by attaching the Microsoft XML type
library to your VB component project. The following are some of the key objects:

XMLDOMDocument
The top-level XML source object

XMLDOMNode
Represents a single node in the document tree

XMLDOMNodeList
A collection of nodes

XMLDOMAttribute
An element attribute

XMLDOMText
The text content of either an element or an element attribute

XMLDOMCDataSection
XML CDATA sections (text that is not processed as markup)

XMLDOMComment
An XML comment

XMLDOMDocumentFragment
Represents part of a document tree

Figure 10-2. XML document formatted with XSLT template file

,ch10.19128 Page 308 Thursday, February 22, 2001 1:31 PM

Working with XML in ASP Applications 309

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can load an external XML file with the XMLDOMDocument object and then
process the contents using one or more of the other objects.

To demonstrate working with XML using MSXML from Visual Basic components,
we’ll take a different approach to working with XML. Instead of treating XML as a
data source, we’ll use XML to actually define a database query.

The document root is a query object that can contain several other elements, each
defined for a specific purpose. For instance, the tables for the query are contained
within tablename elements, and the WHERE clause column-value pairs are defined
within the where element: the column is identified by queryfield, and the value
is identified by queryvalue. The columns returned from the query are contained
within fieldname elements. Example 10-5 contains an XML file defining a query
against the WebPage table, returning the name and filename columns for all
records where the page type code is set to HTM. This XML file is found in the file
asp1003.xml, located with the examples.

To process the XML, create a Visual Basic component and name it asp1001. Name
the generated class xml. This component has one method, processXMLQuery,
shown in Example 10-6, that generates a database query string from the contents
of a preexisting XML document. The string is then used to open an ADO record-
set that’s returned to the ASP page.

To support XML and ADO in the new component, attach the Microsoft XML and
Microsoft ADO type libraries to the new project. Since the example uses the ASP
built-in Response object, also attach the COM+ Services and the Microsoft Active
Server Page Object type libraries. The processXMLQuery method takes as its only
parameter a string containing the name and physical location of the XML file.

Example 10-5. XML File Containing a Database Query

<?xml version='1.0'?>
<doc >
 <query>
 <fields>
 <fieldname>name</fieldname>
 <fieldname>filename</fieldname>
 </fields>
 <tablename>WebPage</tablename>
 <where>
 <queryfield>page_type_cd</queryfield>
 <queryvalue>'HTM'</queryvalue>
 </where>
 </query>
</doc>

,ch10.19128 Page 309 Thursday, February 22, 2001 1:31 PM

310 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There are certain assumptions in the code shown in Example 10-6,
such as all WHERE clause conditions are joined by the AND keyword,
and all conditions are tests of equality.

The code creates an instance of the DOMDocument object (the XMLDOMDocu-
ment object) and calls its load method to load the XML file. Once the file is
loaded, the getElementsByTagName method pulls in the elements of the query.
The XMLDOMNode object’s selectSingleNode method accesses the queryvalue and
queryfield elements’ values—the selectSingleNode method takes an XSL pattern
query, which specifies a node name within the context of the node. The contents
of the elements are used to generate the query string to open the ADO Recordset.

Example 10-6. Opening an XML File and Generating a Query from Its Contents

Function processXMLQuery(ByVal strFile As String) _
 As Recordset

Dim strSelect As String
Dim strFrom As String
Dim strWhere As String
Dim strSQL As String
Dim i As Integer
Dim iCt As Integer

' XML objects
Dim MSXML As New DOMDocument
Dim mslist As IXMLDOMNodeList

' ADO
Dim rs As New Recordset

' load XML file
MSXML.Load (strFile)

' get select fields
Set mslist = MSXML.getElementsByTagName("fieldname")
strSelect = ""
iCt = mslist.length
For i = 0 To iCt - 1
 If strSelect <> "" Then
 strSelect = strSelect & ", "
 Else
 strSelect = "select "
 End If
 strSelect = strSelect & mslist(i).Text
Next

' get tables
Set mslist = MSXML.getElementsByTagName("tablename")

,ch10.19128 Page 310 Thursday, February 22, 2001 1:31 PM

Working with XML in ASP Applications 311

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the example, the ASP test page, asp1001.asp, calls the component’s
method, passing in the name of the XML file. The file is in the same location as
the ASP page, so the script uses the Server object’s MapPath method to map the
relative location of the file to an actual physical location:

<%
Dim obj
Set obj = Server.CreateObject("asp1001.xml")

Dim rs

strFrom = ""
iCt = mslist.length
For i = 0 To iCt - 1
 If strFrom <> "" Then
 strFrom = strFrom & ", "
 Else
 strFrom = " from "
 End If
 strFrom = strFrom & mslist(i).Text
Next

' get where clause
Set mslist = MSXML.getElementsByTagName("where")

Dim strField As String
Dim strValue As String
strWhere = ""
iCt = mslist.length
For i = 0 To iCt - 1
 If strWhere <> "" Then
 strWhere = strWhere & " AND "
 Else
 strWhere = " where "
 End If
 strField = mslist.Item(i).selectSingleNode("queryfield").Text
 strValue = mslist.Item(i).selectSingleNode("queryvalue").Text

 strWhere = strWhere & strField & "=" & strValue
Next

' perform query
strSQL = strSelect & strFrom & strWhere
rs.CursorLocation = adUseClient
rs.Open strSQL, "Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd="

' disconnect recordset
Set rs.ActiveConnection = Nothing

Set processXMLQuery = rs

End Function

Example 10-6. Opening an XML File and Generating a Query from Its Contents (continued)

,ch10.19128 Page 311 Thursday, February 22, 2001 1:31 PM

312 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set rs = obj.processXMLQuery(Server.MapPath("asp1003.xml"))

' process records
Dim iCt, i
iCt = rs.Fields.Count

Response.Write "<TABLE>"
While rs.EOF <> True
 Response.Write "<TR>"
 For i = 0 to iCt - 1
 Response.Write "<TD>" & rs.Fields(i) & "</TD>"
 Next
 Response.Write "</TR>"
 rs.MoveNext
Wend
Response.Write "</TABLE>"
%>

Accessing the page results in the recordset contents being displayed within an
HTML table.

By defining the query in an XML document and processing the XML elements for
the query, you can create more than one query in more than one XML file.
Example 10-7 shows a more complex XML file, asp1004.xml, that the asp1001.
xml component can process without modification. Notice in this example that
more than one table is joined in the query, and there is more than one condition
in the WHERE clause.

Example 10-7. Second Database Query, Defined Using XML

<?xml version='1.0'?>
<doc>
 <query>
 <fields>
 <fieldname>MediaObject.name</fieldname>
 <fieldname>filename</fieldname>
 <fieldname>file_size</fieldname>
 <fieldname>directory.name</fieldname>
 </fields>
 <tablename>MediaObject</tablename>
 <tablename>directory</tablename>
 <where>
 <queryfield>directory.id</queryfield>
 <queryvalue>18</queryvalue>
 </where>
 <where>
 <queryfield>directory_id</queryfield>
 <queryvalue>directory.id</queryvalue>
 </where>
 <where>
 <queryfield>media_type_cd</queryfield>
 <queryvalue>'GIF'</queryvalue>
 </where>

,ch10.19128 Page 312 Thursday, February 22, 2001 1:31 PM

Working with XML in ASP Applications 313

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Try asp1001.xml with the new XML file, as shown in the following ASP test page,
asp1002.asp:

Dim obj
Set obj = Server.CreateObject("asp1001.xml")

Dim rs
Set rs = obj.processXMLQuery(Server.MapPath("asp1004.xml"))

' process records
Dim iCt, i
iCt = rs.Fields.Count

Response.Write "<TABLE>"
While rs.EOF <> True
 Response.Write "<TR>"
 For i = 0 to iCt - 1
 Response.Write "<TD>" & rs.Fields(i) & "</TD>"
 Next
 Response.Write "</TR>"
 rs.MoveNext
Wend
Response.Write "</TABLE>"

The results of the more complex table join XML are displayed in the returned
page.

You can also modify XML by replacing or modifying existing contents or creating
new contents. As an example, consider the XML document shown in Example 10-5.
This XML generates a query that returns the WebPage name and filename col-
umns. You can modify this file and add a new column to the query using MSXML.

To demonstrate, add a second method to the asp1001.xml component and call it
addXML. This method takes two strings, the name of the XML file and the new
field to add to the document’s fieldnames list.

Add the code for the method, which is shown in Example 10-8. The addXML
method first accesses the fieldname element’s parent element, fields. Next, it
creates a new node object using the createNode method and passing in the node
type NODE_TYPE (an enumerated value) as the first parameter and the name of the
node, fieldname, as the second parameter. Passing an empty string as the third
parameter defines the element within the default namespace.

Once the node is created, the method inserts it into the XML document using the
insertBefore method on the fields node. The first parameter of this method is
the new node, and the second parameter is the child node in front of which the

 </query>
</doc>

Example 10-7. Second Database Query, Defined Using XML (continued)

,ch10.19128 Page 313 Thursday, February 22, 2001 1:31 PM

314 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

new node is placed, or NULL, which means that the new mode is placed at the
end of the child list. Finally, the method saves the modified XML to the existing
XML document.

After saving and compiling the component, test it using the asp1003.asp file. The
query XML file is called asp1005.xml and is a direct copy of asp1003.xml (shown
in Example 10-7). The script in the test ASP file adds the file_size column name to
the selection list of the query and then calls the processXMLQuery to process the
query:

<%
Dim obj
Set obj = Server.CreateObject("asp1001.xml")

Dim file
file = Server.MapPath("asp1005.xml")

' add new field
obj.addXML file, "file_size"

' do query

Example 10-8. Modify Query by Adding New Fieldname to Query XML

' add field
Sub addXML(ByVal strFileName As String, _
 ByVal strFieldName As String)

' XML objects
Dim msxml As New DOMDocument
Dim mselement As IXMLDOMNode
Dim msnode As IXMLDOMNode
Dim currnode As IXMLDOMNode
Dim mslist As IXMLDOMNodeList

' load XML file
msxml.Load (strFileName)

' get fields element
Set mslist = msxml.getElementsByTagName("fields")
Set mselement = mslist.Item(0)

' create node, assign node text
' insert into end of fieldname list
Set msnode = msxml.createNode(NODE_ELEMENT, "fieldname", "")
msnode.Text = strFieldName
Set currnode = mselement.insertBefore(msnode, Null)

' save XML file
msxml.save (strFileName)

End Sub

,ch10.19128 Page 314 Thursday, February 22, 2001 1:31 PM

XML and ADO: Saving Recordsets as XML 315

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim rs
Set rs = obj.processXMLQuery(file)

' process records
Dim iCt, i
iCt = rs.Fields.Count

Response.Write "<TABLE>"
While rs.EOF <> True
 Response.Write "<TR>"
 For i = 0 to iCt - 1
 Response.Write "<TD>" & rs.Fields(i) & "</TD>"
 Next
 Response.Write "</TR>"
 rs.MoveNext
Wend
Response.Write "</TABLE>"
%>

When you access the ASP test page, the results of running the query are shown to
the page. If you open the modified asp1005.xml file, you should see something
similar to the following:

<?xml version="1.0"?>
<doc>

<query>
<fields>

<fieldname>name</fieldname>
<fieldname>filename</fieldname>
<fieldname>file_size</fieldname></fields>

<tablename>WebPage</tablename>
<where>

<queryfield>page_type_cd</queryfield>
<queryvalue>'HTM'</queryvalue>

</where>
</query>

</doc>

Compare this XML with that shown in Example 10-5, and you’ll see the addition of
the new fieldname element, with the file_size contents. MSXML also nicely for-
mats the output, indenting the elements.

Instead of generating XML by using MSXML, you can also use a new feature in
ADO to save the contents of a recordset as XML. This is discussed next.

XML and ADO: Saving
Recordsets as XML
Converting database data into XML files quickly becomes pretty cumbersome
whether you use MSXML or create the files manually. However, saving an ADO
recordset as XML is as easy as calling one method—the Save method.

,ch10.19128 Page 315 Thursday, February 22, 2001 1:31 PM

316 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ADO recordsets could be persisted for sometime now, usually in ADTG (Microsoft
Advanced Data Tablegram) format. However, you can also persist a recordset in
XML format. Not only that, but when you persist the recordset as XML, you can
save it to a file, an existing XML document, or even directly to the ASP built-in
Response object.

To demonstrate the three ways in which you can persist the data in XML, you’ll
create three new methods for asp1001.xml.

Add the code for the first method, which is shown in Example 10-9, to your
asp1001.xml class. This method, saveXMLToDocument, saves the XML-formatted
data directly to an XML document. The saveXMLToDocument method creates new
MSXML DOMDocument and ADO Recordset objects and sets the Recordset
object’s CursorLocation property to adUseClient. The SQL used with the query is
passed as a parameter to saveXMLToDocument, as is the name of the XML docu-
ment the XML document tree will be saved to. Once the recordset is opened, the
data is saved using the Recordset object’s Save method. The first parameter is the
DOMDocument object, and the second is the format type of the data. A value of
adPersistXML is used for this parameter, as well as for the next two component
methods you’ll create later. Once the XML has been added to the document tree,
it’s saved to an XML file using the DOMDocument Save method.

You can use server-side cursors with these examples. However, not
all OLE DB providers support the same functionality—using the cli-
ent-side cursor ensures that these examples work regardless of the
OLE DB provider used.

Example 10-9. Saving Recordset Data as XML Directly to an XML Document Tree

' save to XML document
Sub saveXMLToDocument(ByVal strQuery As String, _
 ByVal strFile As String)

Dim msxml As New DOMDocument
Dim rs As New Recordset

' perform query
rs.CursorLocation = adUseClient
rs.Open strQuery, "Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd="

' disconnect recordset
Set rs.ActiveConnection = Nothing

' save RS to DOM tree

,ch10.19128 Page 316 Thursday, February 22, 2001 1:31 PM

XML and ADO: Saving Recordsets as XML 317

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Save the component and recompile it. To test your new method, use the follow-
ing ASP page, asp1004.asp, which instantiates your component and calls saveXML-
ToDocument, passing in a query string and the name of the XML document to
which the results are to be written:

<%
Dim obj
Set obj = Server.CreateObject("asp1001.xml")

' save using XML document
 obj.saveXMLToDocument "select * from directory", _
 Server.MapPath("asp1006.xml")
%>

Notice that the method uses Server.MapPath to map the relative filename to the
physical location. Once the asp1006.xml document is created, open it with Inter-
net Explorer. You should have a result similar to that shown in Figure 10-3.

rs.save msxml, adPersistXML

' save MSXML
msxml.save strFile
End Sub

Figure 10-3. XML document created from persisting recordset to XML document tree

Example 10-9. Saving Recordset Data as XML Directly to an XML Document Tree (continued)

,ch10.19128 Page 317 Thursday, February 22, 2001 1:31 PM

318 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Looking at the XML document, you’ll notice that not only is the recordset data per-
sisted as XML, but so is the definition of the Recordset object itself. When you per-
sist the Recordset object, you’re persisting the entire object—not just the data. You
could, if you wished, reopen the recordset from the file into an ADO Recordset in
another component or in script. If you just want the data, you can copy this
directly from the XML document, or you can remove the recordset schema infor-
mation using MSXML.

Ever notice how nicely XML documents that don’t have associated
stylesheets look with Internet Explorer? That’s because IE has a built-
in default stylesheet used with all XML documents that don’t have
either an XSL or CSS stylesheet attached.

Next, you’ll persist the recordset directly to a file. Create a new method, as shown
in Example 10-10, called saveXMLToFile. The method takes two parameters: a
query string and the name of the output file. Like SaveXMLToDocument, the
saveXMLToFile method again opens the recordset with the provided query, but
instead of saving the recordset as XML to an XML document tree, it saves it directly
to a file.

Try this component with the following ASP test script, found in asp1005.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1001.xml")

' save using file

Example 10-10. Saving a Recordset as XML Directly to a File

' save XML to file
Sub saveXMLToFile(ByVal strQuery As String, _
 ByVal strFile As String)
Dim rs As New Recordset

' perform query
rs.CursorLocation = adUseClient
rs.Open strQuery, "Provider=SQLOLEDB;server=FLAME;" _
 & "database=weaver;uid=sa;pwd="

' disconnect recordset
Set rs.ActiveConnection = Nothing

' save RS in XML format to file
rs.save strFile, adPersistXML

End Sub

,ch10.19128 Page 318 Thursday, February 22, 2001 1:31 PM

XML and ADO: Saving Recordsets as XML 319

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

obj.saveXMLToFile "select * from MediaObject", _
 "c:\datasets\mediaobject.xml"
%>

The result of running this script is an XML file, created in the specified location
(adjust the file location for your own environment). Opening the new file, you’ll
see that the XML in it is the same as that created with the SaveXMLToDocument
method in Example 10-9 and shown in Figure 10-3.

If the file that the recordset is being saved to already exists, you’ll
get an error. See more on persisting recordsets in Chapter 8, Creat-
ing ASP/ADO Components.

Also, be aware of privileges whenever you do any form of file I/O. If
your web user doesn’t have permission to write or read a file from a
given location, an error will occur.

The last component method you’ll create for this chapter actually persists the
recordset directly to the built-in ASP Response object. This is possible because the
Response object supports the OLE DB IStream interface, required of any object
that serves as the destination for the Recordset object’s Save method.

Create a new method called saveXMLToResponse, shown in Example 10-11. The
method has one parameter, the query string. It instantiates the Response object
and then creates and opens the recordset with the given query string. Finally, it
writes out the XML declaration using the Response object and then saves the
recordset directly to the Response object.

Example 10-11. The saveXMLToResponse Method

' save XML directly to response (stream)
Sub saveXMLToResponse(ByVal strQuery As String)

Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

Dim rs As New Recordset

' perform query
rs.CursorLocation = adUseClient
rs.Open strQuery, "Provider=SQLOLEDB;server=FLAME;" _
 & "database=weaver;uid=sa;pwd="

' disconnect recordset
Set rs.ActiveConnection = Nothing

,ch10.19128 Page 319 Thursday, February 22, 2001 1:31 PM

320 Chapter 10: Server-Side XML Through VB ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method must write out the XML declaration first, or the XML returned by the
Response object won’t be treated as XML. Setting the Response object’s Content-
Type property won’t work when you persist the Recordset object directly to the
object.

The ASP test page, asp1006.asp, for this last method is pretty simple—it consists of
the ASP script to create asp1001.devaspcompxml and call saveXMLToResponse:

<%
Dim obj
Set obj = Server.CreateObject("asp1001.xml")
' save to response
obj.saveXMLToResponse "select * from WebPage"
%>

The result is a web page with XML defining the recordset and its data.

The end result of persisting the recordset as XML is the same with all three of the
techniques used in this section—all that differs is the end location of the recordset
and the queries used.

Persisting the recordset by saving it to an XML document, which can then be saved,
or by saving it directly to a file provides access to the recordset for other server-
side components. Your ASP server-side applications won’t be able to access the
recordset saved to the Response object, but this approach can be used to pass a
recordset to the client when using something such as Remote Data Services (RDS).

See the documentation provided with the Data SDK from Microsoft
on working with RDS.

' save RS to DOM tree
objResponse.Write "<?xml version='1.0' ?>" & vbCrLf
rs.save objResponse, adPersistXML

End Sub

Example 10-11. The saveXMLToResponse Method (continued)

,ch10.19128 Page 320 Thursday, February 22, 2001 1:31 PM

321
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11

11
Take a Message: Accessing

CDO from ASP Components

I don’t know of any Microsoft object-based technology that gives so much in
return for so little effort as does Collaboration Data Objects, or CDO. This technol-
ogy provides the functionality that developers can use to add messaging capabili-
ties to their applications, including ASP applications. With CDO, messages can
easily be sent to and read from either an email or a newsgroup server.

Messaging capability is a very useful added functionality for ASP applications. For
instance, if you’ve shopped at an online store, chances are you’ve received an
email with a copy of your order just after you’ve submitted it. Additionally, some
sites have “send this article to a friend” functionality—something that you can cre-
ate for your own sites with just a few lines of code. You can email confirmation
notices, passwords for forgetful folks (such as myself), and even a message thank-
ing someone for expressing an interest in hearing more about a product, idea, or
concept.

This chapter looks at using the CDO objects to send and read messages through
an SMTP server from within ASP components created using Visual Basic.

This chapter references the version of CDO created for Windows
2000. Note that this can differ from CDO used with Exchange Server
and CDO 1.2 for NTS.

,ch11.19249 Page 321 Thursday, February 22, 2001 1:31 PM

322 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

A Brief Overview of CDO
CDO isn’t a complicated technology. Basically, you create a message by building
each of the message’s component parts, and then you send it when finished.

A CDO message can include attachments, and the message body can be formatted
in different ways, such as in HTML or as plain text. You can even send messages
that are formatted with multiple formats, such as a message that has both plain
text and HTML portions. You’ve most likely received messages of this type, partic-
ularly if you use Microsoft Outlook. Messages can also be in more complex docu-
ment formats, such as a Microsoft Word document.

Messages can be sent and forwarded, read and replied to. You can persist a mes-
sage using ADO streams. Though not demonstrated in this chapter, you can even
create transport event sinks to receive notification when certain message events
occur, such as a message arriving at a particular destination.

ASP applications are interactive, and the use of event sinks directly
within ASP components is not an effective use of CDO technology.
However, you can create external applications that “listen” for spe-
cific events and do such things as write logging information to a per-
sistent store. Then you can create ASP applications that read the logs.

To use CDO from within Visual Basic, you’ll need to attach the Microsoft CDO for
Windows 2000 type library. Additionally, you’ll need to attach the Microsoft
ActiveX Data Object library, as shown in Figure 11-1, to work with CDO data.

The CDO Object Model
The CDO object model isn’t very large. We’ll take a brief look at the objects in the
model that we’re most interested in and then demonstrate each of the objects
mentioned in the sections to follow.

Messages can be accessed from the SMTP service or any folder with the appropri-
ate permissions through the DropDirectory object. This object has one method,
GetMessages, used to return a collection of messages through the IMessages
interface object.

Once you have access to an IMessages interface collection, you can enumerate
through it to access specific messages. Each message is defined as a Message
object that exposes several properties corresponding to message components,
such as the message’s Subject, the From and To address fields, and the message
body itself.

,ch11.19249 Page 322 Thursday, February 22, 2001 1:31 PM

The CDO Object Model 323

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Message object also has several methods used to do such tasks as creating an
MHTML-formatted message (CreateMHTMLBody) or adding an attachment to a
message (AddAttachment). For the latter, the function returns an instance of
IBodyPart that you can then manipulate. You can set IBodyPart properties for
elements such as the content type (ContentMediaType) or the name of the file
forming the attachment (FileName). There are also methods you can use to save
the body part’s contents to a file (SaveToFile), as well as to attach another
IBodyPart object for creating a hierarchy of body parts within the message.

“A hierarchy of body parts” . . . sounds gruesome, doesn’t it?

You can access a Message object’s body part through the BodyPart property. To
access all of the body parts in the hierarchy, access the BodyParts property in
IBodyPart. This property contains a collection of body parts in the message’s
main IBodyPart object, within a collection accessible through the IBodyParts
interface. You can then enumerate through the collection as you would any other,
using a statement such as:

For Each iBdyPrt in iBdyPrts

Figure 11-1. References for a VB project after attaching the ADO and CDO type libraries

,ch11.19249 Page 323 Thursday, February 22, 2001 1:31 PM

324 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Message configuration is managed through another interface, IConfiguration.
This object, which you access in Visual Basic as Configuration, contains a refer-
ence to an ADO Fields collection used to hold configuration properties. Both Mes-
sage and IBodyPart also have Fields collections to hold message and message
body properties, respectively.

You access only DropDirectory, Message, and Configuration directly
in your Visual Basic component—the other CDO objects are
accessed through one of these three.

It’s time to take a closer look at the CDO objects by creating and sending a mes-
sage. Not just any message, though—you’ll be sending a specific web page to a
friend.

Send This URL to a Friend
Your first ASP/CDO application is a variation of the “Send this URL to a friend”
example I mentioned earlier. To start, create a new Visual Basic ActiveX DLL
project and name it asp1101. Name the generated class file msg. Next, attach a
reference to the CDO and ADO type libraries you’ll need for this project.

Create a new subroutine named sendURL; its source code is shown in
Example 11-1. It takes the following ByVal parameters:

strTo
A string to hold the email address of recipient

strFrom
A string to hold the sender’s email address

strSubject
A string to hold the subject of the message

strURL
A string with the URL of the page that’s being sent in the message

The msg method creates an instance of the Message and the Configuration objects
and defines a variable to hold an ADO Fields object that’ll get set to the Configura-
tion object’s Fields collection.

Two of the configuration properties set in the code are the SMTP send method
and message authentication. Both the values and the property names for these
items are enumerated constants provided in the CDO type library. The cdoSend-
Using enumeration contains two values you can use with the cdoSendUsing-
Method property: cdoSendUsingPort to send the message over the network and

,ch11.19249 Page 324 Thursday, February 22, 2001 1:31 PM

Send This URL to a Friend 325

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

cdoSendUsingPickup to send the message using the local SMTP pickup direc-
tory. In the example, you’ll use the cdoSendUsingPort value.

Applications that don’t have direct SMTP access can create emails
and save them as files within the pickup directory. SMTP then auto-
matically moves these files into the queue for emailing.

The enumerator cdoProtocolsAuthentication has three values used to deter-
mine what type of authentication is used with the SMTP service when it receives
the message. The values are cdoAnonymous for no authentication, cdoBasic for
clear text authentication, and cdoNTLM for NTLM authentication. You’ll use
cdoBasic for the example.

The remaining property names are also enumerated constants, but their values
should be set for your own specific environment. After you’ve added the code
from Example 11-1 to your component, modify it to use values pertinent to your
own SMTP setup. The code contains settings for the SMTP connection timeout, the
name of the SMTP server, and the username and login that allows the component
access to the service. Once these values are set, the configuration object is attached
to the message’s Configuration property. Then the method sets the Message
object’s To, From, and Subject properties with the values passed in as parameters.

You can find the SMTP properties from your own email setup. If you
use Outlook, access Tools ➝ Accounts ➝ Mail ➝ Properties. The
Servers tag has the SMTP server name, the account name, and pass-
word, though the actual password value is hidden.

Finally, the code calls the createMHTMLBody method with the URL passed as a
parameter to the component. The createMHTMLBody method converts the page
identified by the URL into an MHTML (MIME Encapsulation of Aggregate HTML
documents) document that is then attached to the message body. Once this is fin-
ished, the message is sent with the Message object’s Send method.

Example 11-1. Send a Friend This URL Component Method

Sub sendURL(ByVal strTo As String, _
 ByVal strFrom As String, _
 ByVal strSubject As String, _
 ByVal strURL As String)

Dim iMsg As New CDO.Message
Dim iConf As New CDO.Configuration

,ch11.19249 Page 325 Thursday, February 22, 2001 1:31 PM

326 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After compiling the object, create the ASP test pages. There are actually three ASP
pages used to test the new component. You can create your own or you can use
the ones contained in the book examples. The first page, asp1101.asp, has a
hypertext link that attaches the URL and the subject for the current page to the
query string of another ASP page:

<p>
<a href="asp1102.asp?Subject=Test Page&
URL=http://localhost<% = Request.ServerVariables("URL") %>">Send
this page to a friend
</p>

The URL for the current page is based on a combination of the friendly name for
the site (http://localhost for our test environment) and the base URL pulled from
the Request object’s ServerVariables collection. By not hardcoding the actual page
location, you can move the page easily around your site without having to change
the query string reference.

The second ASP test page, asp1102.asp, which is shown in Example 11-2, has a
script that pulls the subject and URL from the Request object’s QueryString collec-
tion and sets them into hidden fields within a page form. Other form fields take
the sender’s and the receiver’s email addresses.

Dim flds As ADODB.Fields
Set flds = iConf.Fields

' set configuration properties
flds.Item(cdoSendUsingMethod) = cdoSendUsingPort
flds.Item(cdoSMTPAuthenticate) = cdoBasic
flds.Item(cdoSMTPConnectionTimeout) = 20

flds.Item(cdoSMTPServer) = "mail.company.com"
flds.Item(cdoSendUserName) = "person@company.com"
flds.Item(cdoSendPassword) = "password"
flds.Update

Set iMsg.Configuration = iConf

' set rest of message properties
iMsg.To = strTo
iMsg.From = strFrom
iMsg.Subject = strSubject
iMsg.CreateMHTMLBody strURL

' send the message
iMsg.Send

End Sub

Example 11-1. Send a Friend This URL Component Method (continued)

,ch11.19249 Page 326 Thursday, February 22, 2001 1:31 PM

Send This URL to a Friend 327

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that the subject is used to set the page title and the form’s hidden field.

When the email addresses are entered and the form’s submit button is pressed, the
third and final ASP test page, asp1103.asp, is opened. This page creates an
instance of the new component, asp1101.msg, and passes the form values as
arguments to the sendURL method:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1101.msg")

' get values
Dim strSubject, strURL, strTo, strFrom
strSubject = Request.Form("subject")
strURL = Request.Form("url")
strTo = Request.Form("to")
strFrom = Request.Form("from")

' send url
obj.sendURL strTo, strFrom, strSubject, strURL
If Err.Number <> 0 Then
 Response.Write "<h3>The URL could not be emailed</h3>"
 Response.Write "<p>" & Err.Description & "</p>"
Else

Example 11-2. ASP Test Page That Has a Form for Sending an URL as an Email

<HTML>
<HEAD>
<%
Dim strSubject, strTo, strFrom, strURL
strSubject = Request.QueryString("Subject")
strURL = Request.QueryString("URL")
%>
<TITLE>Send <% = strSubject %> to a friend</TITLE>
</HEAD>
<BODY>
<H3>Please enter your email and your friend's email addresses</h3>
<form method="POST" action="asp1103.asp">
<input type="hidden" name="subject" value="<% = strSubject %>">
<input type="hidden" name="url" value="<% = strURL %>">
<p>
Your email: <input type="text" name="from">
</p>
<p>
Your friend's email: <input type="text" name="to">
</p>
<p>
<input type="submit" value="Send the URL">
</p>
</form>
</BODY>
</HTML>

,ch11.19249 Page 327 Thursday, February 22, 2001 1:31 PM

328 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 Response.Write "<h3>The page is off and running</h3>"
End If

Set obj = Nothing
%>

If everything works, the following message is displayed and the email is sent to
your recipient:

The page is off and running

Otherwise, an error is displayed.

Try the example yourself by using the ASP test pages included with the examples,
or add the hypertext link to some of your existing web pages. Fun and useful func-
tionality at the cost of only a few lines of code—now you know why I like CDO.

A little Net-friendly advice: don’t go crazy attaching “Send this page
to a friend” links to all of your web pages. You can quickly over-
whelm your SMTP service. Instead, use the functionality sparingly,
mainly with pages that have a lot of content but few graphics. Also
provide warnings that only HTML-capable email readers will be able
to process the email message.

Working with the Message Body
In the last section, your message body was pretty easy to create. Basically you had
to call one method, passing in an URL. This section goes into how to create other
content for your messages.

The simplest approach to sending message content is to attach text to the Mes-
sage object’s TextBody property:

iMsg.TextBody = "some string"

You can also send a message formatted as HTML by setting the Message object’s
HTMLBody property:

iMsg.HTMLBody = "<p>Some HTML String</p>"

Messages can also be sent with both formats: an HTML and a plain text body.
These types of messages are called multipart messages.

Sending Multipart Messages

There are two techniques you can use to send multipart email messages.

One approach is to set the message object’s AutoGenerateTextBody and MimeFor-
matted properties to True, and then assign the HTML content to the HTMLBody

,ch11.19249 Page 328 Thursday, February 22, 2001 1:31 PM

Working with the Message Body 329

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

property. Setting the AutoGenerateTextBody property to True automatically gener-
ates a plain text version of whatever contents are set in the message object’s
HTMLBody property. Setting MimeFormatted to True signals that the email is a
multipart message containing HTML.

Try this for yourself by creating a new Visual Basic project and naming it
asp1102. Name the generated class msgbody. Attach the CDO and ADO type
libraries. Add a method to the new component called sendMultiPart, which is
shown in Example 11-3. This method takes four String parameters: the email
address of the recipient, the email address of the sender, the subject line, and an
HTML-formatted message string. Make sure that you set the SMTP server, user-
name, and password to values that work for your own email setup.

After the sendMultiPart method creates instances of both the CDO Message and
Configuration objects and sets the Configuration properties, it sets the Message
object’s AutoGenerateTextBody and MimeFormatted properties to True and then
assigns the strMessage parameter to the Message object’s HTMLBody property.
Finally, it sends the message.

Example 11-3. Sending a Multipart Email Message

Sub sendMultiPart(ByVal strTo As String, _
 ByVal strFrom As String, _
 ByVal strSubject As String, _
 ByVal strMessage As String)

Dim iMsg As New CDO.Message
Dim iConf As New CDO.Configuration

Dim flds As ADODB.Fields
Set flds = iConf.Fields

' set configuration properties
flds.Item(cdoSendUsingMethod) = cdoSendUsingPort
flds.Item(cdoSMTPAuthenticate) = cdoBasic
flds.Item(cdoSMTPConnectionTimeout) = 20

flds.Item(cdoSMTPServer) = "mail.company.com"
flds.Item(cdoSendUserName) = strFrom
flds.Item(cdoSendPassword) = "somepassword"
flds.Update

Set iMsg.Configuration = iConf

' set rest of message properties
iMsg.To = strTo
iMsg.From = strFrom
iMsg.Subject = strSubject

' set message to generate both

,ch11.19249 Page 329 Thursday, February 22, 2001 1:31 PM

330 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component, the following ASP test script creates an instance of the
object and also creates an HTML-formatted string to act as the message body. This
and the other parameters are set in the call to sendMultiPart:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1102.msgbody")

Dim str
str ="<h1>Howdy!</h1><p>I hope this finds you well!</p>"

obj.sendMultiPart "otheruser@company.com", "someuser@company.com", _
 "testing multipart", str
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "<h3>Message sent</h3>"
End If

Set obj = Nothing
%>

Test this yourself using the ASP test page asp1104.asp, after changing the email
addresses. If you use Outlook as your email program, your email should look the
same as that shown in Figure 11-2. Notice in the message that HTML header for-
matting makes the greeting larger and bolder than the rest of the text. The use of
the tag also highlights the word well.

By sending the email message in two formats, if the email reader cannot process
the HTML content, the person receiving the email should have access to the plain
text version of the message. The plain text version is always presented first and
then the HTML content is presented next. If the viewer can’t process MIME con-
tent, the plain text version is shown. However, MIME-compatible readers such as
Outlook always present the most complex format of the message that they can
process, which is why the HTML formatted version of the message is the one
shown by Outlook in Figure 11-2.

' HTML and plain text messages
iMsg.AutoGenerateTextBody = True
iMsg.MimeFormatted = True
iMsg.HTMLBody = strMessage

' send the message
iMsg.Send

End Sub

Example 11-3. Sending a Multipart Email Message (continued)

,ch11.19249 Page 330 Thursday, February 22, 2001 1:31 PM

Working with the Message Body 331

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Another technique to create multipart messages is to use the IBodyPart interface.
By using IBodyPart, you can create messages that consist of several formatting
versions of the content, as well as create more complex message body structures.

The IBodyPart Interface

For most uses, directly setting the message using the Message object’s properties
should meet your needs. However, there could be times when you want more
finite control of how the message body is created, and that’s where IBodyPart
comes in.

There is one instance of IBodyPart, the main IBodyPart representing the main
message body, associated as a property of the Message object. However, you can
attach multiple instances of IBodyPart to the Message’s main IBodyPart object
by using the AddBodyPart method. This is the approach you can use to create
complex, hierarchical email message bodies.

In the last section, you created a multipart email message consisting of a plain text
message and an HTML-formatted message. To do the same using IBodyPart is a
bit more complex. It also requires the use of ADO streams.

To demonstrate this second technique for sending a multipart email message, cre-
ate a new Visual Basic project, name it asp1103, and name the generated class
bodypart. Attach the CDO and ADO type libraries. This new example will create
an email that has a text message, an HTML-formatted message, and a graphic, all

Figure 11-2. The effect of sending a multipart email with HTML-formatted text

,ch11.19249 Page 331 Thursday, February 22, 2001 1:31 PM

332 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

sent as separate sections of the main email message rather than as attachments.
You can view the complete code for the finished method in Example 11-4 as we
walk through each section of the code.

Add a method to your new component called sendMixedMultiPart, as shown in
Example 11-4. It takes the following six String parameters: the recipient’s email
address, the sender’s email address, the subject, the message in plain text format,
the message formatted in HTML, and the physical location of a GIF file on the
local machine. The sendMixedMultiPart method creates instances of the Message
and Configuration objects and populates the Configuration properties, as the send-
MultiPart method did in Example 11-3. (Remember to adjust the SMTP settings for
your own environment.)

Next, the method creates four instances of IBodyPart. All four aren’t necessary—
you can use one IBodyPart instance for the main message body and reuse
another IBodyPart instance for each of the three separate body sections. How-
ever, we’ll use four instances to make the example a bit easier to read. The
method also creates an instance of the ADO Stream object. This object is used to
set the data for each email message body part.

The first IBodyPart instance, iBPMain, is set to the Message object’s BodyPart
property. iBPMain’s ContentMediaType property is set to multipart/mixed, since
the email message has three different types of media attached. Then the method
creates the first body part section, iBPText, by calling iBPMain’s AddBodyPart
method. The AddBodyPart method adds the new body part to iBPMain’s contents
and returns a reference to the newly created object.

The iBPText instance’s ContentMediaType property is set to text/plain, and the
ContentTransferEncoding property, which controls the type of encoding used for
the body part’s content, is set to 8bit. To set the actual message text, calling the
iBPText object’s GetDecodedContentStream method retrieves the Stream object set
to the decoded contents of the body part. Text is then added using the Stream
object’s WriteText method, followed by calling Flush, which forces the Stream con-
tents to be set to the associated object, in this case the iBPText body part.

Once the text body part is finished, the same process is used to add the HTML and
GIF body parts. As Example 11-4 shows, each section has different ContentMedia-
Type values, as well as different ContentTransferEncoding values. Additionally, the
Stream object’s LoadFromFile method is used to load the GIF image for the last
body part section. After all three body parts have been set, the message is sent.

Example 11-4. Sending a Multipart Message Created Using IBodyPart

Sub sendMixedMultiPart(ByVal strTo As String, _
 ByVal strFrom As String, _
 ByVal strSubject As String, _

,ch11.19249 Page 332 Thursday, February 22, 2001 1:31 PM

Working with the Message Body 333

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 ByVal strMessage As String, _
 ByVal strHTMLMsg As String, _
 ByVal strGIF As String)

Dim iMsg As New CDO.Message
Dim iConf As New CDO.Configuration

Dim flds As ADODB.Fields
Set flds = iConf.Fields

' set configuration properties
flds.Item(cdoSendUsingMethod) = cdoSendUsingPort
flds.Item(cdoSMTPAuthenticate) = cdoBasic
flds.Item(cdoSMTPConnectionTimeout) = 20

flds.Item(cdoSMTPServer) = "mail.company.com"
flds.Item(cdoSendUserName) = "person@company.com"
flds.Item(cdoSendPassword) = "somepassword"
flds.Update

Set iMsg.Configuration = iConf

' set rest of message properties
iMsg.To = strTo
iMsg.From = strFrom
iMsg.Subject = strSubject

' ************** Multipart **************
Dim iBPMain As IBodyPart
Dim iBPText As IBodyPart
Dim iBPHTML As IBodyPart
Dim iBPGif As IBodyPart
Dim stmObject As Stream

' get message body part
Set iBPMain = iMsg.bodypart

' set message type
iBPMain.ContentMediaType = "multipart/mixed"

' add text message
Set iBPText = iBPMain.AddBodyPart
With iBPText
 .ContentMediaType = "text/plain"
 .ContentTransferEncoding = "8bit"
 Set stmObject = .GetDecodedContentStream
 stmObject.WriteText strMessage
 stmObject.Flush
End With

' add HTML message
Set iBPHTML = iBPMain.AddBodyPart

Example 11-4. Sending a Multipart Message Created Using IBodyPart (continued)

,ch11.19249 Page 333 Thursday, February 22, 2001 1:31 PM

334 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component, create an instance of it in an ASP script and set all of
its parameters, as shown in the following ASP page, asp1105.asp:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1103.bodypart")

Dim strHTML, strMsg, strGif
strHTML="<h1>Howdy!</h1><p>I hope this finds you well!</p>"
strMsg = "Howdy! I hope this finds you well!"
strGif = "c:\yasd\mm\yasd.gif"

obj.sendMixedMultiPart "person@company.com", "other@company.com", _
 "testing multipart using IBodyPart", _
 strMsg, strHTML, strGif

If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "<h3>Message sent</h3>"
End If

Set obj = Nothing
%>

Notice in this example that you have to provide the plain text as well as the
HTML-formatted version of the message.

With iBPHTML
 .ContentMediaType = "text/html"
 .ContentTransferEncoding = "quoted-printable"
 Set stmObject = .GetDecodedContentStream
 stmObject.WriteText strHTMLMsg
 stmObject.Flush
End With

' add image
Set iBPGif = iBPMain.AddBodyPart
With iBPGif
 .ContentMediaType = "image/gif"
 .ContentTransferEncoding = "base64"
 Set stmObject = .GetDecodedContentStream
 stmObject.LoadFromFile strGIF
 stmObject.Flush
End With

' send the message
iMsg.Send

End Sub

Example 11-4. Sending a Multipart Message Created Using IBodyPart (continued)

,ch11.19249 Page 334 Thursday, February 22, 2001 1:31 PM

Working with the Message Body 335

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When the recipient gets the email, he’ll most likely have a text-based email mes-
sage with two other messages to optionally look at, especially if he is using Out-
look as his email reader. As shown in Figure 11-3, any one of the message parts
can be accessed and displayed. Clicking on the HTML message part opens the
HTML in the default browser. Clicking on the image opens the GIF in whatever
tool is defined to be the default image viewer for the recipient’s system.

Though a bit more complicated, one advantage of using IBodyPart is that you
have more finite control of how the body part is created, and you can specify
other types of content media.

You can also choose to attach the content rather than embedding it directly in the
message, a topic discussed in the following section.

Attachments

As with creating the message body, you can use either of two techniques to add
an attachment to email messages.

The first is very simple: call the Message object’s AddAttachment method with the
URL of the attachment and optionally include a username and password if the
content should be protected:

Set iBPMain = iMsg.AddAttachment("http://www.company.com/mm/some.gif")

Figure 11-3. Multipart message with text, HTML, and graphic body parts

,ch11.19249 Page 335 Thursday, February 22, 2001 1:31 PM

336 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Calling AddAttachment adds the attachment to IBodyPart’s Attachments collec-
tion. The message’s body part is returned from calling AddAttachment and can be
used to further refine how the attachment is processed:

iBPMain.ContentMediaType = "image/gif"

However, you can leave the properties at their defaults.

If you wish more finite control of how the attachment is set, you can create an
instance of the message’s body part and then create a separate instance of
IBodyPart specifically for the attachment. Using this approach, you can do such
things as set the attachment’s content type or assign the name shown for the con-
tent when the receiver accesses the attachment from the attachment list.

To work with these two attachment techniques, create a new Visual Basic project,
and name it asp1104 and the generated class attachment. Attach both the CDO
and ADO type libraries to the project. Create a method called sendAttachments,
which is shown in Example 11-5. The method has parameters for the to and from
email addresses, the subject, a text message, and two attachment URLs. The sec-
ond URL also has an associated filename which is passed as an additional parame-
ter, for a total count of seven String parameters.

The sendAttachments method creates instances of the Message and Configuration
objects and sets the same properties as the previous examples. It also attaches the
message string to the Message object’s TextBody property.

The first attachment is added by calling the Message object’s AddAttachment
method and passing in the first attachment URL string. This method returns a refer-
ence to the message’s IBodyPart property, which the method uses to create a
new body part reference by calling the AddBodyPart method. This new body part
will contain the second attachment.

As the code in Example 11-5 shows, sendAttachments sets the second body part’s
properties using techniques similar to those used in Example 11-4, except that it
also accesses the body part’s Fields collection, which is used to set the urn:
schemas:mailheader:content-disposition property to attachment and
with a given filename. Next, it uses an ADO stream to load the attachment, in this
case a GIF image, and push the content to the body part object. All that’s left then
is to send the message.

Example 11-5. Sending Attachments with an Email

Sub sendAttachments(ByVal strTo As String, _
 ByVal strFrom As String, _
 ByVal strSubject As String, _
 ByVal strMessage As String, _
 ByVal strAttachment1 As String, _
 ByVal strFile As String, _

,ch11.19249 Page 336 Thursday, February 22, 2001 1:31 PM

Working with the Message Body 337

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 ByVal strAttachment2 As String)

Dim iMsg As New CDO.Message
Dim iConf As New CDO.Configuration

Dim Flds As ADODB.Fields
Set Flds = iConf.Fields

' set configuration properties
Flds.Item(cdoSendUsingMethod) = cdoSendUsingPort
Flds.Item(cdoSMTPAuthenticate) = cdoBasic
Flds.Item(cdoSMTPConnectionTimeout) = 20

Flds.Item(cdoSMTPServer) = "mail.somecompany.com"
Flds.Item(cdoSendUserName) = "person@somecompany.com"
Flds.Item(cdoSendPassword) = "somepassword"
Flds.Update

Set iMsg.Configuration = iConf

' set rest of message properties
iMsg.To = strTo
iMsg.From = strFrom
iMsg.Subject = strSubject
iMsg.TextBody = strMessage

' ************** Multipart **************
Dim iBPMain As IBodyPart
Dim iBPAttach As IBodyPart
Dim stmObject As Stream

' get message body part
Set iBPMain = iMsg.AddAttachment(strAttachment1)

' get attachment body part
Set iBPAttach = iBPMain.AddBodyPart
With iBPAttach
 .ContentMediaType = "image/gif"
 .ContentTransferEncoding = "base64"
 Set Flds = iBPAttach.Fields
 Flds("urn:schemas:mailheader:content-disposition") = _
 "attachment; filename=""" & strFile & """"
 Flds.Update
 Set stmObject = .GetDecodedContentStream
 stmObject.LoadFromFile strAttachment2
 stmObject.Flush
End With

' send message
iMsg.Send

End Sub

Example 11-5. Sending Attachments with an Email (continued)

,ch11.19249 Page 337 Thursday, February 22, 2001 1:31 PM

338 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the new component with the following ASP script, which you can find in
asp1106.asp:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1104.attachment")

Dim strMsg, strAttachment1, strAttachment2, strFile
strMsg = "Howdy! I hope this finds you well!"
strAttachment1 = "http://www.company.com/file.htm"
strAttachment2 = "c:\company\mm\image.gif"
strFile = "image.gif"

obj.sendAttachments "toperson@somecompany.com", "from@company.com", _
 "testing attachments", _
 strMsg, strAttachment1, strFile, strAttachment2

If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "<h3>Message sent</h3>"
End If

Set obj = Nothing
%>

You can add more than one attachment using either AddAttachment or
IBodyPart. If you use AddAttachment, the same main body part object keeps get-
ting returned. The second approach is more complicated, but it has the advantage
of giving you more control over what recipients see when they get the message.
For instance, instead of an attachment with a name such as:

ATT000008.gif

they’ll see the following instead:

yasd.gif

You’ve had some fun sending messages; now it’s time to talk about reading them.

Retrieving and Reading Messages
Reading email messages consists of creating an object to reference the messages as
a group from the folder where they’re contained, and then accessing each mes-
sage one at a time. Once an email message is “read”—accessed from the folder—it
can be deleted automatically or cleaned up manually at a later time.

,ch11.19249 Page 338 Thursday, February 22, 2001 1:31 PM

Retrieving and Reading Messages 339

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Accessing a DropDirectory

Each SMTP service is given a default drop mail folder on the machine where the
SMTP virtual server is installed. By default, this is usually located at the following
physical location:

C:\Inetpub\mailroot\Drop

To access emails from this drop location, you’ll need to create a DropDirectory
object to reference the folder:

Dim iDropDir As New CDO.DropDirectory
Dim iMsgs As CDO.IMessages
Set iMsgs = iDropDir.getMessages("c:\\inetpub\\mailroot\\drop")

After creating an instance of DropDirectory, calling its only method, GetMessages,
and providing a physical folder location as the parameter opens the folder and
gets all the emails it contains. These emails are then added to the IMessages col-
lection that the method returns.

Displaying a Message to the Web Page

Once you have access to the IMessages collection, there are two techniques you
can use to iterate through the collection. You can use the For Each…Next con-
struct to enumerate through the objects:

For Each iMsg in iMsgs
...
Next iMsg

You can also access the IMessages.Count property to see how many messages are
in the collection and iterate through it as follows:

iCt = iMsgs.Count
For i = 1 to iCt

Accessing SMTP
Curious about how you can test reading emails on your local machine? If you
installed IIS with SMTP, you can send emails to this local installation and read
them using the code in this section. To see how to address the emails, open
the IIS Manager Console and then click on the Default SMTP Virtual Server.
Click on Domains, and find the name of the domain used for your machine.
This is what you use following the at sign (@) for your email messages.

The domain I use, flame.development.local, was created automatically when I
installed Active Directory (see Chapter 12, Working with Active Directory from
ASP Applications).

,ch11.19249 Page 339 Thursday, February 22, 2001 1:31 PM

340 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 Set iMsg = iMsgs.Index(i)
 ...
Next

I prefer the latter approach if I want to keep track of the index of the message I’m
currently reading—either to get more information about the message or to delete it
from the collection and the folder.

To demonstrate reading—and cleaning up—messages in a drop folder, create a
new Visual Basic project and call it asp1105. Name the generated class drop.
Attach the ADO and CDO libraries, as well as the COM+ Services and the Microsoft
Active Server Pages type libraries, since you’ll be using the ASP Response object in
this example.

The new component will have two methods. The first is getMessages. This method
accesses the local machine’s drop folder through the DropDirectory object, gets
the messages contained in the folder, and then displays the message sender and
subject in an HTML table. In addition to this information pulled from the Message
object associated with each message, the sender’s name is enclosed within a
hypertext link that has the message’s index number attached as part of the link’s
query string. Add the code shown in Example 11-6 to your new component.

Example 11-6. Displaying the Sender and Subject of All Email Messages

' display all messages
Sub getMessages()

Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

' create instance of drop directory
Dim iDropDir As New CDO.DropDirectory
Dim iMsgs As CDO.IMessages

' get messages
Set iMsgs = iDropDir.getMessages("c:\\inetpub\\mailroot\\drop")
Dim iMsg As CDO.Message

Dim i, iCt As Integer
iCt = iMsgs.Count

' set up table
objResponse.Write "<table border=2 width='80%' align='center' " _
 & "cellpadding=10>"
objResponse.Write "<TR><TH>From</TH><TH>Subject</TH></TR>"

' for each message, print out msg number,
' from, and subject

,ch11.19249 Page 340 Thursday, February 22, 2001 1:31 PM

Retrieving and Reading Messages 341

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test this component by creating the following ASP script, asp1107.asp, that cre-
ates the component and calls getMessages:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1105.drop")

obj.getMessages
If Err.Number <> 0 Then
 Response.Write Err.Description
End If
%>

The page displays all email messages contained within the drop folder in an HTML
table and allows the user to click on a specific message to read the message body.
Figure 11-4 shows an example of a page run on my system.

When one of the emails is clicked, a second page opens that retrieves the mes-
sage’s index from the Request object’s QueryString collection and uses this as a
parameter for the second method in asp1105.drop: getMessage.

The getMessage method also accesses the drop folder of all the messages. This
time, though, the code specifically accesses the email that matches the index sent
as the parameter to the method and displays its sender, subject, and text. At the
end, the email is deleted. Add the code for this second method, shown in
Example 11-7, to asp1105.drop.

For i = 1 To iCt
 Set iMsg = iMsgs.Item(i)
 objResponse.Write "<TR><TD>"
 With iMsg

 ' link for message info
 objResponse.Write "<a href='asp1108.asp?ct=" & _
 CStr(i) & "'>"
 objResponse.Write .From & "</TD><TD>"
 objResponse.Write .Subject & "</TD></TR>"
 End With
Next
objResponse.Write "</TABLE>"

End Sub

Example 11-6. Displaying the Sender and Subject of All Email Messages (continued)

,ch11.19249 Page 341 Thursday, February 22, 2001 1:31 PM

342 Chapter 11: Take a Message: Accessing CDO from ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Figure 11-4. List of senders and subjects for existing emails

Example 11-7. Printing the Contents of an Email and Deleting It from the Collection and
Folder

' get one specific message
Sub getMessage(ByVal iCt As Integer)

Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

' create drop directory
Dim iDropDir As New CDO.DropDirectory
Dim iMsgs As CDO.IMessages

' get messages
Set iMsgs = iDropDir.getMessages("c:\\inetpub\\mailroot\\drop")

' get specific message
Dim iMsg As CDO.Message
Set iMsg = iMsgs.Item(iCt)

' print message info
With iMsg
 objResponse.Write "<p>From: " & .From & "</p>"
 objResponse.Write "<p>Subject: " & .Subject & "</p>"

,ch11.19249 Page 342 Thursday, February 22, 2001 1:31 PM

Retrieving and Reading Messages 343

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ASP script to call this method, asp1108.asp, is as follows:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1105.drop")

Dim imsg
imsg = Request.QueryString("ct")

obj.getMessage imsg
%>

Try both of the methods on your own system.

You’re now well on the way to creating your own ASP-based email applications,
including your own online email viewer.

 objResponse.Write "<p>" & .TextBody & "</P>"
End With

' delete message
iMsgs.Delete (iCt)

End Sub

Example 11-7. Printing the Contents of an Email and Deleting It from the Collection and
Folder (continued)

,ch11.19249 Page 343 Thursday, February 22, 2001 1:31 PM

344
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 12

12
Working with Active Directory
from ASP Applications

At first glance, it might seem as if you, as an ASP component developer, wouldn’t
be that interested in working with Active Directory. After all, Active Directory is
mainly for administrators, and they have access to the tools they need to perform
their functions.

However, Active Directory isn’t just for administrators—it can be useful for any-
one needing access to system information that’s maintained in a directory service.
By providing support for Active Directory through an intranet, or even through a
carefully guarded Internet application, you can enable your system users to con-
trol more of their own information. This empowers them and decreases the bur-
den on your system administrators.

Additionally, you can also provide reporting applications that management can use
to find out which people in what departments have access to what functionality.
Again, by empowering your managers, you decrease the workload on your sys-
tem administrators and provide just-in-time information to the folks who need it
the most: your bosses.

The examples in this chapter demonstrate accessing Active Direc-
tory via ASP components using the Active Directory Service Inter-
faces (ADSI). ASP applications using ADSI should be enclosed within
the strictest security, and access should be restricted to those on a
need-to-have basis only.

,ch12.19369 Page 344 Thursday, February 22, 2001 1:32 PM

Setting Up an Isolated Active Directory Environment 345

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

A Brief Overview of Active Directory in
Windows 2000
Active Directory provides a way to work with administrative services, such as man-
aging users and groups, and system resources, such as printers, without having to
know the physical location of the items. Additionally, Active Directory provides a
structured hierarchical data storage that can be manipulated either through a set of
exposed interfaces (ADSI) or through OLE DB and ADO.

Within Windows 2000, Active Directory uses LDAP—Lightweight Directory Access
Protocol—for object access. LDAP is a directory service protocol running on TCP/IP
that currently has wide industry support (and not just in the Windows environ-
ment). The use of LDAP within Windows 2000 should lead to easier integration of
Windows 2000 with other platforms, such as Unix systems.

Setting Up an Isolated Active Directory
Environment
As a developer, your development machine may or may not be connected to a
LAN. If it is, chances are that one machine is set up to be the Active Directory
domain controller, and the other machines access the services of this machine
through the LAN. However, you might also have a development machine that’s
isolated or for some other reason doesn’t have access to Active Directory, but you
still want to work with this technology.

You also might want to be able to freely work with Active Directory without doing
damage to an environment that’s shared by several people.

In this section, I’ll show you how to set up Active Directory on a Windows 2000
development machine that isn’t connected to a LAN and, in fact, doesn’t even have
a Network Interface Card (NIC) installed. For other configurations, check the docu-
mentation provided by Microsoft to see about installing Active Directory.

First, Active Directory can be installed only on Windows 2000 servers—you can’t
install it in a Windows 2000 Professional installation. Once you’ve installed Win-
dows 2000 Server on your machine, the first thing you’ll want to do is set up your
network card. If you don’t have a network card, then you’ll want to install the MS
Loopback Adapter.

,ch12.19369 Page 345 Thursday, February 22, 2001 1:32 PM

346 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Active Directory doesn’t need the Microsoft Loopback Adapter per se
in order to work, but it does need to be able to access a DNS server,
and the DNS lookup occurs through the adapter. If you try to install
Active Directory without the Loopback Adapter installed (in an iso-
lated environment), halfway through the installation process, you’ll
get an error that states, “The wizard cannot contact the DNS server
that handles the name (domain name) to determine if it supports
dynamic update. Confirm your DNS configuration, or install and con-
figure a DNS server on this computer.”

The Microsoft Loopback Adapter is used where a network installation isn’t avail-
able or isn’t feasible. Additionally, the Loopback Adapter can be used when a
problem such as a conflict occurs with your current network connection. When
this happens, you switch your network bindings to the adapter to prevent their
loss until you can clear up the network problems.

To install the adapter, access the Control Panel and then double-click on the Add/
Remove Hardware option. When the hardware wizard opens, select the Add/Trou-
bleshoot a Device option and then the Add a New Device option after the wizard
has finished looking for plug-and-play devices.

From the next window, pick the option that allows you to select hardware from a
list. From the page that opens, select the Network Adapter option. From the list of
manufacturers that opens in the next page, select Microsoft, and then select
Microsoft’s only entry, the Microsoft Loopback Adapter, as shown in Figure 12-1.
Clicking on the Next button selects this adapter, and in the next page, clicking on
the Finish button installs the adapter with the default settings.

You won’t need to configure the Loopback Adapter’s properties once it’s installed.
The DHCP server on the machine configures the adapter settings automatically.

Microsoft has provided a Knowledge Base article on installing the
MS Loopback Adapter in Windows 2000. The Knowledge Base arti-
cle number is Q236869, and you can find this article by searching for
it at the Microsoft MSDN web site (http://msdn.microsoft.com).

Once the adapter has been installed, you’re ready to install Active Directory as a
domain controller in your isolated environment. Access the Configure Your Server
wizard from the Administrative Tools and select the Active Directory option. This
starts the Active Directory installation wizard, which will promote your box from
being a member server of the domain (the default Windows 2000 installation) to
being a domain controller.

,ch12.19369 Page 346 Thursday, February 22, 2001 1:32 PM

A Refresher on ADSI 347

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the page that opens, provide a NetBIOS name and a domain. Since your instal-
lation is isolated, provide local as the new domain name of the server. Provide
whatever name you wish as the NetBIOS domain name. For example, in my iso-
lated machine, I used development as the NetBIOS name and local as the domain.
When combined, these create an Active Directory domain controller identified by
the domain development.local.

The installation triggered by Configure Your Server operates without intervention
to install Active Directory.

A Refresher on ADSI
You can work with Active Directory using ADO as well as using ADSI (Active
Directory Service Interfaces). You had a chance to work with ADSI already in
Chapter 2, Setting Up the ASP Development Environment, when you worked with
the IIS Metabase. In this chapter, you can continue to use ADSI to work with
Active Directory.

All ADSI objects (except Namespaces and Container, discussed in the next section
on binding) implement the IADs interface, which means all share the same core
set of properties and methods. These were covered in Chapter 2 when we used
ADSI to work with the IIS Metabase, but I’ll repeat them here as a refresher.

Figure 12-1. Adding the Microsoft Loopback Adapter through the hardware wizard

,ch12.19369 Page 347 Thursday, February 22, 2001 1:32 PM

348 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IADs interface properties are the following:

ADsPath
 The object’s unique path in the directory service

Class
 The schema class name of the object

GUID
 The object’s globally unique identifier (GUID)

Name
The object name

Parent
 The ADsPath of the parent container

Schema
 The ADsPath of the object’s schema class

Objects are usually accessed by their ADsPath, but they can also be found by their
GUID. Accessing an Active Directory object occurs through binding to that object,
a process I’ll discuss in greater detail in the next section. For now, know that in
binding, you can specify an Active Directory provider (such as IIS for IIS, and
LDAP for the LDAP provider) and the path for the object, as in the following:

IIS://localhost/W3SVC/1/ROOT/test

or:

LDAP://development.local

After the object is bound, you can access its properties. For instance, you can
access the IADs properties that all Active Directory objects share, such as Name,
Class, ADsPath, or Schema, with code like the following:

Set myDomain = GetObject("LDAP://development.local")
prop = myDomain.Name

Or you can access the object’s own unique set of properties through the use of the
IADs interface’s Get method:

Set myDomain = GetObject("LDAP://development.local")
prop = myDomain.Get("dc")

The following are the IADs methods:

Get
Gets the ADSI object’s property value

Put
Changes the ADSI object’s property value

,ch12.19369 Page 348 Thursday, February 22, 2001 1:32 PM

Binding to Active Directory Objects 349

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

GetInfo
Refreshes the local cache copy of all of the ADSI object’s properties

SetInfo
Saves all changes to the ADSI object’s properties to the Directory Service (i.e.,
persists the changes)

Get and Put retrieve and update one property at a time. When an object’s proper-
ties are first accessed directly or with Get, all the object’s property values are cop-
ied to a local cache. This prevents unnecessary network traffic to get the properties
one at a time. However, you can manually refresh this cache by calling the Get-
Info method:

myDomain.GetInfo

Additionally, if you change any of the ADSI object’s properties, the change won’t
be saved until you call the SetInfo method:

myDomain.SetInfo

Binding to Active Directory Objects
Before you can work with an Active Directory object, you have to bind to it.
Active Directory objects have already been created for the objects in your direc-
tory service, so you don’t use CreateObject with a ProgID (programmatic identi-
fier) to create a new instance. Instead, you call the GetObject function and pass in
the ADsPath binding string to obtain a reference to the object.

Use GetObject to access Active Directory objects with Visual Basic
and ASP script. Use the Win32::OLE Perl Module’s GetObject method
with Perl. With Visual C++ and Java, use ADsGetObject.

For instance, my development machine has an Active Directory domain (or host-
name) of development.local, so I could use the following to bind to the topmost
domain:

Set myDomain = GetObject("LDAP://development.local")

In this line of code, I’m using the Active Directory LDAP provider to bind to my
domain. I could also have used the following syntax, which references the host-
name as the domain controller for my environment:

Set myDomain = GetObject("LDAP://DC=development,DC=local")

Both strings used with GetObject return the same Active Directory object: the top-
most domain in the Active Directory tree structure. The value specified is also the
defaultNamingContext for the tree root, as you’ll see in the next section.

,ch12.19369 Page 349 Thursday, February 22, 2001 1:32 PM

350 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Alternative Binding Techniques

The core functionality of ADSI is based on four interfaces: IADs, IADsContainer,
IADsNamespaces, and IADsOpenDSObject.

The IADsOpenDSObject interface is used when binding to an Active Directory
object using a security context other than the one of the person currently access-
ing the application doing the binding. It has one method, OpenDSObject. Visual
Basic developers can access OpenDSObject through the IADsOpenDSObject inter-
face by attaching the Active DS type library to the project. The method has the fol-
lowing signature:

obj = OpenDSObject(DN name as BSTR, user name as BSTR, password as BSTR,
 authentication flags from ADS_AUTHENTICATION_ENUM)

You’ll need to create a reference to IADsOpenDSObject, and you do this with
GetObject, just as you do with an IADs interface. Once you have the reference,
you can then call OpenDSObject, passing in the username, password, and the
authentication flag. To demonstrate, if you want to access a particular user, but
using the security context of that same user, you could use the following in Visual
Basic:

Dim objDS As IADsOpenDSObject
Set objDS = GetObject("LDAP:")
Dim obj As IADs
Set obj = objDS.OpenDSObject("LDAP://CN=Mark Bond,CN=Users,
 DC=development,DC=local", "mark@development.local", "mytest",
 ADS_SECURE_AUTHENTICATION)

The last parameter in the method call is an enumerated value from ADS_
AUTHENTICATION_ENUM, which determines which authentication process is used
with the method call. In this code fragment, secure authentication is used, and
Active Directory uses Kerberos and/or NTLM to authenticate the client.

Windows 2000 has implemented both the Kerberos and the NTLM
authentication protocols. With both, a client’s identity consists of a
domain, a username, and a password (or a token for NTLM). See the
Windows 2000 documentation for more on these protocols.

The Namespaces container implements the IADsNamespaces interface and pro-
vides access to all domains regardless of provider. So if you want to access direc-
tory services across IIS and WinNT, as well as LDAP and the other providers, you
would first bind to the Namespaces container, and then access the services from
there.

,ch12.19369 Page 350 Thursday, February 22, 2001 1:32 PM

Binding to Active Directory Objects 351

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The following code contains script from an ASP page that binds to the
Namespaces container and then lists the names of the providers available in the
current environment:

<%
Dim obj
Dim item

Set obj = GetObject("ADs:")
For Each item In obj
 Response.Write item.name & "
"
Next
%>

In a default Windows 2000 installation, the result should be:

WinNT:
NWCOMPAT:
NDS:
LDAP:
IIS:

The LDAP provider listed is actually the ProgID of the provider used with an LDAP
server. This is the provider you use to access Active Directory services within Win-
dows 2000 and with Exchange 2000. We used the ProgID of IIS to access the IIS
Metabase in Chapter 2, and you might use the ProgID of WinNT to access Win-
dows NT Primary Domain Controllers (PDCs) if you work with ADSI in NT. The
other two providers support communication with Novell Directory Services (NDS)
and Novell Network servers (NWCOMPAT).

Every Active Directory object has a distinguishedName (DN) property, which pro-
vides a unique name for the object. This name is a string consisting of the object’s
relative unique name concatenated with the names of the object’s ancestors all the
way back to the root.

For instance, the DN for the IUSR_FLAME user object on my system is:

CN=IUSR_FLAME,CN=Users,DC=development,DC=local

The object IUSR_FLAME is contained in the USERS container, within the default
domain, identified by DC=development,DC=local.

In case you didn’t recognize it, IUSR_FLAME is the IIS default user
for the machine named flame.

,ch12.19369 Page 351 Thursday, February 22, 2001 1:32 PM

352 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can access an object by its DN, through the ADsPath, when using GetObject:

Set user = GetObject("LDAP://CN=IUSR_FLAME,CN=Users,DC=development,
 DC=local")

The problem with using a DN is that objects can be moved or renamed. If the
object is moved or renamed, than the ADsPath is no longer valid.

Instead of using the DN, you can also bind to an object using the object’s GUID,
one of the properties supported with the IADs interface. To access IUSR_FLAME
with its GUID, you would use the following:

Set user = GetObject("LDAP://<GUID=01981092b28e50459c10085ff009b0f7>")

The GUID remains the same in the current environment, regardless of whether the
object is moved or renamed. Of course, you’ll have a problem with hardcoding a
GUID if the code’s moving to a different environment.

In previous examples of binding to an LDAP domain, I’ve hardcoded the domain
controller (DC) for my environment (LDAP://DC=development,DC=local)
directly into the connection string. A better approach is to extract this information
from the rootDSE instead.

The rootDSE is the root of the directory tree on a directory server; its purpose is to
provide information about the directory, such as the name of the domain on the
server. Using rootDSE, I can access the default domain using the following code
and avoid hardcoding a reference to the domain controller directly:

Set myRoot = GetObject("LDAP://rootDSE")
name = "LDAP://" & myRoot.Get("defaultNamingContext")
Set myDomain = GetObject(name)

Now, the naming used within the environment should be transparent to my code,
and I should be able to move the code (and the component using the code) to a
different environment without modification. Microsoft refers to this concept as
serverless binding.

Binding to Objects Through Collections

Active Directory is a hierarchical structure, which means that objects can have chil-
dren. Additionally, Active Directory also has several objects that are containers—
groupings of similar objects, all based on the same class. All of the collections
(parents with children or container objects) are accessible from one or more other
ADSI interfaces, and all collection members can be enumerated using standard
enumeration techniques.

Unlike the individual ADSI objects, which implement the IADs interface, containers
implement the IADsContainer interface. This interface has methods that develop-
ers can use to enumerate through the container’s collection of objects. Additionally,

,ch12.19369 Page 352 Thursday, February 22, 2001 1:32 PM

Binding to Active Directory Objects 353

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the IADsContainer interface also has its own implementation of the GetObject
method to create a reference to an Active Directory object from its container.

There are two special cases of IADsContainer: IADsMembers and IADs-
Collection. The IADsMembers interface is used to access members of a group
and is accessed through the IADsGroup interface. A group is physically located
within the same path in the Active Directory directory structure.

The IADsCollection interface allows access to a named group of objects regard-
less of where the objects are located. For instance, you can access the print jobs on
a printer queue as a collection by calling the IADsPrintQueueOperations.PrintJobs
method. This method returns an instance of the IADsCollection.

The key difference between a collection and a group is that the objects in the col-
lection must be the same type. The objects in the group can be different types.

To demonstrate the nature of containers, create a new Visual Basic ActiveX DLL
project, naming it asp1201 and the generated class container. You’ll need to
add three type libraries to the project: COM+ Services, Microsoft Active Server
Pages to access the Response object, and the Active DS Type library to access
ADSI objects.

In the component class, create a method called enumObjects, as shown in
Example 12-1. enumObjects has one parameter, a string containing the distin-
guishedName for a specific container. The component method retrieves a refer-
ence to the container’s IADsGroup interface by prepending the Active Directory
provider (LDAP://) to the distinguishedName value passed to it as a parameter
and the passing that string as an argument to GetObject. It then traverses the Mem-
bers collection of the container, listing each object’s unique identifying name (the
cn property for the object).

Example 12-1. Component Method to Iterate Through a Container’s Objects and Print Out the
cn Property of Each Contained Object

Sub enumObjects(ByVal strContainer As String)

On Error GoTo ErrorHandler

 ' get ObjectContext
 Dim objContext As ObjectContext
 Set objContext = GetObjectContext()

 ' get Response
 Dim objResponse As Response
 Set objResponse = objContext("Response")

 ' get container
 Dim icontObject As IADsGroup

,ch12.19369 Page 353 Thursday, February 22, 2001 1:32 PM

354 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the component, create a simple ASP page that passes an Active Directory
group object’s distinguishedName as the parameter. For instance, to call the com-
ponent method with the test group, use an ASP script similar to the following:

Dim obj
Set obj = Server.CreateObject("asp1201.container")
obj.enumObjects "CN=test,CN=Users,DC=development,DC=local"

The file asp1201.asp contains this test script. You’ll want to change the script to
reflect your environment.

The previous example accessed a group of items through the IADsMembers inter-
face, accessible by a specific method on the IADsGroup interface. You can also
access a collection directly.

For example, an object that collects elements based on location in the Active
Directory is the Users object, identified by the following distinguished name on my
box:

CN=Users,DC=development,DC=local

The Users object contains both user and group elements. These objects can be
accessed directly through IADsContainer using code such as this:

Dim icontObject As IADsContainer
Set icontObject = GetObject(strADsPath)
Dim iObj As IADs
For Each iObj In icontObject
 ...
Next

 Dim strADsPath As String
 strADsPath = "LDAP://" & strContainer
 Set icontObject = GetObject(strADsPath)

 ' traverse container
 ' printing out unique identifier
 ' of each member
 Dim iObj As IADs
 For Each iObj In icontObject.Members
 objResponse.Write iObj.Get("cn") & "
"
 Next

Exit Sub

ErrorHandler:

 objResponse.Write Err.Description

End Sub

Example 12-1. Component Method to Iterate Through a Container’s Objects and Print Out the
cn Property of Each Contained Object (continued)

,ch12.19369 Page 354 Thursday, February 22, 2001 1:32 PM

Using the Active Directory Services Viewer 355

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IADsContainer is used to access the Users object, and its contained ele-
ments are accessed directly from the object rather than from an object’s Members
property. We’ll take a closer look at working with users in the section on working
with containers, later in this chapter.

You can test the component shown in Example 12-1 with other groups, but that
leads to the question of how to find the distinguishedNames for groups in your
Active Directory environment to test this new component. If you have the
Microsoft Platform SDK installed, you can use the Active Directory Services Viewer
(ADSVW), a utility provided at no charge from Microsoft, to look up these values.

Using the Active Directory
Services Viewer
When you start working with Active Directory, the most important tool you can
use to help you get started is the Active Directory Services Viewer (ADSVW), also
called the Active Directory Browser. This utility is installed as part of the platform
SDK installation and can be found as a file named adsvw.exe, located in the bin
subdirectory of the installation. To use it, you should be logged in as the Adminis-
trator for the machine where you’re running the tool.

The Platform SDK can be downloaded from the Microsoft Devel-
oper Network site (http://msdn.microsoft.com).

When you start the tool, you’re given a dialog with choices to create an Object-
Viewer or a Query. To browse through the directory structure, choose the Object-
Viewer option. A new dialog opens with fields for the ADsPath. Type in the
domain ADsPath and click the OK button.

On my box, I would type in the following:

LDAP://DC=development,DC=local

as shown in Figure 12-2.

ADSVW then opens a tree structure showing the existing Active Directory objects
within your environment. As you click on objects in the structure, information
about the object is displayed in the right side of the tool’s window. If the object is
a higher-level object, more objects display beneath it in the left directory tree
structure.

Figure 12-3 shows ADSVW with an expanded Users container displaying all of the
users defined in my environment. Notice on the right side of Figure 12-3 the

,ch12.19369 Page 355 Thursday, February 22, 2001 1:32 PM

356 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

information about Users, including its ADsPath and the fact that it is a container
class. There is also a dropdown list box containing all of the possible object prop-
erties in the middle of the page. Picking one of these properties displays the asso-
ciated value in the text box next to the list box, as shown with distinguishedName.

Figure 12-2. Accessing the Active Directory object for the default domain using ADSVW

Figure 12-3. Expanded Users in directory tree within ADSVW

,ch12.19369 Page 356 Thursday, February 22, 2001 1:32 PM

Manipulating Containers 357

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can do more than just view Active Directory information with ADSVW—you
can also change it. If you try to change or remove information critical to the
object, such as the distinguishedName shown in Figure 12-3, you’ll get a con-
straint error.

You can also manipulate Active Directory objects and information using the ADSI
administrative tools, but the rest of this chapter is devoted to working with Active
Directory objects via ASP components written in Visual Basic.

Manipulating Containers
As you’ve seen in the section on binding, you can access an object directly from
its container. The IADsContainer interface supports other properties and meth-
ods of interest, and we’ll look at all of these in this section.

You can access an object from a container by enumerating through the Members
collection. You can also access a specific object by using the container’s GetOb-
ject method:

Set obj = GetObject(relative name of object as BSTR, DN of object as BSTR)

The parameters for GetObject are the object’s class name (user), and the relative
name (CN=IUSR_NAME). These are identical to the IADs Class and Name properties.

You can also filter the members within the container using the Filter property.
Referring to Figure 12-3 again, you’ll see in the list under the higher-level Users
object that there are two classes of objects in the list: users and groups. Each
object class has its own icon in the tree structure. If your code traversed the con-
tained elements in Users, both the group and user class objects would be dis-
played in the web page. However, if you wanted to restrict the display to only
group items, you’d adjust the code to filter the container first before iterating
through the collection.

To try out Filter, create a second Visual Basic project, naming the project asp1202
and the generated class users. The component has one method that you’ll call
enumObjectsByFilter; it is shown in Example 12-2. The method has a single
parameter, a Variant array passed from the ASP page that contains the class names
of the objects to be filtered with the container.

Again, the component uses the ASP Response object to output results to the web
page, so add references to the COM+ Services and Microsoft Active Server Pages
type libraries, as well as the Active DS type library to work with Active Directory.

The code for enumObjectsByFilter is similar to the code for enumObjects, shown
previously in Example 12-1, except this time, the IADsContainer object is used to
obtain a reference to the Users object, and the object’s children are accessed

,ch12.19369 Page 357 Thursday, February 22, 2001 1:32 PM

358 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

directly from the object rather than from an object property. Additionally, the
varFilter parameter array is first assigned to the container’s Filter property to fil-
ter the children to a specific class.

Make sure to modify the ADsPath for Users to match your current environment.

To test this component, create an array that contains one of the two classes defin-
ing the User’s children objects. In the following case, the display is restricted to
objects with a group class:

Dim obj
Set obj = Server.CreateObject("asp1202.users")

' create array of classes

Example 12-2. Filtering a Parent Object’s Children to a Specific Class

Sub enumObjectsByFilter(ByVal varFilter As Variant)

On Error GoTo ErrorHandler

 ' get ObjectContext
 Dim objContext As ObjectContext
 Set objContext = GetObjectContext()

 ' get Response
 Dim objResponse As Response
 Set objResponse = objContext("Response")

 ' get container
 Dim icontObject As IADsContainer
 Dim strADsPath As String
 Set icontObject = GetObject("LDAP://CN=Users,DC=development,DC=local")

 ' filter container
 icontObject.Filter = varFilter

 ' iterate through container
 ' printing out cn of each element
 Dim iObj As IADs
 Dim str As String
 For Each iObj In icontObject
 str = iObj.Get("cn") & "
"
 objResponse.Write str
 Next

Exit Sub

ErrorHandler:

 objResponse.Write Err.Description

End Sub

,ch12.19369 Page 358 Thursday, February 22, 2001 1:32 PM

Manipulating Containers 359

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim vary
vary = Array("group")

obj.enumObjectsByFilter vary

You can try this yourself by accessing the asp1202.asp page included with the
examples. Vary the results by changing the group in the script to user and
accessing the page again.

In addition to listing container elements, you can also add and remove members
from a container. Note that this does not remove a member from Active Directory;
it only removes the object’s container membership. To actually create or delete an
element from Active Directory, you’ll want to access the containing parent object
and create or delete the element from this object.

A demonstration of adding and removing users to and from a group
is given in the last section of this chapter.

To demonstrate the distinction between these two actions, you’ll create another
component, naming its VB project asp1203 and the generated class group. This
component has two methods: one to create a new group and one to delete the
group. Unlike the previous components, this one doesn’t need a reference to the
Response object, so you need to add only the Active DS type library to the project.

Add the createGroup method shown in Example 12-3 first. The name of the new
group to be created is passed as the method’s only parameter. In the code, this
name is adjusted to the Active Directory relative name by adding CN= before the
name. Then, the Users object is accessed through IADsContainer, and the new
group is created by calling the interface’s Create method. A reference to the new
object is returned, and then key group properties are set on the object.

Group elements must have the following properties set before the object can be
saved to the directory service:

• The CN property, set to the group name.

• The GroupType property, in this case set to a global, secure group.

• The SAMAccountName property, set with the name used by Windows clients
to reference the specific item. For this example, this value is the same as the
group name.

The GroupType property is set with values from an enumeration, ADS_GROUP_
TYPE_ENUM. In Example 12-3, two of the enumerated values, ADS_GROUP_TYPE_
GLOBAL_GROUP and ADS_GROUP_TYPE_SECURITY_ENABLED are ORed together to

,ch12.19369 Page 359 Thursday, February 22, 2001 1:32 PM

360 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

create a combined group that can be global (can be exported to other domains)
and secure (can apply an access-control list on an object).

The bitwise OR operator does a bit-by-bit comparison between the
two numeric values, setting the resulting bit to 1 if either or both bits
have a value of 1.

Only when all of the required properties have been set is the new group saved to
the directory service. If the required properties are not set before the object is
saved (using SetInfo), a constraint violation occurs.

Example 12-3. Creating a Group Under Users in Active Directory

' create a group in the Users container
Sub createGroup(ByVal strGrpName As String)

On Error GoTo ErrorHandler

 ' container and group objects
 Dim iObj As IADsContainer
 Dim iGrp As IADsGroup
 Dim strRNname As String

 ' change group name to relative group name
 strRNname = "CN=" & strGrpName

 ' obtain reference to Users
 ' create new group
 Set iObj = GetObject("LDAP://CN=Users,DC=development,DC=local")
 Set iGrp = iObj.Create("group", strRNname)

 ' required properties
 iGrp.Put "cn", strGrpName
 iGrp.Put "groupType", _
 ADS_GROUP_TYPE_GLOBAL_GROUP Or ADS_GROUP_TYPE_SECURITY_ENABLED
 iGrp.Put "sAMAccountName", strGrpName

 ' save change back to directory service
 iGrp.SetInfo

Exit Sub
ErrorHandler:

 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

,ch12.19369 Page 360 Thursday, February 22, 2001 1:32 PM

Manipulating Containers 361

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component method, create an ASP script that creates the
asp1203.group object and calls its method, passing in the name of the new
group, as shown in asp1203.asp:

On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1203.group")

Dim grp
grp = "devaspcomps"

obj.createGroup grp
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "Group " & grp & " has been added"
End If

When you try this yourself using the asp1203.asp test page, use your own group
name—just make sure it’s not the same as an existing group, or you’ll receive an
error.

It’s absolutely essential to specify the relative name for the group or
other object you’re adding when using the Create method. If you
don’t, you’ll get an “Automation error: The server is unwilling to pro-
cess the request” error. Since this error is not all that intuitive, be
aware that its most likely cause is not specifying the relative name
when creating a new object.

You can also remove a group programmatically. Add removeGroup, the second
method for the asp1203.group component, as shown in Example 12-4. Use the
IADsContainer’s Delete method to remove a group. Unlike CreateGroup, no call
to SetInfo is needed; the group is removed immediately. In the code for remove-
Group, the Users object is again referenced with GetObject and the Delete method
is called, passing in the group’s relative name.

Example 12-4. Removing a Named Group from the Users Collection

' remove group
Sub removeGroup(ByVal strGrpName As String)

On Error GoTo ErrorHandler

 ' get container
 Dim iGrpObj As IADsContainer
 Set iGrpObj = GetObject("LDAP://CN=Users,DC=development,DC=local")

 Dim strRNname As String

,ch12.19369 Page 361 Thursday, February 22, 2001 1:32 PM

362 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can try out the second method by removing the group you added earlier. For
instance, the following ASP script results in the devaspcomps group being
removed from the directory service:

On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1203.group")

Dim grp
grp = "devaspcomps"

obj.removeGroup grp
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "Group " & grp & " has been removed"
End If

Again, try this for yourself, using the ASP test page asp1204.asp. First, though,
modify the code to use the group name you used earlier to create the group.

Earlier examples in this chapter listed all members of a collection or those mem-
bers that met a specific class filter. You can also search among the contents of an
Active Directory installation. The next section discusses how to search Active
Directory using an old friend: ADO.

Searching Active Directory with ADO
There are two ways to search through the Active Directory. The first is to use the
IDirectorySearch object; this approach is covered in Chapter 17, Accessing
Active Directory from C++ Components. A second approach is to use OLE DB or
ADO to search the Active Directory contents. For this section, we’ll take a look at
using ADO.

Instead of connecting to a database using a database provider, you connect to
Active Directory using the Active Directory provider, ADsDSOObject. You don’t

 ' change group name to relative group name
 strRNname = "CN=" & strGrpName

 ' delete group
 iGrpObj.Delete "group", strRNname

Exit Sub
ErrorHandler:

 Err.Raise Err.Number, Err.Source, Err.Description

End Sub

Example 12-4. Removing a Named Group from the Users Collection (continued)

,ch12.19369 Page 362 Thursday, February 22, 2001 1:32 PM

Searching Active Directory with ADO 363

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

have to provide a username or password; not doing so sets the security context to
the current user:

Dim cn As Connection
cn.Provider = "ADsDSOObject"
cn.Open

You use the ADO Recordset object to work with the returned results. However,
how you get those results can vary. You can execute a query against the Active
Directory in a similar manner to what you’ve used to query other data sources. For
instance, you could perform the query using the Connection object’s Execute
method:

Set rs = cn.Execute "select cn from 'LDAP://DC=development, DC=local'" & _
 "WHERE objectCategory = 'group'"

You could also perform the query with the Recordset object itself:

str = "select cn from 'LDAP://DC=development, DC=local'" & _
 " WHERE objectCategory = 'group'"
Set rs.ActiveConnection = con
rs.Open str

Or you could create a Command object and use it to execute the query:

str = "select cn from 'LDAP://DC=development, DC=local'" & _
 "WHERE objectCategory = 'group'"
Set com.ActiveConnection = con
com.CommandText = str
Set rs = com.Execute

Use the technique you’re most comfortable with or that fits your application
purposes.

You can get a more in-depth review of ADO in Chapter 8, Creating
ASP/ADO Components.

Notice in the code fragments that instead of querying against a table or calling a
stored procedure, the selection is made against a specific Active Directory object
identified by the object’s distinguishedName. Instead of referencing columns in the
WHERE clause of the query, object properties are used for the search criteria. The
query just shown in the three code fragments returns a result set containing the cn
property of each element that has an objectCategory of type group—all of the
group elements in the specified domain.

The query starts at the object defined as the “source” of the query (the domain)
and then searches all contained elements (all Active Directory elements contained

,ch12.19369 Page 363 Thursday, February 22, 2001 1:32 PM

364 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

in the domain). The elements must have a schema class of group to match the
objectCategory search criteria.

Instead of searching on objectCategory, I could also have searched on object-
Class. Either can be used to find specific instances of a schema class. However, the
objectClass property contains more than one value—the object’s schema class,
plus all the inherited or superclasses of the object—whereas the objectCategory
property can have at most one value—the class of the object itself. Based on this,
objectCategory searches are more selective.

Another reason to use objectCategory is that this property is indexed.
To ensure the most efficient searches with Active Directory, you’ll
want to use indexed properties as much as possible in the search cri-
teria. Which properties are indexed can be determined by examin-
ing the schema definition for the property—if the SearchFlags
property is set to 1, the attribute is indexed.

Check the documentation that Microsoft provides on Active Direc-
tory to see which properties are indexed.

To demonstrate searching Active Directory using ADO, create a new component,
and name the VB project asp1204 and the generated class search. Attach a refer-
ence to the Active DS type library to the project. To support ADO, you’ll also
attach a reference to the ADO type library.

In the new component, create a method named doQuery shown in Example 12-5
that connects to the Active Directory through a Connection object and searches for
all elements matching specific search criteria. The resulting recordset is then dis-
connected from the connection and returned to the ASP page for processing. As
shown in Example 12-5, the search parameter and its associated values are passed
as parameters to the method.

Example 12-5. Using ADO to Find Active Directory Objects Based on Search Criteria

Function doQuery(ByVal strSrchProperty As String, _
 ByVal strSrcValue As String) As Recordset

On Error GoTo ErrorHandler

 ' connect to Active Directory
 Dim cn As New Connection
 cn.CursorLocation = adUseClient
 cn.Provider = "ADsDSOObject"
 cn.Open

 ' perform query
 Dim rs As New Recordset

,ch12.19369 Page 364 Thursday, February 22, 2001 1:32 PM

Searching Active Directory with ADO 365

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ADsPath used in the search is the default current domain of development.
local in my environment. You’ll want to change this to match your topmost
domain in your environment.

In the ASP test script asp1205.asp, the new component is instantiated and
doQuery is called with the arguments “objectCategory” and “user”. Based on this,
all users in Active Directory under the specified domain in the component should
be returned in the result set. The results are then displayed to the web page:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1204.search")

Dim rs
Set rs = obj.doQuery("objectCategory", "user")
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 While rs.EOF <> True
 Response.Write "cn = " & rs.Fields("cn") & "
"
 Response.Write "sAMAccountName = " &
 rs.Fields("sAMAccountName") & "
"
 Response.Write "distinguishedName = " &
 rs.Fields("distinguishedName") & "
"
 Response.Write "<p>"
 rs.MoveNext
 Wend
End If
%>

 Set rs.ActiveConnection = cn
 rs.Source = "select cn, sAMAccountName, distinguishedName, ADsPath from " & _
 "'LDAP://DC=development, DC=local' where " & _
 strSrchProperty & " = '" & strSrcValue & "'"

 rs.Open

 ' disconnect recordset
 Set rs.ActiveConnection = Nothing
 cn.Close

 Set doQuery = rs

Exit Function
ErrorHandler:

 cn.Close
 Err.Raise Err.Number, Err.Source, Err.Description
End Function

Example 12-5. Using ADO to Find Active Directory Objects Based on Search Criteria

,ch12.19369 Page 365 Thursday, February 22, 2001 1:32 PM

366 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Try the example first with an objectCategory of user, and then try it out with
other schema classes such as group, container, and domainPolicy.

ASP Example: Add and Manage Users
Through the Web
So far in this chapter, you’ve had a chance to list Active Directory entries, either
through containers or object parents or using ADO to query the directory service.
You’ve also had a chance to create and remove groups from the Active Directory.

In this last section of the chapter, we’ll combine all of the functionality we’ve dem-
onstrated to create a small ASP application that allows people to create them-
selves as users and then associate themselves with a predefined group, one with
extremely limited function. An application administrator then views all users within
the group and determines if they should be moved to a group with more exten-
sive permissions. The administrator can also remove a user from the system.
Finally, users can update certain fields in their own records, such as their
addresses and contact information.

Creating a New User

For this example, you’ll create a new User component within a Visual Basic
project named adsiapp, with one class named user. Attach a reference to the
Active DS type library to the project.

Create a new subroutine, createUser, on the new component. This method, which
is shown in Example 12-6, obtains a reference to the Users container object and
then uses this object’s Create method to create the new user. After the object is
created, its properties are set and the object is saved.

As shown in Example 12-6, only a small subset of properties is set for the new
object: the user’s name, login, company, title, and phone number. The cn and
SAMAccountName properties are required values—all others are optional for
Active Directory or are set to a default value automatically. The cn property is
derived from the user’s name. Notice also from the code that some of the proper-
ties are set using the IADs Put method; others are properties exposed directly on
the IADsUser interface.

Example 12-6. Component Method to Add a New User for the Default Domain

' create a new user in Active Directory
Sub createUser(ByVal strFirstname As String, _
 ByVal strLastname As String, _
 ByVal strLogin As String, _
 ByVal strCompany As String, _

,ch12.19369 Page 366 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 367

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can try the new method immediately. There’s a web form page, newuser.asp
(too large to list in this chapter but included with the book examples), that col-
lects the new user information and then submits the form contents to a second
web page, adduser.asp. This page creates the new component and passes the
form information to the createUser method; it is shown in Example 12-7.

 ByVal strTitle As String, _
 ByVal strPhone As String)

On Error GoTo ErrorHandler

 Dim iUsers As IADsContainer
 Dim iUser As IADsUser

 ' get container
 Set iUsers = GetObject("LDAP://CN=Users,DC=development,DC=local")

 ' modify name to relative name
 Dim strRelative As String
 strRelative = "CN=" & strFirstname & " " & strLastname

 ' create user object
 Set iUser = iUsers.Create("user", strRelative)

 ' modify properties
 iUser.Put "cn", strFirstname & " " & strLastname
 iUser.Put "sAMAccountName", strLogin
 iUser.FirstName = strFirstname
 iUser.LastName = strLastname
 iUser.Put "company", strCompany
 iUser.Title = strTitle
 iUser.TelephoneNumber = strPhone

 ' save to directory service
 iUser.SetInfo

Exit Sub
ErrorHandler:

 Err.Raise Err.Number, Err.Source, "Creating User: " & Err.Description

End Sub

Example 12-7. ASP Script to Create Application User Component and Create the New User

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("adsiapp.user")

Example 12-6. Component Method to Add a New User for the Default Domain (continued)

,ch12.19369 Page 367 Thursday, February 22, 2001 1:32 PM

368 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Access the newuser.asp page, adding in a user with a name unlike other users cur-
rently in the directory.

Adding a User to a Group

When users are added, they aren’t automatically added to a group. Group mem-
bership confers or restricts user privileges. We want our new users to be added to
what I call the nopower group—a group with only limited functionality.

To add a user to a group, modify the group component created earlier in Exam-
ples 12-3 and 12-4. Open the asp1203 Visual Basic project, and add a new
method to the group class: addUserToGroup. The method, which is shown in
Example 12-8, takes two parameters: the group distinguishedName property and
the user’s CN property (the user’s name). The method uses GetObject to create a
reference to both the user and the group, then calls the IADsGroup interface’s Add
method to add the user to the group.

' get form values
Dim firstname, lastname, login
Dim company, title, phone

firstname = Request("firstname")
lastname = Request("lastname")
login = Request("login")
company = Request("company")
title = Request("title")
phone = Request("phone")

' create user
obj.createUser firstname, lastname, login, company, title, phone
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "User " & firstname & " " & lastname & " has been added"
End If
%>

Example 12-8. Method to Add a User to a Specific Group

' add user to a group
Sub addUserToGroup(ByVal strGrpName As String, _
 ByVal strUserName As String)

On Error GoTo ErrorHandler

 ' create group
 Dim iGrp As IADsGroup
 Dim strGroup, strUser As String

Example 12-7. ASP Script to Create Application User Component and Create the New User

,ch12.19369 Page 368 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 369

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Modify the adduser.asp page to add the user to the nopower group after the user
object has been successfully added. Example 12-9 shows the modified ASP page
script calling the addUserToGroup method.

 ' create ADsPath for user
 strUser = "LDAP://CN=" & strUserName & _
 ",CN=Users,DC=development,DC=local"

 ' create ADsPath for group, given distinguishedName
 strGroup = "LDAP://" & strGrpName

 ' get group object
 Set iGrp = GetObject(strGroup)

 ' add user to group
 iGrp.Add (strUser)

Exit Sub
ErrorHandler:

 Err.Raise Err.Number, Err.Source, "Adding User to Group " & _
 Err.Description
End Sub

Example 12-9. Creating a New User and Adding the User to the nopower Group

<%
On Error Resume Next

Dim obj
Set obj = Server.CreateObject("adsiapp.user")

' get form values
Dim firstname, lastname, login
Dim company, title, phone

firstname = Request("firstname")
lastname = Request("lastname")
login = Request("login")
company = Request("company")
title = Request("title")
phone = Request("phone")

' create user
obj.createUser firstname, lastname, login, company, title, phone
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Dim grpObj
 Set grpObj = Server.CreateObject("asp1203.group")
 Dim name
 name = firstname & " " & lastname

Example 12-8. Method to Add a User to a Specific Group (continued)

,ch12.19369 Page 369 Thursday, February 22, 2001 1:32 PM

370 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The distinguishedName for the group is used because, unlike the Users, which all
end up in the Users container in my environment, groups can occur all over the
system. To ensure that the appropriate group is used, its distinguishedName
(including its relative location) must be used.

One of the problems with this approach of adding a user to a group by default is
that the user might successfully be installed in the directory services, but some-
thing may prevent the user from being added to the group. Ideally, we want either
action—adding a user and then adding the user to a default group—to either suc-
ceed as a unit or fail as a unit.

Unfortunately, we can’t use COM+ transaction services when working with Active
Directory (there is no transaction support built into ADSI), so you’ll need to add
code to ensure that the two transactions are completed in sync. To accomplish
this, add code to remove the user if something occurs to prevent the user from
being added to the nopower group.

Open the adsiapp VB project, and add the removeUser method, which is shown
in Example 12-10, to the user class. This method takes the user’s CN property (the
user’s name) as its only parameter and then removes the person from the system
using the IADsContainer Delete method.

 grpObj.addUserToGroup "CN=nopower,CN=Users,DC=development,DC=local",
 name
 If Err.Number <> 0 Then
 Response.Write Err.Description
 Else
 Response.Write "User " & firstname & " " & lastname & _
 " has been added"
 End If
End If
%>

Example 12-10. Method That Removes User from Directory Service

' remove specific user
Sub removeUser(ByVal strName As String)

On Error GoTo ErrorHandler

 Dim iUsers As IADsContainer
 Dim iUser As IADsUser

 ' get container
 Set iUsers = GetObject("LDAP://CN=Users,DC=development,DC=local")

 ' modify name to relative name
 Dim strRelative As String
 strRelative = "CN=" & strName

Example 12-9. Creating a New User and Adding the User to the nopower Group (continued)

,ch12.19369 Page 370 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 371

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Modify the adduser.asp page to add in a call to this new removeUser method if
the call to asp1203.group’s addUserToGroup method call fails:

grpObj.addUserToGroup "CN=nopower,CN=Users,DC=development,DC=local", name
If Err.Number <> 0 Then
 Response.Write Err.Description
 obj.removeUser name

At this point, if no error has occurred, the new user is added to the directory ser-
vice to the nopower group. Next, you’ll create the functionality necessary to look
at all users within this group and to display the available information for a specific
user.

Active Directory Reporting: Displaying
User-Specific Information

The administrators for the system need to be able to look at all of the users for a
particular group and then get more detailed information about any one of the users.
To support this functionality, you’ll add a new method to the asp1203.group
component to list all users for a particular group. Then, you’ll add a method to
adsiapp.user to return detailed information about a specific user.

First, open the asp1203 Visual Basic project, and add a new method, getUsers, to
the group class; it is shown in Example 12-11. This method returns a Variant array
consisting of the names of users within a group whose name is passed as a param-
eter to the method. The method gets the group from Active Directory as an
IADsGroup object and then traverses the Members collection to get the cn values
for each user. The cn property is the first and last name for the user, concatenated
together with a space between.

 ' remove user
 iUsers.Delete "user", strRelative

Exit Sub
ErrorHandler:

 Err.Raise Err.Number, Err.Source, "Removing User: " & Err.Description

End Sub

Example 12-11. Getting CN Property from Group Members

' show users for given group
Function getUsers(ByVal strGrpName As String) As Variant

On Error GoTo ErrorHandler

 ' create group

Example 12-10. Method That Removes User from Directory Service (continued)

,ch12.19369 Page 371 Thursday, February 22, 2001 1:32 PM

372 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When the component method is called, the ASP script passes in the nopower
group name, as shown in this code fragment from the users.asp test page:

Dim grp
grp = "nopower"
users = obj.getUsers(grp)

When the array is returned from the component, the contents are displayed to the
web page. Each name is enclosed within a hypertext link associated with another
ASP page, showuser.asp. Included within the URI is the username added as a
query string to the page reference:

Response.Write "" & users(i)
 & "<p>"

Clicking on the name then calls showuser.asp with the CN passed via the query
string. To try users.asp for yourself, modify the group name to match the one
you’ve chosen to represent the nopower group and access the page through your
development web server.

We’ll use ADO to get specific information about one user, so you’ll also need to
attach the ADO type library to the adsiapp.user project. Afterward, add a new
method to the user class named getUser, which is shown in Example 12-12. This
method takes one parameter—the CN property for the user—and returns an ADO
Recordset object with information about the user. The method creates an instance of

 Dim iGrp As IADsGroup
 Dim strGroup As String

 ' create ADsPaths for group and user
 strGroup = "LDAP://CN=" & strGrpName & _
 ",CN=Users,DC=development,DC=local"

 Set iGrp = GetObject(strGroup)
 Dim varArray() As Variant
 ReDim varArray(iGrp.Members.Count)
 Dim oMember As IADs
 Dim i As Integer
 i = 0
 For Each oMember In iGrp.Members
 varArray(0) = oMember.Get("cn")
 i = i + 1
 Next

 getUsers = varArray
Exit Function
ErrorHandler:

 Err.Raise Err.Number, Err.Source, "Getting Users: " & Err.Description

End Function

Example 12-11. Getting CN Property from Group Members (continued)

,ch12.19369 Page 372 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 373

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the ADO Connection object and opens it using the Active Directory ADsDSObject
provider. It create a new recordset and assigns the active connection to it, then
selects specific information about the user from the directory service. The recordset
is then disconnected from its connection and returned by the function.

In the ASP page that shows the user information, showuser.asp, the CN property
value is pulled from the ASP Request object’s QueryString collection and passed as
a parameter to the adsiapp.user component’s new getUser method. When the
method returns the recordset, its information is printed out to the web page:

<%
On Error Resume Next
Dim obj

Example 12-12. Getting User Information from Directory Service Using ADO

' get user identified by CN
Function getUser(ByVal strCnName As String) As Recordset

On Error GoTo ErrorHandler

 ' connect to Active Directory
 Dim cn As New Connection
 cn.CursorLocation = adUseClient
 cn.Provider = "ADsDSOObject"
 cn.Open

 ' set recordset
 Dim rs As New Recordset
 Set rs.ActiveConnection = cn

 ' perform query
 Dim str As String
 str = "select cn, sAMAccountName, company, title, telephoneNumber" & _
 " from 'LDAP://CN=" & strCnName & ",CN=Users,DC=development, DC=local'"
 rs.Source = str
 rs.Open

 ' disconnect recordset
 Set rs.ActiveConnection = Nothing
 cn.Close

 ' return record
 Set getUser = rs

Exit Function
ErrorHandler:

 cn.Close
 Err.Raise Err.Number, Err.Source, str & Err.Description

End Function

,ch12.19369 Page 373 Thursday, February 22, 2001 1:32 PM

374 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set obj = Server.CreateObject("adsiapp.user")

Dim cn
cn = Request.QueryString("cn")

Dim rs
Set rs = obj.getUser(cn)
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "<tr><td align='right'> User name: </td><td> " & _
 rs.Fields("cn") & "</td></tr>"
 Response.Write "<tr><td align='right'> Login:</td><td> " & _
 rs.Fields("sAMAccountName") & "</td></tr>"
 Response.Write "<tr><td align='right'> Company: </td><td> " & _
 rs.Fields("company") & "</td></tr>"
 Response.Write "<tr><td align='right'> Title: </td><td> " & _
 rs.Fields("title") & "</td></tr>"
 Response.Write "<tr><td align='right'> Phone: </td><td> " & _
 rs.Fields("telephoneNumber") & "</td></tr>"
End If
%>

Moving a User to a Different Group

The administrator, after reviewing the information about the user, can do one of
four things: leave the user in the nopower group, remove the user from the sys-
tem, remove the user from the nopower group but leave the user in the system, or
add the user to a different group.

The adsiapp.user component already has the functionality, with the removeUser
method, to remove a user from the system. Additionally, the asp1203.group
component has the functionality with addUserToGroup to add a user to a specific
group. What’s still needed is a method to remove a user from a given group.

Add a new method, removeUserFromGroup, to the asp1203.group component; it
is shown in Example 12-13. This method takes a group’s distinguishedName and
the user’s CN property and removes the user from the given group but leaves the
user in the system. In this method, the IADsGroup Remove method is called and
removes the user from the group’s Members collection.

Example 12-13. The removeUserFromGroup Method

Sub removeUserFromGroup(ByVal strGrpName As String, _
 ByVal strUserName As String)

On Error GoTo ErrorHandler

 ' create group
 Dim iGrp As IADsGroup
 Dim strGroup, strUser As String

,ch12.19369 Page 374 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 375

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To allow the administrator to act on her decision, add menu options to the
showuser.asp page to allow the administrator to remove the user from the system
or from the nopower group, as follows:

<p><a href="removeuser.asp?CN=<% = cn %>">Remove <% = cn %>
 from the system</p>
<P><a href="rmusrgrp.asp?CN=<% = cn %>
&GRP=CN=nopower,CN=Users,DC=development,DC=local">Remove
from nopower group</p>

Two new ASP pages are used to perform the actions of removing a user from the
system or from the specific group: removeuser.asp and rmusrgrp.asp.

In removeuser.asp, the user’s cn property is accessed from the query string and
used in a call to the adsiapp.user’s removeUser method:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("adsiapp.user")

Dim user
user = Request.QueryString("cn")

obj.removeUser user
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "User " & cn & " has been removed"
End If
%>

 ' create ADsPath for user
 strUser = "LDAP://CN=" & strUserName & _
 ",CN=Users,DC=development,DC=local"

 ' create ADsPath for group, given distinguishedName
 strGroup = "LDAP://" & strGrpName

 ' get group object
 Set iGrp = GetObject(strGroup)

 ' add user to group
 iGrp.Remove (strUser)

Exit Sub
ErrorHandler:

 Err.Raise Err.Number, Err.Source, "Adding User " & Err.Description

End Sub

Example 12-13. The removeUserFromGroup Method (continued)

,ch12.19369 Page 375 Thursday, February 22, 2001 1:32 PM

376 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In rmusrgrp.asp, the user’s cn and the group’s distinguishedName properties are
pulled from the query string and used in a call to the asp1203.group’s
removeUserFromGroup method:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1203.group")

Dim user
user = Request.QueryString("cn")
Dim grp
grp = Request.QueryString("GRP")

obj.removeUserFromGroup grp, user
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "User " & cn & " has been removed from group"
End If
%>

One last component change needs to be made to support the administrator’s deci-
sion to add a user to a new group: we need to list the available groups for the
administrator to choose from. To support this, you’ll add one more method to the
asp1203.group component to access all of the groups in the directory service
and add these groups to a form selection list box. Open the asp1203 VB project
and add a new method, getGroups, to the group class; its source code is shown in
Example 12-14. This method takes no parameters and returns an ADO Recordset
object to the calling ASP page. Since ADO is used, make sure that a reference to
the ADO type library has been added to the project.

The getGroups method creates a connection using the Active Directory OLE DB
Provider and then creates a query that finds all groups in the directory service and
returns each group’s cn and distinguishedName properties. The ADO recordset is
then disconnected before it’s returned by the method.

Example 12-14. Method to Return the cn and distinguishedName Properties for All Groups in
the Directory Service

' show all groups
Function getGroups() As Recordset

On Error GoTo ErrorHandler

 ' connect to Active Directory
 Dim cn As New Connection
 cn.CursorLocation = adUseClient
 cn.Provider = "ADsDSOObject"
 cn.Open

,ch12.19369 Page 376 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 377

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Now, in the showuser.asp page, the groups are accessed by calling asp1203.
group’s getGroups method and are used to build an HTML form selection list. The
form contents from this ASP page are the following:

<form method="POST" action="addgrp.asp">
<INPUT type="hidden" name="user" value="<% = cn %>">
<SELECT name="group">
<%
On Error Resume Next

Dim objGrp
Set objGrp = Server.CreateObject("asp1203.group")

Dim rsGrp
Set rsGrp = objGrp.getGroups()
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 While rsGrp.EOF <> True
 Response.Write "<OPTION value='" & rsGrp("distinguishedName") &
 "'>" & rsGrp("cn")
 Response.Write "</OPTION>"
 rsGrp.MoveNext

 ' set recordset
 Dim rs As New Recordset
 Set rs.ActiveConnection = cn

 ' perform query
 Dim str As String
 str = "select cn, distinguishedName " & _
 "from 'LDAP://DC=development, DC=local' where " & _
 "objectCategory = 'group'"

 rs.Source = str
 rs.Open

 ' disconnect recordset
 Set rs.ActiveConnection = Nothing
 cn.Close

 ' return record
 Set getGroups = rs

Exit Function
ErrorHandler:

 cn.Close
 Err.Raise Err.Number, Err.Source, Err.Description

End Function

Example 12-14. Method to Return the cn and distinguishedName Properties for All Groups in
the Directory Service (continued)

,ch12.19369 Page 377 Thursday, February 22, 2001 1:32 PM

378 Chapter 12: Working with Active Directory from ASP Applications

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 Wend
End If
%>
</SELECT>

When the administrator picks a group and clicks on the submit button for the
form, a new ASP page, addgrp.asp, is called. The page contains ASP script that
calls the addUserToGroup method to add the user to the specific group:

On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1203.group")

Dim grp, user
grp = Request.Form("group")
user = Request.Form("user")

obj.addUserToGroup grp, user
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write "User " & user & " has been added to " & grp
End If

At this point, our little Active Directory services application is complete.

Active Directory Application Summary

To try the Active Directory application yourself, follow this sequence:

1. Add users with the newuser.asp page. Submitting this page calls adduser.asp,
which uses the adsiapp.user component’s createUser method to create the
user, and the asp1203.group component’s addUserToGroup method to add
the user to the nopower group. If this latter action fails, then the adsiapp.
user’s removeUser method is used to remove the newly added user from the
system.

2. View a list of users in the nopower group by accessing users.asp. This page
uses the asp1203.group’s getUsers method to pull in all users for a specific
group, in this case the nopower group.

3. Click on any of the users to open the showuser.asp page. This page uses the
adsiapp.user component’s getUser method to pull in detailed information
about the user to display to the page.

4. In showuser.asp, you can remove the user by clicking on the associated link,
which results in a call to the removeuser.asp page. This page uses the
adsiapp.user component’s removeUser method to remove the user from the
system.

,ch12.19369 Page 378 Thursday, February 22, 2001 1:32 PM

ASP Example: Add and Manage Users Through the Web 379

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

5. In showuser.asp, you can also remove the user from the nopower group by
clicking the associated link. This results in a call to rmusrgrp.asp, which uses
the asp1203.group component’s removeUserFromGroup method to remove
the user from a specific group, in this case the nopower group.

6. Finally, in showuser.asp, you can view a list of directory service groups, which
are displayed using the asp1203.group component’s getGroups method.
Picking one of these and clicking the Add User to Group button calls the
addgrp.asp page. This page uses the asp1203.group component’s addUser-
ToGroup method to add the user to the new group.

Remember, if you’re exposing Active Directory functionality to web access, make
sure that access to the ASP application is restricted, or you might find all of your
groups and users missing, whether by intent or by accident.

,ch12.19369 Page 379 Thursday, February 22, 2001 1:32 PM

380
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 13

13
Working with MSMQ
Components

One of the most interesting new technologies that Microsoft has come up with is
MSMQ—Microsoft Message Queues. This technology was created so that applica-
tions distributed across different machines could communicate with one another at
different times. In an ASP environment, messages can be sent from the applica-
tion to queues for processing at a later time, allowing quicker page returns to the
client. Additionally, the applications processing the messages could access more
restricted resources such as databases, thereby removing direct contact between
the externally accessed ASP application and the database—messages could be sent
from an Internet application but actually processed on an intranet or from
restricted pages on the Internet.

This chapter looks at using MSMQ with ASP components. It’s not an in-depth
review of MSMQ, but it does cover the most commonly used aspects of the tech-
nology: creating queues and sending and reading messages. On the way, we’ll
also take a look at journaling and transactional messages, as well as a brief look at
MSMQ security techniques.

MSMQ/ASP Basics
Though MSMQ is geared toward messages being exchanged across heteroge-
neous environments, it’s still an effective tool to use with ASP. ASP applications
can use MSMQ to send messages to local or remote queues.

For instance, a shopper could order several items from an online store, and the
order would go into a message queue, perhaps on another machine. At a later time,
the message is pulled from the queue and the order is processed—without the
shopper (or others) having direct access to the database. The database is protected

,ch13.19489 Page 380 Thursday, February 22, 2001 1:32 PM

MSMQ/ASP Basics 381

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

from direct outside contact, and the shopper doesn’t have to wait for the database
processing to occur.

A message queue can also be used in an administrative intranet to schedule sys-
tem activities or to communicate requests for information between diverse groups.

MSMQ functionality can be accessed directly through a set of functions in lan-
guages such as C++, or it can be accessed through a set of COM objects. Develop-
ers working with a tool that supports COM objects (all the tools mentioned in this
book support COM objects) will usually use the COM implementation of MSMQ.

The MSMQ COM object model consists of 10 objects:

MSMQApplication
Used to find the machine name or identifier of a specific machine, or to regis-
ter a security certificate for authenticated messages

MSMQCoordinatedTransactionDispenser
Provides an MSMQ transaction object for creating transacted messages

MSMQEvent
Handles events associated with a particular MSMQ queue

MSMQMessage
Used to create, send, or read a message

MSMQQuery
Searches for a specific queue or group of queues based on some criteria

MSMQQueue
Represents an MSMQ message queue

MSMQQueueInfo
Used to manage and maintain message queues

MSMQQueueInfos
A collection of queues returned from using MSMQQuery

MSMQTransaction
Commits or aborts a transaction

MSMQTransactionDispenser
Creates an MSMQTransaction object

Due to the nature of ASP components, we won’t be working with the MSMQ-
Event object in this chapter. Our component methods should perform a specific
task and return the results as soon as possible. They won’t be sitting in the back-
ground waiting for a specific event to occur.

The other objects are covered in the chapter, beginning with using MSMQ-
QueueInfo to create and remove queues, covered next.

,ch13.19489 Page 381 Thursday, February 22, 2001 1:32 PM

382 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Working with Queues
The central component of MSMQ is the queue. Applications send messages to
queues and read messages from queues. Messages can generate activity, such as
performing some administrative task (administrative queue) or responding to a
request (response queue).

Applications can track a message using the report queue, which is similar in
approach to tracking a package shipped using UPS or FedEx. There’s a queue that
contains messages based on activities in other MSMQ queues (the journal queue)
and a queue that contains messages that just couldn’t be delivered for some rea-
son (the dead-letter queue).

Some queues—such as the message, administrative, and response queues—can be
created by applications; others, such as the journal and dead-letter queues, are cre-
ated by the MSMQ system.

In this section we’ll take a look at message queues, the most commonly used
queues. Later in the chapter, we’ll take a look at some other types of queues that
can be manipulated by ASP components.

Creating and Deleting Message Queues

Applications can create two types of message queues: public and private. Public
queues are registered with the directory service (through ADSI in Windows 2000)
and are accessible by any MSMQ application. A private queue, on the other hand,
is local to the machine on which it’s created and is not accessible by any applica-
tion other than the one that created it. Public queues are managed by the direc-
tory services, while private queues are managed by the application. Private queues
are faster to work with, since there is no directory service overhead when access-
ing the queue. Public queues are more robust, since they are managed by direc-
tory services.

If you’re working with MSMQ on a machine that doesn’t have Active
Directory installed or doesn’t have access to a machine with an
Active Directory domain controller, you can create only private
queues. See Chapter 12, Working with Active Directory from ASP
Applications, for instructions on how to set up a standalone Active
Directory installation.

To create either a public or a private queue, you need to create an instance of the
MSMQ Information object (MSMQQueueInfo), which you use to define the queue

,ch13.19489 Page 382 Thursday, February 22, 2001 1:32 PM

Working with Queues 383

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

properties and then create the queue. If the queue already exists when you try to
create the queue, you’ll get an error.

To demonstrate working with queues, create a new Visual Basic ActiveX DLL
project. Name it asp1301 and the generated class msgqueue. Attach a reference to
the MSMQ type library to the project. You’ll find it listed as Microsoft Message
Queue 2.0 Object Library in your project’s References dialog.

Once you’ve attached the type library, create a new method named newPublic-
Queue. This small method, which is shown in Example 13-1, creates an instance of
the MSMQQueueInfo object, used to create the new public queue. The MSMQ-
QueueInfo’s PathName property is set to a location and a name relative to the
machine. The name of the queue and the queue’s label are passed as parameters
to the subroutine.

Accessing the component from the following ASP page, asp1301.asp, results in the
public queue being created:

<%
Dim obj
Set obj = Server.CreateObject("asp1301.msgqueue")
obj.newPublicQueue "first", "First Public Queue"
%>

On a machine that has access to directory services, the queue is created as a pub-
lic queue, accessible by all MSMQ applications. However, if you invoke the new-
PublicQueue method on a machine on which directory services are not set up,
you’ll get an error—the machine must have access to directory services to create
public MSMQ queues.

Example 13-1. Creating a Public MSMQ Message Queue

Sub newPublicQueue(ByVal strQueueName As String, _
 ByVal strQueueLabel As String)

' create a public message queue
Dim qPublic As New MSMQQueueInfo

qPublic.PathName = ".\" & strQueueName
qPublic.Label = strQueueLabel

qPublic.Create

End Sub

,ch13.19489 Page 383 Thursday, February 22, 2001 1:32 PM

384 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can check that the new message queue has been added by
using the Active Directory Browser, a utility that comes with the Plat-
form SDK from Microsoft. Chapter 12, Working with Active Directory
from ASP Applications, discusses how to use this utility. The new
message queue is found under the Domain Controllers collection,
under the computer name where the queue was created, and then
under the MSMQ object.

If you access the ASP test page twice, an error results. The default error handling
provided by IIS 5.0 displays the following error message to the page:

Error Type:
MSMQQueueInfo (0xC00E0005)
A queue with the same pathname already exists

In fact, the only way to check to see if a queue already exists is to try and create
it, handling the error of the queue already existing within the code.

To create a private message queue, add a new method to asp1301.msgqueue,
and call it newPrivateQueue. This method takes the name of the queue and its
label as String parameters. In fact, the code to create the private queue is the same
as for the public one, except for the “PRIVATE$” modifier in the path name, as
shown in Example 13-2.

Access this new method from an the following ASP test page, asp1302.asp, to cre-
ate a private queue:

<%
Dim obj
Set obj = Server.CreateObject("asp1301.msgqueue")
obj.newPrivateQueue "second", "First Private Queue"
%>

Unlike the public queue, you won’t see the new private queue in directory services.

Example 13-2. Creating a Private MSMQ Message Queue

' create a private message queue
Sub newPrivateQueue(ByVal strQueueName As String, _
 ByVal strQueueLabel As String)

Dim qPrivate As New MSMQQueueInfo

qPrivate.PathName = ".\PRIVATE$\" & strQueueName
qPrivate.Label = strQueueLabel

qPrivate.Create

End Sub

,ch13.19489 Page 384 Thursday, February 22, 2001 1:32 PM

Working with Queues 385

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The PathName specified with both examples creates the queue relative to MSMQ
on the machine where the component is created. You can specify any valid DNS
or UNC path for the queue location, such as the following, which locates the
queue on a machine named testMachine :

testMachine\testQueue

Remember that only public queues can be created on machines other than the
local machine.

In the two example methods, the use of the dot (.) in the pathname means that
the queue is located on the local machine. Private queues must be located on the
local machine. To find out what the pathname is when using the dot notation, you
can access the MSMQQueueInfo object’s Refresh method.

The queue is placed in the target machine’s Windows subdirectory at
\system32\msmq\STORAGE\LQS. The filenames are encoded. An
example of an encoded filename is:

2215ede960bf44d184f52c862f62a680.06ba8b46

Once a queue’s been created, you’ll want to access it. Again, you’ll use the MSMQ-
QueueInfo object to access and open a queue that’s already been created.

You’ll open the queue for access later in the chapter when you send messages to
it and read messages from it. For now, though, you’ll need the ability to remove a
queue once it’s been created.

For example, to delete the queues created in Example 13-1 and Example 13-2, add
a new method, removeQueue, to the asp1301.msgqueue component, as shown
in Example 13-3. This method takes two parameters, the queue name and whether
the queue is public or private. As with the earlier methods, removeQueue uses the
default dot notation to represent the local machine when adding and removing the
queue. A value of 1 for the varType parameter signals that the queue is private;
with any other value, the method treats the queue as public.

Example 13-3. Removing a Public or a Private MSMQ Message Queue

' remove a queue
Sub removeQueue(ByVal strQueueName As String, _
 ByVal varType As Variant)

Dim qObj As New MSMQQueueInfo
Dim strPath As String

' check for public or private queue
If varType = 1 Then

,ch13.19489 Page 385 Thursday, February 22, 2001 1:32 PM

386 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To remove both the public and private queues created with the earlier examples,
access this component method twice, once for the public and once for the private
queue, as the following page, asp1303.asp, illustrates:

<%
Dim obj
Set obj = Server.CreateObject("asp1301.msgqueue")

' remove public queue
obj.removeQueue "first", 0

'remove private queue
obj.removeQueue "second", 1
%>

Searching for a Specific Queue

In the last section, you used a queue name to find a specific message queue. Some-
times, though, an application doesn’t have access to the name of a queue. In those
cases, you have to search through the available queues to find the one you want.

The MSMQQuery object is an MSMQ COM object used explicitly for searching the
directory services for a specific public queue or a group of public queues. This
object has one method, LookupQueue, that takes several parameters used to find
the queue (or group of queues) and that returns a collection of matched queue
objects. A second MSMQ COM object, MSMQQueueInfos, is then used to traverse
the set of queues to find the particular one you’re looking for.

To search for a queue, use the asp1301.msgqueue object to create several public
queues using the newPublicQueue method from Example 13-1, as shown in the
following ASP page, asp1304.asp, which creates five queues, named one, two,
three, four, and five:

<%
Dim obj
Set obj = Server.CreateObject("asp1301.msgqueue")

obj.newPublicQueue "one", "Developing ASP Components"

 strPath = ".\PRIVATE$\" & strQueueName
Else
 strPath = ".\" & strQueueName
End If

' delete queue
qObj.PathName = strPath
qObj.Delete

End Sub

Example 13-3. Removing a Public or a Private MSMQ Message Queue (continued)

,ch13.19489 Page 386 Thursday, February 22, 2001 1:32 PM

Working with Queues 387

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

obj.newPublicQueue "two", "Developing ASP Components"
obj.newPublicQueue "three", "Developing ASP Components"
obj.newPublicQueue "four", "Developing ASP Components"
obj.newPublicQueue "five", "Developing ASP Components"
%>

Each queue name is unique, but the same label, “Developing ASP Components,” is
repeated for each queue.

Next, add a new method named findQueue to the asp1301.msgqueue compo-
nent. The method has one parameter, the label used as a search parameter.

The findQueue method uses MSMQQuery’s LookupQueue method to search
among the existing queues. There are several different values that you can query
on, including the label, the time the queue was created or last modified, and the
queue’s GUID. The findQueue method uses the label passed to it as a parameter.

In Example 13-4, once the query has been made, the objects returned in the MSM-
QQueueInfos collection are traversed. Each is accessed as an MSMQQueueInfo
object, and the method uses the built-in ASP Response object to list the queue’s
FormatName and PathName properties.

Normally, you’ll want to avoid accessing the built-in ASP objects from
your components in order to maintain a separation of the user inter-
face (the ASP functionality) from the business processes. I use the
built-in objects in this book primarily for demonstration purposes.

Since asp1301.msgqueue is now using the built-in ASP objects, you’ll need to
add references to both the COM+ Services and the ASP type libraries to the Visual
Basic project.

Example 13-4. Finding Queues Based on Matching Against Queue Label

Sub findQueues(ByVal strLabel As String)

Dim qQuery As New MSMQQuery
Dim qInfoObjs As MSMQQueueInfos
Dim qInfo As MSMQQueueInfo

' get object content and set response
Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

' perform lookup
Set qInfoObjs = qQuery.LookupQueue(Label:=strLabel)

,ch13.19489 Page 387 Thursday, February 22, 2001 1:32 PM

388 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The new component method is accessed in this ASP test page, asp1305.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp1301.msgqueue")

obj.findQueues "Developing ASP Components"
%>

The result of calling this component method is a web page with values similar to
the following, depending on your own machine’s name:

PUBLIC=ee0d7be5-ba07-483c-8349-2d9803d028cf
flame.development.local\one
flame\one

PUBLIC=de2fa534-038c-4e58-96d9-a5a85654280e
flame.development.local\two
flame\two

PUBLIC=56001290-9795-4e48-8d7e-c499e26c6a15
flame.development.local\three
flame\three

PUBLIC=671a13ab-1921-4822-a427-9a66d5101dda
flame.development.local\four
flame\four

PUBLIC=2215ede9-60bf-44d1-84f5-2c862f62a680
flame.development.local\five
flame\five

As you can see, the FormatName property for a queue is equivalent to the part of
the encrypted name given to the queue file.

Now that you’ve had a chance to create and remove message queues and to
search for specific queues, let’s take a look at sending and retrieving messages
from these queues.

' start at first info object
qInfoObjs.Reset

' traverse objects, print out properties
Set qInfo = qInfoObjs.Next
While Not qInfo Is Nothing
 objResponse.Write qInfo.FormatName & "
"
 objResponse.Write qInfo.PathNameDNS & "
"
 objResponse.Write qInfo.PathName & "<p>"
 Set qInfo = qInfoObjs.Next
Wend

End Sub

Example 13-4. Finding Queues Based on Matching Against Queue Label (continued)

,ch13.19489 Page 388 Thursday, February 22, 2001 1:32 PM

Working with MSMQ Messages 389

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Working with MSMQ Messages
MSMQ messages can contain virtually any type of information and any type of
object. Messages can contain Word documents and other files, ADO recordsets,
scalar values such as integers and strings, and more complex data structures such
as arrays.

The message body is defined as a Variant data type, which means that any COM-
compatible value can be assigned to the message body and information about the
object is available on the receiving end of the message.

The MSMQMessage object is used to create an MSMQ message. When the mes-
sage object fields have been set, it can then be sent to a message queue. The mes-
sage queue itself needs to be opened first; the MSMQQueueInfo and MSMQQueue
objects are used to find the queue, open it, and then use it.

To jump right in, create a new Visual Basic project. Name it asp1302 and the gen-
erated class message. Attach a reference to the Microsoft Message Queue 2.0 type
library to the project.

Create a method in asp1302.message called sendStringMessage, as shown in
Example 13-5. This method takes as parameters the name of a queue, a queue
label, and a string to use as the message body. The method opens the queue,
assigns the message string to the message’s body, and sends the message to the
queue.

Example 13-5. Sending a String Message to a Queue

Sub sendStringMessage(ByVal strQueue As String, _
 ByVal strLabel As String, _
 ByVal strMessage As String)

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As New MSMQMessage

' open queue for sending
qInfo.PathName = ".\" & strQueue
qInfo.Label = strLabel
Set qQueue = qInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

If qQueue.IsOpen = 1 Then
 ' define message
 qMessage.Body = strMessage

 ' now send it
 qMessage.Send qQueue

 ' close queue

,ch13.19489 Page 389 Thursday, February 22, 2001 1:32 PM

390 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component and the sendStringMessage method, send three differ-
ent messages to queue five, created in the last section. The following ASP script,
asp1306.asp, does this:

<%
Dim obj
Set obj = Server.CreateObject("asp1302.message")

obj.sendStringMessage "five", "Developing ASP Components", _
 "This is the first message"
obj.sendStringMessage "five", "Developing ASP Components", _
 "This is the second message"
obj.sendStringMessage "five", "Developing ASP Components", _
 "This is the third message"
%>

To receive the messages, create a second method in asp1302.message called
readStringMessage, as shown in Example 13-6. It takes two parameters: the queue
name and its label. Since you’ll be using the ASP Response object to write out
results to the client, also attach references to the COM+ Services and the Microsoft
Active Server Pages type libraries to the project.

In the method code, the queue is opened and the MSMQQueue Receive method
both retrieves the message and removes it from the queue. Its parameters are:

• An optional transaction object or transaction constant

• A Boolean specifying whether you also want queue information

• A Boolean specifying whether you want the body of the message

• The ReceiveTimeout value

This process of reading and removing the message continues in a loop until the
Receive method returns a null message, indicating that no more messages are
found in the queue and the Receive method has timed out.

This last statement is absolutely critical for you to understand before beginning to
work with MSMQ. When you use the Receive or Peek method to access messages
from a queue, if you don’t specify a ReceiveTimeout value, the application is
blocked and sits there listening to the queue until another message comes in. This
results in your web page hanging. Not only that, but you won’t be able to unload
the web server or even shut down the process that’s running the MSMQ ASP com-
ponent.

 qQueue.Close
End If

End Sub

Example 13-5. Sending a String Message to a Queue (continued)

,ch13.19489 Page 390 Thursday, February 22, 2001 1:32 PM

Working with MSMQ Messages 391

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Always set the ReceiveTimeout parameter when accessing mes-
sages from a queue.

The ReceiveTimeout parameter accepts a numeric value representing the num-
ber of milliseconds to wait to time out. In readStringMessage, the timeout value is
set to 500 milliseconds.

Example 13-6. Component Method to Get All Messages on a Specific Queue and Print the
Message If It’s a String Type

Sub readStringMessage(ByVal strQueue As String, _
 ByVal strLabel As String)

' get response object from object context
Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As MSMQMessage
Dim varObject As Variant

' open queue for reading
qInfo.PathName = ".\" & strQueue
qInfo.Label = strLabel
Set qQueue = qInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE)

' check to see if queue is open
' if it is, receive first message which removes message from queue
If qQueue.IsOpen = 1 Then
 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)

 ' loop through messages
 While Not (qMessage Is Nothing)
 varObject = qMessage.Body
 If TypeName(varObject) = "String" Then
 objResponse.Write varObject
 End If
 objResponse.Write "
"
 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)
 Wend

 ' close queue
 qQueue.Close
End If

End Sub

,ch13.19489 Page 391 Thursday, February 22, 2001 1:32 PM

392 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the readStringMessage component method, as each message is accessed, its
Body property is checked to make sure it’s a string, the datatype we’re expecting
in the code. It’s up to any application—or component—to test the datatype of the
message before working with it. The readStringMessage uses the VBA TypeName
function to test for a string value. You can also use TypeOf to test for objects.

In Example 13-6, you used the MQ_RECEIVE_ACCESS enumerated value as the first
parameter in the MSMQQueueInfo’s Open method. The Open method’s parame-
ters are the following:

• Access constant specifying how the queue is opened. This value is used if the
code is going to read the message using the Receive or Peek method. If you
had used Peek, you could have also used the MQ_PEEK_ACCESS value. (The
other possible enumerated value for the Access parameter is MQ_SEND_
ACCESS to open a message queue in order to send a message.)

• Share mode constant, specifying how access to the queue is shared. This
parameter controls how locking occurs with the queue. In the example, you
used MQ_DENY_RECEIVE_SHARE, which basically denies access to the queue
until the component method closes the queue and releases the queue lock.
Another browser accessing the ASP page would receive the following error
when trying to access the same queue:

There is a sharing violation. The queue is already open for an
exclusive receive.

In an ASP application, you’ll want to use MQ_DENY_RECEIVE_SHARE when it’s
essential that only one instance of the ASP component have exclusive access
to the queue at a time. Otherwise, you might consider using MQ_DENY_NONE,
which allows multiple accesses to the queue at one time.

MSMQ and Your ASP Application Audience
The audience that accesses the ASP component to send the MSMQ message
can be very different from the one that receives the message.

For instance, if your ASP application is using MSMQ to manage orders for an
online store, customers can place many orders, resulting in many messages
being sent, each with an individual order. However, sending messages doesn’t
lock down the queue, so these customers can access the same queue at the
same time without running into any conflicts. However, only a select group of
people will access the orders from the queue to process them. Additionally, it’s
essential that the messages with the orders are processed one at a time. For
this audience, you definitely want to use MQ_DENY_RECEIVE_SHARE, since you
don’t want two people trying to access the same order at the same time.

,ch13.19489 Page 392 Thursday, February 22, 2001 1:32 PM

Working with MSMQ Messages 393

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component, the following example file, asp1307.asp, accesses the
asp1302.message component and calls readStringMessage:

<%
Dim obj
Set obj = Server.CreateObject("asp1302.message")

obj.readStringMessage "five", "Developing ASP Components"
%>

The messages contained in message queue five are listed to the web page in the
order that they were received in the queue:

This is the first message
This is the second message
This is the third message

In Example 13-6, you removed the messages from the queue as they were read. If
you wanted them left on the queue, you would use the Peek method instead.
Peek has the same syntax as Receive, except that the messages aren’t removed
(and there is no transaction parameter):

Set qMessage = qQueue.Peek(ReceiveTimeout:=500)

To loop through all messages using Peek, though, you’ll want to use the Peek-
Next method to get each message in the queue until the end of the queue is
reached. The PeekNext parameters are the same as Peek’s:

• A Boolean specifying whether you also want queue information

• A Boolean specifying whether you want the body of the message

• The ReceiveTimeout value

You can also get the queue’s current message by using either the ReceiveCurrent
or PeekCurrent methods. ReceiveCurrent’s parameters are the following:

• An optional transaction object or transaction constant

• A Boolean specifying whether you also want queue information

• A Boolean specifying whether you want the body of the message

• The ReceiveTimeout value

• WantConnectorType (not documented in Microsoft’s MSMQ documentation)

The parameters to the PeekCurrent method are the same as those for Receive-
Current.

MSMQ messages can contain objects as well as scalar values such as strings. We’ll
take a look at sending and reading an ADO recordset in the next section, where
I’ll introduce the use of transactions in working with MSMQ.

,ch13.19489 Page 393 Thursday, February 22, 2001 1:32 PM

394 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using Transactions
MSMQ messages can be sent or received as transactional messages, which means
that sending or receiving the message doesn’t occur until the transaction is com-
mitted. Using transactional messages is particularly helpful when performing
updates to other data stores, such as a database, at the same time as the message
activity: you’ll want the database and message activity to complete as a unit or be
rolled back as a unit.

To use transactions with messages, create the queue as a transactional queue by
setting the optional IsTransactional parameter in the MSMQQueueInfo object’s
Create method to True:

qInfo.Create IsTransactional:=True

Now messages to this queue can be transactional or not, depending on the mes-
sage activity.

If the queue is remote (located other than on the local machine), then you can’t
use a transactional receive against the queue. Additionally, you can’t use a transac-
tional receive against a nontransactional queue. You can, however, use a nontrans-
actional receive against either a transactional queue or a nontransactional queue,
even if the queue is remote.

You can perform a transactional send against a remote transactional queue, but
you can’t perform a transactional send against a nontransactional queue, regard-
less of its location. Neither can you send a nontransactional message against a
transactional queue.

Two types of transactions can be used with MSMQ:

• Internal transactions using MSMQ as the resource manager

• External transactions using the MS DTC (Distributed Transaction Coordinator)
as the resource manager

If only the messages are impacted by the success or failure of the activity, you can
consider using internal transactions. However, if other resources are involved, such
as database resources, use external transactions.

Transactional messages must have an MSMQTransaction object attached to the
message operation. How the transaction object is created differs based on whether
the transaction is an internal MSMQ transaction or an external one.

Referencing the BeginTransaction method on the MSMQTransactionDispenser
object creates an internal transaction. To demonstrate working with internal trans-
actions, you’ll create a new ASP component that supports this type of transac-
tional messages. First, though, you have to create a transactional queue.

,ch13.19489 Page 394 Thursday, February 22, 2001 1:32 PM

Using Transactions 395

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create a new Visual Basic project and name it asp1303. Name the generated class
queue, and attach the Microsoft Message Queue type library to the project. This
component has only one method, createXatQueue, shown in Example 13-7, that
takes a queue name and a queue label as parameters. All the method does is cre-
ate the transactional queue.

After compiling the component, create the queue used for testing transactional
messaging by loading the following ASP page, asp1308.asp, that contains the fol-
lowing script:

<%
Dim obj
Set obj = Server.CreateObject("asp1303.queue")

obj.createXatQueue "transaction", "XatQueue"
%>

This script creates a transactional queue with the label XatQueue and the name
transaction.

Internal Transactions

To demonstrate how to work with MSMQ internal transactions, add a new class
module to asp1303 by right-clicking in the Project Explorer window and select-
ing Add ➝ Class Module from the popup menu. Name this new class internal.

This new component has two methods, sendIntrnlXactMsg and getIntrnlXactMsg,
which are shown in Examples 13-8 and 13-9, respectively. Both use internal trans-
actions when they perform their MSMQ activities. The sendIntrnlXactMsg method,
shown in Example 13-8, has two parameters: the queue name and the message
body (sent as a string). In the method, the process of sending the message is simi-
lar to that shown in Example 13-5, except that an instance of MSMQTransaction-
Dispenser is created and is, in turn, used to create an instance of the
MSMQTransaction object. Note that when the message is sent, the instance of the
transaction object is sent with the message. Calling Commit on the transaction at

Example 13-7. Creating a Transactional Public Queue

Sub createXatQueue(ByVal strQueueName, ByVal strQueueLabel)

' create a public message queue
Dim qPublic As New MSMQQueueInfo

qPublic.PathName = ".\" & strQueueName
qPublic.Label = strQueueLabel

qPublic.Create IsTransactional:=True

End Sub

,ch13.19489 Page 395 Thursday, February 22, 2001 1:32 PM

396 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the end of the method commits the message to the queue. By default, if an explicit
commit is not given, the message's send operation is aborted and the message is
not committed to the queue.

As the transaction is committed, the message is sent to the queue. To test this, the
following ASP script, asp1309.asp, creates an instance of asp1303.internal and
calls the sendIntrnlXactMsg method. To verify that the message is in the queue,
the script also creates an instance of the asp1302.message component, created
earlier, to read the message:

<%
' create transactional message
Dim obj
Set obj = Server.CreateObject("asp1303.internal")

obj.sendIntrnlXactMsg "transaction", _
 "This is message to queue"

' now read message

Example 13-8. Sending a Transactional Message

Sub sendIntrnlXactMsg(ByVal strQueueName As String, _
 ByVal strMessage As String)

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As New MSMQMessage
Dim qDispenser As New MSMQTransactionDispenser
Dim qXact As MSMQTransaction

' open queue for sending
qInfo.PathName = ".\" & strQueueName
Set qQueue = qInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

If qQueue.IsOpen = 1 Then
 ' create transaction
 Set qXact = qDispenser.BeginTransaction

 ' define message
 qMessage.Body = strMessage

 ' now send it
 qMessage.Send qQueue, qXact

 ' commit transaction
 qXact.Commit

 ' close queue
 qQueue.Close
End If

End Sub

,ch13.19489 Page 396 Thursday, February 22, 2001 1:32 PM

Using Transactions 397

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim objMsg
Set objMsg = Server.CreateObject("asp1302.message")

objMsg.readStringMessage "transaction", "XatQueue"
%>

Since a nontransactional receive can be performed against a transactional queue, the
result of accessing this page script is that the message is displayed to the web page.

What happens if the transaction is aborted? You can see what happens yourself by
modifying sendIntrnlXactMsg to abort the message rather than commit it:

 qXact.Abort

Then when you access asp1309.asp, no message is displayed, since no message is
found on the queue.

You can also use transactional receives to retrieve the message from the queue.
The second method we’ll add to asp1303.internal is called getIntrnlXactMsg
and is shown in Example 13-9. Because the method displays each message it finds
to the web page using the ASP Response object, you’ll need to attach references to
the COM+ Services and the Microsoft Active Server Pages type libraries to the
project. The getIntrnlXactMsg method takes one parameter, the queue name. Once
the queue is open, the method retrieves all messages from it, similar to
Example 13-6, except that the operation is attached to a transaction.

You don’t have to specify the queue’s label as well as pathname
when opening the queue. Examples 13-5 and 13-6 use a label; Exam-
ples 13-8 and 13-9 don’t.

Labels are used mainly when you want to group several queues
together for query purposes.

Example 13-9. Retrieving Messages from a Queue Using Transactional Receives

Sub getIntrnlXactMsg(ByVal strQueueName As String)

' get response object from
' ObjectContext
Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As MSMQMessage
Dim varObject As Variant

,ch13.19489 Page 397 Thursday, February 22, 2001 1:32 PM

398 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice in the code that the transaction object is passed as the first parameter to the
Receive method, but the transaction isn’t committed until all of the messages in the
queue have been received.

The following ASP test page, asp1310.asp, tests the new component method:

<%
' create transactional message
Dim obj
Set obj = Server.CreateObject("asp1303.internal")

obj.sendIntrnlXactMsg "transaction", _
 "This is transactional message to queue"

' now read message
obj.getIntrnlXactMsg "transaction"
%>

Dim qDispenser As New MSMQTransactionDispenser
Dim qXact As MSMQTransaction

' open queue for reading
qInfo.PathName = ".\" & strQueueName
Set qQueue = qInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE)

' check to see if queue is open
' if it is, receive first message
' which removes message from queue
If qQueue.IsOpen = 1 Then
 ' create transaction
 Set qXact = qDispenser.BeginTransaction

 Set qMessage = qQueue.Receive(qXact, ReceiveTimeout:=500)

 ' loop through messages
 While Not (qMessage Is Nothing)
 varObject = qMessage.Body
 If TypeName(varObject) = "String" Then
 objResponse.Write varObject
 End If
 objResponse.Write "
"
 Set qMessage = qQueue.Receive(qXact, ReceiveTimeout:=500)
 Wend

 ' commit
 qXact.Commit

 ' close queue
 qQueue.Close
End If
End Sub

Example 13-9. Retrieving Messages from a Queue Using Transactional Receives (continued)

,ch13.19489 Page 398 Thursday, February 22, 2001 1:32 PM

Using Transactions 399

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Again, as before, if the MSMQ transaction weren’t committed, the message activity
would be aborted by default. You can try this in the example by removing the fol-
lowing line from getIntrnlXactMsg:

 qXact.Commit

Accessing asp1310.asp several times just adds messages to the queue (that are dis-
played), but the message never is removed from the queue because the Receive
method’s removal activity is aborted.

Internal transactions are an effective tool when the only resource you have to
manage is MSMQ. However, if you’re using another resource, such as database
access, you’ll want to use external transactions, discussed in the next section.

Multiresource Transaction Management

Multiple-resource transactions are managed through the Distributed Transaction
Controller (DTC). This is the transaction management that was used with MTS and
now with COM+. In MSMQ, you can take advantage of external transactions using
two techniques: through the MSMQ MSMQCoordinatedTransaction object or by
using the component’s ObjectContext.

To demonstrate using the two techniques to control external transactions, we’ll
create a new component that has two methods. The first method adds messages to
a queue, but this time, the messages have disconnected ADO recordsets instead of
string messages attached. The second method pulls these messages from the
queue and accesses the recordset to update the database.

Create the component’s Visual Basic project and name it asp1304. Name the class
that’s generated external. This project will use ADO, the ASP objects, and
ObjectContext, as well as the MSMQ objects, so attach the following type libraries
to the project: COM+ Services Type Library, Microsoft Active Server Pages Object
Library, Microsoft Message Queue 2.0 Object Library, and Microsoft ActiveX Data
Objects.

Add the first method, addDirectoryToQueue, shown in Example 13-10, to the new
component. This method takes five parameters, all of type String:

strName
The directory’s name

strLoc
The directory’s physical location

strWebLoc
The directory’s web location (URL)

,ch13.19489 Page 399 Thursday, February 22, 2001 1:32 PM

400 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

strPurpose
The purpose of the directory

strQueueName
The MSMQ queue name

This method creates a record to add a new Directory table in the Weaver data-
base. In the component, an ADO recordset is created and opened without a con-
nection to the database. Then a new record is added to the object, and the
record’s fields are set to the parameter values. Since there is no information from
the database about what the fields look like, the method adds the field descrip-
tions to the recordset’s Fields collection first.

The Weaver database is described in Appendix B.

After the record is created, it’s attached to the MSMQ message, and the message is
sent. To commit the sending activity, an instance of MSMQCoordinatedTrans-
actionDispenser is used to create a new MSMQTransaction object. This object
is sent with the message, and its Commit method is called at the end of the
method to commit the action.

Example 13-10. Creating a Recordset and Attaching It to an MSMQ Message

Sub addDirectoryToQueue(ByVal strName As String,ByVal strLoc As String, _
 ByVal strWebLoc As String, ByVal strPurpose As String, _
 ByVal strQueueName As String)

On Error GoTo ErrorHandler

' create Recordset
Dim rs As New Recordset
rs.CursorLocation = adUseClient

rs.Fields.Append "name", adVarChar, 50
rs.Fields.Append "physical_location", adVarChar, 50
rs.Fields.Append "web_location", adVarChar, 50
rs.Fields.Append "purpose", adVarChar, 50

' open recordset
rs.Open , , adOpenStatic, adLockBatchOptimistic

' add new record
rs.AddNew
rs("name") = strName
rs("physical_location") = strLoc
rs("web_location") = strWebLoc

,ch13.19489 Page 400 Thursday, February 22, 2001 1:32 PM

Using Transactions 401

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The next component method, which is shown in Example 13-11, is named get-
DirectoryFrmQueue. It takes the queue name as its single parameter. In the
method, instances of ObjectContext as well as Response are created, in addition to
the MSMQQueueInfo object to open the queue. Also, an ADO Connection object
is created that points to the SQL Server version of the Weaver database. (You
could also use the Access version of Weaver for this demonstration.) A new
recordset is created and set to the Directory table and then opened.

For each message pulled from the queue, the Recordset object’s AddNew method
is called to add a new record. Then the Recordset object attached to the message
is accessed, and its values are used to set the fields within the method’s existing
Recordset object.

When all messages in the queue have been processed, the UpdateBatch method is
called on the method’s active recordset, and ObjectContext’s SetComplete method
is called to signal that the transaction can safely be committed from this method.

rs("purpose") = strPurpose

' open queue for sending
Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As New MSMQMessage
Dim qTransDTC As New MSMQCoordinatedTransactionDispenser
Dim qTrans As MSMQTransaction

qInfo.PathName = ".\" & strQueueName
Set qQueue = qInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

If qQueue.IsOpen = 1 Then

 ' get transaction
 Set qTrans = qTransDTC.BeginTransaction

 ' define message
 qMessage.Body = rs

 ' now send it
 qMessage.Send qQueue, qTrans

 ' close queue
 qQueue.Close
End If

' commit trans
qTrans.Commit

Exit Sub
ErrorHandler:
 Err.Raise Err.Number, Err.Source, Err.Description
End Sub

Example 13-10. Creating a Recordset and Attaching It to an MSMQ Message (continued)

,ch13.19489 Page 401 Thursday, February 22, 2001 1:32 PM

402 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 13-11. Getting a Recordset from a Message and Using It to Make a Database
Update

Sub getDirectoryFrmQueue(ByVal strQueueName As String)

On Error GoTo ErrorHandler

' get object context
Dim objContext As ObjectContext
Set objContext = GetObjectContext()

Dim objResponse As Response
Set objResponse = objContext("Response")

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As MSMQMessage
Dim varObject As Variant

' open queue for reading
qInfo.PathName = ".\" & strQueueName
Set qQueue = qInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE)

' check to see if queue is open
' if it is, receive first message
' which removes message from queue
If qQueue.IsOpen = 1 Then

 ' connect to database
 Dim cn As New Connection
 Dim rs As New Recordset
 Dim rsnew As Recordset

 cn.ConnectionString = "Provider=SQLOLEDB;server=FLAME;" & _
 "database=weaver;uid=sa;pwd="
 cn.CursorLocation = adUseClient
 cn.Open

 ' open recordset
 rs.Open "Directory", cn, adOpenKeyset, adLockBatchOptimistic, _
 adCmdTable

 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)

 ' loop through messages
 While Not (qMessage Is Nothing)
 If TypeOf qMessage.Body Is ADODB.Recordset Then
 Set rsnew = qMessage.Body
 rs.AddNew
 rs("name") = rsnew("name")
 rs("web_location") = rsnew("web_location")
 rs("physical_location") = rsnew("physical_location")
 rs("purpose") = rsnew("purpose")
 End If

,ch13.19489 Page 402 Thursday, February 22, 2001 1:32 PM

Using Transactions 403

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As you’ll notice in Example 13-11, transactions controlled by ObjectContext don’t
have to be attached to the message, since the Transaction parameter for the
MSMQQueue object’s Receive method is set to MQ_MTS_TRANSACTION by default.
In Windows 2000, this translates into transactions controlled by COM+.

We couldn’t use the recordset attached to the MSMQ message to
make the database update directly, since this recordset does not
have any table or base database information, and therefore trying to
update it to the database results in a failure.

To test both methods, first create a new transactional queue using the component
created in Example 13-7, asp1303.queue. Call this queue adddir. The following
ASP page does this:

<%
Dim obj
Set obj = Server.CreateObject("asp1303.queue")

obj.createXatQueue "adddir", "Add Directory"
%>

 objResponse.Write "Added " & rsnew("name") & "
"
 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)
 Wend

 ' close queue and connection
 qQueue.Close
 cn.Close

End If

' signal to commit trans
rs.UpdateBatch
objContext.SetComplete

Exit Sub
ErrorHandler:
 ' abort transaction, clean up
 objContext.SetAbort
 qQueue.Close
 cn.Close

 Err.Raise Err.Number, Err.Source, Err.Description
End Sub

Example 13-11. Getting a Recordset from a Message and Using It to Make a Database
Update (continued)

,ch13.19489 Page 403 Thursday, February 22, 2001 1:32 PM

404 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create a page containing a form that adds a new directory to the Weaver data-
base. The page, named asp1311.asp, has no server-side script but does have cli-
ent-side validation, as shown in Example 13-12.

Example 13-12. Form to Capture New Directory Information

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<head>
<title>Developing ASP Components</title>

<script type="text/javascript" language="javascript">

function check_values() {
var frm = document.forms[0];

if (frm.name.value.length <= 0) {
 alert("Please Enter Directory Name");
 return;
 }

if (frm.physical_location.value.length <= 0) {
 alert("Please Enter Physical Location");
 return;
 }

if (frm.purpose.value.length <= 0) {
 alert("Please Enter Directory Purpose");
 return;
 }

frm.submit();

}
</SCRIPT>
</head>
<body style="margin-left: 20px; margin-top: 20px">
<h1>Add a new Directory</h1>
<p style="color: red; margin-left: 30px">
* Required Fields
</p>
<form method="POST" action="asp1312.asp">
<table cellpadding="10" border="0" style="background-color: yellow">
<tr>
<td align="right">
<h5>*Directory Name:</h5>
</td>
<td valign="top">
<input type="text" name="name" size="80" />
</td>
</tr>
<tr>
<td align="right">
<h5>*Physical Location:</h5>
</td>

,ch13.19489 Page 404 Thursday, February 22, 2001 1:32 PM

Using Transactions 405

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You’ll also need to create a second ASP page, named asp1312.asp, that takes the
first page’s form contents and passes them as parameters to the asp1304.
external component’s addDirectoryToQueue method, as shown in Example 13-13.

<td valign="top">
<input type="text" name="physical_location" size="80" />
</td>
</tr>
<tr>
<td align="right">
<h5>Web Location:</h5>
</td>
<td valign="top">
<input type="text" name="web_location" size="80" />
</td>
</tr>
<tr>
<td align="right">
<h5>*Purpose:</h5>
</td>
<td valign="top">
<input type="text" name="purpose" size="80" />
</td>
</tr>
<tr>
<td colspan=2 align="center">
<input type="button" value="Add new Directory" onClick="check_values()" />

<input type="reset" value="Clear Form">
</td>
</tr>
</table>
</form>
</body>

Example 13-13. Page to Process Form Contents

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.1//EN">
<head>
<TITLE>Developing ASP Components</TITLE>
</head>
<body>
<%

On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp1304.external")

Dim name, loc, webloc, purpose

name = Request.Form("name")

Example 13-12. Form to Capture New Directory Information (continued)

,ch13.19489 Page 405 Thursday, February 22, 2001 1:32 PM

406 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Finally, create a third ASP page, asp1313.asp, to process the queue contents and
add the new directory records. This page has script that creates an instance of
asp1304.external and calls getDirectoryFrmQueue with the queue’s name:

<%@ TRANSACTION = required %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.1//EN">
<head>
<TITLE>Developing ASP Components</TITLE>
</head>
<body>
<%

On Error Resume Next

Dim obj
Set obj = Server.CreateObject("asp1304.external")

obj.getDirectoryFrmQueue "adddir"
If Err.Number <> 0 Then
 Response.Write "<h3 style='color: gold'>Error with getting data from message
queue</h3>"
 Response.Write Err.Description
Else
 Response.Write "<h3 styl='color: gold'>Directory or Directories have been
added</h3>"
End If
%>

</body>

The page that calls getDirectoryFrmQueue must start a transaction. It does this by
using the TRANSACTION directive as the first line in the ASP file. The transaction
directive isn’t required when using the MSMQ transaction technique.

loc = Request.Form("physical_location")
webloc = Request.Form("web_location")
purpose = Request.Form("purpose")

obj.addDirectoryToQueue name, loc, webloc, purpose, "adddir"

If Err.Number <> 0 Then
 Response.Write "<h1 style='color: gold'>Error with Data</h1>"
 Response.Write Err.Description
Else
 Response.Write "<h1 style='color: gold'>Directory has been added to queue</h1>"
 Response.Write "<p>Add Directory to database</p>"
End If
%>

</body>

Example 13-13. Page to Process Form Contents (continued)

,ch13.19489 Page 406 Thursday, February 22, 2001 1:32 PM

Journaling 407

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the use of external transactions with MSMQ, add directories to the MSMQ
queue using the form in asp1311.asp, submitting the form after each. When you’re
finished, process the queue by accessing asp1313.asp, which invokes getDir-
ectoryFrmQueue to pull the directory entries from the queue and add them to the
database. You can add several directories to the queue before processing them, if
you wish. The getDirectoryFrmQueue method prints out the name of each direc-
tory as it is added to the updateable recordset. Figure 13-1 shows the results from
adding two directories to the database.

Journaling
There are three types of journaling that you can use with MSMQ, and each is fairly
simple to implement.

Journaling tracks events that occur, such as a message queue receiv-
ing a message.

The first technique is to apply journaling to a specific queue. This is accomplished
by setting the Journal property in MSMQQueueInfo to MQ_JOURNAL before the
queue is created:

qInfo.Journal = MQ_JOURNAL
...
qInfo.Create

You can also add journaling to an existing queue by setting the Journal property
and then calling the MSMQQueueInfo’s Update method.

Figure 13-1. Adding two directories to the database

,ch13.19489 Page 407 Thursday, February 22, 2001 1:32 PM

408 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Journaling of the queue is called target journaling; each message that is received
from the queue (using the Queue Receive method) is added to the journal.

To access the journal messages, you create an instance of the queue’s MSMQ-
QueueInfo object and then use its FormatName property to set the FormatName
property of a second MSMQQueueInfo object. Opening this opens access to the
journal:

Dim qInfo As New MSMQQueueInfo
Dim qInfoJournal As New MSMQQueueInfo
Dim qQueue As MSMQQueue
qInfo.PathName = ".\adddir"
qInfo.Refresh
qInfoJournal.FormatName = qInfo.FormatName & ";JOURNAL"
Set qQueue = qInfoJournal.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
... process journal queue's messages as you would any other queue's

The MSMQQueueInfo object’s Refresh method is called to retrieve the values for
the object from the directory service. This updates the FormatName property.

The second technique is to apply journaling to an entire computer. This type of
journaling, known as source journaling, is actually applied by setting the MSMQ-
Message object’s Journal property before sending the message:

qMessage.Journal = MQMSG_JOURNAL
qMessage.Send qQueue

If the message is sent to a remote machine, an entry is made in the originating
machine’s journal when the message is successfully sent. If the message is local in
nature, an entry is made in the machine’s journal only when the message has been
successfully retrieved from the queue.

To demonstrate source journaling, create a new component that has a method to
send a message using journaling and a method to read the messages from the
journal. Create a new Visual Basic project and name it asp1305. Name the gener-
ated class journal. Attach the Microsoft Message Queue, the COM+ Services, and
the Microsoft Active Server Pages type libraries to the project.

Add the first method, sendJournalMsg, which is shown in Example 13-14. It takes
two parameters: the queue name and the message, both of type string. The
method is identical to others we’ve looked at that send a message, except that the
MSMQMessage object’s Journal property is set.

Example 13-14. Sending a Message with Journaling

Sub sendJournalMsg(ByVal strQueueName As String, _
 ByVal strMessage As String)

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue

,ch13.19489 Page 408 Thursday, February 22, 2001 1:32 PM

Journaling 409

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To read messages from the machine’s journal, create asp1305.journal’s second
method, readJournal, which is shown in Example 13-15 and which doesn’t have
any parameters. This method doesn’t set the PathName property for the MSMQ-
QueueInfo object. Instead, the FormatName property is set with the machine’s
identifier, and the word JOURNAL appended. The machine identifier is found using
the MSMQApplication object’s MachineIdOfMachineName method, passing it the
machine name (in this case flame). The journal queue is opened into a regular
MSMQQueue object, and the messages in the queue are pulled and processed in
the same manner as you’ve used with other message processing examples in this
chapter.

Dim qMessage As New MSMQMessage

' open queue for sending
qInfo.PathName = ".\" & strQueueName
Set qQueue = qInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

If qQueue.IsOpen = 1 Then

 ' define message
 qMessage.Body = strMessage

 ' turn on journaling
 qMessage.journal = MQMSG_JOURNAL

 ' now send it
 qMessage.Send qQueue

 ' close queue
 qQueue.Close
End If

End Sub

Example 13-15. Reading the Machine’s Journal Queue

Sub readJournal()

' get response object from objectcontext
Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

Dim qInfoJournal As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As MSMQMessage
Dim varObject As Variant
Dim strMachine As String

Example 13-14. Sending a Message with Journaling (continued)

,ch13.19489 Page 409 Thursday, February 22, 2001 1:32 PM

410 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ASP test page required to test this component is fairly complex. In the script,
as shown in Example 13-16 and found in asp1314.asp, a new queue is created by
creating an instance of asp1301.msgqueue and calling its newPublicQueue
method. Then, several messages are sent to it using asp1305.journal’s send-
JournalMsg method. The messages are then retrieved from the queue by creating
an instance of asp1302.message and calling the readStringMessage method.
Finally, the machine’s journal messages are read by calling readJournal on
asp1305.journal. Figure 13-2 shows the result of running this page.

' get machine ID
strMachine = MachineIdOfMachineName("flame")

qInfoJournal.FormatName = "MACHINE=" & strMachine & ";JOURNAL"

Set qQueue = qInfoJournal.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

' check to see if queue is open
' if it is, receive first message
' which removes message from queue
If qQueue.IsOpen = 1 Then

 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)

 ' loop through messages
 While Not (qMessage Is Nothing)
 varObject = qMessage.Body
 If TypeName(varObject) = "String" Then
 objResponse.Write varObject
 End If
 objResponse.Write "
"
 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)
 Wend

 ' close queue
 qQueue.Close
End If
End Sub

Example 13-16. Creating a Queue, Sending Journaled Messages to It, Reading the Messages,
and Then Reading the Machine’s Journal Entries

<%
' create queue
Response.Write ("<h3>Creating Queue</h3>")
Dim objQueue
Set objQueue = Server.CreateObject("asp1301.msgqueue")
objQueue.newPublicQueue "jrnl", "Testing Journaling"

' send messages
Response.Write ("<h3>Sending Journaled messages</h3>")
Dim objJournal

Example 13-15. Reading the Machine’s Journal Queue (continued)

,ch13.19489 Page 410 Thursday, February 22, 2001 1:32 PM

Journaling 411

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you’re interested in whether any messages being sent aren’t reaching a queue,
you can also target the message to go to the machine’s dead-letter queue if it
doesn’t reach its destination. To do this, change the Journal property from
MQMSG_JOURNAL to MQMSG_DEADLETTER:

qMessage.Journal = MQMSG_DEADLETTER

Set objJournal = Server.CreateObject("asp1305.journal")
objJournal.sendJournalMsg "jrnl", "This is the first message"
objJournal.sendJournalMsg "jrnl", "This is the second message"
objJournal.sendJournalMsg "jrnl", "This is the third message"

' get messages from queue
Response.Write ("<h3>Reading messages from queue</h3>")
Dim objMessage
Set objMessage = Server.CreateObject("asp1302.message")
objMessage.readStringMessage "jrnl", "Testing Journaling"

' now get messages from machine journal
Response.Write ("<h3>Reading messages from machine journal</h3>")
objJournal.readJournal
%>

Figure 13-2. Running a page that prints messages and the machine’s journal message

Example 13-16. Creating a Queue, Sending Journaled Messages to It, Reading the Messages,
and Then Reading the Machine’s Journal Entries (continued)

,ch13.19489 Page 411 Thursday, February 22, 2001 1:32 PM

412 Chapter 13: Working with MSMQ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Two dead-letter queues are created for each machine. One holds transactional
messages, and one holds nontransactional messages that don’t reach their target
destination. To read a dead-letter queue, change the FormatName property from:

qInfoJournal.FormatName = "MACHINE=" & strMachine & ";JOURNAL"

to:

qInfoJournal.FormatName = "MACHINE=" & strMachine & ";DEADLETTER"

You can try this yourself by modifying asp1305.journal to reflect these new val-
ues, changing asp1314.asp to send tracked emails to a nonexistent queue, and
then reading them from the dead-letter queue entries. The messages aren’t transac-
tional, so you’ll be reading the non-transactional dead-letter queue.

Needless to say, if you use journaling, make sure to receive the messages in the
queues frequently, to keep the queues from becoming excessively large.

A Brief Word on Message Security
In the examples you’ve seen so far, there hasn’t been any reference to adding
security to the messages being sent or read.

There are a couple of approaches you can use to add security to your MSMQ
operations. You can ensure message authentication by attaching a security certifi-
cate to the message. If the message stays within the Windows 2000 domain, the
certificate can be an internal one; otherwise, an external certificate provider must
supply the certificate. Additionally, you must use an external certificate when
working within a Windows 2000 workgroup environment.

The good news is that an internal security certificate is automatically provided with
MSMQ, and for an ASP application in which both the message and receiver fall
within a Windows 2000 server environment, this certificate should be sufficient to
ensure message authentication.

Check the documentation provided by Microsoft on using external
certificates with MSMQ.

To ensure that authentication is used properly, you can specify that a queue
accept only authenticated messages by setting the MSMQQueueInfo object’s
Authenticate property before creating the new queue:

qInfo.Authenticate = MQ_AUTHENTICATE

,ch13.19489 Page 412 Thursday, February 22, 2001 1:32 PM

A Brief Word on Message Security 413

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To authenticate the message, set the AuthLevel property on the message:

qMessage.AuthLevel = MQMSG_AUTH_LEVEL_ALWAYS

Other values you can use with AuthLevel are MQMSG_AUTH_LEVEL_MSMQ10 and
MSMSG_AUTH_LEVEL_MSMQ20. These two settings sign the message with the
respective signature and ignore any attached certificate. Make sure, though, that if
the computer receiving the message is using MSMQ 1.0, you use the MSMQ 1.0
security setting when sending the message, or the message will be rejected. If the
receiving computer is using MSMQ 2.0 (Windows 2000), then you can send either
1.0 or 2.0 signatures.

You can also send your messages encrypted, using either 40-bit or 128-bit encryp-
tion. To use encryption, you must create a message queue that supports encryp-
tion, otherwise known as a private message queue. This type of queue is of
particular importance if the messages it contains might have sensitive information,
such as credit card account numbers.

To create a private message queue, all you need to do is set the PrivLevel prop-
erty of the MSMQQueueInfo object before creating the queue:

qInfo.PrivLevel = MQ_PRIV_LEVEL_BODY

Once the queue’s created, send encrypted messages by setting the PrivLevel prop-
erty on the message object:

qMessage.PrivLevel = MQMSG_PRIV_LEVEL_BODY

This enforces 40-bit encryption. To use 128-bit encryption, use the MQMSG_PRIV_
LEVEL_BODY_ENHANCED value for PrivLevel.

Your application can also provide its own encryption. Read the MSMQ documen-
tation for more on application-supplied encryption.

,ch13.19489 Page 413 Thursday, February 22, 2001 1:32 PM

414
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14

14
Creating C++ ASP
Components

C++ opens the door for efficiency tweaks and more finite control over a compo-
nent, but at the cost of greater complexity in writing and maintaining the compo-
nent. For instance, a tool such as Visual Basic allows you to create a component
that supports apartment threading or single threading, but C++ allows you to spec-
ify the both-threaded model, and even to include access to the free-threaded mar-
shaler to improve performance. The downside to using Visual C++ is that other
tools, such as Visual Basic, can cut development time, because virtually all of the
COM/COM+ implementation details are hidden. With Visual C++, the use of COM/
COM+ is much more exposed.

That isn’t to say that C++ for ASP development has to be difficult. If you and your
group are used to working with C++ and particularly with Visual C++, the use of
this language for ASP component development is a natural choice. Additionally,
Microsoft has provided a template library known as the Active Template Library
(ATL) to help with most of the implementation details. ATL contains templates that
handle much of the default processing necessary for maintaining an ASP compo-
nent, or for that matter any COM-based component. To make the use of ATL even
more attractive, there are other advantages to using it, such as the light footprint it
adds to any component created using it, detailed in the first section of this chapter.

For using ATL to create a component, Microsoft has provided two ATL wizards to
assist in the process. The first is the ATL AppWizard, which generates the project
files to maintain an ASP component DLL or EXE, whichever is created. The sec-
ond is the ATL Object Wizard, used to add an object class (component) and asso-
ciated interface to a project.

This chapter discusses some of the issues surrounding the use of Visual C++ for
creating ASP components, including using the ATL wizards—issues related to
threading and aggregation, creating poolable components, and accessing the ASP

,ch14.19611 Page 414 Thursday, February 22, 2001 1:33 PM

ATL or MFC 415

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

built-in objects from C++ code. The chapter also looks at error handling and
debugging—the latter being of especial interest when developing your first ASP
components in C++.

The examples in this chapter were implemented using ATL 3.0,
Visual C++ 6.0 with Service Pack 3.0, and the Platform SDK dated
April 2000 or later. The Platform SDK can be downloaded from
Microsoft’s web site at http://msdn.microsoft.com. Make sure to
install Visual C++ first, then the Service Pack, and then the Platform
SDK. Always use the Platform SDK version of any header and library
files, unless Microsoft comes out with a Service Pack for Visual C++
designed specifically for Windows 2000.

ATL or MFC
Creating COM-based ASP components can be accomplished using any C++ library
that exposes the necessary COM interfaces, such as IUnknown and IDispatch.
Microsoft has provided two different libraries that can be used: the Microsoft Foun-
dation Classes (MFC) and the Active Template Library (ATL).

The MFC classes have been around for some time and are used for most Visual
C++ application building, component-based or otherwise. The classes provide C++
wrappers for most common datatypes and C++ classes to handle many aspects of
an application. However, useful as MFC is, it isn’t the best library to use for ASP or
other component development.

MFC provides a complete framework, essential when building a standalone appli-
cation. The framework includes document and view objects and an associated
frame to “hold” all of the application sections together. The document objects pro-
vide support for application data, and the view objects are used to provide one or
more views/accesses to the application data. All of this framework support adds
considerably to the size of a component.

ATL, on the other hand, does not provide a complete framework; instead, it pro-
vides a lightweight, template-based architecture designed specifically for creating
COM objects. ATL provides access to all COM implementation objects but little
else. This results in the creation of small components that aren’t carrying around
support for a framework neither used nor needed. Small, optimized components
also operate more efficiently, as well as more quickly. The one major disadvan-
tage to ATL is that it doesn’t provide COM transparency—that is, it doesn’t hide
the COM implementation—as much as the MFC classes do.

,ch14.19611 Page 415 Thursday, February 22, 2001 1:33 PM

416 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ATL is not a replacement for MFC. In fact, you can use both MFC and ATL for a
project, particularly a project created as a DLL. Chapter 19, Persistence with ASP
Components Using ATL and MFC, demonstrates using both libraries to create ASP
components that read and write to files and use serialization.

It’s not very difficult to use MFC and ATL together. For instance, to add an ATL
object to an MFC object within the Visual C++ IDE, choose Insert ➝ ATL Object
from the menu. Visual C++ then asks whether you want to support ATL within the
MFC application. Choosing Yes enables you to add an ATL object and all ATL sup-
port templates to the MFC application. Conversely, when you create an ATL appli-
cation, one of the options you can check is whether to add support for MFC.

For the most part, though, ASP components are created using ATL and not MFC,
as are the components created in this chapter and most of the C++ examples in
the book.

Using ATL AppWizard to Generate the
Basic ASP Component Project
Visual C++ has several wizards to assist in building the basic framework of files
and code for certain types of objects, and ATL has its own wizard, the ATL App-
Wizard. The AppWizard generates the basic files for the ASP component, leaving
us free to write code specific to the component itself. This section describes the
steps involved in using the ATL AppWizard and provides a brief overview of the
code and files it generates.

Using the ATL AppWizard to Generate
the Project Files

The best way to demonstrate ATL is to create a simple C++ ASP component and
review the steps necessary to create the basic component files. The component is
a Dynamic HTML generator that generates the JavaScript necessary to implement
client-side functions that will move a web page object based on whether the page
is accessed via a Microsoft Internet Explorer browser or a Netscape Navigator
browser.

To use ATL, select the ATL COM AppWizard project type when creating a new
project. Use any name you prefer, such as asp1401, the first project you’ll create
for this chapter. Choose the server type of Dynamic Link Library (DLL) in the sec-
ond dialog page that opens, and don’t check the options to add support for MFC
or MTS or to allow merging of the proxy/stub code, as shown in Figure 14-1.
When you click the Finish button, Visual C++ generates the project files.

,ch14.19611 Page 416 Thursday, February 22, 2001 1:33 PM

Using ATL AppWizard to Generate the Basic ASP Component Project 417

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Before proceeding further with the example, some explanation of the options
shown in the ATL AppWizard dialog in Figure 14-1 is in order.

Creating an ASP Component
as a DLL, EXE, or Service

The first option listed in the ATL AppWizard dialog shown in Figure 14-1 is
whether to create the component as a DLL, EXE, or service, and you’ll usually
choose DLL when creating ASP components. Components created as DLLs are
known as in-process components, and components created as EXEs are known as
out-of-process components. There are advantages and disadvantages to creating a
component using one or the other of these approaches, and these are detailed in
the section “Creating an In-Process or Out-Of-Process Component” in Chapter 7,
Creating a Simple Visual Basic ASP Component. To recap that discussion, an ASP
component created as a DLL runs in the same process as the client that invokes
the component, and it shares the same address space depending on thread com-
patibility. An out-of-process ASP component runs as its own process with its own
address space.

The advantage to the in-process component is that communication between the
client and the component is much faster, primarily because the same stack is used
to pass arguments between the client and the server. Whenever a method of an

Figure 14-1. Using the ATL AppWizard to generate a default ATL C++ ASP Component project

,ch14.19611 Page 417 Thursday, February 22, 2001 1:33 PM

418 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

object is invoked outside of the same address space of the client, the method’s
arguments have to be marshaled between the client invoking the method and the
component. Marshaling is the process of pulling arguments from one address
space stack, converting them into a stream, and then converting them back into
arguments on the stack in the component’s address space.

Threads and C++ components are discussed in greater detail in sec-
tions later in this chapter titled “ASP Components and Threading”
and “Aggregation and the Free-Threaded Marshaler.”

An advantage to out-of-process components is that the component runs in its own
address space, isolated from the client. This tends to make for a more robust envi-
ronment, where neither the component nor the client can cause too much dam-
age to the other. In addition, if the component is being invoked remotely, it will
be treated as an out-of-process component whether it is implemented as a sepa-
rate executable or not. When a remote component is created as a DLL, a stub exe-
cutable is generated that handles all marshaling for the component, and any
performance advantage to being an in-process component is lost. The advantage
to an out-of-process component in this case is that it can be developed to handle
remote invocation more efficiently.

By default, IIS 5.0 supports both in-process and out-of-process components.

A third option in step 1 of the ATL COM AppWizard is the service component
option. A service component is one installed as an NT service, a server that runs in
the background when NT starts. Since ASP components should be controlled from
IIS (or from COM+, if the component is implemented as part of a COM+ applica-
tion), this option should never be selected.

The Other ATL AppWizard Project Options

Other options listed in the dialog shown in Figure 14-1 are for merging the proxy/
stub code directly into the DLL and for adding in support for MFC and MTS. Sup-
port for MFC is not necessary for the simple ASP component created in this chap-
ter, so do not check this option.

When a component is accessed across threads, across processes, or remotely, mar-
shaling must occur to pass the method arguments from the client to the object.
Marshaling is the process of pulling the arguments from the client stack, convert-
ing these arguments into a data stream using a proxy on the client side, and recon-
verting these arguments back into arguments on the stack via a stub on the server
side. Normally when a component is accessed remotely, you would not want to

,ch14.19611 Page 418 Thursday, February 22, 2001 1:33 PM

Using ATL AppWizard to Generate the Basic ASP Component Project 419

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

install the component’s implementation DLL on the client, only a separate proxy/
stub DLL used to access the remote component. The ATL AppWizard supports this
by allowing you to choose whether to include the proxy/stub code in the same
DLL as the implementation DLL. If the component were being accessed across
threads or processes—such as a component created as a separate executable—you
would want to include the proxy/stub code as part of the implementation DLL.

If you plan on accessing the component remotely, you would not want to include
the proxy/stub code within the DLL but instead would want to compile this code
into a separate DLL to install on the client. Since most ASP components are
designed to run on the same machine as their client, and in fact are usually
designed to run in the address space of their client, proxy/stub code does not
need to be added to the DLL.

The final checkbox option in the ATL AppWizard dialog determines whether to
add support for Microsoft Transaction Server (MTS). Adding support for MTS to the
project adds in an import to the MTS API and builds in support to launch the MTS
runtime, mtxex.dll, when the project application is launched. For Windows 2000
and IIS 5.0, you’ll want to add support for COM+ Services instead. This support is
added manually, so the MTS option is not used with any of the Visual C++ compo-
nents created in this book.

The files that are generated from the ATL COM AppWizard are discussed next.

The ATL AppWizard–Generated Files

Several files are generated based on the options chosen when using the ATL App-
Wizard dialog. This section discusses the files that are generated when the sim-
plest ASP component—one that is a DLL, does not include MFC or MTS support,
and does not merge in the proxy/stub code—is created.

One of the advantages of using a tool such as Visual C++ to create an ASP compo-
nent is that the tool generates much of the code to support the DLL, leaving us
free to write the code specific to the component itself. As an example of this, the
ATL AppWizard generates the C++ code to handle loading and unloading the DLL
from memory.

To handle DLL loading/unloading, the DLL’s initialization and termination code,
which is contained in the DllMain function, shown in Example 14-1, is generated
for the component. Since DllMain serves as an entry point for the DLL, when the
component is started and is loaded into a process address space, the dwReason
code is set to DLL_PROCESS_ATTACH, and the initialization code is run. When the
client frees the component, the dwReason code is set to DLL_PROCESS_DETACH,
and the DLL termination code is run.

,ch14.19611 Page 419 Thursday, February 22, 2001 1:33 PM

420 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Other code generated by the AppWizard is the DllCanUnloadNow function, to
determine if the DLL can be removed from memory, the DllGetClassObject func-
tion, which returns the class factory to create the object, DllRegisterServer to regis-
ter the server, and DllUnregisterServer to remove the server from the registry.

In addition to generating the .CPP file (containing the C++ code to maintain the
DLL) and the .DEF file (to define which functions are exported from the DLL), the
AppWizard also generates the .IDL—or Interface Definition Language—file. The
IDL defines how other COM applications communicate with the component and
serves as the placeholder for the component’s GUID.

The C++ code to support the DLL is loaded into a file with the same name as the
project and can be viewed from the File View tab. The IDL file is also assigned the
same name as the project and is initially created with just a few lines of code.
Example 14-2 shows the IDL code generated for the example project by VC++ Ver-
sion 6.0.

First, the import section lists two imported IDL files that contain the interface defi-
nitions to handle several data structures, such as SAFEARRAY, as well as the

Example 14-1. The DllMain Function

extern "C"
BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,
 LPVOID /*lpReserved*/)
{
 if (dwReason == DLL_PROCESS_ATTACH)
 {
 _Module.Init(ObjectMap, hInstance, &LIBID_SSPLib);
 DisableThreadLibraryCalls(hInstance);
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 _Module.Term();
 return TRUE; // ok
}

Example 14-2. IDL Code Generated by the ATL AppWizard

import "oaidl.idl";
import "ocidl.idl";

[
uuid(92918FE8-F323-11D1-ABBC-204C4F4F5020),
version(1.0),
helpstring("dhtml2 1.0 Type Library")

]
library DHTML2Lib
{

importlib("stdole32.tlb");
importlib("stdole2.tlb");

};

,ch14.19611 Page 420 Thursday, February 22, 2001 1:33 PM

Adding an ATL Object 421

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

IUnknown interface. You can actually open and view the contents of these files,
but be careful not to make any changes. Following the imports is the interface
attribute list. This list includes the UUID (the universally unique identifier), the ver-
sion number of the interface, and a help string used to describe the object. The lat-
ter appears in the Visual Basic Project References dialog.

Following the interface attribute list is a definition of the type library, including
import statements (importlib) for two type libraries that have already been com-
piled. These two type libraries are standard OLE 2.0 type libraries.

In addition to the DEF, IDL, and DLL files, the ATL AppWizard also attaches stan-
dard C++ and header files, StdAfx.cpp and StdAfx.h, which are added by all Visual
C++ wizards and are used to create the precompiled header for the project, as well
as the precompiled object file.

After reviewing the AppWizard-generated code and files, the next step to creating
an ASP component is to add a new ATL object to the project, detailed in the next
section.

Adding an ATL Object
In addition to generating support code and files, the ATL AppWizard also adds an
option to the Visual C++ Insert menu that is used to add a new ATL object. Click-
ing on this option opens a dialog that lists categories of objects on the left and
types of objects associated with each category on the right. For ASP components,
the category to use is Objects. This provides several different objects you can
choose from for creating the object, including ones for a Simple object, an ASP
object, and an MTS object.

The ASP object type adds support for accessing the ASP built-in objects, based on
a now deprecated technique of accessing a ScriptingContext object from the com-
ponent’s start page event (ComponentName::OnStartPage) and using this object to
access the ASP objects. This ATL object type still works in Windows 2000/IIS 5.0,
but you shouldn’t use it—the support for this functionality could be removed in
future versions of IIS.

The MTS object creates a component that can be used within MTS packages or
COM+ applications. This object type generates support for features such as just-in-
time activation by adding in support for IObjectControl and also providing
code to implement IObjectContext. However, there are some incompatibilities
between MTS and COM+ components, not the least of which is support for aggre-
gation, so the MTS option is not the best choice for an ASP component in
Windows 2000.

,ch14.19611 Page 421 Thursday, February 22, 2001 1:33 PM

422 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

MTS components can be modified to provide better COM+ support;
this is described in more detail later, in the section “Converting MTS
Components for Use with COM+.”

The option you’ll pick for your first Visual C++ component is the Simple Object
option, as shown in Figure 14-2.

After clicking on the Next button, the Names tab of the ATL Object Wizard Proper-
ties dialog opens; this provides a place to enter the name of the component. The
rest of the fields are automatically generated based on this name as it is typed,
though any of the names can be altered manually. Name your first component
First. After the name is typed into the Short Name field, the values in Table 14-1
are generated for the other fields in the dialog.

Figure 14-2. Creating a new ATL object using the Simple Object option

Table 14-1. Names of the Objects Generated for the Component

Item Name

Class CFirst

.H File First.h

.CPP File First.cpp

CoClass First

Interface IFirst

Type First Class

Prog ID ASP1401.First

,ch14.19611 Page 422 Thursday, February 22, 2001 1:33 PM

Adding an ATL Object 423

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that the Prog ID field will contain the name used to access the component
from within an ASP page or from another ASP component. If you don’t care for
this ProgID, you can override the generated value and type in your own.

ATL Object Wizard Properties Attributes Page

Once you complete the Names tab, the next step is to click on the dialog’s
Attributes tab, which defines the component’s attributes. These include the thread-
ing model used for the component, the interface, and the aggregation, in addition
to options to support ISupportErrorInfo, IConnectionPoints, and the free-
threaded marshaler.

The interface option should be set to Dual (its default), which means the compo-
nent supports late binding with the IDispatch interface, as well as design-time
vtable binding. Your component must support the Dual interface to be accessible
by script in an ASP page.

The Support ISupportErrorInfo option lets the component communicate to client
applications that it provides support for error reporting. If you use IErrorInfo to
provide error messages to the client, you must implement ISupportErrorInfo.
You’re not using IErrorInfo within your first component, so leave this option
unchecked. The support for connection points is necessary only if the component
is providing outbound interface connections, so this option should also not be
checked.

Would you ever want to support connection points within an ASP
component? You wouldn’t want to do so for components accessed
directly by an ASP page, but you could for components that access a
database such as SQL Server or that are accessed by other compo-
nents. Using connection points, a client can then be notified of
events that occur within the server.

The next section details the remaining options and their impact.

ASP Components and Threading

Threading is discussed in more detail in Chapter 4, ASP Components, Threads, and
Contexts, but since Visual C++ allows a more finite control of threading than a lan-
guage such as Visual Basic, it’s worth taking the time to discuss this expanded
functionality here.

You can use Visual C++ to create an ASP component that is single-, apartment-,
both-, free-, or neutral-threaded. Apartment-threading is really single-threaded

,ch14.19611 Page 423 Thursday, February 22, 2001 1:33 PM

424 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

apartment threading, and the both- and free-threading options are treated as
multiple-threaded apartment options from the perspective of COM/COM+.

You shouldn’t select the single-threaded model, since this model forces serialized
access of the component, meaning that the component handles only one web
page access request at a time. However, each of the other threading models—
apartment, both, or free—has its own advantages and disadvantages.

In the apartment-threaded model, the component is created in an apartment on
the thread that instantiates the component. This means that all calls to the compo-
nent from that thread are direct and don’t have to be marshaled. This approach is
also inherently thread-safe, since all global data is isolated, and calls from other
client threads are serialized to the thread that created the components, ensuring
that all messages to the component are queued and processed one at a time. A
downside to the apartment-threaded model is that if the component is created
from a multithreaded apartment, discussed next, a new single-threaded apartment
thread is created to house the component, and all calls between the client and the
component must be marshaled.

For the free-threaded component, the opposite problem can occur. Applications
have at most only one multiple-threaded apartment. Any free-threaded compo-
nents would then be placed within this apartment. The free-threaded component
is created in the multithreaded apartment for the application, and thread safety
becomes the responsibility of the component developer, since calls to the compo-
nent are no longer serialized. Additionally, if the client invoking the component is
single-threaded, the two threading models are not compatible, and a multihreaded
apartment would need to be created just to house the component. Because the cli-
ent thread and the component thread are contained in different apartments, all
calls from the client to the component would have to be marshaled.

One way to avoid the problems associated with a free-threaded or single-threaded
apartment component is to define the ASP component as both-threaded. This
means that the component is always created in the same thread of the client,
regardless of which threading model the client uses and as long as the client and
the component live in the same host environment. When the client is STA, the
component is created on the client’s main STA thread. When the client is MTA, the
component is created in the client’s only MTA thread. In both cases, no marshal-
ing is necessary, since the client and the component share the same address space
and the same stack for method parameters.

A new threading option for Windows 2000 is the neutral-threaded option. Neutral-
threaded components live in the neutral apartment, regardless of the client’s
thread. There is no thread switching with this option, so marshaling isn’t needed,
and the object maintains its own context rather than taking on the client’s context.

,ch14.19611 Page 424 Thursday, February 22, 2001 1:33 PM

Adding an ATL Object 425

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There is no support for neutral-threading with Visual C++ 6.0,
though there will be with Visual Studio 7.0. Technically, you could
change the Registry to set a component’s threading model to neutral-
threaded, using something such as ThreadingModel=Neutral.
However, the component isn’t created with this model, and the
results could be unexpected.

Visual C++ 6.0 has no support for the neutral-threaded option, so select the Both
threading model option for now.

Aggregation and the Free-Threaded Marshaler

If the component is multiple-threaded, which can occur when it is created as a
free-threaded component or as a both-threaded component with a multithreaded
client, performance issues arise if the component is accessed by the same process
but from different threads. In this case, the component’s methods must be mar-
shaled, generating a performance hit. To compensate for this, aggregation and the
free-threaded marshaler can be used.

Aggregation is a containment implementation, in that one interface contains
another. In order to synchronize the two, the outer object provides for specific
implementation of the inner object’s IUnknown interface and then provides for del-
egation of all other interface methods to the outer object. With this, the client does
not need to know that a method is not being handled directly by the object that is
called.

If the client can access the component from more than one thread, the free-
threaded marshaler enables direct communication with the component rather than
having all method calls occur through a proxy/stub pair.

You can select aggregation without the use of the free-threaded marshaler, and in
fact this is the preferred option for creating poolable objects, discussed later in the
chapter in the section titled “Adding Support for COM+ Services.”

If a component is accessible by only one client and is implemented on one thread
within the client process, as is usually the case with ASP components, and the
component is not poolable, the use of aggregation and the free-threaded mar-
shaler is not necessary, and the options should not be checked. Make sure these
options are unchecked for the first example.

Once you’ve selected your options for the new component, ATL generates the
necessary component files and supporting code, discussed next.

,ch14.19611 Page 425 Thursday, February 22, 2001 1:33 PM

426 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Code Changes Based on
Adding a New Object
The ATL Object Wizard creates a new class, CFirst, and an associated interface,
IFirst. Both can be seen from the Class View. In addition, the following new
entry is made in the IDL file to define the interface for the new component:

[
object,
uuid(B2CD8DA6-A38E-4684-8F14-71677A3586EE),
dual,
helpstring("IFirst Interface"),
pointer_default(unique)

]
interface IFirst : IDispatch
{
};

Note that one of the IDL attributes is dual, which declares that the interface sup-
ports both IDispatch and vtable interface access. Below the interface attributes, a
forward declaration for the interface is listed, again showing that the interface
implements the IDispatch base interface.

Support for both IDispatch and vtable means that the component
can be accessed using early binding or late binding. Read more
about binding and the advantages of early binding in Chapter 3, ASP
Components and COM.

In the class header file First.h, the class is defined to implement three COM
interfaces:

CComObjectRootEx
Implements the QueryInterface functionality for the component

CComCoClass
Adds support for obtaining an object’s CLSID and for error support

IDispatchImp
Provides support for IDispatch

Each of these is a template, and combined they define a component that is multi-
threaded, with a GUID of IID_IFirst and a CLSID of CLSID_First. ATL also
generates the default empty constructor for the object:

class ATL_NO_VTABLE CFirst :
public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<CFirst, &CLSID_First>,

,ch14.19611 Page 426 Thursday, February 22, 2001 1:33 PM

Adding Methods to the Interface 427

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

public <IFirst, &IID_IFirst, &LIBID_ASP1401Lib>
{
public:

CFirst()
{
}

In addition to the change in the IDL file and the class definition, a COM object
map is generated to expose those interfaces accessible by clients using
QueryInterface :

BEGIN_COM_MAP(CFirst)
COM_INTERFACE_ENTRY(IFirst)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

Through this code, clients can access both the component and the IDispatch
interfaces externally.

Two other ATL macros are defined: DECLARE_REGISTRY_RESOURCEID, adding
registration support for the component, and DECLARE_PROTECT_FINAL_
CONSTRUCT, preventing the object from being deleted when the reference count
for the object reaches zero (more on object references can be found in Chapter 3).

Once the object has been created, methods can be added, as you’ll see in the next
section.

Adding Methods to the Interface
You can add methods and properties to a component once the component files are
generated by ATL. You add these methods and properties using the Class View.

To add a new method, right click on the interface, IFirst, in Class View, and
select Add Method from the context menu. A dialog opens to add the new
method’s name and parameters. For your new component, add a new method
called sayHello that takes an input BSTR value and returns a pointer to another
BSTR value. Figure 14-3 shows the Add Method dialog when this component is
defined.

In Figure 14-3, notice that the parameters are defined with MIDL (Microsoft Inter-
face Definition Language) attributes that specify the direction of the parameters.
The input parameter has an attribute of [in], and the return value has an attribute
of [out,retval]. There can only be one return value for the method, but there
can be more than one input or output parameter. A particular MIDL attribute
needs to be specified only once, before all parameters of the same direction. For
instance, to specify three input BSTR values, use something such as the following:

[in] BSTR bstrOne, BSTR bstrTwo, BSTR bstrThree

,ch14.19611 Page 427 Thursday, February 22, 2001 1:33 PM

428 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Though the prototype for the sayHello method in Figure 14-3 shows that a BSTR is
returned from the method, in actuality the method’s defined return type is
HRESULT. All methods exposed through a dual interface implemented in C++ have
this same HRESULT return datatype. However, the actual value returned to the cli-
ent as the result of the function call is a string. The HRESULT value is accessed
through error handling, such as through the Err object from within a VBScript ASP
block.

Clicking on the Attributes button in the Add Method dialog opens a second dialog
containing attributes for the method. By default, the method is given an identifier,
in this case a value of one (1), and a help string. The default help string is
“method sayHello”. For the example, change this to “Say hello to the world”. The
help string is displayed in object browsers such as Visual Basic’s, and providing a
more comprehensive help string ensures the method is used correctly.

There are other attributes that can be used with the method, but they
aren’t used with this ASP component. The documentation that comes
with Visual C++ contains more details on these other attributes.

Close the Add Method dialog, which saves the changes and generates the follow-
ing IDL for the method:

[id(1), helpstring("Say hello to the world")] HRESULT
sayHello([in] BSTR bstrName, [out,retval] BSTR* pbstrMessage);

The datatype for both the input and output values is a BSTR, though the return
value must be defined as a pointer for C++ components. The BSTR datatype is a
COM-specific datatype. This and other COM datatypes are discussed next.

Figure 14-3. Generating the component’s sayHello method prototype

,ch14.19611 Page 428 Thursday, February 22, 2001 1:33 PM

Adding Methods to the Interface 429

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ATL Method Interface Datatypes

There are several simple datatypes that are used when defining an interface
method:

boolean
Used to set a value to TRUE or FALSE

char
Single character, one byte (8 bits) in size

double
A 64-bit floating point number

float
A 32-bit floating point number

int
For 32-bit environments, a 32-bit integer; for 16-bit environments, accompa-
nies another keyword, such as small, a 16-bit number

int64
A 64-bit integer

long
A 32-bit integer

pointer
A pointer to type

short
A 16-bit integer

void
Void

Earlier I mentioned that two IDL files are imported into the newly generated IDL
file for the project. One of these files, ocidl.idl, contains the definitions for the
standard interfaces, such as IUnknown. The other, oaidl.idl, contains the defini-
tions for complex datatypes used in the interface methods. These complex
datatypes are the following:

BSTR
A length-prefixed string; for C++, BSTR types are wrapped in a COM class,
CComBSTR.

CURRENCY
A structure; for C++, currency types are wrapped in an OLE class,
COleCurrency.

,ch14.19611 Page 429 Thursday, February 22, 2001 1:33 PM

430 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

HRESULT
An integer.

SAFEARRAY
An array that includes an array element count.

VARIANT
Used for any variable/parameter that is not defined as any other type; for C++,
they are wrapped in the CComVariant COM class.

SCODE
A status code; the same as HRESULT in a 32-bit environment, or used to derive
HRESULT in a 16-bit environment.

IUnknown
An interface pointer to IUnknown.

IDispatch
An interface pointer to IDispatch.

Any of the COM-compatible datatypes can be used for input ([in])
and return ([retval]) parameters, but only the VARIANT datatype
should be used for ASP components. The reason is that most ASP
script is created using VBScript, and this scripting language only sup-
ports the VARIANT datatype. COM/COM+ can convert the VARIANT
to the input parameter datatypes and can successfully convert the
return value, but the output parameters (defined with [out]) must
be of type VARIANT* (pointer to VARIANT), or an error will occur
when your component is accessed by VBScript.

You’ll add code to implement your component’s method in the next section.

Adding Code for the Method

As stated earlier, instead of adding code for a method directly to the C++ file, the
method is defined for the interface. Visual C++, in turn, generates the skeleton C++
code consisting of the function call, the opening and closing function brackets,
and a default HRESULT return type of S_OK. This skeleton code is added to the
interface’s implementation class. The developer then manually adds the rest of the
code necessary to implement the method.

Open the First.cpp file to find the method prototype. You’ll add code to append
the string passed to the component to a statically created message, which is then
returned from the component. Add the code shown in Example 14-3 to sayHello.

,ch14.19611 Page 430 Thursday, February 22, 2001 1:33 PM

Adding Methods to the Interface 431

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

At the end, a status of S_OK is returned to show that no errors have occurred. This
value is one of the standard, predefined HRESULT code values. Other standard
return types, such as E_OUTOFMEMORY, are usually used to denote an error and are
discussed more fully in the “Error Handling” section at the end of this chapter.

After adding the code for the method, compile the DLL. As it compiles, the ASP
component is also registered as a COM component, a process that occurs automat-
ically based on flags and application settings generated by the ATL AppWizard.
Once the DLL has been compiled and registered, access the component from the
following ASP script, asp1401.asp, which creates an instance of the component
using the ASP Server object and calls the sayHello method, passing in a string for
the greeting message:

<%
Dim obj
Set obj = Server.CreateObject("asp1401.First")

Dim msg
msg = obj.sayHello("World!")
Response.Write "<h3>" & msg & "</h3>"
Set obj = Nothing
%>

The method returns the greeting, which is displayed to the returned web page:

Hello World!

That’s it for your first C++ ASP component. In this example, the component is reg-
istered directly during the compilation process. You could also register a compo-
nent using the regsvr32.exe utility:

regsvr32.exe asp1401.dll

The component is also registered automatically when it is added to a COM+ appli-
cation. You can also add additional functionality to your component using COM+
Services, discussed next.

Example 14-3. The MoveLeft Component Interface Method

STDMETHODIMP CFirst::sayHello(BSTR bstrName, BSTR *pbstrMessage)
{
 CComBSTR bstrMessage = "Hello ";
 bstrMessage.Append(bstrName);

 *pbstrMessage = bstrMessage.Detach();

return S_OK;
}

,ch14.19611 Page 431 Thursday, February 22, 2001 1:33 PM

432 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Adding Support for COM+ Services
COM+ Services were added to Windows 2000. These services combine the services
provided by COM and MTS (Microsoft Transaction Server) in Windows NT 4.0.

You can add support for COM+ services to your component in order to add trans-
action support or to access the ASP built-in objects (discussed later in the chap-
ter). You can also add your component to a COM+ application in order to take
advantage of some COM+ services, such as just-in-time (JIT) activation and pool-
able objects.

Object Context

Access to an object’s context and transaction support was implemented with the
IObjectContext interface and MTS in NT 4.0. Both are now accessed through
COM+ Services.

The IObjectContext object is used to provide access to the ASP built-in objects.
However, support for the built-in objects is actually a secondary feature of
IObjectContext. Its primary purpose is for transaction support.

The principal methods that IObjectContext exposes are SetAbort and SetCom-
plete, used to mark a transaction as unsuccessful or successful, respectively. The
DisableCommit method prevents a transaction from being committed, and Enable-
Commit turns the transaction commitment capability back on. These latter two
methods are useful for preventing a transaction from completing until certain oper-
ations have finished or certain conditions have been met. The IsInTransaction
method returns information about whether the component is within a transaction,
the IsSecurityEnabled method returns a Boolean indicating if security is enabled
for the component, and the IsCallerInRole method returns a Boolean to indicate
whether the process calling the component is within a specific role. Finally, the
CreateInstance method instantiates a COM object in the same transaction as the
existing object.

You can read more about IObjectContext and IObjectContext-
Info in Chapter 5, COM+ Services and ASP Components and Appli-
cations.

To include support for IObjectContext in your project, add the COM+ Services
header file, comsvcs.h, to your component’s header file. For instance, to add
IObjectContext support to your existing component, add comsvcs.h to First.h:

#include <comsvcs.h>

,ch14.19611 Page 432 Thursday, February 22, 2001 1:33 PM

Adding Support for COM+ Services 433

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method will also use a COM helper class, _variant_t, to handle all VARI-
ANT object instantiation and cleanup. Add support for the COM helper classes by
adding the comdef.h header file:

#include <comdef.h>

To add the COM+ Services library, select the Project ➝ Settings option from the
menu, and then select the Link tab. Select General from the Category dropdown
list, and add the following to the list of libraries and objects models:

comsvcs.lib

Figure 14-4 shows the library setting after adding in the COM+ Services library.

You’ll use the CoGetObjectContext function to obtain a reference to IObject-
Context within your component code. This function takes two parameters, the
GUID for the interface and a reference to the object to receive the interface:

IObjectContext* pObjectContext = NULL;
hr = CoGetObjectContext(IID_IObjectContext, (void **)&pObjectContext);

To try out the IObjectContext interface, create a new method for your existing
component, testObjContext, that uses some of the IObjectContext methods.
Specifically, the method uses the IObjectContext IsCallerInRole, IsSecurityEn-
abled, and IsInTransaction methods. Add the method to First.cpp through Class
View. It takes three output parameters, all of type pointer to VARIANT:

[out] VARIANT* varTrans, VARIANT* varRole, VARIANT* varSecurity

Figure 14-4. Adding comsvcs.lib to the project’s library modules

,ch14.19611 Page 433 Thursday, February 22, 2001 1:33 PM

434 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Add the code shown in Example 14-4 to the component method. The method calls
each of the IObjectContext methods just mentioned after first creating an
instance of IObjectContext. The results of calling each of the methods are
returned in the VARIANT parameters.

The IsInTransaction method returns TRUE if the component is executing within a
COM+ transaction. Both IsSecurityEnabled and IsCallerInRole test the security of
the environment the component is operating within.

Compile the component and test it using the following ASP script (also found in
asp1402.asp):

<%
Dim obj
Set obj = Server.CreateObject("asp1401.First")

Example 14-4. CUsing IObjectContext Security and Transaction Support Methods

STDMETHODIMP CFirst::testObjContext(VARIANT *varTrans,
 VARIANT *varRole,
 VARIANT *varSecurity)
{
 HRESULT hr;
 CComPtr<IObjectContext> pObjectContext;

 hr = CoGetObjectContext(IID_IObjectContext, (void **)&pObjectContext);
 if (FAILED(hr)) return hr;

 // test to see if in transaction
 BOOL blTrans;
 blTrans = pObjectContext->IsInTransaction();

 // test to see if in role
 BOOL blRole;
 pObjectContext->IsCallerInRole(L"Developer",&blRole);

 // test to see if security enabled
 BOOL blSecurity;
 blSecurity = pObjectContext->IsSecurityEnabled();

 // return values
 _variant_t vtTrans, vtSecurity, vtRole;

 vtTrans = (blTrans !=0);
 vtSecurity = (blSecurity != 0);
 vtRole = (blRole != 0);

 *varTrans = vtTrans.Detach();
 *varRole = vtRole.Detach();
 *varSecurity = vtSecurity.Detach();

 return S_OK;
}

,ch14.19611 Page 434 Thursday, February 22, 2001 1:33 PM

Adding Support for COM+ Services 435

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim blTrans, blRole
obj.testObjContext blTrans, blRole, blSecurity

Set obj = Nothing

' test values
If blTrans Then
 Response.Write "<H3>In Transaction</h3>"
Else
 Response.Write "<H3>Not in Transaction</H3>"
End If

If blRole Then
 Response.Write "<H3>In Role</h3>"
Else
 Response.Write "<H3>Not in Role</H3>"
End If

If blSecurity Then
 Response.Write "<H3>Security Enabled</h3>"
Else
 Response.Write "<H3>Security not enabled</H3>"
End If
%>

When you access the ASP test page, you’ll get messages that the component is not
within a transaction, that it is in the specific role, and that security is not enabled.

The reason the component is not within a transaction is that a transaction was not
started before the component was accessed. You can change this by adding the
TRANSACTION directive as the first line of the ASP test page:

<% @ TRANSACTION = required %>

Now when you access the test page, it reports that the component is within a
transaction.

You might be wondering how the IsCallerInRole method returns True when the
caller is not within the Developer role (or registered at all). The reason is that this
method always returns True when the component is accessed from a client pro-
cess. The component is running within the same process as the ASP application,
so IsCallerInRole returns True.

To test our role-based security, create a new COM+ application (name it anything
you like) and add asp1401.First to it. Within the application, create a new role
by right-clicking on the application’s Roles folder and selecting New Role from the
pop-up menu. When asked for the role name, type in Developer. After the role is
created, add users to it by right clicking on the Users folder contained within the
role and picking several users from the list that opens, including IUSR_MACHINE,
the default ASP application user (change MACHINE to your machine name).

,ch14.19611 Page 435 Thursday, February 22, 2001 1:33 PM

436 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Next, access the properties for the component by right-clicking on the component
and selecting Properties from the menu. Switch to the Transactions page, and
select the Required Transaction support option. Switch next to the Security page,
check the “Enforce the component level access checks” option, and check the
Developer role that shows in the second window, as shown in Figure 14-5.

Finally, access the Properties dialog for the COM+ application and make sure its
security is set to “Enforce access checks for this application.”

Now when you access the component using the ASP test page, all three tests
(transaction, role, and security) return a value of True.

The IObjectContext interface also has two methods, SetAbort and SetComplete,
that can be used to roll back or commit transactions, respectively. The transac-
tions could encompass database activities as well as other activities where the state
of data changes based on the activity, such as with MSMQ (Microsoft Message
Queue). Using the SetAbort method informs COM+ that this component is fin-
ished processing and that its processing has failed. Using the SetComplete method
informs COM+ that this component has finished processing and that its processing
has completed successfully. The success or failure of this component will impact
on whether the transaction is committed or rolled back for all components that are
operating in the same transaction.

Chapter 9, Creating an ASP Middle Tier with ADO, demonstrates
using COM+ transactions with database updates. Chapter 18, Access-
ing MSMQ from C++ ASP Components, has an example of using
transactions with MSMQ messages.

Figure 14-5. Setting component role-based security

,ch14.19611 Page 436 Thursday, February 22, 2001 1:33 PM

Adding Support for COM+ Services 437

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Transactions are really based on two decisions: is the component done, and were
the component’s actions successful? The SetComplete and SetAbort methods both
provide information that the component is finished. They differ in reporting the
success of the function. With the introduction of COM+ Services, there is another
interface that allows you to have more finite control of transactions—the
IContextState interface.

IContextState can be referenced using CoGetObjectContext, passing in the
GUID for IContextState:

CComPtr<IContextState> pContextState;
hr = CoGetObjectContext(IID_IContextState, (void **)&pContextState);

To signal that the component is done, the SetDeactivateOnReturn method is called,
passing in a Boolean value indicating whether the component is done or not:

hr=pContextState->SetDeactivateOnReturn(true);
if (FAILED(hr)) return hr;

To signal the success or failure of the transaction, you would use the SetMyTrans-
actionVote method, passing in a value of TxCommit or TxAbort:

 hr=pState->SetMyTransactionVote(TxCommit);

TxCommit and TxAbort are enumerated constants.

The IContextState interface is particularly useful when used in conjunction with
just-in-time activation, discussed next.

The IObjectControl Interface and JIT

The IObjectControl interface was created to add support for just-in-time activa-
tion. JIT optimizes the performance of an application by not actually instantiating a
component until it’s used, regardless of when the component is created in code.
Additionally, when the component is discarded in code, the reference—but not
necessarily the component—is discarded. Depending on resources, the compo-
nent may be kept in an instantiated, deactivated state that decreases the time
needed to access the component again from the application.

To enable JIT for your component, you must install it within a COM+ application
and then check the “Enable just-in-time activation” option in the Activation tab of
the component’s Properties dialog.

If you implement IObjectControl in your component and don’t
install the component into a COM+ application, the ASP page that
accesses your component doesn’t respond and the ASP application
hangs.

,ch14.19611 Page 437 Thursday, February 22, 2001 1:33 PM

438 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To take full advantage of JIT, you’ll want to access your component’s resources
when the component is activated and discard them when the component is deacti-
vated. To trap the activation and deactivation events, you’ll need to implement the
IObjectControl interface.

Unlike the IContextState and the IObjectContext interfaces, you’ll need to
modify your component’s class definition to include a reference to IObject-
Control—IObjectControl must be implemented. In addition, you must add
three methods—Activate, Deactivate, and CanBePooled—to your class.

To view the changes to your code that you’ll need to make to implement
IObjectControl, add a new ATL object to asp1401, again using the Simple
Object template and adding in support for the Both-Threaded Model, the Dual
Interface, and Aggregation. Name the component JustInTime.

Once the component files are created, modify the component’s class. First, modify
the class definition in JustInTime.h to include a reference to IObjectControl:

class ATL_NO_VTABLE CJustInTime :
public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<CJustInTime, &CLSID_JustInTime>,
public IObjectControl,
public IDispatchImpl<IJustInTime, &IID_IJustInTime, &LIBID_ASP1401Lib>

Next, add an entry for IObjectControl to the COM Map in JustInTime.h:

BEGIN_COM_MAP(CJustInTime)
COM_INTERFACE_ENTRY(IJustInTime)
COM_INTERFACE_ENTRY(IObjectControl)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

Add the two ASP and COM Services libraries to the header file:

#include <comsvcs.h>
#include <asptlb.h>

Finally add the publicly accessible method prototypes for the IObjectControl
methods to JustInTime.h :

// IJustInTime
public:

STDMETHOD(Activate)();
STDMETHOD_(BOOL, CanBePooled)();
STDMETHOD_(void, Deactivate)();

Before you compile the component, you’ll also need to add the methods to the
component’s C++ file, JustInTime.cpp. At this time, the methods are prototypes
only (you’ll add code for this component in later sections of this chapter):

HRESULT CJustInTime::Activate()
{

return S_OK;
}

,ch14.19611 Page 438 Thursday, February 22, 2001 1:33 PM

Adding Support for COM+ Services 439

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

BOOL CJustInTime::CanBePooled()
{

return FALSE;
}

void CJustInTime::Deactivate()
{
}

The JIT methods aren’t doing anything specific at this point, but you can success-
fully compile it if you want to test that you’ve added the code correctly. Now,
when the component is activated, the Activate method is called; when the compo-
nent is deactivated, the Deactivate method is called.

Use the Activate method to create references to objects that you want to use in all
of your component’s methods. For instance, with ASP components, it’s not unusual
to obtain a reference to one or more of the ASP built-in objects in the Activate
method and to release these references in the Deactivate method. Later in the
chapter, this technique is demonstrated when you have a chance to work with the
ASP objects.

You might be tempted to also deactivate your database connections in the Deacti-
vate method. However, database connections are expensive resources. A better
approach is to create the ADO connection objects in the Activate method but to
not actually open the connection until it’s used within the component’s own meth-
ods. Then you could release the Connection object in the Deactivate method.

The overhead to create the Connection object is so slight that I never
manage its existence in the JIT methods. Instead, I create the Con-
nection object just before I open the connection and then release it
as soon as possible. However, I’ve obtained a reference to the Con-
nection string from the ASP Application object in the Activate
method.

JIT isn’t the only activation setting you can use with your ASP components—you
can also pool the object.

Creating Poolable Objects

If you specify that a component can be pooled, COM+ keeps an instantiated ver-
sion of it within a pool. When a request for the component is made within ASP
script, COM+ pulls the instantiated version of the component from the pool,
decreasing the amount of time necessary to activate the component.

When an application, such as an ASP application, that accesses your component is
started, instances of your component are created in order to meet the minimum

,ch14.19611 Page 439 Thursday, February 22, 2001 1:33 PM

440 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

number specified using the Component Services Manager. If you specify a mini-
mum pool of 10 for a specific component, when the ASP application starts, 10
instances of the component are created. COM+ then creates new instances of the
component each time an access is made and all of the existing components have
already been allocated, up to the maximum pool size set with Component Services.

Pooling is an especially attractive performance enhancement for an ASP compo-
nent that can be accessed many times within a short time period. The main disad-
vantage is that the component holds any resources unless you specifically release
them using JIT and IObjectControl’s Deactivate method.

There are some specific requirements that must be met before your component
can be considered poolable. First, the component must be neutral- or both-
threaded. Second, the component must support Aggregation but must not support
the free-threaded marshaler.

If your component participates in transactions, you must implement IObject-
Control in order to handle resources within the Activate, Deactivate, and CanBe-
Pooled methods. Regardless of your use of IObjectControl, your component
should not hold a transactional resource such as an open database connection
when it is pooled. Instead, activate the resource in the Activate method, and
release the resource in the Deactivate method.

If you must hold the transactional resource when the component is pooled, your
code will have to handle resource management, which may not be a trivial cod-
ing effort, depending on the resource. (Check the documentation provided by the
resource manager, such as OLE DB, to see how to manually enlist resources if you
want to hold the resources within a pooled component.)

To enable pooling for your new JustInTime component, add the component to
your existing COM+ application, and then access its Properties dialog. Switch to
the Activation page and check the Enable Object Pooling option. Change the mini-
mum pool size to 5 and the maximum pool size to 20, as shown in Figure 14-6.

You’ll have a chance to work with both JIT and object pooling in the section of
this chapter that covers the ASP built-in objects. First, though, we’ll take a look at
how you can convert your existing NT 4.0 MTS components to the new COM+
environment.

Converting MTS Components
for Use with COM+
To access IObjectContext in a C++ component in NT 4.0, you’d attach the MTS
header and library files to the project. The MTS header file is mtx.h, and the librar-
ies are mtx.lib and mtxguid.lib. Choosing the MTS option when creating the

,ch14.19611 Page 440 Thursday, February 22, 2001 1:33 PM

Converting MTS Components for Use with COM+ 441

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

project automatically adds the MTS libraries to the project. Picking the MS Transac-
tion Server option when using the ATL Object Wizard to create the component
automatically adds the MTS header file to the component’s header file. Finally,
checking the IObjectControl option when generating the option automatically
adds in support for the IObjectControl methods and also creates an instance of
IObjectContext in the Activate method.

Components created using the MTS options should work without problems in
Windows 2000. In fact, the MTS files installed as part of the Platform SDK for Win-
dows 2000 wrap the COM+ Services within the previously used MTS files. For
instance, if you open the MTS header file, mtx.h, you’ll find that it is nothing more
than a wrapper for the COM+ Services header file:

#define __MTxSpm_LIBRARY_DEFINED__
#include "comsvcs.h"

In addition to the COM+ versus MTS support changes, there are new COM/COM+
interfaces to work with and a new function to use to access these interfaces. Previ-
ously, you accessed a copy of IObjectContext with the function GetObjectCon-
text, passing in a reference to the interface:

hr = GetObjectContext(&pObjectContext);

Figure 14-6. Enabling object pooling for the JustInTime component

,ch14.19611 Page 441 Thursday, February 22, 2001 1:33 PM

442 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In Windows 2000 you’ll use CoGetObjectContext, passing in the GUID for the
interface as well as a pointer to a reference to hold the instance created:

hr = CoGetObjectContext(IID_IObjectContext, (void **)&pObjectContext);

However, GetObjectContext is still maintained for backward compatibility. In Win-
dows 2000, this older function is nothing more than a wrapper for the newer
CoGetObjectContext :

HRESULT GetObjectContext(IObjectContext **ppoc) {
 return CoGetObjectContext(IID_IObjectContext,
 (void**)ppoc);
 }

There is one problem you can have in using the MTS option with the ATL Object
Wizard if you wish to pool your component—MTS components could not be
aggregated, so support for aggregation is disabled when ATL generates the com-
ponent. ATL adds the following to all MTS components:

DECLARE_NOT_AGGREGATABLE(CMtsObject)

If you attempt to pool a component created with this macro, an error will occur.

To demonstrate, create a new Visual C++ project named asp1402, but this time,
add support for MTS when the ATL COM AppWizard provides the project options.
When the project is generated, insert a new ATL object using the MS Transaction
Server option. Name the component MtsObject. While still in the ATL Object
Wizard, switch to the MTS page and add support for IObjectControl, but don’t
select the Can Be Pooled option.

When the object is generated, open the MtsObject.h file. You’ll see that IObject-
Control has been added to the class definition, as have the COM mapping and
the three IObjectControl methods. The ATL Object Wizard also added a refer-
ence to IObjectContext as a class member and included a reference to the mtx.
h header file.

Opening the MtsObject.cpp file, you’ll find the three IObjectControl methods.
The ATL Object Wizard also added the following code to create IObjectContext
to the Activate method:

HRESULT hr = GetObjectContext(&m_spObjectContext);
if (SUCCEEDED(hr))

return S_OK;
return hr;

It also added the following code to release the class member to the Deactivate
method:

m_spObjectContext.Release();

Finally, the CanBePooled method returns FALSE.

,ch14.19611 Page 442 Thursday, February 22, 2001 1:33 PM

Converting MTS Components for Use with COM+ 443

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Use Class View to add a new method to the component called addNumbers that
takes two input parameters and a return value, all integers:

[in] int iFirst, int iSecond, [out,retval] int* iResult

Add the code for the method next. As you can see in Example 14-5, the code is
pretty simple—adding two numbers and returning the result.

Add the component to the COM+ application you created earlier, and don’t
change any of the default settings for the component. Once you’ve done this, test
the component using asp1403.asp, which contains the following ASP test script:

<%
Dim obj
Set obj = Server.CreateObject("asp1402.MtsObject")

Dim result
result = obj.addNumbers(35,35)

Response.Write "<h3>" & CStr(result) & "</h3>"
%>

The number 70 shows in the page that’s returned.

Open the COM+ application again and access the Properties dialog for asp1402.
MtsObject. Switch to the Activation page and check the option to add object
pooling. Access the ASP test page again and see what happens. What you’ll get is
the following error:

Server object, ASP 0177 (0x80040110)
Class does not support aggregation (or class object is remote)
/chap14/asp1403.asp, line 10

You’ve tried to pool a component that doesn’t have support for aggregation, and
the script failed.

If you wish, you can alter your existing MTS components to work within the
COM+ environment more closely by making a few modifications:

1. Change the MTS header reference from mtx.h to comsvcs.h.

2. Remove the references to the mtx.lib and mtxguid.lib libraries, and add in
comsvcs.lib.

Example 14-5. Method to Add Two Numbers and Return Results

STDMETHODIMP CMtsObject::addNumbers(int iFirst,
 int iSecond,
 int *iResult)
{
 *iResult = iFirst + iSecond;

return S_OK;
}

,ch14.19611 Page 443 Thursday, February 22, 2001 1:33 PM

444 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

3. Change the GetObjectContext method to CoGetObjectContext.

4. If you want to support pooling, remove the reference to DECLARE_NOT_
AGGREGATABLE(CMtsObject) after first checking to make sure your resource
use won’t be compromised if the component is pooled.

5. Recompile the component.

Of course, you may have to change code that uses any NT-specific functionality,
depending on how much of the functionality has migrated to Windows 2000. But
most of your existing components that use ADO should work as is in the new
Windows 2000 environment (and using ADO 2.5 and up).

If you port your components from NT to Windows 2000, make sure
to test thoroughly. The variations between the two environments can
be subtle at times, but they are there, and they can make the differ-
ence between an ASP application that works and one that doesn’t.

Another ATL Object Wizard option used in NT was the ASP option, to create com-
ponents with built-in support for the ASP objects. This approach used the older,
and deprecated, IScriptingContext interface. These components should be
modernized to COM+, though they will work as is within Windows 2000. Instead
of using ScriptingContext to access the objects, you can use either IObject-
Context or IObjectContextInfo, as discussed in the next section.

Accessing the ASP Built-in Objects
Many of the example components in this book include access to the ASP built-in
objects. The ASP built-in objects provide an interface between the ASP application
(and the application component) and the ASP environment. These objects are the
following:

Application
Provides ASP application-wide information

Session
Provides ASP session information

Request
Contains information provided by the user or client application

Response
Returns information to the client

,ch14.19611 Page 444 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 445

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Server
Performs some transformations and creates instances of new objects within the
context of the ASP application

ASPError
Provides error information

Appendix A, ASP Built-in Object Quick Reference, has a complete
reference of all of the ASP objects, their properties, collections, and
methods.

In your ASP code, you get information provided by the user—such as form or
query string data—through the ASP Request object. You can return information to
the web page through the Response object. ASP components are created in ASP
script through the use of the Server object’s CreateObject method.

The next section outlines how to access the built-in ASP objects from a Visual C++
component.

Accessing the Objects Using ObjectContext

Starting with IIS 4.0 and continuing with IIS 5.0, access to the ASP built-in objects
occurs through IObjectContext. Within the Windows 2000 environment, you
can also access the ASP built-in objects from the IObjectContextInfo interface.

To access the ASP objects in C++, add a reference to the ASP header file to your
component:

#include <asptlb.h>

Then you can create instances of any of the objects through IObjectContext or
IObjectContextInfo, using the QueryInterface method to obtain a reference to
the IGetContextProperties interface:

CComPtr<IGetContextProperties> pProps; //context properties
CComPtr<IObjectContext> pObjContext; //context object
// get ObjectContext

hr = CoGetObjectContext(IID_IObjectContext,
 (void **)&pObjContext);
if (FAILED(hr)) return hr;

// get context properties
hr = pObjContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
if (FAILED(hr)) return hr;

,ch14.19611 Page 445 Thursday, February 22, 2001 1:33 PM

446 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You then use the QueryInterface method on IGetContextProperties to obtain
a reference to any of the ASP built-in objects:

IDispatch* piDispatch = NULL;
CComPtr<IResponse> piResponse; //Response object

// get Response property
hr = pProps->GetProperty(L"Response", &vt) ;
if (FAILED(hr)) return hr;

Separating the Business from the Presentation
Should you use the ASP built-in objects from ASP components? The answer
depends on the purpose of the component.

Many of the examples in this book do use these objects, primarily the Request
and Response objects. However, the main reason for this is to include as much
of the ASP processing within the component as possible, for demonstration
purposes. You’ll want to include the ASP objects in your components depend-
ing on the purpose of the component and whether the component must work
in environments other than ASP.

For instance, if you’re creating a business component to access a database and
perform some form of data update or query, you’ll want to restrict the use of,
or not use at all, the ASP built-in objects. By limiting the use of these objects,
your business object can be easily moved to other server-based environments.
Additionally, you can modify either the business processing or the presentation
without impacting either. If you decide to have your ASP application output
XML instead of HTML, you can make this change without having to change the
business component. If your business processing or data access changes, this
won’t impact your presentation.

However, an advantage of using the ASP objects within your components,
especially for database access, is that you can access form values directly from
the Request object and not have to create a method with several parameters
(or use an array), retrieve the values from the Request object in your script, and
pass them to the method.

If your components are part of the presentation layer—such as reusable com-
ponents whose purpose is to generate specific blocks of HTML or XML—then
use the built-in ASP objects within the components.

When you’re in the process of developing a business component, you can tem-
porarily use the ASP built-in objects to assist in the development process and
then remove them after the business process works to your satisfaction and
you’re ready to integrate the component into the application environment.

,ch14.19611 Page 446 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 447

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

piDispatch = vt. pdispVal;
hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&piResponse);

The Response object is accessed as a VARIANT from IGetContextProperties
using the GetProperty method. The IDispatch value is accessed from this variant
and used to query for the IResponse interface.

Once you’re done with the object, release the reference to it:

piResponse.Release();

References to the ASP objects can be created directly in your component meth-
ods, or they can be created within the context of JIT. The latter approach can be
best if you have several component methods that use the same ASP object.

Once you’ve obtained a reference to an ASP built-in object, you have access to all
of its properties, methods, and collections.

The IResponse Interface

The ASP Response object handles all communication from the ASP application
back to the client web page. This ASP object has more methods than any of the
other objects, and one of these, Write, is the primary method used to output infor-
mation to a web page. You’ll work directly with the IResponse interface when
accessing Response in your C++ component.

To try out IResponse, open your asp1401 project, and add two new private class
members to the JustInTime component (in JustInTime.h):

private:
 CComPtr<IObjectContext> m_spObjectContext;
 CComPtr<IResponse> m_piResponse;

Also add the asptlb.h header file to add support for the ASP objects and comdef.h
to get access to the COM helper classes.

Add code to instantiate the class member in your component’s Activate method,
and release the member in Deactivate. After modifying the code, these two meth-
ods should look similar to those shown in Example 14-6.

Example 14-6. Instantiating and Releasing the IResponse Class Member

HRESULT CJustInTime::Activate()
{
 HRESULT hr;
 CComBSTR bstrProp;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

,ch14.19611 Page 447 Thursday, February 22, 2001 1:33 PM

448 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you’ve created the IResponse class member, you can use it in any of your
component’s methods. Add a new method to asp1401.JustInTime and name it
sayHello. The method has one input parameter, of type BSTR:

[in] BSTR bstrName

Like the method shown earlier in Example 14-3, this method also creates a mes-
sage string to display to the web page. Unlike the earlier example, though, the
string is output directly from the component using the Response object’s Write
method. Add the code shown in Example 14-6 to your component:

STDMETHODIMP CJustInTime::sayHello(BSTR bstrName)
{

CComBSTR bstrMessage = "Hello ";
bstrMessage.Append(bstrName);

m_piResponse->Write(_variant_t(bstrMessage.Detach()));

return S_OK;
}

Add asp1401.JustInTime to an existing COM+ application (or create a new
application). Once you’ve done that, you can test the component’s new method
with the following ASP page, asp1404.asp:

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&m_spObjectContext);
 if (FAILED(hr)) return hr;

 // get context properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr)) return hr;

 // get Response property
 bstrProp = "Response";
 hr = pProps->GetProperty(bstrProp, &vt) ;
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

return hr;
}
void CJustInTime::Deactivate()
{
 m_piResponse.Release();

m_spObjectContext.Release();
}

Example 14-6. Instantiating and Releasing the IResponse Class Member (continued)

,ch14.19611 Page 448 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 449

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

<%
Dim obj
Set obj = Server.CreateObject("asp1401.JustInTime")

obj.sayHello "World!"
%>

The “Hello World!” message is displayed in the web page.

In addition to creating output, the Response object and its associated C++ inter-
face can control how and when the output is returned. This control occurs
through the Buffer property. Setting this property to a Boolean value of FALSE
turns page buffering off, which means that content is returned to the page as it is
generated. The default value is TRUE, meaning that content is buffered and not
returned to the page until it’s all generated. The Buffer property can be set using
the put_Buffer method and retrieved using get_Buffer. Note, though, that the code
that sets the property must be accessed before any HTML is generated; otherwise
it is ignored.

Other methods that can determine when content is returned to the page are the
Clear, End, and Flush methods. The Clear method is used to clear out the buffer
contents in case of an error. This is helpful if a problem has occurred and you
don’t want any content returned to the web page reader, as the following code
fragment illustrates:

CComVariant vtOut;
vtOut = "some contents";
m_piResponse->Write(vtOut);

 // other activity occurs, and an error results
// clear buffer
m_piResponse->Clear();

The End method stops page buffering and returns the page contents directly at
that point, while the Flush method returns output but does not turn buffering off.
All three of these methods will return an error if buffering is not enabled.

The IResponse interface can also control caching. For instance, the put_Expires
or put_ExpiresAbsolute methods control when the page expires from the cache.
The former method takes a long value representing the number of minutes before
the page expires, and the latter takes an actual date. To change the cache expira-
tion date from your asp1401.JustInTime component, add a new method called
setCacheDate, which is shown in Example 14-7. The method has the following
three parameters:

[in] int iYear, int iMonth, int iDay

The SYSTEMTIME structure is used to create the date/time value. It’s used as the
first parameter in a call to the SystemTimeToVariant function. The second parame-
ter in this function is a reference to a double value containing a specific time. This

,ch14.19611 Page 449 Thursday, February 22, 2001 1:33 PM

450 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

double value is then used in the call to put_ExpiresAbsolute to change the abso-
lute expiration date/time of the cache. Add the code shown in Example 14-7 to
your component.

To test the new method, use the following script, asp1405.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1401.JustInTime")

obj.setCacheDate 2002, 12, 12

Response.Write Response.ExpiresAbsolute
%>

The result of running this script is a page with a date of 12/12/2002 1:13:00 P.M.

Other methods to control caching include two to get and set the CacheControl
property. This property is used to control whether proxy servers can cache the
ASP page contents. Passing a BSTR value equal to Public to the put_CacheCon-
trol method enables proxy caching.

The page’s return status code can be accessed and controlled using the put_Status
and get_Status methods. For instance, the following results in a dialog requesting a
username and password when the page is accessed:

Example 14-7. Setting the Expiration from Cache for the ASP Page

STDMETHODIMP CJustInTime::setCacheDate(int iYear, int iMonth, int iDay)
{
 HRESULT hr;
 SYSTEMTIME st;
 double dtTime;

 // initialize memory
 ZeroMemory (&st, sizeof(st)) ;

 // set date
 st.wYear = iYear;
 st.wMonth = iMonth;
 st.wDay = iDay;

 // set time
 st.wHour = 13;
 st.wMinute = 13;

 SystemTimeToVariantTime(&st,&dtTime);

 hr=m_piResponse->put_ExpiresAbsolute(dtTime);

 return hr;
}

,ch14.19611 Page 450 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 451

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CComBSTR bstrObj("401 Unauthorized");

m_piResponse->put_Status(bstrObj);

Entering a valid network username and password will allow entry to the page.

Another IResponse method, AppendToLog, appends to the IIS log file. This is a
useful method to output information for debugging and tracking purposes. The
Response object’s CharSet property can be set using the put_CharSet method. Writ-
ing to the web page without any Unicode-to-ANSI conversion is accomplished
using the BinaryWrite method.

The IResponse interface’s only collection is the write-only Cookies collection.
You access the collection through the IRequestDictionary collection, and you
work with an individual item using the IWriteCookie interface:

hr = m_piResponse->get_Cookies(&piRequestVariables);
if (FAILED(hr)) return hr;

hr = m_piResponse->get_Cookies(&pDict);
if (FAILED(hr)) return hr;

hr = pDict->get_Item(vtCookieName, &vtCookieDict);
if (FAILED(hr)) return hr;

pWriteCookie = (IWriteCookie*)(vtCookieDict.pdispVal);
if (FAILED(hr)) return hr;

hr = pWriteCookie->put_Item(vtCookieKey, bstrCookieVal);

The IApplication Interface

The Application object interface, IApplicationObject, can be used to store and
retrieve information shared across all sessions. The information stored can be a sin-
gle value or it can be a reference to an object. The values are stored either in the
Application object’s Contents collection, which includes all values added dynami-
cally to the Application object, or in the Application object’s StaticObjects collec-
tion, which includes all items added using the <OBJECT> tag in the global.asa file.

Appendix A covers the use of the global.asa file.

There are two methods you can use to get the Application object collections: get_
Contents to get the contents and get_StaticObjects for the static objects. Both of
these methods return another interface object, the IVariantDictionary, which
you can use to enumerate through the collection or to access a specific item.

,ch14.19611 Page 451 Thursday, February 22, 2001 1:33 PM

452 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can also use the get_Value method directly on IApplicationObject to get
an item from either collection, and you can call the put_Value method to set an
entry into the Contents collection. (You cannot add a member to the StaticObjects
collection.)

To demonstrate getting and setting a value using the Contents collection, as well
as using IApplicationObject’s get_Value, add a new method to the asp1401.
JustInTime component named getContentValue that gets a value using get_Value
and get_Item on the IVariantDictionary object, and then displays these values
using the Response object. The method also removes all Application contents, one
at a time, using the IVariantDictionary’s Remove method.

First, add a reference to IApplicationObject as a private class data member to
JustInTime.h:

CComPtr<IApplicationObject> m_piApplication;

 Next, add the code to instantiate the element within the Activate method:

// get Application
bstrProp = "Application";
hr = pProps->GetProperty(bstrProp, &vt) ;
if (FAILED(hr)) return hr;

piDispatch = vt. pdispVal;
hr = piDispatch->QueryInterface(IID_IApplicationObject,
 (void**)&m_piApplication);

Add a line to release the IApplicationObject reference in the Deactivate
method:

m_piApplication.Release();

Use Class View to add a new method named getContentValue that takes one BSTR
input parameter, the name of the content item to display. Then add the code
shown in Example 14-8. The method calls get_Value to retrieve the value of the
item from the Application object and then calls get_Item to retrieve it directly from
the Contents collection. Finally, the method removes the item from the Applica-
tion object’s collections.

Example 14-8. Getting Element from the Application Object’s Contents Collection

STDMETHODIMP CJustInTime::getContentValue(BSTR bstrName)
{
 HRESULT hr = S_OK;
 _variant_t vtValue;

 // get specific item
 hr = m_piApplication->get_Value(bstrName, &vtValue);
 if (FAILED(hr)) return hr;

 // write value out

,ch14.19611 Page 452 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 453

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the component method with the following ASP test page (in asp1406.asp):

<HTML>
<HEAD>
<TITLE>Developing ASP Components</TITLE>
</HEAD>
<BODY>
<%
'On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1401.JustInTime")

Application("pie") = "apple"

obj.getContentValue "pie"

%>
</BODY>
</HTML>

Storing information at the level of the Application object is especially helpful for
such things as maintaining counts of items in stock for an online catalog system or
perhaps maintaining a count of the number of people currently logged into the
system. For information specific to the session, which is defined as the time a spe-
cific user logs into the application until they log out, the Session object must be
accessed through the ISessionObject interface, discussed next.

 m_piResponse->Write(vtValue);
 m_piResponse->Write(_variant_t("<p>"));

 // get the Contents collection
 IVariantDictionary* piVariantVariables;
 hr = m_piApplication->get_Contents(&piVariantVariables);
 if (FAILED(hr)) return hr;

 // get the item from the Contents collection
 hr = piVariantVariables->get_Item(_variant_t(bstrName),&vtValue);
 if (FAILED(hr)) return hr;

 // write value out
 m_piResponse->Write(vtValue);
 m_piResponse->Write(_variant_t("<p>"));

 // remove the item
 piVariantVariables->Remove(_variant_t(bstrName));

 return S_OK;
}

Example 14-8. Getting Element from the Application Object’s Contents Collection (continued)

,ch14.19611 Page 453 Thursday, February 22, 2001 1:33 PM

454 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can add objects to the Application Contents collection, but use
caution: if the object isn’t both- or neutral-threaded, you’ll receive an
error. For best performance purposes, assign only nonobject, scalar
data to the Contents collection.

The ISession Interface

In C++, Session object information and methods are accessed using the
ISessionObject interface. The Session object is similar to the Application object
in that variables and other objects can be stored within the object’s Contents and
StaticObjects collections and can be accessed or altered as long as the Session
object is in scope. The primary difference between the Application and Session
objects is that the Session object lasts from the time a user accesses the first web
page of an ASP application until the user’s session times out or she logs out of the
application.

To work with the Session contents, use the get_Contents or get_StaticObjects
method to access an IVariantDictionary interface, and then use it to
enumerate through the collection. Or access an individual item using the
ISessionObject get_Value or the IVariantDictionary get_Item method.

You can assign apartment-threaded objects to the Session object’s
collections, but to do so ties the Session down to a specific thread—
which means that client requests can be processed only by a spe-
cific thread, rather than whatever thread is next available. This will
severely impact performance.

When working with the Application object, you accessed data from its collection
individually when you called the example getContentValue method. In this sec-
tion, you’ll try out the enumeration capability provided by IVariantDictionary
by traversing the Session object’s Contents collection.

First, add a new private class member of type ISession to the JustInTime com-
ponent’s header file:

CComPtr<ISessionObject> m_piSession;

Next, instantiate this new member in the component’s Activate method:

// get Session
bstrProp = "Session";
hr = pProps->GetProperty(bstrProp, &vt) ;
if (FAILED(hr)) return hr;

,ch14.19611 Page 454 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 455

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

piDispatch = vt. pdispVal;
hr = piDispatch->QueryInterface(IID_ISessionObject,
 (void**)&m_piSession);

Then release the member in the Deactivate method:

m_piSession.Release();

Add a new method named listContents using Class View. It takes no parameters.
Then use Class View to add the source code shown in Example 14-9. The method
obtains a reference to an IVariantDictionary interface using the Session
object’s get_Contents method. It then calls get_NewEnum on the interface to
return a pointer to an IUnknown interface and calls QueryInterface to obtain a ref-
erence to an IEnumVARIANT interface. The IEnumVARIANT interface is used to
enumerate through the collection, and the Response object is used to display the
name/value pairs.

Example 14-9. Enumerating Through the Session’s Contents Collection

STDMETHODIMP CJustInTime::listContents()
{
 HRESULT hr;

IEnumVARIANT* piEnum;
 IUnknown* piUnk;
 IVariantDictionary* piVariant;

 hr = m_piSession->get_Contents(&piVariant);
 if (FAILED(hr)) return hr;

 hr = piVariant->get__NewEnum(&piUnk);
 if (FAILED(hr)) return hr;

 hr = piUnk->QueryInterface(IID_IEnumVARIANT, (void **)&piEnum);
 if (FAILED(hr)) return hr;

 piUnk->Release();

 _variant_t vtItem, vtValue;
 while (S_OK == piEnum->Next(1,&vtItem,NULL)) {

 m_piResponse->Write(vtItem);
 m_piResponse->Write(_variant_t("="));

 // get value
 m_piSession->get_Value(_bstr_t(vtItem), &vtValue);
 m_piResponse->Write(vtValue);
 m_piResponse->Write(variant_t("<p>"));
 }

 piEnum->Release();

return S_OK;
}

,ch14.19611 Page 455 Thursday, February 22, 2001 1:33 PM

456 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the component method using the following ASP page, asp1407.asp, which
contains script that creates five entries in the Session’s Contents collection before
calling the method:

<%
Dim obj
Set obj = Server.CreateObject("asp1401.JustInTime")

Session("one") = 1
Session("two") = 2
Session("three") = 3
Session("four") = 4
Session("five") = 5

obj.listContents
%>

The result of accessing this test page is a listing of all five elements in the Con-
tents collection and their respective values.

The Session object also has information about the user session, such as what code
page is used to display characters, a value that can be accessed and altered using
the get_CodePage and put_CodePage methods, respectively, and what locale is in
use, a setting that can be modified and accessed with the get_LCID and put_LCID
methods, respectively. The last two methods are especially important if your com-
ponent must support an international clientele.

The session timeout can be changed or read by using the get_Timeout and set_
Timeout methods. You can also access the specific session ID with get_SessionID,
but this should not be used directly by ASP developers. Session identifiers may not
be unique across application runs.

The session can be abandoned using the Abandon method, which releases all
resources currently held by the Session object.

The IRequest Interface

The Request object and its associated C++ interface, IRequest, contain informa-
tion about the client, such as what browser is being used, client certificate infor-
mation, the protocol, the server port, and so on. It can also be used to access
information provided by the user, either attached as data to the page URL or from
HTML forms.

Most of the IRequest information is stored in collections, which are accessible by
using the IRequestDictionary helper interface. The IRequestDictionary
object works similarly to IVariantDictionary in that you can access elements
individually, or you can obtain an enumerator from the object and enumerate all
values in the collection.

,ch14.19611 Page 456 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 457

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

One of the IRequest collections is the Form collection, containing name/value
pairs from HTML forms that use the POST method. You can obtain a reference to
this collection using the get_Form method and then either access each element by
the form element name or access all form elements using enumeration.

Another collection is the QueryString collection, containing name/value pairs from
forms posted using the default GET method or attached to the page’s URL. An
example of an “entry” within the QueryString collection is the following:

Test

The individual collection elements are:

test=one
test2=two
test3=three

However, if all three name-value pairs had the same name, as with:

Test

the collection element would be:

test=one,two,three

Assigning different values to the same named element causes a list of values to be
assigned to that named element.

If your site supports digital certificates for security and you need to access infor-
mation about the client certificate, you can use the get_ClientCertificate method
and access the certificate fields directly or again use enumeration.

Your code can access cookies from the Cookies collection using the get_Cookies
method. In this case, you might actually want to access each cookie individually.
The following code demonstrates how simple it can be to access one specific
cookie:

CComVariant vt(OLESTR("cookie_name")), vtValue;
CComPtr<IRequestDictionary> piRequestVariables;
hr = m_piRequest->get_Cookies(&piRequestVariables);

// if failure, return
if (!FAILED(hr))

piRequestVariables->get_Item(vt, &vtValue);

Another IRequest object collection is the ServerVariables collection, which has
several server environment variables. A useful component for an ASP developer is
one that will return all of the server environment variable names and associated
values, if any. With this, you can check out the communication between client and
server, how data is returned when accessed from IRequestDictionary, what the
identifying string for a specific browser looks like, and so on.

,ch14.19611 Page 457 Thursday, February 22, 2001 1:33 PM

458 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To see what the environment variables look like in your own setup, use Class
View to add a new method (with no parameters) called showVariables to
asp1401.JustInTime. You’ll also need to add IRequest as a new private com-
ponent class member to JustInTime.h :

 CComPtr<IRequest> m_piRequest;

Then add the code to instantiate the class member in Activate:

 // get Request
 bstrProp = "Request";
 hr = pProps->GetProperty(bstrProp, &vt) ;
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IRequest,
 (void**)&m_piRequest);

and release the member in the Deactivate method:

 m_piRequest.Release();

Finally, add the code shown in Example 14-10. The method code is very similar to
that shown in Example 14-9, except that it obtains a reference to the IRequest-
Dictionary interface by calling the IRequest object’s get_ServerVariables
method. Once it has a reference to IRequestDictionary, it obtains an enumera-
tor from the object and enumerates through the server variables.

Example 14-10. Enumerating Through the ServerVariables Collection

STDMETHODIMP CJustInTime::showVariables()
{
 HRESULT hr;

IEnumVARIANT* piEnum;
 IUnknown* piUnk;
 IRequestDictionary* piDict;
 ULONG lValue;

 // get server variables
 hr = m_piRequest->get_ServerVariables(&piDict);
 if (FAILED(hr)) return hr;

 // get enumerator
 hr = piDict->get__NewEnum(&piUnk);
 if (FAILED(hr)) return hr;

 hr = piUnk->QueryInterface(IID_IEnumVARIANT, (void **)&piEnum);
 if (FAILED(hr)) return hr;

 // enumerate through collection, printing out values
 _variant_t vtItem, vtValue;
 while (S_OK == piEnum->Next(1,&vtItem,&lValue)) {

 m_piResponse->Write(vtItem);

,ch14.19611 Page 458 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 459

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the component method using asp1408.asp, containing the following script:

<%
Dim obj
Set obj = Server.CreateObject("asp1401.JustInTime")

obj.showVariables
%>

Figure 14-7 shows some of the results of using this component method in my own
environment.

If any of the ServerVariables, QueryString, or Form collection elements contain
multiple items, such as the QueryString value mentioned earlier, the individual val-
ues can be accessed using the IStringList interface. As an example, assume

 m_piResponse->Write(_variant_t("="));

 // get value
 piDict->get_Item(vtItem, &vtValue);
 m_piResponse->Write(vtValue);
 m_piResponse->Write(variant_t("
"));
 }

 // clean up
 piEnum->Release();
 piUnk->Release();

 return S_OK;
}

Figure 14-7. Server variables in my environment

Example 14-10. Enumerating Through the ServerVariables Collection (continued)

,ch14.19611 Page 459 Thursday, February 22, 2001 1:33 PM

460 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

that you want to retrieve the values of the item named test from the IRequest
object. This item happens to be contained within the QueryString collection and
contains an array of three values: 1, 2, and 3. The code to access these values
using enumeration is:

IDispatch* pDispatch;
IStringList* pList;
CComVariant vt;
IUnknown* pUnknown = NULL;
IEnumVARIANT* pEnum = NULL;
ULONG lValue;

 m_piRequest->get_Item(bstrName, &pDispatch);
 hr = pDispatch->QueryInterface(IID_IStringList,
 (void**)&pList);

 // get the item from the Contents collection
 hr = pList->get__NewEnum(&pUnknown);
 if (FAILED(hr)) return hr

 hr = pUnknown->QueryInterface(IID_IEnumVARIANT,
 (void**)&pEnum);
 if (FAILED(hr)) return hr;

 // return the server variable and associated value
 while(S_OK == (pEnum->Next(1,&vt,&lValue))) {
 CComVariant vtValue;
 m_piResponse->Write(vt);
 }

The IStringList interface also has a get_Item method to access a specific item
by name. As with all enumerator type interfaces, it also has the get_Count method
to return the count of items within the collection.

Just as the IRequest get_Item method is used to obtain a reference to a value
contained in the Cookies collection, the IReadCookies interface provides similar
access to the values associated with the specific name. For the ClientCertificate col-
lection, the IRequestDictionary interface is used to obtain the values.

You can read all of the information for the current request at once using the
BinaryRead method, storing the results in a SAFEARRAY. The number of bytes to
retrieve can be found using the get_TotalBytes method. You can also read the
contents into a Variant using the Read method.

The IServer Interface

The last ASP built-in object to be discussed is the Server object and its associated
interface, IServer. This interface has few methods and no collections. It is mainly
used to handle URL or HTML encoding, to create a new server object instance, or
to set or get the script timeout value.

,ch14.19611 Page 460 Thursday, February 22, 2001 1:33 PM

Accessing the ASP Built-in Objects 461

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

For encoding, the URLEncode and HTMLEncode methods each takes a string from
the server and applies its own encoding method, converting specific characters to
special conversion values. As an example, URL encoding replaces spaces with the
plus sign (+) and the percent sign with a hexadecimal value of %25. HTML encod-
ing replaces the left and right angle brackets with < and >, respectively. Addi-
tional encoding methods exposed with the IServer interface are the
URLPathEncode method, which applies URL encoding to all characters except
those representing the path, such as the slash (/), and the MapPath method, which
generates a physical file location given a relative path and the current server loca-
tion. This latter method is particularly useful for accessing resources and opening
files.

To try out encoding in your JustInTime component, add a reference to IServer
as a private class member to the component in JustInTime.h:

 CComPtr<IServer> m_piServer;

Next, instantiate it within Activate:

 // get Server
 bstrProp = "Server";
 hr = pProps->GetProperty(bstrProp, &vt) ;
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IServer,
 (void**)&m_piServer);

and release it within Deactivate:

 m_piServer.Release();

Use Class View to add a new method called encodeValues. This method takes sev-
eral BSTR input parameters, defined as:

[in] BSTR bstrHTML, BSTR bstrURL, BSTR bstrPath, BSTR bstrMap

Add the code shown in Example 14-11 to your component. In the code, one of
the parameter strings is passed to each of the Server encode methods in turn, and
the results are output to the web page using the Response object.

Example 14-11. Using the Server Encode Methods

STDMETHODIMP CJustInTime::encodeValues(BSTR bstrHTML, BSTR bstrURL,
 BSTR bstrPath, BSTR bstrMap)
{
 _variant_t vtOut;
 CComBSTR bstrOut;
 _variant_t vtSeparator = "<p>";

 // HTML encoding
 m_piServer->HTMLEncode(bstrHTML, &bstrOut);

,ch14.19611 Page 461 Thursday, February 22, 2001 1:33 PM

462 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Server object methods are pretty simple, with each taking an input string as a
BSTR datatype and producing an output BSTR variable containing the encoded
value. Error checking after each method call was omitted for brevity.

Test the page with the following script, asp1409.asp, which passes different strings
for each encode method:

<%
Dim obj
Set obj = Server.CreateObject("asp1401.JustInTime")

Dim strHTML, strURL, strPath, strMap
strHTML = "<H1>This is a test</H1>"
strURL = "% this is a test % ++"
strPath = "test/test2/this is a test"
strMap = "/test/test2/"

obj.encodeValues strHTML, strURL, strPath, strMap
%>

The test page generates results similar to the following:

<H1>This is a test</H1>

%25+this+is+a+test+%25+%2B%2B

test/test2/this%20is%20a%20test

E:\Inetpub\wwwroot\New Folder\test2

 vtOut = bstrOut;
 m_piResponse->Write(vtOut);
 m_piResponse->Write(vtSeparator);

 // URL encoding
 m_piServer->URLEncode(bstrURL, &bstrOut);
 vtOut = bstrOut;
 m_piResponse->Write(vtOut);
 m_piResponse->Write(vtSeparator);

 // path encoding
 m_piServer->URLPathEncode(bstrPath, &bstrOut);
 vtOut = bstrOut;
 m_piResponse->Write(vtOut);
 m_piResponse->Write(vtSeparator);

 // path mapping
 m_piServer->MapPath(bstrMap, &bstrOut);
 vtOut = bstrOut;
 m_piResponse->Write(vtOut);

return S_OK;
}

Example 14-11. Using the Server Encode Methods (continued)

,ch14.19611 Page 462 Thursday, February 22, 2001 1:33 PM

Error Handling 463

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that the first line, which contains the HTML-encoded string, actually prints
out the HTML <H1> tags without producing HTML formatting.

The IServer object also can set the ASP script block timeout value. This controls
how long a specific scripting block can take for processing. The two methods to
access and set this value are get_ScriptTimeOut and put_ScriptTimeOut.

A method used more commonly in ASP script than in ASP components is Cre-
ateObject. This can be used to create an instance of an object given a specific pro-
grammatic identifier and is used in your ASP test pages to instantiate the ASP
components you’re creating. In Visual C++, this method can be used in a similar
manner, as follows:

 HRESULT hr = S_OK;
 IDispatch* pDispatch = NULL;
 ISomeObject* pObj;

 hr = m_piServer->CreateObject(L"some.progid",&pDispatch);
 if (FAILED(hr)) return hr;

 // cast to interface object
 hr = pDispatch->QueryInterface(IID_ISomeObject,
 (void**)&pObj);
 if (FAILED(hr)) return hr;

 // work with the new object
 ...

Instead of accessing identification information using the object’s interface ID (IID)
and class ID (CLSID) to create a new object using CoCreateInstance or the Object-
Context CreateInstance method, you can use the program identifier (such as
asp1401.JustInTime) to obtain a reference to this object. This returns a pointer
to an IDispatch interface pointer, and its QueryInterface method is used to
retrieve a pointer to the server component’s interface pointer. At that point, all of
the server component’s methods and public properties are available for access.
The object does not have to be released, since its lifetime ends when the ASP
script containing the enclosing component is finished.

Error Handling
In the examples, most of the ObjectContext or ASP object methods return an
HRESULT value. This value can be checked to see if the method call was success-
ful (returning a value of S_OK) or if it failed in some way. The FAILED macro is
used to test for failure, and if this macro returns a true, component processing is
terminated and control of the process is returned to the calling ASP page. The fail-
ure also generates an error for the ASP page that is automatically handled by IIS 5.
0. Within IIS 5.0, error handling is passed to a special page that retrieves ASP error
information and outputs this information to the page.

,ch14.19611 Page 463 Thursday, February 22, 2001 1:33 PM

464 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you use something such as On Error Resume Next in VBScript or exception
handling in JavaScript or PerlScript, the default error processing won’t occur, and
you have to provide your own error handling. One way of doing this is to use
HRESULT and terminate the component when an error occurs.

The reason you have to test the results of accessing each object’s method is that
exception handling is not automatically enabled for components created using
ATL. This is the case because the C runtime library required for exception han-
dling is not automatically included as part of the code-generation process, since
this can increase the size of the component. However, exception handling can be
manually turned on, especially when using MFC or the import directive, dis-
cussed later in this section.

Add exception handling to a project by accessing Project ➝ Settings,
switching to the C/C++ tab, selecting C++ Language from the Cate-
gory dropdown, and then checking the Enable Exception Handling
option.

When you create an instance of a new object, if you don’t provide exception han-
dling and the object cannot be instantiated, its reference is set to a value of NULL.
You can check to see if any new object is NULL before using it.

A technique you can use to create an object safely, regardless of whether excep-
tion handling is implemented, is to use the ATL ATLTRY macro. ATLTRY can be
used with a new method and actually surrounds the object creation expression. It
can also be used when creating a new CComBSTR object:

ATLTRY(CComBSTR bstrHeader(""));

The macro is defined within ATLBASE.H as:

#if defined (_CPPUNWIND) &
(defined(_ATL_EXCEPTIONS) | defined(_AFX))

#define ATLTRY(x) try{x;} catch(...) {}
#else
#define ATLTRY(x) x;
#endif

Basically, if ATL exception handling is enabled, the macro wraps the code within a
try…catch block. Otherwise, it just processes the code as is. Regardless of which
approach is taken, a failure in instantiation results in the attribute being set to
NULL, which can then be tested in the code.

As we saw when discussing basic ATL component creation options, choosing the
option that adds support for the ISupportErrorInfo interface enables error han-
dling. This option adds the following method to the component:

,ch14.19611 Page 464 Thursday, February 22, 2001 1:33 PM

Error Handling 465

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

STDMETHODIMP CClass:InterfaceSupportsErrorInfo(REFIID riid)
{

static const IID* arr[] =
{

&IID_Icssp,
};
for (int i=0;i<sizeof(arr)/sizeof(arr[0]);i++)
{

if (InlineIsEqualGUID(*arr[i],riid))
return S_OK;

}
return S_FALSE;

}

The InterfaceSupportsErrorInfo method is invoked from the client to check if the
component supports the IErrorInfo interface. This interface, in turn, supports
passing error information from the component to the client. In the case of the
Visual C++ component being invoked from within a VBScript block in an ASP
page, the error information is accessed from the Err object. However, to create the
error information, the ATL AtlReportError method is used.

The AtlReportError method basically adds information to the Error object using the
methods exposed for the IErrorInfo interface. It is an overloaded function,
which means that there are variations of the same function call, each accepting dif-
ferent sets of parameters. However, for creating an ASP object, the function proto-
type used most often is the following:

HRESULT WINAPI AtlReportError(const CLSID& clsid, LPCOLESTR lpszDesc,
 const IID& iid = GUID_NULL, HRESULT hRes = 0);

The following are the parameters passed to the function:

clsid
The component’s class identifier, which can be found in the component’s
header file

lpszDesc
The description of the error

iid
The component’s interface identifier, which can be found in the component’s
header file

hRes
The HRESULT for the error

The clsid and iid values can be pulled from the object’s header file. For the
example component created earlier in this chapter, the values are CLSID_First
and IID_IFirst, respectively. lpszDesc is a string used to provide a meaningful
error message to the ASP developer.

,ch14.19611 Page 465 Thursday, February 22, 2001 1:33 PM

466 Chapter 14: Creating C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The HRESULT value is the result returned from the component. This is set to S_OK
if no error occurs, and to a predefined error code for a specific error when an
error occurs. The ASP application can access this value and provide different han-
dling routines for different types of errors.

To demonstrate how to use error handling with your components, create a new
Visual C++ project and name it asp1403. Don’t add support for MTS or MFC.
When the project files are generated, create a new ATL object using the Simple
Object option and name this test. In the object’s Attributes tab, change the
threading model to Both, and make sure Dual and Aggregation Support are
checked. Also check the Support ISupportErrorInfo option.

When the new component is generated, add the comdef.h header file to the
header file in order to use the COM support objects:

#include <comdef.h>

Add a new method named sayHello that takes two parameters:

[in] BSTR bstrName, [out,retval] BSTR* pbstrMessage

This method is like the ones named sayHello that you’ve done before—it takes a
name as a string, concatenates it with a greeting, and returns the greeting to the
calling ASP script. What’s different is that it uses error handling to provide a cus-
tom error message. Add the code shown in Example 14-12 to your new compo-
nent.

Example 14-12. Using Custom Error Handling

STDMETHODIMP CTest::sayHello(BSTR bstrName, BSTR* pbstrMessage)
{

HRESULT hr = S_OK;

 _bstr_t bstrNm = bstrName;
// to work with header

 if (bstrNm.length() == 0) {
 hr = CTL_E_ILLEGALFUNCTIONCALL;

 LPCOLESTR lpError = L"You must provide a name for the message";
 AtlReportError(CLSID_Test,lpError,IID_ITest,hr);
 return hr;

 }
 else {

 CComBSTR bstrHeader = "Hello ";
 if (!bstrHeader)

 return CTL_E_OUTOFMEMORY;

 bstrHeader.Append(bstrName);

 *pbstrMessage = bstrHeader.Detach();
}
return S_OK;

}

,ch14.19611 Page 466 Thursday, February 22, 2001 1:33 PM

Error Handling 467

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method checks the name and if its length is zero (no name provided), an ille-
gal function call error is created. However, instead of using the default error mes-
sage (which isn’t too meaningful), the method creates an error message and calls
AtlReportError with the new message. In addition, the method also uses the CTL_
E_OUTOFMEMORY error when the new message object couldn’t be created (is set to
NULL). This value is equivalent to the out-of-memory error used in VBScript.

Test your new component with the following script, contained in asp1410.asp:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1403.test")

Dim str
Dim name

str = obj.sayHello(name)
If Err.Number <> 0 Then
 Response.Write Err.Description
Else
 Response.Write str
End If
%>

Notice the On Error Resume Next error-handling statement. This tells IIS to con-
tinue processing with the next statement after the statement that generated the
error. The ASP page generates an error because the name string is empty. Chang-
ing the string to contain some name results in the message being displayed.

Error handling using the Error object isn’t the only approach you can take in your
ASP components. In several of the chapters following this one, external libraries to
provide support for certain technologies such as MSMQ for messaging and ADO
for data access are imported into the component, using the #import directive.

The #import directive not only provides support for the objects and constants
within the ASP component, it also wraps all objects in containers known as smart
pointers. Smart pointers simplify access to the interfaces supported in the library.
Smart pointers also wrap COM exception handling around most of the interface
methods. With this, you can use exception handling in your component to pro-
cess an error in a controlled manner. For demonstrations of this, see the next
chapter on using ADO with your C++ components.

,ch14.19611 Page 467 Thursday, February 22, 2001 1:33 PM

468
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 15

15
Adding Data Access to C++
Components with ADO

The introduction of ActiveX Data Objects (ADO) greatly simplified data access
from within applications, including access from within ASP application compo-
nents. ADO provides a small set of easy-to-use objects for the most common data
access operations, such as connecting to a data source, issuing a data command,
and processing data returned from a query.

This book has presented numerous examples of using ADO within a Visual Basic
environment, but this technology is just as easily accessible from Visual C++—
especially with the help of smart pointers through the use of the Visual C++
import directive. This chapter looks at examples of working with ADO from Visual
C++ using smart pointers.

This chapter does not provide a detailed review of ADO or of the
concepts of using ADO from ASP components. You’ll want to read
Chapter 8, Creating ASP/ADO Components, first to get an under-
standing of how ASP components can work with ADO. Then you
can apply this understanding to C++ components by trying out the
examples in this chapter. After working with these examples, you’ll
have the background necessary to implement the data access tech-
niques discussed in Chapter 9, Creating an ASP Middle Tier with
ADO, using Visual C++.

ADO Access in Visual C++
ADO consists of a set of interfaces you can access directly in your C++ compo-
nents. However, if you’re using Visual C++, you’ll want to take advantage of
Microsoft’s import directive, which imports the objects’ type library and wraps each

,ch15.19741 Page 468 Thursday, February 22, 2001 1:33 PM

The ADO Object Model 469

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

interface in smart pointers, making access to the interfaces almost as easy as
accessing the same objects in Visual Basic.

To import the ADO type library, add the following to your C++ components, usu-
ally in the component’s C++ file:

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \
 no_namespace rename("EOF", "EndOfFile")

This statement imports the type library included within the ADO component’s
dynamic link library (msado15.dll) into the C++ component. The ADO namespace
is not used, which means that none of the ADO functionality has to be preceded
with the ADO namespace alias. Additionally, the EOF symbol in ADO is renamed
to EndOfFile. The EOF symbol is usually designated as a –1 value in most C++
applications, and not renaming the value results in compiler errors.

When using the import statement, you can get a warning message similar to the
following::

warning C4146: unary minus operator applied to unsigned type,
result still unsigned

You can disregard this, since it has no impact on your component.

The import directive takes the type library and generates a set of header files
based on the library contents. One effect of this process is that you can access
properties using a set of generated Get- and Put- methods, such as PutConnection-
Timeout to set a connection timeout. You can also set and get the properties
directly, in a manner similar to that in VBScript or in Visual Basic. So, to set the
Connection object’s timeout property value, you can use the following:

pConnection->ConnectionTimeout = 30;

The import directive also wraps the object method calls in COM error exception
handling so that an error is thrown, and you don’t have to test the results after
making each method call. To enable exception handling for the component
project, select Project/Settings from the menu and then select the C/C++ tab.
Change the Category to C++ Language and check the option labeled Enable
Exception Handling.

The ADO Object Model
A few years back, Microsoft came up with the concept of Universal Data Access—
using the same data access methods to process data from files, databases, email
systems, and other sources. To implement the concept, Microsoft created OLE
DB—techniques to work with any data source that can be queried or updated.

To work with a new type of data source, such as a database or a file system, an
OLE DB provider is implemented. The underlying mechanism to work directly

,ch15.19741 Page 469 Thursday, February 22, 2001 1:33 PM

470 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

with the data is hidden from application developers. Instead, they can access a
standard set of interfaces that provide consistent data access regardless of the type
of data source.

OLE DB is powerful, but not necessarily trivial to use. So Microsoft provided a set
of COM objects that are simple to use and that provide a layer of functionality
above OLE DB. Best of all, these COM objects, known as ActiveX Data Objects, or
ADO, can be accessed in different programming languages, including automation-
only languages such as VBScript.

The ADO object model is a small set of objects that has only recently been
extended by adding two new objects. The basic ADO objects are the Connection
object, used to control the connection to a data source; the Command object, used
for executing a data command, including ones with parameters; and the Recordset
object, used to process the data returned from a data query.

To support these main objects, the Field object is used to hold field information
related to data returned in a Recordset, and the Parameter object is used to sup-
port input or output parameters to a parameterized command. Data source errors
are reported in the Error object.

Not all OLE DB providers implement the same functional support. To get OLE DB
provider-specific implementation details, each ADO object has a Properties collec-
tion consisting of Property objects, each of which contains a property name-value
pair with values specific to the provider being used.

Starting with ADO 2.5, two new objects have been added to the ADO model: the
Record and Stream objects. The Record object is used to work with folder-based
data, such as files in a filesystem, and email messages. The Stream object is used
to work with the binary stream associated with a file or a message.

Other ADO objects, DataControl and DataFactory, are associated with Remote Data
Service (RDS) and are not covered in this book.

This chapter demonstrates how you can access the Connection, Command, Record-
set, Record, and Stream objects from Visual C++ components.

The Connection Object
The Connection object is used to obtain a connection to a data source that can be
used throughout the lifetime of the component. Technically you don’t need to cre-
ate a Connection object—the Command, Record, and Recordset objects can con-
nect to the data source directly. However, the Connection object can be used
when more than one object is connecting to the data source, to use the same con-
nection for all data access. The Connection object can also be used to provide

,ch15.19741 Page 470 Thursday, February 22, 2001 1:33 PM

The Connection Object 471

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

more finite control of the connection, such as changing the default connection
timeout value.

The database used in these examples is the Weaver database,
described in Appendix B, The Weaver Database.

The Connection object has several properties and methods. For instance, to
change the timeout for a connection, you can set this value using:

pConnection->PutConnectionTimeout(30);

The most commonly accessed Connection property is the ConnectionString, and
the most commonly accessed method is Open, to open up a new data source con-
nection. You could also add the connection string into the Open method:

pConnection->Open(L"DSN=weaver;uid=sa;pwd=","","",NULL);

The four parameters of the Open method are the connection string, the user ID,
the password, and an open connection option—all of which are optional. How-
ever, if you don’t provide the connection information in the Open method, you’ll
have to specify it by setting the ConnectionString property:

pConnection->PutConnectionString(L"DSN=weaver;uid=sa;pwd=");

The connection string just shown uses a DSN, defined using the ODBC Adminis-
trator, to identify the data source. ODBC data sources, such as an Access data-
base, are accessed through the OLE DB Provider for ODBC Drivers. You can
specify an OLE DB provider directly in the connection string, such as the follow-
ing, using the OLE DB Provider for SQL Server:

pConnection->PutConnectionString(L"Provider=SQLOLEDB;server=FLAME;
 database=weaver;uid=sa;pwd");

You can execute a data command through the Connection object directly using the
Execute method. Or you can use the Connection object to establish a connection
for a Recordset or Command object, as will be demonstrated later in the chapter.

Earlier I mentioned that all ADO objects have a Properties collection containing
OLE DB provider information. In your first example for this chapter, you’ll create
an ASP component that creates an instance of the Connection object and accesses
its Properties collection. The component then enumerates through this collection,
listing the property name-value pairs by using the built-in ASP Response object.
This object is created as a component data member and is instantiated through
just-in-time (JIT) activation, implemented through the IObjectControl interface.

,ch15.19741 Page 471 Thursday, February 22, 2001 1:33 PM

472 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The database connection string is taken from the ASP Application object’s collec-
tions. The value is set within the global.asa file for the ASP application, as follows:

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
Sub Application_OnStart

Application("connection") = "Provider=SQLOLEDB;server=FLAME;
 database=weaver;uid=sa;pwd"
'Application("connection") = "DSN=weaver;uid=sa;pwd="

End Sub
</SCRIPT>

This script has both the Access and the SQL Server connection strings, but the SQL
Server connection is the one currently active. You’ll need to adjust the appropri-
ate connection string to reflect your own environment.

Create a new Visual C++ project using the ATL COM AppWizard. Name the project
asp1501, and don’t check the MTS or MFC options. When the project is gener-
ated, create a new ATL object using the MTS object template, and name it
connection. Choose the support for IObjectControl but not the option to sup-
port pooling.

You can also use the Simple Object option to create the component.
See Chapter 14, Creating C++ ASP Components, for information
about adding in support for IObjectControl manually.

Open the generated connection.h header file, move the generated object member
m_spObjectContext to the private section, and add two other members—one for
the ASP Response object, and one for a connection string:

private:
 CComPtr<IObjectContext> m_spObjectContext;
 CComPtr<IResponse>m_piResponse;
 _bstr_t m_bstrConnection;

The Response object is used to output the results of the component in your exam-
ple. You’ll also need to add in support for both COM+ Services and the ASP type
libraries by adding the following include files to connection.h :

#include <comsvcs.h>
#include <asptlb.h>
#include <comdef.h>

The last include file adds support for the COM helper objects such as _variant_t
and _bstr_t.

,ch15.19741 Page 472 Thursday, February 22, 2001 1:33 PM

The Connection Object 473

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Also add the COM+ Services library module to the project by accessing Project ➝

Settings from the menu, selecting the Link tab, and adding comsvcs.lib to the end
of the Library/Object Modules list.

To complete adding in support for JIT, modify the generated IObjectControl
methods to include the code shown in Example 15-1. In the code, the ASP
Response and Application objects are created, and the database connection string
retrieved from the Application object’s collections and assigned to the object’s data
member.

Example 15-1. JIT Implementation, Setting Response Object and Data Source Connection
String

HRESULT Cconnection::Activate()
{
 HRESULT hr = S_OK;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&m_spObjectContext);

 if (FAILED(hr)) return hr;

 // get Context Properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr)) return hr;

 // get Response property
 hr = pProps->GetProperty(_bstr_t("Response"), &vt) ;
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);
 if (FAILED(hr)) return hr;

 // get connection string
 CComPtr<IApplicationObject> pApplication;

 hr = pProps->GetProperty(_bstr_t("Application"),&vt);
 if (FAILED(hr)) return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IApplicationObject,
 (void**)&pApplication);
 if (FAILED(hr)) return hr;

,ch15.19741 Page 473 Thursday, February 22, 2001 1:33 PM

474 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Since you’re using JIT, you’ll need to add your new component to a COM+ appli-
cation before you access it from an ASP application. In fact, since all of the com-
ponents in this chapter use JIT, you might want to create a COM+ application for
use for this chapter. (See Chapter 5, COM+ Services and ASP Components and
Applications, for information about creating a COM+ application.)

Next, add a new parameterless method to the component using Class View, and
name it showProperties. Once the method prototype has been generated, add the
code shown in Example 15-2 to implement the method. The method creates an
instance of the Connection smart pointer, sets its connection string, and opens the
data source connection. Next, it calls the Connection object’s GetProperties
method to get the Properties collection. It gets the count of properties in the col-
lection and uses this to control a loop, in which the code accesses each property
from the collection and displays the property name and value.

 CComVariant vtConn;
 CComBSTR bstrName("connection");
 hr = pApplication->get_Value(bstrName,&vtConn);

 if (FAILED(hr)) return hr;

 m_bstrConnection = vtConn;

 return S_OK;
}

BOOL Cconnection::CanBePooled()
{

return TRUE;
}

void Cconnection::Deactivate()
{
 m_piResponse.Release();

m_spObjectContext.Release();
}

Example 15-2. Show All the Connection Properties

// print out contents
// of Connection’s Properties collection
STDMETHODIMP Cconnection::showProperties()
{
 _ConnectionPtr pConnection = NULL;
 PropertiesPtr props;
 PropertyPtr prop;
 _bstr_t bstrName;
 _variant_t varValue;

Example 15-1. JIT Implementation, Setting Response Object and Data Source Connection
String (continued)

,ch15.19741 Page 474 Thursday, February 22, 2001 1:33 PM

The Connection Object 475

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As Example 15-2 shows, to create the instance of the Connection smart pointer,
pass the name of the object to the __uuidof keyword. This gets the GUID of the
object, which is then passed to the CreateInstance function. The CreateInstance
method associated with the smart pointer internally calls the CoCreateInstance
function and queries for the interface, which is then wrapped within the smart
pointer.

If an error is thrown by any of the ADO methods, it is caught within the exception-
handling catch block, and the error description is written out to the ASP page.

The following ASP test page, asp1501.asp, has script to create the component and
call the showProperties method:

<%
Dim obj
Set obj = Server.CreateObject("asp1501.connection")

 try {
 pConnection.CreateInstance(__uuidof(Connection));

 // open connection
 pConnection->PutConnectionString(m_bstrConnection);
 pConnection->Open("","","",NULL);

 // get properties and print out values
 props = pConnection->GetProperties();
 long ct;
 ct=props->GetCount();
 for (long l = 0; l < ct; l++) {

 // get Property
 prop =props->GetItem(l);
 bstrName = prop->GetName();
 varValue = prop->GetValue();

 // write out values
 m_piResponse->Write(_variant_t(bstrName + L" = "));
 m_piResponse->Write(varValue);
 m_piResponse->Write(variant_t("
"));
 }
 // close connection
 pConnection->Close();
 }

 // exception handling
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

Example 15-2. Show All the Connection Properties (continued)

,ch15.19741 Page 475 Thursday, February 22, 2001 1:33 PM

476 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

obj.showProperties
Set obj = Nothing
%>

The result of accessing this ASP page is a list of the property name-value pairs for
the OLE DB provider. If you have support for both Access and SQL Server within
your system, change the connection string from one to the other in global.asa to
see how the property values change based on the OLE DB provider.

Aside from being able to connect to a data source or execute a specific command
against a data source, you can also use the Connection object to access schema
information about the data source from the OLE DB provider. You use the Open-
Schema method to receive a recordset object with whatever information you’re
seeking.

The first parameter to OpenSchema is a specific SchemaEnum value representing
the type of query you’re making. Allowable values can be adSchemaColumns to
get columns, adSchemaIndexes to get index information, adSchemaProcedures
to get stored procedure information, and so on. There are several values defined
in SchemaEnum you can use.

The second parameter to OpenSchema is an array that represents constraints on
the query and whose dimensions are predefined. The first array element repre-
sents the catalog name, the second the schema name, the third the table name,
and so on, based on the type of query performed. For instance, if you specify a
value of adSchemaTables in the first parameter, the array must have the follow-
ing four elements: catalog, schema, table name, and type.

To demonstrate how OpenSchema works, add a new method to asp1501.
connection, and name it showColumns. It does not take any parameters. In this
method, add code to use the OpenSchema method to return the columns for all of
the tables in the Weaver database and the numeric representation of their
datatypes; the source code appears in Example 15-3. The method outputs this
information in an HTML table.

For the example, showColumns accesses all of the table columns in the Weaver
database, so it uses the adSchemaColumns value as the first parameter to Open-
Schema, and a four-element array as the second parameter—all values but the first
are set to null. The first array element is the table catalog name, in this case
weaver. A SAFEARRAY is used to create the array, which is then assigned to a
VARIANT to pass as a parameter. The recordset returned from OpenSchema is pro-
cessed, and all table and column names and the column datatype are displayed in
an HTML table. A running check is kept of the table name to suppress its repeti-
tion for each column.

,ch15.19741 Page 476 Thursday, February 22, 2001 1:33 PM

The Connection Object 477

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 15-3. Show All Table Columnswith the Connection OpenSchema Method

STDMETHODIMP Cconnection::showColumns()
{
 _ConnectionPtr pConnection = NULL;
 _RecordsetPtr pRecs;

 _bstr_t bstrName;
 _variant_t varValue;

 try {

 // open connection
 pConnection.CreateInstance(__uuidof(Connection));
 pConnection->PutProvider(L"SQLOLEDB");
 pConnection->PutConnectionString(m_bstrConnection);
 pConnection->Open("","","",NULL);

 SAFEARRAY FAR* psa = NULL;
 SAFEARRAYBOUND rgsabound;
 _variant_t var;
 _variant_t Array;

 // create safearray
 rgsabound.lLbound = 0;
 rgsabound.cElements = 4;
 psa = SafeArrayCreate(VT_VARIANT, 1, &rgsabound);

 // add array items
 var.vt = VT_EMPTY;
 long ix;
 ix = 1;
 SafeArrayPutElement(psa, &ix, &var);
 ix= 2;
 SafeArrayPutElement(psa, &ix, &var);
 ix = 3;
 SafeArrayPutElement(psa, &ix, &var);
 ix= 0;
 var.vt = VT_BSTR;
 char * s1 = "weaver";
 _bstr_t str = s1;
 var.bstrVal=str;
 SafeArrayPutElement(psa, &ix, &var);
 Array.vt = VT_ARRAY|VT_VARIANT;
 Array.parray = psa;

 // get records
 _variant_t table_name;
 _variant_t curr_table = "";
 _variant_t column_name;
 _variant_t data_type;
 pRecs = pConnection->OpenSchema(adSchemaColumns,&Array);

 // set up output table

,ch15.19741 Page 477 Thursday, February 22, 2001 1:33 PM

478 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Regardless of what database you connect to (Access or SQL Server), the output
from this new component method should be the same. Try this for yourself by
accessing the following ASP test page, asp1502.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp1501.connection")

obj.showColumns
Set obj = Nothing
%>

This last example used the Recordset object to process the results of the Open-
Schema method call. You can try more Recordset functionality in the next section.

 m_piResponse->Write(_variant_t("<table border=2>"));
 while(!(pRecs->EndOfFile)) {

 // get values
 table_name = pRecs->Fields->GetItem("TABLE_NAME")->GetValue();
 column_name = pRecs->Fields->GetItem("COLUMN_NAME")->GetValue();
 data_type = pRecs->Fields->GetItem("DATA_TYPE")->GetValue();

 // output results
 m_piResponse->Write(_variant_t("<TR><TD>"));
 if (table_name != curr_table) {
 curr_table = table_name;
 m_piResponse->Write(table_name);
 }
 m_piResponse->Write(_variant_t("</TD><TD>"));
 m_piResponse->Write(column_name);
 m_piResponse->Write(_variant_t("</TD><TD>"));
 m_piResponse->Write(data_type);
 m_piResponse->Write(_variant_t("</TD></TR>"));

 pRecs->MoveNext();
 }
 m_piResponse->Write(_variant_t("</table>"));

 // close connection
 pRecs->Close();
 pConnection->Close();

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

return S_OK;
}

Example 15-3. Show All Table Columnswith the Connection OpenSchema Method (continued)

,ch15.19741 Page 478 Thursday, February 22, 2001 1:33 PM

The Recordset Object 479

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Recordset Object
If your operation on the data source results in data being returned, you’ll use the
Recordset object to process this data. The Recordset object can be created by call-
ing the Execute method of either the Connection or the Command object, or the
object can be instantiated directly and the query can be executed in the Recordset
object’s Open method.

The Recordset object has several methods and properties, mostly having to do
with defining the type of query being performed and how the data is processed.
Some of the recordset properties must be set before a recordset is opened, and
others can be set afterward. For instance, the CursorLocation and CursorType
properties, as well as the ActiveConnection and LockType properties, must be set
before the recordset is opened. The CursorLocation property determines whether
the OLE DB client cursor is used with the result set or whether the cursor is pro-
vided by the driver or data source. The CursorType property sets the type of cur-
sor used and determines the visibility of changes to the result set to other
application users. The ActiveConnection property is either a Connection object or
a connection string, and the LockType property sets the record locking.

Other properties can be, or must be, set after the result set is retrieved. The Filter
and Sort properties filter and sort the records, respectively; the PageSize property
sets the number of records showing per page; and the AbsolutePage property sets
(or returns) the current page.

Most of the Recordset object’s properties can be both read and modified, but
some, such as State (whether the recordset is open or closed) are set by the OLE
DB provider.

To demonstrate properties that are set before and after a recordset is opened, cre-
ate a new Visual C++ project and name it asp1502. Use the ATL COM AppWizard
to create the project, and don’t check the MTS or MFC options.

Create a new ATL object using the MTS (or Simple) object option, as you did with
asp1501. Name this object page, and add in support for IObjectControl (but
not for pooling).

If you use the MTS option, your component can’t support pooling
because this technology requires that the component support aggre-
gation, and MTS components are created without support for aggre-
gation. See Chapter 14 for more on creating poolable components.

Once the new component files are generated, modify the page.h and page.cpp files
to add support for JIT, as discussed in the last section and shown in Example 15-1.

,ch15.19741 Page 479 Thursday, February 22, 2001 1:33 PM

480 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This includes adding the comsvcs.lib file to the project’s library module list, add-
ing include statements to the class header file, and creating the private class data
members (m_spObjectContext, m_piResponse, and m_bstrConnection).

Add the import directive for ADO to the C++ file, just after the include file section:

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \
 no_namespace rename("EOF", "EndOfFile")

This new component accesses the WebPage table and displays the table’s entries
as hypertext links for the user to click on and open the specific page. Instead of
listing all of the records within a specific web page, though, the Recordset object’s
page properties are used to create a multipage application containing groups of
WebPage entries.

To improve performance and prevent unnecessary hits against the database, the
recordset containing the WebPage rows is accessed once and persisted to a file.
This file is then used when each page of the set is accessed, rather than having to
go back to the database each time.

To create the persisted recordset, add a method to your new component named
createRecordset. This method has no parameters. Add the code shown in
Example 15-4 to query the WebPage table for all entries and to save the resulting
set of data to a file using the Recordset object’s Save method. The data is saved in
the ADTG (Microsoft Advanced Data Tablegram) format.

To ensure that the database query isn’t made if the persisted recordset file already
exists, the createRecordset method uses standard I/O to test if the file exists. If it
exists, the method exits before querying the database. To add support for stan-
dard I/O, add the following include statements just after the ADO import direc-
tive in page.cpp:

#include <stdio.h>
#include <share.h>

The query used with the Recordset object joins the WebPage and Dictionary tables
to access data from both tables. The recordset is disconnected before it is persisted,
so the CursorLocation property must be set to adUseClient in order to disconnect
the recordset. Not doing so will result in an error when the recordset’s ActiveCon-
nection property is set to NULL (disconnected) after the query has been made.

You don’t have to disconnect the recordset before saving the data.
Normally, you would only disconnect a recordset that’s being kept
active for a time, such as one that’s returned to an ASP script from a
component method. This way, the active connection isn’t held
longer than necessary.

,ch15.19741 Page 480 Thursday, February 22, 2001 1:33 PM

The Recordset Object 481

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To disconnect the recordset, the Recordset object’s PutRefActiveConnection
method is used with a NULL parameter. PutRefActiveConnection sets the Active-
Connection property with a pointer to the Connection object rather than a variant.
Using NULL disconnects the recordset from the connection.

Example 15-4. Persisting a Recordset to a File

STDMETHODIMP Cpage::createRecordset()
{
 _RecordsetPtr pRecordset = NULL;
 _ConnectionPtr pConn = NULL;

 // test to see if file exists
 // if it does, exit method
 FILE *stream;
 if((stream = _fsopen("c:\\datasets\\set.adtg", "rt", _SH_DENYWR))
 != NULL) {
 fclose(stream);
 return S_OK;
 }

 try {
 pConn.CreateInstance(__uuidof(Connection));
 pRecordset.CreateInstance(__uuidof(Recordset));

 // open connection
 pConn->Open(m_bstrConnection,"","",NULL);

 // open recordset
 _bstr_t bstrSource ="select WebPage.name, filename, page_type_cd, " +
 _bstr_t("web_location from WebPage, Directory ") +
 _bstr_t("where directory_id = Directory.id");

 pRecordset->PutCursorLocation(adUseClient);
 pRecordset->Open(_variant_t(bstrSource),pConn.GetInterfacePtr(),
 adOpenForwardOnly, adLockReadOnly,adCmdText);

 // disconnect recordset
 pRecordset->PutRefActiveConnection(NULL);

 // close connection
 pConn->Close();

 // save to file
 pRecordset->Save(_variant_t("c:\\datasets\\set.adtg"),adPersistADTG);
 pRecordset->Close();

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

,ch15.19741 Page 481 Thursday, February 22, 2001 1:33 PM

482 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To use the persisted recordset, create a second method called showPage, passing
in the page size and current page as input parameters and the page count as an
output parameter, as follows:

[in] int iPageSize, int iCurrentPage, [out,retval] int* iPageCount

This method, which is shown in Example 15-5, accesses the persisted recordset
and sets the PageSize property to iPageSize, the page size value passed in as a
parameter. Doing this sets the number of records that are contained within a
dataset page. (A page is a numbered grouping of records that can be handled as a
unit.) Setting the AbsolutePage property to iCurrentPage, the value of the cur-
rent page parameter, determines which page is currently being processed in the
method.

In the method, the recordset is opened, the page properties are set, and the
records in the current page are traversed. The data within the records is written
out to an HTML table, with each web page enclosed within a hypertext link to
access the web page. The page count is returned from the method.

Example 15-5. Display WebPages Contained in a Persisted Recordset

STDMETHODIMP Cpage::showPage(int iPageSize, int iCurrentPage, int* iPageCount)
{
 _RecordsetPtr pRecordset = NULL;

 try {
 pRecordset.CreateInstance(__uuidof(Recordset));

 // open recordset
 pRecordset->Open(OLESTR("c:\\datasets\\set.adtg"),vtMissing,
 adOpenForwardOnly, adLockReadOnly,adCmdUnknown);

 // adjust paging
 pRecordset->PutPageSize(iPageSize);
 pRecordset->PutAbsolutePage((PositionEnum)iCurrentPage);

 int iCt = 1;

 // cycle through page accessing rows
 while(iCt <= iPageSize) {
 m_piResponse->Write(_variant_t("<p><a href='http://"));
 m_piResponse->Write(pRecordset->Fields->GetItem(
 _variant_t("web_location"))->GetValue());
 m_piResponse->Write(_variant_t("/"));
 m_piResponse->Write(pRecordset->Fields->GetItem(
 _variant_t("filename"))->GetValue());
 m_piResponse->Write(_variant_t("'>"));
 m_piResponse->Write(pRecordset->Fields->GetItem(
 _variant_t("name"))->GetValue());
 m_piResponse->Write(_variant_t("</p>"));

 pRecordset->MoveNext();

,ch15.19741 Page 482 Thursday, February 22, 2001 1:33 PM

The Recordset Object 483

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The data in the recordset’s rows are accessed directly from the Fields collection by
calling GetItem on Fields and then GetValue to get the actual value of the data.
The Recordset object’s MoveNext method traverses the rows, and the EndOfFile
property tests whether the recordset is at the end of the rowset.

To test these two new methods, the ASP test script shown in Example 15-6,
asp1503.asp, creates an instance of the new component and checks to see if a cur-
rent page value is stored in the Request object’s QueryString collection. If it isn’t,
the current page is set to 1—the first page—and the component’s createRecordset
method is called. Then the showPage method is called and is passed the current
page and the page size (a value of 5, or five records per page). After the Record-
set’s data is displayed, a menu is created at the bottom of the page with links to
other pages of data. Clicking on one of these links calls the ASP test page again,
but this time the current page value is set.

 iCt++;
 if (pRecordset->EndOfFile)
 iCt = iPageSize + 1;
 }
 // return count of pages
 *iPageCount = pRecordset->GetPageCount();

 // close
 pRecordset->Close();
 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;

}

Example 15-6. ASP Script to Display WebPage Entries in a Multipage Application Interface

<%
Dim obj
Set obj = Server.CreateObject("asp1502.page")

' get current page, if any
Dim currPage, pageCount
currPage = CInt(Request.QueryString("currPage"))

' if first time accessing page
If currPage <= 0 Then
 currPage = 1
 obj.createRecordset
End IF
' show pages
pageCount = obj.showPage(5,currPage)

Example 15-5. Display WebPages Contained in a Persisted Recordset (continued)

,ch15.19741 Page 483 Thursday, February 22, 2001 1:33 PM

484 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As you can see in Figure 15-1, each of the WebPage records is created as a link,
accessible directly from the page.

The one problem with this example is that all of the WebPage records are accessi-
ble, including those normally not opened in a browser window, such as a Java-
Script or CSS file. In addition, the pages are out of order and are listed by their
entry in the database rather than alphabetically by the page name.

To fine-tune this application, you’ll want to display only those files that can be
opened within the browser, such as ASP, XML, or HTML pages. This fine-tuning
can occur within the SQL query, by specifying a WHERE clause that accesses only

' show page index
Response.Write "<hr> Page: "
For i = 1 to pageCount
 If i <> currPage Then
 Response.Write "<a href='asp1503.asp?currPage=" & _
 i & "'>" & i & ""
 Else
 Response.Write currPage
 End If
 Response.Write " "
Next
%>

Figure 15-1. Displaying web page contents in an accessible, multipage format

Example 15-6. ASP Script to Display WebPage Entries in a Multipage Application Interface

,ch15.19741 Page 484 Thursday, February 22, 2001 1:33 PM

The Recordset Object 485

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

pages with a certain type or types of page codes. The pages can also be ordered
in the SQL through the use of the ORDER BY clause. However, you can also fine-
tune the recordset after the results are returned by using the Recordset Filter and
Sort properties.

Create a new method on asp1502.page and name it showSpecificPage. Like
showPage, it has three parameters:

[in] int iPageSize, int iCurrentPage, [out,retval] int* iPageCount

This new method, which is shown in Example 15-7, is identical to that shown in
Example 15-5, except that the recordset is both filtered and sorted before the
records are processed. In the code, the rows are filtered on the page_type_cd
field (accepting only HTM, APP, or XML pages) and then are sorted on the page
names.

Example 15-7. Displaying Records After First Filtering and Sorting Them

STDMETHODIMP Cpage::showSpecificPage(int iPageSize, int iCurrentPage, int *iPageCount)
{
 _RecordsetPtr pRecordset = NULL;

 try {
 pRecordset.CreateInstance(__uuidof(Recordset));

 // open recordset
 pRecordset->Open(_variant_t("c:\\datasets\\set.adtg"),vtMissing,
 adOpenForwardOnly, adLockReadOnly,adCmdUnknown);

 // set sort and filter
 pRecordset->PutFilter(OLESTR("page_type_cd = 'HTM'
 or page_type_cd = 'APP'
 or page_type_cd = 'XML'"));
 pRecordset->PutSort(L"name ASC");

 // paging properties
 pRecordset->PutPageSize(iPageSize);
 pRecordset->PutAbsolutePage((PositionEnum)iCurrentPage);

 int iCt = 1;

 // cycle through page processing rows
 while(iCt <= iPageSize) {
 m_piResponse->Write(_variant_t("<p><a href='http://"));
 m_piResponse->Write(pRecordset->Fields->GetItem(
 _variant_t("web_location"))->GetValue());
 m_piResponse->Write(_variant_t("/"));
 m_piResponse->Write(pRecordset->Fields->GetItem(
 _variant_t("filename"))->GetValue());
 m_piResponse->Write(_variant_t("'>"));
 m_piResponse->Write(pRecordset->Fields->GetItem(
 _variant_t("name"))->GetValue());

,ch15.19741 Page 485 Thursday, February 22, 2001 1:33 PM

486 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Try out this new method with the ASP test page asp1504.asp.

Before leaving this section on the ADO Recordset object, I want to point out the
technique used in the previous examples to access the returned data. As you have
seen, the examples access the data values as variants directly from the Recordset
object’s Fields collection. However, with Visual C++, there is another approach
you can use to access recordset data: using the IADORecordBinding interface.

The IADORecordBinding Interface
The IADORecordBinding interface is a Visual C++ extension to ADO that pro-
vides a way for you to bind the recordset data with a C++ class and to access the
data as class members. As you traverse the recordset associated with the Record-
set object, the data in the class members changes to reflect the current row.

To use this technique, you create a C++ class that’s derived from the CADO-
RecordsetBinding class and use the BEGIN_ADO_BINDING and END_ADO_BINDING
macros to define the bound fields. Within these two macros, the binding is han-
dled through another macro, depending on the type of data in the field. For
instance, to bind to VARCHAR data, which is a variable-length character field, use
the ADO_VARIABLE_LENGTH_ENTRY macro, providing the information necessary to
perform the binding. Other macros are ADO_FIXED_LENGTH_ENTRY and ADO_
NUMERIC_ENTRY, and there are variations of the macros based on the number of
parameters passed into the macro call. The fields are bound to data members cre-
ated in the new class.

 m_piResponse->Write(_variant_t("</p>"));

 pRecordset->MoveNext();
 iCt++;
 if (pRecordset->EndOfFile)
 iCt = iPageSize + 1;
 }

 // return page count
 *iPageCount = pRecordset->GetPageCount();

 // close
 pRecordset->Close();

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

Example 15-7. Displaying Records After First Filtering and Sorting Them (continued)

,ch15.19741 Page 486 Thursday, February 22, 2001 1:33 PM

The IADORecordBinding Interface 487

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To try out this data-binding technique, create a new header file for your project
and name it CTypeTable.h. Add it to the project by right clicking on the Header
Files folder in FileView and selecting Add Files to Folder, then add the code
shown in Example 15-8 to your header file. The code in the header file creates
your data bound class. The query used to create the recordset example is a com-
plete table view that uses the adCmdTable command type and passes the name of
the table when opening the recordset. In the example, the query is performed
against any one of the Weaver database code tables, so the only fields that are
returned are the code and the matching description. Your new class, named
CTypeTable, has only two data members.

Notice in the example that an include file, icrsint.h, is added to the file. This
header file adds support for the CADORecordBinding class and the macros dis-
cussed previously and prevents compiler errors.

Example 15-8. C++ Class Used for Data Binding

#ifndef __TYPE_H_
#define __TYPE_H_

#include "icrsint.h"

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \
 no_namespace rename("EOF", "EndOfFile")

class CTypeTable : public CADORecordBinding
{
BEGIN_ADO_BINDING(CTypeTable)

 // code
 ADO_VARIABLE_LENGTH_ENTRY2(1, adVarChar, m_code,
 sizeof(m_code),lau_cdStatus, FALSE)

 ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_description,
 sizeof(m_description), lau_descriptionStatus, FALSE)

END_ADO_BINDING()

public:

 CHAR m_code[4];
 ULONG lau_cdStatus;

 CHAR m_description[51];
 ULONG lau_descriptionStatus;

};
#endif

,ch15.19741 Page 487 Thursday, February 22, 2001 1:33 PM

488 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The macro used for binding, ADO_VARIABLE_LENGTH_ENTRY2, takes the follow-
ing parameters:

• The ordinal position of the field (in the selection list or table if a full table
query is made)

• The datadatatypetype

• The buffer to hold the data (the class member)

• The size of the buffer

• A status field that can be used to check the status of the data access

• A true/false flag to set whether the value can be modified or not; read-only
data is set to FALSE

Once the class is defined, add the following reference to the header file to your
page.cpp file:

#include "CTypeTable.h"

Add a new method to the page component and name it showTypes. The only
parameter it has is an input BSTR value containing the name of the code table:

[in] BSTR bstrTableName

The code for the method is shown in Example 15-9. In the method, the table
name is passed as the first parameter to the Recordset object’s Open method, and
the command type is set to adCmdTable. However, after the recordset is opened,
the Recordset pointer’s QueryInterface method is called, passing in a GUID of
IADORecordBinding to obtain a reference to the IADORecordBinding interface.
The result set is then bound to the C++ class through a call to BindToRecordset on
this interface, passing in a reference to the C++ class. As the recordset is tra-
versed, the code and description for each row are accessed through the C++ class
data members and output to the web page.

Example 15-9. Using Visual C++ Extensions and Data Binding

STDMETHODIMP Cpage::showTypes(BSTR bstrTableName)
{
 _RecordsetPtr pRecordset = NULL;
 IADORecordBinding *typeRs = NULL;
 CTypeTable tble;

 try {
 pRecordset.CreateInstance(__uuidof(Recordset));

 // open recordset
 pRecordset->Open(bstrTableName,m_bstrConnection,
 adOpenForwardOnly, adLockReadOnly,adCmdTable);

 pRecordset->QueryInterface(__uuidof(IADORecordBinding),
 (LPVOID*)&typeRs);

,ch15.19741 Page 488 Thursday, February 22, 2001 1:33 PM

The IADORecordBinding Interface 489

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the recordset is processed, it’s closed and the binding is released.

Test this new component method against all of the Weaver code tables using the
following script, found in asp1505.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1502.page")

Response.Write "<h3>PageType</h3>"
obj.showTypes "PageType"

Response.Write "<h3>StyleType</h3>"
obj.showTypes "StyleType"

Response.Write "<h3>MediaType</h3>"
obj.showTypes "MediaType"

Response.Write "<h3>ComponentType</h3>"
obj.showTypes "ComponentType"

Response.Write "<h3>XmlAuxType</h3>"
obj.showTypes "XmlAuxType"
%>

The result of running this ASP script is a page similar to that shown in Figure 15-2.

 typeRs->BindToRecordset(&tble);

 // process rows
 while(!(pRecordset->EndOfFile)) {
 m_piResponse->Write(_variant_t(tble.m_code));
 m_piResponse->Write(_variant_t(" = "));
 m_piResponse->Write(_variant_t(tble.m_description));
 m_piResponse->Write(_variant_t("
"));

 pRecordset->MoveNext();
 }
 // close
 pRecordset->Close();

 // release binding
 typeRs->Release();
 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

Example 15-9. Using Visual C++ Extensions and Data Binding (continued)

,ch15.19741 Page 489 Thursday, February 22, 2001 1:33 PM

490 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The queries used in the examples have not used a WHERE clause, nor have they
used parameters. If you want to use parameters with a query or with a data source
update, you’ll need to use the ADO Command object, discussed next.

The Command Object
The Command object is used to execute a specific data source command—a
query, a stored procedure call, or a data source update. As with the Connection
object, the Command object’s Execute method is used to execute the data com-
mand, and any data returned from the command has to be processed through the
Recordset object. The Connection object can also execute a command that may or
may not return a recordset. However, the Command object differs from the Con-
nection object in allowing you to use parameters.

The Command object has a collection unique to it that consists of Parameter
objects. These objects can be set and changed before the command is executed
without having to re-create or rebuild the command. Best of all, when used in
connection with the Command.Prepared property, the command can be compiled
once and then executed many times—improving the performance of the applica-
tion using the command.

Figure 15-2. Results from accessing Weaver code tables using data binding

,ch15.19741 Page 490 Thursday, February 22, 2001 1:33 PM

The Command Object 491

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In a more traditional client/server environment, the Command object can be pre-
compiled, and different parameter values can be passed to it based on the user’s
actions. In an ASP environment, the Command object is discarded before the web
page with the command results is ever returned to the user. The user’s actions
result in a second instance of the Command object being created, rather than the
first one being reused.

Still, the Command object’s Parameters collection and its Prepared property can be
handy. For instance, if your application has more than one variation of a query to
make, you can use the Command object to optimize the query, run it, and pro-
cess the results—all before returning the page to the client.

To try out working with the Command object from a Visual C++ component, cre-
ate a new Visual C++ project using the ATL AppWizard, and name the project
asp1503. Do not select either MFC or MTS support.

Create a new component using the ATL Object Wizard, and name the component
cmnd. Add in support for the Response object through the IObjectControl inter-
face to access the connection string from the Application object by following the
process described previously in Example 15-1. Add the code shown in
Example 15-10 to your new cmnd.cpp file, and be sure to make the necessary
adjustments to add header files and private data members in the cmnd.h header
file.

Add the ADO import directive to the component, but this time add it to the com-
ponent’s header file, cmnd.h, just after the COM+ Services and ASP header files:

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \
 no_namespace rename("EOF", "EndOfFile")

Add a new method named showPages to the component that takes a pointer to a
VARIANT array, as follows:.

VARIANT *pvarTypes

This array contains page type codes, each of which is used within a query at sepa-
rate times.

The code for showPages appears in Example 15-10. In the method, an input
parameter for the Command object is defined using the CreateParameter method,
and it is added to the Command object’s Parameters collection through the
Append method. The Command object’s Prepared property is set to true to pre-
compile the Command object’s query before the first Execute method call and to
use this precompiled command on each subsequent command execution.

The incoming parameter array is copied to a SAFEARRAY structure for processing,
and each page type code is pulled from the array and passed as a parameter value
to the precompiled Command object.

,ch15.19741 Page 491 Thursday, February 22, 2001 1:33 PM

492 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 15-10. Using a Precompiled Command and Parameters to Query the
Database

STDMETHODIMP Ccmnd::showPages(VARIANT *pvarTypes)
{
 HRESULT hr;

 _CommandPtr pCommand = NULL;
 _ParameterPtr pprmPageType = NULL;
 _RecordsetPtr pPages = NULL;

 // set command properties
 pCommand.CreateInstance(__uuidof(Command));
 pCommand->PutPrepared(true);
 pCommand->PutCommandText(
 L"select name from WebPage where page_type_cd = ?");
 pCommand->PutActiveConnection(_variant_t(m_bstrConnection);

 // create parameter
 pprmPageType = pCommand->CreateParameter(L"page_type_cd",
 adChar,adParamInput,3);
 pCommand->Parameters->Append(pprmPageType);

 // wrap with _variant_t for resource allocation and
 // deallocation
 _variant_t vtArray (pvarTypes);

 VARTYPE vt = V_VT(&vtArray);

 // if array, process as SAFEARRAY
 if (vt & VT_ARRAY)
 {

 LONG lLBound, lUBound;
 SAFEARRAY * psa;
 _variant_t vtVal;

 // copy variant array to SAFEARRAY
 SafeArrayCopy(*(vtArray.pparray), &psa);

 // get dimensions of array
 // get array bounds
 hr = SafeArrayGetLBound(psa, 1, &lLBound);
 if (FAILED(hr))
 return hr;
 hr = SafeArrayGetUBound(psa, 1, &lUBound);
 if (FAILED(hr))
 return hr;

 // get each value, print out
 for (long l = lLBound; l <= lUBound; l++) {

 hr = SafeArrayGetElement(psa, &l, &vtVal);
 if (FAILED(hr))
 return hr;

,ch15.19741 Page 492 Thursday, February 22, 2001 1:33 PM

The Command Object 493

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Finally, the results of running the command are passed to another method, show-
PageInfo, for output to an HTML table. This method is added manually to the
component’s header file, cmnd.h, to the private section after the ObjectContext
and Response objects, as follows:

private:
CComPtr<IObjectContext> m_spObjectContext;

 CComPtr<IResponse>m_piResponse;
 void showPageInfo(_RecordsetPtr pPages, _variant_t vtVal);

The method references the ADO _RecordsetPtr smart pointer, which is why the
ADO import directive needed to be added to the component’s header file.

The new method is not exposed on the interface for external access, which is why
you won’t use the Class View page to add the method. The only reason the func-
tion is created as a class method is to give the method access to the component’s
private data members. Add the code for the method, shown in Example 15-11, to
the cmnd.cpp file, just after the code for the showPages method.

 try {
 // get parameter value and execute command
 pprmPageType->Value = vtVal;

 // process results
 pPages = pCommand->Execute(NULL,NULL,adCmdText);
 showPageInfo(pPages,vtVal);

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }
 }
 // cleanup
 SafeArrayDestroy(psa);
 }

return S_OK;
}

Example 15-11. Method to Process the Recordset

void Ccmnd::showPageInfo(_RecordsetPtr pPages, _variant_t vtVal) {

 // print out recordset
 m_piResponse->Write(_variant_t("<h3>"));
 m_piResponse->Write(vtVal);
 m_piResponse->Write(_variant_t("</h3>"));
 m_piResponse->Write(_variant_t("<table border='1'
 cellpadding='5' cellspacing='0'>"));

 while (!(pPages->EndOfFile)) {

Example 15-10. Using a Precompiled Command and Parameters to Query the
Database (continued)

,ch15.19741 Page 493 Thursday, February 22, 2001 1:33 PM

494 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the new component method using asp1506.asp, containing the following ASP
script:

<%
Dim obj
Set obj = Server.CreateObject("asp1503.cmnd")

Dim ary(2)
ary(0) = "APP"
ary(1) = "HTM"
ary(2) = "STY"

obj.showPages (ary)
%>

An array of page type codes is passed as the parameter to the showPages method.
The result of running the page is three HTML tables with WebPage rows that
match the page type codes.

A more common use of Command parameters is to call stored procedures. Stored
procedures can have input, output, and return parameter values, and the only way
to access the output and return parameters is to use the Command object.

To test parameters with stored procedure calls, create a stored procedure in the
SQL Server version of the Weaver database (Access does not support stored proce-
dure calls). This procedure is called sp_getpages, and its syntax is:

CREATE PROCEDURE [sp_getpages]
(@output integer OUTPUT,
@page_type CHAR(3))
AS
BEGIN
SELECT name, filename
FROM WebPage
WHERE page_type_cd = @page_type
SELECT @output = COUNT(*)
FROM WebPage
WHERE page_type_cd = @page_type
IF (@output > 0)
 RETURN 0
ELSE

 m_piResponse->Write(_variant_t("<tr><td>"));
 m_piResponse->Write(pPages->Fields->GetItem(
 _variant_t("name"))->GetValue());
 m_piResponse->Write(_variant_t("</td></tr>"));
 pPages->MoveNext();
 }

 m_piResponse->Write(_variant_t("</table>"));
}

Example 15-11. Method to Process the Recordset (continued)

,ch15.19741 Page 494 Thursday, February 22, 2001 1:33 PM

The Command Object 495

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 RETURN 99
END
GO

This stored procedure takes one input parameter, a page type code, and returns
an output parameter with the number of rows in the table that match the query.
Additionally, the stored procedure also returns a value signaling whether any rows
were found (a value of zero) or not (a value of 99).

Create a new method for asp1503.cmnd and name it showPagesWithParm. This
method has two parameters, an input BSTR value for the page type code and an
output BSTR pointer containing a message about the number of rows found:

[in] BSTR bstrType, [out,retval] BSTR* bstrRows

In the component method code, which is shown in Example 15-12, three parame-
ters are created for the three parameters associated with the stored procedure call.
The first parameter is the return value, defined with the adParamReturnValue
type code; the second parameter is the output value, defined with the
adParamOutput type; and the third is the input parameter.

Once the stored procedure call has been made, the showPageInfo method is
called to process the results. Afterward, the smart pointer reference wrapping the
Recordset object is released with a call to Release. A condition of accessing output
parameters is that the recordset results must be processed, and the cursor must be
beyond the rowset’s end-of-file. A further requirement in Visual C++ is that the
recordset must also be released. Once the recordset is released, the output and
return parameters are accessed from the Parameter objects and their values pro-
cessed.

Example 15-12. Using Input, Output, and Return Parameters

STDMETHODIMP Ccmnd::showPagesWithParm(BSTR bstrType, BSTR *bstrRows)
{

 _CommandPtr pCommand = NULL;
 _ParameterPtr pprmPageType = NULL;
 _ParameterPtr pReturn = NULL;
 _ParameterPtr pOutput = NULL;
 _RecordsetPtr pPages = NULL;
 ParametersPtr pParms = NULL;

 _variant_t vtConn = m_bstrConnection;
 _bstr_t bstrReturn;
 bstrReturn = L"No rows were found for page type code";

 // set command properties
 pCommand.CreateInstance(__uuidof(Command));
 pCommand->PutPrepared(true);
 pCommand->PutCommandText(L"sp_getpages");

,ch15.19741 Page 495 Thursday, February 22, 2001 1:33 PM

496 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice in the example code that the parameter values are pulled from the Parame-
ter objects and not from the Command object.

To test this last Command object example, access the asp1507.asp test page, con-
taining the following ASP script:

 pCommand->PutActiveConnection(vtConn);

 try {

 // create parameters
 pReturn = pCommand->CreateParameter(L"return",
 adInteger,adParamReturnValue,NULL);
 pCommand->Parameters->Append(pReturn);

 pOutput = pCommand->CreateParameter(L"output",
 adInteger,adParamOutput,NULL);
 pCommand->Parameters->Append(pOutput);

 pprmPageType = pCommand->CreateParameter(L"page_type_cd",
 adChar,adParamInput,3);
 pCommand->Parameters->Append(pprmPageType);

 //set value
 pprmPageType->Value = _variant_t(bstrType);

 pPages = pCommand->Execute(NULL,NULL,adCmdStoredProc);
 showPageInfo(pPages,_variant_t(bstrType));

 // release recordset to get output paramters
 pPages.Release();

 // get output and return parms
 _variant_t vtReturn;
 _variant_t vtRows;

 vtReturn = pReturn->GetValue();
 vtRows = pOutput->GetValue();

 if (vtReturn.lVal > 0)
 bstrReturn = L"No rows were found for page type code";
 else
 bstrReturn = L"Number of rows found was " + _bstr_t(vtRows);
 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 *bstrRows = bstrReturn;

 return S_OK;
}

Example 15-12. Using Input, Output, and Return Parameters (continued)

,ch15.19741 Page 496 Thursday, February 22, 2001 1:33 PM

Stream and Record Objects 497

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

<%
Dim obj
Set obj = Server.CreateObject("asp1503.cmnd")

Dim code, return

' existing page code
code = "SCR"
return = obj.showPagesWithParm(code)
Response.Write "<P>"
Response.Write return & "</p>"

' nonexistent page code
code = "BRB"
return = obj.showPagesWithParm(code)
Response.Write "<P>"
Response.Write return & "</p>"
%>

The test page sends both an existing page code and a non-existent page code to
demonstrate what happens when values are found or not. Figure 15-3 shows the
result.

I mentioned earlier in the chapter that the ADO object model has two new objects
that were introduced with ADO 2.5: the Record and Stream objects. The next, and
last, section of this chapter takes a look at how to work with these objects in
Visual C++ ASP components.

Stream and Record Objects
Accessing files and messages from folders is a different data access operation than
querying data from a relational database, primarily because of the hierarchical
nature of filesystems. To support operations on this type of data, Microsoft intro-
duced the Stream and Record objects in ADO Version 3.5. The Record object rep-
resents a file or folder in a filesystem. With the new OLE DB Provider for Internet
Publishing, you can even reference a file or folder via an URL. The Stream object
is used to manipulate the bytes that make up a file, regardless of whether the file
is in binary or text format.

You can use the Record and Recordset objects together. For instance, you can
obtain a reference to a folder using the Record object and then traverse the
folder’s files using the Recordset object. You can also use the Record and the
Stream objects together. As an example, you can create a reference to an existing
file with the Record object and copy it using the Stream object.

To demonstrate the capabilities provided by the Record and Stream objects, you’ll
create a new Visual C++ component and add two methods to it. The first method
results in a listing of files for a given URL and demonstrates using the Recordset

,ch15.19741 Page 497 Thursday, February 22, 2001 1:33 PM

498 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

object with the Record object. The second method copies a file by opening the
source file, reading its contents, and then writing the contents to another file. This
method demonstrates using the Record and Stream objects together.

First, create the Visual C++ project and name it asp1504. Use the ATL COM App-
Wizard, and don’t check either the MFC or MTS options. When the project is gen-
erated, create a new ATL object named newguys, in honor of the new ADO
objects. You’ll add support for the ASP Response object again to this component,
except that you won’t set the ADO connection string from the Application object—
the connection string used for these examples is not the same as you’ve used for
all the others in this chapter. So add support for IObjectControl, but add only
the m_piResponse member and alter the Activate method code to that shown in
Example 15-13.

Figure 15-3. Results of component method call that uses input, output, and return
parameters with a stored procedure call

,ch15.19741 Page 498 Thursday, February 22, 2001 1:33 PM

Stream and Record Objects 499

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Add the #import directive to the newly generated C++ file, newguys.cpp, just after
the include files section. You should also add an inline command that generates a
COM error exception if an operation fails (an HRESULT value other than zero, sig-
nifying failure):

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \
 no_namespace rename("EOF", "EndOfFile")

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);};

In all the examples shown so far, when an ADO object is created using CreateIn-
stance, no error handling has been used in case the CreateInstance fails:

 pCommand.CreateInstance(__uuidof(Command));

The CreateInstance method works with the raw ADO interface and therefore
doesn’t provide support for COM exceptions. To add exception processing for the

Example 15-13. JIT Activate Method sans Application Object Access

HRESULT Cnewguys::Activate()
{
 HRESULT hr = S_OK;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
 hr = CoGetObjectContext(IID_IObjectContext,
 (void **)&m_spObjectContext);
 if (FAILED(hr))
 return hr;

 // get context properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 hr = pProps->GetProperty(L"Response", &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

 return hr;
}

,ch15.19741 Page 499 Thursday, February 22, 2001 1:33 PM

500 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CreateInstance methods and any method that doesn’t throw a COM error but does
return an HRESULT value, surround the function call with the TESTHR macro:

 TESTHR(pRec.CreateInstance(__uuidof(Record)));

Anytime you access the raw ADO interface—that is, anytime you use the dot nota-
tion rather than the pointer notation—using TESTHR with the method generates a
COM exception when the method fails.

Add a new method to asp1504.newguys named displayFileNames. This method
lists all of the files and folders contained within the subdirectory specified by an
URL that is passed as a BSTR to the method. Add the following to the Parameters
text box of the Add Method to Interface dialog:

BSTR bstrURL

In the method code, which is shown in Example 15-14, instances of both the
Record and Recordset objects are created, and the URL passed as an argument to
the method is modified to prepend the characters URL=. This syntax triggers the
OLE DB provider to process the requested data source as an URL rather than to
access a database or other data source.

The Record object’s Open method is called, passing in a blank query and the
modified URL for the connection parameter. Flags are set in the method to cause
the Open method to fail if the folder specified in the URL doesn’t exist. The Open
method’s parameters, all of which are optional, are the following:

Source
The URL of the entity to be represented by this Record object, or a row of an
open Recordset object

Connection
The connection string or a reference to a Connection object

Mode
The access mode for the Record object (adModeUnknown by default)

Create
Whether the method opens or creates the file or folder; set to adFailIf-
Exists by default

Options
Options for opening the Record object; set to adOpenRecordUnspecified by
default

Username
The user’s name, if needed

Password
The user’s password, if needed

,ch15.19741 Page 500 Thursday, February 22, 2001 1:33 PM

Stream and Record Objects 501

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The folder you’ll be accessing is the Weaver database administration application,
included in the examples and installed on your local development machine.
Because this URL is installed on a local machine and you have permission to
access the folder, you won’t need to provide the username and password. The
method then calls the Record object’s GetChildren method to return a recordset
with a list of the files and folders contained in the directory just opened. The
method then traverses the recordset and displays the record’s first data field, which
is its filename.

To access the files in the directory given in the URL, you’ll have to
change the access permissions for the Weaver virtual directory.
Access the properties page for the Weaver application in IIS, and
change the access permissions to support directory browsing as well
as read access.

Example 15-14. Display Filenames for Given URL

STDMETHODIMP Cnewguys::displayFileNames(BSTR bstrURL)
{
 _RecordsetPtr pRecs = NULL;
 _RecordPtr pRec = NULL;

 try {
 // create objects
 TESTHR(pRec.CreateInstance(__uuidof(Record)));

 _bstr_t bURL = L"URL=" + _bstr_t(bstrURL);

 // open URL into record
 pRec->Open("",bURL,adModeUnknown,adFailIfNotExists,
 adOpenRecordUnspecified,"","");

 // get children (files, directories)
 pRecs = pRec->GetChildren();

 // display filenames
 _variant_t vtVal;
 vtVal.lVal = 0;
 vtVal.vt = VT_I4;
 while(!(pRecs->EndOfFile)) {
 m_piResponse->Write(pRecs->Fields->GetItem(vtVal)->GetValue());
 m_piResponse->Write(_variant_t("
"));
 pRecs->MoveNext();
 }

 // close record, recordset
 pRec->Close();

,ch15.19741 Page 501 Thursday, February 22, 2001 1:33 PM

502 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component, the following ASP script, asp1508.asp, passes in the
URL for the Weaver application, located via the localhost host:

<%
Dim obj
Set obj = Server.CreateObject("asp1504.newguys")
Dim url
url = "http://localhost/weaver/"
obj.displayFileNames url
%>

If you access another URL, such as a web site located on the Internet, you might
find that the application won’t work because the virtual directory permissions have
not been set for directory browsing. If your site has FrontPage support, then this
example should work, but you’ll most likely (or should) be asked for a username
and password in order to access the files, as shown in Figure 15-4. Once you pro-
vide the valid username and password, you’ll get the list of files and folders.

You can do more than just list files and folders with the Record object. With a lit-
tle help from the Stream object, you can also open files, copy them, and remove
them from a folder. To illustrate this, add a second method to asp1504.newguys,
and call this one copyFile. This method takes three parameters: the URL of the
folder, the name of an existing file, and a new filename:

[in] BSTR bstrURL, BSTR bstrFile, BSTR bstrNewFile

 pRecs->Close();

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

Figure 15-4. Login authentication window to run file display example

Example 15-14. Display Filenames for Given URL (continued)

,ch15.19741 Page 502 Thursday, February 22, 2001 1:33 PM

Stream and Record Objects 503

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method, which is shown in Example 15-15, creates instances of both the
Record and Stream objects. The call to the Record object’s Open method this time
specifies a filename in the Source parameter and changes the creation flag to OR
adOpenIfExists with adCreateStructDoc. This combination of enumerated
values opens the file if it exists or creates it as a document if not.

The interface pointer to the Record is passed as the first argument of the Stream
object’s Open method. The Open method opens the file for read or write access—
in this case, the file is opened for read access. The copyFile method calls the
Stream object’s ReadText method after first setting some of the Stream object’s
properties to account for the type of data being read (in this case, ASCII text). It
then calls the Close method for both objects.

To copy the file contents, copyFile again calls the Record object’s Open method,
except this time it passes the name of the new file and specifies that the file
should be overwritten if it already exists. The method then passes the Record
object’s interface pointer to the Stream object’s Open method, which opens the
new file for write access. The contents of the previous file are then written to the
new file, and then both the Record and Steam objects are closed one last time.

You could have saved some steps by calling the Stream object’s
SaveToFile method and providing the name of the new file. But then
you wouldn’t have had a chance to both read from and write to a
file using the Stream object.

Example 15-15. Copying a File with the ADO Record and Stream Objects

STDMETHODIMP Cnewguys::copyFile(BSTR bstrURL,
 BSTR bstrFile, BSTR bstrNewFile)
{
 _RecordPtr pRec = NULL;
 _StreamPtr pStream = NULL;

 try {

 // create objects
 TESTHR(pStream.CreateInstance(__uuidof(Stream)));
 TESTHR(pRec.CreateInstance(__uuidof(Record))) ;

 _bstr_t bURL = L"URL=" + _bstr_t(bstrURL);

 pRec->Open(bstrFile,bURL,adModeRead,
 (RecordCreateOptionsEnum)(adOpenIfExists | adCreateStructDoc),
 adOpenRecordUnspecified,"","");

 // open stream
 pStream->Open(pRec.GetInterfacePtr(),adModeRead,

,ch15.19741 Page 503 Thursday, February 22, 2001 1:33 PM

504 Chapter 15: Adding Data Access to C++ Components with ADO

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Before you run this example, you must set the directory where the file is being
written to have write permission for the web user. In the example script, the file
being copied is from the Chapter 15 example directory, so make sure that this
directory has both the write and directory browsing access options checked. The
example script is found in asp1509.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp1504.newguys")
Dim url, file, newfile
url = "http://localhost/chap15/"
file = "asp1507.asp"
newfile = "listfiles.asp"
obj.copyFile url, file, newfile

Server.Transfer "listfiles.asp"
%>

 adOpenStreamFromRecord,"","");

 pStream->PutCharset(L"ascii");
 pStream->PutType(adTypeText);

 _bstr_t bstrText;
 bstrText = pStream->ReadText(adReadAll);

 // close objects for reuse
 pRec->Close();
 pStream->Close();

 // copy file
 pRec->Open(bstrNewFile,bURL,adModeWrite,
 (RecordCreateOptionsEnum)(adCreateStructDoc | adCreateOverwrite),
 adOpenRecordUnspecified,"","");

 pStream->Open(pRec.GetInterfacePtr(),adModeWrite,
 adOpenStreamFromRecord,"","");

 pStream->WriteText(bstrText,adWriteChar);

 // clean up
 pRec->Close();
 pStream->Close();

}
 catch (_com_error e) {

 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

Example 15-15. Copying a File with the ADO Record and Stream Objects (continued)

,ch15.19741 Page 504 Thursday, February 22, 2001 1:33 PM

Stream and Record Objects 505

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After running the ASP script, you’ll see the newly copied file in the Chapter 15
web directory. This newly copied file is returned to the client using the Server
object’s Transfer method—and the result of running the ASP page (asp1507.asp) is
displayed back to the client.

Now that you’ve had a chance to try out accessing ADO from Visual C++ compo-
nents, check out the examples in Chapter 9 and convert them to Visual C++.

,ch15.19741 Page 505 Thursday, February 22, 2001 1:33 PM

506
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 16

16
The CDO Interfaces from
C++ Components

CDO, or Collaborative Data Objects, is an excellent example of the concept of less
is more in software development APIs. The CDO objects support sending and
retrieving messages from SMTP or NNTP servers—that’s it, no more, no less.
Because of the simplicity of the CDO object model, it is one of the simplest of the
Microsoft APIs covered in this book.

This chapter takes a look at using CDO—specifically CDO for Windows 2000—
from within your ASP components created with C++. Among the features we’ll
look at will be constructing a message, sending it, and then processing the mes-
sage for the receiver.

This chapter does not provide an overview of CDO or explore the
concepts of using CDO in an ASP component. For this, you’ll want
to read Chapter 11, Take a Message: Accessing CDO from ASP Com-
ponents. Once you’ve read about the concepts of CDO in
Chapter 11, try out the CDO examples created in C++ in this chapter.

Accessing CDO Interfaces in C++
There are several C++ header files you can use within your components when
working with CDO. The list of CDO-specific files is:

CDOSys.h
 Type information for the interfaces, classes, and enumerations

CDOSys_i.c
The GUIDs for CDO

,ch16.19863 Page 506 Thursday, February 22, 2001 1:34 PM

Accessing CDO Interfaces in C++ 507

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CDOSysErr.h
 Custom CDO error codes

CDOSysStr.h
 CDO string constants

The first two header files—cdosys.h and cdosys_i.c—provide the type information
and GUID for CDO. If you use these in your components, you should be aware
that there could be naming conflicts between CDO and other technologies. To
resolve potential problems, you should consider using namespaces to avoid
clashes.

For instance, if you use MAPI and CDO in the same component, then you’ll need
to reference the CDO-specific version of the IMessage interface with the CDO
namespace, since both CDO and MAPI have an IMessage interface:

CDO::IMessage* pMsg;

If you’re not using other technologies that could conflict with CDO, then you
might consider the using namespace directive to improve performance:

#include "cdosys.h"
#include "cdosys_i.c"
using namespace CDO;

You can also specify that no namespaces be used:

#define CDO_NO_NAMESPACE
#include "cdosys.h"
#include "cdosys_i.c"

The other two CDO headers—cdosyserr.h and cdosysstr.h—aren’t required to work
with CDO, but they do provide handy constants you can use in the application in
place of lengthy strings. For instance, if you’re setting the body part content type
of a message (discussed later in the chapter), you could use something like the
following:

iBPMain->put_ContentMediaType(L"multipart/mixed");

Instead of specifying the string to use, you could use the associated constant
found in cdosysstr.h:

iBPMain->put_ContentMediaType(cdoMultipartMixed);

This might not seem like much of a savings in typing for this example, but con-
sider the following:

Flds->Item["urn:schemas:mailheader:content-transfer-encoding"]->Value =
 L"quoted-printable";

A preferable and less wordy alternative is:

Flds->Item[cdoContentTransferEncoding]->Value = cdoQuotedPrintable;

,ch16.19863 Page 507 Thursday, February 22, 2001 1:34 PM

508 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CDO is dependent on ADO (Active Data Objects) for much of its functionality, so
you’ll also need to include support for ADO. The ADO header files are:

adoint.h
Provides ADO type information

adoid.ic
Provides GUIDs

The adoint.h header file is actually included within cdosys.h, so you won’t need to
include it directly. However, you would need to include the adoid.ic file for the
GUIDs.

Instead of using header files, another approach to include type information is to
import the information into your components using the C++ #import directive.
For instance, to add support for both ADO and CDO, use import statements such
as the following:

#import <msado15.dll> rename ("EOF", "adoEOF") no_namespace
#import <cdosys.dll> no_namespace

The ADO library must be imported first, since it contains definitions used by the
CDO type library. Additionally, the ADO and CDO namespaces differ, so you’ll
need to either redefine the ADO namespace to CDO or use the no_namespace
option, as the code shows. You’ll also need to rename the ADO end-of-file (EOF),
since EOF is defined already in most C++ applications to a value of –1. If you
don’t rename EOF (to adoEOF in the example), you’ll get compile errors.

If you don’t want to use the CDO smart pointers, such as IMessagePtr, and would
prefer to access the raw CDO interfaces, use the following #import directive:

#import <msado15.dll> rename ("EOF", "adoEOF") no_namespace
 raw_interfaces_only
#import <cdosys.dll> no_namespace raw_interfaces_only

However, the smart pointers provide so much useful functionality, such as han-
dling all COM AddRef, Release, and QueryInterface method calls, that I recom-
mend that you use them unless you have a specific reason not to.

The examples in this chapter use the #import directive to include type informa-
tion—primarily because access to smart pointers such as IMessagePtr and other
functionality simplifies the coding process. When using the #import directive, you
need not include any of the header files mentioned in this section—all the con-
stants, type information, and GUIDs are pulled into the component.

,ch16.19863 Page 508 Thursday, February 22, 2001 1:34 PM

Creating and Sending a Message 509

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The CDO documentation mentions that the #import directive does
not include header files such as cdosysstr.h and that these include
files need to be added. However, if you take advantage of the smart
pointer functionality, you shouldn’t need to include these files.

If you use raw interfaces or if you find that the constants are not
working in your environment, include the cdosyserr.h and cdosysstr.
h files in your components.

Creating and Sending a Message
Messages can be very simple, consisting only of a simple text body, or they can be
very complex, with hierarchical messages consisting of different content types.
Messages can also be forwarded or cc’ed (carbon copied). Regardless of what type
of message you send, all messages share a basic functionality: the message is sent
from one email address to one or more other email addresses.

We’ll take a look at creating and sending a basic text-based message, and then
we’ll explore more complex messages, such as multipart messages and messages
with attachments.

Adding Address and Subject Information

The CDO message is implemented by the IMessage interface. This object has prop-
erties for defining the email address of the message recipient and sender, as well as
the subject and message body and other information. Configuration information
about the SMTP service, as well as the user ID and password to access this service,
are defined by another CDO interface, IConfiguration. In IConfiguration, the
configuration properties are set into the object’s Fields property, itself an ADO Field
object (hence the need for ADO in CDO applications). Each configuration property
is defined in a separate Field item.

To demonstrate how simple sending an email message can be when using CDO,
you’ll create your first ASP CDO component of this chapter. Create a new Visual
C++ project using the ATL COM AppWizard, and name the project asp1601. Don’t
check any of the options to add support for MTS or MFC.

When the project files are generated, create a new object using the ATL Object
Wizard. Select the Simple Object option, and name the new component message.
Accept all attribute defaults for the component, except change the threading
model to Both.

,ch16.19863 Page 509 Thursday, February 22, 2001 1:34 PM

510 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When the C++ and header files are created for the component, add a new method,
sendMessage, to the IMessage interface. This method takes four BSTR input
parameters, representing the email addresses of the recipient and sender, the sub-
ject, and the message, respectively:

[in] BSTR bstrTo, BSTR bstrFrom, BSTR bstrSubject, BSTR bstrMessage

Open the message.cpp file and add the following import directives to the top of
the page, just after the include file section:

#import <msado15.dll> rename ("EOF", "adoEOF") no_namespace
#import <cdosys.dll> no_namespace

Add the code for the new method next, as shown in Example 16-1. (Make sure
you change the user ID and password, as well as the SMTP server, to use settings
that work in your own environment.) First, the method creates instances of the
IConfiguration and IMessage interface objects. It then accesses the Fields
property of the configuration object and assigns it to an instance of the ADO Fields
interface. Next, the method sets the properties necessary for successfully sending
the email message. This includes the SMTP server to use, as well as the authentica-
tion method, and the SMTP user ID and password, if required by the SMTP ser-
vice. The port transport technique (indicated by the constant cdoSendUsingPort)
is used to send the message, meaning that the message is sent over the network
(or Internet IP connection). The other option is cdoSendUsingPickup, in which
case the message is sent to the local SMTP pickup service. Once the properties are
set, the Fields collection’s Update method is called to save the properties.

After the message configuration properties have been defined and saved, sendMes-
sages attaches the IConfiguration object to the IMessage interface’s Configura-
tion property, and sets the message’s To, From, Subject, and TextBody properties.
The message is text-based, so its contents can be assigned directly to the
IMessage interface’s TextBody property. Lastly, the message is sent using the
Send method.

Example 16-1. Sending a Simple Text-Based Email Message

STDMETHODIMP Cmessage::sendMessage(BSTR bstrTo, BSTR bstrFrom,
 BSTR bstrSubject, BSTR bstrMessage)
{
 HRESULT hr;
 IMessagePtr iMsg(__uuidof(Message));
 IConfigurationPtr iConf(__uuidof(Configuration));
 FieldsPtr Flds;

 // set configuration fields
 Flds = iConf->Fields;

 // set configuration properties
 Flds->Item[cdoSendUsingMethod]->Value =
 _variant_t((long)cdoSendUsingPort);

,ch16.19863 Page 510 Thursday, February 22, 2001 1:34 PM

Creating and Sending a Message 511

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Because the Configuration object’s Field properties are variants, you’ll need to use
_variant_t to encapsulate the values. Using _variant_t handles any allocation
and deallocation of resources for you. Normally, you need to include comdef.h in
any application that uses this COM support class, but importing the CDO and ADO
libraries also adds access to _variant_t, _com_error, _bstr_t, and other help-
ful COM objects.

To test the new component method, use the following ASP script, asp1601.asp,
after first changing the values to email addresses that you can test in your environ-
ment (such as your own email address). Just make sure that you’re connected to the
Internet if your SMTP service isn’t local to your machine or accessible via a LAN:

<%
Dim obj
Set obj = Server.CreateObject("asp1601.message")

obj.sendMessage "person@company.com","other@company.com", _
 "test message","This is a test message."
Set obj = Nothing
%>

If you sent the email to yourself, access your email reader (such as Outlook), and
you should find the new email waiting for you.

 Flds->Item[cdoSMTPServer]->Value =
 _variant_t("mail.company.com");

 Flds->Item[cdoSMTPConnectionTimeout]->Value = _variant_t((long)20);
 Flds->Item[cdoSMTPAuthenticate]->Value = _variant_t((long)cdoBasic);
 Flds->Item[cdoSendUserName]->Value = _variant_t("userid");
 Flds->Item[cdoSendPassword]->Value = _variant_t("somepassword");

 Flds->Item[cdoURLGetLatestVersion]->Value =
 _variant_t(VARIANT_TRUE);

 // update fields
 Flds->Update();

 // attach config properties to message
 iMsg->Configuration = iConf;
 iMsg->To = bstrTo;
 iMsg->From = bstrFrom;
 iMsg->Subject = bstrSubject;
 iMsg->TextBody = bstrMessage;

 // send message
 hr=iMsg->Send();

 return hr;
}

Example 16-1. Sending a Simple Text-Based Email Message (continued)

,ch16.19863 Page 511 Thursday, February 22, 2001 1:34 PM

512 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The SMTP server you’ll use in your code is the same one you use
with outgoing SMTP mail when setting up an email account for your
email reader.

You can also attach a secondary recipient using the IMessage interface’s CC
property:

iMsg->CC = bstrCC

Or you can set the blind carbon copy recipients with the BCC property.

If you have multiple email addresses, separate the addresses with commas:

person1@company.com, person1@company2.com

Try changing the code in the example to send a CC to another email address (or to
the same address as the original recipient), and also try using multiple recipients.

Sending HTML and Plain Text Messages

The last section sent a plain text email, but many email readers are capable of pro-
cessing HTML content as well as text content. Sending a message in both formats
ensures that the message is processed by the reader properly regardless of
whether the reader can process HTML or not.

To send a message in both HTML and text formats, you’ll need to set two
IMessage properties. The first is the HTMLBody property, to which you’ll assign
the HTML-formatted message content. The second is AutoGenerateTextBody; set-
ting this property to true means that when the HTMLBody property is assigned
HTML-formatted content, a duplicate of the content—sans HTML formatting—is
automatically assigned to the message’s TextBody property. You can also set the
MimeFormatted property to true to indicate that the message is formatted using
MIME content, but this property is automatically set when the HTMLBody prop-
erty is set.

To try sending an HTML/plain text message, add a new method to asp1601.
message named sendMultiPart. This method takes four parameters, all BSTRs, for
the email addressee, the sender, the subject, and the HTML-formatted message:

[in] BSTR bstrTo, BSTR bstrFrom, BSTR bstrSubject, BSTR bstrMessage

The code for the new method, which is shown in Example 16-2, is almost identi-
cal to that shown in Example 16-1, except that the message text is assigned to
HTMLBody, and the AutoGenerateTextBody property is set to true.

,ch16.19863 Page 512 Thursday, February 22, 2001 1:34 PM

Creating and Sending a Message 513

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test this new method, the following ASP script, asp1602.asp, generates a mes-
sage body formatted with HTML:

Dim obj
Set obj = Server.CreateObject("asp1601.message")

Dim str

Example 16-2. Sending a Message Formatted as Both Plain Text and HTML

STDMETHODIMP Cmessage::sendMultiPart(BSTR bstrTo, BSTR bstrFrom, BSTR bstrSubject,
BSTR bstrMessage)
{
 HRESULT hr;
 IMessagePtr iMsg(__uuidof(Message));
 IConfigurationPtr iConf(__uuidof(Configuration));
 FieldsPtr Flds;

 // set configuration fields
 Flds = iConf->Fields;

 // set configuration properties
 Flds->Item[cdoSendUsingMethod]->Value =
 _variant_t((long)cdoSendUsingPort);

 Flds->Item[cdoSMTPServer]->Value =
 _variant_t("mail.company.com");

 Flds->Item[cdoSMTPConnectionTimeout]->Value = _variant_t((long)20);
 Flds->Item[cdoSMTPAuthenticate]->Value = _variant_t((long)cdoBasic);
 Flds->Item[cdoSendUserName]->Value = _variant_t("userid");
 Flds->Item[cdoSendPassword]->Value = _variant_t("somepassword");

 Flds->Item[cdoURLGetLatestVersion]->Value =
 _variant_t(VARIANT_TRUE);

 // update fields
 Flds->Update();

 // attach config properties to message
 iMsg->Configuration = iConf;
 iMsg->To = bstrTo;
 iMsg->From = bstrFrom;
 iMsg->Subject = bstrSubject;

 // HTML and plain text
 iMsg->AutoGenerateTextBody = true;
 iMsg->HTMLBody = bstrMessage;

 // send message
 hr=iMsg->Send();

 return hr;
}

,ch16.19863 Page 513 Thursday, February 22, 2001 1:34 PM

514 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

str ="<h1>Howdy!</h1><p>I hope this finds you well!</p>"

obj.sendMultiPart "person@company.com", "from@company.com", _
 "testing multipart", str

Set obj = Nothing

Make sure to change the email recipient and sender to fit your environment.

Unlike the text-based message, the HTML-formatted content displays the message
with a larger header for the greeting and the word well in bold. If your email
reader is capable of reading MIME content, you’ll see the HTML formatting. If not,
then you’ll still see the message, but without the HTML formatting.

You can also send HTML content using the CreateMHTMLBody
method, passing in the URL of the HTML page. The syntax of the
CreateMHTMLBody method is:

CreateMHTMLBody (BSTR url, cdoMHTMLFlags, BSTR userName,
 BSTR password)

This message creates body parts (discussed next) for all of the page’s
contents. Additionally, you can suppress the inclusion of certain
HTML elements such as images, stylesheets, frames, and sounds
using this method.

You can send content type other than HTML and plain text. You can also create
fairly complex messages with multiple message bodies, discussed next.

Sending Multipart Messages

Up to this point, the email message content has been added directly to properties
on the IMessage interface, through the TextBody property for plain text mes-
sages and the HTMLBody property for HTML-formatted content. However, if you
want more finite control of the message content and to include content other than
text or HTML messages, you need to work with the IBodyPart interface.

CDO messages consist of a main message body, accessible from the IMessage
interface’s BodyPart property, which returns an IBodyPart instance. You can
create the message content by working with IBodyPart directly. Like
IConfiguration, it has several properties that you set (or access) through an
ADO Fields collection, which is returned when you call the IBodyPart interface’s
GetFields method.

The message body can also consist of multiple body parts, arranged in a hierar-
chy. The IBodyPart interface has a collection called BodyParts, which contains
the different parts of the message. To add multiple body parts, call the IBodyPart

,ch16.19863 Page 514 Thursday, February 22, 2001 1:34 PM

Creating and Sending a Message 515

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

interface’s AddBodyPart method to add the new body part to the existing mes-
sage’s body parts collection. Its syntax is:

AddBodyPart(long index, IBodyPart ** pVal)

Additionally, the new body parts can themselves have additional body parts added
to them and so on, in a hierarchical manner.

To add message content to an IBodyPart interface, you’ll need to use an ADO
Stream object to write the content to the message. This Stream object is returned
when you call the IBodyPart interface’s GetDecodedContentStream or GetEncod-
edContentStream methods (neither of which has parameters). The difference
between the two is that one returns the content in an encoded format, the other
returns the content already decoded. To add content to the message, you usually
use the GetDecodedContentStream method.

To demonstrate sending a mixed-content multipart message, add a new method to
asp1601.message, and name it sendMixedMultiPart. This new method will send a
message consisting of text, HTML, and GIF content.

The sendMixedMultiPart method takes six BSTR parameters: the to, from, and sub-
ject strings, as well as the plain text and HTML-formatted messages, and the name
of a GIF file. Add these parameters to the method with the following parameter
string:

[in] BSTR bstrTo, BSTR bstrFrom, BSTR bstrSubject, BSTR bstrMessage,
BSTR bstrHTMLMsg, BSTR bstrGIF

In the method code, which is shown in Example 16-3, the configuration proper-
ties for the message are set in the same way as they were with the previous two
methods. (You’ll have to change the values of the configuration properties to
match your environment.) You can define a global version of IConfiguration
and store this in the ASP Application object using the global.asa file. However,
you’ll need to add access to the ASP built-in objects to your component or pass it
to the methods as a parameter from the ASP script.

Another technique you can use to create the Configuration object is
to declare a member object reference for the Configuration object,
implement IObjectControl in your ASP component, and instanti-
ate the Configuration object and set its properties in the IObject-
Control interface’s Activate method. See Chapter 14, Creating C++
ASP Components, for information about integrating IObjectControl
into your ASP components for just-in-time (JIT) activation.

After setting the message’s configuration, the sendMixedMultiPart method accesses
the message’s main body part object and then sets it to support multipart mixed

,ch16.19863 Page 515 Thursday, February 22, 2001 1:34 PM

516 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

content. It also creates three body parts, one for each of the associated content
types sent with the message (text, HTML, and image). The content type and
encoding method for each body part is set using the ADO Fields object, and the
Stream object is used to write out the content. Notice in the code that the GIF file
is loaded into the message content stream using the Stream object’s LoadFromFile
method. The Stream object’s WriteText method is used to add both the text and
the HTML-formatted content. Once all of the body parts are defined and the con-
tent loaded, the message is sent.

Example 16-3. Sending a Multipart Mixed Email Message

STDMETHODIMP Cmessage::sendMixedMultiPart(BSTR bstrTo, BSTR bstrFrom,
 BSTR bstrSubject, BSTR bstrMessage,
 BSTR bstrHTMLMsg, BSTR bstrGIF)
{
 HRESULT hr;
 IMessagePtr iMsg(__uuidof(Message));
 IConfigurationPtr iConf(__uuidof(Configuration));
 FieldsPtr Flds;

 // set configuration fields
 Flds = iConf->Fields;

 // set configuration properties
 Flds->Item[cdoSendUsingMethod]->Value =
 _variant_t((long)cdoSendUsingPort);

 Flds->Item[cdoSMTPServer]->Value =
 _variant_t("mail.company.com");

 Flds->Item[cdoSMTPConnectionTimeout]->Value = _variant_t((long)20);
 Flds->Item[cdoSMTPAuthenticate]->Value = _variant_t((long)cdoBasic);
 Flds->Item[cdoSendUserName]->Value = _variant_t("userid");
 Flds->Item[cdoSendPassword]->Value = _variant_t("somepassword");

 Flds->Item[cdoURLGetLatestVersion]->Value =
 _variant_t(VARIANT_TRUE);

 // update fields
 Flds->Update();

 // attach config properties to message
 iMsg->Configuration = iConf;
 iMsg->To = bstrTo;
 iMsg->From = bstrFrom;
 iMsg->Subject = bstrSubject;

 // **** multi-part **** //
 IBodyPartPtr iBPMain;
 IBodyPartPtr iBPText;
 IBodyPartPtr iBPHTML;

,ch16.19863 Page 516 Thursday, February 22, 2001 1:34 PM

Creating and Sending a Message 517

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 IBodyPartPtr iBPGif;
 _StreamPtr iStm;

 iBPMain = iMsg->BodyPart;
 iBPMain->put_ContentMediaType(cdoMultipartMixed);

 // text
 // properties set directly
 iBPText = iBPMain->AddBodyPart(-1);
 iBPText->put_ContentMediaType(cdoTextPlain);
 iBPText->put_ContentTransferEncoding(cdo8bit);

 // message body
 iStm = iBPText->GetDecodedContentStream();
 iStm->WriteText(bstrMessage,adWriteChar);
 hr=iStm->Flush();

 if (FAILED(hr)) return hr;

 // HTML
 // properties set using Fields
 iBPHTML = iBPMain->AddBodyPart(-1);
 Flds = iBPHTML->GetFields();
 Flds->Item[cdoContentType]->Value = cdoTextHTML;
 Flds->Item[cdoContentTransferEncoding]->Value = cdoQuotedPrintable;
 Flds->Update();

 // message body
 iStm = iBPHTML->GetDecodedContentStream();
 iStm->WriteText(bstrHTMLMsg,adWriteChar);
 hr=iStm->Flush();

 if (FAILED(hr)) return hr;

 // image
 // properties set directly
 iBPGif = iBPMain->AddBodyPart(-1);
 iBPGif->put_ContentMediaType(cdoGif);
 iBPGif->put_ContentTransferEncoding(cdoBase64);

 // message body, GIF loaded from file
 iStm = iBPGif->GetDecodedContentStream();
 iStm->LoadFromFile(bstrGIF);
 hr=iStm->Flush();

 if (FAILED(hr)) return hr;

 // send message
 hr=iMsg->Send();

 return hr;
}

Example 16-3. Sending a Multipart Mixed Email Message (continued)

,ch16.19863 Page 517 Thursday, February 22, 2001 1:34 PM

518 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test your new component method by accessing the ASP test page asp1603.asp,
changing the email addresses of the message’s receiver and sender as well as the
path to the image file to match your own environment:

<%
Dim obj
Set obj = Server.CreateObject("asp1601.message")

Dim strHTML, strMsg, strGif
strHTML="<h1>Howdy!</h1><p>I hope this finds you well!</p>"
strMsg = "Howdy! I hope this finds you well!"
strGif = "c:\mm\image.gif"

obj.sendMixedMultiPart "person@company.com", "from@company.com", _
 "testing multipart using IBodyPart", _
 strMsg, strHTML, strGif

Set obj = Nothing
%>

In the email reader, the plain text shows in the message, and the HTML and GIF
image are added as attachments to the message.

Speaking of attachments, there are actually two different ways you can add attach-
ments to an email message; they are discussed next.

Adding Attachments

Email message attachments have been in the news a lot this last year. The infa-
mous Love virus had a Visual Basic attachment that, when accessed, triggered the
virus—generating email messages for everyone in the recipient’s email address
book, as well as damaging essential files on system (in the case of hybrid versions
of the virus). However, email attachments are essential in order to send files, doc-
uments, applications, and other content to people. This section demonstrates how
to create attachments within your ASP components. Hopefully, your recipients will
find that your attachments are useful rather than harmful.

In the last section, you actually created an email attachment for the message when
you created a mixed multipart content. However, in the example you created, the
attachments are given a generated content name, rather then the name of the
actual attachment file.

You don’t have to work with IBodyPart in order to add an email attachment.
You can, instead, use the IMessage interface’s AddAttachment method, passing in
the URL of the object you want to include and a user ID and password if the con-
tent is protected:

AddAttachment(BSTR url, BSTR userName, BSTR password, IBodyPart ** pVal)

,ch16.19863 Page 518 Thursday, February 22, 2001 1:34 PM

Creating and Sending a Message 519

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

All message attachments are added to the Attachments collection within the mes-
sage’s BodyPart object. When you use AddAttachment, the main body part object
is returned.

To demonstrate the two techniques for adding attachments, add one last method
to asp1602.message, calling it sendAttachments. The new method takes seven
BSTR parameters, including the URLs for an image and a web page that will form
the contents for the attachments:

[in] BSTR bstrTo, BSTR bstrFrom, BSTR bstrSubject, BSTR bstrMessage, BSTR
bstrAttachment1, BSTR bstrFile, BSTR bstrAttachment2

Add the code for the new method, as shown in Example 16-4. In the code, the
web page is added using the AddAttachment method, and the image is added
using the BodyPart object returned by the AddAttachment method. This BodyPart
object represents the main message body. When the image is added as an attach-
ment, the BodyPart content disposition property is set to an attachment type and
the filename is given. This ensures that the image name shows in the attachment,
rather than a generated name displayed when the image is sent as part of a multi-
part mixed message.

Example 16-4. Sending an Email with Attachments

STDMETHODIMP Cmessage::sendAttachments(BSTR bstrTo, BSTR bstrFrom,
 BSTR bstrSubject, BSTR bstrMessage,
 STR bstrAttachment1, BSTR bstrFile,
 BSTR bstrAttachment2)
{
 HRESULT hr;
 IMessagePtr iMsg(__uuidof(Message));
 IConfigurationPtr iConf(__uuidof(Configuration));
 FieldsPtr Flds;

 // set configuration fields
 Flds = iConf->Fields;

 // set configuration properties
 Flds->Item[cdoSendUsingMethod]->Value =
 _variant_t((long)cdoSendUsingPort);

 Flds->Item[cdoSMTPServer]->Value =
 _variant_t("mail.company.com");

 Flds->Item[cdoSMTPConnectionTimeout]->Value = _variant_t((long)20);
 Flds->Item[cdoSMTPAuthenticate]->Value = _variant_t((long)cdoBasic);
 Flds->Item[cdoSendUserName]->Value = _variant_t("someuser");
 Flds->Item[cdoSendPassword]->Value = _variant_t("somepassword");

 Flds->Item[cdoURLGetLatestVersion]->Value =
 _variant_t(VARIANT_TRUE);

,ch16.19863 Page 519 Thursday, February 22, 2001 1:34 PM

520 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the new method using the following ASP page, asp1604.asp, making sure to
adjust both the ASP script and the component code to reflect your environment:

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp1601.message")

Dim strMsg, strAttachment1, strAttachment2, strFile
strMsg = "Howdy! I hope this finds you well!"
strAttachment1 = "http://www.company.com/some.htm"

 // update fields
 Flds->Update();

 // attach config properties to message
 iMsg->Configuration = iConf;
 iMsg->To = bstrTo;
 iMsg->From = bstrFrom;
 iMsg->Subject = bstrSubject;
 iMsg->TextBody = bstrMessage;

 // **** attachment **** //
 IBodyPartPtr iBPMain;
 IBodyPartPtr iBPAttach;
 _StreamPtr iStm;

 // Attachment 1
 iBPMain = iMsg->AddAttachment(bstrAttachment1,"","");

 // Attachment 2, from file
 iBPAttach = iBPMain->AddBodyPart(-1);
 iBPAttach->put_ContentMediaType(cdoGif);
 iBPAttach->put_ContentTransferEncoding(cdoBase64);

 Flds = iBPAttach->GetFields();
 Flds->Item[cdoContentDisposition]->Value =
 _bstr_t("attachment; filename=\"") +
 _bstr_t(bstrFile) + _bstr_t("\"");
 Flds->Update();

 // message body
 iStm = iBPAttach->GetDecodedContentStream();
 iStm->LoadFromFile(bstrAttachment2);
 hr=iStm->Flush();

 if (FAILED(hr)) return hr;

 // send message
 hr=iMsg->Send();

 return hr;
}

Example 16-4. Sending an Email with Attachments (continued)

,ch16.19863 Page 520 Thursday, February 22, 2001 1:34 PM

Retrieving and Reading Messages 521

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

strAttachment2 = "c:\image.gif"
strFile = "image.gif"

obj.sendAttachments "to@company.com", "from@company.com", _
 "testing attachments", _
 strMsg, strAttachment1, strFile, strAttachment2
If Err.Number <> 0 Then
 Response.Write "Message not sent due to error"
Else
 Response.Write "Message sent"
End If
Set obj = Nothing
%>

The email should show the text message and two attachments, some.htm and
image.gif.

Retrieving and Reading Messages
You can do more than just send messages with CDO—you can read them also.
The incoming messages aren’t stored in memory or in some obscure virtual stor-
age area of Windows 2000. Instead, the messages are stored physically on the disk
where the SMTP service resides, in a folder called the SMTP drop directory. To
read the messages, all you have to do is access the SMTP drop directory where the
messages are currently stored and process each one in turn. When you read a
message, you can also delete it from the directory if you so choose.

Accessing a Drop Directory

The SMTP drop directory is the default folder where messages are stored until they
are deliberately deleted. By default, this directory is usually located at c:\inetpub\
mailroot\drop. If you open this folder with Windows Explorer (you may have to
change the Explorer options to show hidden and system files and folders to see
inetpub), you should see incoming messages stored as individual files in the
folder—each given an encrypted filename and each with an .eml extension.

If you open one of these messages using a text editor such as Wordpad, you’ll see
that the top part of the message contains information about the message recipient,
the sender, the MIME type of the message, the time when the message was sent
and so on. This is all information you can retrieve from a message when you
access it from your C++ ASP components.

To access messages from the drop directory, create an instance of IDrop-
Directory and then call its GetMessages method, passing in the physical loca-
tion of the drop directory:

 iMessages = iDDirectory->GetMessages(L"c:\\inetpub\\mailroot\\drop");

,ch16.19863 Page 521 Thursday, February 22, 2001 1:34 PM

522 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method returns a collection of all available messages, which are then accessi-
ble via the IMessages interface. The next section uses both the IDropDirectory
and IMessages interfaces to create an online email message reader.

Displaying Message Contents on the Web

You can use CDO to create your own web-based email reader. To start, create a
new Visual C++ project using the ATL COM AppWizard, and don’t add support for
MFC or MTS. Name the project asp1602. Once the project files are generated,
open the Project Settings dialog and click on the Link tab to view the existing
object/library modules defined for the project. Add the COM+ Services library
(comsvcs.lib) to the end of the module list, since you’ll be using COM+ Services to
access the built-in ASP objects in your new email reader.

Insert a new ATL object into your project using the MTS object template, and
name the component drop. Accept the default Dual Interface setting, and check
the Support IObjectControl setting, but not the Can Be Pooled setting.

Open the new drop.h header file and add the following code just after the refer-
ence to the resources.h file:

#include <comsvcs.h>
#include <asptlb.h>

The header files provide support for COM+ as well as the built-in ASP objects.
Also add a private label to the drop class definition section, move the generated
m_spObjectContext object to this section, and add a reference to the ASP
Response object interface so that the code appears as follows:

private:
 CComPtr<IObjectContext> m_spObjectContext;
 CComPtr<IResponse>m_piResponse;

Open the drop.cpp file next and add the code for just-in-time activation. In the
Activate method, create an instance of the m_spObjectContext and m_piResponse
objects. In the Deactivate method, release both of these objects, as shown in
Example 16-5.

Example 16-5. Implementing the IObjectControl Methods

HRESULT Cdrop::Activate()
{
 HRESULT hr = S_OK;
 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

,ch16.19863 Page 522 Thursday, February 22, 2001 1:34 PM

Retrieving and Reading Messages 523

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Finally, add the import directives for the ADO and CDO type libraries to the top of
the drop.cpp file, just after the generated include files:

#import <msado15.dll> rename ("EOF", "adoEOF") no_namespace
#import <cdosys.dll> no_namespace

You’re now ready to add your first method for your new component—a method
to display a list of emails to the web page.

Displaying a List of Emails

In an email reader application, you’ll want to provide a list of the emails and a
means for the person to read an individual email and delete it from the list once it
is read. Your new component’s first method provides the functionality for the first

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&m_spObjectContext);
 if (FAILED(hr))
 return hr;

 // get Context Properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

 return hr;
}

BOOL Cdrop::CanBePooled()
{

return TRUE;
}

void Cdrop::Deactivate()
{
 m_piResponse.Release();

m_spObjectContext.Release();
}

Example 16-5. Implementing the IObjectControl Methods (continued)

,ch16.19863 Page 523 Thursday, February 22, 2001 1:34 PM

524 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

requirement of your email reader—it displays a list of email message subject lines
and email senders.

Use Class View to create a new method called getMessages. It has no parameters.
The method, which is shown in Example 16-6, retrieves a reference to the default
SMTP drop directory and uses this to get the messages currently in the folder.
Once it has the messages, it gets the count of items and uses a for loop to access
each message (using IMessage) and then list each message subject and sender to
an HTML table on the web page. The reason a for loop is used instead of enu-
meration (IMessages is a collection and therefore has enumeration capability) is
to capture the message number associated with each message.

The method encloses the sender’s name in a hypertext link and associates the
message number with the query string for the link. The message number allows
the application to retrieve a specific message if the user clicks on the link to view
the message contents.

Example 16-6. Display Unread Messages Contained in SMTP Drop Directory

STDMETHODIMP Cdrop::getMessages()
{
 IDropDirectoryPtr iDDirectory(__uuidof(DropDirectory));
 IMessagesPtr iMessages;

 try {

 // get messages from drop directory
 iMessages = iDDirectory->GetMessages(L"c:\\inetpub\\mailroot\\drop");

 long lCt;
 lCt = iMessages->Count;

 // setup output table
m_piResponse->Write(_variant_t("<table border=2 width='80%'">));
m_piResponse->Write(_variant_t("<TR><TH>From</TH><TH>Subject</TH></TR>"));

 // process each message
 for (long l = 1; l <=lCt; l++) {
 IMessagePtr pMsg;
 iMessages->get_Item(l,&pMsg);

 // process message info
 m_piResponse->Write(_variant_t("<TR><TD>"));
 m_piResponse->Write(_variant_t("<a href='asp1606.asp?ct="));
 m_piResponse->Write(_variant_t(l));
 m_piResponse->Write(_variant_t("'>"));
 m_piResponse->Write(_variant_t(pMsg->From + "</td><td>"));
 m_piResponse->Write(_variant_t(pMsg->Subject + "</td></tr>"));
 }

,ch16.19863 Page 524 Thursday, February 22, 2001 1:34 PM

Retrieving and Reading Messages 525

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice that the getMessages method uses exception handling to process any errors
that occur with the component. In the last several examples, error handling has
either been handled by the default IIS 5.0 error handler or by capturing the Err
object’s Number property in the ASP script and testing to see if its value is 0. You
can’t access the error message directly in either of these approaches.

To provide better error processing and print out meaningful error messages, use
exception handling in your method and either return a BSTR pointer with the error
message as a return parameter for your method, or use the ASP built-in Response
object to display the message. You could also add the error message to an applica-
tion log if you wish.

To support exception handling in the component, you have to mod-
ify the Project Settings by accessing the C/C++ tab, selecting the C++
Language Category, and then checking the Enable Exception Han-
dling option.

To display the email list, the ASP test page, asp1605.asp, creates an instance of the
new component and calls its getMessages method:

<%
Dim obj
Set obj = Server.CreateObject("asp1602.drop")

obj.GetMessages
Set obj = Nothing
%>

The results of accessing the ASP test page should be similar to that shown in
Figure 16-1, except that the messages and subjects should match those of your
own emails.

When a particular email is selected for reading, you’ll want to access that email
from the collection and display its contents. The email reader is text-based only, so
only the text-based contents are displayed. We’ll create the method to read an
email message next.

 m_piResponse->Write(_variant_t("</table>"));

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }
 return S_OK;
}

Example 16-6. Display Unread Messages Contained in SMTP Drop Directory (continued)

,ch16.19863 Page 525 Thursday, February 22, 2001 1:34 PM

526 Chapter 16: The CDO Interfaces from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Reading the Email

Add a new method to asp1602.drop and call it getMessage. This method takes
one parameter, a long value containing the item number of the message to read.

The code for the method is shown in Example 16-7. It creates an instance of the
drop directory interface and calls GetMessages to get the collection of messages.
However, instead of looping through the collection, it accesses a specific mes-
sage, based on the message number passed into the method. Once it retrieves the
message, it displays the message text, sender, and subject to the page. At the end
of the method, the message is deleted.

Figure 16-1. Email reader and list of unread emails

Example 16-7. Read and Delete a Specific Email Message

STDMETHODIMP Cdrop::getMessage(long lItem)
{
 IDropDirectoryPtr iDDirectory(__uuidof(DropDirectory));
 IMessagesPtr iMessages;
 IMessagePtr pMsg;

 try {
 // get messages from drop directory
 iMessages = iDDirectory->GetMessages(L"c:\\inetpub\\mailroot\\drop");

 // get message

,ch16.19863 Page 526 Thursday, February 22, 2001 1:34 PM

Retrieving and Reading Messages 527

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The following ASP test page, asp1606.asp, is called when the user clicks on a mes-
sage in asp1605.asp, and the message number is passed to the new component
method:

<%
Dim obj
Set obj = Server.CreateObject("asp1602.drop")

Dim imsg
imsg = Request.QueryString("ct")

obj.getMessage imsg
Set obj = Nothing
%>

This script retrieves the message number from the Request object’s QueryString
collection.

Once you’ve created the email reader, try it yourself by sending several messages
to your local SMTP service (see Chapter 11 for details on doing this within a local
environment), and then view the messages with your new component. Vary what’s
displayed by accessing HTML content through the IMessage interface’s HTML-
Body property and attachments through the Attachments collection.

 iMessages->get_Item(lItem,&pMsg);

 // process message info
 m_piResponse->Write(_variant_t("<P>From: " + pMsg->From));
 m_piResponse->Write(_variant_t("<P>Subject: " + pMsg->Subject));
 m_piResponse->Write(_variant_t("<p>" + pMsg->TextBody));

 // delete message
 iMessages->Delete(lItem);

 }
 catch (_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

Example 16-7. Read and Delete a Specific Email Message (continued)

,ch16.19863 Page 527 Thursday, February 22, 2001 1:34 PM

528
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 17

17
Accessing Active Directory
from C++ Components

Active Directory is a directory service that provides information about objects of
interest within a system. Among the types of objects of interest are groups, users,
computer resources, separate machines or nodes, and so on.

Active Directory is primarily used for administrative purposes within a distributed
system. However, just because the tasks are administrative in nature does not
mean that Active Directory activities are not good candidates for use from within
ASP applications. Administrative tasks can be performed by numerous folks, and
providing an ASP application to perform these tasks simplifies both maintenance
and security. Additionally, allowing people to perform some of their own adminis-
trative tasks in a secure environment, rather than channeling these tasks through a
few key people, prevents the sort of bottlenecks that have characterized older cen-
tralized administrative control.

Active Directory objects are exposed for manipulation by ASP components through
the Active Directory Services Interfaces (ADSI). These interfaces provide all access
to all Active Directory functionality regardless of the type of programming lan-
guage used, as long as the language supports access to COM objects.

This chapter demonstrates how you can work with the Active Directory interfaces
from within C++ ASP Components.

This chapter does not provide an overview of the Active Directory
services or explore the concepts of using ADSI in an ASP compo-
nent. You’ll want to read Chapter 12, Working with Active Directory
from ASP Applications, first to get an understanding of how ASP
components can work with the services. Then apply this understand-
ing to C++ components by trying out the examples in this chapter.

,ch17.19983 Page 528 Thursday, February 22, 2001 1:34 PM

Binding to Active Directory Objects 529

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Binding to Active Directory Objects
You don’t create instances of Active Directory objects—they already exist. What
you do instead is retrieve a reference to the objects that you can then use in your
components. The process of attaching a reference to an Active Directory object is
known as binding.

You can bind to a specific object, such as a single user in a system. Or you can
bind to a group or collection of objects, such as all users of a system. The key is
that you must specify the path of the object, and you must access the domain con-
troller for your system.

Chapter 12 has information about setting up a standalone domain
controller for your Windows 2000 server environment.

An example of a path used to bind to an Active Directory object is the following,
which binds the component code to the Users collection of my system:

LDAP://CN=users,DC=development,DC=local

This path specifies the ADSI LDAP provider (LDAP://), which we’ll be using for
all of the examples in this chapter, and accesses the users on the development.
local domain controller. Though the controller is referenced, its physical loca-
tion is not; this means that the controller could be moved to a physically different
machine and the code would still work, as long as the same domain controller
name is used.

There are two ADSI helper functions you can use to access specific Active Direc-
tory objects. A helper function is one that provides easier access to more com-
monly used functionality, especially when using COM within C++.

The first function, AdsOpenObject, has the following parameters:

LPWSTR
Pathname

LPWSTR
Username

LPWSTR
Password

DWORD
Member from ADS_AUTHENTICATION_ENUM—authentication used

,ch17.19983 Page 529 Thursday, February 22, 2001 1:34 PM

530 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

REFIID
Interface identifier

VOID FAR * FAR
Pointer to object

This method has a user ID and password, used to track the ADSI request with the
profile of a user with different authority from the person actually accessing the
application:

hr = ADsOpenObject(L"LDAP://CN=Users,DC=development,DC=local",
 "someuser",
 "somepassword",
 ADS_SECURE_AUTHENTICATION,
 IID_IADs,
 (void**) &pObject);

In this function call, the first parameter is the previously mentioned path of the
object, and the second and third parameters are the user’s identifier and pass-
word, respectively. The fourth parameter is the type of authentication to use with
the access, the fifth is the interface identifier for the object, and the last parameter
is an indirect pointer to the interface we’re accessing.

AdsOpenObject can be used to bind to an object using a specific set of creden-
tials. This should be used only within components, since the password is pro-
vided in plain text.

The second function you can use to bind to an Active Directory object is AdsGet-
Object. The only difference between it and AdsOpenObject is that AdsGetObject
does not have parameters to specify user credentials or the security scheme:

hr = ADsGetObject(L"LDAP://CN=Users,DC=development,DC=local",
 IID_IADs,
 (void**) &pObject);

Once you’ve bound to a specific object, you can then access information about the
object or its children or members if the object is a collection of some form.

Binding to Collections

There are actually three ADSI interfaces that support collections. The core inter-
face is IADsContainer, which contains methods to support enumeration. Two
other interfaces can be used to provide access to collection or group members.

One collection interface is IADsCollection, used to access members of a class of
objects that all have the same Variant datatype. The IADsCollection interface is
usually accessed through some other interface’s method. For instance, to access
the print jobs from a specific queue, you could call the PrintJobs method on the
IADsPrintQueueOperations interface.

,ch17.19983 Page 530 Thursday, February 22, 2001 1:34 PM

Binding to Active Directory Objects 531

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The other collection interface is IADsMembers. This interface groups elements
based on their membership within a group, such as all users (group or individual)
accessible from the main Users collection in the directory service. These elements
are grouped by their physical proximity, though they differ in object type. Unlike
IADsCollection, IADsMembers can be of differing types.

To demonstrate working with IADsMembers, create a new Visual C++ project
using the ATL COM AppWizard and name it asp1701. Don’t select support for
MTS or MFC when given this option by the wizard.

You’ll be using the ASP Response object in this example, so once the project’s cre-
ated, add support for COM+ Services as well as ADSI. Select the Project ➝ Settings
menu option and select the Link tab. At the end of the Object/Library modules text
box, add the following libraries:

comsvcs.lib activeDS.lib adsiid.lib

The first library is the COM+ Services library, which is necessary for this compo-
nent to access the ASP built-in Response object. The other two libraries provide
support for ADSI. Figure 17-1 shows the Project Settings dialog once these librar-
ies are added.

Next, create a new object in the project by using the ATL Object Wizard to create
a Simple Object. Name the object container and select the default Dual Inter-
face and support for Aggregation, but change the Threading Model to Both.

Figure 17-1. Adding support for COM+ Services and ADSI libraries to a Visual C++ project

,ch17.19983 Page 531 Thursday, February 22, 2001 1:34 PM

532 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Instead of using the Simple Object template to create the compo-
nent, you can also use the MTS template. If you do, you can skip
much of the following material, which manually adds in support for
IObjectControl. However, you won’t be able to pool the object if
you use the MTS template. See Chapter 14, Creating C++ ASP Com-
ponents, for more information on pooling.

Once the new C++ object and header files have been generated, open container.h
and add the following include statements just below the statement that includes
the resource.h file:

#include <comsvcs.h>
#include <asptlb.h>
#include <activeds.h>

The first header file is for COM+ Services, the second supports the built-in ASP
objects, and the third is for Active Directory.

As I mentioned, the ASP Response object is used to write information from the
component to the web page; you instantiate it by accessing an instance of Object-
Context and then accessing Response from this object’s Items collection. Both
objects—Response and ObjectContext—are created when the object is activated
and destroyed when the object is deactivated, so you’ll need to add in support for
just-in-time activation (JIT). Do this by implementing the IObjectControl inter-
face in the component and adding the three required IObjectControl methods:
Activate, CanBePooled, and Deactivate. In the container.h file, implement
IObjectControl by changing the class declaration to the following:

class ATL_NO_VTABLE Ccontainer :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<Ccontainer, &CLSID_container>,
public IObjectControl,
public IDispatchImpl<Icontainer, &IID_Icontainer, &LIBID_ASP1701Lib>

Next, modify the BEGIN_COM_MAP setting to add in IObjectControl:

BEGIN_COM_MAP(Ccontainer)
COM_INTERFACE_ENTRY(Icontainer)
COM_INTERFACE_ENTRY(IObjectControl)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

Finally, add the three JIT methods to the public section of the component class
declaration:

public:
STDMETHOD(Activate)();
STDMETHOD_(BOOL, CanBePooled)();
STDMETHOD_(void, Deactivate)();

,ch17.19983 Page 532 Thursday, February 22, 2001 1:34 PM

Binding to Active Directory Objects 533

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Also add in support for two private data members—a reference to ObjectContext
and one to the Response interface:

private:
 CComPtr<IObjectContext> m_spObjectContext;
 CComPtr<IResponse>m_piResponse;

Finally, all you have to do is implement the IObjectControl methods to provide
support for just-in-time activation, as well as for instantiating the Response object
when the component is activated. Add the code shown in Example 17-1 to the
component C++ file.

Example 17-1. Code to Support JIT Activation and Pooling for a Component

HRESULT Ccontainer::Activate()
{
 HRESULT hr = S_OK;
 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
hr = GetObjectContext(&m_spObjectContext);

 if (FAILED(hr))
 return hr;

 // get Context Properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

 return hr;
}

BOOL Ccontainer::CanBePooled()
{

return TRUE;
}

void Ccontainer::Deactivate()

,ch17.19983 Page 533 Thursday, February 22, 2001 1:34 PM

534 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Now that the component support code has been added, you can concentrate on
adding the Active Directory–specific code. Use the Visual C++ Class View to add a
new method to the component and call it enumObjects. The method takes one
input parameter of type BSTR,with the name of the ADSI container:

[in] BSTR bstrContainer

The method, the source code for which is shown in Example 17-2, calls ADsGet-
Object to get a reference to the object specified in the bstrContainer parame-
ter, and specifies IID_IADsGroup as the interface reference used in the function.
Once it has a reference to the group, the method gets the group members through
the Members method, assigning the reference to an instance of the IADsMembers
interface. It enumerates each member and queries for each member in the collec-
tion, displaying the value of the CN property (which represents the unique name)
for each item.

{
 m_piResponse.Release();

m_spObjectContext.Release();
}

Example 17-2. Method to Enumerate Through Objects Contained in an ADSI Group

STDMETHODIMP Ccontainer::enumObjects(BSTR bstrContainer)
{
 HRESULT hr = S_OK;

 IADsGroup *pGroup;
 IADsMembers * pADsMembers = NULL;
 IEnumVARIANT * pEnumVariant = NULL;
 IUnknown * pUnknown = NULL;
 IDispatch *pDisp = NULL;
 IADs *pADs = NULL;

 CComVariant vtout;
 CComVariant vtEntry;
 ULONG lng;

 // get group
 hr = ADsGetObject(bstrContainer,IID_IADsGroup,
 (void **) &pGroup);

 // get members
 hr = pGroup->Members(&pADsMembers);
 if (FAILED(hr))
 return hr;
 pGroup->Release();

 // get enumerator
 hr = pADsMembers->get__NewEnum(&pUnknown);

Example 17-1. Code to Support JIT Activation and Pooling for a Component (continued)

,ch17.19983 Page 534 Thursday, February 22, 2001 1:34 PM

Binding to Active Directory Objects 535

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Comparing the code in Example 17-2 with the Visual Basic code in Example 12-1,
you can see that more of the COM implementation of the ADSI interfaces is
exposed with Visual C++, but the functionality is basically the same: access the
container, get the members, and use the built-in enumeration support to access
each member and output a specific property.

To test your new C++ ASP Component, use the ASP test page asp1701.asp, which
contains the following script:

<%
Dim obj
Set obj = Server.CreateObject("asp1701.container")
obj.enumObjects "LDAP://CN=test,CN=Users,DC=development,DC=local"
%>

The value passed as a parameter to the component is the complete path for the
test group, containing two users. The usernames (their unique CN values) are
listed:

George Washington
Bryan James

The code in Example 17-2 isn’t overly complicated, but it is a bit more “wordy”
than the Visual Basic code. It would be nice to have a little of the VB simplifica-
tion and still create the component using C++. Luckily, with ADSI, you have this
ability through a group of ADSI helper functions.

 if (FAILED(hr))
 return hr;
 pADsMembers->Release();

 hr = pUnknown->QueryInterface(IID_IEnumVARIANT,(void **)&pEnumVariant);
 if (FAILED(hr))
 return hr;
 pUnknown->Release();

 // enumerate through entries, printing out "cn"
 while (S_OK == pEnumVariant->Next(1,&vtEntry,&lng)) {
 pDisp = V_DISPATCH(&vtEntry);
 pDisp->QueryInterface(IID_IADs, (void**)&pADs);
 pADs->Get(L"cn",&vtout);
 m_piResponse->Write(vtout);
 vtout = "
";
 m_piResponse->Write(vtout);

 }
 pEnumVariant->Release();

 return hr;
}

Example 17-2. Method to Enumerate Through Objects Contained in an ADSI Group

,ch17.19983 Page 535 Thursday, February 22, 2001 1:34 PM

536 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ADSI Helper Functions
The functions used to access Active Directory objects, ADsOpenObject or ADsGet-
Object, are ADSI helper functions. These functions provide much of the functional-
ity necessary to create the objects, simplifying your coding experience.

There are other ADSI helper functions, including ones to access recent errors, to
create strings used with ADSI methods, and to handle much of the complexity of
enumerating objects. As you saw in Example 17-2, enumeration is a multistep pro-
cess, consisting of the following:

1. Call get_NewEnum, passing in a pointer to IUnknown.

2. Query the IUnknown interface for the IEnumVariant interface.

3. Access each member of IEnumVariant.

4. Release both the IEnumVariant and IUnknown interfaces.

The ADSI helper functions ADsBuildEnumerator, ADsEnumerateNext, and ADs-
FreeEnumerator can simplify the use of enumeration and make your Active Direc-
tory code a whole lot easier to read and maintain.

To demonstrate, add a second method to your existing asp1701.container com-
ponent and call it showUsers. This new method doesn’t take any parameters. Its
source code is shown in Example 17-3.

The method uses IADsContainer to work with the collection of users at the
development.local domain controller. It also uses the ADSI helper function to
handle all enumeration. As you can see in Example 17-3, the use of the helper
functions completely eliminates the need to access IUnknown for the collection
and to query for the enumerator interface.

Example 17-3. Enumeration Code Using ADSI Helper Functions

STDMETHODIMP Ccontainer::showUsers()
{
 HRESULT hr = S_OK;
 IADsContainer *pContainer;
 IEnumVARIANT * pEnumVariant = NULL;
 ULONG lng;
 IDispatch *pDisp = NULL;
 IADs *pADs = NULL;
 CComVariant vtout;
 CComVariant vtEntry;

 // get group
 hr = ADsGetObject(L"LDAP://CN=Users,DC=development,DC=local",
 IID_IADsContainer,
 (void **) &pContainer);

,ch17.19983 Page 536 Thursday, February 22, 2001 1:34 PM

ADSI Helper Functions 537

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As you can see, although the helper functions don’t eliminate all of the code
needed to enumerate through a collection (you’ll still have to query for each spe-
cific object to access its properties), it does cut the number of lines of code—
decreasing potential errors and increasing readability.

To test the component, use a script similar to the following, which you can find in
asp1702.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1701.container")
obj.showUsers
%>

As I mentioned earlier, there are other helper functions, including ones to build
arrays of values to use in some of the ADSI methods, as you’ll see demonstrated in
the next section.

The ADsBuildEnumerator helper function works only with the
IADsContainer and IADsMembers collections. Using the function
with the IADsCollection interface will fail because of the location
of get_NewEnum in the IADsCollection vtable. The IADs-
Container and IADsMembers collections have get__NewEnum in
the ninth vtable position, making them compatible with this helper
function. IADsCollection has get__NewEnum in the eighth vtable
position.

 // get enumerator
 hr = ADsBuildEnumerator(pContainer,&pEnumVariant);
 if (FAILED(hr))
 return hr;

 // enumerate through entries, printing out "cn"
 while (S_OK == ADsEnumerateNext(pEnumVariant,1,&vtEntry,&lng)) {
 V_DISPATCH(&vtEntry)->QueryInterface(IID_IADs, (void**)&pADs);
 pADs->Get(L"cn",&vtout);
 m_piResponse->Write(vtout);
 vtout = "
";
 m_piResponse->Write(vtout);

 }
 ADsFreeEnumerator(pEnumVariant);

 return hr;
}

Example 17-3. Enumeration Code Using ADSI Helper Functions (continued)

,ch17.19983 Page 537 Thursday, February 22, 2001 1:34 PM

538 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Filtering Collections
The good thing about collections is that it’s very easy to enumerate through the
members of the collection for whatever reason. However, the downside of collec-
tions is that many times you don’t need to access all members of the collection—
only a select few.

Instead of having to check out each collection member to see if it meets your
selection criteria, you can instead filter the collection using the collection inter-
face’s put_Filter method. Note, though, that put_Filter is supported only with the
IADsMembers and IADsContainer interfaces.

To demonstrate using filters, create one more method on asp1701.container
and call this one enumObjectsByFilter. Add a BSTR parameter for receiving the
specific filter to use:

[in] BSTR bstrFilter

The code for the method is shown in Example 17-4. It retrieves a reference to the
Users collection and assigns it to an IADsContainer object. Next, it prepares the
filter by building a variant array using the ADsBuildVarArray helper function, pass-
ing it the filter string provided as a parameter to enumObjectsByFilter, as well as a
variant to hold the results, which are returned as a variant array. This variant array
created by ADsBuildVarArray is then passed as a parameter to put_Filter. All that’s
left at this point is to enumerate through the filtered collection. To make things a
little different in Example 17-4, the ADsPath is output instead of the unique name.

Example 17-4. Enumerating a Filtered Collection

STDMETHODIMP Ccontainer::enumObjectsByFilter(BSTR bstrFilter)
{
 HRESULT hr = S_OK;
 IADsContainer *pContainer;
 IEnumVARIANT * pEnumVariant = NULL;
 ULONG lng;
 IDispatch *pDisp = NULL;
 IADs *pADs = NULL;
 CComVariant vtout;
 CComVariant vtEntry;
 VARIANT vtArray;
 CComBSTR bstrPath;

 // get users
 hr = ADsGetObject(L"LDAP://CN=Users,DC=development,DC=local",
 IID_IADsContainer,
 (void **) &pContainer);

,ch17.19983 Page 538 Thursday, February 22, 2001 1:34 PM

Filtering Collections 539

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you test your new component method using a script like asp1703.asp,
you’ll pass in the class name of the objects you want to include within the collec-
tion when your code processes it. For instance, if you only want to show the indi-
vidual users (objects with User class) in the collection, pass user for the filter:

<%
Dim obj
Set obj = Server.CreateObject("asp1701.container")
obj.enumObjectsByFilter "user"
%>

Running this ASP script results in a list of user object types from the Users collec-
tion. If you wanted to see the groups contained in the Users collection, you would
use the following:

obj.enumObjectsByFilter "group"

Try this with your component. Change the class name from user to group to see
the differences in the results.

To this point, all you’ve had a chance to do is work with collections of objects and
display information about the objects. You can also use ADSI to create and
remove objects, discussed next.

 // VariantInit(&vtArray);
 ADsBuildVarArrayStr(&(LPWSTR)bstrFilter,1,&vtArray);

 // filter
 pContainer->put_Filter(vtArray);

 // get enumerator
 hr = ADsBuildEnumerator(pContainer,&pEnumVariant);
 if (FAILED(hr))
 return hr;

 // enumerate through entries, printing out "cn"
 while (S_OK == ADsEnumerateNext(pEnumVariant,1,&vtEntry,&lng)) {
 V_DISPATCH(&vtEntry)->QueryInterface(IID_IADs, (void**)&pADs);
 pADs->get_ADsPath(&bstrPath);
 vtout.bstrVal = bstrPath.Detach();
 m_piResponse->Write(vtout);
 vtout = "
";
 m_piResponse->Write(vtout);
 }
 ADsFreeEnumerator(pEnumVariant);

 return hr;
}

Example 17-4. Enumerating a Filtered Collection (continued)

,ch17.19983 Page 539 Thursday, February 22, 2001 1:34 PM

540 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating and Removing Active Directory
Objects Using ADSI
To create a new Active Directory object, you first need to retrieve a reference to
the object’s container. So, to create a new user or group, you first have to access
the User collection through IADsContainer and then use this interface’s Create
method to create the object.

Once you create an instance of the object, you can set its individual properties
using the method supported for that type of object or using the more generic Put
method. For instance, to make a new ADSI user, you create an instance of the
IADsUser object and set the individual user properties:

pUser->put_FullName(bstrName);
pUser->put_EmailAddress(bstrEmail);

You could also use Put for these same properties:

 pUser->Put(L"name",varName);
 pGroup->Put(L"emailAddress",varEmail);

There are some properties that are required when you create a new object. For
users and groups, you must specify the CN property (the unique name), as well as
the SAMAccountName property. The latter is the name used by Windows client
applications to use the object and is usually the same as the value given for CN.

To demonstrate creating and removing objects, specifically group objects, create a
new Visual C++ project using the ATL COM Wizard, and again, don’t check either
the MFC or MTS option. Name the project asp1702. Attach the ADSI libraries
(activeDS.lib and adsiid.lib) to the project’s library modules.

Create a new Simple Object using the ATL Object Wizard and name it group. Set
its Threading Model to Both, and keep the default settings for Dual Interface and
Aggregation support.

Once the object’s been created, add the Active Directory header file to the gener-
ated group.h file. Also add the comdef.h file (to provide support for the COM
wrapper objects you’ll use in your code):

#include <activeds.h>
#include <comdef.h>

Use the Visual C++ Class View to add a method named createGroup to the project.
This method takes as its only parameter the name of the new group object:

[in] BSTR bstrGroup

The code for the createGroup method is shown in Example 17-5. It retrieves a ref-
erence to the group’s container, in this case the Users collection. Then it calls the

,ch17.19983 Page 540 Thursday, February 22, 2001 1:34 PM

Creating and Removing Active Directory Objects Using ADSI 541

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

object’s Create method, passing in the relative name of the new group. The rela-
tive name for the group is created by prepending CN= to the group name. The
Create method returns a reference to an IDispatch interface. Calling its Query-
Interface method then returns a reference to the IADsGroup object for the new
group. Once you have the group, set the properties that are required for all
groups—namely the CN, SAMAccountName, and GroupType properties.

The GroupType property takes a value from the ADS_GROUP_TYPE_ENUM enumer-
ation. Available values are the following:

ADS_GROUP_TYPE_GLOBAL_GROUP
Contains accounts and other groups from its own domain

ADS_GROUP_TYPE_DOMAIN_LOCAL
Can contain accounts and groups from any domain (LDAP only)

ADS_GROUP_TYPE_LOCAL_GROUP
Same as ADS_GROUP_TYPE_DOMAIN_LOCAL but for WinNT

ADS_GROUP_TYPE_UNIVERSAL_GROUP
Can contain groups and accounts from any domain but the local domain

ADS_GROUP_TYPE_SECURITY_ENABLED
Security-enabled group

For the example, ADS_GROUP_TYPE_GLOBAL_GROUP and ADS_GROUP_TYPE_
SECURITY_ENABLED are combined with the bitwise OR operator to create a glo-
bal, security-enabled group.

Once the group’s properties have been set, the SetInfo method is called to persist
the new group to the directory.

Example 17-5. Creating a New Group

STDMETHODIMP Cgroup::createGroup(BSTR bstrGroup)
{
 HRESULT hr = S_OK;
 IADsGroup *pGroup;
 IADsContainer *pContainer;
 IDispatch *pDisp = NULL;
 IADs *pADs = NULL;
 _variant_t varGroup = bstrGroup;
 _variant_t varType;
 _bstr_t bstrGrp = bstrGroup;

 // change group name to a relative, unique name
 bstrGrp = "CN=" + bstrGrp;

 // get group
 hr = ADsGetObject(L"LDAP://CN=Users,DC=development,DC=local",
 IID_IADsContainer,
 (void **) &pContainer);

,ch17.19983 Page 541 Thursday, February 22, 2001 1:34 PM

542 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The script that tests the new component passes in the name of the new group,
devasp, as shown in the following ASP test page, asp1704.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1702.group")

obj.createGroup "devasp"
%>

Using the Active Directory Services Viewer (see Chapter 12 for details on using this
tool), you can see that the new group has been added to the Users collection, as
shown in Figure 17-2, and given a CN and SAMAccountName property value of
devasp.

You can remove items as easily as you create them. The key to removing an exist-
ing item is to again access the item’s container and then call the Delete method to
delete the specific object.

To remove the new group you just created, add a new method to your asp1702.
group component and call this method removeGroup. Again, the method takes a
BSTR value representing the group name as its only parameter. The method code,

 if (FAILED(hr))
 return hr;

 // create group object
 hr = pContainer->Create(L"group",bstrGrp,&pDisp);
 if (FAILED(hr))
 return hr;
 pContainer->Release();

 hr = pDisp->QueryInterface(IID_IADsGroup,(void **)&pGroup);
 if (FAILED(hr))
 return hr;
 pDisp->Release();

 // assign group properties
 pGroup->Put(L"cn",varGroup);
 pGroup->Put(L"sAMAccountName",varGroup);

 varType.lVal = ADS_GROUP_TYPE_GLOBAL_GROUP |
 ADS_GROUP_TYPE_SECURITY_ENABLED;
 pGroup->Put(L"groupType",varType);

 // save information
 hr=pGroup->SetInfo();

 return hr;
}

Example 17-5. Creating a New Group (continued)

,ch17.19983 Page 542 Thursday, February 22, 2001 1:34 PM

Creating and Removing Active Directory Objects Using ADSI 543

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

which is shown in Example 17-6, obtains a reference to the group’s container and
then deletes the object.

Figure 17-2. Active Directory Services Viewer snapshot of new devasp group

Example 17-6. Remove the Group from the Container

// could not use removeGroup
STDMETHODIMP Cgroup::removeGrp(BSTR bstrGroup)
{
 HRESULT hr = S_OK;
 IADsContainer *pContainer;
 _bstr_t bstrGrp = bstrGroup;
 bstrGrp = "CN=" + bstrGrp;

 // get group
 hr = ADsGetObject(L"LDAP://CN=Users,DC=development,DC=local",
 IID_IADsContainer,
 (void **) &pContainer);
 if (FAILED(hr))
 return hr;

 // delete group, release container
 pContainer->Delete(L"group",bstrGrp);
 pContainer->Release();

 return hr;
}

,ch17.19983 Page 543 Thursday, February 22, 2001 1:34 PM

544 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test the component using script similar to the following, found in asp1705.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1702.group")

obj.removeGrp "devasp"
%>

If the object you’re deleting had contained children, you couldn’t use the con-
tainer’s Delete method. Instead, you would have to create an instance of the
IADsDeleteOps object and call its DeleteObject method. For instance, to delete a
group with accounts (users), you would use code similar to the following:

// get group
hr = ADsGetObject(L"LDAP://CN=somegrp,CN=Users,DC=development,DC=local",
 IID_IADsContainer,
 (void **) &pContainer);
if (FAILED(hr)) return hr;

// delete group
IADsDeleteOps *pDel;
hr = pContainer->QueryInterface(IID_IADsDeleteOps, (void **)&pDel);

if (FAILED(hr)) return hr;
pDel->DeleteObject(0);

The parameter used with DeleteObject is reserved for future use—use a value of
zero (0) for now.

In all the examples examined so far, you’ve known the ADS path for the object
you wanted to work with. However, in a larger setup, you might not have this
information but will instead need to search for a specific item. The next and final
section of this chapter discusses how to use the IDirectoryService object to
search for specific Active Directory objects.

Searching Active Directory with
IDirectorySearch
In Chapter 12, the example that demonstrated searching through Active Directory
objects used ADO to perform the search. A second technique for searching
through Active Directory uses the IDirectorySearch interface. The
IDirectorySearch interface has methods to execute a search and then process
its results.

Active Directory searches using the IDirectorySearch interface are restricted to
selecting objects based on the object class. For instance, to get all objects with a
class of user, you’d use the following selection criteria:

(ObjectClass=user)

,ch17.19983 Page 544 Thursday, February 22, 2001 1:34 PM

Searching Active Directory with IDirectorySearch 545

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This type of selection criteria will traverse all subtrees in the directory service,
returning a collection of all objects with the class name of user.

With IDirectorySearch, you can also specify what columns, or object proper-
ties, to return from the search. The selection list is contained within an array
passed with the search.

To try out searching with IDirectorySearch, create a new Visual C++ project
using the ATL COM Wizard, and don’t add support for MTS or MFC. Name the
project asp1703. Once the project files are generated, add the Active Directory
libraries to the project’s library modules. Also add the COM+ Services library, since
you’re again going to be using the built-in ASP Response object to print out your
results. You should add the following libraries to the end of the Object/Library
Modules text box:

comsvcs.lib activeDS.lib adsiid.lib

Create a new Simple Object using the ATL Object Wizard, name the object
search, and set the Threading Model to Both. Leave all other properties at their
default values.

Once the search.h header file is generated, add in the necessary header files to
support Active Directory, COM+ Services, and the ASP built-in objects. You’ll also
be using COM wrapper classes, so add support for comdef.h. The following are
the #include statements you should add to the header file:

#include <comsvcs.h>
#include <asptlb.h>
#include <activeds.h>
#include <comdef.h>

Use Class View to add a new method named doQuery. This method takes one
BSTR input parameter—the name of the class you’ll be searching for:

[in] BSTR bstrClass

In the newly generated method, add the code to instantiate the IObjectContext
object, which is used to create an instance of the IResponse object, as shown in
Example 17-7. The method uses the Response object to display the results of the
query.

Example 17-7. Create an Instance of IResponse for Web Page Output

 HRESULT hr = S_OK;
 CComPtr<IObjectContext> spObjectContext;
 CComPtr<IResponse> piResponse;
 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

,ch17.19983 Page 545 Thursday, February 22, 2001 1:34 PM

546 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the same doQuery method, next add the code to create an instance of the
IDirectorySearch interface, as shown in Example 17-8. The path used with the
ADsGetObject method call is the name of the domain controller, since you’re
searching throughout the domain’s entire directory service for all objects having
the specified search class.

The code instantiates IDirectorySearch and calls its ExecuteSearch method,
which has the following parameters:

pszSearchFilter
A LPWSTR representing the search filter or criteria (the class name in the form
of a search expression).

pAttributeNames
A LPWSTR representing an array containing the names of the attributes to
return.

dwNumberAttributes
A DWORD representing a count of the number of attributes to return.

phSearchHandle
A PADS_SEARCH_HANDLE representing the handle to the search context. This
parameter must be used with all methods when processing the search results.

After the successful search, the method processes the results and displays the val-
ues. To display the values, each attribute is accessed using the GetColumn

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&spObjectContext);
 if (FAILED(hr))
 return hr;

 // get Context Properties
 hr = spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&piResponse);

Example 17-7. Create an Instance of IResponse for Web Page Output (continued)

,ch17.19983 Page 546 Thursday, February 22, 2001 1:34 PM

Searching Active Directory with IDirectorySearch 547

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

method, and the contents are assigned to an ADS_SEARCH_COLUMN object. ADS_
SEARCH_COLUMN has the following structure:

typedef struct ADS_SEARCH_COLUMN
{
 LPWSTR pszAttrName;
 ADSTYPE dwADsType;
 PADSVALUE pADsValues;
 DWORD dwNumValues;
 HANDLE hReserved;
} ADS_SEARCH_COLUMN, *PADS_SEARCH_COLUMN;

The attribute name and type are given in pszAttrName and dwADsType, respec-
tively. The attribute value(s) are retrieved from pADsValues, an array of
ADSVALUE structures. In the code, the value of each attribute is accessed from the
array through the ADSVALUE structure’s CaseIgnoreString value.

Example 17-8. Using the IDirectorySearch Interface

 // Active Directory code
 IDirectorySearch *pDSearch;

 // array with selection list items
 LPWSTR pszAttr[] = { L"cn", L"samAccountName",
 L"distinguishedName", L"ADsPath" };

 ADS_SEARCH_HANDLE hSearch;
 ADS_SEARCH_COLUMN hCol;
 DWORD dwCount= sizeof(pszAttr)/sizeof(LPWSTR);

 // create search string for given object class
 _bstr_t bstrCls = bstrClass;
 _bstr_t bstrSearch = "(objectClass=" + bstrCls + ")";
 _variant_t varout;
 int i;

 // get IDirectorySearch for domain
 hr = ADsGetObject(L"LDAP://DC=development,DC=local",
 IID_IDirectorySearch,
 (void **) &pDSearch);
 if (FAILED(hr))
 return hr;

 // execute search
 // pass in search string, selection list array, and search handle
 hr = pDSearch->ExecuteSearch((LPWSTR)bstrSearch,pszAttr,
 dwCount,&hSearch);

 if (FAILED(hr))
 return hr;

 // while more rows
 // print out selection list items

,ch17.19983 Page 547 Thursday, February 22, 2001 1:34 PM

548 Chapter 17: Accessing Active Directory from C++ Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component, create an ASP test script like the following one,
asp1706.asp, and pass in the class name of the objects to search for. To look for
all User objects, pass in the “user” text string:

<%
Dim obj
Set obj = Server.CreateObject("asp1703.search")

obj.doQuery "user"
%>

To look for all groups, pass in “group”:

obj.doQuery "group"

Vary the name of the object class you use with each test, and view the results.
These are some of the classes you can try:

user
group
computer
contact

You can specify search criteria using the SetSearchPreference method, which has
the following parameters:

 // item name on left, value on right
 while(pDSearch->GetNextRow(hSearch) != S_ADS_NOMORE_ROWS) {
 for (i = 0; i < 4; i++) {
 varout = pszAttr[i];
 piResponse->Write(varout);
 varout = " = ";
 piResponse->Write(varout);

 // set column to column handle
 pDSearch->GetColumn(hSearch,pszAttr[i],&hCol);
 varout = hCol.pADsValues->CaseIgnoreString;
 piResponse->Write(varout);
 varout="
";
 piResponse->Write(varout);

 // free column handle
 pDSearch->FreeColumn(&hCol);
 }
 }

 // clean up
 pDSearch->CloseSearchHandle(hSearch);
 pDSearch->Release();

 return hr;

Example 17-8. Using the IDirectorySearch Interface (continued)

,ch17.19983 Page 548 Thursday, February 22, 2001 1:34 PM

Searching Active Directory with IDirectorySearch 549

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

pSearchPrefs
Pointer to an array of ADS_SEARCHPREF_INFO structures with information
about search preferences

dwNumPrefs
A DWORD indicating the number of preferences

Use this to set search preferences such as the page size for the search results. You
can also abandon an existing search by calling the AbandonSearch method, pass-
ing in the existing search handle.

,ch17.19983 Page 549 Thursday, February 22, 2001 1:34 PM

550
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 18

18
Accessing MSMQ from C++
ASP Components

Microsoft’s Message Queue technology, known by the acronym MSMQ, provides a
way for applications to communicate with one another literally across time and
space. MSMQ crosses time by allowing one application to create messages that are
placed in a queue at one time but processed (by the same or another application)
at a later time. MSMQ crosses space by being designed to be used in heteroge-
neous, distributed applications—applications such as ASP applications.

ASP application components can send messages to queues, and the messages can
be processed by other non-ASP applications. Conversely, other applications can
send messages to queues for pickup by an ASP application (that pickup being ini-
tiated via a web page). Or the sender and the receiver of the message can both be
ASP application-based.

This chapter looks at working with MSMQ from within C++ components.

This chapter does not provide an overview of MSMQ or explore the
concepts of using MSMQ in an ASP component. For this, you’ll want
to read Chapter 13, Working with MSMQ Components. Once you’ve
read about the concepts of MSMQ, try out the MSMQ examples cre-
ated in C++ in this chapter.

Adding Support for MSMQ
to the C++ Project
MSMQ has three basic components: the MSMQ queue (used to hold and provide
access for MSMQ messages), the MSMQ message itself, and transaction support.

,ch18.20107 Page 550 Thursday, February 22, 2001 1:34 PM

Adding Support for MSMQ to the C++ Project 551

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In your C++ components, you can programmatically create (and remove) private
or public message queues, with or without transaction support. A public queue is
one accessible by any Active Directory node, such as one on another machine. A
private queue, on the other hand, is accessible only by the machine where the
node resides. Once a queue is created, you can send and retrieve messages from
it. You can also add transaction support that is specific to MSMQ only or integrate
it with MTS/COM+ transaction support.

MSMQ also supports specialized queues, such as dead-letter queues for messages
that can’t be delivered, as well as journaling—echoing sent or retrieved messages
for historical or recovery purposes.

There are two ways you can access MSMQ objects and functionality from within
Visual C++ components. The first way is to use the MSMQ COM objects created
specifically for use by applications that support COM. The second way is to use
the MSMQ functions.

The MSMQ functions are accessible from C++ only and use a set of structures to
pass properties, parameters, and other values to and from function calls. For
instance, to create a message queue using MSMQ functions, you create an array of
MQPROPVARIANT structures to define the queue properties, an array of
QUEUEPROPID structures to set the property identifiers, and an array of HRESULT
values to hold the status of each property:

 MQPROPVARIANT aQueuePropVar[NUMBEROFPROPERTIES];
 QUEUEPROPID aQueuePropId[NUMBEROFPROPERTIES];
 HRESULT aQueueStatus[NUMBEROFPROPERTIES];

Each property then needs to have an entry defined in the queue property and
identifier arrays:

 // set queue name
 aQueuePropId[0] = PROPID_Q_PATHNAME;
 aQueuePropVar[0].vt = VT_LPWSTR;
 aQueuePropVar[0].pwszVal = (LPWSTR)bstrPath;

All these structures are then assigned to members in another structure,
MQQUEUEPROPS:

 // set queue properties
 QueueProps.cProp = NUMBEROFPROPERTIES;
 QueueProps.aPropID = aQueuePropId;
 QueueProps.aPropVar = aQueuePropVar;
 QueueProps.aStatus = aQueueStatus;

This structure is then passed as a parameter to the MQCreateQueue function to
create the queue:

 hr = MQCreateQueue(pSecurityDescriptor,
 &QueueProps,

,ch18.20107 Page 551 Thursday, February 22, 2001 1:34 PM

552 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 wszFormatNameBuffer,
 &dwFormatNameBufferLength);

As you can see, working with MSMQ functions can be a lengthy process.

If you want to use MSMQ functions in your Visual C++ components, you’ll have to
include the MSMQ header file into your component:

#include <mq.h>

Additionally, you’ll also have to add the MSMQ library to your other component
library/object modules. Do this by accessing Project ➝ Settings from the main
menu, selecting the Link tab of the Project Settings dialog, and adding the follow-
ing to the end of the list of objects in the Object/Library Modules list:

Mqrt.lib

A later section in this chapter, “Searching for a Specific Queue,” provides a com-
plete example of using MSMQ functions.

As I said, working with MSMQ can be a lengthy process, which is the reason that I
prefer using the COM objects to implement MSMQ functionality from within Visual
C++ components. The MSMQ COM objects are identical in behavior and function-
ality regardless of what language is used—Visual Basic, Visual C++, Delphi, or
another language. However, the exact syntax used with the objects can differ con-
siderably between languages. In Chapter 13, you had a chance to see how the
MSMQ COM objects work within Visual Basic. This chapter shows how many of
these same objects work within C++.

First, though, you have to add support for MSMQ COM objects by using the
import directive to incorporate the MSMQ type library into your component:

#import "mqoa.dll" no_namespace

The import directive is a very handy feature to wrap the raw COM interfaces of
MSMQ (or other COM objects) with smart pointers, making it almost as easy to
work with interfaces in Visual C++ as it is in Visual Basic. The no_namespace
attribute means that you can access the objects directly without having to precede
them with a namespace identifier.

Chapter 14, Creating C++ ASP Components, covers the import direc-
tive and smart pointers in more detail. Most of the C++ chapters use
the import directive to simplify the coding.

Another advantage to using the import directive is that C++ exception handling is
provided for the COM objects, so you don’t have to litter your code with tests of
the HRESULT return value for every method call.

,ch18.20107 Page 552 Thursday, February 22, 2001 1:34 PM

Working with Queues 553

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you’ve imported the type library into your C++ component, you’re ready to
work with MSMQ COM objects. First up: creating the message queue.

Working with Queues
Think of an MSMQ queue as a mailbox. A mailbox shares the same overall physi-
cal location with several other mailboxes, but each one has a unique identifier and
occupies a unique space within the location. Given a mailbox number, you can
easily go to that box and get your mail.

Working with MSMQ queues is just as easy as getting mail from and putting mail
into a physical mailbox—but with MSMQ, you have to create the mailbox first.

Creating Queues

As stated earlier, there are two types of queues: private and public. If you don’t
have Active Directory installed, you can create only private queues—trying to cre-
ate a public queue results in an error.

If you’re working with MSMQ on a machine that doesn’t have Active
Directory installed or doesn’t have access to a machine with an
Active Directory domain controller, you can create only private
queues. See Chapter 12, Working with Active Directory from ASP
Applications, for instructions on how to set up a standalone Active
Directory installation.

There are multiple types of queues that you as an MSMQ developer can create,
including queues for messages, administrative system messages, and so on. Addi-
tionally, there are also system queues that are created by MSMQ, such as the dead-
letter and journal queues. You can’t create these, but you can access them. This
chapter focuses on the type of queue you’ll most likely use with your ASP compo-
nents: the message queues.

To create a new message queue, you must provide a unique pathname for it. This
pathname can contain the NetBIOS or DNS machine name or a period for the local
computer. The examples in this chapter use the period, since all of the compo-
nents are created and tested locally on the development machine.

The pathname also includes additional naming information to provide a unique
identifier. This additional information is separated by backslashes. When you pro-
vide the backslashes (\) for the name, make sure you escape it within C++ by pre-
ceding the backslash with a second backslash. For example:

.\\newqueue

,ch18.20107 Page 553 Thursday, February 22, 2001 1:34 PM

554 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you create the queue, you can use it to send and receive messages.

To demonstrate how simple it is to create a message queue within your C++ com-
ponents, create a new Visual C++ project using the ATL COM AppWizard, and
name the project asp1801. Don’t check either the MFC or MTS options when
prompted by the wizard.

Once the project files are generated, insert a new ATL object using the ATL Object
Wizard, choosing the Simple Object option and naming the new object msgqueue.
Accept the default attributes for the object, except change the threading model to
Both.

Once the new object’s C++ and header files have been created, add your first
method to the component using the Visual C++ Class View. The new method is
named newPublicQueue and takes three BSTR parameters, two input and one
return value:

[in] BSTR bstrQueue, BSTR bstrLabel, [out,retval]BSTR* pbstrMessage

The first input parameter is used to derive the queue’s pathname, and the second
is the queue’s label. A label is a way of grouping one or more queues for accessi-
bility as a group and provides a descriptive name for the queue. The return
parameter is used to pass a status message from the component to the ASP page.

Add the component code shown in Example 18-1 to the new method. The code
creates an instance of IMSQQueueInfoPtr, the smart pointer that wraps the
MSMQQueueInfo object. This object is used to create the queue once the queue
properties have been defined. Next, it creates the queue pathname by concatenat-
ing the location information to the queue name passed as the first parameter. It
assigns this string to the MSMQQueueInfo PathName property, as well as assign-
ing the label to the Label property. Finally, it calls the Create method to create the
queue. The Create method takes one parameter, a true or false value indicating
whether the queue is transactional or not. By default, this parameter is set to
false (don’t create a transactional queue) when no parameter is present, as is the
case with the example.

Example 18-1. Creating a Public MSMQ Message Queue

STDMETHODIMP Cmsgqueue::newPublicQueue(BSTR bstrQueue,
 BSTR bstrLabel,
 BSTR* pbstrMessage)
{
 CComBSTR bstrMessage;
 bstrMessage = "Queue Created";

 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");

 // create path
 qinfo->PathName = _bstr_t(".\\") + _bstr_t(bstrQueue);

,ch18.20107 Page 554 Thursday, February 22, 2001 1:34 PM

Working with Queues 555

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the component, the call to the Create method is enclosed within a try block,
so that any error that results is trapped within the associated catch block, which
assigns the error message to a string that is returned to the calling ASP script.

Before you compile your new component and method, you’ll need
to enable C++ exception handling. You can do this by selecting
Project ➝ Settings from the menu, clicking on the C/C++ tab, and
selecting C++ Language from the Category dropdown list. Check the
Enable Exception Handling option.

Try out your new component by creating an instance of it within the following
ASP script, asp1801.asp, and calling newPublicQueue, passing in the queue’s
name and label:

<%
Dim obj
Set obj = Server.CreateObject("asp1801.msgqueue")

Dim queue, label
queue = "first"
label = "First public queue"

Dim msg
msg = obj.newPublicQueue(queue,label)
Response.Write "<h3>" & msg & "</h3>"
%>

 qinfo->Label = bstrLabel;
 try
 {
 qinfo->Create();
 }
 catch (_com_error comerr)
 {
 HRESULT hr = comerr.Error();
 if (hr == MQ_ERROR_QUEUE_EXISTS)
 {
 bstrMessage = "Queue already exists";
 }
 else
 {
 bstrMessage = "Could not create queue";
 }
 }

 *pbstrMessage = bstrMessage.Detach();

return S_OK;
}

Example 18-1. Creating a Public MSMQ Message Queue (continued)

,ch18.20107 Page 555 Thursday, February 22, 2001 1:34 PM

556 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice that the script displays the message returned from the component, which
signals success or failure while creating the queue.

The example just shown creates a public queue that’s registered with the direc-
tory service. Any machine and any MSMQ application that shares the same domain
controller on which the MSMQ queue is created can now send and read messages
from this queue.

There are times when you might not want to have a queue be publicly accessible,
or you might not have access to an Active Directory domain controller. In these
circumstances, you can create a private queue instead of a public one by simply
adding the PRIVATE$ token to the pathname.

To try out creating a private queue, create a second method on asp1801.
msgqueue, and name this new method newPrivateQueue. It takes three parame-
ters, defined as follows in the Parameters text box of the Add Method to Interface
dialog:

[in] BSTR bstrQueue, BSTR bstrLabel, [out,retval]BSTR* pbstrMessage

Add the code shown in Example 18-2 for the second method. This code is exactly
the same as that shown in Example 18-1 except for the addition of the private
token.

Example 18-2. Creating a Private MSMQ Message Queue

STDMETHODIMP Cmsgqueue::newPrivateQueue(BSTR bstrQueue,
 BSTR bstrLabel,
 BSTR *pbstrMessage)
{
 CComBSTR bstrMessage;
 bstrMessage = "Queue Created";

 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");

 qinfo->PathName = _bstr_t(".\\PRIVATE$\\") + _bstr_t(bstrQueue);
 qinfo->Label = bstrLabel;
 try
 {
 qinfo->Create();
 }
 catch (_com_error comerr)
 {
 HRESULT hr = comerr.Error();
 if (hr == MQ_ERROR_QUEUE_EXISTS)
 {
 bstrMessage = "Queue already exists";
 }
 else
 {
 bstrMessage = "Could not create queue";
 }

,ch18.20107 Page 556 Thursday, February 22, 2001 1:34 PM

Working with Queues 557

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Try this component method with the following script, asp1802.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1801.msgqueue")

Dim queue, label
queue = "second"
label = "First private queue"

Dim msg
msg = obj.newPrivateQueue(queue,label)
Response.Write "<h3>" & msg & "</h3>"
%>

You can view queues using the Active Directory Users and Computers administra-
tive tool. Open the tool, and select the “Users, groups, and computers as contain-
ers” option from the View menu. Then click on the Advanced Features option in
the View menu.

To find a queue, right-click on the DNS and select Find from the menu that opens.
In the Find dialog, you can enter the label you used for either the private or pub-
lic queue, and the queue should show in the list. Or you can leave the search cri-
teria empty, and all MSMQ queues will be listed, as shown in Figure 18-1. Notice
in the figure that both the public and private queues are displayed in the list.

You can access any of the queue’s properties by right-clicking on the queue, and
you can also delete an existing queue. Needless to say, you must have administra-
tive privileges before you can use the Active Directory administrative tools.

Speaking of deleting queues, once you’re done with a queue, you can get rid of it
programmatically. Removing queues is discussed in the next section.

Removing Queues

What can be created can be destroyed, including MSMQ queues. First, though, you
have to obtain a reference to the queue.

There are two ways to search for an active reference to an MSMQ queue. In the
next section we’ll look at one way, which is to use MSMQQuery and do a lookup
for a queue. The second way is to actually create the queue. Wait a second here.
To get the queue you have to create the queue? Sounds crazy, doesn’t it? However,

 }

 *pbstrMessage = bstrMessage.Detach();

return S_OK;
}

Example 18-2. Creating a Private MSMQ Message Queue (continued)

,ch18.20107 Page 557 Thursday, February 22, 2001 1:34 PM

558 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

this isn’t as odd as it sounds. Yes, if you use the MSMQQueueInfo object’s Create
method on an existing queue, you’ll get a message that the queue has already been
created. However, you’ll also get a reference to the queue, and this is the approach
that Microsoft uses for many of its own MSMQ examples.

Test this for yourself by removing the public and private queues you created in
the last section. First, add a new method to asp1801, and name it removeQueue.
This method takes three parameters:

[in] BSTR bstrQueue, int iType, [out,retval] BSTR* pbstrMessage

The first parameter is the queue name used for the path, the second is a value
indicating if the queue is private or public, and the third is the status message. The
iType parameter is used to determine whether the code should concatenate the
PRIVATE$ token with the pathname.

Next, add the code for the method, which is shown in Example 18-3. Like Exam-
ples 18-1 and 18-2, you’ll use the Create method to “create” the queue, but this
time you’ll trap the method call in its own try…catch block. The reason for the
separate exception-handling block is that we’re expecting the call to generate an
error condition, since the queue already exists. In a second try…catch block,
you’ll then use the reference to the queue you obtained from the Create method to
delete the queue using the MSMQQueueInfo object’s Delete method.

Figure 18-1. Using the Active Directory Users and Computers administrative tools

Example 18-3. Removing an MSMQ Queue

STDMETHODIMP Cmsgqueue::removeQueue(BSTR bstrQueue,
 int iType,

,ch18.20107 Page 558 Thursday, February 22, 2001 1:34 PM

Working with Queues 559

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new method, the following script, asp1803.asp, removes both the pub-
lic and private queues you created earlier:

<%
Dim obj
Set obj = Server.CreateObject("asp1801.msgqueue")

 BSTR *pbstrMessage)
{
 CComBSTR bstrMessage;
 bstrMessage = "Queue Removed";

 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");

 // build path based on type of queue
 if (iType == 1)
 qinfo->PathName = _bstr_t(".\\PRIVATE$\\") + _bstr_t(bstrQueue);
 else
 qinfo->PathName = _bstr_t(".\\") + _bstr_t(bstrQueue);

 // obtain reference to queue
 try
 {
 qinfo->Create();
 }
 catch (_com_error comerr)
 {
 HRESULT hr = comerr.Error();
 if (hr == MQ_ERROR_QUEUE_EXISTS)
 {
 // disregard
 }
 else
 {
 bstrMessage = "Could not create queue";
 *pbstrMessage = bstrMessage.Detach();
 return hr;
 }
 }

 // delete queue
 try {
 qinfo->Delete();
 }

 catch (_com_error comerr)
 {
 bstrMessage = "Could not remove queue";
 }

 *pbstrMessage = bstrMessage.Detach();
return S_OK;

}

Example 18-3. Removing an MSMQ Queue (continued)

,ch18.20107 Page 559 Thursday, February 22, 2001 1:34 PM

560 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim msg

' remove public queue
msg = obj.removeQueue("first", 0)
Response.Write "<h3>" & msg & "</h3>"

msg= obj.removeQueue("second", 1)
Response.Write "<h3>" & msg & "</h3>"
%>

The next section demonstrates how to search for a queue based on the label.
Included within the section is a component that uses the MSMQ functions as well
as a component using the MSMQ COM objects.

Searching for a Specific Queue
As I said earlier, in this section you’ll be able to create queue search functionality
using both MSMQ COM objects and the MSMQ functions. We’ll start with the COM
objects first.

Searching Queues with the MSMQ COM Objects

The MSMQQuery object can be used to search for a queue based on its identifier,
service type, creation or modification time, or label.

MSMQQuery has one method, LookUp, with several optional parameters. The first
five parameters hold the values used for searching; the last three parameters are
used to specify the type of query used. The search parameters are identifier, ser-
vice type, label, creation time, and modification time, in that order. All queries are
based on equality, by default, so the only time you’ll need to specify one of the
remaining three parameters is to perform a search other than an equality search.

If you search for the label, for example, you’ll need to use a placeholder value for
all parameters before the one you’re listing. The placeholder for C++ smart point-
ers is vtMissing, a predefined value used to indicate a null or missing value.

One limitation with the MSMQQuery object’s LookUp method is that
it works only on public queues. You have to use an alternative
approach (such as the Create method, used earlier) for finding pri-
vate queues.

To search using MSMQ COM objects, add a new method to asp1801.msgqueue
and name it findQueues. The method takes a BSTR value with the queue label
used for the search:

[in] BSTR bstrLabel

,ch18.20107 Page 560 Thursday, February 22, 2001 1:34 PM

Searching for a Specific Queue 561

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The results of your search will be displayed directly from the component using the
built-in ASP Response object, so you’ll need to add support for the ASP intrinsics
to your component. First, add the following include statements to the msgqueue.h
header file:

#include <comsvcs.h>
#include <asptlb.h>

Additionally, add the COM+ Services library (comsvcs.lib) to the project’s linked
object/library modules list.

Add the code for your new method, beginning with the code to create a reference
to the ASP Response object shown in Example 18-4.

Next, add the code shown in Example 18-5 for the MSMQ query. Because more
than one queue can have the same label, you’ll need to process the results of the

Example 18-4. Code to Create Reference to ASP Response Object

 HRESULT hr = S_OK;

 // **** create Response object **** //

 CComPtr<IObjectContext> spObjectContext;
 CComPtr<IResponse> piResponse;
 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&spObjectContext);
 if (FAILED(hr))
 return hr;

 // get context properties
 hr = spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&piResponse);

,ch18.20107 Page 561 Thursday, February 22, 2001 1:34 PM

562 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

lookup in a loop. In the loop, the Response object is used to print out two queue
properties, the format name and the path, to the returning web page. Notice in the
call to LookUpQueue that the vtMissing placeholder value is used for every
parameter before the one of interest, the label. The placeholder does not need to
be used for the parameters that follow.

Once you compile the component, test the page. First, use the following ASP test
page, asp1804.asp, to create five new public queues, each with the same label

Example 18-5. Using MSMQQuery to Look Up Queues Based on Queue Label

STDMETHODIMP Cmsgqueue::findQueues(BSTR bstrLabel)
{

 /// ... the code to get the Response object fits here...

 // **** MSMQ Functionality **** //

 IMSMQQueryPtr query("MSMQ.MSMQQuery");
 IMSMQQueueInfosPtr qinfos;
 IMSMQQueueInfoPtr qinfo;
 _variant_t vtLabel;

 vtLabel = bstrLabel;

 // lookup based on label
 qinfos = query->LookupQueue(&vtMissing, &vtMissing, &vtLabel);

 // get first
 qinfo = qinfos->Next();

 _bstr_t bstrFormatName;
 _bstr_t bstrPathName;

 // if no queues found
 if (qinfo == NULL) {
 piResponse->Write (_variant_t("no queues matching the label"));
 return S_OK;
 }

 // while queues
 while (qinfo != NULL)
 {
 bstrFormatName = qinfo->GetFormatName();
 bstrPathName = qinfo->GetPathName();
 piResponse->Write(_variant_t(bstrFormatName + L"
"));
 piResponse->Write(_variant_t(bstrPathName + L"<p>"));
 qinfo = qinfos->Next();
 }

 return S_OK;
}

,ch18.20107 Page 562 Thursday, February 22, 2001 1:34 PM

Searching for a Specific Queue 563

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

(the label is the same, but the queue name has to differ or a query already exists
error will be generated):

<%
Dim obj
Set obj = Server.CreateObject("asp1801.msgqueue")

Dim queue, label
label = "Developing ASP Components"

Dim msg
msg=obj.newPublicQueue("one", label)
Response.Write "<h3>" & msg & "</h3>"

msg=obj.newPublicQueue("two", label)
Response.Write "<h3>" & msg & "</h3>"

msg=obj.newPublicQueue("three", label)
Response.Write "<h3>" & msg & "</h3>"

msg=obj.newPublicQueue("four", label)
Response.Write "<h3>" & msg & "</h3>"

msg=obj.newPublicQueue("five", label)
Response.Write "<h3>" & msg & "</h3>"
%>

Once the public queues are created, test the component’s new findQueues
method by calling it with the Developing ASP Components queue label, as
shown in the following ASP test script, asp1805.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1801.msgqueue")

obj.findQueues "Developing ASP Components"
%>

The result is a page with the format names and paths of the five queues:

PUBLIC=69af321f-13f8-49d7-8490-38d864e6f46f
flame\one
PUBLIC=2a570b7d-9d6c-47f4-91c5-9662275bbdb9
flame\two
PUBLIC=09a70a92-4885-49a7-9604-f32a2ae2f1ee
flame\three
PUBLIC=99c56ee6-70ac-44f7-a5e8-610ba8fe4bf9
flame\four
PUBLIC=c6453600-9c77-4e34-a067-6ec727d2c905
flame\five

If you’ve checked out the examples in Chapter 13, the comparable Visual Basic
version of this example (Example 13-4) also displayed the full DNS pathname of

,ch18.20107 Page 563 Thursday, February 22, 2001 1:34 PM

564 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

each queue. Unfortunately, the DNS pathname is not accessible as a property
when using the Visual C++ smart pointer objects.

To get output that matches the Visual Basic example, we’ll use the MSMQ func-
tions to perform the search and display the results. I’ll warn you now, though, that
you’re in for a significant coding effort just to get this information.

Searching Queues with MSMQ Functions

All the examples to this point have used the MSMQ COM objects to work with
MSMQ. As we’ve just noted, there can be limitations to the COM objects, such as
lack of access to the DNS full pathname for the queues from the MSMQQueueInfo
object.

In this section, you’ll use the MSMQ functions to search for queues based on a
label and to display each queue’s path, full DNS path, and formatted name.

To use the MSMQ functions, create a new Visual C++ project using the ATL COM
AppWizard and name this one asp1802. Don’t check either the MFC or MTS
options when prompted by the wizard.

Once the project files are generated, modify the library modules. As with the com-
ponent method in Example 18-5, you’ll be using COM+ Services to access the ASP
Response object for displaying the results of the search. So you’ll need to add the
COM+ Services library to the list. You’ll also need to add the MSMQ library:

Mqrt.lib comsvcs.lib

Insert a new ATL object into the project, choosing the Simple Object option, and
name it msgqueue (you can use the same object name within a different project
and component). Change the threading model to Both, and leave the other object
attributes at their default values.

In the msgqueue.h header file, add the COM+ Services and ASP include files. Also
add the MSMQ include file and comdef.h to access the COM helper functions (for
access to _bstr_t and _variant_t):

#include <comsvcs.h>
#include <asptlb.h>
#include <comdef.h>
#include <mq.h>

Use Class View to create a method for your component called findQueues. It takes
one BSTR, the queue name, as an input parameter:

[in] BSTR bstrLabel

Add code for accessing the ASP Response object. This code is identical to that
shown in 18-4, so I’ll omit it for brevity. Next comes the fun part—using the

,ch18.20107 Page 564 Thursday, February 22, 2001 1:34 PM

Searching for a Specific Queue 565

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

MSMQ functions to do the queue search and process the results. I’ll be splitting
the code up into different examples in order to explain the functionality better. If
you want to see the component code as a whole, check out the project in the
book examples.

Next, add the code in Example 18-6 after the code that accesses the ASP Response
object. The first function the code calls is MQLocateBegin. This function locates the
queue or queues matching the search and returns a query handle. The handle is
used in all other functions that process the query results. The
MQPROPERTYRESTRICTION structure is used to define the query, and it’s assigned
to the MQRESTRICTION.paPropRes member to pass to the function. Additionally,
the columns (properties of the queue) to return from the query are defined with
another structure, PROPID, and are attached to yet another structure,
MQCOLUMNSET. Unlike the MSMQ COM objects, your query won’t return objects,
but rather properties that you specifically request.

Next, if the call to the MQLocateBegin function is successful, the code processes
the results. It calls the MQLocateNext function to retrieve the queue information
and passes an array of MQPROPVARIANT structures to receive the properties you
queried for.

Example 18-6. Using the MSMQ Functions to Search for Queues

 // * rirst, search for queues based on label
 // return pathname * //

 MQPROPERTYRESTRICTION PropertyRestriction;
 MQRESTRICTION Restriction;
 MQCOLUMNSET Column;
 PROPID aPropId[2];

 // set search string -- search based on label
 PropertyRestriction.rel = PREQ;
 PropertyRestriction.prop = PROPID_Q_LABEL;
 PropertyRestriction.prval.vt = VT_LPWSTR;
 PropertyRestriction.prval.pwszVal =(LPWSTR)bstrLabel;

 // set restriction
 Restriction.cRes = 1;
 Restriction.paPropRes = &PropertyRestriction;

 // set column list -- pathname and label
 aPropId[0] = PROPID_Q_PATHNAME;

 Column.cCol = 1;
 Column.aCol = aPropId;

 // do query
 HANDLE hEnum;
 hr=MQLocateBegin(NULL, &Restriction,
 &Column, NULL,&hEnum);

,ch18.20107 Page 565 Thursday, February 22, 2001 1:34 PM

566 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The method’s final block of code is shown in Example 18-7. Notice the call to
MQLocateNext to get the next queue in the query and the call to MQLocateEnd to
close the query. Add this code to your component.

In the loop, the first value the code retrieves is the path, returned from calling
MQLocateNext. This is needed to find the other two properties. First, the method
gets the formatted name using the MQPathNametoFormatName function, passing
in the queue path. It will display the formatted name, but the formatted name is
also needed to find the DNS path.

The MQGetQueueProperties function is used to get the full DNS pathname. First,
though, the method has to create arrays of the following structures to define the
queue property, the DNS path:

MQQUEUEPROPS
PROPVARIANT
QUEUEPROPID
HRESULT

Then it calls MQGetQueueProperties. All that’s left at that point is to display the
queue properties.

 if (FAILED(hr)) return hr;
 DWORD dwPrpCt = 1;
 MQPROPVARIANT aPropVar[1];

 hr = MQLocateNext(hEnum,&dwPrpCt,aPropVar);
 if (FAILED(hr)) return hr;

 // **** process queue results **** //
 // * until props are zero * //
 while (dwPrpCt > 0) {

 ... continued in next example

Example 18-7. Looping Through the Queues, Getting the Properties, and Printing the Properties
to the Web Page

... previous content ...

 while (dwPrpCt > 0) {

 // get path
 _bstr_t bstrPath = aPropVar[0].bstrVal;

 // get formatted name
 DWORD dwFormatNameBufferLength = 256;
 WCHAR wszFormatNameBuffer[256];

 // get format name
 hr= MQPathNameToFormatName((LPWSTR)bstrPath,

Example 18-6. Using the MSMQ Functions to Search for Queues (continued)

,ch18.20107 Page 566 Thursday, February 22, 2001 1:34 PM

Searching for a Specific Queue 567

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Compile this component and test it with the following ASP script, asp1806.asp :

<%
Dim obj
Set obj = Server.CreateObject("asp1802.msgqueue")

obj.findQueues "Developing ASP Components"
%>

 wszFormatNameBuffer,
 &dwFormatNameBufferLength);

 if (FAILED(hr)) return hr;

 // use formatted name to find DNS path
 // using MQGetQueueProperties
 MQQUEUEPROPS qprops;
 PROPVARIANT aQueuePropVar[1];
 QUEUEPROPID aQueuePropId[1];
 HRESULT aQueueStatus[1];

 // set pathname DNS property
 aQueuePropId[0] = PROPID_Q_PATHNAME_DNS;
 aQueuePropVar[0].vt = VT_NULL;

 qprops.aPropID = aQueuePropId;
 qprops.aPropVar = aQueuePropVar;
 qprops.aStatus = aQueueStatus;
 qprops.cProp = 1;

 // get DNS pathname
 hr = MQGetQueueProperties(wszFormatNameBuffer, &qprops);
 if (FAILED(hr)) return hr;

 // get value of path
 _bstr_t bstrDnsPath = aQueuePropVar[0].bstrVal;

 // now, FINALLY, print out results
 piResponse->Write(_variant_t(wszFormatNameBuffer));
 piResponse->Write(_variant_t("
"));
 piResponse->Write(_variant_t(bstrDnsPath + "
"));
 piResponse->Write(_variant_t(bstrPath + "<p>"));

 MQLocateNext (hEnum, &dwPrpCt,aPropVar);
 }

 hr=MQLocateEnd(hEnum);

 return hr;
}

Example 18-7. Looping Through the Queues, Getting the Properties, and Printing the Properties
to the Web Page (continued)

,ch18.20107 Page 567 Thursday, February 22, 2001 1:34 PM

568 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

All told, you’ve used eight structures and several lines of code to get the follow-
ing results:

PUBLIC=69af321f-13f8-49d7-8490-38d864e6f46f
flame.development.local\one
flame\one
PUBLIC=2a570b7d-9d6c-47f4-91c5-9662275bbdb9
flame.development.local\two
flame\two
PUBLIC=09a70a92-4885-49a7-9604-f32a2ae2f1ee
flame.development.local\three
flame\three
PUBLIC=99c56ee6-70ac-44f7-a5e8-610ba8fe4bf9
flame.development.local\four
flame\four
PUBLIC=c6453600-9c77-4e34-a067-6ec727d2c905
flame.development.local\five
flame\five

Now you see why I prefer the MSMQ COM objects. However, when you need
access to certain functionality and the COM objects just don’t seem to work for
you, remember to check out the MSMQ functions.

Now that you’re pretty comfortable with creating, removing, and searching MSMQ
queues, it’s time to try them out by sending them some messages. After all, queues
by themselves might be interesting but aren’t too useful.

Working with MSMQ Messages
Messages can be used to start or stop processes, to provide feedback, to warn of
problems, and to perform a host of other actions. Messages can have objects
attached, be plain strings, be read by applications automatically, or, in the case of
ASP components, be read by the receiver from a web-based application.

Messages are implemented with the MSMQMessage object, wrapped in the smart
pointer IMSMQMessagePtr. You’ll need to open the queue that will receive the
message and pass the open queue as the first parameter in the Send method. If
you have the queue path, you can open it directly using the MSMQQueueInfo
object.

To send messages to your queues, create a new Visual C++ project using the ATL
COM AppWizard, and name the project asp1803. Once the project files are gener-
ated, create a new ATL object, except this time use the MTS option. Name the
object message, and check the attribute option to add support for IObject-
Control, but do not check the pooling option. You’ll be using the ASP Response
object again, but this time you’ll create the object in the IObjectControl inter-
face’s Activate method.

,ch18.20107 Page 568 Thursday, February 22, 2001 1:34 PM

Working with MSMQ Messages 569

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In Windows 2000, pooled components must support aggregation,
and the ATL MTS option generates a component that specifically
prohibits aggregation. This can be modified, though. See Chapter 14,
Creating C++ ASP Components, for more information.

Once the C++ and header files are generated, add a private data member, m_piRe-
sponse, to the class header file, and move the generated member, m_spObjectCon-
text, to the private section:

private:
CComPtr<IObjectContext> m_spObjectContext;

 CComPtr<IResponse>m_piResponse;

Add the code shown in Example 18-8 to implement both the ObjectContext and
Response objects in the Activate and Deactivate methods in message.cpp.

Example 18-8. Getting ObjectContext and Response in JIT Methods

HRESULT Cmessage::Activate()
{
 HRESULT hr = S_OK;
 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // get ObjectContext
hr = CoGetObjectContext(IID_IObjectContext,

 (void **)&m_spObjectContext);
 if (FAILED(hr))
 return hr;

 // get context properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

 return hr;

,ch18.20107 Page 569 Thursday, February 22, 2001 1:34 PM

570 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You also should add the following import directive to message.cpp to make the
MSMQ’s enumerated constants available to your code:

#import "mqoa.dll" no_namespace

Open the message.h file and add the following header files:

#include <comsvcs.h>
#include <asptlb.h>

This adds support for COM+ Services and the ASP built-in objects.

Finally, add support for COM+ Services by adding comsvcs.lib to the list of mod-
ules in the Object/Library Modules list of the Project Setting’s Link tab.

Once you’ve added the support for ObjectContext and Response, you’re ready to
add the code to send your messages.

Sending Messages

Create a new method for your component using Class View and name it send-
StringMessage. Add two BSTR input parameters for the method:

[in]BSTR bstrQueue, BSTR bstrMessage

The first parameter is the queue name; the second is the message you want to send.

Add the code for the new method, which is shown in Example 18-9. First, it sets
the MSMQQueuePath pathname property using the putPathName method (gener-
ated through the import directive) to identify the queue and then calls the Open
method, passing in the information about how the queue is accessed (MQ_SEND_
ACCESS) and how the queue is shared once open (MQ_DENY_NONE). For this exam-
ple, the queue is opened for sending, and the queue can be shared with other
applications.

The message string is assigned to the Message object’s Body property. This prop-
erty is a variant, so any variant-compatible message could be attached to the mes-
sage, including references to objects. The calls to open the queue and send the

}

BOOL Cmessage::CanBePooled()
{

return TRUE;
}

void Cmessage::Deactivate()
{
 m_piResponse.Release();

m_spObjectContext.Release();
}

Example 18-8. Getting ObjectContext and Response in JIT Methods (continued)

,ch18.20107 Page 570 Thursday, February 22, 2001 1:34 PM

Working with MSMQ Messages 571

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

message are enclosed within exception handling, and if an error occurs, the
Response object is used to write out the error message.

The message is sent using the MSMQMessage object’s Send method, passing in the
open queue as the first parameter. If the message used MSMQ transactions, the
second parameter would hold an MSMQ transaction or transaction flag.

Compile the component and add it to an existing COM+ application (or create a
new one for the example). The component uses JIT (just-in-time) activation and
should be included within a COM+ application, or the ASP test page will hang
when you access it.

Try your new component by sending several messages to one of the existing
queues created in the last section. The following ASP test script can be found in
asp1807.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1803.message")

obj.sendStringMessage "five", "This is the first message"
obj.sendStringMessage "five", "This is the second message"

Example 18-9. Sending an MSMQ Message

STDMETHODIMP Cmessage::sendStringMessage(BSTR bstrQueue,
 BSTR bstrMessage)
{
 HRESULT hr = S_OK;
 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");
 IMSMQQueuePtr qQueue;
 IMSMQMessagePtr msg("MSMQ.MSMQMessage");

 _bstr_t bstrPath = L".\\" + _bstr_t(bstrQueue);

 // open queue, send message
 try {
 // open queue
 qinfo->PutPathName(bstrPath);

 qQueue = qinfo->Open(MQ_SEND_ACCESS, MQ_DENY_NONE);

 // send message
 msg->Body = bstrMessage;
 msg->Send(qQueue);
 }
 catch(_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()+"<P>"));

 }
Return hr;
}

,ch18.20107 Page 571 Thursday, February 22, 2001 1:34 PM

572 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

obj.sendStringMessage "five", "This is the third message"
%>

If no error occurs, three messages are sent to the queue named five.

Reading Messages

Reading messages using the MSMQ COM objects is just as easy as sending them,
with the difference being mainly the code necessary to process all of the mes-
sages. To try reading messages, create a new method in asp1803.message, call-
ing it readStringMessage. This method takes just one parameter, a BSTR for the
queue name.

Add the code for the new method, as shown in Example 18-10. The queue is
opened and the MSMQQueue object’s Receive method is used to access each mes-
sage in the queue until they’re all read. All of the Receive method’s parameters are
optional. The first parameter holds a transaction, if the message is included in a
transaction (discussed in the next section). This value is set to MQ_MTS_
TRANSACTION by default, which means that MSMQ uses MTS (COM+) transac-
tions. The second parameter holds a true or false value to specify whether the
destination information in the MSMQMessage DestinationQueueInfo property is set
(its default value is false). The third parameter is a true or false value indicat-
ing whether the message body is returned. This value is set to true by default,
indicating that the message body is returned. Finally, the last parameter is the
receive timeout value. In the example, this is set to a variant holding a value of
100 milliseconds.

You must set the receive timeout property when reading an MSMQ
message, or the method will block application execution and con-
tinue waiting for more messages in the queue—not a behavior you
want in an ASP application.

Example 18-10. Reading Messages from the Message Queue

STDMETHODIMP Cmessage::readStringMessage(BSTR bstrQueue)
{
 HRESULT hr = S_OK;
 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");
 IMSMQQueuePtr qQueue;
 IMSMQMessagePtr msg("MSMQ.MSMQMessage");
 _variant_t varMsgBody;

 _variant_t vtReceiveTimeout;
 vtReceiveTimeout = (long)100;

 _bstr_t bstrPath = L".\\" + _bstr_t(bstrQueue);

,ch18.20107 Page 572 Thursday, February 22, 2001 1:34 PM

Working with MSMQ Messages 573

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the example, the datatype of the message body is not tested before it is written
out, primarily because we know we’re receiving string messages. However, in
your ASP applications, you’ll want to test the datatype of the message before pro-
cessing it.

Try out the component’s new method using the following ASP page, asp1808.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1803.message")

obj.readStringMessage "five"
%>

The result of this ASP script is a page with the three messages sent with the ear-
lier example.

When the message is read using the Receive method, it’s removed from the queue.
If you want to leave the message on the queue, you use the Peek method instead.
However, after the first message, you’ll need to use PeekNext to get each message
after the first.

 // open queue, send message
 try {
 // open queue
 qinfo->PutPathName(bstrPath);
 //qinfo->PutLabel(bstrLabel);
 qQueue = qinfo->Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE);

 // get messages
 msg = qQueue->Receive(&vtMissing, &vtMissing,
 &vtMissing, &vtReceiveTimeout);
 while (msg != NULL) {
 varMsgBody = msg->GetBody();
 m_piResponse->Write(varMsgBody);
 m_piResponse->Write(_variant_t("
"));

 msg = qQueue->Receive(&vtMissing, &vtMissing,
 &vtMissing, &vtReceiveTimeout);
 }
 }
 catch(_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return hr;
}

Example 18-10. Reading Messages from the Message Queue (continued)

,ch18.20107 Page 573 Thursday, February 22, 2001 1:34 PM

574 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using Transactions
In the last section, I mentioned that transactions could be associated with mes-
sages. To use transactions, you first have to add transaction support for the mes-
sage queue.

To add transaction support for the queue, pass a value of true when creating the
queue using the MSMQQueueInfo object’s Create method. Once the queue is cre-
ated to support transactions, then your messages themselves must support transac-
tionsn or you could receive an error with some actions.

From Chapter 13: If the queue is remote (located other than on the
local machine), then you can’t use a transactional receive against the
queue. Additionally, you can’t use a transactional receive call against
a non-transactional queue. You can, however, use a nontransac-
tional receive call against either a transactional queue or a nontrans-
actional queue, even if the queue is remote. You can perform a
transactional send against a remote transactional queue, but you
can’t send a transactional message against a nontransactional queue,
regardless of its location. Neither can you send a nontransactional
message against a transactional queue.

To demonstrate transactional messages, you’ll need to create a transactional queue
first. Open the asp1801.msgqueue project and add a new method named
createXatQueue. This method takes three BSTR parameters; they are the queue
name, the label, and a pointer to a BSTR message containing the status of the
request:

[in] BSTR bstrQueue, BSTR bstrLabel, [out,retval] BSTR* pbstrMessage

Add the code for the new method next. As you can see in Example 18-11, the
code is very similar to that shown in Example 18-1, except a variant holding a
true value is passed to the MSMQQueueInfo object’s Create method.

Example 18-11. Creating a Transactional MSMQ Queue

STDMETHODIMP Cmsgqueue::createXatQueue(BSTR bstrQueue, BSTR bstrLabel,
 BSTR* pbstrMessage)
{
 CComBSTR bstrMessage;
 bstrMessage = "Queue Created";
 _variant_t varXact((bool)TRUE);

 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");

 qinfo->PathName = _bstr_t(".\\") + _bstr_t(bstrQueue);
 qinfo->Label = bstrLabel;

,ch18.20107 Page 574 Thursday, February 22, 2001 1:34 PM

Using Transactions 575

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ASP test page asp1809.asp contains the ASP script to create the transactional
queue using the new method:

<%
Dim obj
Set obj = Server.CreateObject("asp1801.msgqueue")

Dim msg
msg=obj.createXatQueue("transaction","XatQueue")
Response.Write "<h3>" & msg & "</h3>"
%>

Once you’ve created a transaction queue, you can send messages to and read
messages from the queue—as long as those messages have transaction support.

There are actually two different approaches you can use to add transaction sup-
port for MSMQ messages. The first approach is to use MTS/COM+ transactions for
your messages, as well as your other resources such as database updates. The sec-
ond approach is to use MSMQ transactions, valid only for MSMQ messages.

The MSMQTransactionDispenser object provides the transaction management
when using MSMQ transactions. You create an instance of this object and then call
its BeginTransaction method to return a reference to the MSMQTransaction object.
The latter object can be sent as the second parameter in the MSMQMessage
object’s Send method and can be used as the first parameter in the MSMQQueue
object’s Receive method.

 try
 {
 qinfo->Create(&varXact);
 }
 catch (_com_error comerr)
 {
 HRESULT hr = comerr.Error();
 if (hr == MQ_ERROR_QUEUE_EXISTS)
 {
 bstrMessage = "Queue already exists";
 }
 else
 {
 bstrMessage = "Could not create queue";
 }
 }
 *pbstrMessage = bstrMessage.Detach();

return S_OK;
}

Example 18-11. Creating a Transactional MSMQ Queue (continued)

,ch18.20107 Page 575 Thursday, February 22, 2001 1:34 PM

576 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Calling Commit or Abort with a reference to the MSMQTransaction object commits
or aborts the process of sending or reading the message:

IMSMQTransactionDispenserPtr disp("MSMQ.MSMQTransactionDispenser")
IMSMQTransactionPtr trans;
trans = disp->BeginTransaction();
...
trans->Commit();

Instead of passing in a transaction object, you can also specify a transactional enu-
merated constant. This is helpful when sending a message to a transactional queue
without having to create a formal transaction object. The following are the allow-
able values to use for the transaction parameter with either the Send or Receive
operations:

MQ_MTS_TRANSACTION
Use MTS/COM+ transactions, if any; this is the default value.

MQ_NO_TRANSACTION
 No transaction is used.

MQ_SINGLE_MESSAGE
The transaction consists of only the single message.

MQ_XA_TRANSACTION
Part of an externally coordinated transaction.

I prefer using MTS/COM+ transaction support for MSMQ messaging, primarily
because it provides better integration into the ASP application environment. That’s
the approach we’ll take with the chapter’s last two examples, in which you’ll send
and receive messages using MTS/COM+ transactions.

First, reopen the asp1803 project. Add a new method to the message component
and name it sendXactMessage. This method takes a queue name and the message
as parameters, as follows:

[in] BSTR bstrQueue, BSTR bstrMessage

Add the code for the new method next; it is shown in Example 18-12. Unlike the
previous Send method, this time you’ll attach transaction information to the Send
method if, and only if, the component is not included as part of an MTS/COM+
transaction. You can find this out by calling the IsInTransaction method of the
ObjectContext object, referenced as a class member.

The reason for this transaction testing activity is that you can’t send a nontransac-
tional message to a transactional queue—you’ll receive an error. Since transaction
support is set to MTS by default, you’ll have to provide some transaction informa-
tion with the message to allow the message to be successfully sent. In the case of
the example, the MQ_SINGLE_MESSAGE option is used, as shown in Example 18-12.

,ch18.20107 Page 576 Thursday, February 22, 2001 1:34 PM

Using Transactions 577

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To add transaction support for the component, open the COM+ application where
the asp1803.message component is currently installed, and right click on the
component to access its Properties dialog. In the Transaction sheet, check the
Required option for transaction support, as shown in Figure 18-2.

Even if COM+ transaction support was not added for the component, the MSMQ
message would still be sent because you added in support for MSMQ transactions
when COM+ transaction support is missing.

In the ASP page, add transaction support with the TRANSACTION directive as the
first line in the page, as follows:

<%@ TRANSACTION = required %>

Next, send the message, and use COM+ within the ASP script, asp1810.asp, to
commit the sending of the message:

<%
Dim obj

Example 18-12. Sending a Transactional Message

STDMETHODIMP Cmessage::sendXactMsg(BSTR bstrQueue, BSTR bstrMessage)
{
 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");
 IMSMQQueuePtr qQueue;
 IMSMQMessagePtr msg("MSMQ.MSMQMessage");

 _bstr_t bstrPath = L".\\" + _bstr_t(bstrQueue);

 try {
 // open queue
 qinfo->PutPathName(bstrPath);
 qQueue = qinfo->Open(MQ_SEND_ACCESS, MQ_DENY_NONE);

 // send message
 msg->Body = bstrMessage;

 _variant_t varType;
 varType.lVal = MQ_SINGLE_MESSAGE;
 varType.vt = VT_I4;

 if (m_spObjectContext->IsInTransaction())
 msg->Send(qQueue);
 else
 msg->Send(qQueue,&varType);

 }
 catch(_com_error e) {
 m_piResponse->Write(_variant_t(e.Description()));
 }

 return S_OK;
}

,ch18.20107 Page 577 Thursday, February 22, 2001 1:34 PM

578 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set obj = Server.CreateObject("asp1803.message")

obj.sendXactMsg "transaction", "This is a transaction message"

ObjectContext.SetComplete()
%>

To read the transactional messages, create a new method in asp1801.message,
and name it readXactMessage. This method takes an input BSTR parameter with
the queue name.

The code for this new method is identical to that shown in Example 18-10, except
that transaction support is added when calling the MSMQQueue object’s Receive
method. Add the code shown in Example 18-13 to your new method.

Figure 18-2. Adding transaction support to the asp1803.message component

Example 18-13. Reading Transactional Messages

STDMETHODIMP Cmessage::readXactMsg(BSTR bstrQueue)
{
 IMSMQQueueInfoPtr qinfo("MSMQ.MSMQQueueInfo");
 IMSMQQueuePtr qQueue;
 IMSMQMessagePtr msg("MSMQ.MSMQMessage");
 _variant_t varMsgBody;

 _variant_t vtReceiveTimeout;
 vtReceiveTimeout = (long)100;

 _bstr_t bstrPath = L".\\" + _bstr_t(bstrQueue);

 // open queue, send message

,ch18.20107 Page 578 Thursday, February 22, 2001 1:34 PM

Using Transactions 579

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Again, the following ASP test page, asp1811.asp, has the TRANSACTION directive
as the first line and the following script to read the transactional messages:

<%@ TRANSACTION = required %>
<%
Dim obj
Set obj = Server.CreateObject("asp1803.message")

obj.readXactMsg "transaction"

 try {
 // open queue
 qinfo->PutPathName(bstrPath);
 qQueue = qinfo->Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE);

 _variant_t varType;
 varType.lVal = MQ_SINGLE_MESSAGE;
 varType.vt = VT_I4;

 if (m_spObjectContext->IsInTransaction())
 msg = qQueue->Receive(&vtMissing,&vtMissing,
 &vtMissing,&vtReceiveTimeout);
 else
 msg = qQueue->Receive(&varType,&vtMissing,
 &vtMissing,&vtReceiveTimeout);
 // get messages

 while (msg != NULL) {
 varMsgBody = msg->GetBody();
 m_piResponse->Write(varMsgBody);
 m_piResponse->Write(_variant_t("
"));

 if (m_spObjectContext->IsInTransaction())
 msg = qQueue->Receive(&vtMissing,&vtMissing,
 &vtMissing,&vtReceiveTimeout);
 else
 msg = qQueue->Receive(&varType,&vtMissing,
 &vtMissing,&vtReceiveTimeout);
 }

 }
 catch(_com_error e) {
 HRESULT hr = e.Error();
 m_piResponse->Write(_variant_t(e.Description()));
 m_spObjectContext->SetAbort();
 return hr;
 }

 m_spObjectContext->SetComplete();

 return S_OK;
}

Example 18-13. Reading Transactional Messages

,ch18.20107 Page 579 Thursday, February 22, 2001 1:34 PM

580 Chapter 18: Accessing MSMQ from C++ ASP Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ObjectContext.SetComplete()
%>

To really try out transaction support, instead of using SetComplete when you send
the message, change the ObjectContext method call to SetAbort and then try read-
ing the transaction message queue. You’ll find that the message is not in the
queue.

Do the same with the script to read the messages. If you change the SetComplete
method call to SetAbort, you’ll be able to access and print out the message, but it
won’t be removed from the queue.

,ch18.20107 Page 580 Thursday, February 22, 2001 1:34 PM

581
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 19

19
Persistence with ASP

Components Using
ATL and MFC

Using the ActiveX Template Library (ATL) does not preclude using the Microsoft
Foundation Classes (MFC). In fact, for the examples created in this chapter, we’ll see
that the two technologies blend to create a simple but powerful ASP component.

In earlier chapters, you had a chance to store information into the ASP Session or
Application objects, persisting this information for the session or until the ASP
application was shut down. What happens, though, when you need information
that lasts beyond the application?

This chapter discusses two approaches for maintaining information. The first is to
write and read the information to and from a file; the examples use the MFC CFile
class for this. The second is to persist an entire object—its structure as well as its
data—to a file. This technique uses the MFC CFile, CArchive, and CObject classes to
first create a serializable class and then to archive and retrieve this object from a file.

By the end of the chapter you should come away with the realization that file-
based I/O and object serialization are not as complicated as you might have origi-
nally thought—with a little help from ATL and MFC, of course.

Combining MFC and ATL
Usually you won’t want to include a large framework such as MFC when creating
small, lightweight components, but there are advantages to using MFC. One such
advantage is the built-in class support for objects such as CString and CStdioFile.
Another advantage is the built-in macros that do things such as support object seri-
alization. This section demonstrates adding MFC support to an ATL component
that’s used in the rest of the examples in this chapter.

,ch19.20352 Page 581 Thursday, February 22, 2001 1:35 PM

582 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create a new Visual C++ project using the ATL COM AppWizard, and name it
asp1901. The wizard asks whether you want to include support for proxy/stub
code merging, MTS, and/or MFC. Select the MFC and MTS options.

You can add MFC support to an existing component by selecting
Project ➝ Settings from the main menu and then changing support
for MFC in the General tab.

Two header files are included in the generated StdAfx.h header file to support the
MFC core and automation functionality, afxwin.h and afxdisp.h. The wizard also
automatically alters the DLL support code to include CWinApp as part of the appli-
cation, as shown in the excerpt from asp1901.cpp in Example 19-1.

The wizard also implements two methods, InitInstance and ExitInstance, within
the project’s main C++ file.

When MFC is incorporated into a component, the initialization and termination
functionality is really invoked within the context of the Microsoft Foundation
Framework. This means that the initialization code is included in the CWinApp
InitInstance method, and termination code is included in the CWinApp object’s
ExitInstance method. The code that the wizard generates to handle this is very
similar to that shown in the Example 19-2.

Example 19-1. Code Generated by ATL COM AppWizard to Provide Support for the MFC Class
CWinApp

class CAsp1801App : public CWinApp
{
public:

// Overrides
// ClassWizard-generated virtual function overrides
//{{AFX_VIRTUAL(CTest2App)
public:

 virtual BOOL InitInstance();
 virtual int ExitInstance();

//}}AFX_VIRTUAL

//{{AFX_MSG(CTest2App)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};

,ch19.20352 Page 582 Thursday, February 22, 2001 1:35 PM

Combining MFC and ATL 583

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ATL COM AppWizard also generates the following code for every COM
method:

AFX_MANAGE_STATE(AfxGetStaticModuleState());

The AFX_MANAGE_STATE macro protects exported methods and is used by MFC
when managing the state of data. This is mainly used with DLLs that might do
such things such as open a dialog window and that have to manage window
resources. Since you don’t manage window resources with an ASP component, the
statement can be removed, or you can leave it in—there’s no harm in its inclusion.

Adding MFC to the DLL does not impact on how ATL components are added to
the DLL. Add a new component using the ATL Object Wizard and selecting the MS
Transaction Server Component object. Name the component Advanced, and select
the options for Dual Interface and support of IObjectControl, but not the sup-
port for Object Pooling. Then generate the component.

Add support for ASP and the built-in ASP objects by including the following in the
header file for the component, following the line that includes the mtx.h header file:

#include <asptlb.h>

You can also change the MTX header to the one for COM+ Services if you wish, as
discussed in Chapter 14, Creating C++ ASP Components.

Add a new private data member, m_piResponse, to the class header file to sup-
port the ASP Response object:

CComPtr<IResponse> m_piResponse;

Modify the generated Activate method to add the code shown in Example 19-3 to
instantiate the Response object.

Example 19-2. AppWizard-Generated Code to Add MFC Instance Management

BOOL CAsp1901App::InitInstance()
{
 _Module.Init(ObjectMap, m_hInstance, &LIBID_ASP1801Lib);
 return CWinApp::InitInstance();
}

int CAsp1901App::ExitInstance()
{
 _Module.Term();
 return CWinApp::ExitInstance();
}

Example 19-3. Instantiating Response in the Activate Method

HRESULT CAdvanced::Activate()
{
 HRESULT hr = S_OK;

,ch19.20352 Page 583 Thursday, February 22, 2001 1:35 PM

584 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Add the following line of code to the Deactivate method to release the Response
object:

 m_piResponse.Release();

The next section discusses file I/O from the ASP component.

File Access from ASP Components
By adding support for MFC, you also add support for MFC classes such as CFile
and the classes derived from CFile: CMemFile, CSocketFile, and CStdioFile. These
classes provide methods to control I/O to a file, standard input and output, mem-
ory, or even across a network.

Some forms of I/O don’t make much sense from an ASP component. As an exam-
ple, writing to standard input and output such as a Windows console is not very
meaningful for a component that does not have access to the console or when

 CComBSTR bstrObj;
 CComVariant vt;
 CComPtr<IGetContextProperties> pProps; //Context Properties

 IDispatch* piDispatch = NULL;

 // generated code
hr = GetObjectContext(&m_spObjectContext);

 if (FAILED(hr))
 return hr;

 // add in code to get built-in objects

 // get Context Properties
 hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
 (void**)&pProps);
 if (FAILED(hr))
 return hr;

 // get Response property
 bstrObj = "Response";
 hr = pProps->GetProperty(bstrObj, &vt) ;

 if (FAILED(hr))
 return hr;

 piDispatch = vt. pdispVal;
 hr = piDispatch->QueryInterface(IID_IResponse,
 (void**)&m_piResponse);

 return hr;
}

Example 19-3. Instantiating Response in the Activate Method (continued)

,ch19.20352 Page 584 Thursday, February 22, 2001 1:35 PM

File Access from ASP Components 585

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

communication to the standard input is not monitored. However, file-based I/O
does occur frequently from ASP applications.

There are different approaches to file-based I/O. The CFile class supports reading
and writing of unbuffered binary data directly to memory or to disk. CStdioFile, a
class derived from CFile, is used mainly for text input and output. For writing sim-
ple text to a file, either of these classes can be used. The main difference between
them is that CStdioFile does not support some of the locking methods imple-
mented in CFile.

To demonstrate file I/O using CStdioFile, add two methods to the CAdvanced
component. The first method is called setInfo and contains one input parameter of
type BSTR:

BSTR bstrName

This method, the source code for which is shown in Example 19-4, instantiates a
new object of type CStdioFile that, by default, opens the associated file as well as
creates the object to manipulate the file. The instantiated object is used to write
out the bstrName value to the file. Standard C++ exception handling is used to
catch and process any exceptions that might result from this activity.

Example 19-4. Storing Information in a Disk File with the MFC Class CStdioFile

// write out parameter to disk file
STDMETHODIMP CAdvanced::setInfo(BSTR bstrName)
{
AFX_MANAGE_STATE(AfxGetStaticModuleState())

// write object to file
 try {

 // filename
 char* pFileName = "c:\\output\\test1.dat";

 //open file using text type, create/write modes, and exclusive share
 CStdioFile stdFile(pFileName, CFile::modeCreate | CFile::modeWrite |
 CFile::shareExclusive | CFile::typeText);

 // if successful on opening file, write out parameter
 CString cName = bstrName;
 stdFile.WriteString(cName);
 stdFile.Close();
 }

// error handling
 catch (CFileException *e) {

 // write out error to returned web page
 TCHAR szError[255];
 e->GetErrorMessage(szError, 255);

,ch19.20352 Page 585 Thursday, February 22, 2001 1:35 PM

586 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The first parameter to the CStdioFile constructor is the location and name of the
file being opened, in this case c:\output\test1.dat. Where double backslashes are
used in the file string, the first backslash in the text tells the compiler that the sec-
ond backslash should be read literally.

The second parameter to the CStdioFile constructor specifies the file opening
options. These options include modeCreate, which will create the file if it does
not already exist; modeWrite, which opens the file for writing; typeText, which
sets the output to text mode; and shareExclusive, which opens the file for
exclusive access and denies other access, whether read or write. This last option
prevents another web page access from opening the file until the contents are
written out. Once the string is written out to the file, it is closed, releasing the
exclusive lock on the file.

If a CFileException occurs, the error message associated with the exception is out-
put to the returned web page.

Since a file in the output directory is being created and written to, the permissions
on this directory should be set to allow both read and write access for the users.
For nonrestricted Internet access, the IUSR_MACHINE (MACHINE is your machine’s
name) user needs to be added to the directory’s users list and given read/write
permissions, or an error similar to the following will occur when the component is
accessed:

Access to c:\output\test1.dat was denied

To retrieve the string from the file, add another method, getInfo, to the CAdvanced
class. This method takes a pointer to a BSTR as a return value:

[out,retval] BSTR *pbstrName

Similar to the setInfo method, getInfo creates a CStdioFile object and uses it to read
the string from the file and return the string to the requesting web page; its source
code appears in Example 19-5. The code to access the file through the CStdioFile
object is contained within C++ exception handling. Unlike setInfo, though, this
method uses the CException class rather than the derived CFileException class.
Using CException captures all exceptions that could occur with the method, not
just those that are file-based. When constructing the CStdioFile object in getInfo,
the file opening option is set to text output and read mode. After the value in the
file is read, it’s assigned to the BSTR pointer for return to the web page.

 CComVariant vt = CComVariant(szError);
 m_piResponse->Write(vt);
 }
return S_OK;
}

Example 19-4. Storing Information in a Disk File with the MFC Class CStdioFile (continued)

,ch19.20352 Page 586 Thursday, February 22, 2001 1:35 PM

File Access from ASP Components 587

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After the component is compiled, register it in a COM+ application (create a new
one or use an existing test application). Create the following ASP page, asp1901.
asp, that tests both setInfo and getInfo by creating an instance of asp1901.
Advanced, calling setInfo to create the datafile and set its contents, calling getInfo
to get the value back from the file, and writing this value to the web page:

<%
Dim obj
Set obj = Server.CreateObject("asp1901.Advanced")

' set value
obj.setInfo "test value"

' get value and print
Dim str
str = obj.getInfo()

Example 19-5. Retrieving Information from a Disk File with the MFC Class CStdioFile

// access string in file and return
STDMETHODIMP CAdvanced::getInfo(BSTR *pbstrName)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState())

// read object from file
try {

 // filename
 char* pFileName = "c:\\output\\test1.dat";
 CString strName;

 // create file object and open file for read
 CStdioFile stdFile(pFileName, CFile::modeRead | CFile::typeText);

 // read string, close file and return string
 stdFile.ReadString(strName);
 stdFile.Close();
 CComBSTR bstrName(strName);
 *pbstrName = bstrName.Detach();
}

// error handling
catch (CException *e) {

 // write out error to returned web age
 TCHAR szError[255];

 e->GetErrorMessage(szError, 255);
 CComVariant vt = CComVariant(szError);
 m_piResponse->Write(vt);
 }
return S_OK;

}

,ch19.20352 Page 587 Thursday, February 22, 2001 1:35 PM

588 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Response.Write str
%>

Accessing information from a file within an ASP component is relatively simple,
but not without its limitations. If several people request an ASP page that tries to
write to the same file at the same time, later users are locked out until the current
user releases the lock on the file. Also, as seen earlier, an error can occur because
the permissions set for the file or the file folder won’t allow the specific activity.

The CStdioFile class is useful for fairly standard text I/O, but other classes, such as
CFile, are better suited to tasks other than direct reading and writing of a file. One
such task is object serialization, discussed next.

Creating a Serializable Class
Serialization is used to maintain object state. By this I mean that an object, includ-
ing the object structure and current values, can be written out in some persistent
form and used to recover the object at a later time. The persistent form is usually a
disk file, but it could also be a memory file for actions such as undoing a change.

To create a serializable object, you first need to create the class that can be serial-
ized. Microsoft has actually provided five easy steps for creating a serializable
object, steps which are demonstrated in this section.

A requirement for an object to be serialized is to derive the class for the object
from the MFC CObject class or from an object that is itself derived from CObject.
In the case of our example, the class that we will create is called CGame, and its
purpose is to store information about an online game winner, perhaps to maintain
a listing of high scores.

The CObject class has only a few methods. IsSerializable checks
whether the object that is derived from CObject is serializable, and
Serialize actually performs the serialization. There is also a method,
IsKindOf, which allows runtime comparison between an instance of
a class and the class type. You can also access a runtime structure
describing the class using the GetRuntimeClass method. The
returned structure contains the class name, a pointer to the object’s
constructor, and other information, all necessary to support the seri-
alization and instantiation of an object from the serialized store.

Add a new class to the asp1901 project by selecting the New Class option from
the Insert menu, then selecting the Generic Class option from the Class Type drop-
down list box. Name the new class CGame. In the Derived From list box, type the
word CObject, so that the new class is derived directly from this base class.

,ch19.20352 Page 588 Thursday, February 22, 2001 1:35 PM

Creating a Serializable Class 589

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Be forewarned that you’ll receive a warning about having to manu-
ally add in the header files to support the “unknown” CObject class.
Disregard this warning, since you won’t have any problems working
directly with CObject in this project, and you won’t need to add any
header files.

Once the CGame class has been added to the project, access Class View and add
the following four data members by right clicking on the class and choosing Add
Member Variable from the pop-up menu:

All of the data members should be defined as public.

Visual C++ generates the following code for the four new data members and
places this code in the class header file, Game.h:

class CGame : public CObject
{
public:

CString m_name;
CTime m_date;
WORD m_score;
LONG m_gametime;
CGame();
virtual ~CGame();

};

The next step in creating the object is to override the Serialize method for the
CObject base class. The CObject class doesn’t provide any implementation for this
method, so we have to provide it ourselves in our derived object. Override Serial-
ize by right-clicking on the CGame class in Class View and selecting Add Member
Function from the context menu. Give the function a void function type, and pro-
vide the following function declaration:

Serialize (CArchive &ar)

Leave the access option set to the default of Public. The CArchive class used as the
type for the parameter of the new method is used to store complex objects in a
persistent, binary form.

Name Type

m_gametime LONG

m_score WORD

m_date CTime

m_name CString

,ch19.20352 Page 589 Thursday, February 22, 2001 1:35 PM

590 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once the function is added, Visual C++ generates the declaration for the method
and adds this to CGame.cpp. Open CGame.cpp and add the implementation code
for the Serialize method, as shown in Example 19-6. The first line calls the Serial-
ize function on the base object, passing in the CArchive parameter. Next, the code
tests whether the object information is being stored or retrieved. If stored, then the
method serializes the data to the CArchive object. Otherwise, it pulls the data from
the persistent store and assigns it to the CGame data members.

The IsStoring method of the CArchive class returns 0 if the archive is in a load
state; otherwise, it returns a nonzero value. (The archive state is described a bit
later.) The double angle bracket operators (<< and >>) are used to store or
retrieve the simple datatypes for the object.

The next step to provide for a serializable object is to use the DECLARE_SERIAL
macro with the CGame class:

DECLARE_SERIAL(CGame)

This macro is called from within the public declaration section of the object in
game.h and must be the first line of the class definition, just before the Serialize
method prototype. The DECLARE_SERIAL macro generates the C++ header code to
support serialization of the object.

The next step for making CGame serializable is to have a default constructor for
the class that contains no arguments. This is handled for us automatically; when
the class is created using the Insert ➝ New Class menu option, it is automatically
created with a default constructor (with no parameters) and destructor.

The final step in making CGame serializable is to include another macro,
IMPLEMENT_SERIAL, in the CGame.cpp file:

IMPLEMENT_SERIAL(CGame, CObject, 1)

Example 19-6. Overridden Serialize Method for New Class

void CGame::Serialize(CArchive& ar)
{
 // call base class function first
 CObject::Serialize(ar);

 // now do the stuff for our specific class
 if(ar.IsStoring())
 ar << m_name << m_date << m_gametime << m_score;

 else
 ar >> m_name >> m_date >> m_gametime >> m_score;
}

,ch19.20352 Page 590 Thursday, February 22, 2001 1:35 PM

Persistence Through Object Serialization 591

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This macro generates the C++ code for a dynamic CObject-derived class at run-
time. This code is included just before the methods for the default constructor and
destructor, as shown in the following block:

IMPLEMENT_SERIAL(CGame, CObject, 1)

CGame::CGame()
{

}

CGame::~CGame()
{

}

Once all of the serialization steps have been performed, any object instantiated
from the class can be serialized, as demonstrated in the next section.

Just to summarize, here are the steps for serializing the object:

1. Create a new object by inheriting from CObject.

2. Add in the object’s data members.

3. Override the CObject’s Serialize method in the new object, and provide serial-
ization specific for the object’s data members.

4. Include the DECLARE_SERIAL macro in the new object’s header file.

5. Define a constructor with no parameters, used by default for serialization.

6. Add in the IMPLEMENT_SERIAL macro to the C++ file, after the header file
section and before the object’s methods.

Persistence Through Object Serialization
The key to serialization is the CArchive class passed to the Serialize function of the
object class. CArchive has a constructor that takes a pointer to a CFile object for
the first parameter, a flag that sets the load or store state as the second parameter,
and an optional buffer size and buffer, for an internal buffer used by the CArchive
class, as the following prototype illustrates:

CArchive (CFile* file, UINT mode, int bufsize, void * lpbuff)

Usually the buffer that CArchive creates by default is sufficient, and these two
parameters are not used. The file pointer in the first parameter actually references
an open file, which is then used for the I/O-specific parts of the serialization
process.

The CGame class will be used in the CAdvanced class created earlier in the chap-
ter. Even though both classes are part of the same project and the same DLL, they

,ch19.20352 Page 591 Thursday, February 22, 2001 1:35 PM

592 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

aren’t “aware” of each other. So add the header file for the CGame class to the
CAdvanced C++ header file, after the asptlb.h file:

#include <asptlb.h>

#include "Game.h"

To support serialization using the CGame object, you’ll need to add two new
methods to the CAdvanced class. Add the first method by accessing Class View,
right-clicking on the IAdvanced interface, and selecting Add Method from the
context menu. Name the method setScore, and create three parameters for it: a
BSTR parameter named bstrName, an integer named iScore, and another integer
named iTime, as follows:

[in] BSTR bstrName, int iScore, int iTime

Add the source code for the setScore method, as shown in Example 19-7. The set-
Score method creates a CGame object, sets its data members’ values, and then
archives it to disk using CFile. No exception handling is required within the
method, since the CFile object’s Open method actually handles the CFileExcep-
tion exception by returning it as one of the parameters in the method. Error check-
ing occurs by testing the returned value of the Open method, with a false return
value indicating a failed open condition and a true value representing a success-
ful condition.

Why does the Open method for CFile not throw exceptions? Because
failure from attempts to open a file are expected failures rather than
unexpected failures. Processing is actually meant to continue from
the point where the method is called regardless of the return value

Example 19-7. Creating an Object of Type CGame, Assigning It Values, and Serializing It to a
Disk File

// serialize the game object to disk
STDMETHODIMP CAdvanced::setScore(BSTR bstrName, int iScore, int iTime)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState())

 // create new version of Game class
 CGame *m_game = new CGame();

 // set information
 m_game->m_date = CTime::GetCurrentTime();
 m_game->m_gametime = iTime;
 m_game->m_name = bstrName;
 m_game->m_score = iScore;

 // serialize object to file

,ch19.20352 Page 592 Thursday, February 22, 2001 1:35 PM

Persistence Through Object Serialization 593

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In addition to assigning the values passed in as parameters to the CGame’s data
members, the time the object was created is also set using the GetCurrentTime
method of the CTime class to get the current system time. After the object’s data
members are set, the CFile object is created and the disk file is opened. If the file
is opened successfully, the CArchive object is created and serialization can start.

Notice from the code in Example 19-7 that the instance of the CArchive class is set
to a “store state” when created. This will result in a call to the CArchive object’s
IsStoring method (shown in Example 19-6) returning a true value. When this hap-
pens, the object is serialized to the file. After the object is serialized, the archive
object and then the file are closed.

The second method you’ll need to add to CAdvanced is called getScore. This
method has three parameters, two of type VARIANT and one of type pointer to
BSTR. The VARIANT datatypes are necessary to return values by reference to
VBScript, and ASP components must code to the lowest common denominator—in
this case VBScript’s reliance on the one datatype. Since the last parameter is a
return value from the method, it can be any supported COM datatype. In this case,
the value being returned is a string, and the COM-compatible BSTR value is used.
So add the following to the Parameters text box of the Add Method to Interface
dialog:

[out] VARIANT* varScore, VARIANT* varTime, [out,retval] BSTR* pbstrName

In getScore, the source code for which is shown in Example 19-8, an instance of
CGame is created. The serialized object file is opened via the CFile object, and the

 CFile f;
 CFileException e;
 char* pFileName = "c:\\output\\game.dat";

 // open file, check for error
 if(!f.Open(pFileName, CFile::modeCreate | CFile::modeWrite |
 CFile::shareExclusive, &e))
 {
 CComVariant vt(OLESTR("Could not Store Game Results"));
 m_piResponse->Write(vt);
 }
 else {

 // serialize the object
 CArchive archive(&f, CArchive::store);
 m_game->Serialize(archive);
 archive.Close();
 f.Close();
 }
 return S_OK;
}

Example 19-7. Creating an Object of Type CGame, Assigning It Values, and Serializing It to a
Disk File (continued)

,ch19.20352 Page 593 Thursday, February 22, 2001 1:35 PM

594 Chapter 19: Persistence with ASP Components Using ATL and MFC

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CArchive object is created, passing in the CFile object and a state of loading. When
the CGame object’s Serialize method is called, the data members for the game
object are set to the previously persisted values. Once the data members of the
CGame object have been set, the appropriate data member values are assigned to
the appropriate parameters for return to the calling ASP program.

Again, recompile the project DLL and test the new functionality. The following
ASP script, asp1902.asp, tests object serialization by first calling setScore and
getScore, then displaying the scoring information:

<%
Dim authorsObject

Example 19-8. Obtaining the Serialized CGame Object from the Disk File

STDMETHODIMP CAdvanced::getScore(VARIANT *varScore,
 VARIANT *varTime, BSTR *pbstrName)
{

 AFX_MANAGE_STATE(AfxGetStaticModuleState())

 // create new version of CGame class
 CGame *objGame = new CGame();

 CFile f;
 CFileException e;
 char* pFileName = "c:\\output\\game.dat";

 // open file and check for error
 if(!f.Open(pFileName, CFile::modeRead, &e))
 {

 CComVariant vt(OLESTR("Could not access Game Results"));
 m_piResponse->Write(vt);
 }
 else {

 // restore object state
 CArchive archive(&f, CArchive::load);
 objGame->Serialize(archive);

 // return values as Variants
 CComVariant *vtScore = new CComVariant(objGame->m_score);
 vtScore->Detach(varScore);
 CComVariant *vtGametime = new CComVariant(objGame->m_gametime);
 vtGametime->Detach(varTime);
 objGame->m_name.AllocSysString();

 // return name as BSTR
 *pbstrName = objGame->m_name.SetSysString(pbstrName);
 }
 return S_OK;
}

,ch19.20352 Page 594 Thursday, February 22, 2001 1:35 PM

Persistence Through Object Serialization 595

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 Set authorsObject = Server.CreateObject("asp1901.Advanced")

 Dim str
 str = "Shelley"
 authorsObject.setScore str, 537, 689

 Dim int1, int2
 Dim str2
 str2 = authorsObject.getScore(int1, int2)

 Response.Write("<H3>" & str2 & " is the winner with a score of " & _
 CStr(int1) & _
 " and a time of " & Cstr(int2) & "</H3>")
%>

Many times, object serialization is used to maintain object state in a distributed
environment. As an example, an object may be serialized before being passed as a
parameter in a method from one component on one machine to another compo-
nent on another machine. Then, the object is serialized again and the persisted
object on the originating machine is destroyed. Using this approach, if a transac-
tion fails at any point in the application, recovery can begin at the point of failure,
rather than at the beginning of the process.

However, there’s no reason that object serialization can’t be used to maintain per-
sistence for a complex object within an Internet application, as the game example
has demonstrated in a simplified manner. It doesn’t replace a database for more
extensive transactions, but it can be an effective approach for isolated information.

,ch19.20352 Page 595 Thursday, February 22, 2001 1:35 PM

596
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 20

20
ASP Components
Created with Java

ASP components are COM objects, but if a particular development environment
supports COM, there is no limitation on which tool or programming language can
be used to build the component. This includes Java and the Visual J++ program-
ming tool, Microsoft’s entry into the Java IDE market.

Being COM objects, though, ASP components must meet certain requirements,
such as exposing certain interfaces and requiring the use of pointers to these same
interfaces. Since Java does not support pointers, the inference is that Java cannot
be used to create ASP components. This logic fails—Java can be used to create
ASP components. Not only that, but these same ASP components can also be
COM+ components and can take advantage of some COM+ Services.

Java-based ASP components are created as Java code classes or as nonvisual Java-
Beans. JavaBeans are separate components that can be incorporated into an appli-
cation in much the same manner that ActiveX controls can be used within
applications. A Java code class is no different than any other language code class:
it is included in an application and does not have a beginning main program. The
primary purpose of a code class is to provide access to a basic set of functionality,
such as the functionality included in an ASP component through the addition of
the ASP object library.

Wrappers are used to allow a Java class to access other COM/COM+ objects,
including those of COM+ Services and the built-in ASP objects. To facilitate the use
of the latter within a Java component, Microsoft has created a set of wrappers for
the ASP objects that can be used directly. The purpose of the Java class wrappers
is to provide a more Java-like interface to the ASP objects, including the use of
more familiar Java datatypes. Microsoft has provided a set of Java wrappers for
other libraries, such as the ActiveX Data Objects (ADO).

,ch20.20567 Page 596 Thursday, February 22, 2001 1:35 PM

Creating Java Components 597

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In this chapter, we’ll take a look at accessing standard Java classes from ASP pages
and creating Java-based COM/COM+ objects using Visual J++ (and using the JDK
with help from some Microsoft utilities). Additionally, you’ll have a chance to
develop Java components that access the built-in ASP objects, as well as ADO.

At the time this was written, Microsoft was involved in a legal suit
with Sun Microsystems on Microsoft’s use of Java. Based on this,
Microsoft has been prohibited from most Java development until a
decision in the suit with Sun has been made.

Creating Java Components
You can access Java from ASP pages using a couple of different approaches. If
you have Java classes that you’ve used in other applications, you can access these
classes directly from an ASP page using Java monikers. If you’d rather, you can
create a COM/COM+ wrapper for a Java class and access the object as you would
any other component created in a different language, such as Visual Basic or
Visual C++. You can create the component using Visual J++ or create a Java class
and wrap it using utilities provided by Microsoft in the Microsoft Java SDK.

Before using the examples in this chapter, you’ll want to have the
latest version of the Sun Java Development Kit (JDK) installed
(access this from http://www.javasoft.com); the latest version of the
Microsoft Java SDK installed (access from http://www.microsoft.com/
java/); and Visual J++ 6.0 installed. If you don’t have Visual J++, you
can create the components in this chapter using the Java SDK—it’s
freely available and can be installed on Windows 2000.

Accessing Java Classes through Monikers

The simplest approach to take to include Java classes in your ASP applications is
to use monikers to access the Java classes directly. Monikers are used with the
GetObject method, passing in the name of the Java package and class, preceded
by the java moniker text:

java:packagename.classname

The Java class can be created with the JDK and compiled with the JDK compiler,
javac.exe. Once compiled, the class must be located in the CLASSPATH in order for
it to be found.

,ch20.20567 Page 597 Thursday, February 22, 2001 1:35 PM

598 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To demonstrate using Java monikers, create a file named test.java. In the file, add
the code shown in Example 20-1. This code defines a class named test (the file-
name should agree with the class name) and provides the code for a method that
prints out a familiar greeting.

Once you’ve created the Java file, compile it using javac.exe and move the com-
piled class file to your CLASSPATH directory. In Windows 2000, the CLASSPATH
directory can usually be found in the Java subdirectory of the Windows directory.
Place your Java classes in the Classes subdirectory.

To access the Java class in an ASP file, use the following script, contained in
asp2001.asp:

<%
Dim obj
Set obj = GetObject("java:test")

Dim str
Dim name
name = "World!"
str = obj.sayHello(name)

Response.Write str
%>

In this script, the Java class test is accessed with the Java moniker, and the
returned object’s method is called. If you didn’t want to place the Java class in
CLASSPATH, you could access the class by providing the full pathname to the com-
piled class instead:

java:c:\class\test.class

If your class were part of a package, you would access the package and the class.
To demonstrate this, add a folder to the Classes directory named mytest. Create a
copy of test.java in this new directory. Open the file and add the following to the
top of the class file:

package mytest;

Example 20-1. Simple Java Class with One Method

public class test {

 public String sayHello(String strName)
 {
 String strMessage;

 strMessage = "Hello " + strName;
 return strMessage;
 }

}

,ch20.20567 Page 598 Thursday, February 22, 2001 1:35 PM

Creating Java Components 599

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Compile this version of the Java class, and access it with the following moniker:

java:mytest.test

Notice that a period is used to separate the package name from the class. Try this
yourself using the asp2002.asp test page.

A key for the Java moniker to work is that the Java class must have a default con-
structor that takes no parameters.

If you want to use the more traditional CreateObject to create an instance of your
Java class, you can wrap the class with a COM interface, discussed next.

Wrapping Existing Java Classes with COM/COM+

You can register a Java class in the Windows Registry or wrap the class within a
COM/COM+ wrapper.

Microsoft provides a command-line utility, javareg.exe, created specifically for reg-
istering a Java class in the Windows registry. This utility can also assign a ProgID
to the class, as well as generate a class identifier. The javareg switches are shown
in Table 20-1.

Not all of the switches listed are required. For example, if the clsid switch and a
class ID are not present, the utility generates a class identifier for the class. The
clsid switch is used only if the class ID was generated outside the utility and is
used in registering the class. In addition, the progid switch is needed only if the
class is being accessed by its ProgID value, using the CreateObject method. The

Table 20-1. Switches for javareg.exe

Switch Description

/? Displays utility switches and usage

/class Java class being registered

/clsid CLSID for class

/codebase Used while registering a class, codebase returns base location of the
component

/control Used while registering a class, to designate that the component is an
ActiveX control

/progid COM program ID for class

/q Suppresses messages

/register Registers the Java class as an ActiveX component

/remote For remote access; server where remote component is located

/surrogate Used when Java class is run as a DCOM server

/typelib Used while registering a class; generates type library for file

/unregister Unregisters the Java class

,ch20.20567 Page 599 Thursday, February 22, 2001 1:35 PM

600 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

remote and surrogate switches are needed only if the class is accessed through
DCOM.

To generate a class ID outside of the utility, you can use guidgen.
exe. Both this and javareg.exe should be available for download at
the Microsoft Java web site at http://www.microsoft.com/java/. Look
for them to be a part of the Microsoft Java SDK. The javareg.exe util-
ity is also installed as part of the IIS sample installation.

To use the javareg utility on the Java class created in the last section, use a line
similar to the following:

javareg /register /class:test /progid:mytest.test.1

Additionally, when using the javareg utility, the Java class should be moved to a
location on the Java CLASSPATH. Unless a problem occurs, a message similar to
that shown in Figure 20-1 should pop up, stating that the Java class has been suc-
cessfully registered and giving the class identifier used with the component.

Now, to access the Java class, you use code similar to the following ASP script,
asp2003.asp, which creates an instance of the Java class in the same way as it
would a COM/COM+ component:

<%
Dim obj
Set obj = Server.CreateObject("mytest.test.1")

Dim str
Dim name
name = "World!"
str = obj.sayHello(name)

Response.Write str
%>

If you have more than one class file to register, you can use the vjreg.exe utility
instead. This utility, unlike javareg.exe, can register more than one Java class at a
time.

Figure 20-1. Success message after registering Java ASP component using javareg

,ch20.20567 Page 600 Thursday, February 22, 2001 1:35 PM

Creating Java Components 601

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The javareg.exe registers the component in the Windows Registry but doesn’t actu-
ally create a DLL to wrap the class as a component. To wrap a Java class in a
COM/COM+ DLL, you use the jexegen.exe utility. To create the COM wrapper for
the Java class, specify the name of the class with the jexegen utility. You’ll also
need to provide information about the class to the tool. One way to do this is to
use the @com directive within the Java file (a technique demonstrated in the sec-
tion “Building a Java Component Using Visual J++”). You can also create an IDL
file for the class, providing the JAVACLASS and PROGID entries:

JAVACLASS("test")
PROGID("mytest.test.1")

You can also provide a CRI file for the utility and specify the /cri option. A CRI
file provides COM registration information for the class, such as the class name,
the CLSID, the type library unique identifier, the threading model, and so on.

See the documentation for jexegen for the specific details of all the
CRI file options.

To wrap your Java class within a COM DLL, create a CRI file with the following
text, and name the file test.cri:

class:test progid:test2.test ThreadingModel:Neutral

Add the file to the same directory as your original test.class file—the one that isn’t
part of the mytest package. The class entry is required, but the other entries (the
threading model and the PROGID) are not. However, they are useful in allowing
you to choose which threading model is used and what PROGID to specify when
using CreateObject.

Enter the following in a Command window:

jexegen /d /out:test.dll /cri:test.cri test.class

This command uses the jexegen utility to create a COM DLL (the /d option)
named test.dll (the /out:test.dll option), using the CRI file test.cri and the
source file test.class. Once the DLL is generated, register it with regsvr32.exe.

Access your new COM-wrapped DLL with the following ASP test script, found in
asp0204.asp:

<%
Dim obj
Set obj = Server.CreateObject("test2.test")

Dim str

,ch20.20567 Page 601 Thursday, February 22, 2001 1:35 PM

602 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Dim name
name = "World!"
str = obj.sayHello(name)

Response.Write str
%>

Your Java class can now be accessed directly as a COM object. In addition, the
COM object now uses the neutral-threading model. If you create the object using
Visual J++, you’ll find that the model used by default is the both-threaded model.

Speaking of threads, before we take a look at creating objects using Visual J++,
let’s take a look at Java and threads.

Component Execution and Threads

Java has thread capability built directly into the language, and thread management
is actually relatively simple. A class that can run on a separate thread is sub-
classed from the Java Thread class, and the run method is overridden to include
the thread-specific code.

Creating threads within a Java ASP component is not as much of an issue as is cre-
ating thread-safe components. It is up to the component developer to ensure that
the Java-based component is thread-safe. One way to ensure this is to protect the
component’s global data from inadvertent access, such as a both-threaded compo-
nent accessing and changing global data while another both-threaded component
is still processing a method and therefore expects the global data to retain its origi-
nal value. This problem was demonstrated in Chapter 4, ASP Components, Threads,
and Contexts.

Another way of ensuring that a method within a Java component is thread-safe is
to use the synchronized method modifier, which serves to prevent a thread from
entering a method currently accessed by another thread.

Access to a component may be marshaled or not, depending on the threading
model used for the component and for the client. How COM handles marshaling
and Java component instantiation depends on the threading model used with the
component. The Microsoft VM determines on which thread to create the compo-
nent, and this in turn determines if the calls to the component are marshaled.

If the component is designated as both-threaded, the component is instantiated on
the calling thread, and all method calls are direct to the object. If the component is
designated as single-threaded, the component is created on the application’s main
thread, and all calls to the component are marshaled if the calling thread is not the
main thread. A free-threaded component is created in the client’s multithreaded
apartment, and calls are marshaled if the client thread is based anywhere else. If
the component is designated as neutral-threaded, it is created in the client’s

,ch20.20567 Page 602 Thursday, February 22, 2001 1:35 PM

Creating Java Components 603

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

neutral-threaded apartment, and calls should not be marshaled. If the component
is apartment-threaded, it is instantiated on the calling thread if this thread is capa-
ble of hosting an apartment-threaded component. Otherwise the component, and
all other apartment-threaded components are instantiated on a special thread that
the VM creates. All components must then share this one thread, and all compo-
nent calls must be marshaled.

Building a Java Component Using Visual J++

If you prefer developing in Java with an IDE, you can use Visual J++ to create
your ASP components. Visual J++ takes care of the issues of wrapping your Java
classes for access as COM objects.

To try out Visual J++, create a new project named asp2001, choosing the Compo-
nents/COM DLL option when the tool provides the project type options.

When you create the COM project, you’ll most likely get a warning
about having to use functionality that isn’t standard with the Java
SDK. This warning is the direct result of the legal action that
Microsoft is involved in with Sun. The reason for the warning is that
adding COM functionality to a Java component makes it nonport-
able—you’ll be able to use the component only within a Windows
environment.

A default Java class is automatically created for the project, which includes a direc-
tive to register the class as a COM object. The class is created simply, with no
inheritance implied, as shown in the following code block:

public class Class1

When developing a Java component, you will most likely change the name of the
class and its associated file. In fact, if you rename the class, you have to rename
the file or an error occurs. For the example, rename the class file to First.java, and
the class to First.

You could also add annotation for the class. For example, the following shows a
class that is renamed to MyConcatenator with the final modifier:

final class MyConcatenator

The final modifier applies to the class declaration and prevents the class from
being overridden or subclassed. Another class modifier, abstract, is used with
classes that contain abstract functions. An abstract function is one that does not
have an implementation in the ancestor but must have an implementation in a
descendant or an error will result. By default, all classes are defined with the
public modifier, which means the class is visible to applications that use the class.

,ch20.20567 Page 603 Thursday, February 22, 2001 1:35 PM

604 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Inheritance in Java is through the use of the extends clause, and if the class is an
extension of an existing Java class, this information is added to the class declara-
tion. When one class is an ancestor, or superclass, of another, it is listed in the
extends clause of the descendant, or subclass, as shown in the following example:

class MyInsertConcatenator extends MyConcatenator

Since the original class, MyConcatenator, was defined with the final modifier,
inheriting from the class will result in an error. To inherit from MyConcatenator,
its class declaration would need to be modified:

public class MyConcatenator
class MyInsertConcatenator extends MyConcatenator

Once you’ve renamed the class file and name, you can add its first method.

You can add methods directly to the class file. Additionally, you can add methods
through Visual J++ by using the Add Method dialog. For asp2001.First, add a
new method by right clicking on the First interface in the Class Outline window,
and selecting Add Method. In the window that opens, type sayHello for the
method name, and change the return type to java.lang.String. Leave the
Access modifier at Public, and don’t check any of the modifiers. Add a method
parameter by clicking the button with the ellipsis (. . .) to the right of the Param-
eters field. In the dialog that opens, select java.lang.String as the parameter
type, and name the parameter strName. Returning to the main Add Method dia-
log, you should see a result similar to that shown in Figure 20-2.

Visual J++ generates the method using the properties you defined. All that’s left is
to add the method code. In the method, concatenating the string message with the
name provided as the parameter creates a greeting, which is returned from the
method. Example 20-2 has the complete contents of the Java file at this point.

Example 20-2. Simple Java Class with Code for the sayHello Method

/**
 * This class is designed to be packaged with a COM DLL output format.
 * The class has no standard entry points, other than the constructor.
 * Public methods will be exposed as methods on the default COM interface.
@com.register (clsid=49CBA0AB-72D2-4A03-98D5-8FA183CAC217,
 typelib=79CC2A06-A5F5-4BC4-8CEC-86ADC08162C8)
 */

public class First
{

public String sayHello(String str)
{

String strMessage;

strMessage = "Hello " + str;

,ch20.20567 Page 604 Thursday, February 22, 2001 1:35 PM

Creating Java Components 605

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As you can see, except for the generated COM directive, the class is identical to
that shown in Example 20-1. One of the advantages of using Visual J++ is that you
can disregard most of the effort necessary to creating COM wrappers for your Java
classes and instead concentrate on just creating the class.

Compile the component, which results in the component being registered. You
can also add the component to a COM+ application at this time if you wish. Test
the component using the following ASP script,asp2005.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2001.First")

Dim str, msg
str = "World!"
msg = obj.sayHello(str)

Response.Write msg
%>

In this section you’ve had a chance to access a Java class from ASP using three dif-
ferent techniques. However, this is only half the process of integrating Java

return strMessage;
}

}

Figure 20-2. Defining a method in Visual J++

Example 20-2. Simple Java Class with Code for the sayHello Method (continued)

,ch20.20567 Page 605 Thursday, February 22, 2001 1:35 PM

606 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

components into the ASP environment. The second half of the process is being
able to access COM/COM+ objects from within Java components, covered next.

Invoking a COM Object
in a Java Component
The component in Example 20-2 could be accessed by any COM application,
including ASP. However, to invoke COM methods from a Java class could become
complicated and would necessitate creating Java wrappers for the object before
you could access it from Java.

Thankfully, Visual J++ has provided automated support to add the necessary Java
wrappers to a COM object so the object can be invoked from a Java class. In addi-
tion, for older versions of Visual J++ and for Java development products other than
Visual J++, Microsoft has provided another utility, Jactivex, to assist in creating a
Java COM wrapper.

To demonstrate accessing a COM object in Java, create a Visual Basic object that
has one method, testObject, which accepts an integer as a parameter and returns a
string:

Public Function testObject(intValue As Integer) As String
 If intValue = 1 Then
 testObject = "Value is 1"
 ElseIf intValue = 2 Then
 testObject = "Value is 2"
 Else
 testObject = "Some other value"
 End If
End Function

Name the VB project vbtest, and name the class file test. The compiled DLL for
the project can be found in the examples. Register it using regsvr32 (or by access-
ing the project and compiling it if you have VB). The component is accessed with
the PROGID of vbtest.test.

The next two sections show how a COM wrapper can be added to a Java class
using Visual J++ 6.0, and using the Jactivex utility.

Adding a COM Wrapper Class to the
Component Using Visual J++

To demonstrate accessing a COM object from within Visual J++, create a new
Visual J++ COM DLL project and name it asp2002. Name the generated class
access. Right-click on the class, and from the context menu that opens, select

,ch20.20567 Page 606 Thursday, February 22, 2001 1:35 PM

Invoking a COM Object in a Java Component 607

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Add ➝ Add COM Wrapper. A dialog will open listing the available COM objects
registered on the machine. Find and check the vbtest component in the list.

Adding a COM wrapper to the project generates the Java code to wrap the VB
component and attaches this code as a dependency to the project. You can actu-
ally view the Java code for the class and the associated interface code by selecting
the classes from the Project view window. The code block contained in test.
java is shown in Example 20-3.

Example 20-3. Adding a COM Wrapper for a VB COM Component

//
// Auto-generated using JActiveX.EXE 5.00.3167.1
// ("C:\Program Files\Microsoft Visual Studio\VJ98\jactivex.exe"
/w /xi /X:rkc /l "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\jvc1E8.tmp"
/nologo /d "C:\writing\asp2000\chap20\source\asp0202" "C:\writing\asp2000\chap20\
source\vbtest.dll")
//
// WARNING: Do not remove the comments that include "@com" directives.
// This source file must be compiled by a @com-aware compiler.
// If you are using the Microsoft Visual J++ compiler, you must use
// version 1.02.3920 or later. Previous versions will not issue an error
// but will not generate COM-enabled class files.
//

package vbtest;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

/** @com.class(classid=D797F78A-212C-4444-9D0B-E6F74B10215A,DynamicCasts)
 @com.interface(iid=4BD4C0B8-9B03-4789-9176-45EF15DB4C17,
 thread=AUTO, type=DUAL) */
public class test implements IUnknown,com.ms.com.NoAutoScripting,
vbtest._test
{
 /** @com.method(vtoffset=4, dispid=1610809344, type=METHOD,
name="testObject", addFlagsVtable=4)
 @com.parameters([in,out,size=1,elementType=I2,type=ARRAY] intValue,
 [type=STRING] return) */
 public native String testObject(short[] intValue);

 public static final com.ms.com._Guid iid = new
com.ms.com._Guid((int)0x4bd4c0b8, (short)0x9b03, (short)0x4789,
 (byte)0x91, (byte)0x76, (byte)0x45, (byte)0xef, (byte)0x15, (byte)0xdb,
 (byte)0x4c, (byte)0x17);

 public static final com.ms.com._Guid clsid = new
com.ms.com._Guid((int)0xd797f78a, (short)0x212c, (short)0x4444,
(byte)0x9d, (byte)0xb, (byte)0xe6, (byte)0xf7, (byte)0x4b,
(byte)0x10, (byte)0x21, (byte)0x5a);
}

,ch20.20567 Page 607 Thursday, February 22, 2001 1:35 PM

608 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice how the generated class includes imports for the necessary COM interface,
IUnknown. Additionally, the class also includes the Variant class to handle most
unknown or object parameter types. Code that looks very much like Interface Def-
inition Language (IDL) is used to define both the VB component’s method and the
method parameters.

Once the COM wrapper is added to the class, compiling the class also compiles
the COM wrapper for Java. Using the wrapped object is discussed in the section
“Using the COM-Wrapped Class.” First, though, we’ll take a look at how to use
Jactivex to create the wrapped COM object.

Using Jactivex to Wrap a COM Object

For earlier versions of Visual J++ and for other Java development tools, there is
another utility to make your development task much easier—the Jactivex utility.

The Jactivex tool requires that the Java compiler recognize @com
directives in the Java files. Visual J++ should be version 1.02.3920 or
higher. Additionally, the Java compiler that comes with the Microsoft
Java SDK also recognizes the @com directive. The Java compiler that
comes with the JDK does not recognize these directives.

The Jactivex tool creates a Java class for each COM object within a type library. A
type library is any COM-based object with a .tlb, .olb, .ocx, .dll, or .exe extension,
including the type library included within the Visual Basic test component, men-
tioned in the last section.

To try Jactivex with the VB component, make sure the component is registered,
and then run the following command (in the Command window) in the same
directory where vbtest.dll resides:

jactivex /javatlb /xi vbtest.dll

This command creates a subdirectory named vbtest, located in the Java trusted
library (usually located off of the Windows directory, contained in java/trustlib).
Included in this subdirectory are three generated Java files, _test.java, _testDefault.
java, and test.java.

The /javatlb option used in the command ensures type library compatibility
between the component and the Java class. The /xi option duplicates the method
and COM declarations in the Java wrapper class so that the methods can be
accessed directly and don’t have to be cast using an interface pointer (using auto-
mation). All of the Jactivex options can be seen just by running this command:

jactivex /?

,ch20.20567 Page 608 Thursday, February 22, 2001 1:35 PM

Invoking a COM Object in a Java Component 609

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you open the test.java file generated by Jactivex, you’ll see that this file is very
similar to that shown in Example 20-3.

To use the Jactivex-generated code, compile the classes using Visual J++ or the
Java compiler that comes with the Microsoft Java SDK.

Once the COM wrapper classes have been generated and compiled either by using
Visual J++ 6.0 directly or by using Jactivex, the wrapped class can be used within
a Java component, as discussed next.

Using the COM-Wrapped Class

After the COM wrapper classes have been generated and compiled, import the
COM wrapper Java classes into your object using the following statement:

import vbtest.*;

Make sure that this import line (and all others) occurs before the COM directive
comments. The COM directive comments must be located just before the Java class
definition.

To demonstrate, open the asp2002 project and add a method to the access class.
Name the method ReturnValue. The method takes a short value as an input
parameter and a String as a return value. In the method, create an instance of the
VB component and call its method. After adding the method code, your Java com-
ponent should look similar to that shown in Example 20-4.

Example 20-4. Accessing a VB Component from Within a Visual Java Component

import vbtest.test;

/**
 * This class is designed to be packaged with a COM DLL output format.
 * The class has no standard entry points, other than the constructor.
 * Public methods will be exposed as methods on the default COM interface.
@com.register (clsid=62AF6D7F-5CB2-494F-89CC-ACA26912DE23,
typelib=70626B1F-4A14-4D99-8BD3-E4DAE6098F79)
 */

public class access
{
 // invoke COM method
 public String ReturnValue (short shrtValue)
 {
 String strTest;
 short x[] = new short[1];
 x[0] = shrtValue;

 // create object
 vbtest.test objTest = new vbtest.test();

,ch20.20567 Page 609 Thursday, February 22, 2001 1:35 PM

610 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the code, the Integer type from Visual Basic has been mapped to a short type in
Java. The reason is that VB’s integer is only a 16-bit value, and Java’s int type is a
32-bit value. Also, notice that the method uses a one-element array to pass the
value to the VB component. The reason for this is that in the original VB compo-
nent, the parameter is passed by reference because ByVal is not explicitly speci-
fied with the parameter. Visual Basic passes parameters by reference by default.
However, passing an element by reference involves pointers, something that Java
does not support.

A way around the pointer limitation is to pass one-element arrays. Because Java
passes arrays by reference, the value becomes passed by reference. For the Visual
Basic example, an array of datatype short is created with one element, which is
then passed to the VB method.

To avoid having to use arrays, the VB method can be changed and the ByVal
modifier added to the parameter, as in the following declaration:

Public Function testObject(ByVal intValue As Integer) As String

More on datatypes and mappings between COM and Java are included in the next
section.

To test the new Java component, use this ASP script (found in asp2006.asp):

<%
Dim obj
Set obj = Server.CreateObject("asp2002.access")

Dim str
str = obj.ReturnValue(1)

Response.Write str
%>

Try this script yourself with your own component. A line with “Value is 1” is
returned when you access the page.

Java/COM Datatype Mappings

A rule to handle datatype mappings for COM/Java development is to use ODL
(Object Description Language) datatypes, which have a default mapping from
COM to Java. Other datatypes, and more complex datatypes, can require custom
marshaling. For the most part, the available datatypes should match most needs.

 // call method
 strTest = objTest.testObject(x);
 return (strTest);
 }
}

Example 20-4. Accessing a VB Component from Within a Visual Java Component (continued)

,ch20.20567 Page 610 Thursday, February 22, 2001 1:35 PM

Working with COM+ Services 611

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Java SDK, which can be downloaded from http://www.microsoft.com/java/
and is available on CD if you have a membership in the Microsoft Developer Net-
work, lists the datatype mappings. The mappings work for Visual C++ and Visual
Basic components used within Java components, but there are some differences.

For an integer value, as shown earlier, a VB integer is only a 16-bit value, but an
int for C++ and Java is a 32-bit value. To map correctly to Visual Basic, the Java
component will need to use a short value, which is 16-bit.

The Visual Basic Variant datatype maps to a Java ODL VARIANT type, which maps
in turn to a com.ms.com.Variant class. Microsoft documentation also states that
any out parameters in Java should be of the Variant datatype.

The String datatype maps straight through, though the String class is immutable in
Java. An immutable class is one that is never versioned, never revised.

In the examples, a constant string is concatenated with a String
passed in as a parameter. What happens behind the scenes is that a
StringBuffer object is created to handle the concatenation, and the
result is returned as a String. To avoid this behind-the-scenes maneu-
vering, use StringBuffer directly.

Working with COM+ Services
You can create Java classes that minimize the dependencies on the Windows envi-
ronment, and the classes should work within ASP and other applications and on
different machines. If you want to work with the ASP environment, though, or
with COM+, you’ll need to use the WFC (Windows Foundation Classes).

Microsoft provides Java-wrapped classes for the most commonly accessed librar-
ies, such as the COM+ and ASP libraries. In this section, we’ll take a look at using
these Java wrapper classes to access COM+ Services as well as to work with ASP
objects.

Using IObjectContext

To access COM+ Services, you must import a package called com.ms.mtx. This
package contains the Java classes you’ll need to create an instance of ObjectCon-
text, to control transactions, or to create instances of the ASP built-in objects. If
you want to access COM datatypes, such as the Variant, you’ll also need to import
the com.ms.com package.

In the COM+ Services package, a static class, MTx, is used to get access to the
IObjectContext interface by calling the object’s GetObjectContext method. You

,ch20.20567 Page 611 Thursday, February 22, 2001 1:35 PM

612 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

can control transactions and test the state of the transaction environment with
IObjectContext. To get access to the ObjectContext properties, create a refer-
ence to the IGetContextProperties interface through the same GetObjectCon-
text method, but cast the return value as IGetContextProperties. This latter
interface is what you’ll use to access the ASP objects.

We’ll cover the ASP objects in more detail later, but for now, if you want to access
these objects, you’ll also need to import the com.ms.asp package or import each
individual ASP object from this package. So to access IResponse, the interface to
the ASP Response object, you would need to import the following three libraries
into your Java component:

import com.ms.mtx.*;
import com.ms.com.*;
import com.ms.asp.IResponse;

The MTS IObjectContext object is used to instantiate instances of other objects
within a transaction, to commit or roll back a transaction, or to check the state of
the object. By state of the object, I mean whether the object is participating in a
transaction, which can be determined using the object’s IsInTransaction method.
The method returns True if the component is executing within a transaction. The
DisableCommit and EnableCommit methods can be used to control whether a
component is in a state that can be successfully committed or not. The IsCallerIn-
Role method checks what role a caller is participating in, and the IsSecurityEn-
abled method determines whether security is enabled for the object. Security is
enabled for a component by default unless it is running within the client’s pro-
cess. The CreateInstance method can be used to create an instance of an object
that participates in the same transaction as the component creating the instance.

Including the IObjectContext interface as part of an ASP component and then
installing that component into a transaction package provides hooks for COM+ to
actually catch all invocations of the component. The transaction server then han-
dles all references to the component. By doing this, when a component marks that
it is finished its processing by calling SetAbort or SetComplete from the
IObjectContext interface, COM+ marks the component for unloading even if the
client still has a reference to it. This allows the system to unload the component
and any resources it contains from memory. When the client calls one of the com-
ponent’s methods again using the reference to the pointer the client thinks it has,
COM+ either creates and loads a new instance of the ASP component or retrieves
a reference from an available pool of the same component. This on-demand acti-
vation of an ASP component is referred to as just-in-time activation.

Beginning with Windows 2000, you can also access the IContextState interface
through the MTx object. This interface provides more detailed control of how the
object is managed. With IContextState, you can mark a transaction as success-
ful or not using the SetMyTransactionVote method. There is an enumeration

,ch20.20567 Page 612 Thursday, February 22, 2001 1:35 PM

Working with COM+ Services 613

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

available to use for this vote in C++ or VB, but unfortunately, it isn’t implemented
in Java—you’ll need to use the actual numeric values instead. Use a value of zero
(0) to commit the transaction, a value of one (1) to abort it. You can also mark the
component as ready to be discarded through the use of the SetDeactivateOn-
Return method, passing in a value of True to deactivate the object; a value of
False signals to leave the object active.

To try out ObjectContext functionality within your Java component, create a new
Visual J++ project and name it asp2003. Rename the generated class to ObjCont.
Before the COM directive comment, add the following three import statements:

import com.ms.mtx.*;
import com.ms.com.*;
import com.ms.asp.IResponse;

Create a new method named showStatus, with a Variant input parameter, and add
the code in Example 20-5 to your component. In the method, instances of
IObjectContext and IGetContextProperties are referenced through calls to
the MTx GetObjectContext method. The call is cast to the appropriate instance
object type for IGetContextProperties. This object is then used to create a
Response object by using GetProperty to get the Response object returned as a
Variant datatype and then using the Variant object’s getDispatch method and cast-
ing the value returned to a reference to an IResponse interface object type. The
Response object’s methods can then be invoked.

The ASP objects are covered in more detail later.

The IObjectContext interface’s IsInTransaction, IsCallerInRole, and IsSecurityEn-
abled methods are called, and a message is written out with the results of the
function calls. If the component is participating within a transaction, the IsInTrans-
action method returns true; if the component client is within the Developer secu-
rity group, IsCallerInRole returns true; and the IsSecurityEnabled returns true if
access-level security is enabled for the component. The Variant parameter con-
tains the separator used to separate each message.

Example 20-5. Accessing COM+ State Information and Printing Out Information

public class ObjCont
{

 public void showStatus(Variant vtSep)
 {

 IObjectContext objCont = null;

,ch20.20567 Page 613 Thursday, February 22, 2001 1:35 PM

614 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the component method, the calls to access state information are contained
within a Java try...catch exception-handling block to capture any errors that
might occur. If an error occurs, the description is accessed through the Exception
object and output to the web page.

 IGetContextProperties objProps = null;
 IResponse objResponse = null;

 Variant v = new Variant();

 // get ObjectContext, Props, and Response
 objCont = MTx.GetObjectContext();
 objProps = (IGetContextProperties)MTx.GetObjectContext();

 // get response
 v = objProps.GetProperty("Response");
 objResponse = (IResponse)v.getDispatch();
 v.VariantClear();

 // print out state
 try {
 if (objCont.IsInTransaction())
 v.putString("In Transaction");
 else
 v.putString("Not in Transaction");
 objResponse.Write(v);
 objResponse.Write(vtSep);
 v.VariantClear();

 if (objCont.IsCallerInRole("Developer"))
 v.putString("In Role");
 else
 v.putString("Not in Role");
 objResponse.Write(v);
 objResponse.Write(vtSep);
 v.VariantClear();

 if (objCont.IsSecurityEnabled())
 v.putString("Security Enabled");
 else
 v.putString("Security not enabled");
 objResponse.Write(v);
 objResponse.Write(vtSep);
 v.VariantClear();
 }
 catch(Exception e) {
 v.putString(e.getLocalizedMessage());
 objResponse.Write(v);
 }
 }
}

Example 20-5. Accessing COM+ State Information and Printing Out Information (continued)

,ch20.20567 Page 614 Thursday, February 22, 2001 1:35 PM

Working with COM+ Services 615

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test your component using the following ASP script, found in asp2007.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2003.ObjCont")

obj.showStatus "<p>"
%>

The result of accessing this ASP page is a web page containing:

Not in Transaction
In Role
Security not enabled

The component isn’t within a transaction, since none was started in the ASP page,
and the component is not part of a COM+ application that requires transaction
support. To include transaction support for the page, add the following transac-
tion directive as the very first line of the ASP test page:

<% @ TRANSACTION = required %>

Now when you access the component, you will get a message that it’s within a
transaction.

IsCallerInRole always returns a value of True when it is accessed in the client
address, as it is with this component. (The Java component is both-threaded,
which means it will be created on the same thread as the client, in this case the
thread processing the ASP page.) Security isn’t enabled, since the component isn’t
part of a COM+ application.

To get a better idea of how role-based security will impact these two methods
(and the component), create a new COM+ application (name it whatever you pre-
fer) using the Component Services Management tool, and set the activation type to
a Server application (runs in a separate server process). Add asp2003.dll as a com-
ponent to the application.

Also, create a new Developer role by right-clicking on the application’s Roles
folder and selecting New ➝ Role. You’ll be asked for the name of the role—give it
a name of Developer. Add users for the role by right-clicking on the Users folder
contained within the role and selecting New ➝ User. You’ll be shown a list of
users or groups already defined on your system. Select one or more, then click the
Add button to add each user, as shown in Figure 20-3. In the figure, I’m adding
the default web user for my system to the Developer role.

After creating the role, right-click on the asp2003 component and access its Prop-
erties dialog. Switch to the Transactions page and check the Supported option for
transaction support. Then switch to the Security page. The new Developer role
should show in the page. Check the “Enforce component level access checks”
option, and check the box next to the Developer role.

,ch20.20567 Page 615 Thursday, February 22, 2001 1:35 PM

616 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You’ll also need to add security enforcement at the COM+ application level.
Access the application’s Properties dialog, switch to the Security tab, and check the
“Enforce access checks for this application” option. After making these changes,
access the ASP test page asp2007.asp again. Now you’ll see the following in the
web page:

In Transaction
In Role
Security Enabled

Before you test the page again, you may need to unload the web site you used to
run the first page test in order for the changes to take effect.

With the current security settings, if you accessed the web page as someone who
is not in the Developer role, you would get a security violation error instead.

Another COM+ service you can take advantage of with COM+ Services is JIT—just-
in-time activation.

JIT with IObjectControl

In the last section, when you added the component to a COM+ application, you
automatically added support for JIT for your component. If you access the compo-
nent’s properties and switch to the Activation page, you’ll see that the Enable Just-
In-Time Activation option is checked.

COM+ can control the lifetime of the object based on how the done bit is set
when you return from each component’s method. If the done bit is set, COM+ can
deactivate the component; otherwise COM+ keeps the component active within

Figure 20-3. Adding users to a new role

,ch20.20567 Page 616 Thursday, February 22, 2001 1:35 PM

Working with COM+ Services 617

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the ASP page. With JIT, when the component is deactivated, it isn’t marked for
removal from memory. Instead, it remains in a deactivated state until it is refer-
enced again. Additionally, when an application, such as an ASP application, cre-
ates an instance of the component, the component isn’t actually created until it’s
used. Both of these actions combined improve the overall performance of the
application by minimizing how long an application holds a live reference to the
component. The shorter this time, the less memory used by the application.

You can capture when the component is activated and deactivated by implement-
ing the IObjectControl interface within your Java component. IObjectControl
has three methods—Activate, Deactivate, and CanBePooled—that are called when
the component is activated or deactivated. When you implement IObject-
Control, you implement these three methods and can include code to instantiate
objects or create global values when the component is activated and perform
cleanup when the component is deactivated. This is particularly helpful if you
want to provide global access to valuable resources—you can reference the
resource in Activate and release the reference in Deactivate.

To try out JIT with your ASP components, create a new Visual J++ COM DLL
project and name it asp2004. Rename the generated class jit. Add the following
import statements to the top of the class:

import com.ms.mtx.*;
import com.ms.com.*;
import com.ms.asp.IResponse;

Modify the generated class to implement the IObjectControl interface:

public class jit implements IObjectControl

In the component, you’ll have to provide an implementation of the IObject-
Control interface’s Activate, Deactivate, and CanBePooled methods; these are
shown in Example 20-6. The Activate method references the IResponse interface
and writes out a message that the component is activated. The Deactivate method
writes out a message that the component is deactivated, and the CanBePooled
function returns a value of False. Also add a new method with no parameters
named sayHi that writes out a greeting to the web page.

Example 20-6. Processing JIT Events

public class jit implements IObjectControl
{
 private IResponse m_objResponse = null;

 public void Activate() {
 IGetContextProperties objProps = null;
 Variant v = new Variant();

 // get Props

,ch20.20567 Page 617 Thursday, February 22, 2001 1:35 PM

618 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

According to our understanding of JIT, the Activate method is called not when the
component is created, but only when its methods or properties are first accessed.
In addition, the component is not deactivated unless it is released in the script
(setting the component reference to Nothing in VBScript) or when the ASP page
script is finished processing.

To test all of this, the following ASP test script, asp2008.asp, writes out messages
when the component is first created, before the component’s sayHi method is
called, after the method, and after the component reference is set to Nothing:

<%
Dim obj
Set obj = Server.CreateObject("asp2004.jit")

Response.Write "Before call to message, after creating object"
Response.Write "<p>"

obj.sayHi
Response.Write "<p>"

Response.Write "After call to message"
Response.Write "<p>"

 objProps = (IGetContextProperties)MTx.GetObjectContext();

 // get response
 v = objProps.GetProperty("Response");
 m_objResponse = (IResponse)v.getDispatch();
 v.VariantClear();

 v.putString("Activated");
 m_objResponse.Write(v);
 }

 public void Deactivate() {
 Variant v = new Variant();
 v.putString("Deactivated");
 m_objResponse.Write(v);
 }

 public boolean CanBePooled() {
 return false;
 }

 public void sayHi() {
 Variant v = new Variant();
 v.putString("Hi from method");
 m_objResponse.Write(v);
 }
}

Example 20-6. Processing JIT Events (continued)

,ch20.20567 Page 618 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 619

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Set obj = Nothing
Response.Write "<p>"

Response.Write "After setting object to nothing"
%>

As expected, the result from accessing this ASP script is the following web page
output:

Before call to message, after creating object
ActivatedHi from method
After call to message
Deactivated
After setting object to nothing

Notice that the component’s Activate method is called when the component’s
method is accessed, not when it is created. Notice also that Deactivate is called
when the object is set to Nothing.

When using Visual J++ 6.0 SP 3.0 in Windows 2000, I have found
that to recompile the object, I have to literally remove the object
from the COM+ application—shutting down the application isn’t
enough. However, once I remove it and recompile it, I just add it
back to the application.

The ASP Built-in Object
and Helper Interfaces
There are six main built-in ASP objects that can be used for communication
between the client and server and between the server component and the server
environment. These are the Response, Request, Session, Application, ASPError,
and Server objects. Each of these objects except ASPError is discussed and demon-
strated in turn in the following sections.

You can find a detailed listing of each object’s methods and proper-
ties in Appendix A, ASP Built-in Object Quick Reference. The ASP-
Error object is not detailed in this chapter primarily because it is only
used to provide custom error handling—it won’t be used very often
with business components.

The com.ms.asp package provides access to the built-in object interfaces. You’ve
seen IResponse in action; the others are IApplicationObject, ISession-
Object, IRequest, and IServer. In addition to the ASP built-in objects, the com.

,ch20.20567 Page 619 Thursday, February 22, 2001 1:35 PM

620 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ms.asp package has other interfaces to facilitate working with the collections
returned from several methods. These interfaces are IVariantDictionary,
IReadCookie, IWriteCookie, IStringList, and IRequestDictionary. The
IVariantDictionary interface provides support for the IApplicationObject
and ISessionObject interfaces; the IRequestDictionary interface provides
support for the IRequest and IResponse interfaces; IReadCookie and IWrite-
Cookie provide support for reading and writing to Netscape-style cookies.

The Application Object and Its Associated
Interface, IApplicationObject

The Application object contains application-level information that persists for the
life of the ASP application. A variable can be set to a beginning default value
when the application starts, and any changes to this value persist until the applica-
tion is shut down. This makes application-level variables useful for storing values
that must persist for the life of the application and must be accessible by all ses-
sions within the application.

Application-level variables are defined either by setting values directly in the
Application object or by defining a static variable in the global.asa file for the
application.

The global.asa file is a single static file located in the root directory
of the IIS application. It contains references to application- and ses-
sion-level variables, as well as some event handlers. This file is dis-
cussed in more detail in Appendix A.

The Application object’s functionality is accessible from Java components through
the IApplicationObject interface, defined in com.ms.asp. One of this object’s
methods is getContents, which returns a reference to the IVariantDictionary
interface’s Contents collection (getStaticObjects returns a reference to the Applica-
tion’s StaticObjects collection).

The IVariantDictionary interface is an enumerator interface, which means that
it has methods to access a single object or methods that can used to iterate
through the entire collection of objects managed by the enumerator.

An example of using enumeration is provided in the later section
covering IRequest.

,ch20.20567 Page 620 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 621

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To use IVariantDictionary to access a specific value, create a new Visual J++
project named asp2005 and rename the generated class to App. Add the COM+,
COM, and ASP packages:

import com.ms.mtx.*;
import com.ms.com.*;
import com.ms.asp.*;

Add the code for the tstApplication method shown in Example 20-7. The compo-
nent method does several things. First, it creates a reference to the
IGetContextProperties interface, which it uses to create a reference to the
IApplicationObject and IResponse interfaces. Next, the IApplicationObject
interface’s getContents method is called to return a reference to IVariant-
Dictionary. This interface, in turn, contains a reference to the Application object’s
Contents collection.

To access a specific value in the Contents collection, two Variant objects are used,
one for the Contents item key and one for the Contents item value. The new com-
ponent then outputs the value using the Response object. At the end of the
method, the component changes the tstVariable value in the Contents collection
item by using the IVariantDictionary interface’s putItem method.

Example 20-7. Combining IApplicationObject and IVariantDictionary

public class App
{

 public void tstApplication() {

 // program variables
 IGetContextProperties objProps = null;
 IApplicationObject iObjApplication = null;
 IVariantDictionary iObjDictionary = null;
 IResponse iObjResponse = null;
 Variant v = new Variant();
 Variant v2 = new Variant();

 // get context properties
 objProps = (IGetContextProperties)MTx.GetObjectContext();

 // Get the Application object
 v = objProps.GetProperty("Application");
 iObjApplication = (IApplicationObject)v.getDispatch();

 // get response object to output info
 v.VariantClear();
 v = objProps.GetProperty("Response");
 iObjResponse = (IResponse)v.getDispatch();
 v.VariantClear();

 // access dictionary interface for Contents collection

,ch20.20567 Page 621 Thursday, February 22, 2001 1:35 PM

622 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Use the following ASP script, asp2009.asp, to test the component. Note that the
tstVariable variable in the Application object’s Contents collection is set before call-
ing the component method, and its value is displayed after calling the compo-
nent’s method:

Dim obj
Set obj = Server.CreateObject("asp2005.App")

Application("tstVariable") = "this is a test item"
obj.tstApplication

Response.Write "<p>"
Response.Write Application("tstVariable")

Two other IApplicationObject methods are getValue and putValue. These can
be used to access variables that are assigned directly to the Application object. For
example, the following code block gets the string value for an application-level
variable named tstString, displays its value using the IResponse interface, and
then changes it:

try {

// get application value
v = iObjApplication.getValue("tstString");
iObjResponse.Write(v);
v.putString("new value");
iObjApplication.putValue("tstString",v);
}

catch(ClassCastException e) {

 try {
 iObjDictionary = iObjApplication.getContents();
 v.VariantClear();

 // get contents item for key "tstVariable"
 v.putString("tstVariable");
 v2 = iObjDictionary.getItem(v);
 iObjResponse.Write(v2);

 // reset value
 v2.VariantClear();
 v2.putString("this is a new value");
 iObjDictionary.putItem(v, v2);
 }
 catch(Exception e) {
 v.putString(e.getLocalizedMessage());
 iObjResponse.Write(v);
 }
 }

}

Example 20-7. Combining IApplicationObject and IVariantDictionary (continued)

,ch20.20567 Page 622 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 623

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

v.VariantClear();
v.putString(e.toString());
iObjResponse.Write(v);
}

The final two methods for the IApplicationInterface interface are Lock and
UnLock. These methods should be used whenever you make a change to the
Application object’s collections by calling Lock to prevent other changes while
making yours, and UnLock to release the lock. However, their use should be lim-
ited, and the lock should be released as soon as possible, since no other changes
to the Application object can be made while it is locked.

The Session object is similar to the Application object and is discussed in the next
section.

The Session Object and Its Associated
Interface, ISessionObject

Like the Application object, the Session object persists beyond a specific web
page. Unlike the Application object, the Session object persists for the length of
time that one person (as a session) is connected to the ASP application.

Session-level variables can be created by direct assignment to the Session object or
by declaration in the global.asa file. The variables are initialized when a specific
user accesses the first page for the ASP application, and they persist until the user’s
session times out or the user logs out.

The Session object is accessible from within Java components through the
ISessionObject interface. The Session object’s getContents, getStaticObjects,
getValue, and putValue methods operate the same with the ISessionObject
interface as they did with IApplicationObject. The main difference is, of
course, that the values impacted by these methods persist only through the ses-
sion of the person currently logged into the application. Session-level variables
might be used, for example, to maintain a running total for a catalog system or to
provide a user identifier for database entries.

The Session object’s getCodePage and getLocale methods are unique and are of
interest if you are working with international web page applications. For example,
the CodePage value defines the keyboard mapping for a system, allowing for spe-
cialized characters based on a country or language character set. The Locale is
used to determine regional character settings, such as the use of metrics for num-
bers or which characters are used with currency. In the United States, currency
uses the dollar sign ($), but the United Kingdom uses the symbol for pounds,
which I really can’t show because I am using a system based on the United States

,ch20.20567 Page 623 Thursday, February 22, 2001 1:35 PM

624 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

locale. The following code fragment displays the CodePage and Locale currently in
use on a system:

try {
 // session object
 v = objProps.GetProperty("Session");
 iObjSession = (ISessionObject)v.getDispatch();

 // get application value
 int i;
 i = iObjSession.getCodePage();

 v.putInt(i);

 // response object defined earlier
 iObjResponse.Write(v);
 v.putString("<p>");
 iObjResponse.Write(v)
 i = iObjSession.getLCID();
 v.putInt(i);
 iObjResponse.Write(v);
 }
catch(Exception e) {
 v.putString(e.getLocalizedMessage());
 iObjResponse.Write(v);
 }

CodePage and Locale can be changed using the associated putCodePage and put-
LCID methods. Both CodePage and Locale can be used to return content based on
the settings for the browser accessing the ASP page.

Two other methods that are useful with the Session object are the Abandon and
putTimeout methods. The Abandon method can be used to destroy the Session
object and free any resources currently in use by the session. The putTimeout
method is used to set a new timeout value for the session.

To demonstrate how to work with the ISessionObject interface, add a new
class to asp2005 by right-clicking on the project name in the Project Explorer and
selecting Add ➝ Add Class from the pop-up menu. When prompted for the type of
class, select the standard Class option, and name the class Sess.

To add the COM directive to this new class, access Project ➝ Properties from the
main menu and switch to the COM Classes page in the Properties dialog. Check
the box next to the new class, as shown in Figure 20-4. This adds the COM direc-
tive to the top of your new class.

In the new component class, add the three import statements, and create a new
method named sesnLogout. Add the code in Example 20-8 to your component
class. The method accesses the Session object and calls its Abandon method.

,ch20.20567 Page 624 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 625

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Figure 20-4. Adding COM support for the new class

Example 20-8. Using the ISessionObject Abandon Method to Release Resources When the User
Logs Out

public class Sess
{
 // test function
 public void sesnLogout() {
 IGetContextProperties objProps = null;
 ISessionObject iObjSession = null;
 IResponse iObjResponse = null;
 Variant v = null;

 // get context properties
 objProps = (IGetContextProperties)MTx.GetObjectContext();

 v = objProps.GetProperty("Response");
 iObjResponse = (IResponse)v.getDispatch();

 try {
 // session object
 v = objProps.GetProperty("Session");
 iObjSession = (ISessionObject)v.getDispatch();

 v.putString("Thanks for stopping by!");
 iObjResponse.Write(v);

 // free Session
 iObjSession.Abandon();
 }
 catch(Exception e) {
 v.putString(e.getLocalizedMessage());

,ch20.20567 Page 625 Thursday, February 22, 2001 1:35 PM

626 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The following ASP test script, asp2010.asp, creates an instance of the component
and calls the sesnLogout method. The script also accesses an item in the Session
object’s Contents collection item and outputs its value after the sesnLogout method
is called:

<%
Dim obj
Set obj = Server.CreateObject("asp2005.Sess")

Session("tstVariable") = "this is a test item"
obj.sesnLogout

Response.Write "<p>"
Response.Write Session("tstVariable")
%>

When you access the ASP test page, you might expect that the Session object’s
Contents collection doesn’t have the value set before the call to sesnLogout. How-
ever, the value still exists—the Abandon method forces the destruction of the Ses-
sion object after the ASP page is finished and not during the page processing.

Other information specific to the server can be accessed or changed using the
IServer object, discussed next.

The Server Object and Its Associated
Interface, IServer

The Server object can be used to create new instances of other COM classes by
using its CreateObject method and passing in the component’s PROGID value. In
addition, it can also be used to derive encoded strings using either HTML encod-
ing or URL encoding or to map a relative location to a physical location.

For example, the angle brackets (< and >) are used to delimit HTML tags, such as
<p> for a paragraph or <H1></H1> to define a header. To actually output the
angle brackets as is, without triggering formatting, special encoding characters are
used. The left angle bracket is encoded using the sequence <, and the right
angle bracket is >. The IServer object’s HTMLEncoding method encodes all
HTML-specific characters into their associated encoded values. So, the following
code:

str = iServer.HTMLEncode("<h1>test</h1>");

 iObjResponse.Write(v);
 }
 }
}

Example 20-8. Using the ISessionObject Abandon Method to Release Resources When the User
Logs Out (continued)

,ch20.20567 Page 626 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 627

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

v.putString(str + "<p>");
iObjResponse.Write(v);

would output the following string:

<h1>test</h1>

which would output the following to the web page that is viewed:

<h1>test</h1>

rather than create the header.

The URLEncode method maps the URL special characters into their associated
encoded character sequences. The following code:

str = iServer.URLEncode("% this/is a test % +");
v.putString(str + "<p>");
iObjResponse.Write(v);

would result in the following string:

%25+this%2Fis+a+test+%25+%2B

with the percent sign, space, slash, and plus sign encoded. This is similar to how
the URLPathEncode method works, except that it does not try to include the
slashes.

The MapPath method doesn’t encode any characters, but instead translates what-
ever string is passed to the method with the actual physical location where the
ASP application is running. This is especially helpful when performing any access
that depends on a physical location. The following code:

str = iServer.MapPath("/test/test2");
v.putString(str);
iObjResponse.Write(v);

results in the following string, based on the physical directory location where my
ASP component testing occurs:

E:\Inetpub\wwwroot\New Folder\test2

In addition to methods to create COM instances and encode strings, the getScript-
Timeout and putScriptTimeout methods can be used to check the current script
run times and modify the time until a script times out. You may want to use put-
ScriptTimeout to increase the value for components that may take time, such as
those that access a database or perform some other time-consuming operation.
The getScriptTimeout method returns an integer, and putScriptTimeout takes an
integer, both representing the number of minutes for the timeout.

,ch20.20567 Page 627 Thursday, February 22, 2001 1:35 PM

628 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Request Object and Its Associated
Interface, IRequest

The Request object contains information that the web page reader is sending to
the ASP application. Anytime a form is submitted, information is appended to the
end of an URL, or a Netscape-style cookie is set, an item is added to one of the
Request object’s collections. Among the collections that can be accessed through
the Request object are the following:

Cookies
Small, persistent bits of information that can be stored on the client and
accessed from the ASP application via an HTTP request

ServerVariables
A list of environment variables

Form
The name-value pairs submitted from an HTML form

QueryString
The name-value pairs appended to the URL of the ASP page

ClientCertificate
Client certification fields for certification requests

Cookies originated with Netscape and are bits of information stored on the client
side and indexed by the URL of the page that set the cookies. They allow an appli-
cation to maintain information between the client and the application that persists
beyond a specific web page. The cookies collection contains the Netscape-style
cookies for the page. The ServerVariables collection contains information about
the client, the client certification object, the HTTP request, the browser, and other
information pertaining to the client, the server, and the communication between
the two. The QueryString and Form collections both contain name-value pairs,
with the name forming the key that’s used to access its associated value. Finally,
the ClientCertificate collection contains the fields of the client certificate issued
with the request, in support of the SSL3.0/PCT1.0 security protocol.

The Request object’s interface is IRequest, and most of these methods are used
to access collection information. In order to access specific values, the IRequest-
Dictionary interface is used.

One use of the IRequest and IRequestDictionary interfaces is to access the
information resulting from user interaction with a page. As an example, if an ASP
page has a form whose results are submitted using the POST method, the form’s
field/value pairs can be accessed within an ASP component using the IRequest
interface’s getForm method and the IRequestDictionary interface’s getItem
method, as the following code fragment shows:

,ch20.20567 Page 628 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 629

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

// get session object
v = objProps.GetProperty("Session");
isesnObject = (ISessionObject)v.getDispatch();

// get Request object and form collection
v = objProps.GetProperty("Request");
iRequest = (IRequest)v.getDispatch();
iRqstDict = iRequest.getForm();

// get reader's last name
v.putString("lastname");
v = iRqstDict.getItem(v);

// store in Session object
isesnObject.putValue("name",v);

In this code, the web page reader’s last name is accessed from the submitted form
and stored as an item in the Session object. By doing this, the last name is then
available to all session-level ASP pages. The getForm method returns a reference
to an IRequestDictionary interface, which is used to access the Form collec-
tion. The form’s lastname field is assigned to a Variant object passed to getItem.
This method, in turn, returns the value associated with the lastname field. The
value is stored persistently for the session by using the ISessionObject object’s
putValue method. If the form had been submitted using a GET rather than a POST
request, the QueryString collection would have been populated instead of the
Form collection. However, the same approach would work with both collections.

Another use of the IRequest and IRequestDictionary combination is to access
the ServerVariables collection, which contains environment information about the
browser, the server, and the connection between the two. This collection can be
accessed using the getServerVariables method. The ServerVariables collection con-
tains information such as the URL of the requesting page, the request method (GET
or POST), the IP address of the requester, the protocol used, even the NT user
account the reader is logged in as. An individual item can be accessed by using
the getItem method, or the get_NewEnum method can be used to access the Java
enumerator interface, IEnumVariant.

One handy use of the IEnumVariant enumerator and the ServerVariables collec-
tion is to list all of the variables and their associated values. This allows the devel-
oper to have a better idea of what variables are available, the format the values
take, and how changes in the environment can impact on the variables. To see the
server variables in your own environment, add a new class to asp2005 and name
it Req. Make sure to mark it as a COM class in the Project Properties dialog. Also
add the following import statements:

import com.ms.mtx.*;
import com.ms.com.*;
import com.ms.asp.*;

,ch20.20567 Page 629 Thursday, February 22, 2001 1:35 PM

630 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 20-9 shows the code for the Req method, which lists all of the environ-
ment variables and their associated values. In the example, once the IRequest
interface is accessed, the getServerVariables method is called to return the
IRequestDictionary interface. The get_NewEnum method is then used to return
an IEnumVariant interface. To enumerate through the items in the collection, a
count is obtained of the number of items in the collection and the Next method is
called. This method takes three parameters: an integer that indicates the number of
items to return, an open-ended Variant array to hold the items, and an integer
array to indicate the number of items returned. Once the Variant array is popu-
lated, a for loop is used to display the environment variable names and their
associated values using HTML table cell and row elements, with each label and its
associated value output in a separate table row.

Example 20-9. Output All the Environment Variables from the Request

public class Req
{

// test function
public void showVariables() {

 IGetContextProperties objProps;
 IRequest iRequest;
 IRequestDictionary iRqstDict;
 IResponse iObjResponse;
 Variant v = null;

 // get Context Properties
 objProps = (IGetContextProperties)MTx.GetObjectContext();

 v = objProps.GetProperty("Response");
 iObjResponse = (IResponse)v.getDispatch();
 try {

 // get Request object and environment variables collection
 v = objProps.GetProperty("Request");
 iRequest = (IRequest)v.getDispatch();
 iRqstDict = iRequest.getServerVariables();

 // get enumerator
 IEnumVariant ienum;
 ienum = (IEnumVariant) iRqstDict.get_NewEnum();

 // set up enumeration
 int[] iItems = new int[1];
 iItems[0] = 0;

 int iCount = iRqstDict.getCount();
 Variant[] vt = new Variant[iCount];
 ienum.Next(iCount,vt,iItems);

 // print out environment variables
 v.putString("<table>");
 iObjResponse.Write(v);

,ch20.20567 Page 630 Thursday, February 22, 2001 1:35 PM

The ASP Built-in Object and Helper Interfaces 631

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the component, use the following ASP script, found in asp2011.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2005.Req")

obj.showVariables
%>

The same techniques to individually access a collection item or to enumerate
through a collection can be used with all of the collections obtained using
IRequestDictionary.

The Request object has information about a request being submitted to the server.
The Response object, on the other hand, contains information to be returned to
the client and is discussed next.

The Response Object and Its Associated
Interface, IResponse

The Response object and the Java IResponse interface have been used through-
out this chapter to write information to a web page returned to the client browser.
However, the Write method is not the IResponse interface’s only useful function.
The Response object can also control how content is buffered before being sent to
the browser and whether ASP pages are cached. The object can also determine if
the client is still connected, control what status to return to the client, and define
what type of content is being returned. This is in addition to directing the browser
to another location, altering the header for the HTML output, and appending infor-
mation to the IIS log file.

 for (int i = 0; i < iCount; i++) {
 v.putString("<TR><TD>");
 iObjResponse.Write(v);
 iObjResponse.Write(vt[i]);
 v.putString("</TD><TD>");
 iObjResponse.Write(v);
 iObjResponse.Write(iRqstDict.getItem(vt[i]));
 v.putString("</TD></TR>");
 iObjResponse.Write(v);
 }
 v.putString("</table>");
 iObjResponse.Write(v);
 }
 catch(Exception e) {
 v.putString(e.toString());
 iObjResponse.Write(v);
 }
 }
}

Example 20-9. Output All the Environment Variables from the Request (continued)

,ch20.20567 Page 631 Thursday, February 22, 2001 1:35 PM

632 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Response object’s control of output can be manipulated by several of the
IResponse methods, such as Clear, End, and Flush. Using these methods in con-
junction with transaction management can be particularly effective. Consider the
scenario of an ASP application consisting of several different actions, all per-
formed within one transaction. If any one of the actions fails and the transaction is
rolled back, how much of the output that is already generated can be controlled
with Response buffering. For example, the following code turns buffering off:

iObjResponse.putBuffer(false);

Since the putBuffer method controls how output is returned to the
client, any component calling this method must be instantiated in the
ASP page and must call the method before any other output is
returned to the client, or an error will result.

With buffering enabled, as it is with IIS 5.0 by default, output can be returned or
not, based on the success or failure of any one of the component actions, as the
following code demonstrates:

try {

 //...other code
 iObjResponse.Flush();
 objContext.SetComplete();
 }
catch(Exception e) {

 // clear existing output
 iObjResponse.Clear();

 v.putString(e.getLocalizedMessage());
 iObjResponse.Write(v);
 objContext.SetAbort();
 }

The IResponse object can also be used to set whether an ASP page is cached or
not. If content is unlikely to change within the same ASP application session, the
caching expiration time should be set to a high value by using code such as the
following, so that the page is retrieved from the client cache rather than the server:

iObjResponse.putExpires(300);

In addition to controlling caching and buffering, the IResponse interface can also
be used to change the status of the HTTP response, such as setting the status or
redirecting the output, as the following code demonstrates:

iObjResponse.Redirect("http://www.somewhere.com/someother.htm")

,ch20.20567 Page 632 Thursday, February 22, 2001 1:35 PM

Accessing ADO from Java Components 633

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The advantage of using redirection is that the component can query for informa-
tion, such as browser type and version, and then direct the client to a set of pages
created specifically for the browser/version.

Another method of the IResponse interface that can be particularly handy is put-
ContentType. One example of its use is for web pages that provide buttons for
people to see the actual HTML source. When a user chooses this option, the page
is returned as text/plain rather than text/HTML, as the following demonstrates:

if (type == 0) {
 v.putString("HTML");
 iObjResponse.Write(v);
 iObjResponse.putContentType("text/HTML");
 }
else{
 v.putString("plain");
 iObjResponse.putContentType("text/plain");
 iObjResponse.Write(v);
 }

To display the page as HTML, a value of zero (0) is sent with the component
method call. Otherwise, a value other than zero is sent with the method, and the
HTML is returned as plain text without any processing of the HTML tags.

Accessing ADO from Java Components
The use of ADO within Visual J++ has been facilitated by a set of classes included
within the Windows Framework Classes (WFC). This section demonstrates how to
use WFC to connect to a data source and create several types of result sets using
different types of queries.

Connecting to a Data Source with ADO

To add support for ADO to a Java component, an import statement is added to
the component that pulls in the WFC classes for ADO:

import com.ms.wfc.data.*;

An ADO Connection object encapsulates a specific database session. Within an
ASP application, the connection can be either a direct database connection or a
network connection if the data source is remote to the ASP component. The ADO
connection may or may not be represented by a specific instantiation of a Connec-
tion object. A connection to the database can be created without having to specifi-
cally create a Connection object. However, if the connection is used for more than
one recordset, it is more efficient to create a separate Connection object that is
usable for all queries and database commands.

,ch20.20567 Page 633 Thursday, February 22, 2001 1:35 PM

634 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

A Connection object has several methods and properties. For instance, the Open
method is used to create the database connection and can optionally take a con-
nection string, a user ID, a password, and an open option, as shown in the follow-
ing prototypes, taken from the Microsoft Connection class documentation:

public void open()
public void open(String connectionString)
public void open(String connectionString, String userID)
public void open(String connectionString, String userID, String password)
public void open(String connectionString, String userID, String password,
int options)

The connection string itself consists of a set of key/value pairs, each separated by
a semicolon (;). All connection strings, regardless of the OLE DB provider, require
that certain information be in the connection string, such as the server and the
database or the DSN for the data source, the user ID, and the password. An exam-
ple of a connection string is the following:

Provider=SQLOLEDB;DSN=pubs;uid=sa;pwd=;database=pubs;
pwd=somepassword;Driver={SQL Server}

The first keyword shown in the string defines the OLE DB provider for the data-
base. The provider listed in the example is for the Microsoft SQL Server database.
If no provider is given, the default is a generic OLE DB for ODBC Provider,
MSDASQL. The following connection string uses this default provider to connect to
an Access database:

DSN=books;uid=sa;Driver={Microsoft Access Driver(*.mdb)}

In addition to the provider, the connection string can also contain a driver name,
which is a reference to the database server, such as {SQL Server} for Microsoft
SQL Server, and {Microsoft Access Driver (*.mdb)} for Access. You can take
this information from the ODBC Data Source Administrator. Instead of, or in addi-
tion to, the server, you can also specify a Data Source Name (DSN) or a File Data
Source Name (FileDSN). The DSN references data sources installed on the com-
puter, and the FileDSN represents data sources installed and configured in such a
way as to be accessible by all users that have access to the installed driver. For
ASP components, the data source can be configured using either the DSN or
FileDSN. If the DSN is provided in the connection string, the database source does
not need to be provided, though this is a good technique to ensure you can con-
nect to the correct database.

The user identifier and password can be specified separately within the connec-
tion string as optional Open method parameters. In addition, other keyword/value
pairs may be required for each OLE DB provider; if so, they should be docu-
mented by the provider.

In addition to the connection string and the user identifier and password, the Con-
nection object’s Open method can establish an asynchronous database connection

,ch20.20567 Page 634 Thursday, February 22, 2001 1:35 PM

Accessing ADO from Java Components 635

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

by specifying a value of AdoEnums.ConnectOption.ASYNCCONNECT as an argu-
ment to the optional options parameter. (By setting the connection to be asyn-
chronous, processing can continue while the connection is being made.) This
value is accessible by adding the import statement for the WFC ADO classes,
accessing the AdoEnums package, and then accessing the enumeration and its spe-
cific constant. Visual J++’s autofill capability will provide a listing of enumerated
members.

Other Connection object methods are used specifically to control database access
and transaction management, two issues critical for a multiuser system such as an
Internet or intranet application. Database access can be controlled by using the set-
Mode method to control whether the access is read/write, read-only, or write-only
and whether the database is opened in such a way as to deny other connections.
The following code prevents others from opening a connection to the database
while the existing connection is active (open):

conn.setMode(AdoEnums.ConnectMode.SHAREEXCLUSIVE);
conn.open(str,"sa","");

Another property of the Connection object that can impact database access is the
isolation level. By default, database transactions supported by ADO default to a
type of AdoEnums.IsolationLevel.CHAOS and AdoEnums.Isolationlevel.
CURSORSTABILITY. The CHAOS isolation level means that pending changes from
isolated transactions cannot be overwritten by actions of the component. The
CURSORSTABILITY IsolationLevel setting means that other ADO transactions oper-
ating on the same server-side database can view changes in this specific transac-
tion only after these changes have been committed. The ADO provider determines
the types of isolation level supported, and trying to use unsupported types can
result in a different level of isolation being set or in an error.

Transactions can be controlled directly for a connection with the use of the Con-
nection object’s beginTrans, commitTrans, and rollbackTrans methods. This is an
effective approach to take to fine-tune transaction control for a specific set of data-
base activities, as opposed to controlling the transaction for several components
using MTS transaction control. Using beginTrans creates a new transaction on the
Connection, and using commitTrans or rollbackTrans impacts the activity for the
specific connection only.

To begin a new transaction, use the following code:

conn.beginTrans();

After creating changes on the database, the transaction can be committed using the
following command:

conn.commitTrans();

,ch20.20567 Page 635 Thursday, February 22, 2001 1:35 PM

636 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The transaction can be rolled back by using the following:

conn.rollbackTrans();

The rollbackTrans method ends the transaction without committing any pending
changes to the database for the specific database connection. Each of the transac-
tion methods also has associated event handlers: onBeginTransComplete, onCom-
mitTransComplete, and onRollbackTransComplete. These event handlers can be
used to return a message with the transaction status to the ASP application user.

One last method to mention is the Connection object’s Close method. You will
want to close every connection as soon as possible, since there are a finite num-
ber of database connections available. Creating a connection and then not closing
it locks out other users when they access the application and the application
attempts to create a new connection.

Querying the Data

Database queries can fall into several categories:

• Simple one-table queries, such as

select au_lname from authors

• More complex multiple-table join queries, such as

select authors.au_lname, titles.title from authors, titles, titleauthor where
titles.title_id = titleauthor.title_id and authors.au_id = titleauthor.au_id

• Simple or complex queries using parameters

• Data retrieval for updates

• Calls to stored procedures

You might think that a simple, one-table query to return information and output it
to an ASP page would have no real effect on any other transaction activity. How-
ever, any data action impacts on all other actions, even one as simple as the fol-
lowing:

Recordset rs = new Recordset();
Variant vtSource = new Variant("select * from WebPages");
rs.open(vtSource, (Connection)conn, AdoEnums.CursorType.FORWARDONLY,
 AdoEnums.LockType.READONLY, AdoEnums.CommandType.TEXT);

This query selects all the fields from the Authors table using an existing Connec-
tion object and a forward-only cursor—meaning that the cursor is read from the
first record to the last. In addition, a read-only lock is applied with the query,
which prevents any modifications to the retrieved information. This is probably the
simplest type of query to make: no joined tables or stored procedure calls, no
passed parameters, and no updates on the returned data. What possible impact
can something like this have on any other transactions?

,ch20.20567 Page 636 Thursday, February 22, 2001 1:35 PM

Accessing ADO from Java Components 637

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

One possible impact is the use of resources to fulfill the command. There is only
so much CPU and memory to handle all database transactions, and this small one
does take its own piece. It also impacts the network traffic to support the query.
This query returns a small number of rows, but querying a table with a thousand
or even a million rows without any form of selection criteria can consume all sys-
tem resources as well as much of the available server bandwidth to return the
query. This is in addition to a possible timeout of the existing ASP request, as well
as a very slow response time for the web page reader.

To control the number of rows returned, criteria are usually applied to database
retrieval. In addition, the Recordset object’s setMaxRecords method controls the
number of records that are returned for a particular result set, regardless of any
other criteria.

Adding Selection Criteria

The next simplest data query adds a selection criteria, otherwise known as a
WHERE clause, to the SQL SELECT statement. Again, this can be used with a single
table query or with a more complex, multitable join.

To try this type of query, create a new Visual J++ project and name it asp2006.
Name the generated class query. Add the following import statements to the
class:

import com.ms.mtx.*;
import com.ms.com.*;
import com.ms.asp.IResponse;
import com.ms.wfc.data.*;

In the component, add a method called simpleQuery that takes a String input
parameter. This parameter contains the page type code that will be used in the
simple query.

In the component method, which is shown in Example 20-10, an instance of the
IResponse object is created, as well as instances of the ADO Recordset and Con-
nection objects. The Connection object is used to establish a connection to the
database, in this case the SQL Server version of the Weaver database. A SQL state-
ment is created using a StringBuffer object, and the page type code is added to the
query. Once finished, the Recordset object’s Open method is called, passing in the
query and the open connection. Once the recordset is returned, the results are
processed in a loop and displayed.

Example 20-10. A SQL Query Using the WHERE Clause

public class query
{
 public void simpleQuery (String strPageType) {

,ch20.20567 Page 637 Thursday, February 22, 2001 1:35 PM

638 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 IGetContextProperties objProps = null;
 IResponse iObjResponse = null;
 Variant v = new Variant();

 // get ObjectContext, Props, and Response
 objProps = (IGetContextProperties)MTx.GetObjectContext();

 // get response
 v = objProps.GetProperty("Response");
 iObjResponse = (IResponse)v.getDispatch();
 v.VariantClear();

 try {
 // create recordset and select
 Recordset rs = new Recordset();
 Connection conn = new Connection();

 // open connection
 conn.open("Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd=");

 // set select statement
 StringBuffer strBuff = new StringBuffer();
 strBuff.append("select name from WebPage where ");
 strBuff.append("page_type_cd = '");
 strBuff.append(strPageType);
 strBuff.append("' order by name");
 Variant vtSource = new Variant(strBuff.toString());

 // open recordset
 rs.open(vtSource, (Connection)conn, AdoEnums.CursorType.FORWARDONLY,
 AdoEnums.LockType.READONLY, AdoEnums.CommandType.TEXT);

 // print out name
 Variant vtOutput = new Variant();
 rs.moveFirst();
 while (!rs.getEOF()) {
 String str;
 str = rs.getFields().getItem("name").getValue().toString();
 vtOutput.putString(str + "
");
 iObjResponse.Write(vtOutput);
 rs.moveNext();
 }
 rs.close();
 conn.close();
 }
 catch (Exception e) {
 v.putString(e.getLocalizedMessage());
 iObjResponse.Write(v);
 }
 }
}

Example 20-10. A SQL Query Using the WHERE Clause (continued)

,ch20.20567 Page 638 Thursday, February 22, 2001 1:35 PM

Accessing ADO from Java Components 639

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Compile the new component and test it with the following ASP script, contained in
asp2012.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2006.query")

obj.simpleQuery "HTM"
%>

All entries in WebPage with a page type code of HTM are returned to the web
page.

Using the Command Object and Parameters

For most ASP components, database queries will be based on selection criteria that
are all or in part provided by the web page reader’s interaction with the ASP appli-
cation. The criteria can be accessed using the built-in ASP Request object. The cri-
teria are then retrieved from the form or query string collection, depending on the
method of submitting the form or whether the values are submitted using a query
string.

If more than one parameter is provided, or if the recordset retrieval procedure is
run multiple times with different names each time, using parameters with a Com-
mand object is a better approach than using a Recordset object and dynamically
generating a query string. Using a command caches the query for reuse, allowing
you to change the parameter value rather than having to reissue the query directly.
When using a Command object instead of adding the query values to the query
string, you can create parameters for the command and use the search values to
set these parameters.

To demonstrate how to use the Command object and its associated Parameters
collection, add a new method to asp2006.query named cmndQuery. The method
has one String input parameter, the page type code. Its source code is shown in
Example 20-11. In this example, the Command object’s properties are set first: the
CommandText property is assigned a SQL SELECT statement containing the query
by calling the setCommandText method, and the CommandType property, which
contains a command type specifier, is assigned by using the setCommandType
method. To add the parameter for the query, the Parameters collection is accessed
from the Command object. Next, a new Parameter object is created, and its
datatype, size, and value are set using the setType, setSize, and setString methods,
respectively. The new parameter is then appended to the Parameters collection.
(For more than one query criteria, more than one parameter can be created and
appended to the Parameters collection.) Finally, the query is run via the Com-
mand object’s execute method. The result of the operation returns a Recordset

,ch20.20567 Page 639 Thursday, February 22, 2001 1:35 PM

640 Chapter 20: ASP Components Created with Java

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

object, which is then used to process the returned records in a manner similar to
that shown in Example 20-11.

Example 20-11. Using the ADO Command Object and the Parameters Collection

public void cmndQuery (String strPageType) {

 IGetContextProperties objProps = null;
 IResponse iObjResponse = null;
 Variant v = new Variant();

 // get ObjectContext, Props, and Response
 objProps = (IGetContextProperties)MTx.GetObjectContext();

 // get response
 v = objProps.GetProperty("Response");
 iObjResponse = (IResponse)v.getDispatch();
 v.VariantClear();

 try {
 // create recordset and select
 Recordset rs = null;
 Connection conn = new Connection();
 Command cmd = new Command();

 // open connection
 conn.open("Provider=SQLOLEDB;server=FLAME;
 database=weaver;uid=sa;pwd=");

 // set select statement
 StringBuffer strBuff = new StringBuffer();
 strBuff.append("select name from WebPage where ");
 strBuff.append("page_type_cd = ?");
 strBuff.append(" order by name");

 cmd.setActiveConnection(conn);
 cmd.setCommandText(strBuff.toString());
 cmd.setPrepared(true);
 cmd.setCommandType(AdoEnums.CommandType.TEXT);

 // parameter
 Parameters parms = cmd.getParameters();
 Parameter parm = new Parameter();
 parm.setType(AdoEnums.DataType.VARCHAR);
 parm.setSize(3);
 parm.setString(strPageType);
 parms.append(parm);

 rs = cmd.execute();

 // print out name
 Variant vtOutput = new Variant();
 rs.moveFirst();
 while (!rs.getEOF()) {

,ch20.20567 Page 640 Thursday, February 22, 2001 1:35 PM

Accessing ADO from Java Components 641

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test this second query, the ASP test script found in asp2013.asp creates an
instance of the component and calls cmndQuery:

<%
Dim obj
Set obj = Server.CreateObject("asp2006.query")

obj.cmndQuery "APP"
%>

This time all WebPage entries with a page type code of APP show in the page.

These two examples demonstrate how much of the ADO functionality works with
Java and the WFC. Try this out with other examples shown in Chapter 8, Creating
ASP/ADO Components, and Chapter 9, Creating an ASP Middle Tier with ADO.
Though these database chapters use Visual Basic to demonstrate how to work
with ADO, you should be able to convert the examples to Java by comparing
them with the examples you’ve seen in this chapter. The functionality may change,
but the Java syntax is the same.

 String str;
 str = rs.getFields().getItem("name").getValue().toString();
 vtOutput.putString(str + "
");
 iObjResponse.Write(vtOutput);
 rs.moveNext();
 }
 rs.close();
 conn.close();
 }
 catch (Exception e) {
 v.putString(e.getLocalizedMessage());
 iObjResponse.Write(v);
 }
 }
}

Example 20-11. Using the ADO Command Object and the Parameters Collection (continued)

,ch20.20567 Page 641 Thursday, February 22, 2001 1:35 PM

642
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 21

21
Creating ASP Components
with Delphi

Delphi is a Pascal-based development tool and environment that has one of the
more sophisticated IDEs that I’ve ever used. It’s also one that hasn’t received much
coverage (along with Perl, covered in the next chapter) when it comes to creating
ASP components. However, not only is Delphi an excellent tool for creating most
applications, it’s also a very good choice when creating your ASP components.

As I’ve stated, Delphi is a sophisticated tool, and I won’t be able to cover all the
nuances of using the tool in this chapter, so you’ll need to have experience with
the IDE before reading this chapter. What you won’t need, though, is experience
working with COM-based applications in order to work with the examples and to
understand the concepts.

In this chapter, we’ll look at the different types of COM objects you can create
with Delphi using COM wizards, and we’ll also look at building ASP components
by manually importing the necessary COM+ and ASP libraries. We’ll also cover
using ADO to access data sources from within your components.

If you’ve not worked with COM or COM+ previously, you should
first read Chapter 3, ASP Components and COM ; Chapter 4, ASP
Components, Threads, and Contexts ; and Chapter 5, COM+ Services
and ASP Components and Applications.

Using the COM Wizards to
Create ASP Components
There are several COM wizards you can use to create components, but you should
only use the wizards that add in support for the dual interface when creating your

,ch21.20783 Page 642 Thursday, February 22, 2001 1:36 PM

Using the COM Wizards to Create ASP Components 643

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ASP components. The dual interface adds support for access of the component
using automation—necessary from ASP script—as well as early binding through
vtable (table lookup) access.

When you use the dual interface option, all component methods are defined auto-
matically with the safecall calling convention. This calling convention maps
COM error methods into exception handling and converts the returned HRESULT
values into exceptions. This calling convention is required for all methods for dual
interface components.

Before we take a look at the different COM wizards and see what they provide for
ASP component development, you’ll first need to create a component project that
you’ll use for all of the wizard-based examples.

After opening Delphi, select File ➝ New. In the dialog that opens, switch to the
ActiveX tab. Click on the ActiveX library option. When you do this, the form that’s
automatically created for Delphi applications is removed and is replaced by a
library project page. Name the project asp2101 and save it. You’re now set to cre-
ate your first ASP component.

This chapter’s examples were created using Delphi Enterprise 5.0. If
your version and edition of Delphi doesn’t have some of the COM
wizard support mentioned in this section, see the later section “Man-
ually Adding Support for COM+/ASP.”

Using the ASP COM Wizard

For your first component, you’ll use the ASP COM Wizard. Select File ➝ New and
switch to the ActiveX tab when the dialog opens. Select the Active Server Object
option. In the dialog that opens, type in the component name, in this case First.
Also change the threading model to Both. In addition, select the Object Context
Active Server Type option, since you’re working with IIS. Accessing the ASP
objects through the ScriptingContext is deprecated in Windows 2000 (though it’s
still supported for backward compatibility). You can have Delphi generate a test
ASP page, but one is provided with the examples for this book, so uncheck this
option. The dialog should look like that shown in Figure 21-1.

Delphi creates the component Pascal file and also adds in the necessary support
libraries for this type of component.

The Type Library Editor should show when the component files are generated. In
this editor, you can do such things as add a reference to a help file or provide a
better name than “asp2101 Library” for the component. You can also use the edi-
tor to add component methods and properties.

,ch21.20783 Page 643 Thursday, February 22, 2001 1:36 PM

644 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create a new method by right-clicking on the IFirst component interface and
selecting New ➝ Method. A method is added to the interface, and its properties
are displayed.

Use the Type Library Editor whenever you add any new publicly
exposed methods to your components.

Rename the method sayHello and then switch to the Parameters tab. In this tab,
leave the return type as is—COM objects always have an HRESULT return type.
Add an input BSTR name, as well as a pointer to a VARIANT return value, as
shown in Figure 21-2.

The method prototype is automatically added to the component’s Pascal file when
you click the Refresh Implementation button in the editor. This button looks simi-
lar to the recycle symbol and is located in the toolbar at the top of the Type
Library Editor. Once the prototype is added to the component, complete it by add-
ing in code, shown in bold, to create the greeting message using the name passed
in to the component and returning the result to the ASP script, as shown in
Example 21-1.

Figure 21-1. Using the ASP COM Wizard to generate component

,ch21.20783 Page 644 Thursday, February 22, 2001 1:36 PM

Using the COM Wizards to Create ASP Components 645

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Before compiling the component, rename the Pascal file to First by selecting File
➝ Save As from the main menu and naming the file First.pas. This also renames
the unit within the code. The component’s PROGID (the identifier used to create

Figure 21-2. Defining the method parameters for the new ASP component

Example 21-1. First Delphi Component Code

unit First;

interface

uses
 ComObj, ActiveX, AspTlb, asp2101_TLB, StdVcl;

type
 TFirst = class(TASPMTSObject, IFirst)
 protected
 function sayHello(const bstrName: WideString): WideString; safecall;
 end;

implementation

uses ComServ;

function TFirst.sayHello(const bstrName: WideString): WideString;
var
tmpString: WideString;
begin
tmpString := 'Hello ' + bstrName;
Result := tmpString;
end;

initialization
 TAutoObjectFactory.Create(ComServer, TFirst, Class_First,
 ciMultiInstance, tmBoth);
end.

,ch21.20783 Page 645 Thursday, February 22, 2001 1:36 PM

646 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

an instance of the component) is the name of the project combined with the name
of the component Pascal file—asp2101.First. Compile the object.

To test your new Delphi component, use the following ASP test script:

<%
Dim obj
Set obj = Server.CreateObject("asp2101.First")

Dim msg
msg = obj.sayHello("World!")

Response.Write "<h3>" & msg & "</h3>"
Set obj = Nothing
%>

This test page, asp2101.asp, creates an instance of the component and calls its
only method. The results that are returned are displayed to the web page. In the
case of this script, the following results:

Hello World!

Any of the COM object wizards that provide dual interface support will work for
creating your ASP components. What makes the ASP option unique is the ASP
library that Inprise has created for use with Delphi and that is installed with Del-
phi 5.0. This library, AspTlb, is automatically added, as you can see in the uses
section of the code. In this library, the ASP built-in objects are created as proper-
ties of the new object through the use of the ancestor class TASPMTSObject. To
access the objects, you just have to refer to them by name:

Response.Write...

The ASP objects are created using the MTS/COM+ ObjectContext when the prop-
erty is first accessed. If you had selected the ScriptingContext option when creat-
ing the component, the class name would have been TASPObject, and the objects
would be created using ScriptingContext.

With access to the ASP objects, to print out the greetings created in sayHello, you
can use the ASP Response object’s Write method instead of returning the string to
the ASP script. To demonstrate this, add a second function to your component and
name it sayHello2. This parameter has an input BSTR value, but no return or out-
put values. In the code for the function, use the Response object to write out the
greeting, as shown in Example 21-2.

Example 21-2. Using the ASP Objects Created with the ASP COM Wizard

procedure TFirst.sayHello2(const bstrName: WideString);
var
vtOut: OleVariant;
begin
vtOut := '<h3>Hello ' + bstrName + '</h3>';

,ch21.20783 Page 646 Thursday, February 22, 2001 1:36 PM

Using the COM Wizards to Create ASP Components 647

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Recompile the component (after first unloading the ASP application through IIS)
and test the second method with the following ASP script, found in asp2102.asp:

Dim obj
Set obj = Server.CreateObject("asp2101.First")

obj.sayHello2("World!")

Set obj = Nothing

The Active Server Page COM Wizard option isn’t the only one that works with ASP
objects. Another is the MTS option, discussed next.

After installing Delphi 5.0, you must install the Update pack avail-
able from Inprise/Borland (http://www.borland.com) before trying
the ASP wizard option. If you don’t install this package, the exam-
ples just shown will not work—you’ll get an error when you try to
access the ASP Response object.

Using the MTS COM Wizard

Another COM wizard you can use to create an ASP component is the MTS Object
option. This option provides automated access to the component’s ObjectContext
to control transactions or to test the ASP component environment.

To demonstrate how to work with the MTS Object option, add a new component
to the existing asp2101 project by selecting File ➝ New and switching to the Mul-
titier tab when the Application Option dialog opens. In this tab, double-click the
MTS Object option.

In the dialog that opens, name the new component FirstMts, and select the Sup-
ports Transactions option. Also change the threading model to Both, and don’t
check the “Generate Event support code” option—you won’t want to add event
handling to your ASP component. The dialog should look like that shown in
Figure 21-3 when you’re done.

As I said, the MTS Object option adds support for accessing the ObjectContext for
the component; specifically, it creates an instance of the IObjectContext inter-
face that you can then access directly in your code.

The IObjectContext interface provides methods to abort or commit the current
transaction or to mark the component as ready for deactivation if you’re using JIT

Response.Write(vtOut);
end;

Example 21-2. Using the ASP Objects Created with the ASP COM Wizard (continued)

,ch21.20783 Page 647 Thursday, February 22, 2001 1:36 PM

648 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

activation with your component. JIT is used to increase the efficiency of your com-
ponent access by not creating a reference to the component until it is actually used
and not discarding the component until it’s actually no longer needed. The
IObjectContext interface also has methods that can be used to test for role-based
security. Both the role-based security and the support for JIT are COM+ Services.

To try out the interface’s methods, create a method named tstEnvironment that has
three output parameters, all pointers to VARIANTS, as shown in Figure 21-4.
Because VBScript supports only the Variant data type, you must use VARIANT for
any output values. You can use other COM-compatible data types for the input
parameter and the return values because COM/COM+ does the translation
between the data type and the VBScript Variant.

Chapter 3 discusses COM/COM+ data types in more detail.

Once the prototype for the method has been generated, save the Pascal file as
FirstMts.pas, which also renames the file unit. Next, you’ll add the code shown in
Example 21-3 to access the IObjectContext methods in your component
method. In the code, the IObjectContext IsInTransaction method is called to see
if the component is participating within a COM+ transaction. The result is output
to a message string. The same process occurs with the IsCallerInRole method to
see if the user is part of the Developer role and the IsSecurityEnabled method (to
determine if access-level security is enabled).

Figure 21-3. Creating an ASP component using the MTS Object option

,ch21.20783 Page 648 Thursday, February 22, 2001 1:36 PM

Using the COM Wizards to Create ASP Components 649

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you compile the component, you’ll need to install it into a COM+ applica-
tion. The reason for this is that the MTS Object option automatically adds in sup-
port for the IObjectControl interface in the component. This interface is used
with JIT to provide processing for the component when it’s activated or deacti-
vated and if the component supports object pooling.

When a component implements IObjectControl, it must provide an implemen-
tation of three functions. The first is Activate, which is called when the compo-
nent is first activated; the second is Deactivate, which is called when the

Figure 21-4. Defining the new ObjectContext associated method

Example 21-3. Testing the Component Environment with the IObjectContext Environment

procedure TFirstMts.tstEnvironment(out vtTrans, vtRole,
 vtSecurity: OleVariant);
begin

// test transaction
if ObjectContext.IsInTransaction Then
 vtTrans := 'Component is in Transaction'
else
 vtTrans := 'Component is not in Transaction';

// test role
if ObjectContext.IsCallerInRole('Developer') Then
 vtRole := 'Component is within role'
else
 vtRole := 'Component is not within role';

// test security
if ObjectContext.IsSecurityEnabled Then
 vtSecurity := 'Security is enabled'
else
 vtSecurity := 'Security is not enabled';
end;

,ch21.20783 Page 649 Thursday, February 22, 2001 1:36 PM

650 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

component is deactivated; the third is CanBePooled, which returns a Boolean indi-
cating whether the component can be pooled. In the MTS type library that Inprise
has created to support the MTS Object option, these three functions are already
implemented. The Activate and Deactivate methods contain no functionality, and
the CanBePooled function returns a value of FALSE because pooling was not
enabled for Windows NT. Because Inprise has implemented all of this functional-
ity, you have built-in support for JIT without having to add any code. However,
you do have to install the component within a COM+ application.

Delphi 5.0 is not guaranteed to work with Windows 2000, though
I’ve had no problems with the product once I installed the Update
pack 1.0. However, if you want to have support for COM+ Services
in your component, such as component pooling, you should take a
look at how to manually add support for COM+ services in your
component, covered in the next section.

To do this, access the Administrative tools, and open Component Services. If you
don’t have a test COM+ application, create one (get details on this in Chapter 3).
Once the application is created, add the asp2101.dll to it by right-clicking on the
application’s components folder and selecting New ➝ Component. From the wiz-
ard that opens, select the Install New Component option, and in the page that
opens, browse for and select asp2101.dll. Support for JIT is automatically added
for all components.

After adding the component to the COM+ application, test it with the following
script, asp2103.asp, which displays each string returned from the component:

<%
Dim obj
Set obj = Server.CreateObject("asp2101.FirstMts")

Dim trans, role, security
obj.tstEnvironment trans, role, security

Response.Write trans & "<p>"
Response.Write role & "<p>"
Response.Write security & "<p>"

Set obj = Nothing
%>

You should get the following results:

Component is not in Transaction
Component is within role
Security is not enabled

,ch21.20783 Page 650 Thursday, February 22, 2001 1:36 PM

Using the COM Wizards to Create ASP Components 651

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The component isn’t within a transaction, since no transaction was started before
the component was called. If you try the component using the ASP test page
asp2104.asp, you’ll get a positive answer for the transaction test, because this ASP
page has the following transaction directive placed in it (in the first line) to start a
transaction:

<% @ TRANSACTION = required %>
<HTML>
<HEAD>
<TITLE>Developing ASP Components</TITLE>
</HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2101.FirstMts")

Dim trans, role, security
obj.tstEnvironment trans, role, security

Response.Write trans & "<p>"
Response.Write role & "<p>"
Response.Write security & "<p>"

Set obj = Nothing
%>
</BODY>
</HTML>

When you try this page, you’ll see that the component is now within a transaction.

The IsCallerInRole function always returns True when the component runs within
the client process—as it is within the COM+ application (or accessed directly from
an ASP page and declared using the apartment- or both-threaded models). To
actually enable role-based security, you’ll need to add a new role for the COM+
application you just created.

Create the role by right-clicking on the Roles folder within the application and
selecting New ➝ Role from the menu that opens. In the role window that opens,
type in Developer as the name of the role. Once the role is created, add users by
right clicking on the Users folder within the role and selecting New ➝ User from
the menu. A dialog opens that lists users and groups within the system. Click the
user that matches IUSR_machinename, where machinename is the name of your
machine. (IUSR_machinename is the generic IIS client used for most of your
external IIS access.) Figure 21-5 shows the page on my development machine
(named FLAME) once I select the user IUSR_FLAME.

After adding the user to the group, you’ll need to enable role-based security for
the tstEnvironment method. Open the asp2101.FirstMts component in Compo-
nent Services until you see the Methods folder, and right-click on the tstEnviron-
ment method. From the menu that opens, select Properties. Switch to the Security

,ch21.20783 Page 651 Thursday, February 22, 2001 1:36 PM

652 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

page and check the box next to the Developer role. This enables role-based secu-
rity for this specific method.

Next, add role-based security for the COM+ application by right clicking on the
application name and selecting Properties, again. Switch to the Security tab and
check the “Enforce access checks for this application” box.

Access the asp2104.asp page one more time (after unloading the ASP application
through IIS) to make sure the page isn’t cached. This time, all three functions
should return a positive result.

As I mentioned, Inprise provides an implementation of the IObjectControl JIT
methods. You can, however, access virtual functions created by Inprise that allow
you to capture the Activate and Deactivate events to provide your own compo-
nents. These methods are OnActivate and OnDeactivate, and you can override the
methods:

 procedure OnActivate; override;

and provide your own implementation; or you can hide the function and, again,
provide your own implementation of the function. (See the Delphi 5.0 documenta-
tion for more information on function overriding and hiding.) The only method
that doesn’t have a virtual function that you can use to hook into JIT is the CanBe-
Pooled method—Delphi 5.0 was created before the release of Windows 2000, and
object pooling wasn’t support until Windows 2000 was released.

The examples in this section and the last have used wizard support to access
COM+ or ASP technologies and type libraries. Because of this, you won’t have

Figure 21-5. Adding a user to the Developer group

,ch21.20783 Page 652 Thursday, February 22, 2001 1:36 PM

Manually Adding Support for COM+/ASP 653

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

access to specific functionality, such as the new COM+ interfaces. You can add
support for this functionality by adding references to COM+ and ASP manually,
discussed in the next section.

Manually Adding Support
for COM+/ASP
The ASP and MTS COM wizards provide excellent methods for getting quick and
easy access to the ASP built-in objects and MTS/COM+ transaction support, respec-
tively. However, if you want additional functionality outside of what’s provided
automatically, you’ll need to add references to the ASP and COM+ Services type
libraries manually. You can do this by importing these type libraries.

When you import a type library, Delphi wraps the contents in Pascal, giving you
access to the library interfaces and their associated properties and methods. How-
ever, you’ll have to manually create the references to the objects, such as
IObjectContext when accessing COM+ Services or IResponse when accessing
the ASP objects.

To demonstrate how to manually import support for both COM+ and the ASP
objects, in this section you’ll create a new component and add support for the
object context as well as JIT through IObjectControl. We’ll also discuss how
you can use the same techniques to access newer COM+ Services interfaces, such
as IContextState and IObjectContextInfo.

Once you’ve set up your component for JIT support, you’ll create references to the
main ASP objects—Application, Session, Request, Response, and Server—within
the Activate method. You’ll use these objects within several ASP pages, where
you’ll have a chance to try out several of their methods and properties. You’ll then
release the references to the objects within the component’s Deactivate method.

To begin, create a new Delphi project using the ActiveX Library option, as you did
with asp2101. Name the new project asp2102. Add a new component to the
project, but this time, use the Automation object option. In the dialog that opens,
enter the name of the component, Manual, and change the threading model to
Both. When the component Pascal file is generated, name the file Manual.pas,
which also renames the unit to Manual.

You’re now ready to start adding COM+ and ASP support.

Importing COM+ Services

To add support for COM+ Services, select Project ➝ Import Type Library from the
main menu. A list of available type libraries is displayed. From the list, select
COM+ Services Type Library. In the dialog, you can specify which palette page the

,ch21.20783 Page 653 Thursday, February 22, 2001 1:36 PM

654 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

library is added to, and you can check an option to have Delphi wrap the library.
You can also specify the location where the library will be placed once it is
wrapped. Delphi also lists the wrapped names it’s providing for the classes the
tool finds within the library. Unless these names conflict with other, already
imported class names, you can leave them as is; otherwise, you can change the
names. You can also choose not to create component wrappers by unchecking the
Generate Component Wrapper option. Since you won’t be using component wrap-
pers in the examples in this chapter, uncheck this option. Figure 21-6 shows the
Import Type Library dialog after adding support for COM+ Services.

You can choose either the Install or Create Unit option to add support for the
library. The Install option adds the library file to a new or existing package, and
the Create Unit option adds the file to your existing project. Use the Create Unit
option with your component.

Delphi creates a project file named COMSVCSLib_TLB. You’ll want to add a refer-
ence to this file to your Manual.pas uses section, as follows:

uses
 ComObj, ActiveX, COMSVCSLib_TLB, asp2102_TLB, StdVcl;

Figure 21-6. Importing the COM+ Services type library

,ch21.20783 Page 654 Thursday, February 22, 2001 1:36 PM

Manually Adding Support for COM+/ASP 655

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Next, you’ll add the implementation of IObjectControl and its methods to your
component. Modify the component’s class definition to add a reference to Object-
Control:

type
 TManual = class(TAutoObject, IManual, ObjectControl)

COM components can implement more than one interface. In this case, both the
ObjectControl and the IManual interfaces are implemented by the component.

You’ll need to add the prototypes and implementations for the three Object-
Control methods. Add the following prototypes first, using the exact declarations
used within the generated COMSVCSLib_TLB file (the declarations must match or
an error results):

 protected
 function Activate: HResult; stdcall;
 function Deactivate: HResult; stdcall;
 function CanBePooled(out pbPoolable: WordBool): HResult; stdcall;

Don’t add the prototypes using the Type Library Editor, since you’re implement-
ing the IObjectControl interface, not creating the methods directly on your new
interface.

In addition, add a private global variable of type ObjectContext to the compo-
nent. You’ll be instantiating this member within the Activate method:

 private
 m_piObjContext : ObjectContext;

Next, add the code for the three methods. All methods return the HRESULT value
of S_OK. To have access to the predefined HRESULT values, you’ll also have to add
the Windows type library to your component’s uses section:

uses
 ComObj, Windows, ActiveX, COMSVCSLib_TLB, asp2102_TLB, StdVcl;

The code for the three methods is shown in Example 21-4. The Activate method
assigns a reference to ObjectContext to the private data member. In Visual Basic or
Visual C++, you’d instantiate the ObjectContext object through a call to GetObject-
Context (or CoGetObjectContext). In Java, you would call GetObjectContext on a
predefined class named Mtx. However, trying either of these techniques with
Delphi will generate an error when we compile the component. Instead, taking a
look at the Pascal wrapper for the component, we find the GetObjectContext
method on an interface named IMTxAS. So you’ll want to access this interface in
order to get a reference to the ObjectContext object.

Further investigation of the Pascal-wrapped MTS type library also shows that
IMTxAS will be returned when the Create method of the implemented class
CoAppServer is called. So we can use CoAppServer.Create to get a reference to the

,ch21.20783 Page 655 Thursday, February 22, 2001 1:36 PM

656 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

IMTxAS interface and then call the GetObjectContext method on this interface to
retrieve the reference to the ObjectContext object we need.

The CanBePooled method returns a value of False, since the component won’t
be pooled.

To test our success in retrieving the reference to the ObjectContext object, add a
new method to the component using the Type Library Editor and name it testObj-
Context. The method returns a BSTR value. In the method, add the code shown in
Example 21-5 that calls the IsInTransaction method to test if the component is
within a transaction.

The ObjectContext.SetComplete method is called at the end of the method, prima-
rily to signal that the component is finished processing.

Example 21-4. Implementing JIT Methods

function TManual.Activate: HRESULT;
var
 mtx: IMTxAS;
begin
mtx := CoAppServer.Create;
m_piObjContext := mtx.GetObjectContext;
Activate := S_OK;
end;

function TManual.Deactivate: HRESULT;
begin
Deactivate := S_OK;
end;

function TManual.CanBePooled(out pbPoolable: WordBool): HResult; stdcall;
begin
 pbPoolable := False;
 CanBePooled := S_OK;
end;

Example 21-5. Testing Existence of ObjectContext Variable

function TManual.testObjContext: WideString;
var
tmpStr : WideString;
begin
if m_piObjContext.IsInTransaction Then
 tmpStr := 'In Transaction'
else
 tmpStr := 'Not in Transaction';

testObjContext := tmpStr;
m_piObjContext.SetComplete;
end;

,ch21.20783 Page 656 Thursday, February 22, 2001 1:36 PM

Manually Adding Support for COM+/ASP 657

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the component, you’ll have to add the component to a COM+ applica-
tion—if you don’t, the component will hang when you access the ASP test script.
When you add it, change the transaction support for the component to Requires
transactions. Then, access the component with the following script, asp2105.asp:

<% @ TRANSACTION = required %>
<%
Dim obj
Set obj = Server.CreateObject("asp2102.Manual")

Dim msg
msg = obj.testObjContext

Response.Write "<h3>" & msg & "</h3>"
Set obj = Nothing
%>

When you access the page, the web page shows a message that the component is
in a transaction.

Beginning with Windows 2000, there are new interfaces to provide support for
context state and accessing ObjectContext properties. For instance, ObjectContext
has the SetAbort and SetCommit methods to abort or commit a transaction, respec-
tively. Both of these methods also signal that a component is finished processing
by setting the ObjectContext done bit. If you want to control these actions sepa-
rately, you can use the IContextState interface.

IContextState has a SetMyTransactionVote method, which allows you to signal
the success of the transaction, and a SetDeactivateOnReturn method, which sig-
nals that the component is finished processing. You can access this interface using
the following:

m_piCntxtState := mtx.GetObjectContext As IContextState;

Then call this object’s methods:

m_piCntxtState.SetDeactivateOnReturn(True);

Chapter 5 has more information on the new COM+ interfaces. Next up: adding
support for ASP.

Adding Support for ASP

The ASP built-in objects are accessible as properties from ObjectContext, and you
can access the properties by calling the ObjectContext’s Get_Item method. First,
though, you’ll have to add a reference to the ASP objects to your component.

In asp2102, import Version 3.0 of the Microsoft Active Server Pages library.

,ch21.20783 Page 657 Thursday, February 22, 2001 1:36 PM

658 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you import a type library, the Pascal file for the library is auto-
matically placed in the Imports subdirectory for Delphi. You can
then use this library from all of your components without having to
reimport the libraries again.

The examples with this book do not include the imported libraries—
you should create these within your own system.

Again, uncheck the option to create component wrappers, since they are not used
in the examples in this book. Even with the option unchecked, you’ll get an error
when you try to create the imported library, because a TSession object already
exists. To work around this problem, just rename TSession to TASPSession.

Once the type library is wrapped, add a reference to the Pascal file to your com-
ponent’s uses section, as follows:

uses
 ComObj, Windows, ActiveX, COMSVCSLib_TLB, ASPTypeLibrary_TLB,
 asp2102_TLB, StdVcl;

Now you’re ready to create instances of the ASP objects. First, add private data
members for each of the following intrinsic objects:

 private
 m_piObjContext : ObjectContext;
 m_piResponse : Response;
 m_piRequest : Request;
 m_piSession : Session;
 m_piServer : Server;
 m_piApplication : Application;

Next, modify the Activate method to implement each of the objects, as shown in
Example 21-6. When you access the ObjectContext.Get_Item method, you’ll actu-
ally receive a pointer to the IDispatch interface. In order to access an ASP object,
such as the Response object, as an IResponse interface, the IDispatch interface
will need to be queried for the particular interface. With C++, you could use some-
thing like the COM QueryInterface method to query for and access the interface.
However, with Pascal you use the As operator. The As operator calls
QueryInterface for you, and the dynamic binding it provides allows you to assign
a value originally accessed from ObjectContext to a specific interface reference.
Then, once you have the reference to the IResponse interface, you can invoke
this interface’s methods.

Example 21-6. Creating Instances of the ASP Objects

function TManual.Activate: HRESULT;
var
 mtx: IMTxAS;

,ch21.20783 Page 658 Thursday, February 22, 2001 1:36 PM

Manually Adding Support for COM+/ASP 659

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To provide cleanup, you can release the references to the ASP objects in the Deac-
tivate method:

function TManual.Deactivate: HRESULT;
begin
 m_piResponse._Release;
 m_piRequest._Release;
 m_piSession._Release;
 m_piApplication._Release;
 m_piServer._Release;
 Deactivate := S_OK;
end;

To test your new object references, add a method to the component using the
Type Library Editor. Name the method sayHi, and give it an input BSTR parameter
(bstrName). In the method’s implementation, create a greeting, but this time, out-
put the greeting using the m_piResponse object, as shown in Example 21-7.

 piIdisp: IDispatch;
begin
mtx := CoAppServer.Create;
m_piObjContext := mtx.GetObjectContext;

// get response
piIdisp := m_piObjContext.Get_Item('Response');
m_piResponse := piIdisp As IResponse;

// get request
piIdisp := m_piObjContext.Get_Item('Request');
m_piRequest := piIdisp As IRequest;

// get session
piIdisp := m_piObjContext.Get_Item('Session');
m_piSession := piIdisp As ISessionObject;

// get application
piIdisp := m_piObjContext.Get_Item('Application');
m_piApplication := piIdisp As IApplicationObject;

// get response
piIdisp := m_piObjContext.Get_Item('Server');
m_piServer := piIdisp As IServer;

Activate := S_OK;
end;

Example 21-7. Using Response Object Reference to Write Out a Message

procedure TManual.sayHi(const bstrName: WideString);
var
tmpString : WideString;
tmpVt : OleVariant;

Example 21-6. Creating Instances of the ASP Objects (continued)

,ch21.20783 Page 659 Thursday, February 22, 2001 1:36 PM

660 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Testing the component with the following script (contained in asp2106.asp) results
in the greeting being displayed on the web page:

<%
Dim obj
Set obj = Server.CreateObject("asp2102.Manual")

obj.sayHi "World!"

Set obj = Nothing
%>

Now that you have references to each of the ASP objects, you’ll have a chance to
try them out in the next section.

Should you use the libraries created by Inprise or import the type
libraries directly? Well, the answer is, it depends. If the functionality
that Inprise provides is what you need for your component, use the
built-in functionality; otherwise, import the libraries.

Working with the ASP Objects
In this section, you’ll get a chance to work with the individual ASP objects. The
examples that follow assume that you created the asp2102.manual component,
discussed in the last section. If not, then you can create an ASP component using
the Active Server Pages COM Wizard and just modify the examples to use the
Application, Request, Response, Server, and Session references directly.

The examples in this chapter don’t demonstrate every property, collection, and
method of the ASP objects. Instead, you’ll have a chance to work with some of the
more common methods, as well as with the ASP helper interfaces and enumera-
tion. For more details on each of the object’s methods and properties, see
Appendix A, ASP Built-in Object Quick Reference. You might also want to check
out Chapter 7, Creating a Simple Visual Basic ASP Component, for more detailed
information about using the ASP objects from within your custom components—
regardless of the language used.

begin
 tmpString := 'Hello ' + bstrName;
 tmpVt := tmpString;
 m_piResponse.Write(tmpVt);
 m_piObjContext.SetComplete;
end;

Example 21-7. Using Response Object Reference to Write Out a Message (continued)

,ch21.20783 Page 660 Thursday, February 22, 2001 1:36 PM

Working with the ASP Objects 661

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Response Object

The Response object is used to control the output returned to the client browser.
It’s been used to this point to write output to the client, and it can also be used to
control buffering.

When buffering is turned on, as it is with IIS 5.0, all of the page contents must be
generated before the page is returned. You can control this by using the buffering
methods to control the output.

For instance, if you have buffering turned on, and you want to flush the buffer
(return the output to the browser before finishing the remaining processing), you
can call the Response object’s Flush method:

m_piResponse.Flush;

If an error occurs, and you want to eliminate the buffered output, use the Clear
method instead:

m_piResponse.Clear;

You can also access the Cookies collection to update or add cookies through the
IRequestDictionary collection. IRequestDictionary is also used to access
other Request-specific collections and is demonstrated later in the section describ-
ing the Request object.

Another Response object member is the Redirect method, which redirects the
browser to another page and sends an HTTP response with the 302 Object Moved
status. When you use Redirect, the current state (such as any form or query string
information or any transaction) is lost. To send the browser to a different page
without losing state, use the Server.Transfer method.

You can manually send a specific HTTP status value to the browser using the put_
Status method. For instance, to send a value of 401 Unauthorized, use the following:

m_piResponse.put_Status('401 Unauthorized');

This triggers a login window to open. Other Response methods and properties are
detailed in Appendix A.

The Application Object

The Application object is created when an ASP application is first referenced and
lasts until the application is shut down or until the last session to access the ASP
application is terminated. This object can be used to store information that needs
to be accessible by all sessions that access the ASP application.

The Application object has two collections with application-level information. The
first is StaticObjects, with data that’s set through the global.asa file. The second is

,ch21.20783 Page 661 Thursday, February 22, 2001 1:36 PM

662 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the Contents collection, with data that can be set at runtime. Both collections can
be read by ASP components, but only the Contents collection can be set by
components.

Due to memory constraints, avoid adding objects to either the Appli-
cation or Session objects. If you must add an object to the Applica-
tion collections, the object must be both- or neutral-apartment-
threaded, or you’ll receive an error.

To demonstrate how to access the Contents collection, add a new method to your
component using the Type Library Editor, and name it OnAccessValue, as shown
in Example 21-8. The method has no parameters. It accesses the value of the
intCounter variable from the Application object, increments its value, and reas-
signs it back to the Application object.

In a multiuser environment, you would call the Application’s Lock method before
accessing and incrementing the application-wide value and call the UnLock
method afterward.

To test the component, use the script contained in asp2107.asp :

<%
Application("intCounter") = 0

Dim obj
Set obj = Server.CreateObject("asp2102.Manual")

obj.OnAccessValue

Dim i
i = Application("intCounter")

Response.Write "Value is " + CStr(i)
Set obj = Nothing
%>

In the script, the counter value is accessed and displayed after calling the compo-
nent’s new method. If the value had not been incremented, you would see a zero

Example 21-8. Increment the Application Contents Value

procedure TManual.OnAccessValue;
var
iCounter : Integer;
begin
 iCounter := m_piApplication.Contents.Get_Item('intCounter');
 iCounter := iCounter + 1;
 m_piApplication.Contents.Set_Item('intCounter',iCounter);
end;

,ch21.20783 Page 662 Thursday, February 22, 2001 1:36 PM

Working with the ASP Objects 663

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

(0) on the web page. However, what you see is a value of one (1), because the
component incremented the counter.

The Session Object

The Application object lasts for the lifetime of the ASP application, but an instance
of the Session object is created for each unique user session. The session starts
when a person first accesses the ASP application and lasts until the user closes his
browser or terminates the session (if this functionality is provided) or until the ses-
sion times out.

As with the Application object, the Session object also has both a StaticObjects and
a Contents collection, but unlike the Application object, you can’t lock the Session
object down when it’s accessed—only one person has access to the Session object
at a time, and locking isn’t necessary.

In the previous section, you saw code that accessed one specific value in the Con-
tents collection. You can also access all collection items by getting a count of
items in the collection and then iterating through them. To demonstrate, add a
new method to asp2102.Manual named getContents. This method does not have
parameters.

The method, which is shown in Example 21-9, gets a count of items in the Ses-
sion object’s Contents collection by accessing the collection through the
IVariantDictionary helper interface. This interface is used to obtain informa-
tion about the collection, access the collection contents, and even enumerate
through the collection, if you wish. Once the method has a reference to
IVariantDictionary, it uses a for loop to access each item and list both its key
name and its value.

Example 21-9. Iterating Through the Session’s Contents Collection and Printing the Key-Value
Pairs

procedure TManual.OnAccessValue;
var
iCounter : Integer;
begin
 iCounter := m_piApplication.Contents.Get_Item('intCounter');
 iCounter := iCounter + 1;
 m_piApplication.Contents.Set_Item('intCounter',iCounter);
end;

procedure TManual.getContents;
var
piDict: IVariantDictionary;
iCount: Integer;
iTotal: Integer;
ovName: OleVariant;

,ch21.20783 Page 663 Thursday, February 22, 2001 1:36 PM

664 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test this component method, the ASP script asp2108.asp loads several values
into the Session object’s Contents collection before it calls the getContents method:

Dim obj
Set obj = Server.CreateObject("asp2102.Manual")

Session("one") = 1
Session("two") = 2
Session("three") = 3
Session("four") = 4
Session("five") = 5

obj.getContents

The result of accessing this ASP test page is a web page with the five Contents
items listed.

Instead of accessing a count of items in the collection, you could have used enu-
meration to list the collection contents. The use of enumeration is demonstrated in
the next section, covering the Request object.

The Request Object

The Request object has information about the environment, as well as information
provided by the ASP application user. It is unique among all of the ASP objects
because of the larger number of collections it supports, including the following:

ovValue: OleVariant;
begin

// get contents
piDict := m_piSession.Get_Contents;
iTotal := piDict.Count;

for iCount := 1 to iTotal do
begin
 // get name
 ovName := piDict.Get_Key(iCount);
 m_piResponse.Write(ovName);
 m_piResponse.Write(' = ');

 // print value
 ovValue := m_piSession.Get_Value(ovName);
 m_piResponse.Write(ovValue);
 m_piResponse.Write('<p>');
end;

end;

Example 21-9. Iterating Through the Session’s Contents Collection and Printing the Key-Value
Pairs (continued)

,ch21.20783 Page 664 Thursday, February 22, 2001 1:36 PM

Working with the ASP Objects 665

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Forms
Contains information posted from HTML forms

QueryString
Contains information posted using the GET method or appended to the query
string

Cookies (read-only)
Contains cookies included with the client request

ClientCertificate
Contains information contained in any client certificates attached with the
request

ServerVariables
Contains information about the environment

As with other collections already demonstrated, you can access individual items in
any of the collections directly from the Request object. However, you can also use
the IRequestDictionary object to access the collection, particularly if you want
to use enumeration to process the collection contents.

To demonstrate how to work with IRequestDictionary, as well as how to use
enumeration with the ASP collections, add a new method to asp2102.Manual
named showVariables. The method doesn’t have parameters.

In the code for showVariables, which is shown in Example 21-10, the Request
object’s Get_ServerVariables method is called to obtain a reference to the
IRequestDictionary interface encapsulating the ServerVariables collection.
Since it is enumerating the members of the collection, it needs to call the Get__
NewEnum method on this collection interface. This latter method returns a refer-
ence to an IUnknown object.

Microsoft collections that support enumeration always support the
Get__NewEnum method when the interface is exposed in Delphi.

A C++ component would then call the QueryInterface method on IUnknown to
obtain a reference to IEnumVariant, the interface that’s accessed when using
enumeration. However, Delphi Pascal uses the shortcut As keyword to perform
checked type interface access—a nice touch that simplifies interface access. Once
the method obtains the IEnumVariant interface, it uses its methods to enumerate
through the entire collection, listing the ServerVariable key/value pairs.

,ch21.20783 Page 665 Thursday, February 22, 2001 1:36 PM

666 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ServerVariables collection provides information such as the user agent used to
access the ASP page, the hostname, the IP address, the physical path, the username
and password if authentication is used, and so on. Test the new component method
using the ASP test page, asp2109.asp, to see these values in your environment:

<%
Dim obj
Set obj = Server.CreateObject("asp2102.Manual")

obj.showVariables

Set obj = Nothing
%>

Of course, you can access a value directly from the ServerVariables collection,
using code such as the following:

m_piRequest.ServerVariables.Get_Item('HTTP_USER_AGENT');

The Server Object

In ASP script, the Server object’s CreateObject method is used to create all of the
custom components you’ve made in this chapter. However, this object has several

Example 21-10. Enumerating Through ServerVariables to Print Out Key/Value Pairs

procedure TManual.showVariables;
var
 piReqDict: IRequestDictionary;
 piIEnum: IEnumVariant;
 piIUnknown: IUnknown;
 liReturn: LongWord;
 ovName: OleVariant;
 ovValue: OleVariant;
begin

 // get ServerVariables and enum for variables
 piReqDict := m_piRequest.Get_ServerVariables;
 piIUnknown := piReqDict.Get__NewEnum;
 piIEnum := piIUnknown As IEnumVariant;

 // while S_OK get name and value, print
 while piIEnum.Next(1,ovName,liReturn) = S_OK do
 begin;
 m_piResponse.Write(ovName);
 m_piResponse.Write(' = ');

 ovValue := piReqDict.Get_Item(ovName);

 m_piResponse.Write(ovValue);
 m_piResponse.Write('
');
 end;

end;

,ch21.20783 Page 666 Thursday, February 22, 2001 1:36 PM

Working with the ASP Objects 667

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

methods you can use to provide encoding of special characters. For instance, if
you want some HTML to appear as is (including brackets) within a web page, you
could use the Server object’s HTMLEncode method to encode the string so that the
HTML isn’t interpreted by the user agent (the browser).

You can also use the MapPath method to map an existing filename to the current
literal path—helpful when opening files on the server.

To demonstrate the Server encoding methods, add a new method to asp2102.
Manual named encodeValues, as shown in . This method takes four input parame-
ters, all of type BSTR: bstrHTML, bstrURL, bstrPath, and bstrMap. The method
passes each input string to its associated encoding method and lists each encoded
string using the Response object.

Once you’ve compiled the component, test it with the following ASP script (found
in asp2110.asp):

<%
Dim obj
Set obj = Server.CreateObject("asp2102.Manual")

Dim strHTML, strURL, strPath, strMap
strHTML = "<H1>This is a test</H1>"
strURL = "% this is a test % ++"

Example 21-11. Using the Server Object to Encode Strings

procedure TManual.encodeValues(const bstrHTML, bstrURL, bstrPath,
 bstrMap: WideString);
var
strHTML : WideString;
strURL : WideString;
strPath : WideString;
strMap : WideString;
begin

// encode values
strHTML := m_piServer.HTMLEncode(bstrHTML);
strURL := m_piServer.URLEncode(bstrURL);
strPath := m_piServer.URLPathEncode(bstrPath);
strMap := m_piServer.MapPath(bstrMap);

// print values
m_piResponse.Write(strHTML);
m_piResponse.Write('
');
m_piResponse.Write(strURL);
m_piResponse.Write('
');
m_piResponse.Write(strPath);
m_piResponse.Write('
');
m_piResponse.Write(strMap);

end;

,ch21.20783 Page 667 Thursday, February 22, 2001 1:36 PM

668 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

strPath = "test/test2/this is a test"
strMap = "/test/test2/"

obj.encodeValues strHTML, strURL, strPath, strMap
Set obj = Nothing
%>

When you access the page, the following values are displayed:

<H1>This is a test</H1>
%25+this+is+a+test+%25+%2B%2B
test/test2/this%20is%20a%20test
c:\inetpub\wwwroot\test\test2

In this section, you’ve had a chance to try out the ASP objects in your Delphi com-
ponents. Another common library that’s accessed from ASP components is the
ActiveX Data Objects (ADO) library, discussed next.

Working with ADO
The Enterprise version of Delphi 5.0 has a set of ADO class wrappers you can use
in your applications. I won’t cover these, since they are covered in the Delphi 5.0
documentation. Instead, I’ll demonstrate how to add ADO functionality to your
component by importing the ADO type library.

The examples in this section use the downloadable Weaver data-
base. Read more on this in Appendix B, The Weaver Database. Read
a more thorough overview of working with ADO from ASP compo-
nents in Chapter 8, Creating ASP/ADO Components, and Chapter 9,
Creating an ASP Middle Tier with ADO.

First, you’ll need to create another Delphi project using the ActiveX Library
Option. After the project is created, generate the project’s component using the
Active Server Pages COM Wizard option. If you don’t have access to this option,
see the previous section for information about adding support for ObjectContext
and the ASP Response object using import, since you’ll be using the Response
object in these examples. Name the new project file asp2103 and the component
Data.

Once you’ve created the component project, import the latest Microsoft ActiveX
Data Objects library on your system. This creates a wrapped type library called
ADODB_TLB. Add a reference to the type library to your component’s uses
statement:

uses
 ComObj, ActiveX, ADODB_TLB,AspTlb, asp2103_TLB, StdVcl;

,ch21.20783 Page 668 Thursday, February 22, 2001 1:36 PM

Working with ADO 669

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

We won’t provide an exhaustive overview of working with ADO, but I do want to
provide two examples of using ADO to perform queries. The first example is a
simple query—a full table scan of the WebPage table. The second query example
also accesses the WebPage table, but it uses parameters.

A Simple Query Using the Connection
and Recordset Objects

In the first example, you’ll establish a connection to the Access version of the
Weaver database using the ADO Connection interface. You’ll then create a new
ADO Recordset object and use this to run the actual query: a full table scan of the
WebPage table. Once you have the result set, you’ll iterate through it and list the
table’s name field value for each record.

To create the example, add a method to asp2103.Data named showWebPages.
The method has no parameters. In the method’s variable declaration section, add a
reference to the Recordset and Connection default interfaces:

cn: Connection;
rs: Recordset;

In the code, create instances of both interfaces, using the CoConnection and
CoRecordset classes (created by Delphi). These classes can be used to create refer-
ences to the ADO objects without having to specify either the GUID for the inter-
faces or the CLSID values (values you would need if you created instances of the
components using the object creation functionality provided by Delphi):

cn := CoConnection.Create;
rs := CoRecordset.Create;

The showWebPages method, which is shown in Example 21-12, queries the data-
base and processes the results. The records associated with the result set are tra-
versed and the name field is listed for each record.

Example 21-12. Performing a Simple Query Using the ADO Connection and Recordset Objects

procedure TData.showWebPages;
var
cn: Connection;
rs: Recordset;
vtVal: OleVariant;
begin
// open connection
cn := CoConnection.Create;
cn.Open('DSN=weaver;uid=sa;pwd=',
 '','',-1);
// create query
rs := CoRecordset.Create;
rs.Open('select name from WebPage',cn,
 adOpenForwardOnly,adLockReadOnly,adCmdUnknown);

,ch21.20783 Page 669 Thursday, February 22, 2001 1:36 PM

670 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After compiling and registering the component (or adding the component to a
COM+ application), try it with asp2111.asp, the ASP test page:

<%
Dim obj
Set obj = Server.CreateObject("asp2103.Data")

obj.showWebPages
Set obj = Nothing
%>

The result is a web page showing the names of all of the web pages contained in
the WebPage table of the Weaver database.

In some applications, parameters are used to limit queries, and the next ADO
example uses parameters and the Command object to perform a query against the
same table.

Using Parameters with a Query

You can modify a query to use a SQL WHERE clause to limit the number of rows
you get back. In web applications, you won’t want to do full table scans unless
the table has only a few rows.

One technique you can use to limit the query is to concatenate the WHERE clause
parameters to the end of the SQL used for the query. However, a better approach
is to use the ADO Command object and add the parameters to the query using the
Command object’s Parameters collection.

To demonstrate how to use the Command object, add a new method to asp2103.
Data and name it showSpecificPages. The method has one BSTR input parameter
named bstrType. In the method, you’ll search on WebPage again, but this time
you look only for records matching a specific page type code, such as HTM for
HTML pages or APP for ASP and other application pages.

rs.MoveFirst;
while Not rs.EOF do
begin
 vtVal := rs.Fields.Get_Item('name');
 Response.Write(vtVal);
 Response.Write('
');
 rs.MoveNext;
end;

rs.Close;
cn.Close;

end;

Example 21-12. Performing a Simple Query Using the ADO Connection and Recordset Objects

,ch21.20783 Page 670 Thursday, February 22, 2001 1:36 PM

Working with ADO 671

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As Example 21-13 shows, the method creates an instance of the Connection object,
but this time the example connects to the SQL Server version of Weaver using the
OLE DB Provider for SQL Server. After creating and opening the connection, it
instantiates the Command object through the CoCommand class’s Create method
and sets the Command object’s active connection to the newly created Connec-
tion object. The Command’s Prepared property is set to True. By doing this, the
command is compiled and stored in memory, which increases the performance of
additional accesses. Normally, you would want to do this only with commands
that are accessed more than once, but I wanted to give you a feel for setting Com-
mand properties.

After setting the Command’s query, the method accesses its Parameters collection
next and creates a new Parameter. After the Parameter information is set, it’s
appended to the Parameters collection, and then the command is executed. The
query results are then displayed on the web page.

Example 21-13. Creating a Parameterized Query Using the Command Object

procedure TData.showSpecificPages(const bstrType: WideString);
var
cn: Connection;
rs: Recordset;
cmnd: Command;
vtVal: OleVariant;
parms: Parameters;
parm: Parameter;
vtRecs, vtPlace, params: OleVariant;
begin
// open connection
cn := CoConnection.Create;
cn.Open('Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd=',
 '','',-1);

// create command
cmnd := CoCommand.Create;
cmnd.Set_ActiveConnection(cn);
cmnd.Set_Prepared(True);
cmnd.Set_CommandText('select * from WebPage where page_type_cd = ?');

// set parameter
parms := cmnd.Get_Parameters;
parm := cmnd.CreateParameter('page_type_cd',adChar,adParamInput,3,null);
parms.Append(parm);

// execute query
vtPlace := null;
params := VarArrayCreate([0,0], varVariant);
params[0] := bstrType;
rs := cmnd.Execute(vtRecs,params,adCmdText);

while Not rs.EOF do

,ch21.20783 Page 671 Thursday, February 22, 2001 1:36 PM

672 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Test this component method using the following ASP script, asp2112.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2103.Data")

obj.showSpecificPages "APP"
Set obj = Nothing
>%

Change the page type and rerun it to see how the results differ.

Though this introduction to working directly with ADO from Delphi components
is brief, it should provide you enough in the way of examples so that you can
extrapolate the other information you’ll need when working with ADO.

ADO isn’t the only service you can access from your Delphi components. Other
Windows 2000 services, such as Collaborative Data Objects (CDO), discussed next,
are also accessible when you import the associated type libraries.

Working with Windows 2000
Functionality: CDO
Windows 2000 has a wealth of technology you may want to take advantage of
when creating Delphi ASP components. You had a chance to work with data
access using ADO in the last section. In this section, you’ll have a chance to work
with email by using Collaborative Data Objects (CDO) for Windows 2000.

CDO is used to provide access to SMTP (email) and NNTP (newsgroup) services.
With it, you can easily create email to send to people from your ASP applications.
For instance, if your ASP application is an online store, you can send an email to
people to confirm their orders, to provide copies of their passwords if they’ve for-
gotten them, or for any of a dozen other reasons. You can even create your own
email and newsgroup readers, if you so choose.

begin
 vtVal := rs.Fields.Get_Item('name');
 Response.Write(vtVal);
 Response.Write(' ');
 vtVal := rs.Fields.Get_Item('filename');
 Response.Write(vtVal);
 Response.Write('
');
 rs.MoveNext;
end;

rs.Close;
cn.Close;

end;

Example 21-13. Creating a Parameterized Query Using the Command Object (continued)

,ch21.20783 Page 672 Thursday, February 22, 2001 1:36 PM

Working with Windows 2000 Functionality: CDO 673

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

CDO has been around for some time, but a new and very different version of the
objects was released with Windows 2000, and it’s CDO for Windows 2000 that
we’ll look at in this section.

To try out CDO, create a new Delphi project using the ActiveX Library option and
name the project asp2104. Add a new Automation object to the project and name
it msg. Next, import the CDO type library by selecting Project ➝ Import Type
Library from the main menu and selecting the Microsoft CDO for Windows 2000
Library. Use the Create Unit option and uncheck the option to create Pascal wrap-
pers for the classes.

CDO is dependent on ADO for much of its functionality, so you’ll also have to add
a reference to the ADO type library to your project. You can use the Pascal
wrapped library you created in the last section.

Once the Pascal-based wrapper is created for the CDO type library, add a refer-
ence to it and the ADO library within your new component’s uses statement:

uses
 ComObj, ActiveX, asp2104_TLB, ADODB_TLB, CDO_TLB, StdVcl;

You can now access the CDO objects within the Delphi component.

For details on working with CDO from within ASP components, read
Chapter 11, Take a Message: Accessing CDO from ASP Components.

Your component will send a plain text email message to an email address of your
choice. The message will include an image added as an attachment. Add a method
to your component named sendImage, which is shown in Example 21-14. This
component has five input BSTR parameters: bstrTo, bstrFrom, bstrSubject,
bstrMessage, and bstrImage (the last is the filename of the image).

CDO message properties, such as the SMTP server to use, are attached as configu-
ration properties using the IConfiguration interface. The message itself is
defined within the IMessage interface, and attachments can be added using the
IBodyPart interface. As with the ADO objects, the showImage method generates
classes for the CDO objects that make it easier to access the individual type library
interfaces.

The component method creates the message configuration properties first using a
Microsoft naming schema to name the individual properties. In Visual Basic, there
are predefined constants you can use for these property names, but they aren’t
available when you import the CDO type library into your Delphi component. If
you wish, you could create constants in your Delphi code for the different

,ch21.20783 Page 673 Thursday, February 22, 2001 1:36 PM

674 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

property names. The properties are actually contained within an ADO Fields col-
lection, and the ones set are the SMTP server, the method of sending the mes-
sage, the authentication type, and the connection timeout. You can also add the
username and password if your SMTP server requires this information. Make sure
to use your own SMTP server for this example.

What is the value you should use for your SMTP server? It’s the same
value you use when you set up your email account using Outlook or
whatever email reader you use.

Once the sendImage method defines the message configuration properties, it sets
other message information, such as to whom the email goes, whom it’s from, and
the subject line. These values are set directly on the Message object.

Next, the method adds the image attachment and the text message. Email mes-
sages can be hierarchical in nature, which means that emails can contain body
parts that contain other body parts, and so on. This hierarchy is managed through
the IBodyPart interface. Instead of attaching a message to the message directly,
you can attach various versions of the message (in different formats) to a series of
body parts.

The code in Example 21-14 attaches an image to the message through the
IBodyPart interface. First, it obtains the main body part from the message using
the IMessage.Get_BodyPart method. Then it provides formatting information for
the message contents, in this case for an image. To read in the image, it uses the
ADO Stream object (another case of the connection between ADO and CDO).
Once the image file is loaded, calling the stream’s Flush method writes the con-
tents to the CDO body part. After the attachment is added to the message, the
plain text that accompanies it is added directly to the message and it’s sent.

Example 21-14. Using CDO to Send a Message with an Image Attachment

procedure Tmsg.sendImage(const bstrTo, bstrFrom, bstrSubject,
 bstrMessage, bstrImage: WideString);
var
cdomsg: IMessage;
config: IConfiguration;
bodypart: IBodyPart;
strm: Stream;
begin
cdomsg := CoMessage.Create;
config := CoConfiguration.Create;

// set configuration
with config.Fields do

,ch21.20783 Page 674 Thursday, February 22, 2001 1:36 PM

Working with Windows 2000 Functionality: CDO 675

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component, use the following ASP script, asp2113.asp, after first
modifying the email address and sender to ones that work within your environ-
ment. If your SMTP server is located on the Internet, make sure you’re connected
before accessing the ASP page.

<%
On Error Resume Next
Dim obj
Set obj = Server.CreateObject("asp2104.msg")

' get values
Dim strSubject, strImage, strTo, strFrom, strMessage
strSubject = "Image"
strImage = "c:\web\mm\some.gif"
strTo = "person@someco.com"
strFrom = "person@someco.com"
strMessage = "Here's the image"

begin
Item['http://schemas.microsoft.com/cdo/configuration/sendusing'].
 Set_Value(cdoSendUsingPort);
Item['http://schemas.microsoft.com/cdo/configuration/smtpauthenticate'].
 Set_Value(cdoBasic);
Item['http://schemas.microsoft.com/cdo/configuration/smtpserver'].
 Set_Value('mail.someco.com');
Item['http://schemas.microsoft.com/cdo/configuration/
 smtpconnectiontimeout'].Set_Value(20);
end;
config.Fields.Update;

// set message properties
cdomsg.Set_Configuration(config);
cdomsg.Set_Sender(bstrFrom);
cdomsg.Set_To_(bstrTo);
cdomsg.Set_Subject(bstrSubject);

// add image attachment
bodypart := cdomsg.Get_BodyPart;
bodypart.Set_ContentMediaType('image/gif');
bodypart.Set_ContentTransferEncoding('base64');
strm := bodypart.GetDecodedContentStream;
strm.LoadFromFile(bstrImage);
strm.Flush;

// message to go with image
cdomsg.Set_TextBody(bstrMessage);

// send
cdomsg.Send;

end;

Example 21-14. Using CDO to Send a Message with an Image Attachment (continued)

,ch21.20783 Page 675 Thursday, February 22, 2001 1:36 PM

676 Chapter 21: Creating ASP Components with Delphi

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

' send url
obj.sendImage strTo, strFrom, strSubject, strMessage, strImage
If Err.Number <> 0 Then
 Response.Write "<h3>The Image could not be emailed</h3>"
 Response.Write "<p>" & Err.Description & "</p>"
Else
 Response.Write "<h3 style='color: blue'>
 The image is off and running</h3>"
End If

Set obj = Nothing
%>

Notice in the example that I’ve added error handling to process any errors that
might occur. The safecall calling method used with dual interface components
automatically provides the HRESULT value used within the script.

Instead of manually creating the attachment, you could also use the IMessage
AddAttachment method. You can also send a web page using the createMHTML-
Body method.

Methods such as createMTHML and AddAttachment generate an
error of unknown interface when accessed in Delphi. This is most
likely due to namespace conflicts between ADO and CDO and to
not being able to turn off namespacing when importing the type
libraries into Delphi. However, you can work around the problem
by using the IBodyPart interface, as demonstrated in this example.

Hopefully, this chapter has provided you enough demonstrations of the mechan-
ics of accessing the Windows 2000, COM+, ASP, and other technologies from Del-
phi components, that you can take the examples shown in the Visual Basic or C++
chapters earlier in the book and apply them to your components.

,ch21.20783 Page 676 Thursday, February 22, 2001 1:36 PM

677
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 22

22
Perl-Based Components
Using ActiveState’s PDK

ASP components can be created with any programming language, as long as the
language provides support for the COM/COM+ architecture. This held true for
Delphi, covered in the last chapter. This also holds true for Perl through the help
of ActiveState’s Perl Dev Kit (PDK).

At one time, the only web server development technique was CGI, or the Com-
mon Gateway Interface, and the programming language of choice for it was Perl.
Now there are a number of different techniques you can use for your web applica-
tion development and a number of programming languages. However, Perl is still
a popular programming language—not the least reason being that Perl is truly an
open source programming language that is not controlled by any one group or
any one company.

ActiveState is a company formed in 1997 to provide professional Perl develop-
ment tools. Among some of the products the company provides is ActivePerl, the
de facto standard for Perl for the Win32 environment.

In addition to ActivePerl, ActiveState also provides the Perl Dev Kit (PDK), a com-
mercial product that provides, among other things, the ability to invoke Perl mod-
ules and objects within ASP pages through the use of PerlCOM and the ability to
create completely independent COM/COM+ components written in Perl through
the use of PerlCtrl.

This chapter takes a look at PDK and demonstrates how to use both PerlCOM and
PerlCtrl. In addition, we’ll also look at how you can access the built-in ASP objects
from Perl ASP components and how to incorporate other technologies—specifi-
cally ADSI—into your Perl components.

,ch22.20934 Page 677 Thursday, February 22, 2001 1:36 PM

678 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This chapter assumes familiarity with the Perl programming lan-
guage. If you’re interested in working with Perl in an ASP environ-
ment and have never worked with the language, I suggest you get a
copy of the classic “camel book,” Programming Perl, by Larry Wall,
Tom Christiansen, and Randal Schwartz, published by O’Reilly. In
particular, review The Gory Details, the chapter on functions, and
Packages, Objects, and Model Classes, the chapter on objects.

Setting Up PDK
First, be aware that PDK works only within a Windows NT or Windows 2000 envi-
ronment—this product will not work with Windows 95 or 98. However, you can
create Perl ASP components using PerlCtrl that will work within the Win9x envi-
ronments.

You can download a copy of the Perl Dev Kit from ActiveState’s web site at http://
www.activestate.com. The software comes with a free, seven-day trial. At the end
of the trial period, you will have to purchase PDK to continue using it

Before installing PDK, you must download and install ActivePerl for the Win32
environment. ActivePerl is a free product, available for download at the ActiveState
web site. The use of ActivePerl was demonstrated in Chapter 6, ASP Interaction:
Scripting and ASP Components—the product was installed to access PerlScript, the
Perl-based Windows scripting language.

Installation of PDK is relatively simple: download the product, click on the installa-
tion program, and provide a location for the installation. However, to use the
product, you will need an activation key. You can get a seven-day free trial key
from ActiveState, or you can purchase the key directly. Note that when you
request the key, you’ll be asked whether you wish to license PDK by username or
by machine name. To use PDK within an ASP environment, you should choose
the machine name option—accessing PDK from ASP uses a different “user” (on my
machine, the ASP user is IUSR_FLAME, since my machine is named FLAME) than
the user licensed to develop with PDK.

PDK comes with several tools, such as a Perl debugger and PerlApp, a tool that
creates standalone Perl executables that aren’t dependent on Perl being installed
within the runtime environment. However, the two products we’ll look at in this
chapter are PerlCOM and PerlCtrl. First, though, we’ll create a basic Perl object.

,ch22.20934 Page 678 Thursday, February 22, 2001 1:36 PM

Building a Basic Perl Component 679

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you’ve installed PDK in Windows 2000, register PerlCOM with
Component Services, unless the version of PDK you’ve accessed was
built specifically for the Win2K environment.

Building a Basic Perl Component
Perl has long been known as a superior language when it comes to pattern match-
ing and working with regular expressions. If you haven’t worked with Perl (or
Unix) previously, regular expressions use a combination of wildcard and literal
characters in order to search for a specific pattern within a given context, such as a
string or even a file or group of files. The expression can be used to find occur-
rences of the pattern or to replace content matching the pattern with other con-
tent.

As a first Perl component, create a Perl object named prlcomp with one method,
replaceHTML, as shown in Example 22-1. This method has three parameters: a
string containing the name of an HTML file, a string with an HTML tag that the
module will search for in the file, and a string used as replacement for the HTML
tag being sought. Create the object in a Perl module file named prlcomp.pm.

The replaceHTML method tests whether the application can open the input file
and, if so, opens it. It also opens a matching output file with the same name as the
input file but with the substring “new” appended to the filename. Once both files
are opened, each line of the input file is accessed, any instances of the target
HTML tag are replaced, and the line is written to the newly created output file.

Because an HTML tag can be an opening or closing tag, the method performs two
pattern match and substitute operations on each string: one to replace the open-
ing tag and one to replace the closing tag, if any.

Example 22-1. Perl Object Containing Method to Replace Target HTML Tags

package prlcomp;

create object using anonymous hash
create object using anonymous hash
sub new {

 # get the name of the class, always passed as first paren
 my $class = shift;

 # get object reference
 my $self = {};

 # bless object and return

,ch22.20934 Page 679 Thursday, February 22, 2001 1:36 PM

680 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Since this component is a Perl object, the new method is necessary because it acts
as a constructor for the object. In the code, the substitution pattern matches all
instances of the target HTML tag (specified by the global or g modifier) regardless
of case (specified by the i modifier).

Once the Perl module is moved to the Perl library path (usually a path such as c:\
perl\lib, if Perl is installed on the C drive), it is accessible by Perl scripts and appli-
cations. To test the new Perl object in an ASP-less environment, you’ll create a Perl
file that generates an instance of the new object and calls its replaceHTML method,
passing in the name of a file that exists locally to the code being executed:

use prlcomp;

$tst = new prlcomp;

$tst->replaceHTML("test","H1","P");

 return bless $self, ref($class) || $class;
}

method to replace HTML tag
sub replaceHTML {
 local($class, $file, $target, $replace) = @_;

 # build old filename
 my $extfile = $file . ".htm";

 # if can open HTM file
 if (-r $extfile) {
 open (OLDFILE, $extfile);

 # open new htm file
 my $newfile = $file . "new.htm";
 if (open NEWFILE, ">$newfile") {

 # read through old file
 # substituting HTML tag
 while (<OLDFILE>) {
 s/<$target>/<$replace>/ig;
 s/<\/$target>/<\/$replace>/ig;
 printf NEWFILE;
 }
 close(NEWFILE);
 }
 close (OLDFILE);
 }
}

1;

Example 22-1. Perl Object Containing Method to Replace Target HTML Tags (continued)

,ch22.20934 Page 680 Thursday, February 22, 2001 1:36 PM

Building a Basic Perl Component 681

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Save the code in a file named prltest.pl. Create the test file named test.htm in the
same location as prltest.pl and give it the following content:

<HTML>
<HEAD>
<BODY>
<h1>test</H1>
h1 test /h1
<p>test</h1>
<H!>test</h1>
</BODY>
</HTML>

When the Perl program is executed within a Command window, as follows:

perl prltest.pl

any instances of an <H1> header in the target file are replaced by paragraph (<P>)
elements.

Now that you have created and tested the Perl component code, you’ll use this
new object with PerlCOM in an ASP environment, a topic we’ll discuss next.

All Perl modules (files ending in .pm) created in this chapter must be
moved to the Perl lib directory for the examples to run.

Accessing Perl Modules Using PerlCOM

PerlCOM is a COM-compliant object that actually exposes a Perl interpreter within
the environment in which the object is created. Once created, the PerlCOM object
can then evaluate Perl code, create Perl objects, and import Perl packages for use
within the application.

PerlCOM can be used in any environment that supports instantiation of ActiveX
components, and this includes the ASP environment. It comes with three meth-
ods—EvalScript, CreateObject, and UsePackage—that allow you to evaluate any
valid Perl script, create a Perl object, or import a Perl module, respectively. We’ll
demonstrate all three of these methods within an ASP page.

First, the EvalScript method takes whatever valid Perl script is passed to the
method and passes this on to the Perl interpreter that the PerlCOM object is wrap-
ping. The interpreter evaluates the script (executes it) and returns a string with any
errors that may occur.

To demonstrate the use of EvalScript, create an ASP page named asp2201.asp that
displays the classic software development message “Hello World!” as shown in

,ch22.20934 Page 681 Thursday, February 22, 2001 1:36 PM

682 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 22-2. The page uses VBScript as the scripting language, primarily to dem-
onstrate that you can use PerlCOM within a non-Perl language environment.

The ASP script in Example 22-2, asp2201.asp, creates an instance of PerlCOM and
a string variable containing the text “<H1>Hello Wordl!</H1>”. (Notice that the
word world is misspelled.) The ASP page then uses Perl’s pattern-matching capa-
bility to replace the incorrect spelling of world with the correct one by using Eval-
Script and the Perl substitute operator (s). The results of this substitution are then
assigned to a variable and displayed in the web page.

All PerlScript-based variable assignment processed through Eval-
Script is attached to the PerlCOM object as a property. This property
can then be accessed directly by the ASP script.

Depending on the version of PDK you’re using, you might have to
install perlcom.dll into a Component Services application in order for
this component to work within the Windows 2000 environment—
registering it with regsvr32 won’t be enough.

In addition to using EvalScript to evaluate Perl script, you can also import an exist-
ing Perl package into the ASP page and then use the package’s functions and

Example 22-2. Calling EvalScript on PerlCOM Object to Apply Perl Substitution to a String

<HTML>
<HEAD>
<BODY>
<%
 ' create PerlCOM object
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 ' use EvalScript to substitute within a string
 Dim strng
 strng = "<H1>Hello Wordl!</H1>"

 objPerlCOM.EvalScript "$result = '" & strng & "';"
 objPerlCOM.EvalScript "$result =~ s/Wordl/World/g;"
 strng = objPerlCom.result

 ' write out string
 Response.Write strng
%>
</BODY>
</HTML>

,ch22.20934 Page 682 Thursday, February 22, 2001 1:36 PM

Building a Basic Perl Component 683

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

variables directly from script. This provides access to some very powerful Perl
code without necessarily having to be very familiar with Perl.

For instance, VBScript has access to some mathematical functions such as Log for
returning the logarithm of a number, Sqr to return a square root, and Sin to return
the sine of a number. However, the language does not have access to built-in
functions for all trigonometric functions such as finding the arcus (arc) tangent of a
number. There is, however, a Perl package called Math::Trig that does provide a
number of trigonometric functions.

To import Math::Trig for use in an ASP page, you can use the UsePackage method
on PerlCOM to import and assign the module to a local variable and then call
functions on the variable. To demonstrate this, create an ASP page named
asp2202.asp, as shown in Example 22-3. The ASP script creates an instance of
PerlCOM and then uses UsePackage to assign the Math::Trig module to a local
variable. It then calls several of the trigonometric functions from the module and
outputs their results to the web page.

The results of accessing this ASP page are shown in Figure 22-1.

Returning to the original Perl object created in Example 22-1, an instance of this
object can also be created within an ASP page using PerlCOM and the PerlCOM
CreateObject method. To see how to do this, create a new ASP page, asp2203.asp,
as shown in Example 22-4. The script creates an instance of PerlCOM and calls
CreateObject to create an instance of the prlcomp object, then invokes the object’s

Example 22-3. Using the PerlCOM Method UsePackage to Import the Math::Trig Perl Module
into an ASP Page

<HTML>
<HEAD>
<BODY>
<%
 ' create PerlCOM object
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 ' import in the Math::Trig package
 Dim mathObject
 Set mathObject = objPerlCOM.UsePackage("Math::Trig")

 ' write out values
 Response.Write("value of PI is " & mathObject.pi & "<P>")
 Response.Write("tan of 0.9 is " & mathObject.tan(0.9) & "<P>")
 Response.Write("sec of 0.9 is " & mathObject.sec(0.9) & "<P>")
 Response.Write("arc tan of 0.1 is " & mathObject.atan(0.1))
%>
</BODY>
</HTML>

,ch22.20934 Page 683 Thursday, February 22, 2001 1:36 PM

684 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

replaceHTML method. A complete path to the HTML file is passed as the first
parameter.

Try this yourself after modifying the path to fit your environment. After accessing
the ASP page, a new HTML file, testnew.htm, is created in the same location as
test.htm.

Make sure to set the file I/O permissions to allow for read/write of
the directory where the test file is being accessed.

Figure 22-1. Results of accessing and using several Math::Trig functions within an ASP page

Example 22-4. Creating an Instance of prlcomp in an ASP Page Using PerlCOM and the
CreateObject Method

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script.1")

 Response.Write "<h3>Replacing H1 with P in test file</h3>"

 Set tstPerl = objPerlCOM.CreateObject("prlcomp", "new")
 tstPerl.replaceHTML "c:\testweb\test","H1","P"
%>

</BODY>
</HTML>

,ch22.20934 Page 684 Thursday, February 22, 2001 1:36 PM

Building a Basic Perl Component 685

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Instead of providing a specific directory location for the input file, you could use
the ASP built-in Server object and its MapPath method, which maps the physical
location of the ASP page to the file:

 tstPerl.replaceHTML Server.MapPath("test"), "H1", "P"

One limitation of PerlCOM, as well as of objects created with Perl-
Ctrl, is that you can’t pass parameters by reference, only by value.
Note, though, that ActiveState is planning to address this limitation in
a future release of PDK. Also note that the version of PDK used for
the examples in this chapter is PDK 1.2.4.

As has been demonstrated, PerlCOM is a very powerful object for use within ASP
applications, but what if you don’t want to provide a copy of your Perl code or
expose a Perl interpreter in your code? After all, one reason to use ASP compo-
nents is to hide the code used for the component, regardless of the language used.

You don’t have to provide a Perl object or module to deliver ASP components
written in Perl, nor do you have to use PerlCOM to create a Perl interpreter in
your ASP script. Instead you can use the PerlCtrl application to create standalone
COM automation components written in Perl.

Building a Perl DLL Using PerlCtrl

PerlCtrl is a utility that provides a COM wrapper for Perl code, allowing the code
then to be accessed as you would a COM object built in any other language.

To create a Perl component using PerlCtrl, you’ll use the PerlCtrl utility to generate
a template, including type library information, to which you then add the compo-
nent methods and properties. To demonstrate how to use PerlCtrl, you’ll duplicate
the functionality used to create prlcomp.pm within a new Perl component.

First, create a template named asp2201.ctrl using a command line (in the Com-
mand window) similar to the following:

perlctrl.pl -t > asp2201.ctrl

The generated template contains example object, method, and property informa-
tion that is then replaced with information about the real component. The tem-
plate also contains the following three lines that must not be edited or altered in
any way, or the component can’t be compiled:

TypeLibGUID => '{95A2E584-47B5-4E45-9D11-E97CC6933B49}',
 # do NOT edit this line
ControlGUID => '{635C2E4C-0797-4AD0-B049-717B872EF954}',
 # do NOT edit this line either

,ch22.20934 Page 685 Thursday, February 22, 2001 1:36 PM

686 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

DispInterfaceIID=> '{720C7557-3825-4ED1-A465-2F5ADDDE20F9}',
 # or this one

However, the rest of the generated template information can be altered so that it
resembles the source code shown in Example 22-5. Add the Package definition
and the code for the component method before the =POD line. Additionally,
change the package name to asp2201, the Control name to “Test of Perl Automa-
tion,” and the ProgId to asp2201.test. Also remove all of the generated proper-
ties and the second method from the template. Finally, rename the first method to
replaceHTML, and change the method parameters to reflect the component
method—three parameters of type VT_BSTR, returning a value of VT_BSTR.

Example 22-5. The Completed Template File for the tstperl Component

package asp2201;

method to replace HTML tag
sub replaceHTML {
 local($file, $target, $replace) = @_;

 # build old filename
 my $extfile = $file . ".htm";

 #
 my $strng = "No errors occurred";

 # if can open HTM file
 if (-r $extfile) {
 open (OLDFILE, $extfile);

 # open new htm file
 my $newfile = $file . "new.htm";
 if (open NEWFILE, ">$newfile") {

 # read through old file
 # substituting HTML tag
 while (<OLDFILE>) {
 s/<$target>/<$replace>/ig;
 s/<\/$target>/<\/$replace>/ig;
 printf NEWFILE;
 }
 close(NEWFILE);
 }
 else {
 $strng = "Could not open output file";
 }
 close (OLDFILE);
 }
 else {
 $strng = "Could not open input file";
 }

 return $strng;

,ch22.20934 Page 686 Thursday, February 22, 2001 1:36 PM

Building a Basic Perl Component 687

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The component code is different from the original Perl module. First, in the
replaceHTML method, no reference to $class or $self is made when accessing
the method arguments, since the component is not a Perl object and the class
name is not passed as the first parameter. An additional change is that the method
returns a string containing information about whether the component method was
successful or failed because one of the input or output files could not be opened.

Once the PerlCtrl template for the new COM-based Perl component is complete,
generate a COM-wrapper DLL for the component by again calling PerlCtrl and
passing it the control filename:

perlctrl.pl asp2201.ctrl

PerlCtrl checks the syntax of the new component and, if no problems occur, cre-
ates a DLL with the same name as the control file, in this case asp2201.dll.

The newly generated component can be registered like any other ActiveX compo-
nent, using either regsvr32 or preferably registering the component using the Win-
dows 2000 Component Services and adding the component to an applicable
package.

}

=POD
=BEGIN PerlCtrl
 %TypeLib = (

PackageName => 'asp2201',
TypeLibGUID => '{1A1EA5C1-ABCE-4198-8D99-2F3C82001D26}',
ControlGUID => '{099A259F-817A-414D-9BDA-6955218AAB0E}',
DispInterfaceIID=> '{52030242-08E9-40FB-A6DB-8998EBB5F69E}',

 ControlName => 'Test of Perl Automation',
 ControlVer => 1,
 ProgID => 'asp2201.test',
 DefaultMethod => 'replaceHTML',
 Methods => {
 'replaceHTML' => {
 RetType => VT_BSTR,
 TotalParams => 3,
 NumOptionalParams => 0,
 ParamList =>['file' => VT_BSTR,
 'target' => VT_BSTR,
 'replace' => VT_BSTR]
 }
 }, # end of 'Methods'
 Properties => {

 }, # end of 'Properties'
); # end of %TypeLib
=END PerlCtrl
=cut

Example 22-5. The Completed Template File for the tstperl Component (continued)

,ch22.20934 Page 687 Thursday, February 22, 2001 1:36 PM

688 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you’ve registered the component, access it in an ASP page in the same way
that you would instantiate and access any other component, using the built-in ASP
Server object. Example 22-6 contains an ASP page, asp2204.asp, which instanti-
ates the new component and calls replaceHTML, passing in a filename, target, and
replacement HTML tags.

If no error occurs, a message with “No errors occurred” is output to the web page,
and the new HTML file with replaced HTML tags is created.

PerlCtrl has several flags that impact the utility’s output. You’ve seen the -t option
to generate a template file, but other options include the following:

-d
Dependent option, generates a component that is dependent on the Perl
runtime

-f
Freestanding option, generates a component that does not require a Perl
installation

-rb
Builds a DCOM registry binary

-a
Provides a list of modules to be added (separated by semicolons)

-c
Deletes runtime temp files on exit

-I
Adds a list of name-value pairs, with names from the following list:

comments
companyname

Example 22-6. Creating an Instance of the Perl Component and Calling Its One Method

<HTML>
<HEAD>
<BODY>
<%

Dim tstPerl
Set tstPerl = Server.CreateObject("tstperl.test")
Dim str
Dim filename
filename = Server.mappath("test")
str = tstPerl.replaceHTML(filename, "H1", "P")
Response.Write str
%>

</BODY>
</HTML>

,ch22.20934 Page 688 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 689

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

filedescription
filenumber
fileversion
internalname
legalcopyright
legaltrademarks
originalfilename
productname
productnumber
productversion

By compiling the component DLL with the -f switch, you’re creating a compo-
nent that can be used on any server regardless of whether Perl is installed on the
machine. Because all of the Perl functionality to run the component is included,
the resulting DLL is much larger than one that is compiled without any switches or
with the -d switch (the default). For instance, asp2201.dll compiled with -d ends
up 15KB in size; when compiled with -f, the component ends up 1,107KB.

All the Perl components compiled as DLLs in this chapter are com-
piled with the -f flag, so they are usable regardless of whether Perl
is installed. However, all the components used with PerlCOM or as
Perl scripts do require an Active Perl installation in addition to PDK.

Accessing the ASP Built-in Objects
Most ASP components provide business processing, including data access. Because
these components do not normally access any ASP-specific functionality (includ-
ing the ASP built-in objects), they can be used within other environments. How-
ever, there can be times when you’ll want to access the primary built-in ASP
objects—Server, Response, Request, Session, and Application—within your com-
ponent code. This holds true if the component is created using Visual Basic or
Visual C++. This also holds true if you build your ASP components with Perl.

To access the built-in ASP objects from Perl, you need to use the Win32::OLE
package that is included with ActivePerl. This package can be used to create an
instance of the MTxAS.AppServer object, which provides access to the GetObject-
Context method when used in an environment that doesn’t provide built-in sup-
port for the GetObjectContext method.

You don’t need to create an instance of MTxAS.AppServer in VB or
Visual C++, since both of these tools provide access to GetObject-
Context. However, you do use a similar technique in Delphi in order
to access ObjectContext.

,ch22.20934 Page 689 Thursday, February 22, 2001 1:36 PM

690 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

An instance of ObjectContext is returned from calling GetObjectContext, and this
object is then used to instantiate each of the ASP objects. We’ll look at how to use
each of the ASP built-in objects in the following sections.

Be aware that the ObjectContext object returned from calling Get-
ObjectContext within the ASP component does not participate in any
transaction that the ASP page is participating in, and calling SetAbort
or SetComplete on this object won’t impact the transaction in any
way.

The Application Object

The Application object has information that is available to all pages that partici-
pate within the specific ASP application. The object is instantiated when the ASP
application is started and persists until the ASP application is terminated or the last
session attached to the application is terminated.

Information can be stored in the Application object in two different collections: the
StaticObjects collection, with values set in the global.asa file, and the Contents col-
lection, with values set at runtime. The Application object also has two methods:
Lock, to lock the object while making a change, and UnLock, to unlock the Appli-
cation object. Additionally, the Contents collection of the Application object also
has two methods: Remove, to remove an item from the collection, and RemoveAll,
to clear the Contents collection.

To test setting and getting values from the Application object’s Contents collec-
tion, create a new Perl file, perlasp.pm, containing two methods: setApp, to set a
value into the Contents collection, and getApp, to retrieve the value and return it
to the ASP page. The component’s source code is shown in Example 22-7.

All of the examples in this and the next sections covering the ASP
built-in objects use the same Perl module, perlasp.pm. We’ll be add-
ing to this module as we advance through the sections.

PerlCOM is not as efficient as PerlCtrl for creating a component, but
it is much simpler to use and doesn’t require unloading from mem-
ory through the Component Services each time a change must be
made to the code.

When developing your own Perl components, you might develop
them using PerlCOM and then port the code over into a COM com-
ponent using PerlCtrl once the Perl code has been tested.

,ch22.20934 Page 690 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 691

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The setApp method creates a reference to ObjectContext first and calls the Set-
Property method on the Application object’s collection to set the application value.
In getApp, the code references the Contents collection for the value set in the
other method.

To explain this code a little more fully, one difference between working with the
ASP built-in objects from Perl and working with the same objects using a tool/lan-
guage such as Visual Basic or VBScript is that with VB and VBScript, you have
access to a shorthand technique to set the Contents collection:

Application.Contents("name") = "value"

Example 22-7. Accessing the Application Object Within a Perl Module Using Win32::OLE and
the MTxAS.AppServer Library

package perlasp;

create object using anonymous hash
sub new {

 # get the name of the class
 my $class = shift;

 # get object reference
 my $self = {};

 # bless object and return
 return bless $self, ref($class) || $class;
}

method to set Application object
sub setApp {
 local($self, $name, $value) = @_;

 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $app = $obj->Item('Application');
 $app->Contents->SetProperty('Item',$name,$value);
}

sub getApp {
 local($self, $name) = @_;
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $app = $obj->Item('Application');
 $value = $app->Contents($name);

 return $value;
 }

1;

,ch22.20934 Page 691 Thursday, February 22, 2001 1:36 PM

692 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

However, this technique is not available within Perl. Instead you have to set the
collection property using SetProperty, as shown in the example, or you have to
use hash dereferencing (demonstrated in the next section on the Session object).

Test this example using PerlCOM to create the object. Example 22-8 shows an ASP
page, asp2205.asp, used to test the perlasp.pm module’s two methods. The first
method, setApp, is called to set the Application Contents value. The value is then
retrieved directly in the script and displayed. Finally, the second method, getApp,
is called and the returned string is displayed. Before trying out the ASP test page
from your web server, make sure that the perlasp.pm module is located in the Perl
library path. When the page is accessed, the name passed to the first method
should be displayed twice.

You can’t set a value directly into the Application object’s StaticObjects collection
at runtime. Values can be set in this collection only through the global.asa file; at
runtime, the collection is read-only. You can retrieve values from the collection
using the same technique shown in Example 22-8, but referencing the Static-
Objects collection instead:

 $value = $app->StaticObjects($name);

The Application object isn’t the only ASP object that has a StaticObjects and Con-
tents collection. The Session object also has these collections, and we’ll take a look
at this object next.

Example 22-8. Using PerlCOM to Access perlasp, Calling Its Two Methods

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")
 tstPerl.setApp "name","Shelley"

 Dim strng
 strng = Application.Contents("name")
 Response.Write strng

 strng = tstPerl.getApp("name")
 Response.Write strng
%>

</BODY>
</HTML>

,ch22.20934 Page 692 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 693

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 22-8 doesn’t use the Lock or UnLock method, since I have
found that using these methods within a Perl component causes the
ASP application to freeze up. The methods do work within
PerlScript, but I don’t recommend their use within Perl components,
at least with PDK 1.2.4.

The Session Object

The Session object persists for the life of a particular user session. It begins when a
person first accesses the ASP application and lasts until the session is terminated,
the person logs off, or some other event occurs to end it.

The Session object has the same two collections as the Application object: Static-
Objects, for values set in the global.asa file, and Contents, for values set at run-
time. Unlike the Application object, the Session object does not have Lock and
UnLock methods—only one person can generate a change to this object at a time,
so locks aren’t necessary—but it does have four properties and one other method.

The Session properties are Timeout, to change the script timeout for the session;
SessionID, a unique identifier generated for the session; LCID; and CodePage. The
latter two properties have to do with internationalization: the LCID property holds
the locale identifier, and CodePage holds the code determining the keyboard
mapping.

In addition to the properties, Session also has a method, Abandon, used to termi-
nate the Session and destroy the Session object and all its contents. Additionally,
the Session object’s Contents collection has the same Remove and RemoveAll
methods as the Application object’s Contents collection.

I just mentioned that Session has two internationalization properties, LCID and
CodePage. The LCID property references an identifier of a locale (a locale is used
to determine, among other things, how currency is displayed). The CodePage is
also a code value, this one used to determine keyboard mappings. For instance, a
CodePage value of 932 represents Japanese Kanji, and the characters associated
with keyboard keys reflect the punctuation and characters for this language rather
than a codepage value of 1252, which represents American English.

To display both of these internationalization properties for the current ASP envi-
ronment, create a new method in the existing perlasp.pm Perl module. The new
method is called getInternational, and the function retrieves the two international-
ization code values from the Session object, embeds them in a string, and returns
the string to the calling ASP page. Example 22-9 shows the code for this new
method.

,ch22.20934 Page 693 Thursday, February 22, 2001 1:36 PM

694 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create the ASP page shown in Example 22-10 to test this new method, and name
it asp2206.asp. This page creates an instance of PerlCOM and instantiates the
perlasp object. Once instantiated, the getInternational method is called and the
resulting string is displayed.

The result of running this ASP page in my environment is a web page with the fol-
lowing line:

LCID is 2048 and CodePage is 1252

Example 22-9. Get and Return International Locale Identifier and CodePage Values from
Session

method to get internationalization codes
from Session object
sub getInternational {

 # get Session
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $session = $obj->Item('Session');

 # get codes
 $locale = $session->LCID;
 $code = $session->CodePage;

 # add to string and return
 $strng = "LCID is $locale and CodePage is $code";

 return $strng;
 }

Example 22-10. ASP Page to Test the New perlasp Object Method, getInternational

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 Dim strng
 strng = tstPerl.getInternational()
 Response.Write strng
%>

</BODY>
</HTML>

,ch22.20934 Page 694 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 695

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The LCID of 2048 is the identifier for the English language, and the CodePage is
1252, for an English language keyboard mapping. The results when you run the
example should reflect your own environment.

Earlier, I mentioned that the Session object has the same two collections as the
Application object. I also mentioned that there are two methods associated with
the Contents collection. These methods, Remove and RemoveAll, allow the ASP
developer to clear out one or all of the Session object’s Contents collection with-
out having to destroy the Session object—an effective way to “undo” any per-
sisted information.

To demonstrate using Remove and RemoveAll, add three new methods to perlasp.
pm: setContents, removeSessItem, and removeAllSessItems. Their source code is
shown in Example 22-11. The first method, setContents, adds three new items to
the Session object’s Contents collection. The second method, removeSessItem,
removes the item identified with a name passed as a parameter to the method.
The third method, removeAllSessItems, clears the Contents collection by calling
the Session object’s Contents collection’s RemoveAll method.

Example 22-11. Three Methods to Set and Remove Session Contents Items

set Contents collection items
sub setContents {
 local($self, $item1, $value1, $item2, $value2, $item3, $value3) = @_;

 # get Session object
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $session = $obj->Item('Session');

 # set contents
 $session->Contents->SetProperty('Item',$item1,$value1);
 $session->Contents->SetProperty('Item',$item2,$value2);

 # you can also use hash dereference to set item
 $session->Contents->{$item3} = $value3;
 }

clear item from Contents
sub removeSessItem {
 local($self, $item) = @_;

 # get Session object
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $session = $obj->Item('Session');

 $session->Contents->Remove($item);
 }

,ch22.20934 Page 695 Thursday, February 22, 2001 1:36 PM

696 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice from the code that a different technique is used in setContents to set one of
the Contents items. The third Contents item is set using Perl hash dereferencing.
The two techniques to set properties on an ASP object—using SetProperty or hash
dereferencing—work equally well and are used interchangeably in the rest of the
examples for this chapter.

To test these new perlasp.pm methods, create a new ASP test page, asp2207.asp,
as shown in Example 22-12. The ASP script calls setContents with three different
name-value pairs. Once the Contents items are set, the first is retrieved within the
ASP page and displayed to show that the values have, indeed, been set. Next, the
removeSessItem method is called to remove the first item from the collection.
Once this method finishes, the first item is again retrieved and its value is dis-
played. Unlike the first time the value is accessed, this time no value for the item
is found and no value is displayed, since the Contents item has been cleared.
Finally, the third method, removeAllSessItems, is called to clear all of the Contents
collection. In the ASP page, the second item of the collection is accessed and its
value is displayed. However, since the contents collection has been cleared, once
again no value is found, and no value is displayed.

clear all Session Contents items
sub removeAllSessItems {

 # get Session object
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $session = $obj->Item('Session');

 $session->Contents->RemoveAll();
 }

Example 22-12. Calling the Three perlasp.pm Methods to Set and Clear Contents Items

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 ' set contents items
 tstPerl.setContents "item1", 100, "item2", "test", "item3", 33

 ' get first item from contents and print
 Dim val
 val = Session.Contents("item1")

Example 22-11. Three Methods to Set and Remove Session Contents Items (continued)

,ch22.20934 Page 696 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 697

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that no error occurs when the nonexistent Contents items are accessed. The
only result is that no values are found, and this is reflected in the string—no value
is printed out because the string’s value is set to null (nothing found).

Up to now, all reporting to the browser has occurred in the ASP pages using the
built-in ASP Response object. This object can also be accessed in Perl compo-
nents, demonstrated next.

The Response Object

The Response object handles all communication from the web server back to the
client. This includes, as we’ve seen in previous examples, sending output to the
client browser using the Response object’s Write method.

The Response object also has one collection, the Cookies collection, used to set
web cookies. The Cookies collection is really a set of objects with the same prop-
erties: the cookie name and value, the cookie expiration date, the domain, the
lowest-level path, and security. To set cookies using the Response object’s Cook-
ies collection, you need, at a minimum, to provide the cookie name and value—all
other cookie properties can be set by default.

To demonstrate creating a cookie, add a new method to perlasp.pm named set-
Cookies; its source code is shown in Example 22-13. The method has three param-
eters: the cookie name, value, and expiration date. Notice that only the cookie
expiration property, Expires, is set in addition to the cookie name and value. The
other properties, Path and Domain, are set to their default values: Path is set to a
forward slash (/), and domain is set to the domain from which the cookie is
accessed. If the expiration date had not been provided in the Perl method, the
cookie would have expired when the browser was closed.

 Response.Write ("item1 value is " & val & "<p>")

 ' clear item and try again to retrieve
 tstPerl.removeSessItem "item1"
 val = Session.Contents("item1")
 Response.Write ("item1 value is " & val & "<p>")

 ' clear all items, try for second item
 tstPerl.removeAllSessItems
 val = Session.Contents("item2")
 Response.Write ("item2 value is " & val & "<p>")

%>

</BODY>
</HTML>

Example 22-12. Calling the Three perlasp.pm Methods to Set and Clear Contents Items

,ch22.20934 Page 697 Thursday, February 22, 2001 1:36 PM

698 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new method, create a new test page, asp2208.asp, as shown in
Example 22-14. This ASP page instantiates the perlasp.pm component using Perl-
COM and then calls the setCookies method, passing in the cookie name, value,
and an expiration of March 1, 2001.

To visually see the cookie being set, you can modify your browser’s properties to
prompt you when setting a cookie. This way, when the cookie is set by the set-
Cookies method, you’ll get a message to verify whether the cookie should be set,
as well as be able to see the cookie value.

In addition to working with the Response object’s Cookies collection, the object
also has several properties:

Buffer
Determines whether web contents are buffered and sent back to the browser
all at once or sent back as they are generated

CacheControl
Determines whether proxy servers can cache generated output

Example 22-13. Setting a Web Cookie Using the Response Object

setting web cookies
sub setCookies {
 local($self, $cookie, $value, $expires) = @_;

 # get Response object
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $response = $obj->Item('Response');

 # set cookie
 $response->Cookies->SetProperty('Item', $cookie, $value);
 $response->Cookies($cookie)->{Expires} = $expires;
}

Example 22-14. Calling setCookies Method to Set a New Web Cookie

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 tstPerl.setCookies "cookie1", "hello", "March 1, 2001"
%>

</BODY>
</HTML>

,ch22.20934 Page 698 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 699

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ContentType
Sets the HTTP type for the contents being returned

Expires
Determines how long a page is cached on a browser

ExpiresAbsolute
The same as the Expires property, but allows the developer to specify an
exact time rather than a relative number of minutes

IsClientConnected
Tests whether the client browser is still connected with the server

Pics
Indicates the Pics content rating

Status
Determines the status of the page request

Several of these properties make modifications to the HTML header returned with
the page. For instance, the Status property can be set to any valid HTTP request
status, such as 404 File Not Found or 401 Forbidden by setting the Status property
using syntax similar to the following:

 $response->{Status} = "401 Unauthorized";

Setting the Status to the given value within a Perl component will generate a mes-
sage about the login being forbidden. Setting the status within the ASP page can
generate a login page, though canceling the dialog still allows a person to view
the page (the status is changed, but you need additional security to actually pre-
vent people from accessing pages).

The Response object also has several methods and one collection in addition to its
properties. You’ve seen Write demonstrated, but there are also the following
methods:

AddHeader
Adds an HTML header name-value pair to the returning content

AppendToLog
Writes a string to the web server log

BinaryWrite
Writes content in a raw state, without any character conversion

Clear
Clears any buffered HTML output

End
Stops processing the ASP file and returns any buffered content immediately

,ch22.20934 Page 699 Thursday, February 22, 2001 1:36 PM

700 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Flush
Sends buffered content immediately but continues processing the ASP file

Redirect
Redirects the client browser to a new URL

Using the Redirect method actually generates an HTTP status of 302 Temporary
URL Relocation as it redirects the browser to the new URL. Instead of using Redi-
rect—which loses state information during the redirection and requires a round
trip to the client browser and back—you might want to use the Server object’s
Transfer method, discussed later in the section “The Server Object.”

Several of the methods are used only when the Buffer property is set to True to
determine when and what content is actually returned to the browser. Calling the
Clear method will clear the existing buffered content before it’s sent back to the
browser, but processing the ASP page continues. On the other hand, the End
method returns the buffered contents immediately, but no other ASP processing is
performed. Flush will also return the content immediately, as well as turn off buff-
ering, but as with Clear, it continues processing the ASP page.

To demonstrate the use of Buffer with the Clear and End methods, add a new
method to perlasp.pm, as shown in Example 22-15. The method, named test-
Buffer, generates output using Response.Write method calls. However, the Clear
method is called after three Write calls, and the End method is called last.

Example 22-15. Using Clear and End to Process ASP Buffered Content

working with buffered output
sub testBuffer {

 # get Response object
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $response = $obj->Item('Response');

 # start generating output
 $response->Write("<h1>First header</H1>");
 $response->Write("<h1>Second header</H1>");
 $response->Write("<h1>Third header</H1>");

 # now clear the buffer
 $response->Clear;

 # start generating output, again
 $response->Write("<h1>Fourth header</H1>");
 $response->Write("<h1>Fifth header</H1>");

 # now end processing
 $response->End;

 }

,ch22.20934 Page 700 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 701

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Since ASP buffering is turned on by default for ASP applications in IIS 5.0, no con-
tent is returned to the client until the page is finished processing—unless Clear,
End, or Flush is called. The testBuffer method calls the Clear method after the first
three Response.Write statements. Doing this clears the existing buffer, which
means that the headers labeled first, second, and third header won’t print. The
fourth and fifth headers print even though the End method is called after they are
generated, because End stops ASP page script processing and flushes but doesn’t
clear the buffer.

Create an ASP page that calls testBuffer, and name it asp2209.asp ; the page is
shown in Example 22-16. The page also calls the Response.Write method to cre-
ate a sixth header after calling testBuffer. However, since the last statement in test-
Buffer is a call to the Response object’s End method, any further ASP script
processing is ended, and whatever content is in the buffer is returned at that point.
In the case of the example method and ASP page, the only headers that end up
being returned to the browser are the fourth and fifth headers—the headers writ-
ten after the Clear method and before the End method has terminated script pro-
cessing.

The Response object is used to handle communication from the server to the
browser, but another built-in ASP object, the Request object, handles all communi-
cation from the client to the server, and this object is discussed next.

The Request Object

The Request object encapsulates any communication from the client to the server.
In addition, information about the environment is contained in one of this object’s
collections.

Example 22-16. Testing buffering with the testBuffer method

<% Response.Buffer = True %>
<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 tstPerl.testBuffer
 Response.Write "<h1>Sixth Header</H1>"
%>

</BODY>
</HTML>

,ch22.20934 Page 701 Thursday, February 22, 2001 1:36 PM

702 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Request object has only one method, BinaryRead, used to get information sent
from the client as raw data. In addition, the object also has only one property,
TotalBytes, which provides the byte size for the raw data. In this section we’ll
focus on the Request object’s collections.

BinaryRead is used to process form data as a SafeArray. An example
of using this method for this technique can be found in Chapter 8,
Creating ASP/ADO Components.

The Request object has more collections than any other ASP built-in object. One
collection is Cookies, but unlike the Response object’s Cookies collection, the
Request object’s Cookies collection allows the ASP developer to read the cookies
that are sent with the HTTP request. Another collection is ClientCertificate, which
allows fields from a requested client certificate to be retrieved.

Of particular interest in the Request object collections are the QueryString and
Form collections. The QueryString collection contains name-value pairs attached to
the URL of the processing page or posted using the HTML GET form method. The
following is an example of attaching name-value pairs to an URL:

...

The HTML GET method is the default posting method for HTML forms and results
in the form elements being appended to the URL targeted by the form. You’ve
most likely seen this used anytime you submit a form and the URL has an unusu-
ally long string with pairs of values similar to those shown in the preceding code.

The Form collection contains name-value pairs posted from an HTML form using
the POST method. You must specify POST as a method for values to be placed in
the Form collection rather than the QueryString collection:

<form ACTION="testreq.asp" METHOD="POST">

Regardless of which collection contains the name-value pairs, the same tech-
niques can be used to get information. To demonstrate this, create an HTML page
containing an HTML form with three elements: a text element for a first name, a
test element for a last name, and a submit button. Example 22-17 shows this page,
contained in a file named asp2210.asp.

Example 22-17. Web Page with an HTML Form

<HTML>
<BODY>
<form ACTION="asp2212.asp" METHOD="POST">
<table width=60% align=center cellpadding=10
 style="border-width: 5px; border-style: groove;
 border-color: #990000">

,ch22.20934 Page 702 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 703

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice that the ASP page called to process the form contents is called asp2212.asp.
You’ll create this page in a little bit, but first you’ll want to create the Perl method
to handle the form contents.

In perlasp.pm, create a new method named getFormValues that creates an instance
of both the Request and the Response objects. Its source code is shown in
Example 22-18. The form elements are pulled from the Form collection, but the
actual values are retrieved from the Form collection item associated with each
form element. Once the first and last names have been retrieved from the collec-
tion, they are concatenated into a message and output using the Response object.

If you’ve seen ASP with VBScript or Visual Basic, then you might be used to see-
ing a collection item accessed directly using syntax similar to the following:

val = Request.Form('value')

<tr>
<td>First Name:</td>
<td>
<input type="text" name="firstname" >
</td></tr>
<tr>
<td>Last Name:</td>
<td>
<input type="text" name="lastname" >
</td></tr>
<tr><td colspan=2 align=center>
<input type="submit" value="submit">
</td></tr></table>
</FORM>
</BODY>
</HTML>

Example 22-18. Retrieve Form Elements Using the Request Object

process form values for POSTed form
sub getFormValues {

 # get Response and Request objects
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $response = $obj->Item('Response');
 $request = $obj->Item('Request');

 # get the two form values
 $firstname = $request->Form('firstname')->item;
 $lastname = $request->Form('lastname')->item;

 # output friendly message back to client
 $response->Write("<h1>Hello $firstname $lastname!</h1>");
}

Example 22-17. Web Page with an HTML Form (continued)

,ch22.20934 Page 703 Thursday, February 22, 2001 1:36 PM

704 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

However, with Perl, you must dereference the collection item in order to get the
item’s value, and that’s where the second arrow (the dereference operator) comes
from in the example.

You would use the same syntax to access a cookie value from the
Cookies collection.

To tie the two components, the form page and the Perl ASP component method,
together, create one more ASP test page, asp2211.asp, that invokes the new com-
ponent method, as shown in Example 22-19.

Open the form page, asp2210.asp, in your browser, fill in the fields, and submit
the form. The resulting page should show the words:

Hello (first name) (last name)!

based on whatever first name and last name you provide.

The last Request object collection we’ll look at is the ServerVariables collection.
This collection contains a lot of information about the client, the server, and the
connection between the two. If you’ve worked with Perl and CGI in the past, the
ServerVariables collection is similar to %ENV%.

To demonstrate the Request object’s ServerVariables collection, create a new
method in perlasp.pm named prntServerVariables, as shown in Example 22-20. The
method accesses the ServerVariables collection and lists each item and its associ-
ated value. To assist you with this process, the method uses the Win32::OLE

Example 22-19. ASP Page to Call Method to Process Form Contents

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 ' get form values
 tstPerl.getFormValues
%>

</BODY>
</HTML>

,ch22.20934 Page 704 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 705

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

module’s enum method to pull the collection into a Perl list, which you can then
process using the Perl foreach statement. The individual server variables are out-
put to an HTML table, with the server variable name in one column and the value
in the other. The Response object is used to output both the HTML table and the
server variable values.

This is an example of using the ActivePerl Win32 package’s classes in order to
simplify processing of COM/COM+ objects. Other objects of interest in this pack-
age are the following:

Win32::OLE::Variant
Creates variant objects to pass to other objects or to return from their methods

Win32::OLE::Const
Extracts type library constant value definitions (this is demonstrated later in the
ADO section)

Create the ASP page to run this example and name it asp2212.asp ; the page is
shown in Example 22-21. The script again uses PerlCOM to create an instance of
perlasp, then calls the new prntServerVariables method. A portion of the page
generated from running the asp2212.asp page is shown in Figure 22-2.

Example 22-20. Access ServerVariables from Request, Printing Out with Assist from Win32::
OLE::Enum

printing out each of the ServerVariables items
sub prntServerVariables {

 # get Request and Response
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $response = $obj->Item('Response');
 $request = $obj->Item('Request');

 # access ServerVariables collection as a list
 @lst = Win32::OLE::Enum->All($request->ServerVariables);

 # iterate through each list item, printing out
 # item name and its value
 $response->Write("<table border=2 cellspacing=0 cellpadding=10>");
 foreach my $item(@lst) {

 $response->Write("<tr>");
 $response->Write("<td valign=top>$item</td><td>" .
 $request->ServerVariables($item)->item . "</td>");
 $response->Write("</tr>");
 }
 $response->Write("</table>");
}

,ch22.20934 Page 705 Thursday, February 22, 2001 1:36 PM

706 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You’ve been through a lot of code examples and are probably reeling about now.
However, we have only one object left to examine, the Server object, and then
we’ll be able to leave the world of the built-in ASP objects and take a quick look
at data.

The Server Object

The Server object is the only ASP built-in object that doesn’t have a collection.
Instead, it has one property, ScriptTimeout, and several methods. The Script-
Timeout property is used to adjust how long an ASP script will process before it

Example 22-21. ASP Page That Calls prntServerVariables to Output All Server Variables

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 ' print out Server Variables
 tstPerl.prntServerVariables
%>

</BODY>
</HTML>

Figure 22-2. Result of running asp2212.asp listing the ServerVariables collection

,ch22.20934 Page 706 Thursday, February 22, 2001 1:36 PM

Accessing the ASP Built-in Objects 707

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

times out. When the script does time out, a message is returned to the client to
that effect. You can set this property in Perl using syntax similar to the following:

 $server->{ScriptTimeout} = 30;

The Server object also has several methods, some of which are new with ASP Ver-
sion 3.0. For instance, there is a new method called Transfer that transfers control
from one ASP page to another. However, the existing state for the server, includ-
ing any Request information and any set Application or Session object values, is
also transferred with this method. In addition, the Transfer method does not
require a round trip to the client to load the new page.

A second new method is Execute, which executes an ASP page as if the page con-
tents are included within the existing ASP page. This is a rather nice technique to
break up larger ASP pages into smaller sizes or to reuse existing ASP code in more
than one page without having to create ASP components. (Though why would
you not want to use components?)

Another new Server method, GetLastError, actually returns a new ASP object,
ASPError. The ASPError object has several properties with information about the
last ASP error that occurred. You can’t use the method in your ASP pages (or your
ASP components)—it’s used in a custom (500:100) error page to provide useful
information about an ASP error.

As nice as the new Transfer, Execute, and GetLastError methods and
the ASPError object are, it is unlikely that one would want to use
them within ASP components, so I won’t demonstrate these meth-
ods in this chapter.

The MapPath method is used to map a filename to an absolute directory location
and is helpful when attempting to open a file relative to the web location. This
was used with the earlier example that modified an HTML file by replacing HTML
tags in the asp2203.asp ASP page.

The HTMLEncode and URLEncode methods are used to encode a text string so
that the HTML- or URL-specific characters are treated as literals rather than as pro-
cessing information. For instance, to display an HTML header as is, you can’t use
the following in an HTML page, since the browser will process the tags and dis-
play an HTML header:

<H1>Hello</H1>

Instead, you can pass the string containing this HTML to HTMLEncode, and the
following encoded value is output:

<H1>Hello World</H1>

,ch22.20934 Page 707 Thursday, February 22, 2001 1:36 PM

708 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This code displays the literal interpretation of the header, rather than processing it.

To demonstrate these encoding methods, create a last method on our handy
perlasp.pm module and name it encodeLine. Its source code is shown in
Example 22-22. This method takes one parameter, a string to be encoded. Both
the Server and Response objects are created, the Server object to access the encod-
ing methods and the Response object to output the results.

Create the ASP test page and name it asp2213.asp. Example 22-23 shows the page
contents you’ll add to the test page. Two different strings are passed to encode-
Line, one containing HTML characters, the other containing URL characters.

Example 22-22. Encoding and Printing a String

try out different encodings
sub encodeLine {
 local($self,$testline) = @_;

 # get Server and Response
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $response = $obj->Item('Response');
 $server = $obj->Item('Server');

 # encode and print out
 $strng = $server->HTMLEncode($testline);
 $response->Write("HTMLEncode results: $strng<p>");

 # encode and print out
 $strng = $server->URLEncode($testline);
 $response->Write("URLEncode is $strng<p>");

 }

Example 22-23. Calling the encodeLine Method to Encode the Strings

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("perlasp", "new")

 ' print out encodings
 tstPerl.encodeLine "<H1>Hello World</H1>"
 tstPerl.encodeLine "http://www.somecompany.com/"
%>

</BODY>
</HTML>

,ch22.20934 Page 708 Thursday, February 22, 2001 1:36 PM

Working with Data 709

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The results of accessing this page are:

HTMLEncode results: <H1>Hello World</H1>
URLEncode is %3CH1%3EHello+World%3C%2FH1%3E
HTMLEncode results: http://www.somecompany.com/
URLEncode is http%3A%2F%2Fwww%2Esomecompany%2Ecom%2F

There is one other Server method of interest to ASP developers. It is CreateObject,
and this method has been used in all of the ASP test pages to create versions of
PerlCOM or of the component created with PerlCtrl. However, instead of demon-
strating this method in this section on the built-in ASP objects, we’ll see it in use in
the next section, on using ADO within Perl components.

Working with Data
This section on working with ADO from ASP components created in Perl isn’t
going to be extensive. Instead, we’ll look at representative uses of ADO to demon-
strate key aspects of working with the ADO objects. Hopefully with this introduc-
tion, you should be able to look at the ADO examples in the Visual Basic section
in Chapter 8 and interpolate how the examples can be modified to work with Perl.

ADO objects can be created within Perl ASP components using two techniques.
First, the Win32::OLE class can be used to create the objects, as was demonstrated
in the ASP built-in object sections. However, an approach I prefer is to create the
ASP Server object and then create the ADO objects using the Server object’s
CreateObject method. Doing this, the ADO objects are more tightly integrated into
the ASP application, including participating in any transactions that might be
aborted or committed outside of the Perl component.

To create ADO objects, you use syntax similar to the following:

 # create Connection and Recordset objects
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $server = $obj->Item('Server');

 # create ADO Connection object
 $conn = $server->CreateObject("ADODB.Connection");

In this example, the Server object is created using Win32::OLE, and it, in turn, is
used to create any ADO (or other COM/COM+) components needed by the Perl
component.

As you had a chance to explore in the last section, there are certain things to be
aware of when working with the ADO objects. First of all, you can’t use the short-
hand technique to set or get ADO object properties as you can with Visual Basic:

' set Recordset's ActiveConnection property
set rs.ActiveConnection = conn

,ch22.20934 Page 709 Thursday, February 22, 2001 1:36 PM

710 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Instead, you must set a property using the SetProperty method:

 $rs->SetProperty('CursorLocation', 3); #adUseClient

Or you must use a hash dereference to set or access the property:

 $rs->{Source} = "select au_lname from authors";

Accessing the Type Library Constants

When you create the ADO objects using automation (which is what happens when
you use the CreateObject function), you aren’t including the ADO type library in
the component, which means you don’t have access to the ADO enumerated con-
stants. These enumerated constants—such as adUseClient or adOpenForward-
Only—are useful in that you can use the named representation of the value rather
than the actual numeric value, making your code a lot easier to read.

There is a Perl module that contains all of the ADO enumerated definitions,
Win32::ADO, which can be accessed from any CPAN site. (CPAN—Comprehen-
sive Perl Network—is the repository for Perl libraries and code and is mirrored on
many different sites. You can locate it at http://www.cpan.org.) However, check-
ing the values currently in the most recent release of this Perl module against
those defined for ADO 2.6, I did find discrepancies in code values.

The version of Win32::ADO that I checked while writing this book
was Version 0.03. If you find a more recent version, you should
download it and compare the values with those provided by
Microsoft for their enumerated constants. Newer versions of the Perl
module may reflect newer versions of the ADO constants.

However, you can import typelib constant definitions using Win32::OLE::Const.
This module actually extracts all of the constant definitions within a given type
library and exposes them for access from Perl code. You can use two techniques
to extract the definitions. One approach is to load the definitions into a hash with
the Load method:

$defs = Win32::OLE::Const->Load('Microsoft ActiveX Data Objects 2.5 Library');

The values for the definitions can then be accessed from the hash. However, an
approach I use in the examples for this section is to import the definitions using
the use statement, which then allows the definitions to be used as they are in
Visual Basic—directly by the definition name:

use Win32::OLE::Const ('Microsoft ActiveX Data Objects 2.5 Library');
...
$rs->SetProperty('CursorLocation', adUseClient);

,ch22.20934 Page 710 Thursday, February 22, 2001 1:36 PM

Working with Data 711

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Another approach—though a less readable one—is to use the literal value directly
in the code, rather than pulling in any constant definitions:

 $rs->SetProperty('CursorLocation', 3);

Creating ASP/ADO Components in Perl

The best way to show how ADO is accessed from Perl components is to try out a
couple of examples.

Create a new Perl object module and name it aspado.pm, moving it to the Perl
library path; its source code is shown in Example 22-24. Once you’ve created the
object file and the object’s new method, create your first ADO method, named
getWebPages. The getWebPages method accesses the Weaver SQL Server sample
database (see Appendix B), and retrieves all of the web page names. Once the
names are returned, they are sorted and then filtered. The method creates both
Connection and Recordset objects, opens a connection to the database, and then
assigns this open connection to the Recordset object’s ActiveConnection property.
In addition, several other recordset properties are set: CursorLocation is set to a
value of 3, or adUseClient, and CursorType is set to a value of 0, or adOpen-
ForwardOnly. In addition, the Source property is assigned the following SQL
SELECT statement:

"select name from WebPage"

Once the recordset properties are set, the recordset is opened, and the rows are
retrieved.

After the rows are retrieved, the Recordset object’s Filter property is set to filter the
rowset on the name, and the recordset is sorted with the Sort property. A row count
is also used to prevent accessing an empty rowset. Finally, the rows are traversed;
the returned name column is accessed from the Recordset object’s Fields collection
and is appended to a string, which is returned to the calling ASP program.

Example 22-24. Complete Code for aspado.pm, with Only the getAuthors Method

package aspado;

use Win32::OLE::Const ('Microsoft ActiveX Data Objects 2.5 Library');

create object using anonymous hash
sub new {

 # get the name of the class, always passed as first paren
 my $class = shift;

 # get object reference
 my $self = {};

,ch22.20934 Page 711 Thursday, February 22, 2001 1:36 PM

712 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 # bless object and return
 return bless $self, ref($class) || $class;
}

get authors' last names and print
sub getWebPages {

 # create Connection and Recordset objects
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $server = $obj->Item('Server');

 # create connection and recordset objects
 $conn = $server->CreateObject("ADODB.Connection");
 $rs = $server->CreateObject("ADODB.Recordset");

 # open connection to database
 $conn->Open("provider=SQLOLEDB;server=FLAME;uid=sa;pwd=;
 database=weaver");

 # set Recordset properties
 # two ways to set COM/COM+ object properties
 $rs->{ActiveConnection} = $conn;
 $rs->SetProperty('CursorLocation', adUseClient);
 $rs->{CursorType} = adOpenForwardOnly;
 $rs->{Source} = "select name from WebPage";

 # open recordset
 $rs->Open();

 # filter and sort recordset
 $rs->{Sort} = "name asc";
 $rs->SetProperty('Filter',"name > 'ARTICLES'");

 # get recordcount
 $val = $rs->{RecordCount};

 # move through recordset and print out field value
 if ($val > 0) {
 $rs->MoveFirst;

 until ($rs->EOF) {
 $strResult = $strResult . $rs->Fields(0)->value . "
";
 $rs->MoveNext;
 }
 }

 # disconnect from database
 $conn->Close;
 return $strResult;
}
1;

Example 22-24. Complete Code for aspado.pm, with Only the getAuthors Method (continued)

,ch22.20934 Page 712 Thursday, February 22, 2001 1:36 PM

Working with Data 713

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Create the ASP page shown in Example 22-25 to test the new component, and
name it asp2214.asp. The page creates an instance of PerlCOM and then uses this
object to create an instance of the aspado.pm Perl module using PerlCOM’s
CreateObject method. Once created, the component’s getWebPages method is
called, and the string returned from the method is displayed.

This example demonstrated certain fundamental uses of ADO within Perl, includ-
ing setting ADO object properties. In addition, the example also demonstrated
how to traverse a collection—the Fields collection of the Recordset object—and
access values from this collection.

The Command object is another widely used ADO object. Unlike the Connection or
Recordset objects, the Command object has a Parameters collection that can be used
to provide values for a SQL statement. Using parameters means that the same com-
mon object can be used again and again, changing the parameter values each time.

To illustrate the Command object and its Parameters collection, add another
method to aspado.pm, this one named getHtmlWebPageInfo, as shown in
Example 22-26. As you can see from the code, a Connection object is created to
open a database connection. The method then uses a Command object to search
for all HTML web pages in the Weaver database that share the same directory
identifier, which is passed as a parameter to the method. A Parameter object is
used to pass the value with the Command query.

A stored procedure is used to wrap the SQL query used for this example. The pro-
cedure is named sp_htmlwebpageinfo, and its syntax is:

CREATE PROCEDURE [sp_gethtmlwebpageinfo]
(@directory_id Integer)
AS
BEGIN

Example 22-25. Accessing aspado Perl Module and Calling getWebPages Method

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("aspado", "new")
 Dim strng
 strng = tstPerl.getWebPages
 Response.Write(strng)
%>

</BODY>
</HTML>

,ch22.20934 Page 713 Thursday, February 22, 2001 1:36 PM

714 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

SELECT name, filename, html_version
FROM WebPage, HtmlWebPage
WHERE directory_id = @directory_id and
webpage_id = id
END

This procedure joins the WebPage and HtmlWebPage tables based on web page
identifier and limits the rows returned to only those in which the WebPage
directory_id value matches that passed in as a parameter to the stored
procedure.

The Connection object isn’t necessary—the connection information
could be set directly into the ActiveConnection property of the Com-
mand object.

Once the command is executed, the result set is passed to a Recordset object. This
object is traversed and the returned column values are pulled from each row. The
information is then output to an HTML table using the ASP Response object. At the
end of the method, the Connection object’s database connection is closed.

Example 22-26. Method to Execute Stored Procedure with Parameter Using the Command
Object

get web page info
sub getHtmlWebPageInfo {
 local($self, $dirid) = @_;

 # create Connection and Recordset objects
 $mtx = Win32::OLE->new("MTxAS.AppServer.1");
 $obj = $mtx->GetObjectContext();
 $server = $obj->Item('Server');
 $response = $obj->Item('Response');

 # create Connection and Recordset objects
 $cmnd = $server->CreateObject("ADODB.Command");
 $conn = $server->CreateObject("ADODB.Connection");
 $rs = $server->CreateObject("ADODB.Recordset");

 # open connection to database
 $conn->Open("provider=SQLOLEDB;server=FLAME;uid=sa;pwd=;
 database=weaver");

 $cmnd->{ActiveConnection} = $conn;
 $cmnd->{CommandType} = adCmdStoredProc;
 $cmnd->{CommandText} = "sp_gethtmlwebpageinfo";

 $param = $cmnd->CreateParameter("type", adInteger,adParamInput);

 $cmnd->Parameters->Append($param);
 $cmnd->Parameters->Item(0)->{value} = $dirid;

,ch22.20934 Page 714 Thursday, February 22, 2001 1:36 PM

Working with Data 715

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ASP test page for this new method is called asp2216.asp, and it performs the
usual task of creating an instance of PerlCOM and creating an instance of the
aspado Perl object. It then has code that calls the getHtmlWebPageInfo method.
Passed to the method is a directory identifier—a value of 16 for this example:

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("aspado", "new")

 tstPerl.getHtmlWebPageInfo 16
%>
</BODY>
</HTML>
</HTML>

 $rs = $cmnd->Execute;

 $val = $rs->{RecordCount};

 # move through recordset and print out field value
 $rs->MoveFirst;

 # values are printed out to an HTML table
 $response->Write("<table align=center cellpadding=10 border=2>");
 $response->Write("<TR><TH align=left>Page Name</TH>");
 $response->Write("<TH align=left>File Name</TH>");
 $response->Write("<TH align=left>HTML Version</TH></TR>");
 until ($rs->EOF) {
 $name = $rs->Fields('name')->value;
 $filename = $rs->Fields('filename')->value;
 $html_version = $rs->Fields('html_version')->value;

 $response->Write("<TR>");
 $response->Write("<TD>$name</TD><TD>$filename</TD>");
 $response->Write("<TD>$html_version</TD>");
 $response->Write("</TR>");

 $rs->MoveNext;
 }
 $response->Write("</TABLE>");

 # close connection
 $conn->Close;
 }

Example 22-26. Method to Execute Stored Procedure with Parameter Using the Command
Object (continued)

,ch22.20934 Page 715 Thursday, February 22, 2001 1:36 PM

716 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Accessing this page from the test web server results in a page that looks similar to
that shown in Figure 22-3, with a list of web page names, filenames, and HTML
versions.

Working with the Win2K Environment
So far, I’ve demonstrated how Perl can be used to create Perl ASP components
and how these components can then access the built-in ASP objects as well as the
ADO objects. This last section of the chapter will demonstrate how Perl can be
used for all ASP development needs by trying out other Windows 2000 features. In
this case, we’ll try access ADSI with Perl.

To try the example in this section, you’ll need to remove anony-
mous directory access from the virtual directory or site hosting the
test page—you can access administrative functions only from a
secure web site.

Chapter 2, Setting Up the ASP Development Environment, demonstrated how to use
ADSI to manipulate the Internet setup for a specific virtual web directory. For
instance, Example 2-4 showed a Visual Basic component using ADSI to access the

Figure 22-3. Results from accessing the asp2216.asp page and printing title information
based on directory ID

,ch22.20934 Page 716 Thursday, February 22, 2001 1:36 PM

Working with the Win2K Environment 717

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

default scripting language for the chap2 virtual directory. I’ve repeated the code
for this component here, in Example 22-27.

This VB component is using functionality not previously demonstrated in this
chapter; it uses the GetObject automation function to retrieve a COM object given
a moniker—a pathname rather than a program identifier (progid). Though this
functionality is new, it isn’t complicated. In fact, it’s very simple to re-create.

First, create a new Perl module, this time named aspmisc.pm. In the module, cre-
ate the necessary new method, and we’ll also create a method called tstADSI. This
method uses the Win32::OLE method GetObject to retrieve a COM object given a
path—for this example the ADSI object for the chap22 virtual directory. (Modify
the reference to access a Virtual Directory on your server.) Once the ADSI object is
obtained, it’s queried for the AspScriptLanguage property, which holds the default
scripting language for the directory’s ASP application. The scripting language string
is then returned from the component, as shown in Example 22-28 (note that the
Perl object’s new function has been omitted for clarity).

Now, compare this component written in Perl to the one written in Visual Basic.
You should be able to see how similar the two functions are once you under-
stand how to handle the differences between the two languages. In this case,
GetObject for the Perl component was accessed from the Win32::OLE package
instead of being accessed directly, and the dereferencing operator is used with the
method rather than the VB dot notation (myObject.Get).

Example 22-27. Using the ADSI Get Method to Access the Property Value for AspScriptLanguage
for the chap2 Virtual Directory

Function adminScriptLanguage() As String
 Dim myObject
 Set myObject = GetObject("IIS://localhost/W3SVC/1/root/chap2")

 adminScriptLanguage = myObject.Get("AspScriptLanguage")
End Function

Example 22-28. Retrieving the ADSI Object for a Virtual Directory Using the GetObject Method
of Win32::OLE

package aspmisc;

new method omitted

$myObject = Win32::OLE >GetObject("IIS://localhost/W3SVC/1/root/chap22");
$adminScriptLanguage = $myObject->Get('AspScriptLanguage');

return $adminScriptLanguage;

1;

,ch22.20934 Page 717 Thursday, February 22, 2001 1:36 PM

718 Chapter 22: Perl-Based Components Using ActiveState’s PDK

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

More importantly, the behavior of the two components is identical—they both
identify the default scripting language for a specific virtual directory.

As mentioned earlier, an additional Win32::OLE Perl module to
become familiar with is Win32::OLE::Variant. This can be used to
generate Variant datatypes to pass from Perl components to other
objects or to return to scripts. The use of the Variant module is dem-
onstrated with PerlScript in Chapter 6.

This chapter also has a discussion on error handling within the Perl
environment using Win32::OLE->LastError.

To test the component, create an ASP test page and name it asp2216.asp ; it is
shown in Example 22-29. The page uses PerlCOM to access the new aspmisc Perl
module and call its tstADSI method.

Now that you’ve had a chance to try out PDK and create several different types of
Perl ASP components, take a look at the Visual Basic chapters in the earlier sec-
tions of the book. You should be able to convert most, if not all, of the VB exam-
ples to Perl using the notation demonstrated throughout this chapter.

Example 22-29. Accessing aspmisc and Calling Its tstADSI Method

<HTML>
<HEAD>
<BODY>
<%
 Dim objPerlCOM
 Dim tstPerl
 Set objPerlCOM = CreateObject("PerlCOM.Script")

 Set tstPerl = objPerlCOM.CreateObject("aspmisc", "new")
 Dim strng
 strng = tstPerl.tstADSI
 Response.Write(strng)
%>

</BODY>
</HTML>

,ch22.20934 Page 718 Thursday, February 22, 2001 1:36 PM

719
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 23

23
Creating Scripting

Language Components

In this book, you’ve had a chance to look at ASP components created in Visual
Basic, Visual C++, Java, Delphi, and Perl. However, you don’t have to use a sepa-
rate programming language or tool to create components—you can use the same
scripting language you employ when building your ASP script. The technology
that allows you to build ASP components using scripting languages is Microsoft’s
Windows Script Components (WSC).

We’ll end the book with a chapter on creating script-based components and dem-
onstrate this technique with two of the more widely used ASP scripting languages:
VBScript and JScript. But first, we’ll take a closer look at the WSC architecture.

Examples throughout this chapter are in VBScript; however, the next
to last section of the chapter provides coverage of script compo-
nents created using JScript/JavaScript.

The Windows Script Components
Architecture
Script component files are created using XML with a predefined WCS object model
for the XML elements. The active agent to the WSC architecture is a single compo-
nent, scrobj.dll, which acts as the host for the script-based component. Not only
does this component act as an in process server for the script component, it also
includes prebuilt support for COM automation, ASP, and DHTML behaviors, all of
which are supplied through interface handlers. These handlers take care of the
necessary details involved in implementing the component’s functionality, such as

,ch23.21062 Page 719 Thursday, February 22, 2001 1:37 PM

720 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

handling COM automation for components that implement the automation han-
dler, or providing access to the ASP built-in objects for those components imple-
menting the ASP handler, as shown with the following <implements> tag::

<implements type="ASP" id="ASP"/>

The script components are created in files and given a .wsc extension. In these
files, XML is used to provide information about the component, such as what
properties and methods are exposed or whether a specialized interface handle is
being used. The following XML, for instance, defines a public method named
vbTest that has a single parameter:

<public>
<method name="vbTest">

<PARAMETER name="strName"/>
</method>

</public>

Also contained in the file is a script section, which contains the actual script for the
component.

Once the component file is created, right-clicking on this file from Windows
Explorer opens a menu that contains options to register the component, unregis-
ter the component, or generate a type library. Choosing the option to register the
component installs and registers the new component with scrobj.dll.

regsvr32.exe, included in the bin directory of the Platform SDK, can
be used to register WSC components. You can download the Plat-
form SDK from the Microsoft developer web site at http://msdn.
microsoft.com.

Once registered, the component can then be accessed from ASP pages as one
would access a component built in any other scripting language—using the
CreateObject method of the Server object:

Dim obj
Set obj = Server.CreateObject("mycomp.comp")

To demonstrate script components, create a file named asp2301.wsc using Word-
pad or your favorite text editor, and add the code shown in Example 23-1 to it.
The example shows a VBScript script component that implements the ASP inter-
face and has one exposed method, vbTest, with one parameter, strName. The
built-in ASP Response object is used to write out a string containing a concate-
nated message and the name passed as the parameter to the method.

,ch23.21062 Page 720 Thursday, February 22, 2001 1:37 PM

The Windows Script Components Architecture 721

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once you save the component as asp2301.wsc, register it by right-clicking on the
file from Windows Explorer and choosing Register from the pop-up menu. An
information window opens, providing information about whether the component
was successfully registered or not. If successful, registering asp2301.wsc should
generate a message similar to that shown in Figure 23-1.

Example 23-1. VBScript-based WSC Component with One Method

<?xml version="1.0"?>
<component>

<registration
description="vbcomp"
progid="vbcomp.comp"
version="1.00"
classid="{51d99eb3-664f-4e00-a52c-5b81c88f5402}"

>
</registration>

<public>
<method name="vbTest">

<PARAMETER name="strName"/>
</method>

</public>

<implements type="ASP"/>

<script language="VBScript">
<![CDATA[

sub vbTest(strName)

 Response.Write("Hello, " & strName & "!")

end sub

]]>
</script>

</component>

Figure 23-1. Message of success when registering WSC component

,ch23.21062 Page 721 Thursday, February 22, 2001 1:37 PM

722 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice that unlike registering a component created using a language or tool such
as Delphi or using PerlCtrl and Perl, the script component is actually registered
and installed with the in-process server, scrobj.dll.

Create the page to test the new component and name it asp2301.asp. In the ASP
script, create an instance of the component and call its method, passing a string
containing a name as the parameter, as shown in Example 23-2.

The result of accessing the test page is a web browser page containing the message:

Hello, Shelley!

You’ve had a chance to see an example of a script component; now it’s time to
take a more detailed look at the XML used for the component file.

Elements of a WSC File
As stated earlier, WSC files are XML files that are compliant with the Version 1.0
XML recommendation released by the World Wide Web Consortium (the W3C).
Compliance means, among other things, that all elements have matching begin
and end element tags or are formatted as empty tags.

For instance, in Example 23-1, the METHOD element, as it is used in this file, has
beginning and ending tags:

<method name="vbTest">
<PARAMETER name="strName"/>

</method>

The WSC elements are shown in capital letters in this chapter to
make them easier to spot. However, when you use the WSC ele-
ments in your scripting component, use lowercase letters only, or
registering your component will generate an error.

Example 23-2. ASP Page That Creates an Instance of a WSC Component and Calls Its Method

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2301.vbcomp")

Dim str
str = obj.vbTest("Shelley")
%>
</BODY>
</HTML>

,ch23.21062 Page 722 Thursday, February 22, 2001 1:37 PM

Elements of a WSC File 723

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The IMPLEMENTS element, though, is an empty tag or an element that doesn’t
have an ending tag, at least in the current file (an element can be defined with
beginning and ending tags in one file but as an empty tag in another):

<implements type="ASP" id="ASP"/>

Element attributes are specified as name-value pairs, such as type="ASP" or
name="vbTest". In addition, the scripting portion of the component is sur-
rounded by a CDATA section, which prevents the enclosed text from being treated
as XML. XML parsers ignore whatever text is enclosed between beginning and
ending CDATA elements.

The elements, their relationship to one another, and the element attributes all syn-
tactically define the object model used with WSC to wrap the ASP script within a
scripting component. The first tag in the file is the XML tag, specifying that the file
contains data that should be parsed as XML and containing the version of the XML
specification the page adheres too, as well as whether the file has a reference to a
DTD (Documentation Type Definition) file. Another optional attribute for the tag is
the character set encoding used for the document. WSC component files do not
have external DTD files and usually use the default encoding, so the tag should
look like this:

<?xml version="1.0"?>

Other tags are described in the next sections.

Not all of the Windows Scripting Components elements are
described in this chapter, just the ones I thought would be of the
most interest to ASP developers. You can get more information on
the WSC and the elements by accessing Microsoft’s Scripting web
site at http://msdn.microsoft.com/scripting/.

The Package and Component Elements

A script component is enclosed within beginning and ending COMPONENT tags. A
file can actually contain more than one component, as long as each component’s
script and XML elements are enclosed within separate beginning and ending
COMPONENT tags.

The only attribute the COMPONENT element has is id, providing a unique way of
identifying each individual component when multiple components are being
defined in the file

If you do have more than one component within a single WSC file, you must
enclose all of the components within beginning and ending PACKAGE element

,ch23.21062 Page 723 Thursday, February 22, 2001 1:37 PM

724 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

tags. Each component can be given a separate progid to access it (discussed later),
or you can provide a component identifier and then use GetObject to get the com-
ponent using a moniker—a string containing the location of the object.

To demonstrate using the PACKAGE and COMPONENT elements together, copy the
component file created in Example 23-1 and save it into a new file named
asp2302.wsc. Modify the file by enclosing the existing component within PACKAGE
element tags, and then add a new component to the file, as shown in
Example 23-3. Give the first component an ID of comp1 and the second compo-
nent an ID of comp2. Additionally, remove the classid attribute from the first
component’s registration, as you don’t want two separate components to have the
same class identifier, and change the progid attributes of both components to
match those of their component IDs, with the addition of the filename (i.e.,
asp2302.comp1 and asp2302.comp2).

The registration properties for the second component are the same as for the first.
In fact, the new component is a copy of the old one, except that the component’s
method’s name is changed to vbGetSrvVar, and the name of the method parame-
ter is changed to strSrvVar. Instead of a name, the parameter for the new
method now holds the name of a member of the Request object ServerVariable
collection.

The code for the new component takes the parameter passed to the component
function (not subroutine as is defined for the first component), uses it to look up
the value in the ServerVariables collection, and then returns that value.

Example 23-3. Altered WSC File, Now Containing Two Component Definitions

<?xml version="1.0"?>
<package>
<component id="comp1">

<registration
description="vbcomp"
progid="asp2302.comp1"
version="1.00"

/>

<public>
<method name="vbTest">

<PARAMETER name="strName"/>
</method>

</public>

<implements type="ASP"/>

<script language="VBScript">
<![CDATA[

,ch23.21062 Page 724 Thursday, February 22, 2001 1:37 PM

Elements of a WSC File 725

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After saving the changes to the file, register the new component.

Create a new test page and name it asp2302.asp. Add the code shown in
Example 23-4 to the file (modified for your own directory location). The GetObject
function is used to access the component via the component’s moniker, passed as
an argument to the function call. In the ASP script, the moniker is the script com-
ponent file’s directory location concatenated with a pound sign (#) and then the
component identifier.

sub vbTest(strName)

 Response.Write("Hello, " & strName & "!")

end sub

]]>
</script>

</component>
<component id="comp2">

<registration
description="vbcomp"
progid="asp2302.comp2"
version="1.00"

/>

<public>
<method name="vbGetSrvVar">

<PARAMETER name="strSrvVar"/>
</method>

</public>

<implements type="ASP"/>

<script language="VBScript">
<![CDATA[
function vbGetSrvVar(strSrvVar)

 vbGetSrvVar = Request.ServerVariables(strSrvVar)

end function

]]>
</script>

</component>
</package>

Example 23-3. Altered WSC File, Now Containing Two Component Definitions (continued)

,ch23.21062 Page 725 Thursday, February 22, 2001 1:37 PM

726 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Instead of using component identifiers, the GetObject function, and monikers to
identify each component, you can also specify a different progid for each, and
use the CreateObject method to instantiate the components. The progid for the
components is discussed in the next section.

The Registration Element

Following the beginning COMPONENT tag in Example 23-1 or 23-3 is the registra-
tion section, defined with an empty REGISTRATION element (one that doesn’t
have both beginning and ending element tags). The REGISTRATION tag contains
optional attributes with information about the component, such as the progid,
used to provide the program identifier used by applications to access the compo-
nent; the classid, used to hold a component GUID (Globally Unique Identifier);
the text description for the component; and the component’s version, if more
than one version of the component can exist within the same system. Addition-
ally, if the component is going to be accessed remotely, another registration
attribute is a remote flag specifying that the component can be accessed remotely:

<registration ... remotable=true/>

The components developed in previous examples in this chapter specified both
the progid and the classid, or the progid alone, but neither of these attributes is
necessary if the components are accessed using a moniker. If the progid but no
classid is given, the latter is automatically generated for the component when it is
registered. When a progid is provided, the component can be accessed by this

Example 23-4. ASP Page to Test Scripting Components with Different Component Identifiers

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = _
 GetObject("script:e:\devaspcomp\source\asp2301.wsc#comp1")

obj.vbTest("Shelley")
Response.Write("<p>")

Dim obj2
Set obj2 = _
 GetObject("script:e:\devaspcomp\source\asp2302.wsc#comp2")

Dim str
str = obj2.vbGetSrvVar("ALL_HTTP")
Response.Write str
%>
</BODY>
</HTML>

,ch23.21062 Page 726 Thursday, February 22, 2001 1:37 PM

Elements of a WSC File 727

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

value, as shown in Example 23-2. If the classid attribute is specified without the
progid attribute, the component then needs to be accessed by the classid.

Create another component to try out instantiating a component using only the
classid. First, you’ll need to generate the GUID for the attribute. There is a utility
named uuidgen.exe, installed with the Platform SDK as well as with Visual Studio
(in the Tools subdirectory), that generates this GUID from a Command prompt:

C:\> uuidgen.exe

Name the new component file asp2303.wsc and add the code shown in
Example 23-5, except use the GUID you just generated in place of the one shown
in the example. Unlike the component in Example 23-3 that displays the Server-
Variables value for one given name, this component displays all of the ServerVari-
ables collection. In the component file, the registration section—located just after
the first component tag, though there is no required order for WSC elements—sets
the description and classid attributes, but no other attributes. Following the regis-
tration section is the definition for the method, the interface handler for ASP, and
the actual script.

Example 23-5. Script Component with Method to Print Out All Server Variables, Identified by
Classid Only

<?xml version="1.0"?>
<component>

<registration
description="vbcomp2"
classid="{d730573e-9a74-48f7-99f1-c065eef4803d}"

/>

<public>
<method name="prntAllSrvVars" />

</public>

<implements type="ASP"/>

<script language="VBScript">
<![CDATA[
sub prntAllSrvVars()

 For Each elem In Request.ServerVariables
 Response.Write elem & " = " & Request.ServerVariables(elem) & "
"
 Next
end sub
]]>
</script>

</component>

,ch23.21062 Page 727 Thursday, February 22, 2001 1:37 PM

728 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you create the component, instead of instantiating the object using the Cre-
ateObject method and passing in a progid or using GetObject and a moniker, cre-
ate the component within the global.asa file, as a Session object:

<OBJECT RUNAT=Server SCOPE=Session ID="scriptcomp"
 CLASSID="clsid:d730573e-9a74-48f7-99f1-c065eef4803d">
</OBJECT>

The scripting component is running within the in-process server,
scrobj.dll, which is apartment-threaded. Normally, you wouldn’t
want to add an apartment-threaded object to any of the Session
object’s collections (see Chapter 4, ASP Components, Threads, and
Contexts, for details). We are doing so in Examples 23-5 and 23-6 for
demonstration purposes only.

The object will be instantiated when you access it the first time within the session,
and it lasts until the session is destroyed.

Create the ASP test page and name it asp2303.asp, as shown in Example 23-6. The
script in the page accesses the object from the Session object’s StaticObjects collec-
tion and invokes the component’s prntAllSrvVars method.

As has been demonstrated with several examples, a component’s methods, proper-
ties, and events are exposed with the PUBLIC element, and we’ll take a look at
this next.

The Method, Public, Property, and Event Elements

The PUBLIC element by itself doesn’t have any interesting attributes, but it does
act as a parent to a set of elements that are critical when defining the component:
the PROPERTY, METHOD, and EVENT elements. We won’t look at the EVENT ele-
ment in this chapter, but we will take a closer look at METHOD and introduce the
PROPERTY element.

Example 23-6. ASP Page That Accesses Component from Session’s StaticObjects Collection

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Session.StaticObjects("scriptcomp")

obj.prntAllSrvVars
%>
</BODY>
</HTML>

,ch23.21062 Page 728 Thursday, February 22, 2001 1:37 PM

Elements of a WSC File 729

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You’ve seen the METHOD element used in earlier examples to define publicly
exposed component methods. These are the methods that can be accessed by the
component client, such as by the script within ASP pages. The external name for
the method is given in the name attribute. In addition to name, other attributes are
internalName, if the method is has a different internal name in the script, and
dispid, used to hold dispatch identifiers used for event notification.

The METHOD element has an optional child element, PARAMETER, that can be used
to define the parameters for the method. These parameter definitions aren’t
required, but they are useful if you generate a type library for your component.

The PROPERTY element is used to define publicly exposed component properties.
What the element really does is map a component property to a set of Get and Put
methods, defined as child elements, which is the way properties are set and
accessed from a COM/COM+ component.

To become familiar with the PROPERTY element, create a new script component.
Save the new component in a file named asp2304.wsc, and give the component a
progid of asp2304.vbcomp3. Example 23-7 has the code you’ll need to add to the
component file. The component has one method, externally named applyFactor
but internally named multiplyFactor, and a property named mfactor. The method
has one parameter, an incoming value, which the method multiplies by the value
of the mfactor property. The method then returns this result.

mfactor is defined as a property, but two methods are created to actually set and
retrieve the property. Instead of specifying the methods individually, a shorthand
technique is used to specify that the component is using default naming for these
methods. In this case, the default set method is named put_mfactor, and the
default get method is named get_mfactor.

Example 23-7. Component That Uses PROPERTY to Define a Component Property

<?xml version="1.0"?>
<component>

<registration
description="vbcomp3"
progid="asp2304.vbcomp3" />

<public>
<method name="applyFactor" internalName="multiplyFactor" >

 <parameter name="lInValue" />
 </method>
 <property name="mfactor" get put/>
</public>

<implements type="ASP"/>

<script language="VBScript">

,ch23.21062 Page 729 Thursday, February 22, 2001 1:37 PM

730 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new component once you’ve registered it, create a new ASP page as
shown in Example 23-8 and name it asp2304.asp. This page creates the new com-
ponent and then sets the component’s mfactor property to 23.55. It then calls
applyFactor with a value of 20. The page displays the component method’s return
value and calls applyFactor one more time, this time passing in a value of 3.5.
Again, the page displays the returned value. Finally, the page script accesses and
displays the value of the mfactor property itself.

<![CDATA[

' global property
Dim gMFactor

' multiply incoming value by factor
Function multiplyFactor(lInValue)
 Dim val
 multiplyFactor = CDbl(lInValue) * gMFactor
End Function

' return factor
Function get_mfactor()
 get_mfactor = gMFactor
End Function

' set factor
Function put_mfactor(val)
 gMFactor = CDbl(val)
End Function

]]>
</script>
</component>

Example 23-8. Seting a Script Component Property and Calling a Method That Uses This
Property Value

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2304.vbcomp3")

' set property
obj.mfactor = 23.55

' apply factor
Dim val
val = obj.applyFactor(20)
Response.Write("For value of 20, applying factor results in " & CStr(val))
Response.WRite("<P>")

Example 23-7. Component That Uses PROPERTY to Define a Component Property (continued)

,ch23.21062 Page 730 Thursday, February 22, 2001 1:37 PM

Elements of a WSC File 731

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The resulting web page generated by this ASP has three lines that look like this:

For value of 20, applying factor results in 471
For value of 3.5, applying factor results in 82.425
And the factor is 23.55

We’ll look at two other WSC elements, and then we’ll take a look at working with
ADO from script components.

The Implements, Script, Comment,
and Object Elements

Throughout the examples, we’ve used the following line to be able to reference
the ASP built-in objects from the script component code:

<implements type="ASP"/>

The IMPLEMENTS element has three attributes: the type attribute, which we’ve
used in all of the examples to designate the ASP interface handler, the id attribute,
and the assumed flag. Normally, all you need to specify is the type attribute.
However, you could use the id attribute if you want to preface the events, meth-
ods, and properties inherited from the interface handler with an identifier to pre-
vent any name collisions between your script and the handler. By default, when
you use the id attribute, the assumed flag is set to True by default, which means
that the interface handler methods are added to the script namespace and you can
access these methods directly without prefacing the method with the ID. If you
wish different behavior, set the assumed flag to false.

Unlike the IMPLEMENTS element, the SCRIPT element has only one attribute,
language, which is used to specify the scripting language. In the examples so far,
we’ve used VBScript as the scripting language—but other languages such as JScript
could also be specified in the language attribute and used for the code.

' apply factor
val = obj.applyFactor(3.5)
Response.Write("For value of 3.5,applying factor results in " & CStr(val))
Response.WRite("<P>")

' get factor
val = obj.mfactor
Response.Write("And the factor is " & CStr(val))

%>
</BODY>
</HTML>

Example 23-8. Seting a Script Component Property and Calling a Method That Uses This
Property Value (continued)

,ch23.21062 Page 731 Thursday, February 22, 2001 1:37 PM

732 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

You can add commenting to the code without having to enclose it within CDATA
sections by using the COMMENT element to wrap the comment:

<COMMENT>
Add your script component comments here
</COMMENT>

You might want to include a COMMENT section right after the first COMPONENT tag
to include general information about the component, such as the component cre-
ator, the date, and a brief description of the component. Other comments can be
used within the script itself to document your code.

In addition to IMPLEMENTS, SCRIPT, and COMMENT, you can also add a reference
to an object to the component file with the OBJECT element, and the object will be
instantiated when your component is accessed. The OBJECT element has an id
attribute used to identify the object in your script. In addition, the progid and
classid attributes are used to provide some way of specifying the object you
want to access within your script component.

Earlier, in Example 23-5, you created a script component that provided only a
classid in its registration section. That component iterates through the ServerVari-
ables collection from the Request object and lists each of the name-value pairs in
the collection. In Example 23-9, we’ll instantiate this component from within a
new script component.

Create a new script component in a file named asp2305.wsc that uses the OBJECT
element to instantiate the component from Example 23-5 and call its one method;
its source code is shown in Example 23-9. This component, unlike earlier exam-
ples, does not include the IMPLEMENTS element, since none of the ASP built-in
objects are being accessed. As you can see in Example 23-9, your new compo-
nent has a progid of asp2305.vbcomp4 and only one method, callObject. All this
method does is call the prntAllSrvVars method of the external component.

Example 23-9. Component That Instantiates Another Component Using OBJECT and the
Component’s Classid

<?xml version="1.0"?>
<component>

<registration progid="asp2305.vbcomp4"/>

<object id="obj" classid="clsid:d730573e-9a74-48f7-99f1-c065eef4803d" />

<public>
<method name="callObject" />

</public>

<script language="VBScript">
<![CDATA[

,ch23.21062 Page 732 Thursday, February 22, 2001 1:37 PM

Script Components and ADO 733

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When this new component is called from an ASP page, asp2305.asp, it calls the
method on the external component, and the results are printed out to the page:

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2305.vbcomp4")

' call method
obj.callObject
%>
</BODY>
</HTML>

Though the component in Example 23-9 didn’t implement the ASP
interface handler, the included external object from Example 23-5
did, which is why the Request and Response ASP objects are avail-
able for the external component.

There is a last WSC element to examine, which we’ll look at in the context of
working with data (using ADO).

Script Components and ADO
Most ASP components provide some form of data manipulation, and script compo-
nents are no exception. It’s fairly simple to use ADO within script components—
you can always use the OBJECT element to instantiate the ADO objects, or use a
variation of CreateObject in the script. However, one problem that remains is that
using automation does not provide access to the type library and, more impor-
tantly, to the type library constants defined for use with the ADO objects.

To provide support for type libraries, the WSC has another element, the REFERENCE
element, used to include a reference to a type library from the script component.

Sub callObject()

 obj.prntAllSrvVars

End Sub

]]>
</script>
</component>

Example 23-9. Component That Instantiates Another Component Using OBJECT and the
Component’s Classid (continued)

,ch23.21062 Page 733 Thursday, February 22, 2001 1:37 PM

734 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To reference a type library, you can specify a progid for a component that can
then be used to derive the type library, or you can specify the type library GUID. If
more than one version of the type library exists in the system, you can even spec-
ify the version of the library that you want to access, with the version attribute.

To demonstrate how to include the ADO type library within a scripting compo-
nent, create another script component in a file named asp2306.wsc; its source
code is shown in Example 23-10. This component has a progid of asp2306.dacad
and includes one method, displayFiles. The method has one parameter, named
strDirectoryId. The new component accesses the Weaver database and finds
all script web pages that are contained within a directory identified by a given
directory identifier. A join is made on two tables, WebPage and ScrptWebPage, to
return the page’s name, filename, scripting language, and version.

The script for the component creates ADO Connection and Recordset objects using
the CreateObject automation function. Next, it sets the Connection’s Connection-
String string to use the SQL Server OLE DB Provider to connect to the Weaver
database on the local server. Once this connection string is defined, the connec-
tion is opened.

The Weaver database is discussed in more detail in Appendix B. You
can also modify the connection string to use the OLE DB Provider
for ODBC and to connect to the Access version of Weaver if you
prefer.

The Recordset object has several properties that are set in the script, including the
ActiveConnection property (set to the Connection object just opened), as well as
the CursorType, CursorLocation, and Source properties. The CursorType holds the
type of cursor and is set to the ADO constant adOpenForwardOnly for a forward-
only result set that can be traversed once. The CursorLocation value is set to use
the client-side cursor, indicated with the adUseClient constant. The Source prop-
erty is set to an embedded SQL string.

Without the ability to reference the type library with the REFERENCE element, val-
ues for the ADO constants would have to be used within the script component—
something to avoid, since these underlying values may change in the future. How-
ever, as can be see in Example 23-10, the use of the REFERENCE tag allows you to
use the constants directly.

Example 23-10. Referencing the ADO Type Library and Performing a Query Against a
Database

<?xml version="1.0"?>
<component>

,ch23.21062 Page 734 Thursday, February 22, 2001 1:37 PM

Script Components and ADO 735

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

<registration
description="Developing ASP Components -- adocomp"
progid="asp2306.dacado"

/>

<public>
<method name="displayFiles">

 <parameter name="strAuname" />
 </method>
</public>

<implements type="ASP"/>

<reference object="ADODB.Connection.2.6" />

<script language="VBScript">
<![CDATA[

Sub displayFiles(strDirectoryId)

 ' create and open connection
 Set cnn = CreateObject("ADODB.Connection")
 cnn.ConnectionString = "provider=SQLOLEDB;server=FLAME;uid=sa;
 pwd=;database=weaver"

 cnn.Open

 ' create and open recordset
 Set rs = CreateObject("ADODB.Recordset")
 Set rs.ActiveConnection = cnn
 rs.CursorLocation = adUseClient
 rs.CursorType = adOpenForwardOnly
 rs.Source = "select name, filename, script_language, script_version " _
 & "from Webpage, ScrptWebPage " _
 & "where webpage_id = id and " _
 & " directory_id = " & strDirectoryId & " " _
 & " order by script_language, script_version, name"

 rs.Open

 ' process results
 Dim strResult

 If rs.RecordCount > 0 Then
 Do Until rs.EOF
 strResult = strResult & rs.Fields.Item("name") & " -- " _
 & rs.Fields.Item("filename") & " -- " _
 & rs.Fields.Item("script_language") & ", " _
 & rs.Fields.Item("script_version") & "<P>"
 rs.MoveNext

Example 23-10. Referencing the ADO Type Library and Performing a Query Against a
Database (continued)

,ch23.21062 Page 735 Thursday, February 22, 2001 1:37 PM

736 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The ASP page that uses the new component is relatively simple. It creates an
instance of the component and calls the component method, passing to it the iden-
tifier of a specific directory, as defined in asp2306.asp and shown in Example 23-11.

If you’re interested in working with ADO in script components,
check out Chapter 8, Creating ASP/ADO Components, and Chapter 9,
Creating an ASP Middle Tier with ADO. In fact, the code for most of
the Visual Basic examples in the book should work almost as well
with script components using VBScript, except that VBScript has
only one datatype—Variant.

The WSC Wizard
You’ve built all of the examples in this chapter by hand (or you’ve copied them
from the downloaded source code). However, an easier approach to building a

 Loop
 Else
 strResult = "No Records Found"
 End If

 ' print out using Response
 Response.Write("<H3>Results of query are:</H3>")
 Response.Write(strResult)

End Sub

]]>
</script>

</component>

Example 23-11. ASP Page That Tests ADO Script Component

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2306.dacado")

' call method
obj.displayFiles 30
%>
</BODY>
</HTML>

Example 23-10. Referencing the ADO Type Library and Performing a Query Against a
Database (continued)

,ch23.21062 Page 736 Thursday, February 22, 2001 1:37 PM

The WSC Wizard 737

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

script component can be to use the Windows Script Components Wizard to gener-
ate the WSC file, complete with preset WSC element specifications, and then add
your own script.

The wizard can be downloaded from Microsoft’s Scripting web site at http://msdn.
Microsoft.com/scripting/. Once downloaded and installed, it’s very easy to use the
tool to generate a component. For instance, let’s use the wizard to create a compo-
nent in a file named asp2307.wsc, with a progid of asp2307.comp. When you
start the Wizard and add the information, it should look similar to the image
shown in Figure 23-2.

On the next page of the wizard, provide the characteristics of the component. For
the example, set the component’s scripting language to VBScript, check the Sup-
port Active Server Pages option, and enable Error Checking.

The third page allows you to define properties for the component. In the case of
our example component, the component will perform either HTML or URL encod-
ing of any string passed to it, depending on the value of a flag that determines the
type of encoding to be used. To implement this functionality, create a property to
hold the current type of encoding, name the property m_encode, set it to Read/
Write, and set it to a default value of HTML, for HTML encoding by default.
Figure 23-3 shows the wizard page with the property defined.

Figure 23-2. First page of WSC Wizard, creating a new script component

,ch23.21062 Page 737 Thursday, February 22, 2001 1:37 PM

738 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the next wizard page, define a single method for the component. Name the
method encodeString. It has one parameter, named strEncString. Clicking on
the Next button opens the window to add events; since you aren’t adding any
events to the component, click the Next button again to bring up the last page of
the wizard. This page provides a summary of the component, and clicking on the
Finish button creates the component file.

The new file, shown in Example 23-12, is created with all the necessary WSC ele-
ments, such as COMPONENT, REGISTRATION, IMPLEMENTS, PUBLIC, and SCRIPT, in
place. In addition, the file already contains the definitions for the component’s
method and property, as well as a progid and a generated classid for registration.
Within the Script block, the get and put methods have been created to handle the
property, and the property has been defined. Finally, as shown in Example 23-12,
a prototype for the method encodeString has also been added to the component.

Figure 23-3. Wizard with one property defined

Example 23-12. Component Shell Generated by WSC Wizard

<?xml version="1.0"?>
<component>

<?component error="true" debug="false"?>

<registration
description="asp2307"
progid="asp2307.comp"
version="1.00"

,ch23.21062 Page 738 Thursday, February 22, 2001 1:37 PM

The WSC Wizard 739

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Notice the <? component ?> processing instruction in the example. This is used to
turn on error checking or script debugging within the component. In this exam-
ple, we turned on error checking but left off debugging.

Read more about and access the script debugger at Microsoft’s
Scripting site, http://msdn.microsoft.com/scripting/.

All that’s left to do with the component is to add the actual code for this method.

classid="{03daa5ce-e7a4-47cf-9e32-72d224526965}"
>
</registration>

<public>
<property name="m_encode">

<get/>
<put/>

</property>
<method name="encodeString">

<PARAMETER name="strEncString"/>
</method>

</public>

<implements type="ASP" id="ASP"/>

<script language="VBScript">
<![CDATA[

dim m_encode
m_encode = "HTML"

function get_m_encode()
get_m_encode = m_encode

end function

function put_m_encode(newValue)
m_encode = newValue

end function

function encodeString(strEncString)
encodeString = "Temporary Value"

end function

]]>
</script>

</component>

Example 23-12. Component Shell Generated by WSC Wizard (continued)

,ch23.21062 Page 739 Thursday, February 22, 2001 1:37 PM

740 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Replace the current functionality (assigning a return string value), with the new
code. This code checks the m_encode property: if the value is HTML, your code
uses the HTMLEncode method of the ASP Server object to encode the string; if
URL, your code uses URLEncode:

 Dim str
 If m_encode = "HTML" Then
 str = Server.HTMLEncode(strEncString)
 Else
 str = Server.URLEncode(strEncString)
 End If

 encodeString = str

Once the body of the component method has been replaced with the new code,
register the component and then create the test page.

The ASP test page asp2307.asp, which is shown in Example 23-13, creates the new
component and calls the encodeString method, passing it a string with HTML tags.
The value returned by the method is then displayed. The page then sets the com-
ponent’s m_encode property to URL and calls the method again, this time passing
the method a string containing URL characters. Again, the string returned by the
method is displayed.

The result of running this example is a page with two encoded strings, similar to
the following:

<h1>Hello</h1>
http%3A%2F%2Fwww%2Esomecompany%2Ecom%3Ftest%3Dvalue

Example 23-13. ASP Page Testing Wizard-Generated Component

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2307.comp")

' call method
Dim str
str = obj.encodeString("<h1>Hello</h1>")
Response.Write str
Response.Write("<P>")

' change encode
obj.m_encode = "URL"
str = obj.encodeString("http://www.somecompany.com?test=value")
Response.Write str
%>
</BODY>
</HTML>

,ch23.21062 Page 740 Thursday, February 22, 2001 1:37 PM

Creating Script Components with JScript 741

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

So far, all of the examples we have looked at have used VBScript for the scripting
language. However, script components can use other scripting languages such as
JScript, demonstrated next.

Creating Script Components with JScript
Scripting components can be written in other ASP scripting languages such as
JScript. The WSC elements are exactly the same, only the scripting language is
changed with the SCRIPT element, and the script itself is written in the new lan-
guage.

There is one difference between VBScript components and those created using
JScript. With JScript, you must define a new JavaScript object and assign the meth-
ods defined for the component to this new object. To better understand this, use
the WSC Wizard to create a new component named asp2308.wsc, with a progid
set to asp2308.jscomp. In the second page of the wizard, instead of picking
VBScript, click on the JScript radio button, as shown in Figure 23-4.

The new component that we’re creating will have one method that lists the name-
value pairs in the Request object’s ServerVariables collection. However, how the
values are listed differs from earlier examples—a component property holds a value
that determines which HTML tag is used to separate the values. This property could
be set to the HTML break tag (
) or to the HTML paragraph tag (<P>).

Figure 23-4. WSC Wizard page defining characteristics of a new component

,ch23.21062 Page 741 Thursday, February 22, 2001 1:37 PM

742 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In the property definition page of the wizard, name the new property m_break, set
it to be read/write, and give it a default value of
. In the method definition
page of the wizard, name the new method prntAllSrvVars; it takes no parameters.

The file that’s generated is very similar to the one we generated earlier for
Example 23-12, but this time a new method is added to the file: a constructor for
the object with the same name as the ASP component itself, in this case asp2308.
This JavaScript object is necessary to access the component and its methods and
properties as an object; without this constructor the component wouldn’t work:

var description = new asp2308;

function jscomp()
{

this.get_m_break = get_m_break;
this.put_m_break = put_m_break;

this.prntAllSrvVars = prntAllSrvVars;
}

The component property get and set methods, as well as the component’s exter-
nal method, are added as methods to the new JScript object.

When you instantiate the script component, you’re really getting a reference to this
JavaScript object; when you call the component methods, you’re really calling the
JavaScript object’s methods.

To finish, add code to the prntAllSrvVars method to access and print the values
from the ServerVariables collection. Use the JScript Enumerator object to help
your code iterate through the ServerVariables collections. The complete compo-
nent file is shown in Example 23-14.

Example 23-14. JScript Script Component That Iterates Through the ServerVariables Collection,
Printing Out Each Value

<?xml version="1.0"?>
<component>

<registration
description="jscomp"
progid="asp2308.jscomp"
version="1.00"
classid="{135e517d-ccd3-4270-a589-e6e8cd9c5204}"

>
</registration>

<public>
<property name="m_break">

<get/>
<put/>

</property>

,ch23.21062 Page 742 Thursday, February 22, 2001 1:37 PM

Creating Script Components with JScript 743

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

<method name="prntAllSrvVars">
</method>

</public>

<implements type="ASP" id="ASP"/>

<script language="JScript">
<![CDATA[

var description = new asp2308;

function asp2308()
{

this.get_m_break = get_m_break;
this.put_m_break = put_m_break;

this.prntAllSrvVars = prntAllSrvVars;
}

var m_break = "
";

function get_m_break()
{

return m_break;
}

function put_m_break(newValue)
{

m_break = newValue;
}

function prntAllSrvVars()
{

 //Create an Enumerator object.
 var myvars = new Enumerator(Request.ServerVariables);

 //Iterate
 while (!myvars.atEnd())
 {
 var x = myvars.item();
 Response.Write(x + " = " + Request.ServerVariables(x) + m_break);
 myvars.moveNext();
 }
}

]]>
</script>

</component>

Example 23-14. JScript Script Component That Iterates Through the ServerVariables Collection,
Printing Out Each Value (continued)

,ch23.21062 Page 743 Thursday, February 22, 2001 1:37 PM

744 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To test the new JScript component, create a new ASP test page in a file named
asp2308.asp, as shown in Example 23-15. In the page, the JScript object is instanti-
ated, and the prntAllSrvVars method is called. The component’s m_break property
is changed to the HTML paragraph tag (<P>) and prntAllSrvVars is called again.

The web page returned from the test page contains two listings of the Request
object’s ServerVariables collection: the first listing shows the values separated by
line breaks (through the use of
); the second shows the values separated by
paragraphs (through the use of <P>).

Accessing Windows 2000 Functionality
Scripting component access isn’t limited to just ADO and the built-in ASP objects—
you can access much of the Windows 2000 functionality, such as Active Directory
and MSMQ.

Chapter 13, Working with MSMQ Components, has a component written in Visual
Basic that has a method that wrote three messages to a specific MSMQ message
queue. The method was shown in Example 13-5 and is repeated here in
Example 23-16 for ease of comparison.

Example 23-15. Creating a JScript Script Component, Setting Its Properties, and Calling Its
Methods

<HTML>
<HEAD>
<BODY>
<%
Dim obj
Set obj = Server.CreateObject("asp2308.jscomp")

obj.prntAllSrvVars

obj.m_break = "<p>"

obj.prntAllSrvVars
%>
</BODY>
</HTML>

Example 23-16. Original VB Component—Sending a String Message to a Queue

Sub sendStringMessage(ByVal strQueue As String, _
 ByVal strLabel As String, _
 ByVal strMessage As String)

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As New MSMQMessage

,ch23.21062 Page 744 Thursday, February 22, 2001 1:37 PM

Accessing Windows 2000 Functionality 745

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The component also had a method that then accessed the message queue and
wrote the messages to the web page. This method was shown in Example 13-6,
and is repeated here in Example 23-17.

' open queue for sending
qInfo.PathName = ".\" & strQueue
qInfo.Label = strLabel
Set qQueue = qInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

If qQueue.IsOpen = 1 Then
 ' define message
 qMessage.Body = strMessage

 ' now send it
 qMessage.Send qQueue

 ' close queue
 qQueue.Close
End If

End Sub

Example 23-17. Original VB Component—Method to Get All Messages on a Specific Queue and
Print the Message If It’s a String Type

Sub readStringMessage(ByVal strQueue As String, _
 ByVal strLabel As String)

' get response object from objectcontext
Dim objContext As ObjectContext
Dim objResponse As Response

Set objContext = GetObjectContext()
Set objResponse = objContext("Response")

Dim qInfo As New MSMQQueueInfo
Dim qQueue As MSMQQueue
Dim qMessage As MSMQMessage
Dim varObject As Variant

' open queue for reading
qInfo.PathName = ".\" & strQueue
qInfo.Label = strLabel
Set qQueue = qInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE)

' check to see if queue is open
' if it is, receive first message which removes message from queue
If qQueue.IsOpen = 1 Then
 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)

 ' loop through messages
 While Not (qMessage Is Nothing)
 varObject = qMessage.Body

Example 23-16. Original VB Component—Sending a String Message to a Queue (continued)

,ch23.21062 Page 745 Thursday, February 22, 2001 1:37 PM

746 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To see for yourself that most Visual Basic ASP components can port to VBScript
scripting components, you’ll port this component from Visual Basic to a new
scripting component—with no change in functionality.

First, create a new file named asp2309.wsc and add the registration section, pro-
viding a progid of asp2309.msmq. Following this, add two METHOD definitions:
one for a method called sendStringMessages that has three PARAMETER elements,
and one for a method named readStringMessages with two PARAMETER elements.

The scripting component implements ASP and also includes a reference to the
MSMQ.MSMQMessage object to have access to the MSMQ type library constants.

As shown in Example 23-18, the scripting component subroutines are virtually
identical to those created in Visual Basic. In fact, the subroutines are direct copies
of the VB methods, except for three key differences. First, all data types are
removed, since VBScript supports only the Variant data type. Second, the instances
of MSMQQueueInfo and MSMQMessage that were created using the New operator in
VB must be created using the CreateObject automation method in VBScript.
Finally, the technique of assigning a specific optional argument in VB using a
named argument, as in:

qQueue.Receive(ReceiveTimeout:=500)

is not supported in VBScript. Instead, leave the optional parameters blank until
you get to the parameter you want to utilize:

 Set qMessage = qQueue.Receive(, , ,500)

Other than handling these three differences and providing the WSC framework,
there are no other code modifications necessary to port the VB component to a
scripting component.

 If TypeName(varObject) = "String" Then
 objResponse.Write varObject
 End If
 objResponse.Write "
"
 Set qMessage = qQueue.Receive(ReceiveTimeout:=500)
 Wend

 ' close queue
 qQueue.Close
End If

End Sub

Example 23-18. Scripting Component Ported from Existing VB Component

<?xml version="1.0"?>
<component>

Example 23-17. Original VB Component—Method to Get All Messages on a Specific Queue and
Print the Message If It’s a String Type (continued)

,ch23.21062 Page 746 Thursday, February 22, 2001 1:37 PM

Accessing Windows 2000 Functionality 747

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

<registration
description="Developing ASP Components -- MSMQ"
progid="asp2309.msmq"/>

<public>
<method name="sendStringMessage">

 <parameter name="strQueue" />
 <parameter name="strLabel" />
 <parameter name="strMessage" />
 </method>
 <method name="readStringMessage">
 <parameter name="strQueue" />
 <parameter name="strLabel" />
 </method>
</public>

<implements type="ASP"/>

<reference object="MSMQ.MSMQMessage" />

<script language="VBScript">
<![CDATA[

' send messages
Sub sendStringMessage(ByVal strQueue, _
 ByVal strLabel, _
 ByVal strMessage)

Dim qInfo
Dim qQueue
Dim qMessage

Set qInfo = CreateObject("MSMQ.MSMQQueueInfo")
Set qMessage = CreateObject("MSMQ.MSMQMessage")

' open queue for sending
qInfo.PathName = ".\" & strQueue
qInfo.Label = strLabel
Set qQueue = qInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

If qQueue.IsOpen = 1 Then
 ' define message
 qMessage.Body = strMessage

 ' now send it
 qMessage.Send qQueue

 ' close queue
 qQueue.Close
End If

End Sub

Example 23-18. Scripting Component Ported from Existing VB Component (continued)

,ch23.21062 Page 747 Thursday, February 22, 2001 1:37 PM

748 Chapter 23: Creating Scripting Language Components

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After you’ve added the code in Example 23-18 to asp2309.wsc, register it.

To test the scripting component, first create a test queue to use. You’ll use the
existing component created in Chapter 13, asp1301.msgqueue, to create the com-
ponent. It can be accessed using the following ASP page, asp2309.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp1301.msgqueue")
obj.newPublicQueue "wsc", "Scripting Component"

%>

' read messages
Sub readStringMessage(ByVal strQueue, _
 ByVal strLabel)
Dim qInfo
Dim qQueue
Dim qMessage
Dim varObject

Set qInfo = CreateObject("MSMQ.MSMQQueueInfo")
Set qMessage = CreateObject("MSMQ.MSMQMessage")

' open queue for reading
qInfo.PathName = ".\" & strQueue
qInfo.Label = strLabel
Set qQueue = qInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

' check to see if queue is open
' if it is receive first message which removes message from queue
If qQueue.IsOpen = 1 Then
 Set qMessage = qQueue.Receive(, , ,500)

 ' loop through messages
 While Not (qMessage Is Nothing)
 varObject = qMessage.Body
 If TypeName(varObject) = "String" Then
 Response.Write varObject
 End If
 Response.Write "
"
 Set qMessage = qQueue.Receive(, , ,500)
 Wend

 ' close queue
 qQueue.Close
End If

End Sub
]]>
</script>

</component>

Example 23-18. Scripting Component Ported from Existing VB Component (continued)

,ch23.21062 Page 748 Thursday, February 22, 2001 1:37 PM

Accessing Windows 2000 Functionality 749

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Next, to add messages to the new queue, call the scripting component’s send-
StringMessages method from the following ASP page, asp2310.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2309.msmq")

obj.sendStringMessage "wsc", "Scripting Component", _
 "This is the first message"
obj.sendStringMessage "wsc", "Scripting Component", _
 "This is the second message"
obj.sendStringMessage "wsc", "Scripting Component", _
 "This is the third message"
%>

Finally, call the scripting component’s readStringMessages method from a third
ASP test page, asp2311.asp:

<%
Dim obj
Set obj = Server.CreateObject("asp2309.msmq")

obj.readStringMessage "wsc", "Scripting Component"

%>

When you access asp2311.asp, three lines should print to the web page:

This is the first message
This is the second message
This is the third message

Once you’ve ported the MSMQ VB component to a scripting component, take a
look at the other Visual Basic components shown in Chapters 7 through 13. You’ll
find that many of these examples should port, with similar, minor modifications, to
scripting components written in VBScript, and even other supported scripting lan-
guages.

,ch23.21062 Page 749 Thursday, February 22, 2001 1:37 PM

,ch23.21062 Page 750 Thursday, February 22, 2001 1:37 PM

751
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Appendix A

A
ASP Built-in Object

Quick Reference

The built-in ASP objects provide the interaction between the server application
and the client and with the environment. Normally, the objects are accessed from
within script instead of within components, but there might be times—such as
when a component processes a form’s contents—when you’ll want to access the
ASP objects from within your components.

This appendix covers the basic ASP objects you’d access from within components,
including demonstrations of the objects’ methods and properties using VBScript
and JScript.

The Application Object
The Application object is used to create variables and values that are accessible by
all sessions and all users of a common ASP application. Remember that an ASP
application consists of all the ASP files within a virtual ASP directory and all subdi-
rectories contained within this same directory. An Application object is created
when the first page of the ASP application is accessed by a client after the web
server for the application is started. The Application object lasts until the web
server is shut down. As the Application object’s sole purpose is to provide a com-
mon area for sharing information, it has two methods, Lock and Unlock, which are
used to lock the Application object while one of the object’s data values is being
modified and to free it so that it can be accessed by other processes. The Applica-
tion object also has two collections, Contents and StaticObjects, which contain val-
ues that are declared within server-side scripts and within the Global.asa file,
respectively.*

* If you are not familiar with the term collection, it is a predefined array structure used to hold known
types of data structures, both complex and simple.

,appa.21191 Page 751 Thursday, February 22, 2001 1:37 PM

752 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Application object also has two events, Application_OnEnd and Application_
OnStart. Code can be created to provide event handling whenever the ASP appli-
cation is started or at the application’s end. Again, these events can be coded
using script within the Global.asa file.

The Global.asa File and StaticObjects

Each ASP application has one, and only one, Global.asa file, and it is located in
the root directory for the application. Your application can use it to add scripted
events at the application or session level and to add application- and session-level
component instances to the ASP application.

An application component is an instance of an ASP object that exists for the life of
the application and is shared by all sessions accessing the same application. An
example of such a component is a counter, which is incremented each time a par-
ticular page is accessed or some other activity occurs. This component is not reset
for each person, but once for the application itself or for some other significant
event. When all pages within the application access the component, they are
accessing the same component and the same value. Additionally, the component
can be persisted, with the value periodically saved to a file in case some problem
occurs and the ASP application or the web server hosting the application is
stopped. When the application is restarted, the saved value is accessed and the
counting process begins from that point.

Note that an ASP application is started when a page within the appli-
cation is accessed, not when the web server hosting the application
is started.

To follow through on the counter example and to demonstrate how to create an
application-level component, Microsoft has created a Counters ASP component
that can be used anytime some form of counter is needed. The syntax to add this
component to the application is the following:

<OBJECT RUNAT=Server Scope=Application ID=PgCounter PROGID="MSWC.Counters">
</OBJECT>

The Scope attribute can take two values, Application or Session, depending on
whether the component is available for the entire application or only the specific
session. The ID is the identifier for the component instance and is the name used
to access the component from the Application object at runtime. The PROGID is
the program ID for the component class. Either a program ID or a specific CLSID
must be specified for the component. The format for the program ID is vendor.
component.version, with the vendor and version parts being optional, as long

,appa.21191 Page 752 Thursday, February 22, 2001 1:37 PM

The Application Object 753

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

as the values correspond to the registry entry for the component. A class ID fol-
lows the format for an OLE class identifier, explained in more detail in Chapter 3,
ASP Components and COM. The value for RUNAT is fixed at this time and only
takes the value of Server.

Once a component, in this case the Counter object instance, has been created
within the Global.asa file, any page within the entire ASP application can access it
using syntax similar to the following:

<% PgCounter.Set("ItemRF45",0) %>
There have been <%= PgCounter.Increment("ItemRF45") %>
copies of Item RF45 sold

In the example, the first line of server-side script sets the value of the counter to
zero (0). The second line increments the existing counter and then prints out the
results. Regardless of which ASP application page accessed the PgCounter
counter, the value set for the counter item ItemRF45 will be the same for all the
pages.

The StaticObjects collection of the Application object contains references to all
object instances created using the <OBJECT> tag within the Global.asa file. It is
provided as a means to iterate through all component instances created within
Global.asa and check for the existence of component instances, perhaps in an
application administration page that lets an administrator quickly see what compo-
nent instances have been added. Code for this display might be similar to the fol-
lowing:

<%
Dim obj
For Each obj in Application.StaticObjects %>
 Object Instance : <%= obj %> <p>
<% Next %>

In this example, each object is printed out to the web page returned to the client.

With ASP 3.0, you can remove items from a collection using the Remove method
to remove a specific item or the RemoveAll method to remove all members of the
Contents collection:

Application.Contents.RemoveAll

The advantage of using the <OBJECT> tag to create application-level components
is that all of the components are declared and maintained in one place. Also, the
component instance can be referenced directly, rather than having to be prefaced
with the Session or Application object, as will be demonstrated in the next sec-
tion. Finally, there is an improvement in application performance when a compo-
nent instance is defined with the <OBJECT> tag, since this type of component is
not instantiated until it is accessed. A component instance created using the Cre-
ateObject method, discussed next, is created instantly. This has little impact on an

,appa.21191 Page 753 Thursday, February 22, 2001 1:37 PM

754 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

application-level component, but it can make a difference with session-level com-
ponents.

Application Variables and Objects
and the Contents Collection

To create a variable that is available to all sessions of a specific application, you
can also use the following syntax:

<% Application("counter1") = 0 %>
<% Set Application("PageCounter") = Server.CreateObject("MSWC.PageCounter") %>

The first line of code shows how to create a scalar variable that is available
throughout the application. The second line of code creates a reference to an
object instance that is available for application-wide access. Both statements cre-
ate an entry within the Application object’s Contents collection, unlike objects cre-
ated in the Global.asa file, which adds entries to the StaticObjects collection.
However, code can access the values in this collection in the same manner as val-
ues are accessed in StaticObjects, as the following code demonstrates:

The counter is <%= Application.Contents("counter1") %>
<% Set tmp = Application.Contents("PageCounter") %>
The page has been visited <%= tmp %> times

Application components created using CreateObject can also be accessed directly
from the Application object, as the following demonstrates:

The counter is <%= Application("counter1") %>
<% Set tmp = Application("PageCounter") %>
The page has been visited <%= tmp %> times

The Application object reference must be used with objects created using Cre-
ateObject.

A handy technique to use to set initial values when an application starts is to code
for the Application_OnStart event within Global.asa and then access the applica-
tion global values throughout the application, as shown in the following short
scripting block:

<SCRIPT LANGUAGE=VBscript RUNAT=Server>
Sub Application_OnStart
 Application("tst") = "value1"
 Application("second") = "value2"
End Sub

</SCRIPT>

The Application object’s Application_OnEnd event can also be trapped to code for
handling of application-level values, perhaps by storing the values in files in order
to maintain some form of persistence for the item.

,appa.21191 Page 754 Thursday, February 22, 2001 1:37 PM

The Application Object 755

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Using the Lock and Unlock Methods

One problem with variables or objects that can be modified by different people at
the same time is that one person may access a variable and modify the variable at
exactly the same time another person accesses the same variable and performs the
same modification. The following scenario demonstrates the unexpected results:

1. Person A accesses the page with Application counter itemRF8, which tracks
the number of RF8 items that have been ordered. There are only 9 of these
items for sale, and 8 have been sold, so Person A can safely order item RF8.
The person places an order for the item.

2. In the meantime, Person B accesses the same page and wants to order the
same item. As the Application counter is not locked, she accesses this counter
and sees, as did Person A, that there is still one RF8 item for sale. This per-
son, too, places an order for the item.

3. Person A’s order has incremented the RF8 item counter as a part of the order
process, effectively blocking any other order from going through for the item,
since the total available is compared to the total sold for any item before an
order is allowed. However, Person B’s order has been allowed, since the num-
ber of items sold when Person B accessed the data was 8.

4. During order processing for Person B, the item counter is incremented, mean-
ing that the item counter is now set to a value of 10, and Person B has effec-
tively ordered something that doesn’t exist. Person B is not happy when she
doesn’t receive her item, needless to say.

An ASP developer does not want an updateable value to be accessed at the same
time that an update occurs. To prevent this, the Application methods Lock and
Unlock are used to lock out all access to the Application item until the update has
occurred. For the scenario just demonstrated, the code to perform this action is the
following:

<%
If (Application("itemRF8") < 9 Then
 Application.Lock
 Application("itemRF8") = Application("itemRF8") + 1
 Application.Unlock
End If
%>

A note of warning with the use of Lock and Unlock: when you lock the Applica-
tion object, you lock the object for all Application variables for all sessions. You
will want to lock and unlock the Application object quickly and minimize the
amount of code to run while the Application object is locked. Ideally, the only
code that should be run while the Application object is locked is the code to mod-
ify the Application variable value.

,appa.21191 Page 755 Thursday, February 22, 2001 1:37 PM

756 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

As stated earlier, Application components and variables last the lifetime of the
Application object. Session components and variables last for a specific session;
they are detailed next.

The Session Object
If the Application object manages object instances and variables at the ASP appli-
cation level, the Session object manages object instances and variables at the ses-
sion level. Session-level variables can be created for such uses as maintaining a
running balance for an online store, maintaining a connection to a client through
many ASP application pages, or even tracking the flow of a transaction to deter-
mine if all the transaction’s actions have completed successfully or not.

Unlike the Application object, a Session object is unique to a session and thus is
uniquely accessed by one client. Because of this, the Session object does not need
to be locked and unlocked during updates: only one client accesses any one ses-
sion variable or object at a time. Instead of the Lock and Unlock methods, the Ses-
sion object has a method called Abandon which can be used to destroy all Session
objects and release Session resources. Normally, the Session objects would be
freed when the session timed out, but if the ASP developer has an explicit logout
page, the Abandon method could be called to free up Session resources prior to a
timeout.

Another difference between the Session object and the Application object is how
object information is maintained. Application information is maintained by the
application web server and is not affected by any client-side setting. Session state,
however, is maintained using client-side cookies and works only if the client
accessing the ASP application supports cookies and allows cookies to be set.* The
SessionID that identifies the particular session is stored as a cookie and maintains
a connection between the client and the session variables stored on the web
server. If cookies are not supported or allowed, this SessionID property cannot be
maintained.

* If you haven’t worked with web development, a cookie is a small bit of information that is stored for a
set period of time on the client machine and is stored as a named value and keyed by the ASP applica-
tion path.

,appa.21191 Page 756 Thursday, February 22, 2001 1:37 PM

The Session Object 757

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ASP server-side scripting sets certain properties, such as the
CODEPAGE property (which is discussed in this section), using direc-
tives. Directives begin with an at sign (@) and are usually the first
line within the ASP page or the first line of a server-side scripting
block. An example of setting a directive that changes the scripting
language is the following, which changes the scripting language
from the default VBScript to JScript:

<%LANGUAGE=Jscript …%>

Properties that can be set with directives are CODEPAGE,
ENABLESESSIONSTATE, LANGUAGE, LCID, and TRANSACTION. If the
directive is not set, a default value is provided.

In addition to the SessionID property, other Session properties are the following:

CodePage
Sets the codepage to be used for the ASP file. A code page is for support of
internationalization and includes characters and glyphs specific to a language
and a locale. A default code page can be set in the @CODEPAGE directive.

LCID
The locale identifier. This identifier is a standard locale identifier used to dis-
play locale-specific content.

Timeout
The specific time period that determines when the session ends. If the client
has not accessed a page within the ASP application before the time period
ends, the session is ended. The default time period is 20 minutes.

Like the Application object, the Session object has both a StaticObjects collection,
containing all objects defined using the <OBJECT> tag in Global.asa, and a Con-
tents collection. As both collections behave identically for the Session object as for
the Application object, and the only difference is application scope, I won’t go into

Internationalization
As you can see, two of the Session properties have to do with support for inter-
nationalization, a concept to keep in mind when creating your own compo-
nents. Consider whether they are to be accessed by English-speaking people
only or whether they must support a broader audience. If they must support a
multilingual audience, check out the internationalization topics for ASP appli-
cations at Microsoft’s Developer Network pages, at http://msdn.microsoft.com.

,appa.21191 Page 757 Thursday, February 22, 2001 1:37 PM

758 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

detail on these objects, except to demonstrate how the Session object variables
and object instances are created.

To create a Session-level component in the Global.asa file, use the following syntax:

<OBJECT RUNAT=Server Scope=Session ID=PgCounter PROGID="MSWC.Counters">
</OBJECT>

This actually creates a counter that is available for the session only.

To create a Session variable using a script block, use syntax like this:

<% Session("variable1") = "somevalue" %>
<% Set Session("object1") = Server.CreateObject("MSWC.Counters") %>

Finally, to access objects created using the <OBJECT> tag, the ASP web developer
can use the StaticObjects collection. To access objects and variables created using
scripts, the ASP web developer can use the Contents collection or access the value
directly from the Session object, as shown in the following code block:

<%
Dim obj
For Each obj in Session.StaticObjects %>
 Object Instance : <%= obj %> <p>
<% Next %>
...

<% Session("itemRF8") = 1 %>
<% Session.Contents("itemRF8") = 1 %>
...
There have been <%= Session("itemRF8") %> items sold

As with the Application object, there are restrictions on which threading model can
be used with Session-level variables; you can read about this in Chapter 4, ASP
Components, Threads, and Contexts.

Again, whether to create session component instances using
<OBJECT> tags or CreateObject is up to the ASP developer, but there
is a performance improvement to using the <OBJECT> tags when
creating session-level components. Additionally, application mainte-
nance can be easier, since all application and session component
instances are created in the same place. A good choice is to use the
<OBJECT> tags to create both application and session component
instances.

The Server Object
The Server object is used to create instances of server component objects, which
can then be used within another component or within an ASP page. This includes

,appa.21191 Page 758 Thursday, February 22, 2001 1:37 PM

The Server Object 759

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

any of the ASP components demonstrated in this book. Components must be
instantiated before any of the component’s properties or methods are accessed.

There are actually two different techniques that can be used to create an ASP com-
ponent instance, as was demonstrated in the previous two sections. The first is to
use the <OBJECT> tag in the Global.asa file. The second uses the CreateObject
method of the Server object and assigns the results to a variable, as the following
code demonstrates:

<% Set PageCounter = Server.CreateObject("MSWC.PageCounter") %>

The ASP PageCounter component counts the number of times a web page is
accessed. This count is maintained within a file, and the file path and name are
stored as part of a Registry key. Once a local page-level reference to the Page-
Counter object is created, it can then be used to access the methods for this object,
in this case Hits, to access the number of page hits, and Reset, to set the counter
back to zero. The value returned from the Hits method can then be displayed
within the page, as the following code shows, or used for other purposes:

You are visitor #<%= PageCounter.Hits %> to
access this web page. I bet you really wanted to know this,
didn't you?

When the PageCounter component instance was created, it was defined to be of
local page scope only, meaning that the variable is destroyed when the web page
is unloaded.

The other methods for the Server object, in addition to CreateObject, are the
following:

HTMLEncode
Takes a string as a parameter and returns the same string with HTML encoding

MapPath
Maps a virtual or relative path to a path relative to the directory of the ASP file
being accessed

URLEncode
Takes a string as a parameter and returns the same string with URL encoding

If you have worked much with web applications, you are probably familiar with
URL and HTML encoding, and may want to skip the next few paragraphs.

Both HTTP and HTML have reserved characters, such as the angle brackets for
HTML and the plus sign (+) for HTTP. When these characters are used in a text
stream, such as name-value pairs appended to an URL to be sent to an applica-
tion, or within a web page, the reserved characters need to be encoded. This
ensures that the web server does not process the characters in the URL stream, and
the browser does not process the HTML reserved characters contained within the

,appa.21191 Page 759 Thursday, February 22, 2001 1:37 PM

760 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

web document. The characters are encoded as their hexadecimal equivalent, or
they can be encoded using predefined alias values. For instance, the HTMLEn-
code method applied to a string such as:

<%= Server.HTMLEncode("<H1>This is a header</H1>") %>

would print out a line in the web document as follows:

<H1>This is a header</H1>

but it would appear to the user viewing the web page in a browser as:

<H1>This is a header</H1>

rather than being processed as a header element and displaying the text as larger,
bolder script.

URL encoding relates to the text appended to an URL. Certain characters in the
text string have special meaning, such as the ampersand (&), which indicates an
additional name-value pair, or the equals sign (=), which separates the name-value
pair. Even spaces are encoded using the plus sign (+), meaning that a literal plus
sign within the text must itself be encoded.

An example of using the Server object URLEncode method to encode a string to
attach to an URL is shown in Example A-1. This small ASP page uses URLEncode
to create a set of name-value pairs, which are then attached to an URL within a
link in the page.

This URL-encoded string contains four name-value pairs, as you can see when you
view the source for this page. The target page, asp_d02.asp, then takes the name-
value pairs and displays them to the client.

Example A-1. Using the Server Object’s URLEncode Method

<%@ LANGUAGE = javascript %>
<HTML>
<HEAD>
<TITLE>URL Encoding</TITLE>
</HEAD>
<BODY>
<%
value = Server.URLEncode("last name") + "=powers&" +
 Server.URLEncode("special characters")+"=" +
 Server.URLEncode("+% &/!=#") + "&address=" +
 Server.URLEncode("1243 Some Avenue North, Some City, VT, 00000") +
 "&" +
 Server.URLEncode("Some other special characters:")+"=" +
 Server.URLEncode("%/.. . ! = && .. \/#");
%>

<a href="asp_d02.asp?<% = value %>">Test
</BODY>
</HTML>

,appa.21191 Page 760 Thursday, February 22, 2001 1:37 PM

The Request Object 761

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The only property that the Server object has is ScriptTimeout. This property can be
set to the number of seconds that any one script can run within the application
page, a useful technique to handle overly long scripting runs. If the script runs
longer than the allocated time, it is terminated and an error message is written to
the log file.

The Request Object
When a web page returns information to the server by appending it to a link or
posting it from a form, the information is collected in the Request object. The only
method the Request object has at this time is BinaryRead, which accesses the data
passed with the Request object as bytes and stores the value in a SafeArray—an
array that includes dimension information, such as bounds and the number of
dimensions of an array. The only property for the Request object, aside from sev-
eral collections which will be detailed in a moment, is TotalBytes. This property
gives the total number of bytes sent in the client request.

The Request object includes references to the query string, form field values, digi-
tal certificate information, and predefined environment variables; each of these val-
ues can be accessed as a collection. Which type of collection to access depends on
what type of information is needed within the ASP application and how the infor-
mation was sent from the client. The following are the collections that have been
defined for the Request object:

ClientCertificate
Contains information about the client certificate, if a client certificate is
requested by the server.

Cookies
Contains Netscape-style cookies sent as part of the HTTP request. A cookie
can contain multiple keys, each of which can be accessed as a group or
individually.

The IIS Metabase Values
A general attribute, AspScriptTimeout, is used to set the script timeouts gen-
erally for the web server. This attribute is one of the IIS Metabase values, which
replace the need for registry entries. Metabase values, unlike Registry values,
are preloaded into memory and have faster access times. To read more about
the Metabase, consult the documentation that comes with IIS 4.0/5.0.

,appa.21191 Page 761 Thursday, February 22, 2001 1:37 PM

762 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Form
Contains name-value pairs sent from a form using the POST form posting
method. Each form element becomes one entry in the Form collection.

QueryString
Contains name-value pairs sent using the form’s GET posting method or
appended to the end of the URL used to reference the ASP page. Each name-
value pair becomes one entry in the QueryString collection.

ServerVariables
Contains certain preselected environment variables, such as QUERY_STRING,
REMOTE_ADDR, and REQUEST_METHOD.

The collections are stored as name-value pairs, and to access the value, you enter
the name. For example, the following code will set a variable to a query string
value with a given name of “lastname”:

Dim Lastname
Lastname = Request.QueryString("lastname");

If the ASP page is opened using a hypertext link similar to the following, the value
of “lastname” would be set to “Powers”:

Open

Each of the collections is discussed and demonstrated in detail in the following
sections.

The ClientCertificate Collection

Server digital certificates are used to verify that a server application being accessed
is from the originating server, that it has not been improperly modified, and that it
is safe. Client certificates verify that the client is who the client claims to be. When
a client accesses a secure application located on a secure server, the web server
may then transmit the server digital certificate and request that the client submit
the client’s digital certificate. Once the client’s certificate information is transmitted
back to the server, a secure communication channel is established between the cli-
ent and the server.

When the server requests a digital certificate, the Request object returns digital cer-
tificate information in the ClientCertificate collection. Instead of generic data, the
ClientCertificate contains very specific information, detailed in the following list:

Certificate
Contains all of the certificate as a binary string.

Flags
Contain additional certificate information.

,appa.21191 Page 762 Thursday, February 22, 2001 1:37 PM

The Request Object 763

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Issuer
Contains subject values for the digital certificate issuer that can be accessed
independently, just as with the Subject collection item.

SerialNumber
Specifies the certificate serial number.

Subject
Contains subject values that can be accessed independently using the differ-
ent subject field names. Among these subject field names are C for company
name and L for locality.

ValidFrom
Specifies the start date for the certificate.

ValidUntil
Specifies the date when the certificate ends.

Before working with digital certificates, I suggest that you read the information on
the certificate process at the Microsoft Developer Network web site, at http://msdn.
microsoft.com.

The Cookies Collection

As stated earlier, the ASP Session object makes use of client-side cookies. In addi-
tion, the ASP developer can use client-side cookies to store persistent information
that relates to the specific client. The information can then be accessed the next
time the client accesses the ASP application.

Cookie information is accessed by the browser and by using the path of the docu-
ment being loaded as a key to finding whether any cookies exist for the specific
page within the client’s cookie file or directory. If so, the cookie name-value pairs
are added to the HTTP request for the page.

This same cookie information can be pulled from an HTTP request using the
Cookies collection. The cookie can be a scalar value, accessible by name for the
name-value cookie pair. Or the cookie can be part of a more complex cookie dic-
tionary, with the value itself being another name-value pair.

To access a cookie, use the following syntax:

<% tmp = Request.Cookies("first") %>

In this example, if the cookie named first existed, the value for first would be
returned; otherwise, an empty string would be returned. If the cookie itself con-
tained a name-value pair, or key, the key value can be accessed using the follow-
ing syntax:

<% tmp = Request.Cookies("first")("second") %>

,appa.21191 Page 763 Thursday, February 22, 2001 1:37 PM

764 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Unlike array elements in the other collections, the Cookies collection assumes a
named index for the second level of values. In addition, no other levels of values
are supported. An attribute, HasKeys, can be used to determine if a cookie is a
dictionary object or a scalar value. A value of True is returned if the cookie is a
more complex object; a value of False is returned if the cookie is not a complex
object.

Cookies can be created using client-side scripting, and this technique is explained
in detail at both Netscape’s and Microsoft’s web sites. Cookies can also be created
using server-side scripting and the Response object, discussed later in this chapter.

The Form Collection

If a form is posted using the POST method, the form field name-value pairs are
added to the Form collection rather than the QueryString collection. Usually, an
ASP developer will want to use the POST method rather than the GET method
because there is a limitation on the length of the string that can be appended to an
URL in a GET request. This length can easily be exceeded with a larger form. Addi-
tionally, it can be a bit intimidating to the client to see the long, encoded string
attached to the URL.

There is absolutely no difference in how the Form name-value pairs are accessed
compared to the QueryString pairs. The following code is how the values used in
Example A-2 would be accessed if the form had been posted instead of submitted
with GET:

<% name = Request.Form("name");
 address = Request.Form("address");
%>

A form field that can return multiple values can also have each value accessed
individually using the index value, just as with QueryString:

<% street_address1 = Request.Form("streetaddr")(1) %>

Additionally, the entire form contents can be accessed by reference to the Form
collection without providing a name with the Form collection. For collection
arrays, the entire array can be returned as a comma-delimited string by referenc-
ing the array name without providing an array index:

<% street_address1 = Request.Form("streetaddr") %>

The QueryString Collection

The QueryString collection is an array containing name-value pairs and is parsed
from the QUERY_STRING environment variable. Each specific entry within the col-
lection is accessible by its position as it occurs in the collection or by its name.

,appa.21191 Page 764 Thursday, February 22, 2001 1:37 PM

The Request Object 765

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

This collection has entries only if the ASP page is opened as a result of a form
request sent using the default GET method or if name-value pairs have been added
to the URL to access the page.

To add name-value pairs to an URL, the values must be URL
encoded, as discussed earlier in the section “The Server Object.”

As an example of accessing a value from the QueryString collection, if one page in
the ASP application contains a form with a field named name and the form was
posted using the GET method, accessing the specific field values can be done
using the following:

<% name = Request.QueryString("name");
 address = Request.QueryString("address");
%>

As stated, another way that the QueryString collection gets name-value pairs is if
the values are appended to the end of an URL, as was demonstrated in
Example A-1. That example showed how to encode strings to append to the URL.
The code in Example A-2 shows how the name-value pairs are accessed using the
QueryString collection and then displayed in an HTML table.

In this example, the page returned displays both the name of the name-value pair
and its associated value.

If the same name is given more than one value within a query string, the ASP
application creates an array of objects for a specific name within the QueryString

Example A-2. Using the Request Object QueryString Collection

<HTML>
<HEAD>
<TITLE>QueryString</TITLE>
<STYLE type="text/css">
 BODY { margin: 0.5in }
</STYLE>
<BODY>
<H1> QueryString name-value pairs </H1>
<TABLE border=0 width=90% cellspacing=5>

 <% For Each name In Request.QueryString %>
 <TR><TD> <% = name %></TD><TD> <% =Request.QueryString(name) %></TD></TR>
 <% Next %>

</TABLE>
</BODY>
</HTML>

,appa.21191 Page 765 Thursday, February 22, 2001 1:37 PM

766 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

collection. So if I use the following string within a hypertext link URL, I end up
with a named array instead of a scalar value for the name test:

Test

To access the individual values for test requires code similar to the following:

<%
 test1 = Request.QueryString("test")(1);
 test2 = Request.QueryString("test")(2);
 test3 = Request.QueryString("test")(3);
%>

Notice that, unlike JavaScript arrays, the first index for a collection array begins
with the value 1 instead of 0. Also, the QueryString collection object and array
index references use parentheses instead of square brackets regardless of the
scripting language used. The same holds true for all built-in object collections.

To find out if a specific element within the QueryString collection is an array
object, you can access the Count property for the element, which returns the num-
ber of elements that make up the object. In the previous example, the following
would print out the value 3:

The number of text objects is <%= Request.QueryString("test").Count %>

You can also access all of the values for a collection array element at once by
accessing it without using an index. The value returned is a list of the values sepa-
rated by commas. Additionally, if you want to access all of the QueryString data
without parsing it, access the QueryString collection name directly without specify-
ing a name:

The data sent is <%= Request.QueryString %>

Again, the result returned is the name-value pairs as sent with the original request.

The ServerVariables Collection

There are certain environment variables available with any HTTP client-server
transaction. Some of the variables—such as QUERY_STRING, which contains the
query string sent with an HTTP request—have been discussed already. Other val-
ues include cookies, the type of browser making the request, client certificate
information, information about the remote connection, the client language, and a
host of other information. All of these environment variables can be accessed via
the ServerVariables collection.

Example A-3 has the code for an ASP page that displays the contents of the Server-
Variables collection. Try this page in your own environment to see what informa-
tion you have access to in your development effort.

,appa.21191 Page 766 Thursday, February 22, 2001 1:37 PM

The Request Object 767

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The environment variables accessible via the Request object are shown in Table A-1.

Example A-3. Using the Request Object ServerVariables Collection

<HTML>
<HEAD>
<TITLE>Server Variables</TITLE>
<STYLE type="text/css">

BODY { margin: 0.5in }
</STYLE>
<BODY>
<H1> Server Variables </H1>
<TABLE border=0 width=90% align=center cellspacing=5>
<% For Each name In Request.ServerVariables %>
<TR><TD> <% = name %></TD><TD> <% =Request.ServerVariables(name) %></TD></TR>
<% Next %>
</TABLE>
</BODY>
</HTML>

Table A-1. Members of the Request Object’s ServerVariables Collection

Variable Description

ALL_HTTP - HTTP All HTTP headers sent by the client

ALL_RAW All data sent in raw form by the client

APPL_MD_PATH Metabase path for the application

APPL_PHYSICAL_PATH Actual physical pathname for the application

AUTH_PASSWORD Contains the password if Basic authentication is used

AUTH_TYPE Authentication type

AUTH_USER Authenticated user

CERT_COOKIE Unique ID for a client certificate

CERT_FLAGS Flags to determine if a certificate is present and valid

CERT_ISSUER Client certificate issuer field

CERT_KEYSIZE Secure Sockets Layer bit key size

CERT_SECRETKEYSIZE Server certificate private bit key size

CERT_SERIALNUMBER Certificate serial number

CERT_SERVER_ISSUER Server certificate issuer

CERT_SERVER_SUBJECT Server certificate subject

CERT_SUBJECT Client certificate subject

CONTENT_LENGTH Client content length, defined by the client

CONTENT_TYPE Content data type, used with attached data only

GATEWAY_INTERFACE The CGI revision

HTTPS Set to on if request is from a secure server; otherwise set to
off

HTTPS_KEYSIZE SSL connection key size

,appa.21191 Page 767 Thursday, February 22, 2001 1:37 PM

768 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There are several variables that appear in the ServerVariables collection when the
code from Example A-3 is run, but that are not documented in the ASP documen-
tation. These all have to do with the HTTP request, such as the HTTP cookie,
HTTP host, and language. As undocumented variables can be dropped or altered
without advance notice from Microsoft, I won’t document them here.

Accessing a Value Without a Collection

Values can be accessed directly from the Request object, rather than having to use
any of the collections. The web server searches through the collections in a spe-
cific order and returns the first value for the given name that it finds. So, if the ASP
developer enters a name request as follows:

<% tmp = Request("temp") %>

HTTPS_SECRETKEYSIZE Size of secure server certificate key size

HTTPS_SERVER_ISSUER Secure server certificate issuer

HTTPS_SERVER_SUBJECT Secure server certificate subject

INSTANCE_ID IIS instance ID

INSTANCE_META_PATH IIS instance Metabase path

LOCAL_ADDR Server address of request

LOGON_USER NT account user is logged into

PATH_INFO Path information of ASP application page

PATH_TRANSLATED A virtual to physical path translation

QUERY_STRING The query string

REMOTE_ADDR IP address of remote host

REMOTE_USER Name supplied by user and without any filter being applied

REQUEST_METHOD Method of request, such as GET or POST

SCRIPT_NAME Virtual path of script

SERVER_NAME IP or DNS alias of server; localhost is the loopback
address of 127.0.0.1

SERVER_PORT Name and revision of request port

SERVER_PORT_SECURE Set to 0 if request is not through secure port, otherwise set
to 1

SERVER_PROTOCOL Request information protocol, such as HTTP/1.0

SERVER_SOFTWARE The web server; the examples in this book were run
against Microsoft-IIS/4.0 Beta 2, which is the second beta
release for IIS, version 4.0

URL Base URL

Table A-1. Members of the Request Object’s ServerVariables Collection (continued)

Variable Description

,appa.21191 Page 768 Thursday, February 22, 2001 1:37 PM

The Response Object 769

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the server first searches through the QueryString collection, then the Form collec-
tion, the Cookies collection, the ClientCertificate collection, and finally through
ServerVariables. As the same name can be used for an object listed in more than
one collection, it might be safer to use the collection name whenever the dupli-
cate use of a name is possible.

The Response Object
If a request is information sent from the client to the server, a response is output to
a client from the server, and the Response object is used to send this information.
This can include HTTP header information, as well as output used to create the
HTML web page. Because some of this information is part of the document
header, some calls to Response object methods have to be made before any other
HTML is written for the document page, unless Response buffering (discussed in
the next section) is enabled.

Unlike the Request object, the Response object has only one collection, the Cook-
ies collection. This collection allows for creating and setting the value of cookies
on the client machine.

The following are the Response object properties:

Buffer
A flag to determine whether Response output is buffered until the server script
is finished processing or until a buffer output is forced

CacheControl
A flag to determine whether proxy servers can cache ASP-generated output

Charset
HTTP response character set

ContentType
The HTTP content type; text/HTML by default

Expires
Minutes before the ASP page content is expired

ExpiresAbsolute
A specific date and time when the cached page contents are expired

IsClientConnected
Whether the client is still connected after the last Response.Write method call

PICS
PICS label field; PICS is a rating system used voluntarily by sites to rate the
adult nature of content within the site

Status
Three digit status line, such as 404 for file not found, returned by the server

,appa.21191 Page 769 Thursday, February 22, 2001 1:37 PM

770 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Response object methods are the following:

AddHeader
Adds an HTML header to the response

AppendToLog
Appends a string of up to 80 characters, not including any commas, to the log
file for the response

BinaryWrite
Writes data to output without any character conversion

Clear
Clears the current buffered contents

End
Ends server script processing and forces output of buffered contents

Flush
Forces output of buffered contents and ends keep-alive requests for the page

Redirect
Redirects the connection to a different URL

Write
Writes output to the HTTP output; can be used within server scripting blocks

The following sections take a closer look at some of the more interesting proper-
ties and methods. The Cookies collection is also detailed in its own section.

Redirection

An HTTP header is always written first for any web page returned to a browser.
Certain object methods can be used to alter this HTTP header, such as the
Response object’s Redirect method. The method takes an URL as a parameter and
redirects the browser to another page:

Response.Redirect "http://www.yasd.com/plus.htm"

In addition to redirecting the browser to a different page, an HTTP status of 302 is
also returned, which tells the browser that redirection is occurring since the object
has moved.

When altering the header response, the code that makes the modification must be
included before any other HTML for the ASP page, or an error occurs. This
includes calling an ASP component that itself contains a method call that makes
the modification. The only exception to this is through the use of buffering, dis-
cussed in the next section.

,appa.21191 Page 770 Thursday, February 22, 2001 1:37 PM

The Response Object 771

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Buffer Property and the Use of
End, Clear, and Flush

One of the more important Response object properties is Buffer. The Buffer prop-
erty is set to True when no response is sent to the client until all of the server-side
scripting has been processed or until either the Flush or End methods have been
called to output the buffer. Buffering output offers a number of advantages:

• Based on some script activity, different content can be displayed, or even an
entirely different page can be opened, without any perceptible page flickering
that can occur with normal page redirection.

• Buffering maintains a keep-alive connection between the server and the cli-
ent, which means that any client requests are made in the same connection,
thus eliminating the overhead from the server having to create multiple con-
nections. Keep-alive requests are basically pings between the two ends of the
connection that keep the connection open.

• Buffering allows modifications to the HTTP header from script blocks that are
located throughout the page, without having to place the script blocks as the
first content of the page. As stated earlier, modifications to the HTTP response
must be made before the response is sent or an error occurs.

The disadvantage of page buffering is that no contents are displayed until the
scripts are finished processing—and if the script processing takes a considerable
amount of time, the client is going to be faced with a blank browser for longer
than might be considered wise.

The buffer property must be set before any other output is sent to the client, so it
should be the first line within the HTML document:

<% Response.Buffer = True %>

The buffer contents can be controlled by using three methods: End, Clear, and
Flush. The End method forces the web server to stop processing the server script
and output the buffered results immediately. This is effective if the ASP developer
wants to display the results up to a point in the script, but no further. The Clear
method, on the other hand, does not force an end to buffering but will clear what-
ever contents are in the buffer at the time the method is called. The Flush method
does not prevent scripts from processing, but it does force an output of the buffer
contents, and the server no longer maintains keep-alive requests for the page.

A handy use of these buffer control methods is to process a script until an error
occurs, clear the buffer contents so that they do not output to the page, and then

,appa.21191 Page 771 Thursday, February 22, 2001 1:37 PM

772 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

call End to stop script processing. The Response headers, but not the Response
body, are output:

<% Response.Clear
 Response.End
%>

Altering Output Using ContentType and Status

The simplest change to output can be setting the ContentType property to a differ-
ent value. For example, if an HTML document normally has a ContentType of
text/html, setting this value to text/plain causes most browsers to display
HTML as text, including the markup tags, rather than interpreting the tags directly.
This is a handy technique to use for links labeled “show source.” The link would
contain the following:

Show Source

The top of the document being opened could have logic to test whether source
should be shown, and the content type set accordingly:

<%
If Request.QueryString("source") = 1 Then
 Response.ContentType = "text/plain"
Else
 Response.ContentType = "text/html"
End If
%>

Since the content type is part of the header, this block of server code must pre-
cede any other block, unless the Buffer property is set to True to allow for output
buffering.

The Status property can be used to return any HTTP response status code, such as
404 File Not Found or 302 for File Redirected. Using a value of 401 Unauthorized
can literally trigger a dialog for the user to enter a username and password. How-
ever, canceling the dialog allows access to the page, since security really has not
been implemented; only the status returned to the browser has been modified.

The Response.Write Method and
IsClientConnected Property

Probably one of the most effective Response methods is Write. In previous exam-
ples within this chapter, document output is created by using a combination of
script blocks interspersed with regular HTML output. The advantage of the Write
method is that the ASP developer does not have to “chop” up the scripting block
in such a way that the code is difficult to read.

,appa.21191 Page 772 Thursday, February 22, 2001 1:37 PM

The Response Object 773

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To demonstrate the improvement to readability that Write can make, the docu-
ment shown in Example A-3 is rewritten to use the Write method and is shown in
Example A-4.

The page output is less choppy, with distinct separation between direct HTML out-
put and server script-generated output. Additionally, the FOR loop is more distinct,
making it clear what output is controlled by the loop and what output is located
outside the loop. An improvement—and this is only a simple case.

A good rule of thumb to use when determining whether to use embedded script
output or the Response object’s Write method is, if the output must be controlled
by some conditional or looping statement or traverses multiple lines, use the Write
method. For simple variable assignment and one-statement outputs, use embed-
ded script instead.

One last note before leaving the Response.Write method: if the script that is gener-
ating the output is time consuming, the client may actually disconnect between
one Response.Write method call and another. In order to prevent a write to a dis-
connected client, use the IsClientConnected property to test if the client is still con-
nected and then issue the Write method call if the property is set to True:

<%
If Response.IsClientConnected Then
 Response.Write ...

Example A-4. Using the Request Object ServerVariables Collection

<HTML>
<HEAD>
<TITLE>Server Variables</TITLE>
<STYLE type="text/css">

BODY { margin: 0.5in }
</STYLE>
<BODY>
<H1> Server Variables </H1>
<TABLE border=0 width=90% align=center cellspacing=5>
<%
For Each name In Request.ServerVariables
 Response.Write "<TR><TD>"
 Response.Write name
 Response.Write "</TD><TD>"
 Response.Write Request.ServerVariables(name)
 Response.Write "</TD></TR>"
Next
%>
</TABLE>
</BODY>
</HTML>

,appa.21191 Page 773 Thursday, February 22, 2001 1:37 PM

774 Appendix A: ASP Built-in Object Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Response Cookies Collection

The Response object’s Cookies collection is used to send a cookie to the client,
rather than pull cookie information from the client request. Cookies can be created
to be scalar values, consisting only of one name-value pair, or the cookie can be a
dictionary, with the value component being made up of other name-value pairs. If
the cookie does not exist when it is set with the Response object, it is created.

As an example, the following sets the value of a cookie called test to be 1. In
addition, it uses several Cookies collection attributes to determine how the cookie
is created:

<%
Response.Cookies("test") = 1
Response.Cookies("test").Expires = "March 1, 2001"
Response.Cookies("test").Path = "/book/"
Response.Cookies("test").HasKeys = FALSE
%>

This code creates a cookie named test that has an initial value of 1. It expires on
March 1, 2001, and has a relative path of /book/, which means that it is sent with
the HTTP request only when a page is accessed on this particular path. The
cookie is a simple scalar value and does not have a key, so the HasKeys attribute
is set to FALSE. Other properties that could have been used with this cookie are
Domain, which sets the domain (such as yasd.com) of the cookie, and Secure,
which sets whether this cookie is secure.

To create a more complex cookie, one that has keys, I could use the following:

<%
Response.Cookies("test")("value1") = 1
Response.Cookies("test")("value2") = 2
%>

In this case, the expiration is set to the default, which means the cookie will
expire when the client closes the browser. The cookie attribute HasKeys is set to a
value of TRUE by the fact that the cookie is created with key values.

New for ASP 3.0: Transfer and Execute

Starting with ASP 3.0, the Server object has two new methods: Transfer and
Execute.

Transfer is used to transfer a current ASP page’s state information to a second
page. Unlike the Redirect method, control is not returned to the client first before
the second page is displayed, and current state information—such as form or envi-
ronment information—is also passed to the second page.

,appa.21191 Page 774 Thursday, February 22, 2001 1:37 PM

The Response Object 775

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Transfer method has one parameter, the path for the second ASP page:

Server.Transfer("/second.asp")

The Execute method is used to execute a second ASP, providing an ability to split
a larger ASP application page into smaller pages and execute each ASP page in
turn. This method, as with Transfer, takes one parameter, the path for the second
ASP page:

Server.Execute("/second.asp")

Why haven’t I covered ASPError? The primary reason is the special-
ized use of ASPError. You use this object to get error information
within a specialized error-handling page. Because of its limited use,
the ASPError is unlikely to be used within a component—compo-
nents are usually used from more than one ASP page.

,appa.21191 Page 775 Thursday, February 22, 2001 1:37 PM

776
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Appendix B

B
The Weaver Database

The first edition of this book used the SQL Server Pubs database for all data access
examples, such as working with ActiveX Data Objects (ADO). However, there
were a lot of readers who had Access on their development (and production)
machines and didn’t have SQL Server. So with this new edition, I’ve created a
database for use with the examples in the book: the Weaver database.

The Weaver database stores information about web sites: web pages, images,
scripting files, application pages, and so on. The database is based on the rela-
tional data model, and constraints have been added to both the Access and the
SQL Server versions in order to enforce basic data integrity and relational con-
straints. I then preloaded test data from my own web sites into the database. Addi-
tionally, I also provided a simple ASP-based administrative application that you
can use to stage your own data.

Installing Weaver
In the Weaver subdirectory of the book examples, there is an Access 2000 version
of the database ready for you to use. Just move the file to your preferred location.
For Access installations, you’ll need to set up an ODBC DSN connection for the
Access database using the ODBC Administration tool.

See Microsoft documentation for how to use the ODBC Administra-
tion tool to create an ODBC DSN.

,appb.21312 Page 776 Thursday, February 22, 2001 1:38 PM

Installing Weaver 777

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

When you create the ODBC connection, set the DSN name to weaver. The user-
name for the database should be set to sa, and no password should be required
for either the Access or the SQL Server database for the Weaver administrative
application to work.

If you want to use the SQL Server version of the database, then you’ll need to
install it. First, create a new, empty database and call it Weaver. Then, in the Source
subdirectory of the Weaver directory, there is a file called weavertables.sql that has
the SQL code necessary to create the Weaver database tables. Use the isql.exe
application located in the bin directory of SQL Server (or whatever SQL tool you
prefer) to open and execute this file within the Weaver database, to build the data-
base tables. Don’t worry if you receive errors when the table drops occur in the
script—the errors don’t impact the rest of the script execution, which then creates
the tables just dropped.

Once the tables have been built, click on the new database in the SQL Server
Enterprise tool and select Data Transformation Services ➝ Import Data from the
Tools menu.

When the DTS Import Wizard opens, set the data source to be a Microsoft Access
database and select the Access version of Weaver to use. Leave the username and
password blank, as shown in Figure B-1.

Figure B-1. DTS Wizard Data Source

,appb.21312 Page 777 Thursday, February 22, 2001 1:38 PM

778 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

For the destination of the data transfer, pick the OLE DB Provider for SQL Server
and select your new Weaver database. Set the wizard to use SQL Server authenti-
cation, set the username to be sa, and leave the password blank, as shown in
Figure B-2.

In the next page that opens, select the option to copy the tables from Access to
SQL Server. When a page with the tables opens, select all of the tables. In the last
page of the wizard, have the package run immediately. When you click the Finish
button at the end, the DTS wizard copies just the data from the Access database to
the SQL Server database—no tables are created, since you created them before
running the data transformation operation.

By creating the tables first, we ensure that the tables are created as
SQL Server tables, not Access tables that have been converted to SQL
Server tables. This provides better control of the datatypes used in
creating the tables.

After the data is loaded, access and run the weaverschema.sql file. This file adds all
of the relational and data constraints for the new database. These can’t be added
until after the data is loaded, or errors will occur during the data load process.

Figure B-2. DTS Wizard Data Destination

,appb.21312 Page 778 Thursday, February 22, 2001 1:38 PM

The Weaver Administration Application 779

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Weaver Administration Application
The Weaver administration application ASP pages and the associated Visual Basic
components are found in the Weaver subdirectory in the book examples. These
pages make use of Visual Basic components in order to perform all data updates
and queries, and the database connection strings used in the components are set
to the ODBC version of Weaver:

m_connString = "DSN=weaver;uid=sa;pwd="

You can set the ODBC version to point to either the Access or the SQL Server
Weaver database version. The only requirement is that the DSN (weaver), user-
name (sa), and password (none) must match that of the connection string just
shown.

If you’re using the SQL Server database, you want to use the OLE DB Provider for
SQL Server. If you have Visual Basic, you can open each of the Visual Basic
component projects and change the connection string. Each component’s
ObjectControl_Activate method has the following commented-out SQL Server OLE
DB connection string you can uncomment and adjust for your own environment:

m_connString="Provider=SQLOLEDB;server=FLAME;database=weaver;uid=sa;pwd="

If you don’t have Visual Basic and are using SQL Server, set up an ODBC DSN for
the SQL Server database so that the administration pages will work as is in your
environment.

To use the Weaver administration application, you’ll first need to create a new
COM+ application in the Component Services administration tool. The VB compo-
nents used in the application do use just-in-time activation, which means they
must be used within the context of a COM+ application.

Chapter 5, COM+ Services and ASP Components and Applications has
information about setting up and working with a COM+ application.

After creating the COM+ application, install each of the following Visual Basic
component DLLs into this application:

Page.dll
Types.dll
Web.dll
WebPage.dll

,appb.21312 Page 779 Thursday, February 22, 2001 1:38 PM

780 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

After creating the COM+ application and adding the components, you’ll next need
to create an IIS virtual directory for the Weaver application. Do this by accessing
the IIS management console and right-clicking on the Default Web Site. Select
New ➝ Virtual Directory from the menu. In the wizard that opens, name the web
site weaver and have it point to the location where the ASP pages are stored
(these can be found in the Web subdirectory of the Weaver directory). Accept the
defaults for everything else.

After you’ve created the Weaver application web site, you can access it in your
browser with the following URL if you’re using localhost to access your web devel-
opment environment:

http://localhost/weaver/

Before accessing the Weaver application, make sure that the database is running
and accessible—an entry in the global.asa file for the Weaver application accesses
the database to set an application variable as soon as the application is first
started.

The main page of the application opens into a multicolored page with options to
view, add, delete, or update most of the Weaver tables. Again, you don’t have to
use the Weaver administration application unless you want to add your own test
data—the database that comes with the examples has test data already loaded.

The Weaver Database
Figure B-3 shows the Weaver database as captured by the SQL Server diagram
tool.

As you can see in the diagram, the central table in the database is the WebPage
table. This table is a category table, which means that it has a one-to-one associa-
tion with several other tables: HtmlWebPage, StyleWebPage, AppWebPage, Xml-
WebPage, XmlAuxWebPage, and ScrptWebPage.

Every page in the database is a variation of a web page, but each type of page
could have different data associated with it. For instance, a style page could have
information about what type of style is used (XSL or CSS), and a script page could
have a scripting language associated with it. To avoid having one large table with
a whole lot of nullable fields, I created the WebPage table and associated it with
the others.

So to add a new HTML page, you’d add the WebPage first and then add the asso-
ciated HtmlWebPage entry. Again, there’s always a one-to-one correspondence
between the category and its associated dependent tables, and referential integrity
requires that you insert records into the parent (WebPage) table first.

,appb.21312 Page 780 Thursday, February 22, 2001 1:38 PM

The Weaver Database 781

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To differentiate what type of page is in a particular WebPage row, a type field,
page_type_cd, is set to reflect the type of page: HTM for an HTML page, STY for
style page, SCR for scripting page, and so on.

Multimedia such as images can also be stored in the Weaver database in the
MediaObject table. Multimedia is associated with a specific page through the Page-
Media table, and the media types are found in the MediaType table.

Both pages and multimedia can be optimized, evaluated for compliance to stan-
dards, or both. This type of information is stored in the AssistingTool table, which
has a foreign key relationship with both WebPage and MediaObject. Additionally,
component information can be stored in the database in the Component table and
associated with pages through the PageComponent association table.

Pages, multimedia objects, and components all have a physical and a web loca-
tion, and this is found in the Directory table.

The sections that follow provide a detailed description of each table in the Weaver
database.

Figure B-3. Diagram of the Weaver database

,appb.21312 Page 781 Thursday, February 22, 2001 1:38 PM

782 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

AppType

The AppType table contains type codes and descriptions for application types.

The primary key for the AppType table is cd. The value is required and indexed,
and no duplicates are allowed.

AppWebPage

All application pages, such as ASP pages, are entered into WebPage and then into
AppWebPage.

• The primary key for AppWebPage is webpage_id. The value is required and
indexed, and no duplicates are allowed.

• There is a mandatory one-to-one foreign key relationship from the WebPage
table to AppWebPage, reflected in webpage_id.

• There is a mandatory one-to-many foreign key relationship from the AppType
table to AppWebPage, reflected in apptype_code. This column is indexed
and duplicates are allowed.

AssistingTool

The AssistingTool table contains the names and locations of tools used to opti-
mize or validate web content.

The primary key for the AssistingTool table is id. The value is an identify column
in SQL Server and an AutoNumber column in Access—the value is automatically
incremented when a new row is inserted.

Column Name SQL Server Datatype Access Datatype Data Constraint

cd char(3) Text(3) Unique/not null

description varchar(50) Text(50) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

webpage_id int Long Integer Unique/not null

app_version varchar(20) Text(20) Not null

apptype_code char(3) Text(3) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

id int Long Integer Identity/AutoNumber
Unique, not null

name varchar(20) Text(20) Not null

location varchar(50) Text(50) Not null

,appb.21312 Page 782 Thursday, February 22, 2001 1:38 PM

The Weaver Database 783

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Component

The Component table contains information about the components used within the
web pages. This includes Java classes, applets, and COM-based objects.

• The primary key for the Component table is id. The value is an identify col-
umn in SQL Server and an AutoNumber column in Access—the value is auto-
matically incremented when a new row is inserted.

• There is a mandatory one-to-many foreign key relationship from Component-
Type to Component, reflected in comp_type_code. This column is indexed.

• There is a nonmandatory one-to-many foreign key relationship from Directory
to Component, reflected in source_directory_id. This column is indexed.

ComponentType

The ComponentType table contains component type codes and descriptions.

The primary key for the ComponentType table is cd. The value is required and
indexed, and no duplicates are allowed.

Column Name
SQL Server
Datatype

Access
Datatype Data Constraint

id int Long Integer Identity/AutoNumber
unique, not null

name varchar(20) Text(20) Not null

filename varchar(20) Text(20) Not null

ext char(4) Text(4) Not null

comp_type_code char(3) Text(3) Not null

comp_language varchar(20) Text(20) Not null

have_source bit Yes/No Not null, set to (1)/Yes by
default

source_project varchar(50) Text(50) Nulls allowed

source_directory_id int Long Integer Nulls allowed

pulled_date datetime Date/Time Nulls allowed

purpose text memo Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

cd char(3) Text(3) Unique/not null

description varchar(50) Text(50) Not null

,appb.21312 Page 783 Thursday, February 22, 2001 1:38 PM

784 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Directory

The Directory table contains physical and web locations, as well as the purpose
for each directory.

The primary key for the Directory table is id. The value is an identify column in
SQL Server and an AutoNumber column in Access—the value is automatically
incremented when a new row is inserted.

HtmlWebPage

All web site HTML pages are entered into WebPage and then into HtmlWebPage.

• The primary key for the HtmlWebPage table is webpage_id. The value is
required and indexed, and no duplicates are allowed.

• There is a mandatory one-to-one foreign key relationship from the WebPage
table to HtmlWebPage, reflected in webpage_id.

MediaObject

This table holds information about the multimedia objects used in the web sites,
including all graphics.

Column Name SQL Server Datatype Access Datatype Data Constraint

id int Long Integer Identity/AutoNumber
Unique, not null

name varchar(20) Text(20) Not null

physical_location varchar(50) Text(20) Not null

web_location varchar(50) Text(20) Not null

purpose varchar(50) Text(50) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

webpage_id int Long Integer Unique/not null

html_version varchar(20) Text(20) Not null

Column Name
SQL Server
Datatype Access Datatype Data Constraint

id int Long Integer Identity/AutoNumber
Unique, not null

name varchar(20) Text(20) Not null

filename varchar(20) Text(20) Not null

ext char(4) Text(4) Not null

,appb.21312 Page 784 Thursday, February 22, 2001 1:38 PM

The Weaver Database 785

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• The primary key for the MediaObject table is id. The value is an identify col-
umn in SQL Server and an AutoNumber column in Access—the value is auto-
matically incremented when a new row is inserted.

• There is a mandatory one-to-many foreign key relationship from MediaType to
MediaObject, reflected in media_type_code. This column is indexed.

• There is a mandatory one-to-many foreign key relationship from Directory to
MediaObject, reflected in directory_id. This column is indexed.

• There is a nonmandatory one-to-many foreign key relationship from Assisting-
Tool to MediaObject, reflected in optimized_tool_id. The column is
indexed.

MediaType

The MediaType table contains media type codes and descriptions.

The primary key for the MediaType table is cd. The value is required and indexed,
and no duplicates are allowed.

PageComponent

The PageComponent table is an associative table joining the WebPage and Com-
ponent tables.

file_size decimal decimal Not null

container_width int Long Integer Nulls allowed

container_height int Long Integer Nulls allowed

media_type_cd char(3) Text(3) Not null

directory_id int Long Integer Not null

optimized_tool_id int Long Integer Nulls allowed

optimized_date datetime Date/Time Nulls allowed

pulled_date datetime Date/Time Nulls allowed

Column Name SQL Server Datatype Access Datatype Data Constraint

cd char(3) Text(3) Unique/not null

description varchar(50) Text(50) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

page_id int Long Integer Not null

component_id int Long Integer Not null

Column Name
SQL Server
Datatype Access Datatype Data Constraint

,appb.21312 Page 785 Thursday, February 22, 2001 1:38 PM

786 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• The primary key for PageComponent is a concatenated key consisting of both
page_id and component_id.

• There is a mandatory one-to-many foreign key relationship from WebPage to
PageComponent, reflected in page_id. This column is indexed.

• There is a mandatory one-to-many foreign key relationship from Component
to PageComponent, reflected in component_id. This column is indexed.

PageMedia

The PageMedia table is an associative table joining the WebPage and MediaObject
tables.

• The primary key for PageMedia is a concatenated key, consisting of both
page_id and media_id.

• There is a mandatory one-to-many foreign key relationship from WebPage to
PageComponent, reflected in page_id. This column is indexed.

• There is a mandatory one-to-many foreign key relationship from MediaObject
to PageMedia, reflected in media_id. This column is indexed.

PageScript

The PageScript table is an associative table joining the WebPage and
ScrptWebPage tables.

• The primary key for PageScript is a concatenated key, consisting of both
page_id and script_page_id.

• There is a mandatory one-to-many foreign key relationship from WebPage to
PageScript, reflected in page_id. This column is indexed.

• There is a mandatory one-to-many foreign key relationship from
ScrptWebPage to PageScript, reflected in script_page_id. This column is
indexed.

Column Name SQL Server Datatype Access Datatype Data Constraint

page_id int Long Integer Not null

media_id int Long Integer Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

page_id int Long Integer Not null

script_page_id int Long Integer Not null

,appb.21312 Page 786 Thursday, February 22, 2001 1:38 PM

The Weaver Database 787

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

PageStyle

The PageStyle table is an associative table joining the WebPage and StyleWebPage
tables.

• The primary key for PageStyle is a concatenated key, consisting of both page_
id and style_page_id.

• There is a mandatory one-to-many foreign key relationship from WebPage to
PageStyle, reflected in page_id. This column is indexed.

• There is a mandatory one-to-many foreign key relationship from StyleWebPage
to PageStyle, reflected in style_page_id. This column is indexed.

PageType

The PageType table contains web page type codes and descriptions.

The primary key for the PageType table is cd. The value is required and indexed,
and no duplicates are allowed.

PageXmlAux

The PageXmlAux table is an associative table joining the WebPage and XmlAux-
WebPage tables.

• The primary key for PageXmlAux is a concatenated key, consisting of both
page_id and xml_aux_id.

• There is a mandatory one-to-many foreign key relationship from WebPage to
PageXmlAux, reflected in xml_aux_id. This column is indexed.

• There is a mandatory one-to-many foreign key relationship from WebPage to
PageXmlAux, reflected in page_id. This column is indexed.

Column Name SQL Server Datatype Access Datatype Data Constraint

page_id int Long Integer Not null

style_page_id int Long Integer Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

cd char(3) Text(3) Unique/not null

description varchar(50) Text(50) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

page_id int Long Integer Not null

xml_aux_id int Long Integer Not null

,appb.21312 Page 787 Thursday, February 22, 2001 1:38 PM

788 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ScrptWebPage

All scripting files, such as JavaScript/JScript, VBScript, and Perlscript files, are
entered into WebPage first and then into ScrptWebPage.

• The primary key for ScrptWebPage is webpage_id. The value is required and
indexed, and no duplicates are allowed.

• There is a mandatory one-to-one foreign key relationship from the WebPage
table to ScrptWebPage, reflected in webpage_id.

StyleType

The StyleType table contains style type codes and descriptions.

The primary key for the StyleType table is cd. The value is required and indexed,
and no duplicates are allowed.

StyleWebPage

All files containing style information, such as CSS or XSLT files, are added into
WebPage first and then into StyleWebPage.

• The primary key for StyleWebPage is webpage_id. The value is required and
indexed, and no duplicates are allowed.

• There is a mandatory one-to-one foreign key relationship from the WebPage
table to StyleWebPage, reflected in webpage_id.

Column Name SQL Server Datatype Access Datatype Data Constraint

webpage_id int Long Integer Unique/not null

script_language varchar(20) Text(20) Not null

script_version varchar(20) Text(20) Not null

browser varchar(20) Text(20) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

cd char(3) Text(3) Unique/not null

description varchar(50) Text(50) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

webpage_id int Long Integer Unique/not null

style_version varchar(20) Text(20) Not null

style_code char(3) Text(3) Not null

,appb.21312 Page 788 Thursday, February 22, 2001 1:38 PM

The Weaver Database 789

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• There is a mandatory one-to-many foreign key relationship from the Style-
Type table to StyleWebPage, reflected in style_code. This column is indexed
and duplicates are allowed.

WebPage

All web site pages (HTML, ASP, other) are entered into this table.

• The primary key for the WebPage table is id. This value is manually set, is
indexed, with no duplicates allowed.

• There is a mandatory one-to-many foreign key relationship from the Directory
table to the WebPage table, reflected in directory_id. This column is
indexed, and duplicates are allowed.

• There is a mandatory one-to-many foreign key relationship from the Page-
Type table to the WebPage table, reflected in page_type_cd. This column is
indexed, and duplicates are allowed.

• There is a nonmandatory one-to-many foreign key relationship from the Assis-
tingTool table to WebPage, reflected in verification_tool_id. This col-
umn is not indexed.

XmlAuxType

The XmlAuxType table contains XML auxiliary type codes and descriptions.

Column Name SQL Server Datatype Access Datatype Data Constraint

id int Long Integer Unique/not
null

name varchar(20) Text(20) Not null

filename varchar(20) Text(20) Not null

ext char(4) Text(4) Not null

directory_id int Long Integer Not null

page_type_cd char(3) Text(3) Not null

file_size decimal decimal Not null

verification_tool_id int Long Integer Nulls allowed

verification_date datetime Date/Time Nulls allowed

pulled_date datetime Date/Time Nulls allowed

Column Name SQL Server Datatype Access Datatype Data Constraint

cd char(3) Text(3) Unique/not null

description varchar(50) Text(50) Not null

,appb.21312 Page 789 Thursday, February 22, 2001 1:38 PM

790 Appendix B: The Weaver Database

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The primary key for the XmlAuxType table is cd. The value is required and
indexed, and no duplicates are allowed.

XmlAuxWebPage

All XML auxiliary pages, such as DTD files, are entered into WebPage first and
then into XmlAuxWebPage.

• The primary key for XmlAuxWebPage is webpage_id. The value is required,
indexed, and no duplicates are allowed.

• There is a mandatory one-to-one foreign key relationship from WebPage to
XmlAuxWebPage, reflected in webpage_id.

• There is a mandatory one-to-many foreign key relationship from XmlAuxType
to XmlAuxWebPage, reflected in aux_code. This column is indexed, and
duplicates are allowed.

XmlWebPage

All XML files are entered into WebPage first and then into XmlWebPage.

• The primary key for XmlWebPage is webpage_id. The value is required,
indexed, and no duplicates are allowed.

• There is a mandatory one-to-one foreign key relationship from the WebPage
table to XmlWebPage, reflected in webpage_id.

Column Name SQL Server Datatype Access Datatype Data Constraint

webpage_id int Long Integer Unique/not null

aux_version varchar(20) Text(20) Not null

aux_code char(3) Text(3) Not null

Column Name SQL Server Datatype Access Datatype Data Constraint

webpage_id int Long Integer Unique/not null

xml_version varchar(20) Text(20) Not null

,appb.21312 Page 790 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

791

Index

() (parentheses), 253
& (ampersand), 301
< and > (angle brackets), 301
<< and >> (double angle bracket

operators), 590
\ (backslash), 553, 586
. (dot), 385

Symbols
⁄ (forward slash), 305

Numbers
127.0.0.1, 17

A
Abandon method, 208
AbsolutePage property, 246, 479
ACID (atomicity, consistency, isolation, and

durability), 296
Acive Directory

user information, procuring with
ADO, 372

Activate method, 123, 447, 498
Active Directory, 345–349, 528

ADO, search using, 362–366
ASP components, accessing

from, 344–379
binding to objects, 349
binding to objects through

collections, 352
browsing the directory, 355

compatible servers, 345
connection through ADsDSOObject

(Active Directory provider, 362
Create method, adding groups, relative

name specification, 361
creating users, 366–378
indexed properties, search using, 364
installing as domain controller, 346
isolated environment, set-up, 345
modification of directory

information, 357
object properties

distinguishedName, 351
objects, binding to, ??–355
querying, 363
security, 344
user information, displaying, 371
users

moving to different groups, 374
Active Directory Browser

message queues, checking for, 384
Active Directory Browser (see ADSVW)
Active Directory objects

creating, 540
searching, 544

Active Directory objects, removing, 542
Active Directory Service Interface (see

ADSI)
Active Directory Services Interfaces

(ADSI), 528
Active Directory Services Viewer

(ADSVW), 355

,aspcIX.fm.21459 Page 791 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

792 Index

Active Server Pages (ASP) (see ASP)
Active Server Pages (see ASP)
Active Template Library (see ATL)
ActiveConnection properties, 479
ActiveConnection property, 243
ActivePerl, 137
ActiveX Data Objects (see ADO)
ActiveX objects, 181

DLLs, 181
compiling, 190
usable classes, 182

EXE components, threading, 185
ActiveX Template Library (see ATL)
Add Method dialog, 427
AddAttachment method, 335, 518
addDirectoryToQueue method, 399, 405
AddHeader method, 218
AddNew method, 401
addNumbers method, 443
AddRef method, 74, 80
addUserToGroup method, 368
addXML method, 313
adExecuteNoRecords, 237
adExecuteRecords, 237
adLockBatchOptimistic, 244
adLockOptimistic, 244
adLockPessimistic, 244
adLockReadOnly, 244
administration programs, IIS, 29
ADO (ActiveX Data Object), 233–256

ADO model, 234
ADO (ActiveX Data Objects), 225, 468

C++ components, accessing
from, 468–505

creating in components, 226
data source processing, n-tier application

model, 266
directory access, 256–262
file access, 256–262
object model, 469
objects, 470–505
Properties collections, 471
recordsets, saving as XML, 315–320

ADO components
as business and data layer of

applications, 268
updating tables, 275

ADO Connection object, 228
ADO header files, 508

ADO type libraries
importing into C++ components, 469

ADO_FIXED_LENGTH_ENTRY macro, 486
ADO_NUMERIC_ENTRY macro, 486
ADO_VARIABLE_LENGTH_ENTRY

macro, 486
ADO_VARIABLE_LENGTH_ENTRY2,

parameters, 488
ADsBuildEnumerator method, 536

compatible and incompatible
collections, 537

adSchemaTables, 241
ADsDSOObject, 362
ADsEnumerateNext method, 536
ADsFreeEnumerator method, 536
AdsGet Object method, 530
ADS_GROUP_TYPE_ENUM

enumeration, 541
ADSI (Active Directory Service Interface)

Container Object properties and
methods, 43

IIS, for remote administration of, 29–46
ADSI (Active Directory Service

Interfaces), 347
ADSI (Active Directory Services Interface)

interfaces that support collections, 530
objects, 348

ADSI (Active Directory Services Interfaces)
interfaces, 350
security concerns, 344

ADSI Container object properties, 43–46
ADSI helper functions, 536
ADSI LDAP provider, 529
AdsOpenObject method, 529
ADsPath, 29, 33, 34
ADsPath binding string, 349
ADSVW (Active Directory Services

Viewer), 355
adsvw.exe, 355
afxdisp.h header file, 582
AFX_MANAGE_STATE macro, 583
afxwin.h header file, 582
aggregation, 83, 95, 425
annotation, 77
any apartment model, 109
apartments, 95

and contexts, 111
apartment-threaded model, 424
apartment-threading, 181

,aspcIX.fm.21459 Page 792 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 793

apartment-threading model, 103
APP type code, 253
AppendToLog method, 217, 451
application isolation, 20

server performance degradation, 22
virtual directories, 24

application models, 266
Application object, 202–206, 444

lock and unlock methods, 206
threading issues, 223

Application objects, 142
applications, security, 125
archiving of data, 296
arguments, passing to methods, 189
arrays, 159–174

components that pass arrays, testing, 159
JScript, 161, 165–168
PerlScript, 161
VBScript, 160
Visual Basic, 162–165
Visual C++, 168–174

ASP (Active Server Pages), 125
built-in objects, 202–220

ASP built-In objects, 444
accessing from C++

components, 444–467
accessing with IObjectContextInfoe,

Windows2000, 445
referencing, 447

ASP components, xi, 1–13, 136
access permissions settings, 26
ADO type library, adding, 227
as COM components, 91
as middle tier in n-tier systems, 266
asynchronous commands, 238
ATL AppWizard-generated files, 419
ATL, creating with, 415–427
buffering, 216
C++ example, 60–68
caching expiration, 216
COM+, adding support, 419
and COM+ components, 2
COM+ services, frequently used, 114
core objects, 180
debugging, 222
development

web servers, supporting, 14
DLL code generated by ATL

AppWizard, 419

encapsulation of data access,
advantages, 226

file-bases I⁄O using MFC, 584–588
in-process, creating, 187
instantiating, 139–144

CreateObject method, 140
performance concerns, 144
using <OBJECT> tag in global.asa

file, 141
isolated development

environments, 19–24
isolated development environments, for

testing, 20
messaging, 321–343

attachments, 335
message body, 328–338
multipart messages, 328
"Send this URL to a friend", 324–328
SMTP access, 325

methods, adding to an ATL-generated
component, 427

Microsoft Transaction Server (MTS),
adding support, 419

NT to Windows 2000 porting,
considerations, 444

performance, maximizing, 222
portability, 2
properties, access from Visual C++, 436
queries, 230–233
query processing, production

applications, 233
recompiling

Permission Denied error, 19
result sets, processing, 231
reusability, 2
and scripting, 3
testing environment, 191
threading models, 3
threading options, C++, 423
transactions, 128
users, creating in Active

Directory, 366–378
Variant datatype, 430
Visual Basic

error handling, 220
Visual Basic, creating in, 180–191
Visual C++, programming in, 414–467

ASP pages
default scripting language, 136

,aspcIX.fm.21459 Page 793 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

794 Index

ASP Response object
query results, processing, 231

ASP type libraries
including support in C++

components, 472
AspAllowOutOfProcComponents

property, 53
AspAllowSessionState property, 54
AspBufferingOn property, 54
AspCodepage property, 55
AspEnableParentPaths property, 55
ASPError object, 445
AspExceptionCatchEnable property, 55
AspLogErrorRequests property, 56
AspQueueTimeout property, 56
AspScriptEngineCacheMax property, 56
AspScriptErrorMessage property, 56
AspScriptErrorSentToBrowser property, 56
AspScriptFileCacheSize property, 57
AspScriptLanguage property, 58
AspScriptTimeout property, 58
AspSessionTimeout property, 58
asptlb.h header file, 447, 583
ATL (Active Template Library), 414

COM-specific architecture, 415
creating ASP components, 415–427
generated components, lack of error

handling, 464
ATL (ActiveX Template Library)

MFC, using with in C++ ASP
components, 581–595

ATL AppWizard, 414, 416–421
adding ATL objects

ASP components
ATL AppWizard

using to add objects, 421
creating project files, 416
DLL components, creating, 417
options, 417–419

ATL COM AppWizard, for creating Visual
C++ components, 169

ATL Object Wizard, 414
Attributes tab, 423
MTS components, lack of aggregation

support, 442
object addition, coding changes, 426
Properties dialog, 422

AtlReportError method, 465
parameters, 465

atomicity, transaction management, 296
attachments

adding to email, CDO in C++ ASP
components, 518

AutoGenerateTextBody property, 512

B
backslashes, 586
backslashes (\), 553
BEGIN_ADO_BINDING macro, 486
BeginTrans method, 237
BeginTransaction method, 394, 575
binary communication under COM, 71
BinaryRead method, 211
BinaryWrite method, 215, 451
binding

to Active Directory objects, 529
binding, Active Directory objects, ??–355
boolean datatype, 429
Boolean datatypes and PerlScript, 150, 151
Boolean datatypes, scripting

languages, 153
both-threaded model, 424
both-threading model, 109
breakpoints, 222
BSTR data type, 89
BSTR datatype, 429
built-in ASP objects

access from components, issues, 387
built-in objects, 202–220

purpose, 203
business layer, 266
business layer and presentation layer,

separation, 446
business objects, 281–295

data wrappers, compared to, 281
business processes

user interfaces, keeping separate
from, 387

ByRef, 189
ByVal, 189

C
C++ header files

used with CDO in ASP components, 506
CacheControl property, 450
CacheSize property, 245
CanBePooled method, 123, 130

,aspcIX.fm.21459 Page 794 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 795

CArchive class, 591
cascaded deletes, 284

database engines, supporting, 286
prohibited uses, 288

Cascading Style Sheets (CSS), 299
category relationships, 282
CDO (Collaboration Data

Objects), 322–324
messaging in ASP components, 321–343
object access, 324
versions, 321

CDO (Collaborative Data Objects)
and C++ ASP components, 506–527
dependencies on ADO in C++ ASP

components, 508
smart pointers, 508

cdoProtocolsAuthentication, 325
CException class, 586
CFile class, 585
CFirst class, 426
CGame class, 588

data members, 589
CGame.cpp, 590
char datatype, 429
class identifier (see CLSID)
class name, 33
classid, 142
Class_Initialize, 198
Class_Terminate, 198
Clear method, 221, 449
client identity, Windows 2000, 350
ClientCertificate collection, 209
clients

instantiation of COM objects, 83
client-server systems, 114
CLng helper function, 153
CLSID (class identifier), 72
cmnd.cpp file, 493
cmnd.h header file, 491
CN property, 540
CObject class, 588
CoCreateInstance method, 82, 475
CoCreateInstanceEx method, 82
code tables, 269

size, 277
CodePage, 209
coding practices, 222
coercion, 160
CoGetObjectContext, 201

referencing IContextState, 437
CoGetObjectContext interface, 442
CoGetObjectContext method, 433
CoInitialize mmethod, 82
CoInitializeEx method, 82
Collaboration Data Objects (see CDO)
Collaborative Data Objects (see CDO)
collection, 84
collections

filtering, 538
COM+, 70

access to context support, 432
and MTS components, 201
applications

creating as server or library, 196
deactivation, 200
security, 196

applications, activating, 125
applications, role-based security, 125
interfaces, 116
porting of MTS packages into

applications, 124
(see also COM)
threading, 192
transaction management, 128

COM (Common Object Model)
ADO (ActiveX Data Objects), 470
and object-oriented programming, 73
coercion (conversion) of datatypes, 160
critical developer concerns, 73
data types, 87
documentation, 90
instantiation on the client, 83
interfaces, 80–??

enumerators, 84
IClassFactory, 82
IDispatch, 80
IUnknown, 80

memory resources, deallocation, 74
methods, essential, 75
multiple interfaces, support, 79
registration of components, 72
strong typing, 72

COM (Component Object Model), 69–90
binary communication, 71
interfaces

strongly typed, 70
scalability, 71
specifications, 70

,aspcIX.fm.21459 Page 795 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

796 Index

unique identifiers, 70
Unix environments, support within, 71

COM datatypes, other than Variant, 154
COM object model

MSMQ object models, 381–413
COM+ Services

header file, 432
including support in C++

components, 472
library, adding to objects, 433
MTS files, wrapping within, 441

COM+ services
for ASP components, 114

COM VARIANT data type, 87
COM⁄COM+

contexts, 110
COM/COM+

accessing built-in constants and
enumerators, 142

COM/COM+ objects, 1
comdef.h, 447
Command object, 250–256, 490–497

Parameter objects, collection, 490
parameters collection, 253
stored procedures, 253

CommandType property, 250
CommandTypeEnum, 236, 237
CommitTrans method, 237
Component Object Model (see COM)
component-based systems, 114
components, deactivation, 200
component/script interaction, 136
compute-bound threads, 93
comsvcs.h, 432
configured components, 127
Connection object, 234–242, 470–478

accessing schema information from OLE
DB provider, 476

ADO type library, enumerated
properties, 236

data source specification via Open
method, 236

Errors collection, 240
iteration through Properties

collection, 239
properties and methods, 471
Properties collection, 238
transaction methods, 237

connection string, data access via
ADO, 229

connection.h header file, 472
ConnectionString property, 235
consistency, transaction managements, 296
container.h header file, 532
containers, 352
containment/delegation, 83
Contents collection, enumeration

through, 207
ContentType property, 216
ContextInfo property, 117
contexts, 92, 110, 116

and apartments, 111
cookie dictionary, 213
cookies, 217
Cookies collection, 209
copyFile method, 260, 502

write permissions, 504
Count property, 118
.CPP file, 420
createGroup method, 540
CreateInstance method, 117, 432, 475

exception processing support,
adding, 499

CreateMHTMLBody method, 514
createMHTMLBody method, 325
CreateObject method, 201

instantiation of components, 140
createRecordset method, 245, 480
createUser method, 366
createXatQueue method, 395, 574
cross-thread communication, 94
CSS (Cascading Style Sheets), 299, 302–304

files, creating, 303
CStdioFile class, 585

parameters, 586
CTypeTable.h header file, 487
CURRENCY datatype, 429
CursorLocation properties, 479
Cursors, 243
cursors

client side, 244
saving ADO recordsets as XML, 316

CursorType properties, 479
CursorType property, 243

D
DAO (Data Access Objects), 225

,aspcIX.fm.21459 Page 796 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 797

data, archiving, 296
data integrity

component code, enforcing within, 295
formatting of data, 295
range checking, 295

data layer, 266
data, persisting, 262–265
data, persisting (see persisting data)
data source connections, implementing in

ADO, 228
data types

COM, 87
for parameters passed to methods, 189
memory allocation, 89

data wrappers, 268–281
as maintenance subroutines, 272
business objects, compared to, 281
creating, 270
queries, 277

database connection string, 472
datatypes, 145–174

COM other than Variant, 154
COM, other than Variant, 154
compatibility of ASP script and

component types, 158
multiple scripting languages and the

LCD, 153
SAFEARRAY, 159
scripting in multiple languages, 153
testing, importance of, 154
Variant, 145–154

dcomcnfg.exe, 72
Deactivate method, 123, 447
dead-letter queue, 411
dead-letter queue, reading, 412
deadlocks, 93
debugging, 55
debugging ASP components, 222
DECLARE_SERIAL macro, 590
decoration, 77
.DEF, 420
Delete method, 361

MSMQQueueInfo object, 558
deleteHtmlPage method, 293
deleteMediaType method, 272
deletePage method, 285
dependent objects, 183
development environment

address and port specification, 17

difference between a collection and a
group, 353

directory services, necessity of, 383
DisableCommit method, 117, 432
DISPID, 81
display attribute, 303
displayFileNames method, 257, 500
distinguishedName, 370
distinguishedName (DN) property,, 351
distributed systems, 114
Distributed Transaction Controller

(DTC), 399
DLL code for ASP components, 419
DLL (dynamic link library), 181
dllhost.exe, 126, 181
Document Type Definition (see DTD)
DOM (Document Object Model), 308
doQuery method, 364, 545
dot (.), 385
double datatype, 429
DropDirectory object, 339
DSN (Data Source Name)

referencing in Connection object, 235
DTC (Distributed Transaction

Controller), 399
DTD (Document Type Definition), 300

and valid XML documents, 301
dual interface, 82
dual type, 177
durability, transaction management, 296
dwMDAttributes, 62
dwMDDataLen, 62
dwMDDataType, 62
dwMDIdentifier, 62
dwMDUserType, 62
dynamic link libraries (see DLL)

E
early binding, 81, 223

of ADO in ASP components, 226
EJB (Enterprise JavaBeans), 269
email readers

creating, 522
exception handling, 525
message list, displaying, 523
messages, displaying and deleting, 526

.eml file extension, 521
EnableCommit method, 117, 432
encoding methods, Server object, 218

,aspcIX.fm.21459 Page 797 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

798 Index

end dating, 296
End method, 449
END_ADO_BINDING macro, 486
enumeration, 536
enumerator interfaces, 84
enumObjects method, 353, 534
enumObjectsByFilter method, 357
EOF (end-of-file)

ADO and C++ definitions, 508
Err object, 220
error handling

ASP components, Visual Basic, 220
between component and script, 174–178
C++ components, 463–467
C++ components, enabling, 464
JScript, 174
PerlScript and Win32::OLE, 177
testing in PerlScript, 178
testing JScript ;VBScript, 175
VBScript, 174

escaping of backslashes in pathnames,
C++, 553

exception handling (see error handling)
Execute method, 236
ExecuteOptionEnum, 236
ExecuteSearch method, 546
ExitInstance method, 582
Expires property, 216
ExpiresAbsolute property, 217
Extensible Markup Language (see XML)
Extensible Stylesheet Language

Transformations (see XSLT)
Extensible Stylesheet Language (XSL), 305
Extensible Stylesheet language (XSL), 299
external transactions, 394, 399–407

F
FAILED macro, 463
file I/O, permissions, 319
file-based I⁄O using MFC, 584–588
Filter property, 248, 479
Filter property, IADsContainer, 357
findQueue method, 387
findQueues method, 560, 564
fixed thread pooling, 184

thread assignment, 185
float datatype, 429
Flush method, 449
for-each element, XSLT, 305, 306

Form collection, 209, 457
FormatName property, queues, 388
free-threaded components with global data,

problems, 104
free-threaded marshalers, 95
free-threaded model, 104, 424

G
game.h header file, 590
GET method, 210
Get method, 35, 348
GetActivityId method, 119
get_Buffer method, 449
get_ClientCertificate method, 457
getCodes method, 277
get_Contents method, 451
getContentValue method, 452
GetContextId method, 119
get_Cookies method, 457
GetCurrentTime method, 593
GetDeactivateOnReturn method, 120
GetDecodedContentStream and

GetEncodedContentStream
methods, 515

GetDecodedContentStream method, 332
getDescription method, 279
getDirectoryFrmQueue method, 401, 406
GetEx method, 36
get_Form method, 457
getGroups method, 376
GetIDsOfNames method, 81
GetInfo method, 349
getInfo method, 586
getIntrnlXactMsg method, 395, 397
get_LCIDmethod, 456
getMessage method, 341
GetMessages method, 322, 339

IDropDirectory interface, 521
getMessages method, 340

IMessages interface, 524
GetMyTransactionVote method, 120
GetObject method, 349, 357
getPageAssociations method, 290
GetRuntimeClass method, 588
getScore method, 593
get_ScriptTimeOut method, 463
get_StaticObjects method, 451
get_Status method, 450
getTimeout method, ??–66

,aspcIX.fm.21459 Page 798 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 799

get_Timeoutmethod, 456
GetTransaction method, 119
GetTransactionId method, 119
getUser method, 372
getUsers method, 371
get_Value method, 452
global access, 183
global settings, 55
global variable references and memory

leaks, 186
global.asa

connection string parameters, Access and
SQL Server, 476

global.asa file, 141–144
and threading, 144
creating, 143
database connection string, 472
including type libraries, 142

global.asa files, 202
globally unique identifier (see GUID)
GlobalMultiUse, 182
GlobalSingleUse, 182
group elements, properties, 359
groups, creating, 540
groups, removing, 542
GroupType property, 541
GUID, 352
GUID (Globally Unique Identifier), 33
GUID (globally unique identifier), 72
GUID header file, CDO, 507
GUIDGEN.EXE, 72

H
HasKeys method, 213
header files

warning, CObject class, 589
helper components, 268
helper function, 529
HRESULT datatype, 430
HRESULT return datatype, 428
HRESULT return type, 173
HTM type code, 253
HTML (Hyper Text Markup Language)

limitations, 299
HTML (Hypertext Markup Language)

use in XSLT, 306
HTML messaging, 512
HTMLBody property, 512
HTMLEncode method, 218, 461

I
IADORecordBinding interface, 486–490
IADs 330, 350
IADs Collection, 353
IADs interface, 350
IADs interface properties, 348
IADs methods, 348
IADsCollection interface, 530
IADsContainer, 354
IADSContainer interface, 43
IADsContainer interface, 350, 352, 357, 530
IADsMembers, 353
IADsMembers interface, 531
IADsNamespaces interface, 350
IADsOpenDSObject interface, 350
IApplicationObject interface, 451–453
IBodyPart interface, 323, 331–338, 514

Attachments collection, 336
IClassFactory, 82
IConfiguration, 324
IConfiguration interface in CDO, 509
IContextState, 119

methods, 120
referencing, 437
transaction control, 197
transaction management, methods, 296
transactions, 129

icrsint.h file, 487
identifier, 142
IDirectorySearch interface, 544
IDispatch, 81
IDispatch datatype, 430
.IDL file (Interface Definition Language

file), 420
IDL (Interface Definition Language), 77
IDropDirectory interface, 521
IEnumXXXX interfaces, 84
IFirst interface, 426
IIS 5.0

error handling, method failures, 463
IIS Admin objects, 30–??, 46–58

methods, 34–43
properties, 52

IIS Base Admin objects
methods, 59

IIS (Internet Information Server)
development environment, set up, 16
installing, 15–18

upgrade, 16

,aspcIX.fm.21459 Page 799 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

800 Index

remote administration, 27–68
ADSI, using, 29–46
using Internet Services Manager, 27

socket pooling, V 5.0, 18
virtual directories, 24

IIS Metabase, 29
METADATA_RECORD, 61

IMessage interface, CDO
sending HTML messages, 512

IMessage interface in CDO, 509
IMessages collection

iterating, 339
IMessages interface object, 322
Implements keyword, 79
Implements statement, 198
IMPLEMENT_SERIAL macro, 590
#import directive, 467, 508
import directive, 468, 469, 552, 570
IMSAdminBase interface and methods, 59
IMSMQMessagePtr, 568
IMSQQueueInfoPtr, 554
InitInstance method, 582
in-process components, 71, 181, 184

advantages, 417
ATL AppWizard, creating with, 417
IsCallerInRole, 195
usable classes, 182

in-process components, creating, 187
instancing property, 182
instantiating ASP components, 139–144

CreateObject method, 140
instantiation of components, 218
int datatype, 429
int64 datatype, 429
interception, 112
Interface Definition Language (IDL), 77
interfaces, 72, 76–86

creating, 78
enumerators, 84
methods, essential for COM, 75
ObjectContext, 192–197
referencing, 74

InterfaceSupportsErrorInfo method, 465
internal transactions, 394, 395–399
internationalization, 208
Internet Information Server (see IIS)
Internet Services Manager

setting default scripting language, 137
Invoke method, 81

IObjectContext, 116
methods, 117
properties, 117
transactions, 129

IObjectContext interface
accessing ASP built-In objects, C++, 445
COM+ services, access through, 432
transaction support, 432

IObjectContextInfo, 119, 201
methods, 119

IObjectControl, 122, 198–200
CanBePooled method, 130
deactivating, 200
JIT functions, implementing, 120
methods, 123, 198

IObjectControl interface
ASP components, reference in class

definition, 438
just-in-time activation (JIT), 437–440

IP settings, development environment, 17
IRequest interface, 456–460
IRequestDictionary interface, 456
IResponse interface, 447–451

Buffer property, 449
caching control, 449
Cookies collection, 451

IsCallerInRole
in-process components, 195

IsCallerInRole method, 117, 432
component access from client process,

return of True value, 435
IsClientConnected method, 218
IScriptingContext interface

and Windows 2000, 444
IServer interface, 460–463
ISessionObject interface, 454–456
IsInTransaction method, 117, 119, 432
IsKindOf method, 588
isolated development environment

security, 25
isolated development environments, 19–24

ASP components, for testing, 20
testing, 20

isolation, transaction management, 296
IsSecurityEnabled method, 117, 432
IsSerializable method, 588
IsStoring method, 590, 593
IsTransactional parameter, 394
IStringList interface, 459

,aspcIX.fm.21459 Page 800 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 801

ISupportErrorInfo interface, 464
Item property, 118
IUnknown, 80
IUnknown datatype, 430
IUSR_MACHINENAME, 259
IVariantDictionary, enumeration with, 454
IWriteCookie interface, 451

J
JIT (Just-in-Time) activation

use in MSMQ message queue, 571
JIT (just-in-time activation), 122, 437, ??–440

COM+ dependency, C++
components, 437

in IObjectControl interface, 198–200
including support in C++

components, 473, 474
JIT methods, 532
Journal property, MSMQQeueInfo, 407
journaling, 407–412
JScript

and Variant datatype, 146–148
arrays, 161, 165–168
ASP pages, support, 137
error handling, 174

just-in-time activation (JIT)
for binding to Active Directory

objects, 532
JustInTime.cpp file, inclusion of

IObjectControl methods, 438
JustInTime.h file, 447
JustInTime.h file, addition, IObjectControl

method prototypes, 438

L
label, 554
language

default, 58
LastError method, 177
late binding, 81
LCD (Lowest Common Denominator)

Lowest Common Denominator
(LCD), 153

LCID, 209
LDAP (Lightweight Directory Access

Protocol), 345
library applications, 126
lightweight proxies, 112

listContents method, 455
load balancing, 115

fised thread pooling, negation
under, 185

LoadFromFile method, 332, 516
local loopback address, 17
local settings, 55
localhost, 17

in Windows 2000, 18
LocalHost address, 29, 33
location transparency of COM

components, 71
LockType properties, 479
LockType property, 244
long datatype, 429
LookUp method, MSMQQuery, 560

processing results in a loop, 561
lookup tables, size, 277
LookupQueue method, 386

M
MachineIdOfMachineName method, 409
Make Project dialog, 190
MapPath method, 218, 311, 461
marshaling, 94, 181, 418

cross-process, 95
cross-thread, 95
performance issues, 184

memory allocation, databypes, 89
memory leaks and global variable

references, 186
Message object

Body property, 570
Message objects, 322

methods, 323
message queues, 382
message queues, creating pathnames

for, 553
message.cpp file, including import

directives, 510
messages

MSMQ, 550
messaging, 321–343

CDO in C++ ASP components, 506–527
adding attachments, 518
plain text, sending, 509–512
retrieval and reading, 521–527
sending HTML and plain text, 512
sending multipart, 514

,aspcIX.fm.21459 Page 801 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

802 Index

message body, 328–338
MSMQ, 568–580
MTS⁄COM+ transaction support, 576
reading and cleanup, drop folder, 340
"Send this URL to a friend", 324–328

URL for the current page, 326
SMTP access, 325
SMTP parameters, sendMultiPart

method, 329
Metabase (see IIS Metabase)
metadata, 240
METADATA_MASTER_ROOT_HANDLE, 63
METADATA_RECORD structure, 61
methods

adding to an ATL-generated ASP
component, 427

arguments, passing to, 189
ASP components, adding to with

C++, 430
COM-based components, essential to, 75
creating for Visual Basic

components, 188
IMSAdminBase objects, 59
interface, invocation on, 80, 81
marshaling, 94
under IObjectContext, 117

MFC (Microsoft Foundation Classes), 415
ATL components, advantages to using

in, 581
ATL, using with in C++ ASP

components, 581–595
initialization and termination

functions, 582
Microsoft

COM documentation, 90
data access technologies, supported, 225
Interface Definition Language (IDL), 77
Script Debugger, 55

Microsoft Extensible Markup Language (see
MSXML)

Microsoft Foundation Classes (see MFC)
Microsoft Loopback Adapter, 346
Microsoft Message Queue (see MSMQ)
Microsoft Message Queues (see MSMQ)
Microsoft Platform SDK, 355
Microsoft Transaction Server (see MTS)
Microsoft XML type library, included

objects, 308
monikers, 75

m_piResponse private data member, 569,
583

MQCOLUMNSET, 565
MQ_DENY_NONE, 392
MQ_DENY_RECEIVE_SHARE, 392
MQGetQueueProperties, 566
MQGetQueueProperties function, 566
MQLocateBegin, 565
MQLocateEnd, 566
MQLocateNext, 565, 566
MQPathNametoFormatName function, 566
MQ_PEEK_ACCESS, 392
MQPROPERTYRESTRICTION, 565
MQPROPERTYRESTRICTION structure, 565
MQPROPVARIANT structures, 565
MQRESTRICTION.paPropRes member, 565
MSDAIPP.DSO, 257
msg method, 324
msgqueue class, 383
MSMQ messages, 389–413

adding transaction support, 575
authentication, 412
journaling, 407–412
message encryption, 413
receive timeout property, critical

setting, 572
security, 412
senders and receivers, parameter

differences, 393
transactions, 394–407

MSMQ (Microsoft Message Queue)
and C++ ASP components, 550–580
components, 550
functions in C++, 551
header file, 552
libraries, adding to components, 552

MSMQ (Microsoft Message Queues), 380
ASP, using with, 380
COM object, 381–413
COM objects, using to search for

queue, 560–564
MSMQ functions, searching for queues

with, 564–568
MTS⁄COM+ transaction support, 576
removing, 557–560
transactions, 574
type library, 383
versions, compatibility, 413

MSMQ QueueInfo object, 554

,aspcIX.fm.21459 Page 802 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 803

MSMQ queues
referencing, 557

MSMQCoordinatedTransaction object, 399
MSMQMessage object, 389, 568
MSMQQuery, 386
MSMQQuery method

queue lookup, 557
MSMQQuery object

searching for a queue with, 560
MSMQQueueInfo, 382–386

PathName property, 383
Update method, 407

MSMQQueueInfo object
limitations, searching queues, 564
transactional messaging, setting, 394
using Create method to reference a

queue, 558
MSMQQueueInfos, 386
MSMQTransaction object, 394, 575
MSMQTransactionDispenser object, 394,

575
m_spObjectContext, 569
MSXML (Microsoft Extensible Markup

Language), 307
external XML documents, loading to

XMLDOM object, 309
MTA (multithreaded apartment), 102
MTS components

COM+, enabling compatibility with, 443
MTS (Microsoft Transaction Server), 127

components, porting to COM+, 201
object pooling, incompatibility, 442
packages, porting to COM+

applications, 124
MtsObject.cpp file, 442
MtsObject.h file, 442
multiformat messaging, 512
multipart messages, 328
multiple threading and marshaling, 425
multithreaded apartment (MTA)

multithreaded apartments (MTA), 102
MultiUse, 182

N
Name Admin object, 31
Name property, 31
namespaces, 302

ADO and CDO, 508
and CDO in C++ ASP components, 507

Namespaces container, binding to, 350
naming conflicts, prevention when using

CDO, 507
neutral-apartment threading model, 110
neutral-threaded model (Windows

2000), 424
newMediaType method, 270
newPrivateQueue method, 384, 556
newPublicQueue method, 383, 386, 410,

554
no_namespace option, 508
n-tier application model, 266
n-tier applications

separation of layers, 267, 268

O
object pooling, 130–135

C++, 439
IObjectControl methods,

implementation, 132
poolable components

adding to a COM+ application, 134
creating, 131
header files, 131

testing, 135
threading, 130

object serialization, 588
distributed environments, 595

<OBJECT> tag, 142
and threading, 144

<OBJECT> tags, 202
ObjectContext, 116, 192–197, 201

access, via different programming
languages, 116

early binding, 193
methods and properties, 192
MSMQ transaction management, 399
role-based security, 195
threading, 192
transaction control, 197
transaction management, methods, 296
transactions, 129

ObjectControl, 198
OLE DB, 225, 469
OLE DB Provider for Internet

Publishing, 257
permissions, 258

OLE DB Provider for the Internet

,aspcIX.fm.21459 Page 803 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

804 Index

support through Microsoft
Frontpage, 259

oleview.exe, 72
Open method, 235

data source specification, Connection
object, 236

MSMQQueueInfo, parameters, 392
parameters, 500

OpenDSObject method, 350
OpenKey method, 63
OpenSchema method, 240, 476–478

parameters, 240
Option Explicit statement, 188
out-of-process components, 71, 181

advantages, 418
fixed thread pooling, 184

P
page type codes, 253
page.cpp file, 488
PageSize property, 246, 479
paging, 245
.pak (MTS package file), 124
Parameters collection, 253
parameters, passing by reference or

value, 189
Parent property, 34
parent table dependencies, 286
parent-child relationship, 34
pbMDData, 62
Peek method, 393

ReceiveTimeout value, critical
requirement for, 390

PeekCurrent method, 393
PeekNext method, 393
PerlScript

and Variant datatype, 150–153
arrays, 161
ASP pages, enabling support within, 137
Boolean parameters, passing in, 150, 151
error handling using Win32::OLE, 177

Permission Denied error, ASP component
recompile, 19

permission problems, moving ASP
components between machines, 26

persistent storage, 75
persisting data, 262–265

as XML, 316–320

Recordset object, definition
requirements, 262

with ATL and MFC in C++ ASP
components, 581–595

persisting objects, 588, 591
pointer datatype, 429
poolable objects

creating, C++, 439
port settings, development environment, 17
POST method, 210, 457
Prepared property, 253
presentation layer, 266, 267
presentation layer and business layer,

separation, 446
Private, 182
private message queues, 413
private queue, 551
private queues, 382

creating, 384
creation on local only, 385

private queues, creating, 556
PRIVATE$ token, 556
processXMLQuery method, 309, 314
progid, 142
ProgID (programmatic identifier), 140
ProgIDs, LDAP providers, 351
Project Properties Debug settings, 222
PROPID, 565
Provider argument, 235
proxies

for cross-thread (apartment) and
cross-context method calls, 112

proxy, 95
public queue, 551
public queues, 382
public queues. creating, 554
PublicNotCreatable, 182
Put method, 40, 348
put_Buffer method, 449
put_CharSet method, 451
put_Expires method, 449
put_ExpiresAbsolute method, 449
put_Filter method, 538
put_LCID method, 456
PutRefActiveConnection method, 481
put_ScriptTimeOut method, 463
put_Status method, 450
putTimeout method, 66–68
put_Value method, 452

,aspcIX.fm.21459 Page 804 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 805

Python, resources for using in ASP, 137

Q
queries

business objects, 281
processing a result set, 231

queryies, 230–233
QueryInterface method, 74, 80, 445
QueryString collection, 209, 457
queues, 382

creating, 382–386
creating using MSMQ, 553
dot (.), use in pathname, 385
filenames, encryption of, 385, 388
labels, 397
MSMQ, 550
searching for, 386

queues, searching for using
MSMQ, 560–568

R
RDS (Remote Data Service), 225
readJournal method, 409, 410
readStringMessage method, 390, 392, 410,

572
readXactMessage method, 578
Receive method, 390

ReceiveTimeout value, critical
requirement for, 390

ReceiveCurrent method, 393
ReceiveTimeout parameter, 391

necessity to access of queue
messages, 390

Record object, 257
Record objects, 497–505
Recordset

locking, 244
XML format, saving as, 263

Recordset object, 242–250, 479–486
connection to data source, using, 229
creating, 479
disconnecting a recordset, 481
filtering and sorting the recordset, 485
properties and methods, 479
use of client-side cursors, 262

Recordset object, persisting, 318
recordsets

persisting XML to Response objects, 319

saving ADO as XML, 315–320
XML files, saving to, 318

Redirect method, 218
references, passing parameters by, 189
referential integrity, 273
Refresh method, 385
regsvr32.exe, 72

registration of components, 127
Release method, 75, 80
removeGroup method, 361, 542
removeQueue method, 385, 558
removeUser method, 370
removeUserFromGroup method, 374
Request object, 209–214, 444

collections, 209
client certificates, 212
Cookies, 213

resource management, 222
Response object, 199, 214–218, 444

ContentType property, 216
cookies, 217
Expires and ExpiresAbsolute

properties, 217
instantiating, 532
methods, properties, and collections, 214

Response object, instantiating in the
Acivation methods, 583

Response.Redirect vs. Server.Transfer
method, 219

role-based security, COM+
applications, 125

RollbackTrans method, 237
rootDSE, 352
round-robin thread assignment, 185
RUNAT attribute, 138

S
SafeArray, 211
SAFEARRAY data type, 90
SAFEARRAY datatype, 159, 430
SAMAccountName property, 540
Save method, 245

ADO recordset, saving to XML, 315
saveRsAsXml method, 263
SaveToFile method, 262
saveXMLToDocument method, 316
saveXMLToFile method, 318
saveXMLToResponse method, 319
schema class, 33

,aspcIX.fm.21459 Page 805 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

806 Index

Schema property, 34
SchemaEnum, 240
SCODE datatype, 430
scope, 142
<SCRIPT> tag, 138
scripting

default language, 58
scripting languages

datatypes, management, 146–159
limitations, 3
order of operations with multiple

languages, 139
setting default, 137–139
setting for a code block, 138
using two or more in a page, 138

secirity
COM+ application role-based, 125

security
development environment, 25
MSMQ messages, 412

Security property, 118
selectSingleNode method, 310
sendAttachments method, 336, 519
sendIntrnlXactMsg method, 395
sendJournalMsg method, 408, 410
sendMessage method, IMessage interface,

CDO, 510
sendMixedMultiPart method, 332, 515
sendMultiPart method, 329, 512
sendStringMessage method, 389, 570
sendURL method, 324
sendXactMessage method, 576
Serialize method, 588

overriding for CObject class, 589
serializing objects, 588, 591

distributed environments, 595
Serve object

CreateObject method
vs VBScript’s CreateObject, 141

server applications, 126
server isolation, for debugging, 222
Server object, 218, 445

CreateObject method, 140
encoding methods, 218

serverless binding, 352
servers

selection as location to run scripts, 138
server-side scripting, 1

Server.Transfer vs. Response.Redirect
method, 219

ServerVariables collection, 209, 457
Session object, 206–209, 444

internationalization of applications, 208
properties, 206
threading, 207
threading issues, 223

Session objects, 142
SessionID, 207
Set statement, 243
SetAbort method, 117, 197, 432
setCacheDate, 449
SetComplete method, 117, 197, 401, 432
SetDeactivateOnReturn method, 120
SetInfo method, 349, 541
setInfo method, 585
SetMyTransactionVote method, 120
setScore method, 592
SetSearchPreference method, 548
set_Timeout method, 456
short datatype, 429
showPage method, 246, 482
showPageInfo method, 252, 254, 493
showPages method, 251, 491
showPagesWithParm method, 495
showPagesWithParms method, 254
showProperties method, 239

Connection object, C++ components, 474
showSpecificPage method, 248, 485
showTypes method, 488
showUsers method, 536
showVariables method, 458
single-threaded components

ASP, problems with, 99
single-threaded model, 424
SingleUse, 182
smart pointers, 467

CDO in C++ ASP components, 508
instantiating Connection pointer, 475
placeholder for, 560, 562

SMTP
default drop mail folder, 339

SMTP drop directory, 521
socket pooling, IIS 5.0, 18
Sort property, 248, 479
source journaling, 408
 tag, 306
sp_getpages stored procedure, 494

,aspcIX.fm.21459 Page 806 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 807

STA (single-threaded apartment)
in-process components, 184
single-threaded apartments (STA), 102

standard Internet user, 259
standard I/O

including support in C++
components, 480

<$startpage, 63, 302
StdAfx.h header file, 582
stored procedures, 288–??

advantages, 288
creating, 290
end date columns, updating, 297
limitations, 289
referential integrity, maintaining, 293

Stream object, 257, 260
SaveToFile method, 262

Stream objects, 497–505
strong typing of COM components, 72
stub, 95
STY type code, 253
style settings, XML elements, 303
synchronization of threads, 93
SYSTEMTIME structure, 449
SystemTimeToVariant method, 449

T
target journaling, 408
TESTHR macro, 500
testing

messaging components, locally, 339
testObjContext method, 433
thread assignment, fixed thread

pooling, 185
threading, 184

in Visual Basic components, 184–186
threading models

C++, 423
threads, 91, 92–110

apartment-threaded model, 96
both-threaded model, 97
free-threaded model, 97
in-process components, 97
instantiation of components, global.asa

and <OBJECT>, 144
marshaling, 94
multi-processor systems, 93
neutral-apartment model, 97
out-of-process components, 97

single-processor systems, 93
single-threaded model, 96
synchronization, 93

thread-safe ASP components, 3
TimeOut, 208
TRANSACTION directive, 406, 435, 577
transaction directive, 195
transaction management, 296
transaction methods

support under data source checking, 238
transaction support

MSMQ, 550
transaction support, adding for message

queues, 574
transactional and nontransactional receives

and receive calls, 574
transactional enumerated constant

parameters, 576
transactional messages, 394
transactional sends and receives, MSMQ

messageing, 394
transactions, 128–130

COM+, 127
MSMQ messages, 394–407
MSMQ multiple-resource, 399–407
supporting in MSMQ messages, 575
testing, MSMQ, MTS⁄COM+, 576

try . . . catch exception handling for
JavaScript, 220

type information header files, CDO, 507
type libraries, 183
type library, 80

U
UDT (Uniform Data Transfer), 75
unconfigured components, 127
Uniform Data Transfer (UDT), 75
Universal Data Access, 469
Unix

COM, support of, 71
update, 244
Update method, MSMQQueueInfo, 407
UpdateBatch method, 401
updates

parent-child relationships in table
data, 281

URI (Uniform Resource Identifier), 302
"URL=" prefix, 257
URLEncode method, 461

,aspcIX.fm.21459 Page 807 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

808 Index

URLPath Encode method, 218
URLPathEncode method, 461
user interfaces

business processes, keeping separate
from, 387

users, creating, 366–378, 540
group membership transaction, 368

Users object, 354
users, removing, 542
UUIDGEN.EXE, 72

V
value, passing parameters by, 189
value-of element, XSLT, 305, 306
values, passing by reference in scripting

languages, 158
VARIANT data type

size, 89
VARIANT datatype, 430

conversion in different languages, 88
Variant datatype, 145–154, 189, 430

arrays, passing, 160
for passing of arguments by reference,

VBScript, 158
JScript, 146–148
parameters, 146
passing Boolean values in PerlScript, 152
PerlScript, 150–153
scripting languages,

comparison, 146–154
support in scripting languages, 146
using multiple scripting languages, 153
VBScript, 148–150

_variant_t, 511
VarType method, 145
VBA CreateObject function, changes in

Windows 2000, 223
VBArray function, 165
vbObjectError constant, 220
VBScript, 58

and Variant datatype, 148–150
arrays, 160
ASP pages support, 136
COM, data type support for, 87
CreateObject method, vs. Server

object, 141
error handling, 174
Variant datatype, 189

virtual directories, 24

application isolation, 24
testing, 25

virtual function tables (vtbt), 76
virtual functions, 76
Visual Basic

arrays, 162–165
ASP components, creating, 180–191
in-process components, threading

models, 184
Visual Basic 6.0

supported multiple-threading model, 103
Visual Basic Debugger, 222
Visual Basic projects

adsiapp, 366
Visual C++

arrays, 168–174
methods, adding to ASP

components, 430
Visual C++ 6.0

neutral-threading, lack of support, 425
Visual C++ and ASP components, 414–467
void datatype, 429
vt structure variable, 88
vtbt (virtual function table), 76
vtMissing, 560, 562
V_VT macro, 170

W
W3C (World Wide Web Consortium), 298
Weaver application

Access permissions, setting for
scripts, 262

Weaver database, 226, 267
MediaType table, 270
stored procedure, SQL Server, 289
tables referenced by Web page

entities, 281
Weaver virtual directory

changing permissions, 501
web pages

access permissions for testing, 26
web server

global and local settings, 55
web servers

ASP support, 14
web service

unloading ASP components, 19
web-based email readers

creating, 522

,aspcIX.fm.21459 Page 808 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Index 809

web-bases email readers
exception handling, 525
message list, displaying, 523

Win32::OLE::Variant Perl module, passing
Boolean values, 152

Windows
Registry, 29

Windows 2000
client identity, 350
Component Services Console, 125
MTS component options,

compatibility, 441
World Wide Web Consortium (W3C), 298
Write access, 258

authentication, 258
WriteText method, 332, 516

X
XML declaration line

XSLT namespace definition, 305
XML elements

style settings, 303
XML (Extensible Markup

Language), 298–307
ADO recordsets, saving as XML, 315–320
browser compatibility, 300
case sensitivity, 301
character encoding, 300
CSS, adding to a document, 302
database query from an XML

document, 309
declaration, 300
DTD (Document Type Definition), 300
elements, 300

formatting with CSS, 303
nesting, 301

external XML documents, loading to
XMLDOM object, 309

formatting, ??–308
Internet Explorer 5.0, implementation

within, 304
multi-table queries, 312
namespaces, 301
purpose, 299
queries, adding columns with

MSXML, 313
reserved characters, 301
tags, 300
validity, 301

version, 300
XML format, versatility, 264
XMLDOMDocument object, 309
XMLDOMNode object, 310
XSL (Extensible Stylesheet Language), 305
XSL (Extensible Stylesheet language), 299
XSLT (Extensible Stylesheet Language

Transformations), 305–308
HTML, use of, 306
namespace definition, 305

XSLT templates
XML documents, adding to, 305

,aspcIX.fm.21459 Page 809 Thursday, February 22, 2001 1:38 PM

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

810 Index

,aspcIX.fm.21459 Page 810 Thursday, February 22, 2001 1:38 PM

	Cover
	Copyright
	About the Author
	Table of Contents
	Preface
	1.Writing ASP
Components
	2.Setting Up the ASP Development
Environment
	3.ASP Components
and COM
	4.ASP Components,
Threads, and Contexts
	5.COM+ Services and
ASP Components and
Applications
	6.ASP Interaction: Scripting
and ASP Components
	7.Creating a Simple Visual Basic
ASP Component
	8.Creating ASP/ADO
Components
	9.Creating an ASP
Middle Tier with ADO
	10.Server-Side XML Through VB
ASP Components
	11.Take a Message: Accessing
CDO from ASP Components
	12.Working with Active Directory
from ASP Applications
	13.Working with MSMQ
Components
	14.Creating C++ ASP
Components
	15.Adding Data Access to C++
Components with ADO
	16.The CDO Interfaces from
C++ Components
	17.Accessing Active Directory
from C++ Components
	18.Accessing MSMQ from C++
ASP Components
	19.Persistence with ASP
Components Using
ATL and MFC
	20.ASP Components
Created with Java
	21.Creating ASP Components
with Delphi
	22.Perl-Based Components
Using ActiveState’s PDK
	23.Creating Scripting
Language Components
	Aa ASP Built-in Object
Quick Reference
	Ab The Weaver Database
	Index

