Extending Achive Server Pages

Components

O,RElLLY- Shallers Povoorrs

for all

ROR Fly Downsky epubcn

é ,TITLE.22004 Page 1 Thursday, February 22, 2001 1:39 PM

*

Developing ASP Components

.

,TITLE.22004 Page 2 Thursday, February 22, 2001 1:39 PM

é ,TITLE.22004 Page 3 Thursday, February 22, 2001 1:39 PM

*

Developing ASP Components

Second Edition

Shelley Powers

O’REILLY"

Beijing - Cambridge - Farnbam - Kéln - Paris - Sebastopol - Taipei - Tokyo

%

-t

T

.

é L,COPYRIGHT.21880 Page 1 Thursday, February 22,2001 1:39 PM

Developing ASP Components, Second Edition
by Shelley Powers

Copyright © 2001, 1999 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Ron Petrusha
Production Editor: Leanne Clarke Soylemez

Cover Designer: Hanna Dyer

Printing History:
April 1999: First Edition.
March 2001: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. ActiveX, JScript, Microsoft, MSDN, Visual Basic,
Visual C++, Win32, Windows, and Windows NT are registered trademarks and Active
Directory is a trademark of Microsoft Corporation. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association
between the image of an asp and developing ASP components is a trademark of O'Reilly &
Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-750-8
(M]

é ,AUTHOR.COLO.21750 Page 1 Thursday, February 22,2001 1:39 PM

About the Author

Shelley Powers is a consultant/author with her own company, Burning Bird Enter-
prises. In the last several years, she has worked with a variety of distributed,
Internet, and Web development applications, for different platforms and using a
variety of tools. Shelley has authored or coauthored books on Dynamic HTML,
JavaScript, Java, CGI, Perl, P2P, general Web technologies, and more. Shelley can
be reached at shelleyp@yasd.com, and her book support site can be found at
bttp.//www.burningbirdenterprises.com.

Colophon

Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Developing ASP Components, Second Edition, is an asp,
which is a term applied to various venomous snakes, including the depicted asp
viper (Vipera aspis) of Europe as well as the Egyptian cobra (Naja bhaje), thought
to have been the means of Cleopatra’s suicide.

Needing to eat at least 50-60% of their body weight in food per week, European
asp vipers hunt by lying in wait for approaching prey. After grabbing and biting a
small rodent or other prey, they release it and wait several minutes for it to stop
moving; the generally sluggish viper rarely chases prey. Vipers know their home
territory very well, which allows quick escape from their asp-kicking natural
enemies, serpent eagles, and hedgehogs. This trick hasn’t helped them escape
from their greatest threat, the expansion of human civilization, which frequently
wipes out large sections of their territory.

The chemical composition of asp viper venom can vary from one population to
the next, hampering initial antivenin development until 1896, but few viper bite
fatalities occur in Europe today.

Leanne Soylemez was the production editor and proofreader for Developing ASP
Components, Second Edition. Norma Emory was the copyeditor, Mary Anne Weeks
Mayo and Colleen Gorman provided quality control, and John Bickelhaupt wrote
the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial

- ad

é ,AUTHOR.COLO.21750 Page 2 Thursday, February 22, 2001 1:39 PM

Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest.
Judy Hoer converted the files from MSWord to FrameMaker 5.5 using tools created
by Mike Sierra. The text and heading fonts are ITC Garamond Light and Gara-
mond Book; the code font is Constant Willison. The illustrations that appear in the
book were produced by Robert Romano using Macromedia FreeHand 8 and
Adobe Photoshop 5. This colophon was written by Nancy Wolfe Kotary.

Whenever possible, our books use a durable and flexible lay-flat binding. If the
page count exceeds this binding’s limit, perfect binding is used.

é ,aspcTOC.fm.21592 Page v Thursday, February 22,2001 1:38 PM

*

Table of Contents

Prefaceccooooiiiiiiiiiiiiiiiii e Xi
1. Writing ASP COMPOMNCILS ...ttt 1
The Role ASP Components Playcccccoiiiiiiiiiiiiiiiie e 2
Why Use ASP COMPONENLS?ciuiiiiiiieiiiieaiite et eaiie et e e e e 3
COM+ Services and ASP COMPONENLSccuiieiiiiaiiiieaiieaeiieaeiieeeiieeeeee e 5
Accessing Data with ASP COMPONENLSccuviiiiiiiiiiiiiiaiieieeee e 8
Windows 2000 Technologies Accessible from ASP Components 10

A Rose by Any Other Name: Programming Language Choice 11
What ABOUL ASP.NET? ..o 13

2. Setting Up the ASP Development Environment 14
Configuring the TIS ENVITONMENTc..iiiiiiiiiiieiiieiieiie et 15
Remote Administration of TIScccoiiiiiiiiiiiii e 27
Using ADSI to Administer IIS Programmaticallycccccoviiviiniiiiine 29

IIS Admin ObJject OVEIVIEWcoviiiiiiiiiiiiiiiiie e 46
The IIS Base Admin ODJECESccviiiiiiiiiiiiiiiiciictee e 59

3. ASP Components and COMc.cccccocoeovrieieeoirinaennn, 69
Overview of COM for ASP Component Developerscccocvvvvviiiiiincne 70
How COM Is Implementedccoooiiiiiiiiiieiii e 76
Notable COM INEEIfACESc.eoiuiiriiiiiiiiiiii et 80
COM DATALYPES .vvvveeiiiiiiiie ettt e e 87

4. ASP Components, Threads, and Contexts 91
What Are Threads?cccoviiiiiiiiii s 92
Threads and APArtiMENntSccoouiiiiiiiiiiie et 95

v

ﬁ

*@%

é ,aspcTOC.fm.21592 Page vi Thursday, February 22,2001 1:38 PM

*

vi

Table of Contents

The Threading MOEISccoiiiiiiiiiieie e 96
What Are COM+ CONIEXES?viiuvieiiiiiiiiiieiteiite ettt 110
COM+ Services and ASP Components and Applications 114
Developing Component-Based SYSteMScccoovvieiiiiiiiiieiiiieiiiee e 114
The COM+ INLEIFACESioiiiiiiiiiiiiitcc e 116
Porting MTS Packages to COM+ Applicationsccceoveieiiiiiiiiinieiieee. 124
Activating COM+ APPLICATIONS ...cvvviiiiieiiiieiiie e 125
COMHA SEIVICES ..uiiiiiiiiiiiiiii i 127
ASP Interaction: Scripting and ASP Components 136
Scripting Language Support Within ASP ... 136
Instantiating COMPONENESvviiiiiiiiiiiieeeiiiiiiie e et e e e e e 139
COM+ Datatypes and Script/Component Interactioncccceeeeernene. 145
Passing Arrays as PATamMeEeTErSccccccviiiiiiiiiiiiiiieeeeiiiniiiieeeeeeee e 159
Error Handling Between Component and SCriptccccceevvireniieeninenne, 174
Creating a Simple Visual Basic ASP Component 180
Creating an In-Process or Out-Of-Process COMPONentcccceevvererennne. 181
Component INSTANCING ...ccoovvviiiiiiiiiiiiieeeiei e 182
Component Execution and Threads ..o, 184
Creating an ASP PTOJECTcoociiiiiiiiiiiiiiii e 187
Creating Component Methodsccooiiiiiiiiiii e 188
Generating, Registering, Installing, and Testing the Component 190
Adding Support for COM+ SEIVICESeovuiiriiiiiiiiieiiiiie et 191
Converting MTS Components for Use with COM+ ..o, 201
Accessing the ASP Built-in ODbJECtScccocciiiiiiiiiiiiiiiiiie e 202
Error HANAING ...ooviiiiiiie e 220
DEDUZEGING ..ottt 222
Performance ISSUEScociiiiiiiiiiiiiiiiit e 222
Creating ASP/ADO COMPONENLScccccccceveiiiiiaiaaenae, 225
Accessing ADO from a VB COMPONENEoc.eiiiiiiiiiiiiiiiiiieiieeicaie e 226
Creating a Simple ADO COMPONECNLvviiiiiiiiiieiiieeiiee e 227
The ADO MOUEL ..o e e 233
File and Directory Access with ADO Streams and the Record Object 256
PersiSting DALAc..eiiuiiiiiiiiiie ettt 262
Creating an ASP Middle Tier with ADOccccccc...... 266
How Separate Should the Layers Be?ccccocooiiiiiiiiiiiiiiiiiieee 267
Creating ADO Data WIADPPELS ...coouviiiiiiiiiieeiiiiiiieeriite et 268

%

ﬁ

*@%

é ,aspcTOC.fm.21592 Page vii Thursday, February 22, 2001 1:38 PM

*

Table of Contents vii
Defining Business ODJECEScoouiiiiiiiiiiiiiiiiiieeet e 281
Other Data INtegrity ISSUCScouviiiiiiiiiiiiiiiie et 295

10. Server-Side XML Through VB ASP Components 298
XML BASICS ittt 298
Formatting XML ..ottt 302
Working with XML in ASP AppPlCAtionSccoooiiiiiiiieiieiieeie e 307
XML and ADO: Saving Recordsets as XMLccccovvieiiiieiniiaiiieeiiieeeee. 315

11. Take a Message: Accessing CDO from ASP Components 321
A Brief Overview of CDOocooiiiiiiiiiiiiii e 322
The CDO ODbject MOl ..ot 322
Send This URL tO @ Friendoooiiiiee e 324
Working with the Message BOAYcccoocviviiiiiiiiiiiiice 328
Retrieving and Reading MESSAZESccveuieiiiiiiiaie i 338

12. Working with Active Directory from ASP Applications 344
A Brief Overview of Active Directory in Windows 2000cccceeeee.. 345
Setting Up an Isolated Active Directory Environmentc.cccceceeevenenn. 345
A RefTESNET ON ADSI oo e 347
Binding to Active Directory ODJECtScooovvviiriiiiiiiiiiiiiiiieiieec e 349
Using the Active Directory Services VIEWETcccoocviviiiiiiieiiiinienienne 355
Manipulating CONLAINETSoouiiiiiiiiiiii et 357
Searching Active Directory with ADOccooiiiiiiiiiniiiiicee, 362
ASP Example: Add and Manage Users Through the Web 366

13. Working with MSMQ COMPONENLS ..o, 380
MSMQ/ASP BASICS +.evviivieiiie ettt 380
Working With QUEUESc.ooiiiiiiiiiiiiiie e 382
Working with MSMQ MESSAZESc.veevriiiiriiiiiiaiiaiie ettt eee e 389
USING TTANSACHONS ..eeiviiiiiiiiiiiite ettt 394
JOUNALING .ooiiiii e 407
A Brief Word on MesSage SECUTILYcoviviiiiiiiiiiiieiieeieeeee e 412

14. Creating C++ ASP COMPONENLSccccooovioiiniviniiiicicin, 414
ATL OF MFEC o 415
Using ATL AppWizard to Generate the Basic ASP Component Project 416
Adding an ATL ODJECE .oveiiiiiiiiiiiiie et 421
Code Changes Based on Adding a New Objectcccoceviviiiniaiiniininnnn, 426
Adding Methods to the Interfaceccccoviiiiiiiiiiiiiiiie e 427
Adding Support for COM+ SEIVICESeovviiiiiiiiiiiiiiieie ettt 432

%

ﬁ

*@%

é ,aspcTOC.fm.21592 Page viii Thursday, February 22, 2001 1:38 PM

*

viii Table of Contents
Converting MTS Components for Use with COM+occoviiiiiininnne. 440
Accessing the ASP Built-in ODJECtSooviiiiiiiiiiiiiiiice e 444
Error HANAIING ...ovoiiiiiiiiii e 463

15. Adding Data Access to C++ Components with ADO 468
ADO Access in Visual CHt oo 468
The ADO ObjJect MOAELcc.coiiiiiiiiiiiicieieee e 469
The Connection ODJECTccciiiiiiiiiiiiiiiiicicee e, 470
The RecordSet ODJECEiiiiiiiiiiiiiiie et 479
The TADORecordBinding Interfacecccoooiiiiiiiiiiiiiiiicee 486
The Command ObJECtcocooiiiiiiiiiiii e, 490
Stream and Record ODJECES ...coviiiiiiiiiiiiiiieiiicee e 497

16. The CDO Interfaces from C++ COMPONENtsc.c......... 506
Accessing CDO Interfaces in CH+ oot 5006
Creating and Sending @ MESSAZEcocvivivieriiiniiiiieeie et 509
Retrieving and Reading MESSAZEScccovuiiriiiiiiiiiiieieieee e 521

17. Accessing Active Directory from C++ Components 528
Binding to Active Directory ObJECtScccooiviiiiiniiiiiiiieiiceieecee 529
ADSI Helper FUNCHONSoviiiiiiieiiieeiice e 536
Filtering COECHONSviiuiiiiiiiieii et 538
Creating and Removing Active Directory Objects Using ADSI 540
Searching Active Directory with IDirectorySearchccccocceviiieniinnnn, 544

18. Accessing MSMQ from C++ ASP Components 550
Adding Support for MSMQ to the C++ Projectcccoccevvveniiniiiiiiiianns 550
Working with QUEUESc.iiiiiiiiiiii i 553
Searching for a Specific QUEUEcccevviiiiiiiiiii 560
Working with MSMQ MESSAZESc.veevriiiiriiiiiiaiiaiie ettt eee e 568
USING TTANSACHONS ...vieiiiiiiiiie ittt 574

19. Persistence with ASP Components Using ATL and MFC 581
Combining MFC and ATLcccccooiiiiiiiiiiiie e 581
File Access from ASP COMPONENLScceeviviiiiiiiiiiiiieaies et 584
Creating a Serializable Classccccccoiiiiiiiiiiiiiit e 588
Persistence Through Object Serializationccccoociiiiiiiiiiiiininnn 591

20. ASP Components Created with Javac......... 596
Creating Java COMPOMNENLSiiiiiiiiiiiiiiiiteeeiiiiee ettt 597
Invoking a COM Object in a Java COMPONENLoovvviviiiriiariiiaienieaiennn, 606

%

ﬁ

*@%

é ,aspcTOC.fm.21592 Page ix Thursday, February 22,2001 1:38 PM

*

Table of Contents ix
Working with COM+ SEIVICESviiiiiiiiiiiiiiiit et 611

The ASP Built-in Object and Helper Interfacescoccooeviviininiinennn. 619
Accessing ADO from Java COMPONENLScoviiiiiieiiiiieaiiieeiiee e e 633

21. Creating ASP Components with Delphi 0642
Using the COM Wizards to Create ASP Componentsc.cccocceeveennennne. 642
Manually Adding Support for COM+/ASPcccooviiiiiiiniiiiniiieiee, 653
Working with the ASP ODJECEScocoviiiiiiiiiiiiiiciecc e 660
Working With ADOiiiiiiiiii e 668
Working with Windows 2000 Functionality: CDOccccceoviiiieniein 672

22, Perl-Based Components Using ActiveState’s PDK 677
Setting UP PDK ..oiiiiiiiiiiii et 678
Building a Basic Perl COMPONENtcccooiiiiiiiiiiiiiiaieieieee e 679
Accessing the ASP Built-in ODJECtSoooviiiiiiiiiiieiieiie e 689
Working With Dataccoeiiiiiiiiiii e 709
Working with the Win2K ENvironmentcccoccevvvieiiiniieninienennainenas 716

23. Creating Scripting Language COmpPOnents 719
The Windows Script Components ArchiteCtureccoocvevierierieaneann. 719
Elements of a WSC Fileccccoiiiiiiiiiiiiiiic 722
Script Components and ADOcoiiiiiiiiiiiiice 733

The WSC WHZATA oo 736
Creating Script Components With JSCPEooviiiiiiiiiiiiiieee 741
Accessing Windows 2000 Functionalityc.cooccovviiiiiiiiiniiiniiiiiicee 744

A. ASP Built-in Object Quick Referenceccccccceue. 751
B. The Weaver DatabASec..ccccccoooimieoinininsiiseeenn. 776
INAEX ..., 791

*@%

,aspcTOC.fm.21592 Page x Thursday, February 22, 2001 1:38 PM

é ,ch00.17820 Page xi Thursday, February 22,2001 1:27 PM

Preface

Developing ASP components requires knowledge not just of one tool or of one
technology, but of many. You have to become familiar with one or more develop-
ment tools, such as Visual Basic or Visual C++ (this book covers both, along with
Visual J++, Delphi, and Perl), and of course you also have to become familiar with
the tools’ underlying language. However, you can’t stop there.

ASP components are nothing more than specific types of COM-based compo-
nents; that is, they’re COM components designed to interface with Active Server
Pages and, most commonly, with Microsoft’s Internet Information Server (IIS).
Consequently, you need to develop a certain level of familiarity with COM, the
Component Object Model that underlies much of Microsoft’s technology. Becom-
ing familiar with COM development in turn requires that you become familiar with
threads, so that you can understand how a COM component interacts with a cli-
ent as well as the performance issues involved with clients and components that
are based on different threading models.

Once you’ve become familiar with working with a tool that supports COM compo-
nent development and you're aware of some of the issues involved with COM
development, you still have other new technologies to learn. As you develop ASP
components, you need to become familiar with web-based development in gen-
eral and with the ASP environment in particular. The way in which your compo-
nents interact with the “world” they find themselves in—with the web server, the
browser, or the web page reader—occurs through built-in objects that Microsoft
has provided for ASP development.

Originally, the built-in objects could only be instantiated based on specific event
handlers. In IIS 4.0, however, the built-in objects could be accessed from Microsoft
Transaction Server (MTS) objects. And now, in IIS 5.0, the ASP built-in objects can
be accessed from COM+ objects. In addition, COM+ Services provides a number of

Xi

- ad

é ,ch00.17820 Page xii Thursday, February 22,2001 1:27 PM

xii Preface

features (such as transaction management, just-in-time activation, and object pool-
ing) that are increasingly important for middle-tier components. So you are going
to need to become familiar with COM+ as well.

This seems like a very formidable list of tools and technologies, and it is. But
we’re not finished yet. Most applications—including more and more ASP applica-
tions—require some form of data access. If you need to provide support for data
access, then you need to become familiar with ActiveX Data Objects (ADO), the
data access technology from Microsoft that’s built on top of OLE DB. Frequently,
the content of an ASP page is assembled from data found in a message store, or
conversely the data gathered from the user’s interaction with an ASP page is sent
in an email or placed in a message store. For applications such as these, you need
to become familiar with Collaborative Data Objects for Windows 2000 (CDO).
Under Windows 2000 and IIS, a good deal of system information is stored in
Active Directory; to retrieve information from and write information to Active
Directory, you should know the Active Directory Service Interface (ADSD. Finally,
ASP applications, and particularly ASP e-commerce applications, often require
communication across systems and involve events that can occur at different times
(as, for example, when a user orders products online and a pick list is needed by
a system in the warehouse for printing). To take advantage of such loosely cou-
pled events, you should be familiar with Microsoft Message Queue (MSMQ).

Finally, once you know the programming language used for the component, the
tool used to build the component, the implications of developing a COM-based
component, the functionality available through built-in and COM+-supplied
objects, and how you can access data and the other services needed by your
application, then and only then you can take on the functionality that your com-
ponent needs to provide. Then, you add additional functionality such as file input
and output, object serialization, access to other Windows functionality, and so on.

So, do you feel tired before you even start? Well, T want to tell you that develop-
ing ASP components really isn’t all that bad, and in fact, you are about to start hav-
ing some fun. Not only that, you are also going to learn to work with technology
that faces directly on that road racing to the future: the road to distributed and
component-based development.

This book introduces you to working with COM development as well as working
with threads and those pesky little “not threads, not processes”—apartments. It
also provides an overview of the ASP operating environment as well as some
things you need to know about COM+ and how to work with it. Finally, to com-
plete this environment overview, the book explores the interaction between the
component and the script used to instantiate and invoke the methods of that com-
ponent.

4~ ~4]e

é ,ch00.17820 Page xiii Thursday, February 22, 2001 1:27 PM

Preface Xiii

Following this introduction, the book then covers component development using
Visual Basic and Visual C++. In the case of Visual Basic, chapters include access-
ing the intrinsic ASP objects from a Visual Basic component, accessing data using
ADO, incorporating messaging with CDO for Windows 2000, using MSMQ, and
using components to generate XML. The Visual C++ chapters discuss some of this
same material (accessing ASP intrinsics, data access using ADO, using MSMQ),
along with persistence using the Microsoft Foundation Classes (MFC) and the
ActiveX Template Library (ATL). But if your organization is like so many others
nowadays, your group is probably not using just one tool in its web development
efforts. It’s just not that unusual for shops to program in Visual C++ and Java,
Visual Basic and Delphi, or Visual Basic and Perl. Rather than focus this book on
one or two languages, I picked the tools/languages most likely to be used. Conse-
quently, separate chapters examine issues in component development using Java,
Delphi, and Perl. Each of these chapters is based on the earlier chapters that cover
component development using Visual Basic and explores techniques and issues in
component development using that language or tool.

Who This Book Is For

This book is geared to the developer who has worked with one of the target lan-
guages/tools but either has not created COM objects before or has not worked
with developing ASP components or ASP applications. I hope that the book pro-
vides enough of an introduction to COM and threads to make you feel more com-
fortable with these topics if you haven’t worked with them before and to provide a
good review if you have. The book does not provide an exhaustive overview of
COM+ and developing COM+ components but does provide, again, enough of an
overview so you feel comfortable working as a developer in a COM+ environ-
ment.

The book also provides a comprehensive overview of the ASP component envi-
ronment, including using tools and wizards in each language/tool to assist in creat-
ing the components, and covering every aspect of accessing the built-in ASP
components essential for your development effort. In addition, the book also pro-
vides good coverage of data access using ADO, messaging using CDO for Win-
dows 2000, and message queuing using MSMQ.

How This Book Is Structured

Informally, this book is divided into four parts. The first part introduces ASP com-
ponent development and covers topics that are of concern to all component devel-
opers, regardless of the language they use. This part consists of six chapters.
Chapter 1, Writing ASP Components, examines some of the reasons that you'd

- ad

é ,ch00.17820 Page xiv Thursday, February 22, 2001 1:27 PM

xiv Preface

want to develop an ASP component rather than rely on a simple ASP script. It also
mentions some of the technologies (COM+ services, ActiveX Data Objects, and
Active Directory, to name just three) that you can draw on in developing your
components. Chapter 2, Setting Up the ASP Development Environment, examines
how to set up your development environment to insure that you can develop with
maximum productivity and that your testing doesn't impact on a production sys-
tem. In addition, the chapter covers programmatic administration of IIS using
Active Directory and the IIS Admin Objects. Chapter 3, ASP Components and COM,
examines Microsoft's Component Object Model (COM), which provides the basis
for developing all types of components. Chapter 4, ASP Components, Threads, and
Contexts, provides developers with the information that they need to know about
threading models when developing ASP components, and particularly when
accessing global data from the ASP Application object. It also examines the notion
of context (a grouping of objects that share the same requirements), an under-
standing of which is essential to working successfully with COM+. Chapter 5,
COM+ Services and ASP Components and Applications, examines the new inter-
faces supported by COM+, shows how components written to take advantage of
COM+'s predecessor, Microsoft Transaction Server (MTS), can be ported to COM+,
and examines range of services provided by COM+. Chapter 6, ASP Interaction:
Scripting and ASP Components, covers an often-neglected component develop-
ment topic: your component may be accessed by any of a number of scripting lan-
guages—VBScript, JScript, PerlScript, Python, Rexx, etc—and communication
between script and component is often not as seamless as you'd like. The chapter
looks at what you can do when developing your ASP component to insure that it
can work with as many scripting languages as possible.

The second portion of the book, which consists of seven chapters, focuses on
component development using Visual Basic. In addition, its chapters serve as a
kind of model for how to develop ASP components if you're using a high-level
language like Visual Basic that masks much of the complexity of COM and COM+.
Chapter 7, Creating a Simple Visual Basic ASP Component, introduces Visual Basic
as a tool for ASP component development and examines how to access the ASP
object model from Visual Basic. Chapter 8, Creating ASP/ADO Components, looks
at accessing data in heterogeneous sources using ActiveX Data Objects (ADO).
Chapter 9, Creating an ASP Middle Tier with ADO, discusses component design for
multi-tier applications, focusing particularly on the degree of separation between
the middle tier and the client tier. The remaining chapters focus on individual
technologies that developers frequently use when creating ASP Components.
These include the following:

e XML is discussed in Chapter 10, Server-Side XML Through VB ASP Components.

e Collaborative Data Objects (CDO) for Windows 2000 is covered in Chapter 11,
Take a Message: Accessing CDO from ASP Components.

- ad

é ,ch00.17820 Page xv Thursday, February 22, 2001 1:27 PM

Preface Xv

e Active Directory is discussed in Chapter 12, Working with Active Directory
Sfrom ASP Applications.

e Microsoft Message Queue (MSMQ) is examined in Chapter 13, Working with
MSMQ Components.

The third portion of the book, consisting of six chapters, treats component devel-
opment using Visual C++. In addition, its chapters serve as a kind of model for
ASP component development using a high-level language like Visual C++ that
exposes much of the complexity of COM and COM+. Chapter 14, Creating C++
ASP Components, introduces Visual C++ as a tool for ASP component develop-
ment and examines how to access the ASP intrinsic objects from a Visual C++
component. Chapter 15, Adding Data Access to C++ Components with ADO, exam-
ines accessing data in heterogeneous sources using ADO. The next three chapters
cover the following individual technologies that are often used in developing com-
ponents for IIS 5.0:

e Collaborative Data Objects (CDO) for Windows 2000 is covered in Chapter 16,
The CDO Interfaces from C++ Components.

e Active Directory is discussed in Chapter 17, Accessing Active Directory from
C++ Components.

e Microsoft Message Queue (MSMQ) is examined in Chapter 18, Accessing
MSMQ from C++ ASP Components.

Finally, coverage of Visual C++ and ASP component development ends with
Chapter 19, Persistence with ASP Components Using ATL and MFC, which dis-
cusses ways in which your component can save its data to the filesystem.

The final portion of this book features individual chapters on component develop-
ment using the following programming languages and environments:

e Java is covered in Chapter 20, ASP Components Created with Java.
e Delphi is discussed in Chapter 21, Creating ASP Components with Delphi.
e Perl is covered in Chapter 22, Perl-Based Components Using ActiveState’s PDK.

e Windows Script Components (WSC), a scriptable yet powerful development
environment for creating ASP components, is discussed in Chapter 23, Creat-
ing Scripting Language Components.

Finally, the book includes two appendixes. Appendix A, ASP Built-in Object Quick
Reference, provides a handy guide to the objects, properties, methods, and events
of the ASP object model. Appendix B, The Weaver Database, examines the tables
contained in the sample Weaver database, which is used in the book's examples.
It can be downloaded from htp.//vb.oreilly.com.

- ad

é ,ch00.17820 Page xvi Thursday, February 22, 2001 1:27 PM

xvi Preface

Obtaining the Sample Code

All of the example source code from Developing ASP Components, Second Edition,
along with the sample Weaver database discussed in Appendix A, is freely down-
loadable from the O'Reilly & Associates web site at hitp.//vb.oveilly.com. Just fol-
low the link to the book’s title page, then click on the Examples link.

Conventions Used in This Book

Throughout this book, we have used the following typographic conventions:

Italic
Represents intrinsic and application-defined functions, the names of system
elements such as directories and files, and Internet resources such as web doc-
uments. New terms are also italicized when they are first introduced.

Constant width
Indicates a language construct such as a language statement, a constant, or an
expression. Interface names appear in constant width. Lines of code also
appear in constant width, as do function and method prototypes.

Constant width italic
Indicates replaceable parameter names in prototypes or command syntax and
indicates variable and parameter names in body text.

Indicates a note or tip.

Indicates a warning.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472

é ,ch00.17820 Page xvii Thursday, February 22,2001 1:27 PM

*

Preface Xvii

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any addi-
tional information. You can access this page at:

bttp://www.oreilly.com/catalog/devaspcom?2
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http.//www.oreilly.com

For technical information on Visual Basic programming, to participate in VB dis-
cussion forums, or to acquaint yourself with O'Reilly’s line of Visual Basic books,
you can access the O'Reilly Visual Basic web site at:

http://vb.oreilly.com

Acknowledgments

I want to thank the book’s tech reviewers, Daniel Creeron and Matt Childs, for
their thorough reviews and helpful comments. T also want to thank Bob Herbst-
man and Tatiana Diaz, members of the O'Reilly editorial staff, for their hard work
and dedication to this project.

I also want to thank my long-suffering editor, Ron Petrusha. This is the second edi-
tion of this particular book, and he’s done a terrific job of editing both of them. I
also want to thank my coworkers at Skyfish.com for being a terrific group of peo-
ple. Specifically, I want to thank a certain group of Australians in the company—
guys, the best to you all, and may your dreams find you.

Finally, thanks to my readers—I'm here because you're here.

ﬁ

*@%

,ch00.17820 Page xviii Thursday, February 22,2001 1:27 PM

é ,ch01.17972 Page 1 Thursday, February 22, 2001 1:27 PM

Writing ASP
Components

When Microsoft first released Active Server Pages (ASP) with the company’s web
server, Internet Information Services (IIS), the functionality included with this early
release amounted to little more than an ability to handle server-side scripting. If
you haven’t worked with server-side scripting, it is the inclusion of script, such as
VBScript or JScript, in web pages so that the script is processed on the server
rather than on the client. This early ASP release soon gave way to the ASP we
have now, a sophisticated server-side application-building environment that still
supports server-side scripting, but also includes integration with other Microsoft
server products such as COM+ Services and allows ASP pages to access COM/
COM+ objects.

This book is about writing COM/COM+ objects to work within this ASP environ-
ment. Since they are COM/COM+-based, you know that whatever functionality
you can implement with COM/COM+ components, you can also implement with
ASP components. This means that you can create an instance of an ASP compo-
nent and use that component instance to do things such as query a database, open
a file, or send an email to a client. However, ASP components are created for a
specialized environment, and there are certain things you might consider doing
with COM objects that you probably wouldn’t consider doing with ASP compo-
nents. For instance, because an ASP component resides on the server, you aren’t
going to use any message windows to communicate with the user; all communica-
tion is handled through IIS.

In addition, by being part of the ASP environment, ASP components have access
to built-in objects that contain information not normally available to a “standard”
COM object—information such as form field values submitted from an HTML form,
the type of browser being used to access the page, or even the language, such as
English, preferred by the client.

- ad

é ,ch01.17972 Page 2 Thursday, February 22, 2001 1:27 PM

2 Chapter 1: Writing ASP Components

The information available to an ASP component is also available to ASP scripting
blocks, so why use components when you can use scripting, especially since
scripting is fairly simple to use and can be learned relatively quickly?

The first and foremost reason to use ASP components instead of in-page ASP
scripting blocks is reusability. It’s difficult to package an ASP script in such a way
that it can be used over and over again in many different pages. Additionally, if
you or your company is considering packaging some ASP functionality for resale
or distribution, the use of ASP scripting becomes insupportable. You probably
won’t be in business long if people can both see and modify your source code.

Another reason to use ASP components is that the components themselves can
reside virtually anywhere, even on different machines. You can create an ASP
application that may update a customer database and that uses one component to
update the person’s address and another component to update the person’s prefer-
ences. One or both of these components can reside on the same machine as the
web server, but one or both of these components can as easily reside on other
machines, with remote COM+ being used to access the component. While you can
distribute web pages containing script on various machines, the maintenance and
access issues become much more complicated and usually require hardcoding the
physical addresses of the pages within the application. With COM+-based func-
tionality, only the operating system COM+ manager needs to know where the ASP
components reside. Moving components is a matter of changing the location of a
component once on the client machine; all accesses to the component now occur
at its new location.

An additional reason to use ASP components is that they can incorporate the full-
est range of functionality on the server, including database access, file access,
archiving, messaging, and other functionality difficult or impossible to do with
script. You can even transcend object systems and access CORBA-based compo-
nents with the support of products such as Iona’s COM-CORBA Bridge and others.

The Role ASP Components Play

As stated earlier, ASP components are COM+-based components that encapsulate a
specific functionality and that are invoked either directly from an ASP page or indi-
rectly via some other ASP component. If you have worked with COM+ before, ASP
components don’t use any additional technology, but they can use additional
objects available only within the context of an ASP application. However, if a com-
ponent does not access the ASP-specific objects provided through the ASP object
model, it can be used within a distributed application, from other components
(whether or not they're part of an ASP application), or even within a flat one-tier
application that has no involvement with ASP, IIS, or the Internet. From this point

4~ ~4]e

é ,ch01.17972 Page 3 Thursday, February 22, 2001 1:27 PM

Why Use ASP Components? 3

of view, this book could actually be about writing COM+ components, albeit with
a specific focus.

Having said that an ASP component is really no different than any other COM+
component, T want to add that the focus of writing an ASP component can alter
how that component is created. First, the component will usually reside on the
same server as the client of the component, with the client for ASP being the web
server. I say usually with some reservation, since there is no requirement that ASP
components must reside on the same machine as the client application.

In addition, an ASP component is almost always an in-process (ActiveX DLL) com-
ponent, though you can use out-of-process components if you wish. However,
ASP is optimized for in-process access of components.

As in-process COM+ objects, ASP components are usually created using the apart-
ment- or both-threaded model or the new neutral-threaded apartment model. ASP
components are not and should not be created using the single-threaded model,
since the component locks down all access to a single thread, which causes access
problems in a multiuser environment such as the Web and a multiuser application
such as a web server. The component shouldn’t be created using the free-threaded
model either, since all communication between the ASP page and the component
must then be marshaled, a process that can impact on the ASP application’s per-
formance.

There is an additional constraint if you're using a multithreaded model such as the
both-threaded model: the ASP components must be thread-safe. What's a thread-
safe ASP component? One that does not contain global data, that does not yield
control internal to the processing of the component, and that is safely reentrant.
Chapter 4, ASP Components, Threads, and Contexts, goes into more depth on
threads and apartments. That chapter also covers how threads and the new COM+
contexts work together to provide optimized management of the components.

Now that you have a basic idea of what ASP components are, the next section dis-
cusses why you would use ASP components instead of creating the ASP applica-
tion using scripting exclusively.

Why Use ASP Components?

In the beginning of the chapter, I started listing some reasons to use ASP compo-
nents instead of scripting. In this section, I want to discuss this topic in a little
more detail.

An ASP component can be used in place of scripting where scripting is just not
workable or efficient. For example, your ASP application may need to make direct
calls to the Windows internals through the Win32 API or manage file input and

4~ ~4]e

é ,ch01.17972 Page 4 Thursday, February 22, 2001 1:27 PM

4 Chapter 1: Writing ASP Components

output. These operations cannot be done from within a scripting language such as
JScript or VBScript. The IIS scripting engine can be extended to other scripting lan-
guages, such as Tcl or PerlScript, which do support direct filesystem access or calls
to the Win32 API. However, the use of these scripting languages comes at a cost:
the code is a little more difficult to read, a little more difficult to maintain, and a
whole lot more difficult to secure against editing from external sources. If the code
needs to remain unaltered, perhaps to enforce standards compliance or universal
data access, the code should be contained within binary components.

Along with implementing functionality that is either unsupported or not easily sup-
ported by scripting languages, ASP components are also developed to be reusable
and to wrap routines that are commonly called in ASP applications, something that
isn't as easy to implement with script. This means that, if the code needs to
change, the change then needs to be propagated to all the pages that use the
code. In contrast, reusable code is more easily and efficiently managed through
components. All ASP applications can access a single physical component. And
when that component needs to be modified or revised, the change needs to be
made in just a single place. So for code that needs to be reusable, an ASP compo-
nent is a better choice than ASP scripting.

ASP components can be used to modularize an application, splitting off discrete,
manageable bits of functionality that can then be coded by several people in paral-
lel or even purchased from some other party. An additional advantage to modular-
ization of code in components is that the components can themselves be
distributed on different machines, and component access can be handled remotely
through DCOM or some other equivalent technology. This approach ensures that
the application is more scalable and will be able to handle increasingly larger
numbers of accesses. If the ASP components are also configured and coded as
COM+ components, transaction management for all of the components can be
handled directly by COM+ regardless of where the component resides. Though
transactions can be used with scripting and ASP pages can be located on other
machines, the management of pages containing straight scripting blocks instead of
components under such conditions can become more complicated.

If an organization is considering building an application that is n-tier rather than
fitting within the traditional client-server paradigm, ASP components are an excel-
lent tool to use to implement one or more of the application layers. A classic
approach is to implement the business layer of an ASP application as one or more
ASP components and handle the presentation layer in the web page using HTML
and client-side scripting, including the newer Dynamic HTML (DHTML). The data
access layer would be contained within the database used in the application.

Finally, ASP components are a handy way of ensuring uniformity of an applica-
tion. For example, if database queries are formatted for output into HTML tables

4~ ~4]e

é ,ch01.17972 Page 5 Thursday, February 22, 2001 1:27 PM

COM+ Services and ASP Components 5

with a certain look, the data presentation functionality can be maintained within
ASP components in a layer between the web pages and the business logic and
used for all database queries.

COM+ Services and ASP Components

ASP Components within the Windows 2000 environment can use one of several
COM+-managed services to enhance the performance of both the component and
the component’s ASP application.

One popular COM+ service is just-in-time (JIT) activation. JIT is used to instanti-
ate the component when the component’s methods are called, not when it's
instantiated in the ASP script. JIT also deactivates the component when it’s no
longer active, though the ASP page may still be processing other component
method calls. This late instantiation/early release model helps free up scarce sys-
tem resources such as memory and database connections, as described in more
detail in Chapter 5, COM+ Services and ASP Components and Applications.

Another COM+ service is object pooling. Object pooling is used to create a pool of
ASP components that are then used to process component method requests, rather
than creating a new component for every request. Object pooling can increase the
speed with which components are instantiated. However, only components that
meet certain criteria, as described in Chapter 5, can take advantage of object
pooling.

Resource Management

Resource pooling recognizes that some resources—such as database connections,
threads, and other finite resources—are expensive. By preallocating a pool of
resources, access to the resource happens more quickly. Since quick allocation of
the resource is assured, the developer will most likely write code that allocates the
resource, uses it, and releases it as soon as possible. When the developer uses this
type of coding practice, the pool of available resources can be kept as small as
possible. By keeping the resource pool as small as possible, the whole system per-
forms better, and the developer receives positive feedback—a nicely performing
application or component—encouraging the developer to continue using the
sound coding practices that actually assist in the well-behaved application or com-
ponent. This is just the kind of cycle that should be encouraged with development.

By utilizing resource pooling, expensive and time-consuming resources such as
database connections can be created when the application is started and can be
used for all resource access, rather than having to create a new reference every
time the application wants to create a new connection. Based on resource pool-
ing, the connection happens more quickly, and the system is more scalable, since

4~ ~4]e

é ,ch01.17972 Page 6 Thursday, February 22, 2001 1:27 PM

6 Chapter 1: Writing ASP Components

limited resources are managed finitely and controls are maintained on the number
of resources allocated.

Database connections are the most widely known resource that participates in
resource pooling, but any resource can be managed in this manner by creating the
appropriate resource dispenser. COM+ provides for resource pooling of ASP or
other components by providing an object called ObjectControl that actually allows
the component to be used within a resource-pooling context. Additionally, for spe-
cific resources, developers can actually create resource dispensers that manage
allocation of the resource connections for any resource they believe would bene-
fit from this process.

In addition to supporting resource pooling, COM+ also provides for just-in-time
activation, which means that when a client makes a connection to a component
managed by COMH+, it is really getting a connection provided by COM+ and not
directly by the component. If the component signals that it is finished with its pro-
cess using the SetComplete or SetAbort methods on the component’s associated
ObjectContext object (discussed in the next section) COM+ knows that it can mark
the component for release, even while the client still maintains the connection to
the component. When the client next accesses a method on the component,
COM+ loads a new instance of the component, and the client is never aware that
it is no longer using the original “component reference.”

COM+ also provides for transaction management, as described in the next section.

Transaction Management

If an ASP component performs a task that begins and finishes within a single func-
tion call, transaction management is not that much of an issue. However, ASP
components can call other components and perform other actions such as data-
base activity, each of which requires some form of overall transaction support.

One of the problems with a distributed application (and an ASP application can be
distributed) is transaction management across several different application compo-
nents and potentially across several different machines. For instance, one compo-
nent can update an address in a database, and another component can update an
associated name. If the address update fails, the associated name update should
also fail in order to maintain consistency of the data. If both the updates occur
within the same component, this isn’t a problem, since both database transactions
can be rolled back. Rolling back a change means that the impacted database data
exists in the same state as it did before the change was attempted.

If the updates occur with two different components, transaction management
becomes more complex. One possibility is to use one database connection for
both components, and one of the components—the one making the name

4~ ~4]e

é ,ch01.17972 Page 7 Thursday, February 22, 2001 1:27 PM

COM+ Services and ASP Components 7

update—calls the other component that performs the address updating. The com-
ponent performing the address update returns a value signifying success or failure
of its operation. If the update failed, the first component would not make its
update. Though workable, the approach is cumbersome, and neither component is
able to work independently of the other.

Another approach is to handle transaction management within an ASP page or by
a third component that creates both updating components, tests the return state of
both components, and commits or rolls back all of the changes based on the
results returned by either component. This is a better solution, since now both
components can make their updates without having to worry about what is hap-
pening with any other component. However, in a larger application that makes
multiple changes of this type, having the application itself maintain consistency
between the data updates of all the components can become overwhelming at
some point.

The best solution of all is to have some other process manage the transaction state
of the components and test to see whether each component has succeeded in its
operation or whether one of the components has failed. If any one of the compo-
nents fails, then the changes made by all of the components are rolled back. This
is where COM+ comes in.

COM+ provides a two-phase commit transaction management scheme that ensures
that, unless all participants in a transaction complete successfully, none of the par-
ticipant updates are committed. You might say that this first phase of the commit
operation consists of a pass made of all participants in a transaction to ask if they
are ready to commit their changes. The second pass then checks to make sure all
of the components have made updates without errors.

ASP applications can participate in COM+ transactions, and transaction manage-
ment can occur within an ASP page, an ASP component, or both. A transaction
can be created within an ASP page and then used for all of the components cre-
ated directly from the page or created from within another component accessed in
that page. Failure in any one component means all of the updates made by all of
the components within the transaction are rolled back. Components themselves do
not have to create transactions directly but can be registered with COM+ in such a
way as to participate in an existing transaction or have COM+ automatically create
a new transaction for the component when the component is created.

To facilitate transaction management from within the component, there are COM/
COM+ objects with methods the component can call to signal to COM+ the state
of both the component and the transaction. If the component uses the COM+
IObjectContext or IContextState interface methods, such as SetAbort or Set-
Complete, the component is basically providing information to COM+ that it has

4~ ~4]e

é ,ch01.17972 Page 8 Thursday, February 22, 2001 1:27 PM

8 Chapter 1: Writing ASP Components

finished its processing and can be unloaded from memory. The following code is
an example of using the ObjectContext SetAbort method from within a Visual
Basic component:

Dim objContext As ObjectContext
Set objContext = GetObjectContext ()

objContext .SetAbort

By using the ObjectContext object’s SetAbort method, COM+ knows that the com-
ponent has finished its processing but that the processing was not successful. In a
two-phase commit paradigm, the object passes the first phase successfully—it is
finished with its processing. The second pass of the process would operate on the
information that this component failed, which means that the transaction failed
and that none of the updates made by any component in the transaction are com-
mitted.

Using the SetAbort method also lets COM+ know that it can unload the compo-
nent from memory even if the client of the component still maintains a pointer to
the component. When the client next accesses the component, COM+ loads a new
version of it and passes all component references to the new component. This is
an example of JIT that was discussed earlier.

Each of the language-specific chapters of the book (Chapters 7, 14, and 20-23)
covers the use of transactions from within components.

Transactions are particularly important if your ASP components are making
updates to a persistent data source using data objects such as ActiveX Data Objects
(ADO), discussed next.

Accessing Data with ASP Components

There are few applications, Internet-based or otherwise, that do not perform data
access in one form or another. ASP applications are no exception. There are actu-
ally several methodologies that an ASP application and an ASP component can use
to manage or query data.

RDO and DAO: Earlier Data Access Techniques

First, an ASP component may access data through a set of APIs provided by the
data source engine that allows direct access to the data. Though efficient, the
problem with this approach is that the data access is locked into the particular
database engine. An additional problem is that there is no guarantee that the API
may not change over time, forcing changes to the component using it. An exam-
ple of using a direct call-level interface is DB Library for SQL Server.

- ad

é ,ch01.17972 Page 9 Thursday, February 22, 2001 1:27 PM

Accessing Data with ASP Components 9

If the data source has an ODBC driver, the ODBC call-level interface could be
used instead. The advantage to using ODBC is that the same techniques used to
query and manage data for one data source can also be used for another data
source, as long as both data sources provide a compliant and compatible ODBC
driver. However, this technique requires a fairly in-depth understanding of ODBC.

Microsoft provided Data Access Objects (DAO) for access to the Jet database
engine that ships with Visual Basic and Access. The advantages of DAO are that it
is optimized for ISAM or Jet database access, and it can support single queries
against multiple data sources. The disadvantages to using DAO are that it is not an
optimum approach to access data from relational data sources, and it requires
more memory than other approaches, such as the Remote Data Objects (RDO) dis-
cussed next. Also, before the release of ODBCDirect, DAO could not be used with
ODBC data sources. ODBCDirect now provides RDO functionality from DAO
objects, though the other limitations remain.

RDO objects are really wrapper objects for the ODBC API that lessen the complex-
ity of using ODBC. RDO provides for powerful functionality, including the use of
local cursors and batch operations. RDO is also fast and efficient, but its perfor-
mance can actually degrade or it can even fail when used with ISAM data sources.

The previous generation of data access techniques tended to support particular
types of data access. Some, like DAO, are geared for ISAM data access, and oth-
ers, like RDO, are geared more toward relational database access. In addition,
none of the approaches are designed to access data from text files, email, or any
other of the many data sources that we use on a day-to-day basis. To address the
gaps in data access, Microsoft proposed the concept of Universal Data Access, dis-
cussed next.

Universal Data Access

Universal Data Access is nothing more than a single data access technology that
can be used with different types of data, regardless of the format or structure of
the data source. This means that the same objects can be used to access an ISAM
data source, a relational database, a text file, and even data from an email.

To support the concept of Universal Data Access, Microsoft used COM as an
implementation paradigm and created OLE DB. OLE DB is a set of interfaces
based on COM that provide for data access through data providers that produce
and control data and data consumers that use the data. In this context, SQL Server
is considered a data provider, and an ASP component that uses OLE DB directly is
a data consumer.

OLE DB is very fast and efficient, but it is not necessarily simple to understand or
use outside of the OLE DB templates for Visual C++. To assist developers in using

- ad

é ,ch01.17972 Page 10 Thursday, February 22, 2001 1:27 PM

10 Chapter 1: Writing ASP Components

OLE DB, Microsoft also provided ActiveX Data Objects (ADO), a set of objects
implemented on top of OLE DB that can be used with any programming language
or tool that has COM access.

ADO consists of a very small set of objects that can be accessed either hierarchi-
cally or directly. One of the disadvantages of both DAO and RDO is that their
objects form an enforced hierarchy, and any one object can only be accessed from
its parent objects within the hierarchy. With ADO, an object like a result set can be
accessed and used directly without having to access it from either a command or a
database connection, unless this hierarchical access is what you want.

In Chapter 8, Creating ASP/ADO Components, ADO is used to demonstrate basic
data access techniques with ASP components created using Visual Basic, though
the techniques can apply to ADO access from any language. Chapter 9, Creating
an ASP Middle Tier with ADO, describes some of the techniques and issues to be
aware of when developing a component for the middle tier. In addition,
Chapter 15, Adding Data Access to C++ Components with ADO, covers the use of
ADO from Visual C++, and the other language chapters in the final section of the
book each demonstrate how to use ADO with that specific language.

Windows 2000 Technologies Accessible
Jrom ASP Components

An ASP component within the Windows 2000 operating system environment has
access to a wealth of technologies that can be used to send or read emails, post
deferred messages, manage an LDAP directory, and so on.

Microsoft has provided the Active Directory Service Interface (ADSD) to work with
Active Directory. Directory services are used to manage users, groups, and system
resources, including controlling application access, and issues of security. The
ADSI is used to manage the IIS environment, as detailed in Chapter 2, Setting Up
the ASP Development Environment. ADSI can also be used to provide LDAP direc-
tory service functionality to an ASP application. Using ADSI is demonstrated using
Visual Basic in Chapter 12, Working with Active Directory from ASP Applications,
using ADSI with Visual C++ is discussed in Chapter 17, Accessing Active Directory
from C++ Components.

Collaborative Data Objects (CDO) for Windows 2000 can be used from within
your ASP components to send and retrieve email messages. The messages can be
as simple as a single text string or can include complex hierarchical multipart mes-
sages with MIME formatting. Chapter 11, Take a Message: Accessing CDO from ASP
Components, and Chapter 16, The CDO Interfaces from C++ Components, demon-
strate the use of CDO from Visual Basic and Visual C++, respectively.

- ad

é ,ch01.17972 Page 11 Thursday, February 22, 2001 1:27 PM

A Rose by Any Otber Name: Programming Language Choice 11

The Microsoft Message Queue (MSMQ) technology is used to create deferred
application-specific messages. For instance, a salesperson in the field can get sev-
eral orders that are stored in his laptop. At some point he can connect to the com-
pany’s server process and upload the orders as MSMQ messages, to be processed
immediately or at a later time.

To work with MSMQ technology, you can use MSMQ COM objects, as described in
Chapter 13, Working with MSMQ Components, or you can access the MSMQ func-
tions from Visual C++, as described in Chapter 18, Accessing MSMQ from C++ ASP
Components.

The mechanics of using each of these technologies is covered in the Visual Basic
chapters of this book, and demonstrations of how to use them within an environ-
ment where more of the COM+ infrastructure is exposed is covered in the chap-
ters devoted to demonstrating C++.

Though much of the Windows 2000 functionality covered in this book is demon-
strated with Visual Basic or Visual C++, you can implement the same functionality
in your COM-compliant language. Each of the languages covered in the final por-
tion of the book—Delphi’s Pascal, Perl, and Java—as well as scripting languages
can access any of the functionality just discussed. To do so, read the Visual Basic
chapters first in order to get an overview of the technology. Then apply the tech-
niques exposed in either Visual Basic or Visual C++ to your own language.

Each of the language chapters takes one aspect of the Windows 2000 technolo-
gies and demonstrates how it can be accessed in the specific language.

A Rose by Any Other Name:
Programming Language Choice

In actuality, there is no “right” tool or language to use for writing ASP compo-
nents. Any tool that is capable of creating COM-compatible objects can be used to
create ASP components. This includes C++ (through tools such as Visual C++ or
Inprise’s C++ Builder), Visual Basic, and Java (through Visual J++ or through the
Java SDK, depending on the functionality you include in your component).

This also includes languages considered as “not traditional” ASP programming lan-
guages, such as Pascal, through Delphi from Inprise (formerly Borland), and Perl,
with the help of the Perl Dev Kit from ActiveState.

As for which language to write the component in, there is no one choice that
stands out clearly over the others. Writing ASP components using Visual Basic
exposes less of the underlying functionality than writing the same component
using Delphi or Visual C++. Because of this, Visual Basic is the easiest tool to use,

- ad

é ,ch01.17972 Page 12 Thursday, February 22, 2001 1:27 PM

12 Chapter 1: Writing ASP Components

particularly for a shop that has primarily used tools such as PowerBuilder or Visual
Basic for most application development. If a shop is porting a traditional Visual
Basic client/server application to an n-tier system, the continued use of Visual
Basic also makes sense.

However, for a Delphi or Perl shop, it makes no sense to switch to Visual Basic
when you can use either of these languages in your component development.
Both provide modules or wizards you can use to facilitate your ASP component
development.

For Delphi or Perl developers, the Visual Basic chapters in this book
provide overviews of the technology being demonstrated in the
chapter, such as CDO, as well as examples of using CDO with VB
components. You can benefit from both the overview and the dem-
onstrations in these chapters, even though you program in a differ-
ent language. Consider Visual Basic as the closest “pseudocode”
language we can find when it comes to demonstrating techniques.

If your exposure to development has been primarily with scripting, then you can
also use scripting languages such as JavaScript/JScript or VBScript to create your
components, by using the Windows Script Components (WSC). How to use the
WSC is described in Chapter 23, Creating Scripting Language Components.

Visual C++ exposes more of an ASP component’s underlying COM architecture
and can be used to create efficient and speedy components. However, that same
exposure to COM also makes using Visual C++ a more difficult choice. If the shop
creating the components has no C++ or Visual C++ experience, this approach
becomes prohibitive. However, if a shop has used Visual C++, then Microsoft has
provided the ActiveX Template Library (ATL) to assist in implementing ASP com-
ponents; it handles almost all of the details associated with the implementation of
a COM component. Using ATL and accessing the ASP built-in objects are covered
in Chapter 14, Creating C++ ASP Components. In addition, Chapter 19, Persistence
with ASP Components Using ATL and MFC, provides coverage of file I/O in addi-
tion to serializing information for persistence beyond the life span of an ASP appli-
cation.

As for concerns about interoperability, considering that ASP components are COM
components, they are by their very nature interoperable within a COM environ-
ment. Even within an organization that uses CORBA rather than COM+, there are
COM/COM+-to-CORBA bridges to handle communication between the two com-
ponent management/communication approaches.

The underlying language used to create the component does not matter because
ASP components are based on a binary interface, not a language-specific interface.

4~ ~4]e

é ,ch01.17972 Page 13 Thursday, February 22, 2001 1:27 PM

What About ASP.NET? 13

What About ASPNET?

As you move into the future with your ASP development, you'll eventually start
moving your applications over to ASP.NET rather than the existing ASP. How will
this new environment and framework impact on your component development?

Actually, you'll find that ASP components work equally well in an ASP.NET envi-
ronment as in an ASP environment. In fact, the whole concept of ASP.NET is that
any language—including those demonstrated in this book—can be used to create
ASP.NET applications.

Instead of using separate script blocks using JScript and VBScript, you can use
programming languages such as C++, Perl, Visual Basic, or the new C# (pro-
nounced “C sharp”) to create functionality within an ASP.NET page or within an
externally accessed COM+ component. The underlying infrastructure compiles the
language code into a common Intermediate Language (IL) code.

The ASP objects change with ASP.NET, so you'll want to consider using the ASP
built-in objects from your component code sparingly, if at all.

Regardless of how fast you move to the ASP.NET environment, Microsoft realizes
that it must support components created using classic COM/COM+ functionality—
which means that the components you create now will continue to function into
the future.

é ,ch02.18096 Page 14 Thursday, February 22, 2001 1:27 PM

Setting Up the ASP Development
Environment

ASP is a web development tool and environment and thus requires that a web
server be available. Originally, only Microsoft supplied web servers that provided
the necessary support to run an ASP application. It wasn’t long, though, before
companies such as Chili!Soft extended support for ASP to other web servers such
as Apache, Netscape's servers, and even O'Reilly’s web server, all of which
increased the popularity of ASP as a web development tool. However, IIS is still
the primary web server used with ASP.

IIS can be installed as an option when you install Windows 2000. If you're upgrad-
ing, IIS is installed automatically if the upgrade process detects an existing copy of
the web server. You can also install IIS at a later time. Once IIS is installed,
though, additional work is necessary to configure the environment to support ASP,
depending on whether the web server is a standalone server set up for develop-
ment or a production machine accessed internally through an intranet or exter-
nally through the Internet.

IIS can be configured and administered locally or remotely through the use of
tools that Microsoft has provided. In addition, IIS also has a support data structure
known as the IIS Metabase, which can be manipulated programmatically using
objects provided with IIS or using the Active Directory Services Interface (ADSD).

Once 1IS is installed and configured, the next step is to create an ASP application to
act as the development test environment. Specifically, there are configuration set-
tings that can help the ASP component developer during the development process.
These and all of the other issues just mentioned will be covered in this chapter.

14

é ,ch02.18096 Page 15 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 15

Though this chapter focuses exclusively on IIS, you should be able
to install another web server and add support for ASP with Chili!Soft
or another comparable ASP support application. The components
discussed in this book have been tested only within a Windows 2000
environment, in both Advanced Server and Professional installa-
tions. Many of the components use features and facilities that are
specific to Windows 2000, such as COM+ support. Because of this,
there is no guarantee that the components demonstrated throughout
the book will work with any other operating system.

Configuring the I1S Environment

ASP first appeared as an ISAPI extension with Version 3.0 of IIS. Since that time,
the capabilities of ASP have grown from a server-side scripting technique to a rich
n-tier and web-based application development environment. As ASP has grown in
functionality, so has the support environment, and this includes IIS.

I1S 5.0, included with Windows 2000, provides for a high degree of control of the
web server environment, including being able to create more than one web site in
the same IIS administration context, as well as being able to create one or more
virtual directories, each of which can emulate a totally separate web environment.
In addition, each web site can be configured to handle specific numbers of con-
nections and allow open or restricted access; each virtual directory can have its
access constrained; and both the web site and virtual directories can be opened
for general or restricted access based on NT roles.

Each of these options and others are discussed in this section, but first, let’s make
sure IIS is installed correctly.

You will need Administrative privileges to install and set up IIS on a
particular machine.

Installing 1IS

To develop ASP components, you need to have a test environment, and for Win-
dows 2000 this most likely means having access to an IIS test installation. You
could be sharing a test environment with other folks, something that IIS supports
quite nicely, or you might have your own version of IIS to use for development.

4~ ~4]e

é ,ch02.18096 Page 16 Thursday, February 22, 2001 1:27 PM

16 Chapter 2: Setting Up the ASP Development Environment

You're given the choice whether to install IIS when you do a clean Windows 2000
installation. If, however, you install Windows 2000 as an upgrade to an existing
system, IIS is installed automatically only if the previous installation also had IIS
installed. As such, an automatic installation of IS occurs only when you’re upgrad-
ing an NT 4.0 server. Then the Windows 2000 installation tries to match, as closely
as possible, the configuration of your existing server. If you're installing Windows
2000 Professional over Windows 95 or 98, you’'ll need to install IIS as a separate
component at a later time.

The procedure to install TIS is, fortunately, relatively simple. First, make sure IIS 5.0
isn’t already installed by checking for the Internet Services Manager menu item,
located in the Administrative Tools menu folder if you are using Windows 2000
Server. If you are using Windows 2000 Professional or Server, you can access the
Internet Services Manager from the Administrative Tools folder contained in the
Control Panel.

To install IIS, access the Add/Remove Application option in the Control Panel.
Select the option to add or remove Windows components. From the window that
opens, click on the checkbox next to Internet Information Services to install the IIS
component, or click the Details button to fine-tune your selection. If disk space is
at a premium, you might want to skip the installation of FTP, NNTP, and other
web applications. You should, though, choose to install the default web server,
checked by default.

Once you’ve made your choice, the Windows Components Wizard installs IIS with
default values. You can test your installation by accessing the IIS introduction page
using the following URL:

http://localhost/localstart.asp

This opens a page introducing IIS and also opens a separate window containing
IIS documentation. Become familiar with this page and the documentation, since
you will be using it throughout this book and in your development efforts.

After TIS is installed and you’ve had a chance to become familiar with the startup
page and documentation, the next step to setting up a development environment
is to create a separate development web server. In the Internet Information Ser-
vices snap-in service component, you should see the name of your IIS server (the
machine’s name), and below this you should see the default web server and
administration web server, which are already defined.

For the purposes of this book, we’ll redefine the default web server as the Devel-
opment server. To do this, you’'ll rename the server and also point it to your devel-
opment subdirectory.

First, use Windows Explorer to create a new top-level directory named
development. Next, you'll set up the web server to point to this new directory.

4~ ~4]e

é ,ch02.18096 Page 17 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 17

Right-click on the default web server name and select Properties from the menu
that opens. In the Properties window, select the Web Site tab, and type in the new
web server name, Development. You can also turn off logging, unless your devel-
opment effort is dependent on web logs.

After renaming the web server, select the Home Directory tab. Find the Local Path
text box in the page and type in or browse for the location of the development
directory you created. In addition, rename the Application name to Development.
You're now ready to access the development content using the localbost IP alias.

If you are working with Windows 2000 Professional, the version of
IS installed in this environment will not let you create separate
Administration and default web servers, nor can you create a new
web server—only one server is allowed. However, you can change
the location of this server to point to the directory where you will be
creating your test ASP pages. Additionally, you can also create multi-
ple virtual directories as detailed in the later section, “Creating Sepa-
rate ASP Applications with Virtual Directories.”

If the default web server is being used for other purposes, you can create a sepa-
rate development server. To do this, right-click on the Windows 2000 server
name—the topmost object in the Console window—and from the pop-up menu,
select New, then select Web Site. The Web Site Creation Wizard opens up and will
guide you through the server setup.

Stepping through the Wizard pages, you'll enter a description of the web server
first—in this case, you’ll type in Development. Next, you'll need to specify IP and
port settings. Unless the web server needs to be accessed from an intranet, for
shared access, or from the Internet (not a good idea for a development test
server), you'll want to leave the setting of All Unassigned as is, or use the IP of
127.0.0.1, also known as the local loopback address. You'll be able to access your
web site using the uniquely defined DNS value of localbost with either of these
settings.

If you want to support more than one web server using the same IP address but
with a different physical location and with different property settings, you can cre-
ate the new server with a different TCP port number. Then, to access each web
server, you specify the port number, as follows:

http://localhost:8000/default.asp

The only limitation with specifying separate ports is you can’t specify one already
being used. Checking your installation, you’ll find that the default web server is
already using port number 80, the default port, and the administration web server
uses a port assigned a randomly generated number between 2000 and 9999. If

4~ ~4]e

é ,ch02.18096 Page 18 Thursday, February 22, 2001 1:27 PM

18 Chapter 2: Setting Up the ASP Development Environment

Domain Names and the HOSTS File

Localhost is predefined in the HOSTS file in Windows 2000. You can see this
file in the Windows OS directory, under \system32\drivers\etc. HOSTS con-
tains the IP-to-name mapping; the first entry will be “localhost,” and its IP
address will be 127.0.0.1. In a small intranet, you can use the HOSTS file to
specify domain name aliases and IPs for all members of the intranet, without
having to use DNS.

For fun, and if your computer is isolated from a network, rename localbost to
whatever name you would like to use with your development effort, such as
devaspcomp.com. Just be forewarned that if you use a name that is available
on the Internet, redefining localbost on your machine to that name will mean
you're going to get your web server, not the site on the Net, when you access
the name in a web page.

you're using the separate port approach to create a development web server, use
port number 8000 unless it's already assigned to another service.

As an alternative, if you are setting up a site with multiple IP addresses, you can
take advantage of site socket pooling implemented with IIS 5.0. With socket pool-
ing, web sites served from different IPs can use the same port, which, in turn,
allows each of the sites to use the same socket. This decreases the overhead
required for all of the sites. However, if you have only one IP address, such as on
a standalone machine, and you want to try different sites, use different ports.

The next setup option is to pick the physical directory where your host will reside.
Youll want to type in or browse for the development directory, created earlier.
You'll also want to leave the checkbox labeled Allow Anonymous Access checked,
unless you're in a shared or exposed environment.

Going on to last setup page, the Web Site Creation Wizard provides you with
options to set the Access Permissions for the web site. You’'ll want to accept the
default values of Read and Run Scripts at this time.

Access permissions and user and role security issues will be dis-
cussed a bit later in this chapter, in the section titled “Securing the
Development Environment.”

Once the web server is created, you can configure it to fit your needs. Since we're
setting up a development environment, the next step is to configure the server to
run in an isolated environment, discussed next.

4~ ~4]e

é ,ch02.18096 Page 19 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 19

Creating an Isolated ASP Development Environment

ASP became very popular primarily because of its ease of use—all a developer
needed to do to add server processing was embed a few lines of script within an
HTML page. To make the environment even more attractive for developers,
Microsoft added support for ASP components in IIS 3.0. By adding in support for
components—basically COM server objects—developers could create objects in a
variety of programming languages and access these components from more than
one web page.

As powerful as ASP components are, folks quickly encountered a problem with
them: if a developer loads a web page into a browser that accesses a component
and then tries to make a code change and recompile the component, the follow-
ing error results:

Permission Denied

The reason is that IIS, in an effort to improve performance, keeps the component
loaded, hence locked, even when you are no longer accessing the page that con-
tains the component. In fact, 1IS will continue to hold the component until the
web service is shut down—notice I say web service and not web server—or some
other event causes the component to be unloaded.

With IIS 3.0, ASP component developers tried shutting down the web server they
used to access the component, but the permission problem still remained. The rea-
son is that shutting down the web server won't release the hold on the compo-
nent; it is the actual web service, IISADMIN, that maintains the lock on the
component, and it is this service that must be shut down.

The most common way to stop this service and release the locks on any compo-
nents was to issue a network stop command, for example:

NET STOP IISADMIN /y

NET START W3SVC
The NET STOP command stops a network service—the IISADMIN service—and the
/y option forces a release of all resources the service had when it was stopped.
The web service and server are then both started with the second network service
command, NET START, giving it the overall web server name W3SVC.

Stopping and starting the web service releases the server, but there is a major
drawback to this approach: shutting down the web service just to release a lock
on a component is equivalent to cutting down a walnut tree in order to get one
nut to chop for your hot fudge sundae—it’'s a bad case of overkill. In a shared
environment, with more than one developer developing to the same web server
and service, not only is the approach overkill, it'’s downright rude.

4~ ~4]e

é ,ch02.18096 Page 20 Thursday, February 22, 2001 1:27 PM

20 Chapter 2: Setting Up the ASP Development Environment

To address this problem, Microsoft added the ability to IIS Version 4.0 to run an
ASP application in isolation in order to be able to unload a specific application.
Once the application was unloaded, the component accessed by the application
was unlocked and could then be recompiled.

With IIS Version 5.0, you have three options to control ASP application isolation:

e You can create a new web server that runs within the shared IIS process envi-
ronment (through Inetinfo.exe).

* You can set your application to run within a pooled environment (through
dilhost.exe).

e Your application can run as an isolated application (again, through dilbost.exe).

By default, the web server is set up to run within a pooled environment, but this
can be changed in the server’s Properties page. To change the setting for the new
development web server, right-click on the server in the Internet Information Ser-
vices console snap-in, and pick Properties from the menu that opens. Then, select
the Home Directory tab from the window that opens, as shown in Figure 2-1. The
program isolation setting is an option labeled Application Protection. Set this to
High (Isolated) to be able to unload the application and release any locks on com-
ponents without having to shut down either the web server or the web service.

You can change several other properties for the server, including performance tun-
ing and setting security for the site, from the Properties window. But first, time to
try out your test environment. To do this, you'll need a test ASP component.

To test the environment, you’ll need an ASP component you can use to make sure
the application isolation is set correctly and you can unload the web site without
having to shut it down. Then you'll need to create a simple ASP page that accesses
the component. For this example, we’ll create a component using Visual Basic.

If you aren’t using Visual Basic and are running this test using the
component copied from the code examples, you can still test out the
application isolation feature. Instead of trying to recompile the com-
ponent, try deleting it. Without unloading the server application first,
you should get a Sharing Violation error and a message about the
component being in use. Unload the server application and then try
again to delete the component—this time you shouldn’t have any
problems removing it.

The details of creating a Visual Basic ASP component are covered in Chapter 7,
Creating a Simple Visual Basic ASP Component, but for now create the compo-
nent project as an ActiveX DLL, and name the project asp0201 and the project file

4~ ~4]e

,ch02.18096 Page 21 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 21

Default Web Site Properties e |

Documents I Drirectony Security I HTTF Headers Custom Ermors |
\Wwieb Site I Dperators I Perfarmance | 154P Filkers Home Directory
‘when connecting to this resource, the content should come from:

& 4 directory lozated on this computer
" A share located on another computer
" A redirection to a URL

Laocal Path: E:\devaspcompiwebiDevelopment Browse. . |
r _Sc:lip__t SOUICE AECESS [Log wisits
[Read [V Index this resource

r Mrité.
[Directory browsing

Application Settings

Application name: IDefauIt Application Remave |
Starting point: <Default Web Sitex

Configuration. .. |
Execute Permissions: IScripts oty =
Application Protection: IHigh [lsclated) j Urlzad |

Ok I Cancel | Apply | Help |

Figure 2-1. Setting the isolation level for the new development web server using the server
Properties dialog box

asp0201.vbp. A class is automatically created for a project such as this; rename this
class tstweb and the class file tstweb.cls. Accept all the defaults for the project and
the class.

The next step in creating the test component is to add in the class code, in this
example a very simple function that returns a very traditional message to the ASP
page, as shown in Example 2-1.

Example 2-1. Simple Visual Basic Component to Return a “Hello, World!” Message
Option Explicit

' tests new Development Web
Function tstNewWeb() As String

tstNewiWeb = "Hello, World!"

End Function

Once you’ve added the code to the class, compile the component by accessing the
File menu and clicking on the “Make asp0201.dll” menu item. A dialog box opens

é ,ch02.18096 Page 22 Thursday, February 22, 2001 1:27 PM

22 Chapter 2: Setting Up the ASP Development Environment

Performance Issues with Application Isolation

As you’ll read in Chapter 3, ASP Components and COM, 11S applications require
a runtime executable in order to work. An ASP application running in the IIS
process environment operates within a shared-environment executable that
has been tuned to work efficiently in the IIS environment. Therefore it per-
forms better and has much less overhead then an application defined to be
pooled or isolated.

Pooled and isolated web servers use a standard COM/COM+ host, dilhost.exe,
which provides an individual executable environment, one for all pooled
applications and one for each isolated ASP application. However, dllbost.exe
is not the most efficient runtime environment to work in. In addition, each iso-
lated web server requires its own instance of dllbost.exe, which in turn requires
a completely separate desktop environment in order to run. This puts a burden
on the NT host supporting the IIS environment and requires special configura-
tion to support more than a small number of separate web servers.

You can see this for yourself if you add two web servers, each running as an
isolated application. If you access the processes for the system, you should see
two different instances of dllbost.exe running. Add another instance of an iso-
lated web server or virtual directory, which you’ll read about a little later, and
you'll add another instance of dllbhost.exe.

The isolated option is still the best approach to use for the ASP application
when developing ASP components. However, for a production environment,
you’'ll want to use the shared or pooled environments for more efficient per-
formance.

Running the web server in isolation allows you to unload the server to recom-
pile components. An additional benefit to this type of web application is that
problems within the one application won’t impact other applications. Problems
within a shared or pooled environment can be propagated to other web servers.

that contains a default name for the component (the name of the project with a
DLL extension). In this dialog box, you can change the component’s name and
location and other application options, which we won’t go into until Chapter 7. For
now, accept everything at its default value and compile the component.

Visual Basic creates the component file and also registers it as a COM object acces-
sible from applications. If you don’t have Visual Basic, you can also copy the test
component from the downloadable code examples and register in on your
machine using the regsvr32 utility as follows:

regsvr32 asp0201.d11

4~ ~4]e

é ,ch02.18096 Page 23 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 23

Next, create the ASP page that accesses the component, calling it asp0201.asp.
Without going into too much detail on what is happening, the ASP page creates an
instance of the component and invokes the component’s one and only method.
The text returned from the method is written out using one of the ASP built-in
objects, the Response object (discussed in Chapter 7 and detailed in Appendix A,
Quick ASP Built-In Object Reference).

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-1</TITLE>

</HEAD>

<BODY>

<%

Dim obj

Set obj = Server.CreateObject ("asp0201.tstweb")

Dim str
str = obj.tstNeweb
Response.Write str
%>
</BODY>
</HTML>
When you access the ASP page through your web server, use syntax similar to the

following:
http://localhost/asp0201.asp

Or if you set up a new web server with a different port number, use this syntax
instead:

http://localhost:8000/asp0201.asp

If the web server is set up correctly, you should see the message, “Hello, World!”

To make sure that the application isolation feature is working properly, try recom-
piling the ASP component. You should get a Permission Denied error. To release
the component, access the Development Web Server Properties dialog box again,
go to the Home Directory page, and click the Unload button. Now try to recom-
pile—this time you shouldn’t have any problems.

At this point you've set up your development web server and have modified it to
run as an isolated application. What's next? Well, in a development environment,
you might need to have different versions of an application accessible at any time,
or you might have more than one developer sharing the same environment. You
could create new web servers for every instance of the ASP application or for
every developer, but then you would have to find and assign different IPs and/or
port numbers for all of the servers.

An alternative approach to creating separate web servers for more than one ASP
application is to create the applications in their own virtual directory. This

4~ ~4]e

é ,ch02.18096 Page 24 Thursday, February 22, 2001 1:27 PM

24 Chapter 2: Setting Up the ASP Development Environment

approach is used throughout the book for all of the code examples and is dis-
cussed next.

Creating Separate ASP Applications with
Virtual Directories

IIS virtual directories are used to add different directories to a web server, includ-
ing directories located on other machines. Virtual directories are also a terrific way
to create separate ASP applications, each of which lives in its own location, with-
out having to access different IP addresses and port numbers.

A limitation to virtual directories is that they cannot have their own
domain name and must be accessed using the domain of the web
server.

You'll create a separate virtual directory for every chapter in this book, starting by
creating one for the Chapter 2 examples and naming it chap2. To create the vir-
tual directory, right-click on the development web server and select New, then Vir-
tual Directory. The Virtual Directory Creation Wizard pops up and guides you
through the directory creation process.

The first page the Wizard displays asks for the alias used for the directory; type in
chap2. Next, youll be asked for a physical location for the directory. For the book
examples, you'll most likely want to create a subdirectory to the development web
site directory (created earlier) for each chapter. If you use this approach, create a
new subdirectory now and name it chap2. You'll then specify this new subdirec-
tory as the physical location for the virtual directory.

The wizard then asks for the Access Permissions for the virtual directory—accept
the default of Read and Run Scripts (such as ASP Scripts) for now.

At this point, you're done with creating the virtual directory. However, you still
have one more task in setting up your separate ASP application environment: you
need to change the application isolation for the directory, otherwise you’ll con-
tinue to have the component locking problem even if you've set the parent web
server to run as an isolated application.

Change the application isolation for the virtual directory by right-clicking on the
virtual directory name and choosing Properties from the menu. Select the Virtual

Directory tab and change the Application Protection value from its default of
Medium (Pooled) to High (Isolated), as shown in Figure 2-2.

- ad

é ,ch02.18096 Page 25 Thursday, February 22, 2001 1:27 PM

Configuring the IIS Environment 25

Wirtual Directary | Documentsl Directory Securit_l,ll HTTF Headers | Custom Enorsl

‘when connecting to this resource, the content should come from;

= 4 directory located on this computer

" 4 share located on another computer
4 redirection to a URL

Local Path: E:\devaspoompiwebichap? Browse... |
[Script source access [~ Log wisits

v Read v Index this resource

[wiite

[Directory browsing

Application Settings

Application name: Ichap2 Remaove |
Starting point; <Default 'Web Sitex\chap2

Caonfiguration... |
Execute Permissions: IScripts oty j
Application Protection: IHigh [lzolated) j Urlzad |

Ok I Cancel | Apply | Help |

Figure 2-2. Setting the application isolation to High in the directory’s properties

Test the application isolation of the new virtual directory by copying asp0201.asp
from the web server main directory to the new chap2 subdirectory and running
the chap2 application using syntax similar to the following:

http://localhost/chap2/asp0201.asp

Again, the page should show as before, with the words “Hello, World!” displayed
in the upper-left corner. Also, as before, trying to recompile the component at this
point should result in a Permission Denied error. However, accessing the Proper-
ties for the chap2 virtual directory, then accessing the Virtual Directory tab and
clicking the Unload button should unload the ASP application; the component can
then be recompiled.

So now you have your development web server and your first ASP application vir-
tual directory and have had a chance to test both. The next step you’ll take is to
fine-tune the security settings for both.

Securing the Development Environment

You probably noticed that the Properties windows for both the development web
server and the Chapter 2 virtual directory had several pages, among them a page

4~ ~4]e

,ch02.18096 Page 26 Thursday, February 22, 2001 1:27 PM

206 Chapter 2: Setting Up the ASP Development Environment

labeled Directory Security. Clicking on this for both, you should see the same page
with three different control areas: one labeled “Anonymous access and authentica-
tion control,” one labeled “IP address and domain name restrictions,” and one
labeled “Secure Communications.” We won’t cover the latter two options, which
have to do with restricting access to certain domains and working with server cer-
tifications, but opening the “Anonymous access” option, you should see a win-
dow similar to that shown in Figure 2-3.

Authentication Methods x|

v Anonymous access

Mo uzer name/pazsword required to access this resource.

Aocount uzed for anonymovs access:

— Authenticated access

Far the following authentication methods, user name and passwaord are
required when

- anohymous access is dizabled, or

- access is resticted using MTFS access contral liste

[~ Basic authentication [password iz zent in clear text)

Select 5 default damain: Edit:.. |

[™ | Digest authentication for Windows domain seners

v Integrated Windows authentication

Ok, | Cancel | Help

Figure 2-3. Authentication Methods dialog box for the virtual directory

With anonymous access, a default user is created for the machine, consisting of
the prefix TUSR_ and appended with the name of the machine. My machine is
named flame, so my anonymous user is defined as TUSR_FLAME. With this user-
name, folks can access pages and content from my site without having to specify a
username and password.

One of the problems with the anonymous user, though, is that you can run into
inexplicable and unexpected permission problems when you move your ASP
application between machines.

For instance, if you develop on the same machine you test with (using localbos?),
chances are you're logged into the machine under a specific username and set of
permissions. When you test pages at your web site on this machine, you don’t
have any problems with access. However, when you move the pages and the
associated resources for the pages, such as ASP components, to a different
machine (such as your production box), you can run into permission problems.
The reason? Windows is using integrated authentication when you access the

é ,ch02.18096 Page 27 Thursday, February 22, 2001 1:27 PM

Remote Administration of 1IS 27

page, which means it’s using your username and permissions when you test pages
locally, and your permissions can be drastically different than those of the anony-
mous user.

To ensure consistent test results, you'll want either to move your ASP application
to a separate test machine or create another user for your machine that has very
limited access—equivalent to an anonymous user.

If your development environment is accessible externally, make sure your web
server and virtual directories are secured if there is the possibility of access to the
site externally, such as through an intranet or through the Internet if you connect
to the Net through a modem. Remember that an IP connection is two-way: you
can access out, and others can access your machine through the assigned IP.

Finally, you have to ensure that the access permissions are also set for your com-
ponents. These can be set by accessing the Properties for the component or the
component’s subdirectory and setting the permissions to Read and Read & Exe-
cute for Everyone or for the TUSR account. If you set the permissions on the direc-
tory and check the option to allow inheritance of permissions from the parent for
all components within the directory, you can assign the same security settings to a
group of components in one location, and the permissions propagate to all of the
components, as shown in Figure 2-4.

Remote Administration of 11S

You can administer IIS using a variety of techniques. For example, all of the work
you've performed in setting up your development web server and the Chapter 2 vir-
tual directory has occurred through the console snap-in designed for IIS. You also
could have used the default Administration server installed with IS on Windows
2000 Server. In addition, on Windows 2000 Professional, you have access to an
interface modeled on the interface provided with the Personal Web Server (PWS).

Managing ASP Applications with the Internet
Services Manager

You can administer an IIS installation in Windows 2000 servers using the HTML-
based Internet Services Manager. This manager is installed as the administration
web server within the IIS installation. Access the properties for this site to find the
IP address and port number necessary to access the manager, then use these as
the URL to pull the site up in a web browser.

For instance, if the IP address is 153.34.34.1, and the port number assigned to the
administration web server is 4990, you can access the site with the following URL:

http://153.34.34.1:4990

4~ ~4]e

é ,ch02.18096 Page 28 Thursday, February 22, 2001 1:27 PM

28 Chapter 2: Setting Up the ASP Development Environment

asp0201.dil Properties d B

Generall ‘Wersion SecLnity |Summar_l,l|

Marne | add.
ﬂ Administrator [FLAME \&dmirnistrator)
Bemaove |
ﬂz Everyone
L Intemet | ount (FLAMESILSR_FL.

Permizsions: Allow Deny
Full Control O O
Modify a O
Fead & Execute O
Fiead O
Write O O

Advanced... |

~ Allow inheritable permizzions from parent to propagate ta this

ohject
QK I Cancel | Spply

Figure 2-4. Setting the permissions to access the ASP components

You can also access the site using the name assigned through the DNS (Domain
Name Service) for the specific IP address. For instance, if the IP address were con-
figured with the alias myweb.com through DNS, you would access the site using
something such as the following URL:

http://www.myweb.com:4990

Note that in either case you need to provide a username and valid password to
enter the site, and the username must be mapped to the Administrator role. If
you've logged in as Administrator, no username and password will be requested.

If more than one domain is mapped to a specific IIS server—if more than one web
server on separate IPs is hosted through one installation of IIS—you can adminis-
ter the site remotely if the IIS installation adds you to the Web Site Operator group
for the server. With this group membership, you can then access the administra-
tion for the site using an URL such as the following:

http://www.myweb.com/iisadmin
You can try this with your local installation by using the following URL:
http://localhost/iisadmin

This should open the administration pages for the default web server.

4~ ~4]e

é ,ch02.18096 Page 29 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 29

You can also connect to your site for administration using the Terminal Service. If
you're connected through an intranet and your client can support it, you can
remotely administer your site using the IIS Console snap-in. Note, though, that
your client needs to have Windows Console support through Windows 2000 or NT.

Finally, you can create your own administration programs using ASP pages and
ASP components. The tools to do this are your favorite programming and script-
ing languages, ADSI, and the IIS Admin and Base Admin objects, covered in the
next several sections.

Using ADSI to Administer IS
Programmatically

Use a great deal of caution when altering IIS programmatically.
Incorrect settings can damage the Metabase and force a reinstalla-
tion of TIS.

There might be times when administrating IIS through the Windows Console IIS
snap-in or through the web interface provided by Microsoft does not work for
your needs. For instance, you and your organization may need to do a sequence
of activities rather than individual ones, and the only way to accomplish this is to
create an application that performs the entire sequence.

Microsoft has opened up IIS administration through two sets of objects: the IIS
Admin objects (which can be accessed through script using any of the automation
support languages or through Visual Basic and other COM-capable languages) and
the IIS Base Admin objects (which can be accessed only through C++).

Both sets of objects—the IIS Admin and the IIS Base Admin—are accessed through
ADSI, and both work with the IIS Metabase.

Working with the IIS Metabase

Prior to the release of IIS 4.0, administrative information for the web service was
stored in the Windows Registry, an online binary database containing name-value
pairs accessible via paths. Starting with IIS 4.0 and continuing with IS 5.0,
Microsoft added the IIS Metabase, a memory-resident data store that is quickly
accessible and contains configuration and administration information for TIS.

As with the Registry, Metabase entries are found via paths, or keys, similar to those
used with file paths. These key paths, also referred to as ADsPaths, have the same

- ad

é ,ch02.18096 Page 30 Thursday, February 22, 2001 1:27 PM

30 Chapter 2: Setting Up the ASP Development Environment

structure as the paths used within ADSI and comply with the following general
structure:

IIS://machinename/service/service_instance

In this line, machinename can be either LocalHost for the local machine or a
specific name, service can be something such as W3SVC (a web service), and
service_instance can be a specific instance of that service, such as a web site.

To access the Metabase object associated with the chap2 web directory created
earlier, you would use the following ADsPath:

IIS://localhost/W3SVC/1/root/chap2

This path breaks down into the virtual directory called chap2 located off the root
subdirectory of the first (1) web server instance on the local machine.

Metabase properties are small enough in size that they can be memory resident
because they are based on inheritance by default. This means that information
about all properties for all objects does not need to be maintained in memory
except when the default property value is overridden. As an example, if the top-
level web service has a ConnectionTimeout property set to 900 seconds, all child
nodes, such as virtual directory sites created from this top-level service, automati-
cally inherit a timeout of 900 seconds unless a different value has been explicitly
defined for the node.

The Metabase objects, as well as their properties and methods, can be accessed
from within an ASP script or an ASP component using the IIS Admin objects, dis-
cussed next.

The demonstrations of the IIS Admin objects are all shown in Visual
Basic. However, you can re-create the examples with any program-
ming language and tool that allows you to access COM objects.

The section later in this chapter on the IIS Base Admin objects dem-
onstrates how to access IIS Administration data with C++.

Programmatically Administering I1S with ADSI

The TIS Admin objects support the ADSI interface by implementing the Name,
ADSI Path, Class, GUID, Parvent, and Schema properties. To demonstrate these
properties, we’ll create an ASP component project and add several methods to it,
each demonstrating one of the properties.

To start, create a new ActiveX DLL project in Visual Basic and call it asp0202.vbp.
Rename the generated class to tstAdmin. You'll be adding new methods to this
new component throughout this section.

4~ ~4]e

é ,ch02.18096 Page 31 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 31

If you don’t have Visual Basic, you can use the asp0202.dil compo-
nent that comes with the book examples. If you're using a different
tool, such as Delphi, Perl, or Java, then you might want to read the
chapter based on your language first (Chapter 20, ASP Components
Created with Java, Chapter 21, Creating ASP Components with Del-
phi; or Chapter 22, Perl-Based Components Using ActiveState’s PDK),
then alter the following examples to work with your tool/language.

Name

The Name Admin object is the attribute used to refer to the object within a given
namespace. As an example, the name W3SVC refers to the IISWebService class,
which is the web service. The name is also used to represent specific instances of
any particular service, except that name in this case represents the number of the
instance rather than a user-defined name. For example, if more than one web ser-
vice is running on a machine, each individual web service can be accessed by a
number representing its location within the web service listing, as well as a
descriptive name mapped to the instance.

For example, in your development environment, you should now have three web
servers defined: the default web server, the development web server, and the
administration web server. The default web server is located first, so it is given the
label 1. The administration web server is next, and it has a name of 2, followed by
the development web server with a name of 3.

If youre using Windows Professional 2000, you should have one
default web server. You'll need to adjust the examples shown in the
following sections to match your environment.

The Name property can be accessed from ASP components as well as from an ASP
scripting block. Example 2-2 shows a method that accesses the IIS Admin object
and returns the object’'s ADSI Name. Try this by creating the method in the
tstAdmin class of the asp0202 project, name the method adminName, and define
it to return a String value.

Example 2-2. Returning the IISWebService Object’s ADSI Name Property

Function adminName () As String
Dim myObject
Set myObject = GetObject ("IIS://localhost/W3SVC")
adminName = myObject.Name

End Function

4~ ~4]e

é ,ch02.18096 Page 32 Thursday, February 22, 2001 1:27 PM

32 Chapter 2: Setting Up the ASP Development Environment

To use this object, create an ASP page named asp0202.asp that instantiates the
object and calls the object’'s methods. Place this ASP page, shown next, in the
chap?2 virtual directory location.

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-2</TITLE>

</HEAD>

<BODY>

<%

Dim obj

Set obj = Server.CreateObject ("asp0202.tstAdmin")

Dim str

str = obj.adminName

Response.Write str

%>

</BODY>

</HTML>
Accessing the test page and the component method should result in a page that
displays W3SVC, the name of the IISWebService. Instead, however, a web server

error (500) occurs. Why is this?

IIS Admin objects must be accessed from within an administrative environment,
and the current location for the test page is chap2, which is accessible by every-
one. To make this example work, the ASP test page—not the component, the
page—must be moved to an administrative location, or the physical directory’s
security must be changed to administrative access only.

You can move the component to the IISAdmin location. Find this by accessing the
IISAdmin virtual directory or by accessing the administration web server and check-
ing out the location of its home directory. You can also change the security for
chap2 by accessing the Directory Security tag in the Properties dialog box, clicking
the “Anonymous access and authentication control” button, and unchecking the
Anonymous Access checkbox when the Authentication Methods dialog box opens.

Once you've secured the ASP application, access the test page and component
again, and the application should work this time.

The rest of the examples in this chapter involve modifying or access-
ing IIS Administration properties using the IIS Admin objects or the
IIS Admin Base Objects. Based on this, all ASP test pages need to be
located within an administration server location. For development
purposes, the best approach to take is to modify the security set-
tings for the IIS application—either the development web server or
the virtual directory—to restrict access.

4~ ~4]e

é ,ch02.18096 Page 33 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer 11S Programmatically 33

ADSI path

Access to IIS Admin objects occurs via the ADSI path, which Microsoft refers to as
the ADsPath. This path usually has the configuration of IIS:// followed by the
computer name (or LocalHost for the local IIS installation), followed by the spe-
cific service, such as W3SVC for the web service. To access the first web site on the
local machine, the following path would be given:

IIS://LocalHost/W3SVC/1

The 1 at the end of the path accesses the first web site installed on the local
machine, a value of 2 accesses the second, a value of 3 accesses the third, and so
on. If you have NNTP or FTP installed, this numbering system may change.

From the specific web instance, extending the path provides access to virtual
directories contained within the specific web server, as the following demon-
strates for the chap2 virtual directory:

IIS://LocalHost/W3SVC/1/root/chap2

The different services, such as W3SVC, are equivalent to the different IS Admin
objects. These services are examined in more detail in the section “The IIS Admin
Objects,” later in the chapter.

Class

The class is the name of the schema class and is not unique for service instances.
For example, each virtual web service, such as chap2, has a class name of
ITsWebVirtualDir; each top-level web service, such as Development, has a
class name of IIsWebServer.

GUID

The globally unique identifier (GUID) is the unique identifier for the specific class.
Like the class, the GUID is unique only for the specific schema class, not for each
instance. For example, the GUID for the IIsWebServer class is:

{8B645280-7BA4-11CF-B03D-00AA006E0975}

To find the GUID for the web service, add a new method to the asp0202.
tstAdmin component. The method, shown in Example 2-3 and named admin-
GUID, accesses this value and returns it to the calling program.

Example 2-3. Accessing the [ISWebService Class-Unique GUID

Function adminGUID() As String
Dim myObject
Set myObject = GetObject ("IIS://localhost/W3SVC")
adminGUID = myObject.Guid

End Function

4~ ~4]e

é ,ch02.18096 Page 34 Thursday, February 22, 2001 1:27 PM

34 Chapter 2: Setting Up the ASP Development Environment

The following test ASP page, named asp0203.asp, accesses the new method to get
the GUID and then displays it:

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-3</TITLE>
</HEAD>

<BODY>

<%

Dim obj

Set obj = Server.CreateObject ("asp0202.tstAdmin")

Dim str

str = obj.adminGUID
Response.Write str
%>

</BODY>

</HTML>

Parent

The parent for an administrative object is the ADsPath of the IIS administrative
object that contains it. For example, the parent for the local machine LocalHost is
shown only as ITIS:. Since the ADsPath for the top-level web service is:

IIS://LocalHost/W3SVC
the parent for this object would then be:
IIS://LocalHost

The parent-child relationship is important because the IIS Metabase is based on
inheritance. Most properties are inherited from an object at a higher level, and this
object can be found by retrieving each object’s Parent property.

Schema

The Schema property is the ADsPath of the object representing the schema class
for the Admin object. For instance, the value for the Schema property for the top-
level web service is:

IIS://localhost/schema/IIsWebService

The ADSI Object Methods

The ADSI IIS Admin object methods are used to access and set the IIS Admin
object properties. The ADSI properties are accessible directly from the ADSI object,
but the IIS Admin object properties must be set or accessed using ADSI methods.

Any of the ADSI methods can be used with any IIS Admin object and can be used
to access or set any property, as demonstrated in the following sections.

4~ ~4]e

é ,ch02.18096 Page 35 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 35

Get

The Get method returns the value for a specific property. The property name is
passed as an argument to this ADSI method, and its value is returned in a datatype
that is appropriate for the property.

To demonstrate Get, add the adminScriptLanguage method shown in Example 2-4
to the asp0202.tstAdmin component. The adminScriptlanguage method dis-
plays the value of the AspScriptLanguage property for the chap2 virtual directory.
Currently, this value should be VBScript, which is the default scripting language
used for ASP pages.

Example 2-4. Using the ADSI Get Method to Access the AspScriptLanguage Property Value

Function adminScriptlLanguage() As String
Dim myObject
Set myObject = GetObject ("IIS://localhost/W3SVC/1/root/chap2")

adminScriptLanguage = myObject.Get ("AspScriptLanguage")
End Function

Next, create the test ASP page, named asp0O204.asp, to display the name of the
default scripting language. Since the AspScriptLanguage property has a datatype of
String, the return value for the function is defined to be String—other properties
will have other datatypes. The ASP test page uses VBScript, which supports only
variants; as a result, the processing to display the return value can be the same
regardless of the datatype returned.

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-4</TITLE>
</HEAD>

<BODY>

<%

Dim obj

Set obj = Server.CreateObject ("asp0202.tstAdmin")

Dim str

str = obj.adminScriptLanguage
Response.Write str

%>

</BODY>

</HTML>

With VBScript and Visual Basic, the property can also be accessed with the object.
property syntax, using something similar to the following:

codePageValue = myObject.AspCodepage

4~ ~4]e

é ,ch02.18096 Page 36 Thursday, February 22, 2001 1:27 PM

36 Chapter 2: Setting Up the ASP Development Environment

GetEx

The GetEx method can be used to access single or multivalue properties. An
example of a multivalue property is HttpErrors, which returns a list of formatted
HTTP error strings. These strings are returned as an array of Variants.

Example 2-5 shows a new method, adminErrors, that uses GetEx to access the
HttpErrors property for the chap2 virtual directory and returns the results as an
array of variants to the ASP page.

Example 2-5. Using the ADSI GetEx Method to Access the HttpErrors List

Function adminErrors() As Variant
Dim myObject
Set myObject = GetObject ("IIS://localhost/W3SVC/1/root/chap2")
adminErrors = myObject.GetEx ("HttpErrors")

End Function

The ASP test page, shown in the following block of code and named asp0205.asp,
takes the results returned from calling the adminErrors method and displays each
element from the variant array:

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-5</TITLE>
</HEAD>

<BODY>

<%

Dim obj

Dim vAry

Dim 1,u

Dim ct

Set obj = Server.CreateObject ("asp0202.tstAdmin")
VvAry = obj.adminErrors

set boundaries of array

LBound (VATry)
UBound (VATry)

[=J]
I

' access each list item, print out to page
For ct =1 tou
Response.Write vAry(ct) & "
"
Next
%>
</BODY>
</HTML>

The results will be shown as separate lines and will have the following format:

e Error number, such as 400 for Not Found

e Error subnumber, such as 3

4~ ~4]e

é ,ch02.18096 Page 37 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 37

e A value of FILE or URL to designate whether a file or an URL is returned to
the client

e The URL or the filename, depending on whether the URL or file is returned
The following is an example of one of the lines returned:
401,3,FILE, E: \WINNT\help\iisHelp\common\401-3.htm

If you look at this line and then access the Custom Errors tab of the chap2 Proper-
ties dialog box, you’ll see that this line appears in the list box on this tab.

Other IIS Admin object properties will be discussed in the later sec-
tion “The IIS Admin Objects.”

Getlnfo

The GetIlnfo method refreshes the IIS Admin object by requerying the Metabase
and resetting the property values to those found in the Metabase. When you cre-
ate an IIS Admin object, its properties are initialized to those that existed in the
Metabase at the time the object was created. If you hold an object for a time and
want to set the properties to those currently in the Metabase, you use Getlnfo to
refresh the object.

GetDataPaths

The GetDataPaths method can be used to traverse a hierarchy of web objects to
see which objects have a specific property. It then returns a list of ADsPath values
of each of the objects. A developer uses this method to quickly check whether a
specific property is set and inherited throughout an entire IIS installation or within
a specific web server or Virtual Directory.

The GetDataPaths method can also be used to traverse web objects and retrieve
the ADsPath of each object where the property is implemented. Once you have
access to an object’s ADsPath, you can use this to access that object specifically. To
demonstrate this, add two new methods to asp0202. tstAdmin: adminPropAccess
and objProperty. The adminPropAccess function has two parameters, the ADsPath
for the top-level object and the name of the property for which you are searching.
The objProperty function takes an ADsPath and a property name as parameters
and returns the property value. Example 2-6 shows both of these new methods.

Example 2-6. Methods to Retrieve a Collection of AdsPaths Whose Objects Implement a Property
and to Get the Property Value for an Object Property

Function adminPropAccess (ByVal obj As String, ByVal prop As String) _
As Variant

4~ ~4]e

é ,ch02.18096 Page 38 Thursday, February 22, 2001 1:27 PM

38 Chapter 2: Setting Up the ASP Development Environment

Example 2-6. Methods to Retrieve a Collection of AdsPaths Whose Objects Implement a Property
and to Get the Property Value for an Object Property (continued)

Const IIS_ANY PROPERTY = 0

Dim myObject

Set myObject = GetObject (obj)

adminPropAccess = myObject.GetDataPaths (prop, IIS_ANY_ PROPERTY)
End Function

Function objProperty(ByVal obj As String, ByVal prop As String) _
As Variant
Dim myObject
Set myObject = GetObject (obj)
objProperty = myObject.Get (prop)
End Function

The GetDataPaths method takes two parameters: the IIS Admin object and a con-
stant that indicates whether to return a path only if the property is inheritable. The
two allowable values for this constant parameter are the following:

Value Constant
0 IIS_ANY PROPERTY
1 ITIS INHERITABLE ONLY

The adminPropAccess method uses the IIS_ANY PROPERTY constant, which
means the ADsPath will be returned regardless of whether the property is inherita-
ble. If the constant IIS_INHERITABLE ONLY is specified and the property is not
inheritable, an MD_ERROR_DATA_NOT_FOUND error is returned.

The ASP test page calls both of these new methods, accessing each item in the
collection returned from adminPropAccess and using this item in a call to the
objProperty method. The objProperty method returns the value for the specified
property. The ADsPath, the property, and the property value are then displayed. In
the page, named asp0206.asp, the property we are searching for is AuthAnony-
mous, which is set to a value of TRUE when anonymous access is allowed for the
IIS Admin Object and FALSE otherwise.

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-6</TITLE>
</HEAD>

<BODY>

<%

Dim obj

Dim cPaths, Path

Dim prop

prop = "AuthAnonymous"

Set obj = Server.CreateObject ("asp0202.tstAdmin")

4~ ~4]e

é ,ch02.18096 Page 39 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 39

cPaths = obj.adminPropAccess ("IIS://localhost/W3SVC", prop)

' access each path, print out to page
For each Path in cPaths
Response.Write Path & " "
Dim prp
prp = obj.objProperty(Path, prop)
Response.Write prop & " value of " & prp & "
"
Next
%>
</BODY>
</HTML>
The results of running this ASP page with the top-level IIWebService object is a
listing of several IIS Admin object paths and the value of the AuthAnonymous
property for each object. The development web server and the chap2 virtual direc-

tory appear in the list as follows:

IIS://localhost/W3SVC/1/Root AuthAnonymous value of True
I1IS://localhost/W3SVC/1/Root/chap2 AuthAnonymous value of False

GetPropertyAttribObj

The GetPropertyAttribObj method returns a specified IIS Admin object property as
an object rather than as a value; that is, it returns a Property object, rather than a
property’s value. This object can then be used to access information about the
property, such as whether the property is inherited or if a partial path is present.
The syntax for the method is:

Set obj = adminObj.GetPropertyAttribObj ("some property name")
Var = obj.attribute

where attribute is one of the following:
Inberit
Whether the property is inheritable

PartialPath
Whether a partial path is present

Secure
Whether the property is secure

Reference
Whether the property is received by reference

Volatile
Whether the property is volatile

IsInberited
Whether the property is inherited

4~ ~4]e

é ,ch02.18096 Page 40 Thursday, February 22, 2001 1:27 PM

40 Chapter 2: Setting Up the ASP Development Environment
InsertPath

Whether there is a specific, special character in the property
AllAttributes

All property attributes, represented by a long value

The ADSI methods implemented for the IIS Admin objects can also set property
values as well as retrieve them, as demonstrated with the Put method, described
next.

Put and SetInfo

The Put method sets the value for a specific property. As with Get, the property
name is passed as the first parameter to the method, and the new value, which
must be a datatype that is appropriate for that property, is passed as the second
parameter.

To save the results back to the Metabase, you use the ADSI SetInfo method. With-
out using SetInfo, the properties changed using Put (or using the VBScript and
Visual Basic object.property method) are not saved.

As an example of using Put to alter an Admin object property and SetInfo to save
the property change, Example 2-7 shows a new method, adminAllowAnon, which
takes an IIS Admin object ADsPath and a Boolean value to alter the authAnony-
mous authorization for the specified IIS Admin object. The method uses the
object.property approach to setting the value rather than using Put specifi-
cally. Add this new method to your test ADSI component.

Example 2-7. Using Put and SetInfo to Alter the authAnonymous Property

Sub adminAllowAnon (ByVal obj As String, ByVal bl As Boolean)
Dim myObject
Set myObject = GetObject (obj)
myObject.AuthAnonymous = bl
myObject.SetInfo
End Sub

The ASP test page, named asp0207.asp, calls the method and passes the ADsPath
for the virtual directory chap2. Sending a value of True turns on anonymous
access authorization for the directory, allowing anonymous access to the directory.

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-7</TITLE>
</HEAD>

<BODY>

<%

Dim obj

Set obj = Server.CreateObject ("asp0202.tstAdmin")

4~ ~4]e

é ,ch02.18096 Page 41 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 41

On Error Resume Next
Dim adspath
adspath = "IIS://localhost/W3SVC/1/Root/chap2"

obj.adminAllowAnon adspath, True

%>

<H1>Changing Properties with Put</H1>

</BODY>

</HTML>
After running this example page, access the ASP page, asp0206.asp. You would
expect to see that the AuthAnonymous value is now True for chap2, where before
the value was False. However, what is most likely to happen is that you'll get an
error, especially if you close the browser after running the asp0207.asp test page,
open the browser again, and then access asp0200.asp.

Why the error? By setting the authAnonymous property of chap2 to True, you've
removed the security restriction necessary to run an ASP page that accesses the IIS
Admin properties. Even if you change the text in asp0207.asp to set the authAnon-
ymous property to False, you can’t run asp0207.asp again—it also accesses the
IIS Admin objects. You'll need to open the IIS Console or IIS Admin web site to
change the property back to False before you can run an ASP page that access
IIS Admin objects and properties from chap2 again.

PutEx

The PutEx method is similar to Put, in that you can use the method to alter prop-
erties of existing IIS Admin objects. However, unlike Put, PutEx allows you to alter
properties that are multivalued in addition to altering single-valued properties.

As a demonstration, we’ll combine a previous example, Example 2-5, which
returned a list of HTTP error messages for chap2, with a new method, adminSetEr-
rors, to write a modified list of error messages back to the Metabase. Then we’ll
use SetInfo to save any changes to this list. Example 2-8 shows the new method,
which updates the Metabase with the new HttpErrors property list.

Example 2-8. Put the HTTP Errors Back to the Metabase, and Use SetInfo to Save the Changes

Sub adminSetErrors (ByVal obj As String, ByVal vAry As Variant)
Const ADS_PROPERTY_UPDATE = 2
Dim myObject
Set myObject = GetObject (obj)
myObject .PutEx ADS PROPERTY UPDATE, "HttpErrors", VAry
myObject.SetInfo

End Sub

The second parameter to PutEx is the name of the property being updated, and the
third parameter is the Variant array of HTTP error messages that were originally
retrieved using the adminErrors method from Example 2-5. The first parameter is a

4~ ~4]e

é ,ch02.18096 Page 42 Thursday, February 22, 2001 1:27 PM

42 Chapter 2: Setting Up the ASP Development Environment

constant value that determines how the property is to be altered. The two possible
values that can be used in the first parameter of adminSetErrors are shown in the
following table:

Constant Value Description
ADS_PROPERTY_CLEAR 1 Clear property values.
ADS_PROPERTY_UPDATE 2 Update property with new value.

The example uses ADS_PROPERTY_UPDATE to update the existing list rather than
clear it.

The ASP test page that calls this new method is named asp0208.asp. Notice that
the adminErrors method from Example 2-5 is called first to get the Variant list of
HTTP error messages. These values are displayed, and the first three characters of
each line are examined for the match to 404. When found, a new entry with a
changed filename replaces the existing array entry, and adminSetErrors is called to
update the messages. Afterward, the HTTP messages are again accessed with
adminErrors to display the “after” values. Make sure you change the page values to
reflect your own environment.

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-8</TITLE>
</HEAD>

<BODY>

<%

Response.Write "<h3>Before Changes</H3>"

Dim obj

Dim vAry

Set obj = Server.CreateObject ("asp0202.tstAdmin")
vAry = obj.adminErrors

' set boundaries of array
1 = LBound(vAry)
u = UBound (VAry)

' access each list item, print out to page
Dim str, val
For ct =1 Tou
Response.Write vAry(ct) & "
"
str = Left (vAry(ct),3)
if str = "404" Then
vAry(ct) = "404,*,FILE,E: \devaspcomp\web\chap2\asperrors.htm"
End If
Next

Response.Write "<h3>After Changes</H3>"

' update HITP error messages

4~ ~4]e

é ,ch02.18096 Page 43 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 43

obj.adminSetErrors "IIS://localhost/W3SVC/1l/root/chap2", vAry

' get error messages again
VvAry = obj.adminErrors

' set boundaries of array again
1 = LBound(vAry)
u = UBound (VAry)

' access each list item, print out to page
For ct =1 Tou
Response.Write vAry(ct) & "
"

Next

%>

</BODY>

</HTML>
In this section you had a chance to access and set various IIS Admin object prop-
erties using methods such as Get and Put, GetEx and PutEx. These methods are
actually implementations of the primary ADSI interface, TADs. However, there are
also IIS Admin objects that can contain other objects, and these collection-type
objects also implement the IADsContainer interface, to provide for collection
member access. The methods to work with these collections using ADSI are dis-
cussed in the next section.

The ADSI Container Object Properties and Methods

Certain IIS Admin objects can contain other objects, which means that they sup-
port the TADSContainer interface in addition to the IADs interface. Because these
objects implement the container interface, they can support certain container func-
tionality, such as a count of contained objects and a method of enumerating these
objects.

The ADSI Container object properties are the following:

_NewEnum
For automation languages such as Visual Basic, this property returns an enu-
merator that allows the language to retrieve the contained objects. An enumer-
ator in Visual Basic is an object that provides built-in functionality to iterate or
enumerate the objects in a collection. Visual Basic Collection objects automati-
cally have this enumerator capability built in through the use of _NewEnum.
This means that each object can be accessed using the following syntax:
For each obj in ObjectCollection
...do something
Next
Count
Returns a count of contained objects.

4~ ~4]e

é ,ch02.18096 Page 44 Thursday, February 22, 2001 1:27 PM

44 Chapter 2: Setting Up the ASP Development Environment

The following are the ADSI Container object methods:

CopyHere
Copies an object into a container and returns a pointer to the object.

Create
Creates a new object of a given type and name within the container.

Delete

Removes an object of a given type and name from a container.
GetObject

Returns the ADSI object of a given class and name.

MoveHere
Removes an object from its source and places it in the container.

These Container methods and properties allow you to add or remove new virtual
web sites, access information about any aspect of an IIS installation, and, most
particularly, traverse a hierarchy of IIS objects.

Since you’re going to need to create virtual directories for each of the chapters of
this book, we’ll create the virtual directory you'll use for Chapter 3. Once it’s cre-
ated, we'll list the development web server’s virtual directories again to the web
page to ensure the new directory has been created.

Example 2-9 modifies the basic characteristics of the development
web server, so use it cautiously and only in a development environ-
ment—preferably one that’s isolated. In addition, you must run these
examples from another web server, such as the Administration
server, as you cannot modify the characteristics of a web site you're
currently using. Just make sure that the server you use has the secu-
rity configuration necessary to run administration applications.
Finally, if you're working with Windows 2000 Professional, you’ll
want to skip running this example altogether, because you can have
only one web server in this operating system version, and this exam-
ples requires two.

Since we’re using a different set of objects, we’ll create a different component. Cre-
ate a new Visual Basic ActiveX DLL project, and name the project asp0203 and
the class that’s generated tstContainer. Create a subroutine method in this com-
ponent and call it createDirectory. This method will access the development web
server and then create a new virtual directory on this server using the Create
method. Once the new virtual directory is created, its path is assigned to a physi-
cal location with a subdirectory named the same as the virtual directory, as shown
in Example 2-9.

4~ ~4]e

é ,ch02.18096 Page 45 Thursday, February 22, 2001 1:27 PM

Using ADSI to Administer IIS Programmatically 45

Example 2-9. Method to Create a New Virtual Directory on the Development Web Server
Sub createDirectory (ByVal name As String)

Dim iisAdminObj

Dim iisDirObj

' Access IIsWebServer object for Development

Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1/Root")

' create virtual directory
Set iisDirObj = iisAdminObj.Create("IIsWebVirtualDir", name)
1isAdminObj.SetInfo

' set virtual directory’s name and access
iisDirObj.Put "Path", "E:\devaspcomp\web\" & name
1isDirObj.Put "AccessRead", True

1isDirObj.Put "AccessScript", True
1isDirObj.SetInfo

' create inproc application
1isDirObj.AppCreate True
1isDirObj.SetInfo

' set inproc’s process isolation and name
iisDirObj.Put "AppIsolated", 1
1isDirObj.Put "AppFriendlyName", name
1isDirObj.SetInfo

End Sub

The method will be called once for each virtual directory we're going to create.
Notice that the SetInfo ADSI object method is used to update the Metabase after
the virtual directory is created, after the path and access permissions are added for
the new virtual directory, and after the new in-process application is added to the
virtual directory using [IsWeb

The ASP script page that calls this method only creates virtual directories for Chap-
ters 3 through 10, which should be enough to get us through almost half the book.
The ASP script page shown in Example 2-10 also displays the contents of the
Development Web server, creates the new virtual directories, and then displays the
contents of the web server again by using the container implementation of For
Each...In that is implemented in both VBScript and Visual Basic. This will create
an object for each contained object within the target container and allow us to
manipulate this object. In the case of the ASP page, the script displays the object’s
Name property.

Example 2-10. ASP Page That Prints Out the ADSI Container Object’s Name, Calls Method to
Create Virtual Directories, and Then Prints the Container Object’s Contents Again

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-10</TITLE>

4~ ~4]e

é ,ch02.18096 Page 46 Thursday, February 22, 2001 1:27 PM

46 Chapter 2: Setting Up the ASP Development Environment

Example 2-10. ASP Page That Prints Out the ADSI Container Object’s Name, Calls Method to
Create Virtual Directories, and Then Prints the Container Object’s Contents Again (continued)

</HEAD>

<BODY>

<%

Dim obj

Dim ct

On Error Resume Next

Set obj = Server.CreateObject ("asp0203.tstContainer")
Dim iisAdminObj
Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1/Root")

Response.Write("<h3>Existing Virtual Directories</H3>")
For Each adminobj In iisAdminObj

Response.Write adminobj.Class & " " & adminobj.Name & "
"
Next

For i = 3 To 10
obj.createDirectory "chap" & i
Next

Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1/Root")

Response.Write("<h3>New Directories</H3>")
For Each adminobj In iisAdminObj

Response.Write adminobj.Class & " " & adminobj.Name & "
"
Next

%>
</BODY>
</HTML>

Before running the ASP page and creating the chap3 virtual directory and applica-
tion, the physical location has to be created; otherwise, an error will result when
you try to access the directories. Figure 2-5 shows the web page that results from
running Example 2-10. Notice that chap3 is now added to the virtual directories
for the development web server.

Throughout this section you've had a chance to work with several 1IS Admin
objects and properties. The next section lists all of the IIS Admin objects and sev-
eral of the more interesting properties.

1IS Admin Object Overview

IIS can be administered using IIS Admin objects, which can be accessed the same
way any other active ASP object is accessed. The advantage of exposing adminis-
tration tasks to ASP applications is that organizations can create their own ASP

4~ ~4]e

,ch02.18096 Page 47 Thursday, February 22, 2001 1:27 PM

1IS Admin Object Overview 47

/3 Developing ASP Components - Example 2-9 - Microsoft Internet Explorer =10l x|

J File Edit View Favorites Tools Help E
J Back » = - £ ﬁ| iQhsearch [Favorites £ 4History ||%v =M= L]

Jngdress I@ http:fflocalhost: 7051 /asp0203, asp j @GU |JLinks By

Existing Virtual Directories

OeWebDirectory localstart. asp
IsWeb VirtualDir ITS A dmin
IeWebVirtnalDir TS Samples
OsWebVirtualDir MSADC
TsWeb VirtualDir TSHelp
MeWebVirtualDir Scripts
MeWebVirtualDir chap2
="WebVirtualDir Printers
IsWebVirtualDir HPLaser]

New Directories

IsWebDirectory localstart. asp
s WebVirtualDir ITS Admin
IsWebVirtualDir TS Samples
OsWebVirtualDir MSADC
IsWebVirtualDir T5Help
IsWebVirtualDir Scripts
IsWebVirtualDir chap2
I="WebVirtualDir Printers
="WebVirtualDir HPLaser]
IeWebVirtualDir chap3

=
|@ Done l_l_ = Local intranet 4

Figure 2-5. Adding a new virtual directory

administration applications, customized to the organization’s needs or to a specific
application’s needs. Another advantage is that the ASP application and the IIS
installation can actually be configured and managed remotely.

The biggest disadvantage to using the IIS Admin objects is that they expose IIS
administration tasks to remote access, so the objects should be used with care.
Microsoft recommends placing the applications accessing the objects in a secure
subdirectory and setting the permissions to that subdirectory to NT Challenge/
Response, which means that anonymous access is disallowed and NTFS security is
used to verify access to the subdirectory.

The IIS Admin Objects

The IIS Admin objects form a hierarchy, with many objects contained within another
object, and so on. You saw this demonstrated in Example 2-9 and Example 2-10 in
the last section. The hierarchy of these objects is shown in Figure 2-6.

% é ,ch02.18096 Page 48 Thursday, February 22, 2001 1:27 PM

48 Chapter 2: Setting Up the ASP Development Environment
IISComputer
e d ROUGH DRAFT
1ISFTPService l 115\ebService

1ISFTPINfo | 115'WebInfo)

IISFTPServer IISFilters
IISFTPVDir m’
I IISFTPVDIr I 115Com pressionSchemes §
NISFTPYDIr | [ISCompressionSchemes J
1ISFTRServer | I15WebServer
[ISLogModules 115Web/Dir l
[1SLogModul e 115webDir
T)
11SCustomLogModule | I1sWebFile §
» [ISMimeMap]

IIECEI'tMaJDE"
115Filters]
115Filter i

11S\WwebServer

Figure 2-6. Hierarchy of IIS Admin objects

In the interests of brevity, we won’t cover all of the IIS Admin objects in the fol-
lowing sections, just those that impact on ASP web development the most: IlsWeb-
Service, IIsWebServer, IIsWeblnfo, and IIsWebVirtualDirectory. You can check
Microsoft’s documentation to read more on the ones not covered.

The ADsPaths in the rest of this book use localhost to represent
the name of the machine. If you're accessing the IIS Admin objects
on your local machine, you can use localhost; otherwise, use the
machine’s name or URL.

IIsWebService

In the previous examples in the book, you accessed the IIsWebService object any
time you supplied an ADsPath similar to the following:

IIS://localhost/W3SVC

The IIsWebService object is the object that contains all of the web servers for an
installation, and it is through this object that you can set all inheritable properties
for all web servers, virtual directories, and so on. For instance, you can use the fol-
lowing to change the AuthAnonymous property for the web service and have this
setting trickle down to all contained objects, unless they override this property:

4~ ~4]e

é ,ch02.18096 Page 49 Thursday, February 22, 2001 1:27 PM

1IS Admin Object Overview 49

Set iisAdminObj = GetObject ("IIS://localhost/W3SVC")

1isAdminObj.Put "AuthAnonymous",True
The IIsWebService contains direct references to all of the web servers set up for an
IIS installation, and these are discussed next.

IIsWebServer

The IIsWebServer is the object representing a specific web server for a machine. It
is accessed through a browser using a unique combination of IP address and port
number, such as the following:

http://localhost

http://www.someurl.com

http://localhost:90
As with IIsWebService, you can set properties for an IIsWebServer object and
they’ll propagate to all contained elements, or at least to the ones to which the
property applies. For instance, you can set the AccessRead property for a web
server, and it will apply to all contained virtual directories, web directories, and
web files:

Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1")

1isAdminObj.Put "AccessRead", True
You can also create objects off the [IsWebServer, as demonstrated in Example 2-9,
when we created a new virtual directory using the Create method. Other methods
unique to IIsWebServer are the following:

Stop
Stops the web server.

Start
Restarts the web server.

Status
Determines the status of the web server.

Pause
Pauses the web server.

Continue
Resumes the web server after it has been paused.

In addition to accessing the IIsWebServer objects through the higher-level IIsWeb-
Service, you can also access [IsWeblInfo.

LisWeblnfo

General information about the web service is contained in the IIsWeblInfo object.
This can include information such as custom error messages and whether encryp-
tion is enabled, and it includes values that are set when the service is first installed.

4~ ~4]e

é ,ch02.18096 Page 50 Thursday, February 22, 2001 1:27 PM

50 Chapter 2: Setting Up the ASP Development Environment

The IIsWeblnfo IIS Admin object implements I4Ds but not IADsContainer, which
means you can’t use any of the container methods, but you can use Get and Put
and the other noncontainer methods. For instance, Example 2-11 shows an ASP
page, asp0210.asp, created using VBScript that uses Get to access one property of
the IIsWeblnfo object, CustomErrorDescriptions. This property contains a list of
custom error messages installed when IIS was installed. In the example, this list of
messages is accessed and displayed one at a time, similar to the results shown
when accessing the component created in Example 2-8.

Example 2-11. Accessing CustomErrorDescriptions from the IIsWebInfo Object

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-11</TITLE>
</HEAD>

<BODY>

<%

Dim iisAdminObj

Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/INFO")

Dim customErrors
customErrors = iisAdminObj.get ("CustomErrorDescriptions")

' set boundaries of array
Dim 1,u

1 LBound (customErrors)
UBound (customErrors)

' access each list item, print out to page
For ct =1 To u

Response.Write customErrors(ct) & "
"
Next
%>
</BODY>
</HTML>

LIsWebVirtualDirectory

The IIsWebVirtualDirectory object can apply to all virtual directories contained
within a web server or to a specific one, depending on how it is accessed. To set
or get properties that apply to all virtual directories, access the object using syntax
similar to the following:

IIS://localhost/1/Root
However, to access properties for one specific virtual directory, use the following:
I1IS://localhost/1/Root/chap2

As you saw in Example 2-9, you can add an in-process (“inproc”) application to a
specific virtual directory with the AppCreate method. Using this method, you can
create an application that can exist independently of other applications running

4~ ~4]e

é ,ch02.18096 Page 51 Thursday, February 22, 2001 1:27 PM

1IS Admin Object Overview 51

from the same virtual directory. You can then manipulate this application using
ADSI, or you can manipulate it using Component Services, discussed in more
detail in Chapter 5, COM+ Services and ASP Components and Applications. Other
methods available for use programmatically are the following:

AppCreate2
Creates an application and marks it as running in-process, out-of-process, or
pooled.

AppDelete
Deletes the application and releases resources if none are currently being
accessed.

AppDeleteRecursive
Deletes the application and all contained object applications; resources are not
released.

AppDisable
Disables an out-of-process application and releases its resources.

AppDisableRecursive
Disables an out-of-process application and all contained objects.

AppEnable
Reenables an out-of-process application.

AppEnableRecursive
Enables an out-of-process application for the object and all contained objects.

AppGertStatus
Gets the status of an application.

AppUnload
Unloads the application and releases resources if out-of-process or if in-pro-
cess and no longer being accessed.

AppUnloadRecursive
Unloads the application for the object and any contained objects.

AspAppResiart
Restarts the application.

A very useful method for ASP component developers is the AppUnload method,
which unloads the existing ASP application so that the component can be com-
piled. To demonstrate, Example 2-12 shows an ASP page named asp0211.asp that
will unload the ASP application that runs in the chap2 virtual directory.

Example 2-12. Unloading an ASP Application with the AppUnload Method

<HTML>
<HEAD>

- ad

é ,ch02.18096 Page 52 Thursday, February 22, 2001 1:27 PM

52 Chapter 2: Setting Up the ASP Development Environment

Example 2-12. Unloading an ASP Application with the AppUnload Method (continued)

<TITLE>Developing ASP Components - Example 2-12</TITLE>
</HEAD>

<BODY>

<%

Dim iisAdminObj

Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1/Root/chap2")
Response.Write "<H3>Unloading Application..."
i1isAdminObj .AppUnload

%>

<H3> Application Unloaded</H3>

</BODY>

</HTML>

To run this ASP page and unload the chap2 application, access this page from
some administrative server other than the chap2 virtual directory, such as the fol-
lowing URL that accesses the page from a new web site (note the different port
number):

http://localhost:8000/asp0211.asp

The reason this page must be run from some location other than chap?2 is that the
application can be unloaded and all resources released only if the application is
not being accessed directly.

Remove anonymous access from the web server before accessing
asp0211.asp, or you'll get a permission error when your page calls
GetObject.

In addition to several IIS Admin objects, there are also several dozen properties
which you can access and set using ADSI methods. Several have been demon-
strated in the last sections, and others are covered in the next section.

The IIS Admin Object Properties

An IIS Admin object property can apply to only one IIS Admin object, such as the
AdminServer property for IIlsWeblInfo, or a property can apply to several types of
objects, such as AccessRead. Each of the IIS Admin objects and its respective prop-
erties is listed in the documentation that comes with IIS. However, the ASP-specific
properties of the IIsWebServer/IIsWebService and IIsWebVirtualDir objects can be
especially useful when setting up the IIS test environment or when creating ASP
components for Internet or intranet development. These properties are discussed
and demonstrated in the following sections.

4~ ~4]e

é ,ch02.18096 Page 53 Thursday, February 22, 2001 1:27 PM

1IS Admin Object Overview 53

AspAllowOutOfProcComponents

In IIS 4.0, by default, only in-process components could be accessed from within
ASP scripting blocks. To access out-of-process components—components com-
piled into ActiveX executables—you had to set the AspAllowOutOfProcCompo-
nents property to True.

However, with IIS 5.0, AspAllowOutOfProcComponents is set to True by default,
which means all in-process IIS web servers or virtual directories—those set to run in
low (IIS process) or medium (pooled) application protection—can access execut-
able components. In addition, all high (isolated) IIS applications can also access out-
of-process components regardless of how AspAllowOutOfProcComponents is set.

To illustrate the AspAllowOutOfProcComponents property, create a new Visual
Basic project, except this time use the Visual Basic ActiveX EXE project type.
Name the project asp0204.vbp and the generated class tstProc.cls.

The tstProc component has a single method, outOfProc, that takes a String param-
eter and concatenates it to another string to create a personalized variation of the
traditional “Hello, World!”, as shown in Example 2-13.

Example 2-13. An Out-of-Process Component

Function outOfProc (ByVal strName As String) As String
outOfProc = "Hello, " & strName & "!"
End Function

After creating the component, compile it and place the resulting executable in the
chap2 virtual directory. In addition, change the Execute Permissions on this direc-
tory to Scripts and Executables.

Next, create an ASP page named asp0212.asp and place this page in chap2. The
page accesses and prints out the value of the AspAllowOutOfProcComponents
property and then accesses and runs the out-of-process component asp0204, as
shown in Example 2-14.

Example 2-14. ASP Page That Accesses an Out-of-Process Component

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-14</TITLE>
</HEAD>

<BODY>

<%

Dim iisAdminObj
Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1/Root/chap2")

Dim val
val = iisAdminObj.Get ("AspAllowOutOfProcComponents")

4~ ~4]e

é ,ch02.18096 Page 54 Thursday, February 22, 2001 1:27 PM

54 Chapter 2: Setting Up the ASP Development Environment

Example 2-14. ASP Page That Accesses an Out-of-Process Component (continued)

Response.Write("out of proc is " & val & "
")

Dim myObject
Set myObject = Server.CreateObject ("asp0204.tstProc")

Dim hello

hello = myObject.outOfProc ("Shelley")
Response.Write hello

%>

</BODY>

</HTML>

The only way to set the value to False is to access and change the property. This
property can be applied to the IlsWebService, IlsWebServer, IlsWebVirtualDir, and
[IsWebDirectory IIS Admin objects.

AspAllowSessionState

When a user accesses a web page from an ASP application for the first time within
an Internet session, an ASP Session object is created. This object can be used to
store and access session-level information, making this information available while
the ASP session is in effect.

The AspAllowSessionState property can be used to enable or disable the session
state. If the property is set to the default of True, the session state is created, and
session information can be maintained. In addition, the Session_OnStart and
Session_OnEnd event handlers can be included in global.asa, a file that maintains
global scripting for an ASP application.

However, if no session-level information needs to be tracked for the application,
the AspAllowSessionState property can be set to False to stop session state mainte-
nance. This value can also be overridden with the ENABLESESSIONSTATE directive:

<%@ ENABLESESSIONSTATE = False %>

AspBufferingOn

ASP buffering prevents any output from being sent to the client until all the out-
put is collected. This approach can be used to throw away output for an incom-
plete transaction or to discard or modify output based on application results. ASP
buffering can be turned on or off using the Response object, discussed in more
detail in Chapter 6, ASP Interaction: Scripting and ASP Components, setting the
AspBufferingOn Metabase property can also alter it.

The AspBufferingOn property is set to True by default, which means buffering is
enabled and output is not sent directly to the web client as it is generated. This
differs from the property in IIS 4.0, where AspBufferingOn was set to False by
default.

4~ ~4]e

é ,ch02.18096 Page 55 Thursday, February 22, 2001 1:27 PM

1IS Admin Object Overview 55

AspCodepage

Specifying the codepage controls what character language mapping is used within
a web page. By default, the value of the codepage for an ASP application is zero
(0), which is designated as CP_ACP, System ANST.

Individual ASP applications can alter this by supplying a codepage specification
within a scripting block or by setting the CodePage property of the built-in Ses-
sion object. However, overall control of the codepage for a specific web or virtual
web server can be handled through the use of the AspCodepage property. Setting
this property overrides any other codepage specification for an ASP application
page accessed by the web service, server, or virtual web server.

Setting a property at the web server that overrides local settings
within ASP pages can cause a frustrating experience for the ASP
developer, especially if the developer is not aware of the global set-
ting. Use global settings with caution, and document and publish the
settings when the default values are altered.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspEnableParentPaths

By default, relative paths can be used when specifying URL locations relative to a
given location. As an example, a web page can be located using the absolute path
http.//www. someurl.com/devaspcompy.

To access a web page within the scripting subdirectory, a reference can use a rela-
tive notation such as ../index.btm. This is equivalent to providing the full path,
bttp://www. someurl.com/index.btm.

However, relative paths can actually cause a security risk, since pages can be
accessed outside of the directory defined for the virtual web site. To prevent the
use of relative paths, the AspEnableParentPaths property can be set to False.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.
AspExceptionCatchEnable

To enable the Microsoft Script Debugger, the ASP component developer can turn
on debugging from within the IIS administration tools, or the developer can set the
AspExceptionCatchEnable property to True, the default value. This turns on the
script debugger until the property is specifically set to False.

- ad

é ,ch02.18096 Page 56 Thursday, February 22, 2001 1:27 PM

56 Chapter 2: Setting Up the ASP Development Environment

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspLogErrorRequests

In order to track client access errors within an ASP application, error codes can be
written to a log file. This logging is enabled by default, but setting the AspLogEr-
rorRequests property to False can turn off logging.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspQueueTimeout

The AspQueueTimeout property specifies the amount of time an ASP script will
wait to be executed in a queue. If you have ever received a message from an ASP-
based server that the server is too busy or the request has expired, the time the
script waited to run exceeded the time allowed for it to run.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptEngineCacheMax

More than one scripting language can be supported for use with ASP. Engines can
be loaded and cached in memory for Perl, Tcl, REXX, and other scripting lan-
guages. The AspScriptEngineCacheMax property is used to specify the number of
scripting engines cached in memorys; it is set to 30 by default.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptErrorSentToBrowser and AspScriptErrorMessage

When a scripting error occurs, details about the error, such as the error line num-
ber, are returned to the browser. If debugging error messages are not sent to the
client, a default error message can be set using the AspScriptErrorMessage prop-
erty. Example 2-15, created in an ASP page named asp0213.asp, illustrates setting
the AspScriptErrorSentToBrowser property to False and providing an error mes-
sage in AspScriptErrorMessage.

Example 2-15. ASP Script to Override Standard Script Ervor Message

<HTML>
<HEAD>
<TITLE>Developing ASP Components - Example 2-15</TITLE>
</HEAD>
<BODY>

- ad

é ,ch02.18096 Page 57 Thursday, February 22, 2001 1:27 PM

1IS Admin Object Overview 57

Example 2-15. ASP Script to Override Standard Script Error Message (continued)
<%

Dim iisAdminObj
Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1/Root/chap2")

1isAdminObj.Put "AspScriptErrorSentToBrowser", FALSE
1isAdminObj.SetInfo

Dim strErrormessage

strErrormessage = "Something broke"

iisAdminObj.Put "AspScriptErrorMessage", strErrormessage
1isAdminObj.SetInfo

Response.Write (iisAdminObj .Get ("AspScriptErrorSentToBrowser"))

%>
</BODY>
</HTML>

You can trigger the error by doing something like this:

1isAdminObj.Put "SomeProperty", True

1isAdminObj.SetInfo
The AspScriptErrorSentToBrowser and AspScriptErrorMessage properties can be
applied to the IIsWebService, IIsWebServer, IIsWebVirtualDir, and IIsWebDirec-
tory IIS Admin objects.

AspScriptFileCacheSize

IIS has the ability to cache ASP scripts. Changing this value can change how much
caching occurs. Setting AspScriptFileCacheSize to —1, the default, caches all scripts.
Setting the property to 0 turns caching off. A value other than these two will cache
that number of scripts. For instance, the VBScript code in Example 2-16, in an ASP
page named asp0214.asp, lets the cache store 10 scripts only.

Example 2-16. Changing the Script Caching Size

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-16</TITLE>
</HEAD>

<BODY>

<%

Dim iisAdminObj
Set iisAdminObj = GetObject ("IIS://localhost/W3SVC/1l/Root/chap2")

1isAdminObj.Put "AspScriptFileCacheSize", 10
iisAdminObj.SetInfo

4~ ~4]e

é ,ch02.18096 Page 58 Thursday, February 22, 2001 1:27 PM

58 Chapter 2: Setting Up the ASP Development Environment

Example 2-16. Changing the Script Caching Size (continued)

%>
</BODY>
</HTML>

Adjusting this value dynamically is an effective technique to fine-tune the perfor-
mance of a web site based on current usage.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptLanguage

VBScript is the default scripting language used for an ASP application. Setting the
AspScriptLanguage property can alter this default scripting language. The follow-
ing code sets the default scripting language to JScript:

1isAdminObj.AspScriptLanguage="JScript"
This property can be overridden with the use of a directive, such as the following:
<%@LANGUAGE = "JScript"%>

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

AspScriptTimeout

By default, scripts have 90 seconds until a timeout occurs and the script is termi-
nated. This timeout value can be changed either by using the ScriptTimeout
method for the built-in Server object or by setting the AspScriptTimeout property
to a different value.

If an ASP application has components that can take considerable time, such as
components that access a database, the AspScriptTimeout property should be
changed to prevent the script accessing the component from timing out.

AspSessionTimeout

Each request to an ASP application from a single web page reader resets the timer
for the Session object timeout. If another request from the same reader exceeds
this timeout time, an error message is returned to the reader. The Session timeout
time can be reset using the AspSessionTimeout property.

This property can be applied to the IIsWebService, IIsWebServer, IIsWebVir-
tualDir, and IIsWebDirectory IIS Admin objects.

There are several more properties that can be accessed and set within the IIS
Admin objects, described in the documentation that comes with IIS 5.0.

- ad

é ,ch02.18096 Page 59 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 59

The IIS Base Admin Objects

Up to now, we've been programmatically altering IIS using the relatively friendly
IIS Admin objects with the help of ADSI. Now it’s time to go one step lower into
the workings of the Metabase and the IIS administration objects and plunge both
hands deep into the IIS Base Admin objects. In other words, it’s time to bring out
the C++.

The IIS Admin object works directly from an ASP script, or it can be accessed in
Visual Basic. However, to administer IIS from a C++ application requires access-
ing the IMSAdminBase interface. This interface supports several different methods
similar to those provided by ADSI for the IIS Admin objects. These methods are

listed in Table 2-1.

Table 2-1. IMSAdminBase Methods

Method Description

AddKey Adds a key to the Metabase. AddKey is similar to the IIS
Admin object Create method, which can add new IIS
objects.

Backup Backs up the entire Metabase to a location you specify.

ChangePermissions Normally, you obtain a handle to an IIS Base Admin object
(a key) and open the handle for read or write permission or
both. ChangePermissions allows you to change this permis-
sion on an open handle.

CloseKey Closes an open handle.

CopyData Copies the data from one Metabase key to another.

CopyKey Copies the keys from one Metabase key to another.

DeleteAllData Deletes all data contained in the Metabase key and any sub-
keys.

DeleteBackup Deletes a Metabase backup.

DeleteChildKeys Recursively deletes all keys of the Metabase key.

DeleteData Deletes all data for the Metabase key.

DeleteKey Deletes a specific Metabase key.

EnumBackups Enumerates through the backups at a given location.

EnumData Enumerates all data for a given key.

EnumKey Enumerates all subkeys for a given key.

GetAllData Gets all data associated with key.

GetData Gets data for a specified key and property.

GetDataPaths Gets the path associated with a specific data identifier.

GetDataSetNumber Gets the unique numbers associated with a data item in a
key..

GetHandleInfo Gets information about an associated Metabase key handle.

GetLastChangeTime Gets the time when the key was last changed.

%

é ,ch02.18096 Page 60 Thursday, February 22, 2001 1:27 PM

60 Chapter 2: Setting Up the ASP Development Environment

Table 2-1. IMSAdminBase Methods (continued)

Method Description

GetSystemChangeNumber | Gets the number of times a key’s data was changed.
OpenKey Obtains a handle to a specific key.

RenameKey Renames the specified key

Restore Restores the Metabase from a backup.

SaveData Saves changes made to Metabase data.

SetData Changes the value of a data item for a specific key.
SetLastChangeTime Sets the last time data associated with the key was changed.

To demonstrate how the IMSAdminBase interface works, we’ll create one last ASP
component for this chapter, but this time the component will be created with
Visual C++ and not Visual Basic.

Creating Visual C++ ASP components is covered in more extensive
detail in Chapter 14, Creating C++ ASP Components.

Creating the ASP Component

The component will have two methods, one to set a specific Metabase property
and one to retrieve it. The property used in this example is the AspScriptTimeout
value, which controls how long a script will process before it times out. The prop-
erty will be accessed for the chap2 virtual directory, which is the key we will
access using IMSAdminBase.

To create the component, you first need to create a new Visual C++ project. Cre-
ate the project using the ATL COM Wizard and name the project asp0205. When
the wizard runs, select Dynamic Link Library from Step 1 and do not check any of
the options at the end of the page, and click the Finish button.

Once Visual C++ has automatically generated the framework code for the compo-
nent, you'll next need to add a component class. Select Insert from the main menu
and then select New ATL Object. From the dialog box that opens, select Simple
Object as the type of component to create. In the next page, select the Names tab
and give the component a Short Name of tstBase. The other fields will automati-
cally be filled in.

Select the Attributes tab next, make the component both-threaded with a dual
interface, and choose to aggregate the component by selecting Yes from the
Aggregation radio box. Click on the OK button to generate the component class.

4~ ~4]e

é ,ch02.18096 Page 61 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 61

Once the class is created, access the Class View page for the project and right-click
on the interface created for the new component, ItstBase. From the menu that
opens, select Add Method. In the Add Method to Interface dialog box, give the
method a name of getTimeout and provide the following for the Parameters field:

[out, retval] VARIANT *pvarScriptTimeout

The getTimeout method returns a Variant that contains the value of the AspScript-
Timeout property. Clicking on the OK button will add the method to the compo-
nent’s IDL file and will add a method signature to the component’s C++ file,
tstBase.cpp.

You need to add support for IMSAdminBase, so you'll need to open the compo-
nent’s header file, tstBase.h, and include three header files, iadw.h and iisconfig.h
(both necessary to support IMSAdminBase) and comdef.h, to add support for
COM-based objects. Add these directly below the resource.b file:

#include "resource.h" // main symbols

#include <iadmw.h>
#include <iiscnfg.h>
#include <comdef.h>

Close tstBase.h. Open the component’s class file, tstBase.cpp, next.

At this time, the tstBase.cpp file contains the method signature (method name and
parameter and return type), a return value, and the opening and closing method
brackets:

STDMETHODIMP CtstBase::getTimeout (VARIANT *pvarScriptTimeout)

{

return S_OK;

}
To access the AspScriptTimeout property for chap2, you first need to obtain a han-
dle to the chap2 Metabase key and then use GetData to get the property informa-
tion. However, before you can use the GetData method, there is a structure you
need to be aware of: METADATA RECORD.

The METADATA_RECORD Structure

You'll be using the GetData and PutData methods with the IMSAdminBase inter-
face to get and set the AspScriptTimeout property value. However, to access a
property from the Metabase using IMSAdminBase, you need to specify informa-
tion about the property, such as the size of the variable used to get the data, the
datatype, and so on. This exchange of information about datatypes of properties is
handled behind the scenes within the IIS Admin object methods, but it is exposed
with the IIS Base Admin objects. Based on this exposure, you’ll need to pass infor-

- ad

é ,ch02.18096 Page 62 Thursday, February 22, 2001 1:27 PM

62 Chapter 2: Setting Up the ASP Development Environment

mation with the GetData and PutData methods; the METADATA RECORD structure is
used for this purpose.

METADATA_RECORD has the following structure definition:

typedef struct _METADATA_ RECORD {
DWORD dwMDIdentifier;
DWORD dwMDAttributes;
DWORD dwMDUserType;
DWORD dwMDDataType;
DWORD dwMDDatalen;
unsigned char *pbMDData;
DWORD dwMDDataTag;
} METADATA_RECORD;

The dwMDIdentifier member contains the Metabase identifier for the property.
This value can be found in the IIS 5.0 documentation pages, and the value for
AspScriptTimeout is MD_ASP_SCRIPTTIMEOUT. dwMDAttributes contains addi-
tional information about the property, such as whether it is inherited (METADATA_
INHERIT) or whether there are no attributes (METADATA_NO_ATTRIBUTES). For the
example, you’ll be using METADATA INHERTT.

A complete listing of values for dwMDAttributes and the other
METADATA RECORD fields can be found in the Visual C++ documen-
tation or at Microsoft’'s web site by looking up METADATA RECORD.

dwMDUserType specifies whether the information is about an ASP application, a
file, or a server. Possible values are specified in the IIS 5.0 documentation for the
Metabase property. For AspScriptTimeout, the value used is ASP_MD_UT_APP.

dwMDDataType and dwMDDataLen specify information specific to the property,
such as its datatype and the size of the variable used to set or get the property
value. The AspScriptTimeout value is a Long datatype, which equates to the
DWORD_METADATA type value, and this is used for the dwMDDataType field. In
addition, the sizeof operator is used to get the size, in bytes, of the variable used
to hold the data, and this size is passed in the dwMDDataLen field.

Lastly, the pbMDData field is used to hold a reference to the variable that either
contains the property value, if SetData is being used, or to get the property value,
if GetData is used. Variables of different types can be used to set this field as long
as the storage is preallocated for the variable if GetData is being used and the vari-
able is cast to a byte pointer (PBYTE).

Now that you've had a chance to review the METADATA_RECORD structure, you can
create the getTimeout method on your new component.

4~ ~4]e

é ,ch02.18096 Page 63 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 63

Creating the getTimeout Method

You access the Base Admin objects using a technique similar to the technique you
used to access the Admin objects—you specify the ADsPath for the object. How-
ever, unlike the Admin objects, you can use a shortcut keyword, LM, to represent
IIS://localhost. So, to access the root directory of the development web
server, you would use an ADsPath of:

/ILM/W3SVC/1/Root

The first code you’ll add to the getTimeout method is to create an instance of
IMSAdminBase, using the template CComPtr to wrap the interface pointer. You'll
use coCreatelnstance to create the IMSAdminBase reference:

// get a pointer to the IIS Admin Base Object
hr = CoCreateInstance (CLSID_MSAdminBase, NULL, CLSCTX ALL,
IID IMSAdminBase, (void **) &spAdminBase);

Once you have a reference to the IMSAdminBase interface, you'll use this to
access the IIS Base Admin object for the development web server, using the Open-
Key method:

// open key - access IIsWebServer
hr = spAdminBase->OpenKey (

METADATA_MASTER_ROOT_HANDLE,
b,
METADATA_ PERMISSION_READ | METADATA_PERMISSION_WRITE,
60000,
&hMetaData
)i

The OpenKey method takes a Metabase handle, the ADsPath for the Metabase
key, permissions, a method timeout value, and a reference to a Metabase handle

for the newly opened key. For the example code, the METADATA MASTER ROOT_
HANDLE is used for the first parameter.

The METADATA MASTER ROOT HANDLE is a defined value that repre-
sents the master root for the IIS installation. Instead of using this pre-
defined value, you can also specify a previously opened Metabase
key handle in OpenKey.

The OpenKey method then returns a handle for the key specified in the ADsPath.
Once you've opened the Metabase key for the development web server, you can
use this to both set and get data from the key, delete the key, or do any number
of other operations. For getTimeout, you'll use the key to get the value of Asp-
ScriptTimeout by first defining the METABASE_RECORD values and then calling the

4~ ~4]e

,ch02.18096 Page 64 Thursday, February 22, 2001 1:27 PM

64 Chapter 2: Setting Up the ASP Development Environment

GetData method. The accessed value is then returned to the ASP application page.
The complete code for the getTimeout method is shown in Example 2-17.

Example 2-17. getTimeout Method Using IMSAdminBase

STDMETHODIMP CtstBase: :getTimeout (VARIANT *pvarScriptTimeout)
{
HRESULT hr = S_OK;
CComBSTR b("/ILM/W3SVC/1/Root") ;
CComBSTR ¢ ("/chap2");
METADATA_HANDLE hMetaData;
METADATA RECORD mdRecord;
DWORD 1nth;
DWORD dwTime;
CComPtr <IMSAdminBase> spAdminBase;
CComVariant vtResponse;

// get a pointer to the IIS Admin Base Object
hr = CoCreatelInstance (CLSID_MSAdminBase, NULL, CLSCTX_ ALL,
IID IMSAdminBase, (void **) &spAdminBase);

if (FAILED (hr))
return hr;

// open the key for the Development Web Server
hr = spAdminBase->OpenKey (

METADATA_MASTER_ROOT_HANDLE,

b,

METADATA PERMISSION_READ,

60000,

&hMetaData

)i

if (FAILED (hr))
return hr;

// define the METABASE_RECORD values for AspScriptTimeout
mdRecord.dwMDIdentifier = MD_ASP_SCRIPTTIMEOUT;
mdRecord.dwMDUserType = ASP_MD UT APP;

mdRecord.pbMDData = (PBYTE)&dwTime;

mdRecord.dwMDDatalen = sizeof (GwTime) ;
mdRecord.dwMDDataType = DWORD_METADATA;
mdRecord.dwMDAttributes = METADATA_ INHERIT;

// get the property value
hr = spAdminBase->GetData (hMetaData, c, &mdRecord, &lnth);

if (FAILED(hr))
return hr;

// assign the property value to the component return variable
vtResponse = (long)dwTime;
vtResponse.Detach (pvarScriptTimeout) ;

é ,ch02.18096 Page 65 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 65

Example 2-17. getTimeout Method Using IMSAdminBase (continued)

// close the metabase key
spAdminBase->CloseKey (hMetaData) ;

return S_OK;

}

Notice in the call to GetData that the virtual directory name for chap2 is passed
within the method call. Also notice that the fourth parameter for the method is a
pointer to a DWORD variable. This variable is set if the variable used in the
METABASE_RECORD structure is not large enough to contain the property value
being returned. If this happens, an ERROR_INSUFFICIENT BUFFER error is
returned, and the size of buffer necessary to hold the data is returned in the fourth
parameter. Otherwise, this value will be 0.

Example 2-17 does not show error handling, but you can access
error codes from the HRESULT value set with the method call.

Once the code for the asp0205.tstBase component’s getTimeout method is fin-
ished, it is compiled and accessed within an ASP page. The page, named asp0215.
asp, creates a reference to asp0205.tstBase and then calls the getTimeout
method, which is then displayed to the browser.

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-17</TITLE>
</HEAD>

<BODY>

<%

Dim obj

Set obj = Server.CreateObject ("asp0205.tstBase")

Dim timeout
timeout = obj.getTimeout

Response.Write "<H3>Script Timeout is " & timeout & "</H3>"
%>

</BODY>

</HTML>

The result of running this ASP script is a web page with the following:
Script Timeout is 90

You can verify the script timeout value by accessing the Properties page for chap?2,
then clicking on the Configuration button in the Virtual Directory tab. Another dia-
log box opens containing information about the ASP application associated with

4~ ~4]e

é ,ch02.18096 Page 66 Thursday, February 22, 2001 1:27 PM

66 Chapter 2: Setting Up the ASP Development Environment

the directory. Access the App Options tab in this dialog box, and you can see an
ASP Script Timeout field in the page, with a value of 90 seconds.

Now that you've been able to get the ASP script timeout value, you can try chang-
ing this with the IIS Base Admin objects. This is covered in the next section, where
you'll create the putTimeout method.

Creating the putTimeout Method

To change the AspScriptTimeout value, you'll create a new method called put-
Timeout. To create the method, you’ll again access the Class View page of the
tstBase component within the asp0205 project, and you’ll add the new method,
named putTimeout, with one parameter, DNORD dwTimeout:

[in] DWORD dwTimeout

In the method, you'll still access the IMSAdminBase interface and use this to get a
handle to the development web server key with OpenKey, but you'll be setting
the AspScriptTimeout value with SetData instead of accessing it with GetData. The
definition for the METABASE_RECORD structure is similar, as is the use of the Open-
Key and CloseKey methods. What differs is the use of SetData to set the property
value and the use of SaveData to save the changes to the Metabase.

When you make changes to the Metabase, you need to save them. You did this
with SetInfo with the IIS Admin objects, and you’ll use SaveData to save the
changes with the IIS Base Admin objects. However, one important piece of infor-
mation to keep in mind when working with IMSAdminBase is that you must close
the Metabase key before you try to save any changes to it. Trying to save to an
open key will result in an error. Other than that, the methods for getTimeout and
putTimeout are very similar. The code for putTimeout is shown in Example 2-18.

Example 2-18. putTimeout Method That Sets the AspScriptTimeout Property Using the
IMSAdminBase Interface

STDMETHODIMP CtstBase: :setTimeout (DWORD dwTimeout)
{

HRESULT hr = S_OK;

CComBSTR b("/LM/W3SVC/1/Root") ;

CComBSTR ¢ ("/chap2");

METADATA_HANDLE hMetaData;

METADATA_RECORD mdRecord;

CComPtr <IMSAdminBase> spAdminBase;

CComVariant vtResponse;

// get a pointer to the IIS Admin Base Object
hr = CoCreateInstance (CLSID MSAdminBase, NULL, CLSCTX_ALL,
IID IMSAdminBase, (void **) &spAdminBase);

// open key - access IIsWebServer

4~ ~4]e

,ch02.18096 Page 67 Thursday, February 22, 2001 1:27 PM

The IIS Base Admin Objects 67

Example 2-18. putTimeout Method That Sets the AspScriptTimeout Property Using the
IMSAdminBase Interface (continued)

hr = spAdminBase->OpenKey (
METADATA MASTER_ROOT HANDLE,
b,
METADATA PERMISSION_WRITE,
60000,
&hMetaData
)i

if (FAILED(hr))
return hr;

// set METADATA RECORD values
mdRecord.dwMDIdentifier = MD_ASP SCRIPTTIMEOUT;
mdRecord.dwMDUserType = ASP_MD_UT APP;
mdRecord.pbMDData = (PBYTE)&dwTimeout;
mdRecord.dwMDDatalLen = sizeof (dwTimeout) ;
mdRecord.dwMDDataType = DWORD_METADATA;
mdRecord.dwMDAttributes = METADATA_INHERIT;

// set property
hr = spAdminBase->SetData (hMetaData, c, &mndRecord);

if (FAILED(hr))
return hr;

// close key before saving
spAdminBase->CloseKey (hMetaData) ;

// save change to metabase
hr = spAdminBase->SaveData () ;

return hr;

}

Once the code for putTimeout is added to tstBase, the project is again recom-
piled. To try the new method, create another ASP test page, named asp0216.asp,
that accesses the asp0205. tstBase component and calls the putTimeout method.
The value passed to this method will be 180, doubling the current value:

<HTML>

<HEAD>

<TITLE>Developing ASP Components - Example 2-18 </TITLE>
</HEAD>

<BODY>

<%

On Error Resume Next

Dim obj

Set obj = Server.CreateObject ("asp0205.tstBase")

Dim timeout
timeout = 180

,ch02.18096 Page 68 Thursday, February 22, 2001 1:27 PM

68 Chapter 2: Setting Up the ASP Development Environment

obj.setTimeout timeout
If Err.Number <> 0 Then
Response.Write Err.Description
End If
%>
timeout = obj.getTimeout
%>
<H3>Changed Script Timeout to <%= timeout %> seconds</H3>
</BODY>
</HTML>

The ASP page shows that the scripting timeout property has now been set to 180
seconds.

é ,ch03.18221 Page 69 Thursday, February 22, 2001 1:28 PM

ASP Components
and COM

ASP components are dependent on an architecture being in place to support com-
ponent communication, and COM, or the Component Object Model, is the
approach Microsoft has taken for this type of communication. With Windows 2000,
Microsoft extended the COM architecture to include the services provided by MTS
(Microsoft Transaction Server) as well as other services, but the basics of COM are
still present.

COM is based on a binary and network standard that transcends any dependence
on computer language. By using machine-level communication, a component writ-
ten in Visual C++ can invoke functions exposed on a component written in Java,
for example, and a Java component can invoke a function within a C++ object. All
that is required is that the underlying COM implementation be installed for the
operating system where the components reside.

This chapter does not provide an in-depth description of how COM works, since
entire books have been written about this subject. However, it does cover some of
the information that component developers should understand about COM before
beginning to write components.

The chapter begins with a brief overview of how COM works and how it is imple-
mented, then progresses into those features of COM that are incorporated into
COM-compliant components.

é ,ch03.18221 Page 70 Thursday, February 22, 2001 1:28 PM

70 Chapter 3: ASP Components and COM

Beginning with Windows 2000, the basic services provided by COM
have been extended, and these new services are called COM+.
Chapter 4, ASP Components, Threads, and Contexts, discusses one
architectural change made to COM—the addition of the COM+ con-
text. Now, components not only live within specific threads, they
also live within specific contexts. The chapter also discusses the new
neutral-apartment threading model. Chapter 5, COM+ Services and
ASP Components and Applications, discusses other COM+ services,
such as role-based security, just-in-time activation, transaction sup-
port, pooling, and others.

Overview of COM for ASP
Component Developers

One important aspect you should know about COM is that implementation details
are hidden, and COM components are usually seen as black boxes with no expo-
sure at all of the component internals. A component exposes its functionality
through interfaces, which can be considered “strongly typed semantic contracts
between the client and the object,” according to the documentation on the COM
specification provided by Microsoft. When a COM developer provides an inter-
face, she is saying that the interface will perform in the same manner throughout
all time or at least for the life of the component, whichever ends first. What this
means is that an application developer can create a client that accesses the compo-
nent’s functionality, and the developer does not need to know how the functional-
ity is implemented. Moreover, by saying that an interface is a “semantic” contract,
there is a defined behavior for each interface, a behavior that is guaranteed to
exist regardless of future changes to the component.

To ensure that one component’s interfaces are unique to that component, regard-
less of the interface names used, each component is assigned a unique identifier,
hence the term strongly typed.

The COM specification provides for the following:

¢ Binary communication between components

e A unique class identifier to represent a unique component

e Functionality accessible through interfaces

e Interfaces that are never changed and are considered immutable

e A method to query for interfaces if a component contains more than one

e A method to track references to an object, to determine when an object is no
longer being referenced, and to remove a reference to an object

4~ ~4]e

é ,ch03.18221 Page 71 Thursday, February 22, 2001 1:28 PM

Overview of COM for ASP Component Developers 71

There are other aspects to COM, but at a minimum this list captures the fundamen-
tals, which are covered in more detail in the following sections.

Binary Communication

The COM specification is a binary and network specification, which means that the
components are not language-dependent. They are, however, dependent on the
implementation of the COM infrastructure, an implementation that is at this time
primarily limited to Microsoft operating systems, such as Windows 2000. How-
ever, as IIS is limited to this same environmental constraint, this should not pose a
problem unless you want to create a remote component on some operating sys-
tem other than a Windows 32-bit operating system.

Companies such as Software AG have provided programmatic sup-
port for COM/DCOM within Unix environments. In addition, the
company Chili!Soft has provided software support for ASP from web
servers such as Netscape’s Enterprise Server. Based on these, one
can’t assume that an ASP application will be running within a Win-
dows 32-bit environment. However, the majority of ASP applications
and ASP components are created for Windows NT/2000, so I'll con-
centrate on the Windows platform in this book.

One of the most powerful features of COM is that, when a client accesses a COM
component, the actual location of that component is transparent to the client. This
means that the component can exist locally, on the same machine as the client, or
remotely, on some other machine. This location independence makes a COM-
based application highly scalable, since components can be moved to separate
machines to decrease the load on one machine for better performance without
requiring changes within the application using the component.

If the component is an in-process component, it runs within the same process as
the client; this type of component is created as a dynamic link library, or DLL. An
out-of-process component is one that runs in its own process space. COM further
specifies two versions of out-of-process components: those that run locally and
those that run remotely. A local out-of-process component is created as a separate
executable with an EXE extension. A remote component can be created as either
an executable or as a DLL. If it is created as a DLL, accessing the component
remotely actually creates a surrogate client on the remote machine in order to load
the component.

How does the operating system know which component is being accessed? Each
component is registered on the machine containing the client and on the machine
containing the component if the component is accessed remotely. The most

4~ ~4]e

é ,ch03.18221 Page 72 Thursday, February 22, 2001 1:28 PM

72 Chapter 3: ASP Components and COM

common tool used to register COM components is the regsvr32.exe utility. Other
tools for viewing component registry information are oleview.exe, included with
Visual Studio or downloadable from Microsoft, and dcomcnfg.exe, used to man-
age remote components and found in the Windows subdirectory, usually c:\
windows or c:\winnt.

Since more than one component can be used within an application, and compo-
nents can have the same interface names, how do the application and the operat-
ing system know which specific component is being accessed? The use of class
identifiers ensures access to a specific component, and they are discussed next.

Strong Typing Through Unique ldentifiers

Each COM component has an identifier, called a class identifier (CLSID), also
known as a globally unique identifier (GUID). Because of this, no two compo-
nents with the same object or interface names can be mistakenly used for each
other, since each is identified by its own unique CLSID. The concept of the unique
identifier first arose in the Open Software Foundation (OSF) Distributed Comput-
ing Environment (DCE) specification. The DCE has a concept called the univer-
sally unique identifier (UUID), which is a 128-bit integer guaranteed to be unique
(at least virtually guaranteed to be unique) across time and space.

The COM CLSID can be generated using a variety of tools, or it is created as part
of building a COM component using Visual C++, Visual Basic, and other tools. In
fact, with these tools, you won’t have to perform any special activities in order to
access and include the CLSID within the component; the tool handles this for you.
For objects created with other tools or versions of these tools that don’t support
automatic handling of the CLSID, the utilities UUIDGEN.EXE and GUIDGEN.EXE
can be run separately to create unique identifiers. These utilities can usually be
found in the /bin subdirectory of one of the Visual Studio tools or can be down-
loaded from the Microsoft web site.

A real key to the power of COM is the use of interfaces, detailed in the next section.

If this is your first exposure to working with COM, you should take
the time to read at least the first two chapters of the Component
Object Model specification, accessible from the Web at htp./www.
microsoft.com/com/, in addition to reading this chapter.

Interfaces

By using interfaces, COM provides support for objects that can be accessed exter-
nally, but without having to publish the object’s implementation. The interface

- ad

é ,ch03.18221 Page 73 Thursday, February 22, 2001 1:28 PM

Overview of COM for ASP Component Developers 73

itself never changes and basically does nothing more than provide a pointer to the
actual implementation. However, by providing this layer of separation between the
client of the component and the component implementation, the component
developer can make changes internally to the component without requiring any
changes at all to the client. The client doesn’t even need to be recompiled, since
all of its access to the component occurs through the interface.

This separation of interface and implementation provides support for true object-
oriented encapsulation or implementation hiding, though COM itself is not object-
oriented in the purest sense. Based on this, the COM component developer can
implement the object using any technique or even any programming language, as
long as the technique and language support COM.

In the last paragraph, I stated that COM is not object-oriented in the purest sense.
What I meant by this is that COM is not based on code source reusability, with a
new object derived by inheritance from an existing object. It is based on binary
reusability, with a component or application using the existing functionality of a
component by including a reference to the component within code, rather than
inheriting from the component.

One aspect of COM that can be difficult to work with at first is the fact that COM
interfaces are not mutable, which means that different versions of an interface can-
not be created. For example, I can create an interface called IAddress with a
method called AddAddress. In the beginning, I could have four parameters for the
AddAddress method: street address, city, state, and ZIP Code. However, let’s say
that T open the interface up for international use. In this case, I would want an
address to consist of items such as street address, city, region, country, and postal
code. T couldn’t just modify TAddress’s existing AddAddress method and redistrib-
ute it as Version 2.0, since this would cause havoc with existing customers using
the original address interface. What T would do instead is create a new interface—
let’s call it IInternationalAddress—to support international customers. This
new interface inherits from my existing interface and expands on it as needed. By
following this approach I “keep the faith” with my existing clients, so to speak, as
well as providing the necessary new functionality for my new clients.

When T first worked with COM, T was not used to this concept of multiple inter-
faces. Like most developers, I had spent considerable time creating different ver-
sions of the same software, going from revision 1.0 to revision 2.0 and so on. I
was not comfortable at first with the concept of creating a whole new interface
whenever a change was needed. However, it is this quality that is absolutely
essential for the success of COM.

First, components are not applications, but instead are grouped functions and data
created for a specific purpose and having methods that are guaranteed to work in

4~ ~4]e

é ,ch03.18221 Page 74 Thursday, February 22, 2001 1:28 PM

74 Chapter 3: ASP Components and COM

a specified manner. Based on this, whenever an application developer has need of
the same behavior in more than one application, the same component can be
used again and again. If the component creators decided to support a new set of
behaviors and altered the component methods as well as added new methods, the
application developers would have to upgrade all applications using the compo-
nent to use the newer version, even if they want to use only the new functionality
for some of the applications.

However, if the component developers add a new interface to the component that
contains the new functionality, then the application developer could access the new
interface only when needing to use the new functionality. The applications that
don’t need the new functionality continue to use the same, unchanged interface.

In order to support multiple interfaces, applications need to have some method of
querying a component’s interfaces to see what it supports and what it doesn’t sup-
port. A basic COM feature is the ability to return a pointer to an interface based on
a request, discussed next.

Referencing an Interface

To return a reference to an interface, each COM object must implement a function
that allows the client to query for a specific interface. In the COM system, this
function is called Querylnterface. Queryinterface takes a unique identifier of the
interface as the first argument and an interface pointer as the second argument. If
the Querylnterface call is successful, this second argument will contain the pointer
to the interface when the method returns.

Rather than adding to the complexity and size of a component by adding auto-
mated garbage collection routines, COM utilizes a manual process of freeing com-
ponent resources. When a component interface is first accessed, the component is
loaded into memory and remains in memory as long as at least one interface is
accessed. However, when the last interface is released, the component can then
be unloaded.

A component can provide pointers to the same interface to more than one applica-
tion, so how does COM know when there are no longer any references to any
component interfaces so that it can unload the component from memory? The
answer is that, in addition to having to implement the Querylnterface method,
each component must also implement a method to increment some form of a
counter when an interface is accessed. When a pointer to an interface is success-
fully accessed, a counter associated with the interface is incremented by one. This
counter is then used by COM to determine when all references to an interface
have been released so that the component can be released from memory. So, in
addition to the function to query for the interface, another function, AddRef, adds

4~ ~4]e

é ,ch03.18221 Page 75 Thursday, February 22, 2001 1:28 PM

Overview of COM for ASP Component Developers 75

to the reference count, and a third function, Release, decrements this reference
count. When the component’s reference count reaches zero (0), the component is
marked for removal from memory.

If a COM-based component—ASP or otherwise—supports no other methods, it
must support the ability to query for a specific interface, to increment the count
when an interface reference is returned, and to decrement the interface reference
count when an interface reference is released. However, as you will see in the
other section on COM implementation, much of this functionality is added to a
component automatically, just by inheriting from one specific interface. Other
aspects of COM functionality are discussed next.

Additional COM Functionality

In addition to the major COM specifications for immutable interfaces that can be
queried and for maintaining reference counts for interfaces, other basic COM func-
tionality has to do with maintaining state for a component, known as persistent
storage, as well as the use of monikers. Persistent storage is the ability of an object
to write state information about itself to storage and later retrieve this state infor-
mation from storage.

Monikers are an interesting concept. Without going into too much detail, a moni-
ker can be thought of as an intelligent name. By this I mean that not only does a
moniker maintain a reference to some object, it also has information about how to
access the object. For example, consider an application that accesses a compo-
nent on a remote server using a moniker to maintain a reference to the pointer to
the component interface. While the application was off doing other things, the
connection to the server component was lost. However, the moniker would not
only know what component interface to access, it would have enough informa-
tion to reinitialize the reference to the component interface if the interface pointer
is no longer valid.

Since a moniker must have enough information about the component interface to
re-create the interface pointer, monikers are actually created by the interface
instance itself and are made available to clients.

In addition to persistence and monikers, COM also contains processes for dealing
with data transfer through its Uniform Data Transfer (UDT) specification. This
specification provides for an interface that separates the transfer protocol from the
actual data itself and also provides definitions for transfer medium and a mecha-
nism to determine what data is being transferred and whether the data of interest
has changed. UDT serves to provide a standard for data transfer regardless of the
medium used to make the transfer.

4~ ~4]e

é ,ch03.18221 Page 76 Thursday, February 22, 2001 1:28 PM

76 Chapter 3: ASP Components and COM

How COM Is Implemented

COM is a specification and an implementation. It consists of interfaces that sepa-
rate client access from component implementation, a defining language to describe
these interfaces in a tool/language-neutral manner, and a predefined set of inter-
faces that are used to derive all other COM interfaces.

What Is an Interface?

Interfaces are abstract base classes. As such, they are not implemented but instead
contain virtual functions that are themselves pointers to the actual functions that
implement this functionality. Pointers to the actual functions are contained in what
is known as the virtual function table, or vtbl for short.

The concept of virtual functions arose in C++ object-based programming, not with
COM. When a C++ compiler finds a reference to a virtual function, it generates an
entry into an array that contains a function pointer for every virtual function. For
example, if the C++ compiler finds this definition in a C++ source code file:

class someclass {

public:

virtual void somefunction();

Yi
the compiler creates an entry into the vtbl for somefunction. How does a client
access the function pointer to invoke the actual implemented function? Each time
an instance of the class someclass is created, a pointer is also created within the
instance that points to the first entry of the vtbl for the class. The C++ compiler
implements this pointer for every instance derived from a class that contains vir-
tual functions. The C++ compiler also handles all of the details for the virtual-to-
real function call, which makes this type of functionality doubly attractive. Addi-
tionally, the overhead for this functionality is equivalent to an indirect function
call—in other words, it is minor at most.

So for the example class just shown, if I write client code that calls the function
somefunction, the C++ compiler generates the code that accesses the pointer to
the class vtbl. The C++ compiler also generates the code to access the index for
the function—again with no intervention by the C++ class developer—which then
returns the function pointer to the real function.

This use of virtual functions enables polymorphism within C++, and this same con-
cept of virtual functions is used to separate the interface from the implementation
within COM. However, what happens when you use some programming lan-
guage other than C++ to create the COM component or the client? You can’t use
C++ programming language datatypes directly, since these might not map cleanly
between the client and the component.

4~ ~4]e

é ,ch03.18221 Page 77 Thursday, February 22, 2001 1:28 PM

How COM Is Implemented 77

What is needed is a language-neutral method to define objects, methods, method
parameters, and return types; for this task, Microsoft uses the Interface Definition
Language (IDL) for COM.

Using IDL to Define the Interfaces

Interfaces are usually, but are not required to be, defined in a separate file using a
language called Interface Definition Language (IDL). IDL is itself a subset of the
Object Definition Language (ODL) used in OLE, which in turn is derived from the
Open Software Foundation’s (OSF) Distributed Computing Environment (DCE)
Remote Procedure Call (RPC) IDL.

IDL provides a neutral language to describe interfaces, their parameters, and their
results. The IDL that Microsoft supports for COM is similar to the IDL that the
OMG group supports for CORBA, though not identical. As an example of a fairly
neutral IDL, the following is the definition of a method that takes two long values
and returns a short value:

short somefunction (in long lParamOne,
in long lParamTwo) ;
The modifier [in] is used to denote a parameter that is passed by value only.
Another modifier is [out], used to denote a parameter passed by reference.

As stated, Microsoft has its own version of IDL that has COM-specific annotation
or decoration. The Microsoft-specific version of the IDL for the function shown
previously is:
HRESULT somefunction([in] long lParamOne, [in] long lParamTwo,
[out, retval]short retval);

To explain this example, Microsoft requires that the return type of all COM meth-
ods is defined to be HRESULT, a macro for an OLE data value that returns the suc-
cess or failure of the method call. However, you can actually return, literally, a
different datatype to the calling program by using the modifier [retval]. For the
method somefunction, the parameters are two long values passed in by value
and one return value of type short.

Though the IDL defines three parameters, and the function within the COM com-
ponent would code for three parameters, you would actually code for only two
parameters and a short result in the client, as the VBScript shows in the next
block:

Dim retValue

Dim lParaml, lParam2

lParaml = 2

lParam2 = 3

retValue = somefunction(lParaml, l1Param2)

- ad

é ,ch03.18221 Page 78 Thursday, February 22, 2001 1:28 PM

78 Chapter 3: ASP Components and COM

If the method were coded in Visual Basic, the return value parameter would be
listed as the actual return value for the method instead of as one of the parame-
ters, as shown in the following Visual Basic code fragment:

Public Function somefunction(ByVal lParaml As Long, ByVal lParam2 As Long) _
As Integer
How IDL is used to handle parameter typing and method description within COM
is discussed later in this chapter, in the section titled “Notable COM Interfaces.”

Implementing the Interface

Once an interface is defined, it's implemented using whatever approach works
with the language you’re currently using. For instance, when you add a new com-
ponent class to a Visual C++ project, the tool creates an interface for the compo-
nent. You then add the interface methods and properties to this generated
interface.

Figure 3-1 shows an ASP component created in Visual C++ in Chapter 18, Access-
ing MSMQ from C++ ASP Components. Notice the component’s interface,
Imsgqueue, and all of its defined methods in the left side of Figure 3-1.

#., asp1801 - Microsoft Yisual C++ - [msgqueue.cpp] 18| x|
[A Fle Edit Wew Insert Project Buid Tools indow Help - =] x|
S O = =Y
Crmsgrueus L"[AI\ class memhers| L” @ findQueues LI 1‘?‘ - JJ@ i) ! Bl ‘

alx ¥ ZI
= - asp1801 classes catch {_com_error comerr)
-1 Crmsgqueue
2 bztrMesszage = "Could n

Sl <00

H createXatusue(BSTR bstiflueue, BSTR betiLabel, BSTR * phetitessage)
findQueuesBS TR bstrLabel]

newPrivateQueue(BSTH bstrfQueue, BSTR bstiLabel, BSTH * pbstiMessage) *pbstriessage = bstrMessag |
newPublictueue(BS TR bstilusue, BSTR hstril abel BSTR * phstiessage) return 5 0K:

removelJusueBSTR bstiueue, int iType, BSTR * pbstiMeseage) H
(1 Glabals

STDHETHODINE Cnsgqueue: : findQu
< | | HRESULT hr = S _OK;
.
e CIassViewI HasourceViewI Fila\f'iewl 7 I L amaeaa oot Do !L_'-IJ
Ready /él

Figure 3-1. C++ interface and its methods

In Visual Basic, you don’t have to create the interface directly, since the tool han-
dles this for you. In fact, even if you wanted to modify the IDL for the interface for
a Visual Basic component directly, you can’t.

In Perl with the Perl Dev Kit (PDK), an interface is created in the same manner as
any other Perl module—depending on whether you’re using PerlCtrl to wrap the
Perl module in a COM DLL or using PerlCOM to access the module’s methods and
properties. Delphi provides a Type Library Editor that allows you to manipulate

4~ ~4]e

é ,ch03.18221 Page 79 Thursday, February 22, 2001 1:28 PM

How COM Is Implemented 79

the methods and properties of an interface and then export the information to the
IDL file. In the actual component code, the only reference made to the interface is
within the class definition:

TFirst = class(TASPMTSObject, IFirst)
Again, the tool determines the level of exposure of the interface to the developer.

Another key to the COM architecture is that components can implement more than
one interface.

Multiple Interface Support in Components

If a component could implement only one interface, it would be useful—but the
real power of COM comes from a component’s ability to implement more than
one interface.

In Visual Basic, when you create a VB class, you’re implementing the VB interface
associated with the class—but the implementation isn’t exposed. If you also
wanted to implement another interface, such as IObjectControl (discussed in
Chapter 5), you can, just by using the following line:

Implements IObjectControl

The Implements keyword allows you to implement more than one interface
within your component in order to “absorb” the behaviors from more than one
interface.

In Delphi, this is shown, again, in the class definition statement. For instance, if
you want to implement IObjectControl, you would use:

TManual = class(TAutoObject, IManual, ObjectControl)
In C++ when using ATL, you would add the interface to the class definition:

class ATL_NO_VTABLE Cnewguys :
public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<Cnewguys, &CLSID_newguys>,
public IObjectControl,
public IDispatchImpl<Inewguys, &IID_ Inewguys, &LIBID ASP1504Lib>

You would also add the interface to the COM map defined for the component:

BEGIN_COM _MAP (Cnewguys)
COM_INTERFACE_ENTRY (Inewguys)
COM_INTERFACE_ENTRY (IObjectControl)
COM_INTERFACE_ENTRY (IDispatch)
END_COM _MAP ()

By providing support for multiple interfaces, your component isn’t limited to one
set of behaviors, but can incorporate many.

4~ ~4]e

é ,ch03.18221 Page 80 Thursday, February 22, 2001 1:28 PM

80 Chapter 3: ASP Components and COM

Speaking of interfaces, let's take a look at the key interfaces you'll use when
developing the ASP components in this book and in your own ASP applications.

Notable COM Interfaces

There are a great number of COM interfaces—interfaces provided by Microsoft to
support the COM architecture. There are even more defined for the support of
COM+ (which will be discussed in Chapter 5). However, there are some interfaces
that are key to your (and all) component development efforts. This section will
take a look at these most important interfaces.

IUnknown

In order to support a multiple immutable interface approach, COM has provided
an interface, TUnknown, and all component interfaces must be derived, directly or
indirectly, from it. TUnknown has three abstract methods, Querylnterface, AddRef,
and Release, which provide references to the necessary functionality for querying
for a specific interface, adding a reference to the interface from within an applica-
tion, and releasing the reference when the interface pointer is no longer needed.

IUnknown is an abstract base class, which means it contains nothing but virtual
functions and has no implementation itself. You cannot directly create an instance
of IUnknown. In addition, each of the IUnknown functions is a pure virtual func-
tion, which means that each of these functions must be implemented within any
interface that inherits from IUnknown.

IUnknown provides the methods to access an interface and update the interface
reference counter, but a problem with runtime access of an interface and its meth-
ods is determining the structure of a particular method call, including the number
and types of parameters passed in the call. To address this problem, Microsoft also
provided another standard interface, itself derived from IUnknown, that is called
IDispatch. IDispatch is also known as the COM automation object.

IDispatch

As mentioned earlier, interfaces can be defined in IDL to provide a language-
independent description of the interface. However, IDL doesn’t just define the
interface and its methods as an esoteric exercise. An IDL file can be used to gener-
ate a type library. A type library contains information about a COM object, such as
the interface object’s methods and parameters. This information can then be used
whenever an interface method is invoked.

If the client does not have access to the type library, does it mean it can’t access
the component? No, but extra effort is necessary to allow access to a component’s

4~ ~4]e

é ,ch03.18221 Page 81 Thursday, February 22, 2001 1:28 PM

Notable COM Interfaces 81

methods. If the client does not have information about the component interface
method, it must first call a method to get identifiers for the method and each of
the method’s parameters, and then pass this information along on each call to the
method. The functionality to make this call resides with another basic COM inter-
face, IDispatch.

The earliest implementations of IDispatch performed two function calls for every
method called on the interface that was derived from IDispatch (current imple-
mentations are discussed in the next section). The first call was to a function called
GetIDsOfNames, which returned a special ID, called the DISPID, for the method.
The DISPID is then passed as the first parameter of another IDispatch method,
Invoke, which used to actually invoke the derived interface method. So if you had
a component with a method called getTestScores, calling this method from an
application or another component resulted in two method calls on IDispatch:
one to GetIDsOfNames to get the DISPID of getTestScores and one to Invoke with
the DISPID to actually call the method. In addition to the DISPID passed to the
IDispatch Invoke method, a structure containing the parameters for getTest-
Scores is also passed to Invoke. This structure is of type DISPPARAMS and is gener-
ated by default using a standard proxy/stub implemented by Microsoft specifically
for default marshaling.

A Brief Word on Early and Late Binding

As you can imagine, having to call two functions for every interface method call, a
process known as late binding, could become a bit of a performance issue, partic-
ularly if the component exists across a network. In answer to performance con-
cerns, Microsoft provided the type library, discussed earlier. What was not
discussed earlier was how the type library can be used in place of the IDispatch
GetIDsOfNames function.

Instead of having to call GetIDsOfNames to get the DISPID of the method, the
type library provides the DISPIDs for each of the interface methods; IDispatch
can use these to pass to the Invoke method, rather than having to call GetIDs-
OfNames. Because the binding information is retrieved early on, it is known as—
what else?—early binding.

However, using IDispatch is not the only technique that can be used to access
an interface method. Another technique to invoke a method on an interface is to
access the vtbl entry for the method directly, rather than accessing it through
IDispatch. Accessing the vtbl directly is supported for most programming lan-
guages and tools, including Visual Basic, Visual C++, Java (with help from the
Microsoft COM Java wrapping), Delphi, and Perl, but it is not supported for script-
ing languages such as VBScript and JScript. Because of this, vtable binding is not
supported in ASP scripting blocks. Since not all COM clients support vtbl binding,

- ad

é ,ch03.18221 Page 82 Thursday, February 22, 2001 1:28 PM

82 Chapter 3: ASP Components and COM

most COM-based components, including ones created specifically for use in ASP
applications, use a method known as the dual interface. A dual interface compo-
nent is one that has support for vtable binding as well as IDispatch in cases in
which vtbl binding is not supported. The components in this book all use the dual
interface.

At a minimum, a COM-based component can be created using just IUnknown and,
usually, IDispatch, and in a later section, we’ll use Visual C++ to create just such
a simple component. However, for the client to retrieve a reference to a class
instance through an interface, the instance must be created, and this is where
IClassFactory enters the picture.

IClassFactory

IUnknown defines a method that can be used to query for an interface, and
IDispatch can be used to invoke a method on the interface, but we are missing
something here. Something, somewhere has to create the instance of the class
associated with the interface.

When a client wants to create an instance of a component and query for an inter-
face on that component, it must do two things. First, it must initialize COM—call it
waking COM up—by calling a method named Colnitialize or ColnitializeEx.
Colnitialize takes one parameter, a value of NULL, and ColnitializeEx takes two
parameters, the first again being NULL and the second containing a flag describing
the thread’s concurrency model. Either of these functions is called only once on a
thread and basically initializes the COM library on that thread.

Threads are discussed in more detail in Chapter 4.

After the function call to kick COM awake, so to speak, the next function the cli-
ent must call is either CoCreatelnstance or CoCreatelnstanceEx. CoCreatelnstance
takes as parameters the CLSID for the object (either a pointer to an object for
aggregation or NULL), the context of the component (whether the component is in
process or not, or running remotely or locally), the identifier of the interface refer-
ence used to communicate with the object, and finally, the pointer to hold this
interface reference. The more modern version of CoCreatelnstance, CoCreate-
InstanceEx, takes the same first three parameters, but then it takes the name of the
component server as a fourth parameter (or NULL if the component is local), the
number of query interface structures passed in the last parameter, and an array of
query interface structures in the last parameter. CoCreatelnstance can return only

4~ ~4]e

é ,ch03.18221 Page 83 Thursday, February 22, 2001 1:28 PM

Notable COM Interfaces 83

one interface on the local machine. CoCreatelnstanceEx can return an array of
interfaces on either the local or a remote machine.

As CoCreatelnstance implies, the purpose of this method is to create an instance
of the object identified by the CLSID. For this to work, the component must have
some associated technique to provide for class construction; this technique is
implemented through the IClassFactory interface. Each method invokes the
IClassFactory interface method Createlnstance internally, with either CoCre-
atelnstance or CoCreatelnstanceEx.

When a call to Createlnstance is made for an interface, it is the component’s
implementation of the IClassFactory interface that generates the new instance
of the component, becoming literally the component’s class factory, hence the
name.

So what happens when a client creates an instance of a COM object and calls one
of its methods? The client first of all initializes COM (Colnitialize) and then it cre-
ates an instance of the component (CoCreatelnstance), which in turn creates an
instance of the component (through IClassFactory’s Createlnstance). Next, it
queries the component for a specific interface (IUnknown’s Querylnterface), and
once the interface is returned, it invokes a method on the interface (IDispatch
Invoke). If the client does not have a type library associated with the interface,
COM must obtain the dispatch identifiers for the method (IDispatch GetIDs-
OfNames). If a dual interface is supported, the client may make a call to get the
function pointer for the method directly.

A Brief Word on Containment/Aggregation

If you are just learning about COM and writing COM-based components, you are
probably concerned first of all with creating a component that doesn’t break and,
second, with creating one that actually works. Your component’s reusability is
probably a distant concern at this time. Eventually, though, you may want to
extend an existing component, and reusability is the key to doing this.

COM provides not just one but two mechanisms for reusability. The first is known
as containment/delegation; the second is known as aggregation.

Containment/delegation basically wraps one component around another, with the
outer component intercepting all of its own interface method calls and those of the
contained object. The outer component then uses whatever interfaces of the con-
tained component it needs to create its own implementation.

Aggregation is used when the outer component exposes an inner component’s
interfaces as if they were its own. The advantage of this approach is that the outer
component only implements extended functionality, rather than having to imple-
ment its own functionality and that of its contained component. However,

4~ ~4]e

é ,ch03.18221 Page 84 Thursday, February 22, 2001 1:28 PM

84 Chapter 3: ASP Components and COM

problems occur with the handling of TUnknown calls to the inner component inter-
face. TUnknown calls increment or decrement a reference count, and when made
by the client, they should go to the outer component, not to the inner compo-
nent. Yet with exposure of the inner component directly to the client, TUnknown
calls are made to the inner component.

To prevent this, COM provides a mechanism so that, when the outer component
creates the inner component, it passes its own IUnknown interface to the inner
component. If you remember from the section on IClassFactory, the inner com-
ponent is created with CoCreatelnstance or CoCreatelnstanceEx, except instead of
passing in NULL as the second parameter, the pointer to the outer component is
passed. Sending a non-NULL value serves as a signal to the inner component that it
is being aggregated. If the inner component supports this, it then creates two
IUnknown interfaces, one that is nondelegating and one that delegating. When the
client makes IUnknown calls, these are made on the delegating IUnknown inter-
face and are delegated to the outer component. When the outer component itself,
though, makes a request for the IUnknown interface from the inner component,
the component knows to return the nondelegating IUnknown interface. With this,
the TUnknown calls from the client are correctly routed to the outer component,
and the outer component can control the lifetime of the inner component by its
own IUnknown calls.

The Enumerator Interfaces: IEnumXXXX

The IEnumXXXX interfaces (the XXXX being replaced by specific datatypes) aren’t
absolutely essential for your ASP component development, but there is a strong
possibility you will be working with them. The main reason is that Microsoft has
implemented several collections for many of its technology APIs (such as the ASP
built-in objects, the CDO objects, and so on), and enumerators are what you’ll use
to iterate through these collections.

A collection is a related group of like objects along with an associated set of meth-
ods that can be used to access specific objects or to iterate through the collection
of objects. For instance, if your component is processing the contents of an HTML
form, you could access these contents through the Forms collection of the ASP
Request object.

Instead of having to find a count of the objects and then manually create a loop to
access each item, you can use the built-in enumeration methods to access all of
the items sequentially.

Enumeration is implemented in different ways in different languages, but whether
the actual details of enumeration are exposed or not, the actual implementation
occurs through the TEnumXXXX interfaces.

4~ ~4]e

é ,ch03.18221 Page 85 Thursday, February 22, 2001 1:28 PM

Notable COM Interfaces 85

The IEnumXXxX interfaces support a specific set of methods used to enumerate
through the collection. For instance, use the Next method to go to the next item in
the collection, use Skip to skip over an item, and use Reset to reset the collection
back to the beginning.

Though all of these methods are implemented for the IEnumXXXX interfaces, the
actual implementation details can vary based on the language. In Visual Basic, you
enumerate through a collection using the For Each...Next statement, as the fol-
lowing code example demonstrates with the ASP Request object’s ServerVariables
collection:

For Each x In rgstObject.ServerVariables
rspnseObject.Write x & " = " & rgstObject.ServerVariables (x)
Next

In this code block, each item in the ServerVariables collection is assigned to
rgstoObject, the variable contained within the For Each...Next statement.

In Delphi and C++, you'll have to access the enumerator from the IUnknown inter-
face. In C++, this looks like:

// get ServerVariables
hr = m_piRequest->get_ServerVariables (&piDict) ;
if (FAILED(hr)) return hr;

// get enumerator
hr = piDict->get__NewEnum (&piUnk) ;
if (FAILED(hr)) return hr;

hr = piUnk->QueryInterface (IID IEnumVARIANT, (void **)&piEnum) ;
if (FAILED(hr)) return hr;

// enumerate through collection, printing out values
_variant_t vtItem, vtValue;
while (S_OK == piEnum->Next (1, &vtItem,&lValue)) {

m_piResponse->Write (vtItem) ;

}

Calling the get_ServerVariables method returns the ServerVariables collection.
Then you access an IUnknown interface pointer to the collection’s enumerator
interface and call QueryInterface on it to get the actual IEnumXxxX interface, in
this case, a pointer to TEnumVARTANT.

For the ASP objects and most other object models, youll almost
always use the IEnumVARIANT enumerator, since the collections
contain variant datatypes.

4~ ~4]e

,ch03.18221 Page 86 Thursday, February 22, 2001 1:28 PM

86 Chapter 3: ASP Components and COM

Within Delphi, the sequence of events is almost identical to that within C++,
except you can use the Delphi As keyword instead of QuerylInterface:

// get ServerVariables and enum for variables

piRegDict := m_piRequest.Get_ServerVariables;

piIUnknown := piRegDict.Get__NewEnum;
piIEnum := piIUnknown As IEnumVariant;

// while S_OK get name and value, print
while piIEnum.Next (1,ovName,liReturn) = S_OK do
begin;
m_piResponse.Write (ovName) ;

end;

In Java, the Next method actually returns all elements into an array, and you then

traverse the array:

iRgstDict = iRequest.getServerVariables() ;

// get enumerator
IEnumVariant ienum;
ienum = (IEnumVariant) iRgstDict.get NewEnum() ;

// set up enumeration
int[] iItems = new int[1];
iTtems[0] = O;

int iCount = iRgstDict.getCount () ;

Variant[] vt = new Variant[iCount];

ienum.Next (iCount,vt,iItems) ;
ActiveState (the company that provides ActivePerl and the Perl Dev Kit, enabling
Perl for ASP and PerlScript) has implemented a Perl Enum package that can be
used to traverse the collection:

access ServerVariables collection as a list
@lst = Win32::0LE: :Enum->All ($Srequest->ServerVariables) ;

iterate through each list item, printing out
item name and its value
foreach my $item(@lst) {
Sresponse->Write (Srequest->ServerVariables ($item)->item) ;

}
Regardless of how each language implements enumeration, the key to each is that
you can access the collection as a group and process each collection element
rather than having to access each element individually.

In the examples, the TEnumVARIANT interface was used to access the elements in
the Request object’s ServerVariables collection. The IEnumVARIANT interface
returns objects as VARIANTSs, the most commonly used datatype with COM/COM+
components. This and other COM datatypes are discussed in the next section.

é ,ch03.18221 Page 87 Thursday, February 22, 2001 1:28 PM

COM Datatypes 87

COM Datatypes

One of the problems with an interface-based system such as COM is managing
datatypes between languages. For instance, the C++ and Java integers are 32-bit
values, while the integer is 16 bits in VBScript and Visual Basic. Strings and string
allocation are handled differently in all of the languages, as is the implementation
of most datatypes.

The way that Microsoft dealt with language issues in the implementation of COM
was to define a set of datatypes that are COM-compatible. This means that any
language (or any development tool) that supports COM supports at least some of
the most basic of the COM-compatible datatypes.

How datatypes are handled internally within a component method isn’t important.
However, when passing data to and from the component through parameters,
your component should use only COM-compatible datatypes.

A further limitation when creating ASP components is that VBScript, the most com-
monly used ASP scripting language, supports only the COM VARIANT datatype.
Based on this, all methods that return values as output parameters must be defined
to be the VARIANT datatype.

Chapter 6, ASP Interaction: Scripting and ASP Components, provides
details of the interaction between your components and the script-
ing environments, including the datatypes of parameters.

The VARIANT datatype isn’t a scalar value. It’s a structure that contains informa-
tion about the variable as well as the variable value itself. The complete VARTANT
structure (as defined in C++) is:

typedef struct tagVARIANT {
VARTYPE vt;
unsigned short wReservedl;
unsigned short wReserved2;
unsigned short wReserved3;

union {
Byte bval; // VT_UIl.
Short ival; // VT_I2.
long 1lval; // VT_I4.
float fltval; // VT_R4.
double dblval; // VT_RS8.
VARIANT_ BOOL boolval; // VT_BOOL.
SCODE scode; // VT_ERROR.
CY cyVal; // VT_CY.
DATE date; // VT_DATE.
BSTR bstrval; // VT_BSTR.

4~ ~4]e

é ,ch03.18221 Page 88 Thursday, February 22, 2001 1:28 PM

88 Chapter 3: ASP Components and COM
DECIMAL FAR* pdecVal; // VT_BYREF |VT_DECIMAL.
IUnknown FAR* punkVal; // VT_UNKNOWN.
IDispatch FAR* pdispval; // VT_DISPATCH.
SAFEARRAY FAR* parray; // VI_ARRAY|*.

Byte FAR* pbval; // VT_BYREF |VT_UIl.
short FAR* pival; // VT_BYREF |VT_I2.

long FAR* plval; // VT_BYREF |VT_I4.
float FAR* pfltVal; // VT_BYREF |VT_R4.
double FAR* pdblval; // VT_BYREF |VT_R8.
VARIANT BOOL FAR* pboolval; // VT_BYREF |VT_BOOL.
SCODE FAR* pscode; // VT_BYREF |VT_ERROR.
cY FAR* pcyVal; // VT_BYREF |VT_CY.
DATE FAR* pdate; // VT_BYREF |VT_DATE.
BSTR FAR* pbstrVal; // VT_BYREF |VT_BSTR.
IUnknown FAR* FAR* ppunkVal; // VT_BYREF |VT_UNKNOWN.
IDispatch FAR* FAR* ppdispVal; // VT_BYREF|VT_DISPATCH.
SAFEARRAY FAR* FAR* pparray; // VI_ARRAY|*.

VARIANT FAR* pvarVal; // VT_BYREF |VT_VARIANT.
void FAR* byref; // Generic ByRef.

char cval; // VT_I1.

unsigned short uival; // VT_UI2.

unsigned long ulval; // VT_UI4.

int intVal; // VT_INT.

unsigned int uintval; // VT_UINT.

char FAR * pcval; // VT_BYREF |VT_I1.
unsigned short FAR * puivVal; // VT_BYREF |VT_UI2.
unsigned long FAR * pulval; // VT_BYREF |VT_UI4.
int FAR * pintval; // VT_BYREF |VT_INT.
unsigned int FAR * puintval; // VT_BYREF |VT_UINT.

}i

Information about the VARIANT’s datatype can be found in the vt structure vari-
able. If the VARIANT contains a string, vt is set to a value of VI_BSTR. If the
VARIANT is an integer, vt is set to VI'_I2. The setting in vt provides information
about where the VARIANT’s actual value is set. A string value is assigned to the
VARIANT structure’s bstrVal data member or to the pbstrVal if the element con-
tains a pointer to a string. Other datatypes, including objects, are assigned to the
VARIANT structure member of the appropriate type. As you can see, the VARTANT
structure is capable of dealing with all datatypes you could possibly need when
writing ASP components.

Some languages handle conversion of data to and from the VARIANT without your
having to do anything specific in your code. Visual Basic is a language that han-
dles all conversion automatically, for the most part. However, within Visual Basic,
you can use the VarType function to test for a specific datatype before processing
the VARIANT:
' test for variant array
If VarType (vArray) = (vbVariant + vbArray) Then

In other languages, you’ll usually have to add code to handle most of your conver-
sions or assignments when working with the VARIANT datatype. In C++, you can

%

é ,ch03.18221 Page 89 Thursday, February 22, 2001 1:28 PM

COM Datatypes 89

assign a string to a VARIANT directly when that VARIANT is used to output a value
to the web page through the Response object:

vt = "this is the string";

However, for the most part, you'll have to set the VARIANT’s data members
directly:

var.vt = VI_BSTR;

char * sl = "weaver";

_bstr_t str = sl;

var.bstrvVal=str;
If you use any of the other COM-compatible datatypes for your input or return
value parameters, COM handles all conversion between the value and a VARIANT
type when the component is called from VBScript. The only conversion COM
doesn’t handle is converting output parameters (parameters returned by refer-
ence), which is why you’ll always have to use VARIANT as the datatype for
method parameters passed by reference.

What's the cost of the VARIANT datatype in size? It's 16 bytes—the
first 8 bytes define the datatype; the second 8 bytes hold the value.

Two of these datatypes are of special note: BSTR and SAFEARRAY. The BSTR
datatype is a string type that was originally defined for use with Visual Basic. It not
only contains the string value itself, but it also has information about the string,
such as the string’s length. BSTR is defined as a 32-bit character pointer and is
defined in C++ as the following:

typedef OLECHAR FAR* BSTR;

In C++, you can work with BSTR datatypes directly, though you’ll need to provide
memory allocation for the BSTR value unless you use the C++ COM helper classes
found in the comdef.b library. In this library, the BSTR datatype is wrapped in a
class called _bstr_t, which handles all memory allocation and deallocation; all
you have to do is use the value:

_bstr_t bstrValue;

bstrValue = "this is a string"
In Visual Basic, you use the String datatype to work with BSTR, and VB handles all
memory allocation. In Delphi, you would use the WideString datatype, and in
Java, youwd use the Java String type (though String in Java is immutable—see
Chapter 20, ASP Components Created with Java, for more information on this). In
Perl, you can create a BSTR value directly using the Win32::OLE::Variant module,
or you can use Perl strings.

4~ ~4]e

é ,ch03.18221 Page 90 Thursday, February 22, 2001 1:28 PM

90 Chapter 3: ASP Components and COM

The SAFEARRAY is a structure that encapsulates arrays, providing not only a refer-
ence to the array elements, but also a count of the number of elements. Chapter 6
has more information on SAFEARRAYs and how to pass parameters of this type to
and from components.

Other COM datatypes are more basic, such as the integer values (INT, FLOAT,
DECIMAL), single character values (CHAR), dates (DATE), and so on. Additionally,
pointers to the IUknown and IDispatch interfaces are common within COM
methods, as are pointers to other interfaces that aren’t defined until runtime (desig-
nated by a pointer to a void datatype, as in (void **)).

If you're in doubt about whether a datatype is COM-compatible, check the COM
documentation that Microsoft provides at its developer web site (http.//msdn.
microsoft.com).

é ,ch04.18342 Page 91 Thursday, February 22, 2001 1:28 PM

ASP Components,
Threads, and Contexts

I first had a chance to really learn about threads and NT when I attended a Bos-
ton University WinDev conference outside of Boston years ago. The big story at
the conference was Microsoft’s brand new operating system, which many of us
had not seen yet. The operating system later became NT, and though T didn’t nec-
essarily realize it at the time, T was learning about NT from the masters.

I have never attended another conference that had so many well-known Win-
dows development people. I attended one session given by Charles Petzold, prob-
ably the undisputed father of Windows API programming, who invited the whole
group to join him for beers at the end of the day. I also attended sessions on OLE
given by Kraig Brockschmidt. All the sessions were terrific, but one of my favor-
ites was on threads and was given by none other than Jeffrey Richter, author of
the well-known book Advanced Windows NT, published by Microsoft Press. If you
are going to learn about something, there’s nothing like learning from the best.

When I mention threads in this chapter, I mean the threads that Richter defines as
“units of execution in a process.” I don’t mean threads of communication between
client browser and web server. Multithreaded applications are ones that take
advantage of a threaded environment to split off part of their functionality into
separate executable chunks. On a multiple-CPU system, these can run simulta-
neously. On a single-CPU system, the operating system kernel gives each thread a
period of time to run, then cycles through each thread in a round-robin fashion.

ASP components are first and foremost COM components. This means that what-
ever works and doesn’t work with COM components will and won’t work with
ASP components. One aspect of COM that can either speed up performance or
bring your application crashing to the ground is the use of threads. Because of
this, this chapter provides an overview of threads, threading models, and the
impact each of the models has on ASP components.

- ad

é ,ch04.18342 Page 92 Thursday, February 22, 2001 1:28 PM

92 Chapter 4: ASP Components, Threads, and Contexts

Beginning with Windows 2000, the model of threads and apartments imple-
mented and controlled by COM/COM+ has been joined by the context. Contexts
group components based on requirements and replaces the thread as the smallest
unit of execution for the component. This chapter introduces the concept of con-
texts when used with ASP components. First, though, a look at threads.

What Are Threads?

Threads are the smallest unit of execution, and a process (or an application) can
execute its functionality using one thread or many threads executing at the same
time.

Threads can enhance application performance by assigning I/O-intensive opera-
tions such as file or database access to one thread while other threads continue
with other processing. These types of operations are ideal for creation on separate
threads because most time in I/O operations is spent waiting and listening for a
response, whether from you or from the printer. While these operations are wait-
ing, other operations can continue with their work.

On 32-bit Windows platforms (9x, NT, 2000), if you run a process in the back-
ground, chances are good that the application has been programmed to create a
new thread for the background process. By assigning the process to a back-
ground thread, the user can continue to work with the application and do other
tasks while waiting for the background process to complete. For example, if you
are out browsing the Internet using a browser such as IE or Navigator and you
find a file to download, this downloading process is actually performed in the
background on a separate thread. Because the download occurs separately from
the main browser thread, you can continue browsing other pages while the down-
load occurs. As each new page is downloaded to the browser, synchronization
occurs between the thread handling the file download and the thread handling the
download of a page to the browser. The thread performing the file download
shares bandwidth and CPU with the browser thread, and both actions seem to
occur simultaneously. If this didn’t happen, you would not be able to see the new
page until the file finished downloading.

You can actually see something like this happening. To demonstrate, go to the
Microsoft web site and select a file for downloading. An excellent place to get
such files is the COM web site at http://www.microsoft.com/com/. Pick a larger file.
Once the file starts to download, browse through the rest of the site, but always
bring the download dialog up after clicking on a new URL. You can actually see
the download progress “hesitate” each time the browser page receives content and
vice versa. When the file is finished downloading, depending on the browser, a
message may open that states the download is finished, or the download dialog

- ad

é ,ch04.18342 Page 93 Thursday, February 22, 2001 1:28 PM

What Are Threads? 93

may be removed. This is a preemptive action on the part of the new thread to
inform you that the action is finished and to perform any cleanup necessary after
the action is complete.

On a single-processor system, multiple threads can only work one at a time. The
system provides a bit of time for each thread to work and then moves on to the
next. This “round-robin” approach of assigning time to each process running on a
separate thread in turn prevents one operation from holding up all others. It is this
type of process that allows you to continue typing into a Word document while
another document is printing or that allows a file to be downloaded from the
Internet while you continue to browse. This activity occurs even in a single-
processor system and with an operating system such as Windows 9x that allows
only single processors.

Using multiple threads in a single-processor system can improve performance with
I/O-bound operations, such as printing or opening a document. However, using
multiple threads with a single processor for an operation that is CPU-intensive can
actually degrade the performance of the operation. This type of thread, also called
a compute-bound thread, competes for scarce system resources and, unlike I/O
operations, does not normally spend periods of time awaiting responses. If the
system contains only one CPU, a context switch must occur to allow each
compute-bound thread its opportunity at the CPU. This effort adds a small mea-
sure of activity to the load on the CPU that would normally be offset by the advan-
tages of using multiple threads. If the compute-bound thread’s activities are short
and over quickly, the overhead for managing the different threads is not offset by
the overall result, and performance can actually degrade in comparison to serial
requests to the CPU.

In a multiprocessor system, a thread can be running in the background by actu-
ally using a different CPU than the thread currently handling interactive com-
mands. If a system has multiple processors and an application uses threads to take
advantage of them, the application can be very fast. That is, up until a point of
diminishing returns is reached, and the overhead of maintaining all the different
processors and threads actually diminishes performance. Other unexpected results
from using multiple threads occurs when threads access the same resource, dis-
cussed in the next section.

Of Deadlocks, Odd Results, and
Thread Synchronization

When threads access the same resource, their activity must be synchronized. When
synchronization is used correctly, the results are definitely an improvement over
serial access of the resource. However, the lack of synchronization can lead to

4~ ~4]e

é ,ch04.18342 Page 94 Thursday, February 22, 2001 1:28 PM

94 Chapter 4: ASP Components, Threads, and Contexts

problems. When two threads compete for the same resource at the same time, a
deadlock condition may result, and both threads can become suspended, each
waiting for access to the resource. Or worse, if multiple threads access the same
resource and modify the resource in some way, the results may be unwanted.

For instance, imagine that a file contains a string with a value of 10. Two threads
access the file at the same time and read the current value. The first thread incre-
ments the value by 5 and writes the results to the file. The second thread incre-
ments its value by 10 and then writes the results. But in the meantime, the first
thread has already written a value of 15. What is the final value in the file? The file
now contains a value of 20, not the value of 25 that you’d expect by incrementing
the original value by 5 and then by 10. Why is this? Because the first thread modi-
fied the value between the time the second thread accessed the original value of
10 and the time that the second thread wrote the new value of 20. In the process
of doing this, the second thread overwrote the value of 15 that the first thread
wrote. I know this may sound as clear as mud, but a demonstration of something
like this occurring within an ASP application is given later in this chapter.

To ensure reliable and consistent results and to prevent deadlock, certain synchro-
nization mechanisms can be used, some of them beyond the scope of a book on
writing ASP components. However, measures can be taken to prevent such prob-
lems. They include obtaining an exclusive lock on a file before allowing the con-
tents to be modified and releasing that lock as soon as possible, as well as using
caution with global data.

One other consideration with the use of multiple threads, or multiple processes for
that matter, is that communication between components that exist on different
threads or processes requires some special handling. This is discussed in the next
section, which covers marshaling.

Marshaling

A component and a client that reside in the same process and on the same thread
share the same address space, which means they share the same address space
stack. This means that when a client calls a component’s method and passes
parameters with the method call, the component can access these values directly
from the stack. When the method finishes, if it returns a value or if the parameters
are passed by reference, the client can also access the values directly from the
stack. This is an efficient and fast way to access parameter data. However, if a cli-
ent and a component execute on different threads or in different processes, the
two no longer share the same address space stack. Instead, the parameters passed
to the method and returned from the method must be marshaled. Marshaling is
the process whereby values passed as parameters are accessed on the client stack,
placed into a stream, and pushed onto the component stack.

4~ ~4]e

é ,ch04.18342 Page 95 Thursday, February 22, 2001 1:28 PM

Threads and Apartments 95

When a client calls a component method on a different thread or process, it is a
client proxy that pulls the values for the parameters from the client’s address space
stack and creates a stream of data that is sent to the component. On the compo-
nent side, a stub function then accesses this stream and pulls the separate parame-
ter values from the stream, pushing these values on the component’s stack. The
component method then accesses the parameters from the stack.

Marshaling can occur when a client and a component are on different threads,
known as cross-thread marshaling, or when a client and a component are in dif-
ferent processes, known as cross-process marshaling. Even if the component
resides on a separate machine, the same type of process occurs; it’s just that other
players, such as the DCOM runtime and the Service Control Manager (SCM),
become involved. In addition, information about the component’s methods must
be installed on the client, usually by installing the component’s type library.

The process of cross-process or cross-thread local communication can be
improved with the use of aggregation, which uses a free-threaded marshaler to
allow direct access to an object, rather than having to go through marshaling.
When using the free-threaded marshaler, a pointer to the actual component (rather
than a pointer to the proxy) is passed to the client, even if the component resides
on a different thread. Aggregation provides the best overall performance because
the component can be created on a separate thread but can still be accessed
directly. Of course, the cost of using the free-threaded marshaler is that the com-
ponent must be made thread-safe, something that does add a burden to the com-
ponent developer.

Threading models in the Windows environments are based on the concept of
apartments, conceptual units that determine which thread handles a component’s
tasks. Threads and apartments are discussed next.

Threads and Apartments

In the next section, we'll take a look at the threading models, but first, let’s take a
brief look at how the concept of an apartment is implemented. If an in-process
component is defined as apartment-threaded (or as a single-threaded apartment),
it’s instantiated on the same single-threaded apartment (STA) thread as the client, if
the client is also STA. What apartment means in this context is that the compo-
nent’s methods are always implemented on the thread that created it—it must
“live” within the apartment where it was first instantiated. No other threads can call
into the apartment because of the threading model. The concept of apartment
basically specifies exactly which thread can call into the component. Consider the
apartment as being similar to the doorman at a five-star hotel: there is only one
door, and you have to meet the doorman’s criteria before you can enter. Taking

4~ ~4]e

é ,ch04.18342 Page 96 Thursday, February 22, 2001 1:28 PM

96 Chapter 4: ASP Components, Threads, and Contexts

this analogy a bit further, the STA model states that not only does a doorman exist
to prevent unauthorized access, but by using STA with your component, you can
live only within this same hotel. In other words, if other threads don’t have access
to your component, the reverse is true—your component’s methods can’t be pro-
cessed by any other thread.

If the component is defined as belonging to a multithreaded apartment, specifi-
cally a free-threaded component, it can live only within another type of apart-
ment—the multithreaded apartment. This type of apartment means that any thread
within this apartment can call into the component, rather than being limited to the
thread in which the component is first instantiated. This type of apartment is simi-
lar to a hotel with no doorman and no security: anyone can enter at any time.
Along with the freedom of access from other threads within the multithreaded
apartment (MTA), your component’s methods can also be implemented by any
one of the threads.

The point is that apartments aren’t real constructs. They are, instead, the rules (and
the implementation of these rules) that COM follows to determine what thread can
or cannot implement your component’s methods. More on the threading models in
the next section.

The Threading Models

There are five threading models, with the newest model having been released only
with Windows 2000:

The single-threaded model

Each instance of a component is created on a single main thread. This model
locks the component down to a specific thread, different from the threads that
process the ASP pages. Using this approach, your ASP application will quickly
run into performance bottlenecks as your component waits until the main
thread is free in order for its methods to be called. Add to this the proxy han-
dling that must occur between the ASP page and the component (the page
will be implemented on a different thread), and you can see why this
approach is not viable for ASP.

The apartmeni-threaded model

In this model, an instance of the component is created in the same thread of
the client that created the instance. Thread safety is guaranteed, since all calls
to the component are serialized through the client thread. ASP applications
accessed directly through IIS or processed through a COM+ application that’s
defined as a library application can successfully use the STA model, and the
thread that processes the ASP page is also the same thread that processes the
component.

- ad

é ,ch04.18342 Page 97 Thursday, February 22, 2001 1:28 PM

The Threading Models 97

The free-threaded model

This is the least constrained of all the threading models and is not recom-
mended for ASP. When an instance of a component is created, COM creates
the instance on a different thread than the one that created the instance and
then marshals all calls to this thread. As ASP pages are implemented as STA,
using the free-threaded model means that proxy communication is always
used between the ASP page and the component—which is why this threading
model is not recommended.

The both-threaded model
The component is treated as both apartment-threaded and free-threaded, and,
as seen later, it is accessed directly by clients created using either threading
model. A component defined as both-threaded can be implemented and
accessed on either an STA or an MTA thread—it can be accessed anywhere.

The neutral-apartment model

This is similar to the both-threaded model in that the in-process component
can be accessed by a client based in any threading model without the neces-
sity of using proxies—clients can call the component from threads other than
the one the component is created in. An additional advantage of the neutral-
threading model is that if certain flags are set within the COM+ application
that manages it, the component is thread safe but can still be called by multi-
ple threads. MTA threads can be called by multiple threads, but there isn’t
anything guaranteeing thread safety, putting the burden of thread safety on the
component developer.

When a client application such as a browser window is created, the system cre-
ates one main thread, which becomes the apartment the process resides in. It may
create additional threads to handle other tasks within the process, or, if the appli-
cation is single-threaded, all tasks of the process are run within this main thread.

Threads work differently depending on whether the component is created as an
in-process component or an out-of-process component. An in-process component
is created as a DLL and marks the type of threading model it uses in its
InProcServer32 key in the registry. An out-of-process component calls one of
the COM initialization methods (Colnitialize, ColnitializeEx, or Olelnitialize) in
order to initialize the COM library, and all calls to the component occur as cross-
process calls and are marshaled.

If the component is in-process, its interaction with the client depends on both the
client’s and the component’s threading models. If both the component and the cli-
ent are single-threaded, the component is created on the client’s main thread. If,
however, the client is multithreaded and the component is single-threaded, the
component is created on the client’s main thread, and all calls to the component
from the client occur through the client proxy.

4~ ~4]e

é ,ch04.18342 Page 98 Thursday, February 22, 2001 1:28 PM

98 Chapter 4: ASP Components, Threads, and Contexts

If the client is free-threaded and the component is apartment-threaded, a single
apartment thread is created to house the component, and an interface pointer is
returned to the client. All calls to the component then occur through this pointer.
The same is true, but in an opposite manner, if the client is single-threaded and
the component is multithreaded, except that, in this case, a free-threaded apart-
ment thread is created and returned to the client. In all of these cases, calls to
methods are marshaled.

If the component and client use the same threading model, the client has direct
access to the component and can call the component’s methods directly. Based on
this, components created as both-threaded can be accessed directly by a client
regardless of which threading model the client implements. The reason is that
both-threaded components support both the single-threaded and the free-threaded
threading models. If the component is accessed from a single-threaded client, it is
created in the single-threaded client’s thread. If a multithreaded client accesses the
component, it is created in the multithreaded client’s main thread. However,
access to the component must occur within the apartment in which the compo-
nent is created, even though other threads within the same process may try to
access that component.

To speed access to both-threaded components, aggregation can be implemented
using a special function (CoCreateFreeThreadedMarshaler), which basically allows
all threads of one process to access the component directly. This and the results of
implementing in-process components using the different threading models are
demonstrated in the following sections.

The components demonstrated in the rest of this chapter are all in-
process components. Which threading model is used is particularly
significant with in-process components and less significant with out-
of-process components. Access to out-of-process components must
be marshaled regardless of what type of threading model the com-
ponent is based on. However, the performance of an in-process
component can differ dramatically based on the threading model of
the client and the threading model of the component.

With the neutral-threaded model, if the client is apartment-threaded (STA), the
component is created on the client’s STA. If the client is free-threaded, the compo-
nent is created within the client’s MTA. This behavior is similar to that of a both-
threaded model. However, if the client is both-threaded or neutral-threaded, the
component is created within the neutral apartment and any thread can then access
the component.

4~ ~4]e

é ,ch04.18342 Page 99 Thursday, February 22, 2001 1:28 PM

The Threading Models 99

Are Single-Threaded or Multithreaded
Components Better?

I have one word for you if you are considering creating a single-threaded compo-
nent: don’t. By their very nature, web applications are multiuser, and a single-
threaded ASP component basically restricts all access to the component to one
main thread, the one started when the first call to Colnitialize or ColnitializeEx is
made. If an application wants to access a COM object, a call must be made to the
Colnitialize or ColnitializeEx method before the application can make use of
COM features. With ASP, IIS creates a thread that calls Colnitialize and then directs
all object calls to this thread. When an application accesses an ASP component, IIS
must marshal all calls to the component through this single, main thread. So if one
page is accessing the component, another access to the component from within
the same page or from another page has to wait until the component is finished
processing the earlier page request. All requests to the component are queued, a
situation quickly leading to a bottleneck condition.

To demonstrate this, create a new Visual Basic ActiveX DLL component (using
techniques discussed in Chapter 7, Creating a Simple Visual Basic ASP Compo-
nent) and name it asp0401. Name the generated class threads.

If you don’t have Visual Basic, you can use the version of asp0401.dll
included in the examples. It's been compiled using single-threading.

Add a component method named threadTest that has no parameters; its code is
shown in Example 4-1. The component method contains one loop that, in turn,
contains another loop. The outer loop cycles 32,000 times, and the inner loop
cycles 10,000 times, basically forcing the component to take a visually noticeable
amount of time to run.

Example 4-1. Visual Basic Code Testing Queuing of Requests with Single-Threaded
Component

' test method

Public Sub threadTest ()
Dim count As Integer, count2 As Integer
count2 = 0

' outer loop

For count = 1 To 32000
count2 = count2 + 1
Dim count3 As Integer

' inner loop

é ,ch04.18342 Page 100 Thursday, February 22, 2001 1:28 PM

100 Chapter 4: ASP Components, Threads, and Contexts

Example 4-1. Visual Basic Code Testing Queuing of Requests with Single-Threaded Component
(continued)

For count3 = 1 To 1000

Next
Next count
End Sub

Compile the component as a single-threaded component by selecting the Single
Threaded option from the General tab of the Project Properties dialog.

The following ASP test page, asp0401.asp, has script that writes out the system
time before and after the component’s method is executed:

<%

Dim tst

Set tst = Server.CreateObject ("asp0401.Threads")

Response.Write Time & "<P>"

tst.threadTest ()

Response.Write Time

%>
Open two different browser windows and call the test ASP page from both. Open
the page first in one browser and then immediately switch over to the second
browser and open the test page in it without waiting for the first browser to finish.

Figure 4-1 shows the result of running the same ASP page in both browsers at the
same time, with both accessing the same single-threaded component. As you can
see from the figure, the process takes 9 seconds to run, and the process in the sec-
ond browser window does not begin until the first process is finished, no matter
how quickly you access the page. The beginning timer is the same because it is
called from an apartment-threaded process that handles the ASP page—and the
pages are processed on different threads.

No matter how many times the same test is run, the effect is the same: the second
ASP page cannot run until the first is finished. The reason for this is that the ASP
component created from the code in Example 4-1 is first instantiated by the ASP
application based on the call to CreateObject in the page for the first browser, and
the component’s only method is called. Since the component is single-threaded, all
other requests to this component are queued until the current request is finished
processing, which does not occur until after the method is finished. This means
that the request to create the new object using CreateObject in the same ASP page
accessed in the second browser is queued until the ASP page in the first browser
is finished being processed. Since the value in the page is written for the first time
after the component is created, this value is not accessed and added to the page
until the second browser’s CreateObject request is finally processed.

4~ ~4]e

% é ,ch04.18342 Page 101 Thursday, February 22, 2001 1:28 PM

The Threading Models 101

i

J File Edit View Favorites Tools Help |

J PBack = = - @ s | @Search (3] Favarites @History ||%v =] -

JAddFESS I@ http:fflocalhost fchap4/asp0401 . asp j @60
1:09:40 PM1:09:58 PM =101 x|

J File Edit View Favorites Tools Help ﬁ

J 4=Eack -~ = -) s | iQhsearch (G Favorites & AHistory ||%v =1
JAddress I@ http:/flocalhost/chap4/asp0401 . asp j G

=

1:09:40 P2141:09:49 P

|@ Done

=
|@ Daone ’_ ’_ Local intranet: v

Figure 4-1. Two separate browser windows accessing the same ASP page and the same single-
threaded ASP component

Next, recompile the component, except this time as an apartment-threaded in-pro-
cess component by using the Apartment Threaded option in the General tab of the
Project Properties dialog. This means that the component is created within each
thread that creates the object and that each of the two separate browser windows
creates a separate instance of the ASP component.

Again, if you don’t have VB, use the precompiled component named
asp1401b.dll, contained in the examples for this book.

Running the same test by accessing the ASP page that instantiates the component
in two separate browser windows at the same time has a different result when the
component is based on the apartment-threaded model. Figure 4-2 shows the two
browsers with the results of running this new version of the component. Notice
from the figure that the first time value in the second browser window appears
during the time that the first browser's ASP page is being processed, rather than
after the component has finished in the first page. Running the test several times
has virtually the same results. The reason is that the component in the second
page is created before the first page is finished because the two requests are being
handled by two different components on two different threads.

As a comparison of Figure 4-1 and Figure 4-2 shows, the accumulated time for
both processes to run is about the same as each running separately, one after the
other. That's because, in this case, the machine running the ASP component has
only a single processor. However, if the machine had multiple processors, each

4~ ~4]e

% é ,ch04.18342 Page 102 Thursday, February 22, 2001 1:28 PM

102 Chapter 4: ASP Components, Threads, and Contexts

‘3 Developing ASP Compone 3] x|
J File Edit Wiew Favorites Tools Help ﬁ

J < Back = = - @ s | @Search (3] Favarites @History ||%v =] -

Jnddress I@ http: fflacalhostichap4fasp0401.asp j @GD

3 Developing ASP Components - Microsoft Internet E ;Iglll

J File Edit Wiew Favorites Tools Help ﬁ

J ¢=Eack - = - & at | iQhsearch [Favorites ¢ 4History ||%v =3

1:29:34 PM1:29:51 PM

JAddress I@ http:/flocalhostichap4/asp0401 . asp j G
E
1:2533 PM1:25:50 P
|@ Done
E
|@ Daone ’_l_ Local intranet v

Figure 4-2. Two separate browser windows accessing the same ASP page and the same
apartment-threaded ASP component

thread would run on a different processor and the component runtime should be
correspondingly less.

Even with a single processor machine, if a component method invoked in one ASP
page is involved in an IO intensive operation such as accessing a database, com-
ponent methods invoked in other ASP pages, even those belonging to the same
component object, can be processed while waiting for the IO operation to com-
plete. Additionally, if the component method is itself accessing another compo-
nent method that resides on a remote machine, the process can continue without
waiting for the remote method to finish.

In summary, ASP components should not be created as single-threaded
components.

The Single-Threaded and Multithreaded
Apartment Schemes

A form of thread classification builds on the concept of apartment threading, and
classifies threading into single-threaded apartment (STA) and multithreaded apart-
ment (MTA) schemes. STA is equivalent to the original classification of single-
threaded and apartment-threaded models, and MTA contains the free-threaded
model. When a combination of STA and MTA models is used, the threading
scheme encompasses the threading model known as both-threading or mixed-
model threading.

In Windows 2000, a new threading model that is apartment (and thread) neutral is
the neutral-apartment threading model (hence the name).

4~ ~4]e

é ,ch04.18342 Page 103 Thursday, February 22, 2001 1:28 PM

The Threading Models 103

The single-threaded model just demonstrated is considered an STA main thread
only, as all instances of the component are created on the same, main thread. As
stated in the last section, this type of threading model is not appropriate for use
with ASP components. The other threading models are discussed in the next four
sections.

The Apartment-Threading Model

The apartment-threading model is the only multiple-threading model that Visual
Basic 6.0 supports.

Apartment-threading within an ASP environment is fairly straightforward. When IIS
processes an ASP page, an available thread is assigned to that specific page to pro-
cess any ASP script. When an instance of the apartment-threaded component is
created, it’s created on this same thread because the thread assigned to the page is
also apartment-threaded.

Because the thread processing the ASP page and the component are the same
type, all calls to the component on this thread are not marshaled. (Again, marshal-
ing is the process of pulling the parameters for the called function from the cli-
ent’s stack and sending this data to the server, which unmarshals the data and
adds these parameters to the component’s own stack.)

The STA model is also a relatively safe model to use, since any global data for the
component is created in its own global data area within the thread containing it
and is protected from corruption by processes running on any other thread. The
only potential problem with global data for a component built using the apart-
ment-threading model occurs when a call is made to the component from within
the same session, and the component is added to the Session object’s collections.
Since apartment-threaded components can be accessed only by the thread they are
created on, you as the component developer don’t have to add code to protect the
component from being accessed by more than one thread at a time.

In addition, if the component is added to one of the Session object’s collections,
the session is locked down to the particular thread where the component was
originally created. So, when the client accesses another ASP page, it'll still get the
same thread—even if that thread is currently processing another request, and even
if other threads are available to handle the page request. Why? Because the Ses-
sion contents contain an object that was apartment-threaded and was created on
that specific thread—apartment-threaded component methods can be accessed
only by the same thread that originally created it.

Additionally, you can’t attach an apartment-threaded component to an Application
object’s collections. If you try with IIS 5.0, you'll receive an error.

4~ ~4]e

é ,ch04.18342 Page 104 Thursday, February 22, 2001 1:28 PM

104 Chapter 4: ASP Components, Threads, and Contexts

The Free-Threaded Model

When IIS receives a new ASP request, it creates a new thread to handle the
request. If the requested page instantiates an ASP component built based on the
free-threaded model, the component is created in the IIS multithreaded apart-
ment. Each application can have, at most, one multithreaded apartment, and free-
threaded components must be created within a multithreaded apartment. This
means that the component will reside on a different thread than the client thread
that created it. Because of this, all calls to the component’s methods must be mar-
shaled, reducing the overall performance of the object.

If a free-threaded component is created as an application-level element, all
accesses to this object from any ASP page are locked down to this single thread.
This also means that all ASP application pages accessing the same component
basically share the same global data. A free-threaded component must ensure that
its data is safe, since threads accessing any one of the component’s methods can
change global data, even while one thread is processing one of the method calls.
The component can be accessed by multiple threads, and there are no controls
about which thread accesses the component or when. Based on this, the compo-
nent developer must ensure that the component is thread-safe.

To demonstrate the problems that can occur with a free-threaded component that
has global data, create a Visual C++ COM Wizard project named asp0402. Once
the project files are generated, insert a new ATL object using the Simple Object
option in the ATL Object Wizard dialog (it appears when you select the New ATL
Object option from the Insert menu) and name the object tstThread in the Short
Name text box. Change the threading model to free-threaded in the Attributes tab,
and leave all other options at their default values.

If you don’t have Visual C++, you can use asp0402.dll, which is
included in the examples for the book, and skip over the next few
pages and the code block shown in Example 4-2 if you wish. For
more information on creating a Visual C++ component, see
Chapter 14, Creating C++ ASP Components.

This class has three methods: two of the methods modify a value created as a
member of the C++ class, basically creating a data value global to all the compo-
nents in the class; the third method returns this value to the client. Add the meth-
ods from Page View by right clicking on the ItstThread interface and selecting
the Add Method option from the context menu. The first two methods, named set-
Value and tstAfterLoop, don’t have parameters.

- ad

é ,ch04.18342 Page 105 Thursday, February 22, 2001 1:28 PM

The Threading Models 105

The third method created for the component, getValue, takes one parameter:
[out, retval] int * iTstValue

Next, add a data member to the class by changing to File View and opening the
header file generated for the component, tst7hread.h, and adding the following to
the public members for the new class:

int ivalue;

Finally, add the code for the three component methods shown in Example 4-2 to
the generated class prototypes.

Example 4-2. Visual C++ Component Methods, Used for Testing Threading and Global Data

STDMETHODIMP CtstThread: :setValue ()
{

ivalue = 4334;

return S_OK;

}

STDMETHODIMP CtstThread: :tstAfterLoop ()
{
// set tstValue, but after long loop
int count2;
ivalue = 0;
count2 = 0;
while (count2 < 32000) {
count2++;
int tst = 0;
while (tst < 10000)
tst++;

// set value - should be 32,000
ivValue=iValue + count2;
return S_OK;

}

STDMETHODIMP CtstThread::getValue(int *iTstValue)
{

// return tstValue

*iTstValue = ivValue;

return S_OK;

To test the component, create two ASP pages. The first ASP page, asp0402.asp,
calls the tstAfterLoop method to set the public data variable and then calls the
getValue method to output its value:

<%

' first page

Dim tst
Set tst = Server.CreateObject (“asp0402.tstThread”)

4~ ~4]e

é ,ch04.18342 Page 106 Thursday, February 22, 2001 1:28 PM

106 Chapter 4: ASP Components, Threads, and Contexts

// call looped method
tst.tstAfterLoop

Dim iValue

iValue = tst.getValue

Response.Write CStr(ivalue)

%>
The second ASP page, asp0403.asp, calls the setValue method to set the public
data member and then calls getValue to print out the results:

<%

' second page

Dim tst

Set tst = Server.CreateObject (“asp0402.tstThread”)
tst.setValue

Dim ivalue

iValue = tst.getValue

Response.Write CStr(ivalue)

%>
Running both pages at the same time using two separate browsers results in one
browser showing the value of 32000 in its page and the second browser showing
the value of 4334 in its page. Though the two components ran virtually at the same
time, the results are as expected, since each component was created on a new
thread, the free-threaded component was created in a separate multithreaded apart-
ment, and the global data area for both component instances was kept separate.

Next, test the components by creating an instance of the component as an applica-
tion-level element in the first ASP test page, as found in asp0404.asp. Call the
method’s tstAfterLoop and getValue methods and print out the value returned as
well as the time before and after the component is accessed:

<%
' first page
Response.Write CStr(Time) + "<p>"

Dim tst
Set tst = Server.CreateObject ("asp0402.tstThread")

// add to Application
Set Application("tst") = tst

// call looped method
tst.tstAfterLoop

Dim iValue

iValue = tst.getValue
Response.Write CStr(ivalue)
Response.Write "<p>" + CStr(Time)
%>

%

é ,ch04.18342 Page 107 Thursday, February 22, 2001 1:28 PM

The Threading Models 107

The second ASP test page, asp0405.asp, accesses the component from the Appli-
cation object and calls setValue to set the global data and then getValue to get the
value to print. It, too, prints out the start and end times:

<%

' second page
Response.Write CStr(Time) + "<p>"

Dim tst
Set tst = Application("tst")
tst.setValue

Dim iValue
ivalue = tst.getValue

Response.Write CStr(iValue)

Response.Write "<p>" + CStr(Time)

%>
By showing beginning and ending times, the time taken for each script block to
run is also displayed on the web page.

Open two browsers, each with an independent session, by accessing the browser
icon on the desktop for each or by accessing the browser from the Start menu
twice. (Using File - New — Window usually opens the browser in the same ses-
sion, depending on which browser you use.)

The first browser should run the first scripting block, which sets the application-
level object and runs the longer method, tstAfterLoop. The second browser runs
the page containing the block that accesses the application-level object and then
runs the short method, the one that just assigns the global data member a con-
stant value.

Unlike the results when the component was instantiated by two different brows-
ers, the results of this test are definitely unexpected. Instead of a value of 32000
showing in the first browser page, it shows a value of 36334, as shown in
Figure 4-3.

The first page shows an “incorrect” value because the components run on totally
separate threads, which means that the calls to the component’s methods are not
serialized and happen asynchronously. However, both browsers are accessing the
same instance of the component, which is created as an application-level compo-
nent. The method calls from both ASP pages are made directly to this application-
level component, and methods in both pages share the same global data area. The
result is that the component data member iValue is set to 0 in the tstAfterLoop
method called in the first page, but while the loop is being performed in this
method, a second ASP page calls the setValue method on this same component.

4~ ~4]e

% é ,ch04.18342 Page 108 Thursday, February 22, 2001 1:28 PM

108 Chapter 4: ASP Components, Threads, and Contexts
J File Edit Wiew Favorites Tools Help
J = Back » = - @ it | @Search (3] Favorites @History ||%v =3
J Address I@ http:/flocalhost{chapdfaspi404.asp
21442 AN
; Developing ASP Components - Microsoft Internet Explore:
26324 J File Edit View Favorites Tools Help
J €=Eack - = - 3 at | iQhsearch (G Favorites & @Histary ||%v =3
81447 AN J Address I@ http: fflocalhostf chap4/asp0405, asp
2:14:43 AN
E Done
4334
8:14:43 AN
=
|&] Done [| |BE Localintranet 4

Figure 4-3. Two browser windows accessing methods of the same free-threaded ASP
component, at the same time, impacting on the same global data member

This second method sets iValue to 4334. As you can see from the timestamps in
Figure 4-3, the second ASP page method has a chance to finish before the first ASP
page finishes. When the long loop in the first method finally does finish, it sets
tstValue to the sum of tstValue and the counter. Instead of tstValue having a
beginning value of zero, which it received when the method first started, it has
been changed to 4334 based on the results of the method call from the second
ASP page.

For a further test, open a browser page and then open a second one using File —
New — Window, which effectively places both pages in the same session. This
means that both browsers are accessing the same component from the same cli-
ent thread. Running the first ASP page in the first browser window and the sec-
ond ASP page in the second browser window does not have any unexpected
consequences. The reason is that both browsers run in the same session and effec-
tively on the same thread (unless there is a lot of contention for threads, in which
case the pages may use different threads), and method calls to the same compo-
nent for both browsers are serialized. The method calls to the component for the
first ASP page have a chance to finish before the method calls from the second
ASP page are run.

é ,ch04.18342 Page 109 Thursday, February 22, 2001 1:28 PM

The Threading Models 109

Due to problems such as the global data issue just demonstrated,
and due to performance and resource considerations, you should
avoid adding ASP components to either the Session or the Applica-
tion object whenever possible. Limit these objects’ collections to sim-
ple scalar values—or don’t use them at all. If you don’t use the
Session object, you can disable its creation in IIS and actually
improve performance when processing the ASP pages.

Any Apartment (Both-Threaded) Model

Another recommended threading model to use with ASP components is the both-
threading model. Components created with this threading model actually adapt to
the type of thread creating the component. If the client is running as a single-
threaded apartment, the component is created in that same apartment, and all
accesses to the component from the client are direct. If the client is a free-threaded
component, the component is created in the client’s multithreaded apartment and
can support multiple thread requests from the same client process—all accesses to
the component from the same client thread occur directly. The one disadvantage
to the both-threaded model, though, is that requests to the component coming
from the same client process but from other threads have to be marshaled, which
can impact access performance.

However, since ASP components are primarily accessed by apartment-threaded cli-
ents (through the ASP pages), you shouldn’t have to be concerned about a client
with multiple threads trying to access the component.

If there is a possibility of a multithreaded client accessing the component, you can
solve the marshaling problem through the use of aggregation, handled through the
special function CoCreateFreeThreadedMarshaler. Fortunately, when creating a
component in C++ using the ATL wizard, the use of aggregation and this function
can be added to the component just by checking two boxes.

Note that using the free-threaded marshaling object with a both-
threaded component means that the component can respond to calls
from more than one thread. Based on this, the component must be
thread-safe, with protection provided for the global data.

If you wish to create a component that is poolable, then your component should
be marked as both-threaded, and support for aggregation must be included.

4~ ~4]e

é ,ch04.18342 Page 110 Thursday, February 22, 2001 1:28 PM

110 Chapter 4: ASP Components, Threads, and Contexts

However, you can’t use the free-threaded marshaler with a component that is
pooled, so you can’t use this option with these types of components.

In addition, as with the free-threaded component, you have to protect global data
if you add the both-threaded component to the Application object.

The Neutral-Apartmeni-Threading Model

The neutral-apartment-threading model has many of the same characteristics of the
both-threaded model in that no marshaling is required for accessing the compo-
nent’s methods, regardless of the threading model of the client. However, instead
of creating the component within the client’s thread, the component may be cre-
ated within the process’s single neutral apartment, depending on the type of
threading model used with the client.

If the client is apartment-threaded, as it would be if the component were accessed
directly from an ASP page, the neutral-apartment-threaded component is also cre-
ated on that client’s STA thread. If the client were free-threaded (unlikely within an
ASP scenario), the component would be created within the process’s MTA thread.
However, if the component is accessed from a both-threaded client (as it would be
if the component is created within a COM+ application and the application is
defined as a Server application), then the component is created within the neutral
apartment. The same holds true if the client is also neutral-threaded.

The reason that the component is created within this different apartment is that a
neutral-threaded component can avoid the issues of global data corruption and
unsynchronized thread access that plagues both-threaded components by having
its access synchronized through the use of COM+ services when the component is
added to a COM+ application.

I didn’t test the neutral-threaded model, since Visual C++ 6.0 doesn’t
support this threading option. Technically, it is possible to change
the model in the Registry, but there could be issues, especially when
using ATL, that make this a particularly risky operation to attempt.

What Are COM+ Contexts?

In Windows NT, contexts were implemented by MTS; the concept of context is not
an integral part of COM. However, in Windows 2000, contexts have now been
added to the COM/COM+ architecture.

- ad

é ,ch04.18342 Page 111 Thursday, February 22, 2001 1:28 PM

What Are COM+ Contexts? 111

As stated earlier, a context is a grouping of objects based on the same require-
ments. For instance, if several components support the same transaction through
the use of COM+ Services and all other context-specific properties are shareable,
the components should share the same context—as long as the threading models
(and hence apartments) between the components are compatible.

Each context has a unique object—the object context—that defines it. It is the
object context that allows component code to interact with the context through the
use of context services. In Windows NT, the object context was created by MTS as
a wrapper for a component, and you could access the object context with a
method call such as the following:

Set obj = GetObjectContext

You can still use GetObjectContext to access the object context, but the context
the object represents is now a part of the COM architecture. In fact, it's now the
smallest unit of execution containment, as you'll see in the next section.

For more information on the COM+ Services, see Chapter 5, COM+
Services and ASP Components and Applications.

Relationships Between Contexts and Apartments

Apartments are still supported in the new COM+ environment, except that instead
of being the smallest unit of execution containment as they were in Windows NT
(or Windows 9x), they may now contain one or more contexts. The context is
now the smallest unit of execution.

The new hierarchy of containment with Windows 2000 and COM+ means a pro-
cess can contain more than one apartment, and an apartment can contain more
than one context, as shown in Figure 4-4.

If a component isn’t configured (through COM+ Services, discussed in more detail
in the next chapter), it is always implemented within the same context as the cli-
ent that created it. So an ASP component would be implemented within the con-
text created for the ASP page that accesses it.

Each apartment has at least one context, the default context that's created when
the apartment is created.

If the component is configured, it is created within the context of the client only if
the two—the client and the component—share enough configuration parameters
to ensure that they can share a context. When a component isn’t configured

4~ ~4]e

é ,ch04.18342 Page 112 Thursday, February 22, 2001 1:28 PM

112 Chapter 4: ASP Components, Threads, and Contexts
Process
STA Apartment MTA Apartment
Context Context
Context

Figure 4-4. Hierarchical structure of process, apartment, and contexts

(through a COM+ application), it's automatically created within the thread’s default
context.

If the client and the component don’t share the same context, then communica-
tion between the two must occur through interception, discussed next.

Interception (Cross-Apartment, Cross-Context Calls)

With COM, communication between a client and a component that live in differ-
ent apartments must occur through proxies, and the component methods must be
marshaled.

In Windows 2000, and with COM+, communication between a client and a com-
ponent that live in different contexts must occur through proxies. If the client and
the component live in different apartments, they’ll also live in different contexts,
and, again, the client/component communication must be marshaled.

However, there is a difference between proxies used to handle cross-thread (apart-
ment) and cross-context method calls. Cross-thread proxies must use thread
switching to handle communication between the client and the component. In
Windows 2000, cross-context method calls are handled by what is known as light-
weight proxies—proxies that handle any differences between the two contexts.
This process of intercepting method calls and channeling them to a proxy is
known as interception. Though performance isn’t as good as direct raw communi-
cation between the component and the client, cross-context communication
through proxies isn’t as expensive in terms of performance as cross-thread com-
munication.

In the case of ASP components, if the context of the object processing the ASP
page satisfies all the runtime requirements of the component that it accesses, the
component should be created within the same context as the client object. So how
do you know if the ASP page context and the component context are the same?

4~ ~4]e

é ,ch04.18342 Page 113 Thursday, February 22, 2001 1:28 PM

What Are COM+ Contexts? 113

Well, this depends on how you set up the ASP application and how you config-
ure the ASP component.

At the time this was written, there was no documentation about how
ASP, ASP components, IIS, and COM+ work as an integrated whole.
In other words, I'm making a best-guess interpretation of what I'm
finding in the environment in this section.

For instance, if you set up the ASP application to run within its own process, an
interesting thing happens with Component Services: a default COM+ application is
created for the newly isolated process. Contained within the process is a version of
the IISWAM component, the object used to process the ASP page script. You'll
also find that this component is defined with a free-threading object model. If your
component isn’t configured in its own COM+ application or if it is and the applica-
tion is created as a library application (implemented within the client’s process)
and the component can be created within the isolated process’s MTA thread, then
the component should be instantiated within the client’s context. Otherwise, the
component will be created either in a different apartment (if the threading models
are incompatible) or in a different context (if the client context doesn’t satisfy the
component’s runtime requirements).

One thing you can do to force a component to be created within a client’s con-
text is to configure the component with this option. Do this by checking the “Must
be activated in caller’s context” option, found on the Activation tab of the COM+
application component’s Properties dialog. However, if you do this and access the
component from an ASP page and get the following error:

The specified activation could not occur in the client context as specified

then you know that the component can’t be created within the ASP page’s
IISWAM component’s context, and all communication between the client (the ASP
page) and the component occurs through interception:

Regardless of whether your ASP client and the component communicate directly
or through the cross-context proxy, your page performance shouldn’t be adversely
impacted—at least, not as much as cross-thread communication would impact per-
formance.

é ,ch05.18477 Page 114 Thursday, February 22, 2001 1:29 PM

COM+ Services and
ASP Components and
Applications

You can create your ASP components and use them successfully without directly
accessing any of the COM+ services. However, these same services can make the
difference between an ASP application that performs OK and one that scales well
and can keep up with the demands on it—regardless of what those demands are.

The COM+ services you'll most likely use with your ASP components are transac-
tion management, just-in-time activation, and pooling. In addition, new interfaces
have been created to handle much of the functionality of these new services.
However, before we take a look at these, we'll first look at using components
within an application.

Developing Componeni-Based Systems

A component-based system is one that separates individual processes into reus-
able chunks of code and data and then uses one or more of these components to
build a complete application. Among the different types of applications that can be
built are client/server, distributed, and n-tier systems. A client/server system is one
in which processing is split between the client and the server, with the client han-
dling all user interaction, display, and client-side validation, and the server han-
dling most database access, server-side validation, and business rule enforcement.
A distributed system is one in which the application’s components can exist on dif-
ferent machines and may exist in different geographical locations. In addition,
more than one instance of a component can be created in order to handle multi-
ple requests and provide the same service to multiple clients. An n-tier system
combines elements of the client/server system and the distributed system; there is
a hierarchy of components, as with a client/server system, but the components
themselves can be duplicated to distribute processing load and distributed across
many machines and locations, as with a distributed system. The traditional n-tier

114

4~ ~4]e

é ,ch05.18477 Page 115 Thursday, February 22, 2001 1:29 PM

Developing Component-Based Systems 115

system can consist of the client, which handles all user interaction, client-side vali-
dation, and display; the business layer, which enforces all business rules and per-
forms overall transaction management and validation; and the data layer, which
handles all the direct data access.

The use of components facilitates distributed systems, primarily because compo-
nents are small, compact, and portable (as long as the host machine provides the
framework the component needs). If an access load on one server begins to
impact the machine, and the machine’s overall performance starts to degrade, the
component or group of components is easily moved to another server with no
impact to the code accessing the component. Additionally, because the compo-
nents are modularized, one or more can be moved to one new server and others
moved to other servers until the load processing of all servers is balanced. Appli-
cations created without this modularization cannot be split up and cannot be dis-
tributed across many machines.

Another advantage of components is that more generic functions can be split into
separate components and used throughout the system. Additionally, the use of
components facilitates the design and construction of an n-tier system. An exam-
ple of an n-tier system is one where an interface component accesses and vali-
dates address information. The validation is generic and confirms that all the
necessary fields, such as city and ZIP Code, are filled in. The business layer can
then process the address information for the application based on the type of busi-
ness. It can do things such as perform lookups based on the address information,
such as finding shipping zones for a component used in a shipping application or
delivery zones for a online ordering system. The component can then access the
data layer to store the address information, retrieve additional information, or even
trigger other online business components to perform additional work on the infor-
mation. The data layer itself can be split over separate machines, separate data-
bases, or even different types of data stores, with some information going into
long-term storage and some short-term storage to be used for a specific task and
then discarded.

However the components perform their task, the concept is to separate more
generic functions, such as accessing and validating address information necessary
for many applications, from the more business-specific functions, such as finding
shipping zones for a shipping application. In addition, an n-tier application also
looks to separate the user interface components, which should contain only
enough processing to successfully acquire the information needed, from the busi-
ness layer, which understands how the information relates to other information in
order to perform a business function. The business layer is separate from the data
layer, which concerns itself only with having enough information to successfully
make a data transaction and does not care how the information is acquired or the
purpose of the information being acquired.

4~ ~4]e

é ,ch05.18477 Page 116 Thursday, February 22, 2001 1:29 PM

116 Chapter 5: COM+ Services and ASP Components and Applications

ASP components participate in this type of system by providing functionality at
either the business level or the data level, with the user interface handled in the
browser that is accessing the ASP application.

In Windows 2000, component usage is further facilitated through the use of COM+
services to handle such things as component pooling and transactions. To provide
this functionality, new interfaces have been added to the traditional COM inter-
faces (see Chapter 3, ASP Components and COM), discussed next.

The COM+ Interfaces

Most of the important interfaces necessary for COM, such as IUnknown and
IDispatch, still perform the same purpose within the new COM+ environment.
The major difference between COM and COM+ is that the functionality provided
by MTS in Windows NT and Windows 9x is now integrated into the COM architec-
ture with COM+. This integration not only adds new functionality through COM+
services, it also improves the performance of components.

See Chapter 3 for more on the COM interfaces such as IUnknown
and IDispatch.

To support the new COM+ services, several new interfaces have been added to
those already provided by the original MTS implementation. The key ones that
impact most on your development of ASP components are discussed in the next
several sections.

10bjectContext

Chapter 4, ASP Components, Threads, and Contexts, discusses the concept of con-
texts as a grouping of objects based on the same requirements. Among some of
the shared requirements can be whether a component is pooled or whether a
component participates in a transaction with other components.

In Windows 2000, a component’s context is a set of runtime properties that can be
accessed or changed through the component’s associated ObjectContext—an
object that manages the context information for the component. The interface you
use to access the ObjectContext properties is IObjectContext, and you can
access this interface through the COM+ Services type library.

How you access ObjectContext differs a little based on the type of programming
language you use. For instance, in Visual Basic, you first import a reference to the

4~ ~4]e

é ,ch05.18477 Page 117 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 117

COM+ Services into the project, and then you can create a reference to ObjectCon-
text and call GetObjectContext to instantiate it:

Dim objContext As ObjectContext

Set objContext = GetObjectContext
In Visual C++ under Windows NT, you would also use GetObjectContext to access
ObjectContext:

CComPtr<IObjectContext> m spObjectContext;

hr = GetObjectContext (&m_spObjectContext) ;
However, in Visual C++ under Windows 2000, you use CoGetObjectContext
instead, passing in the GUID for the interface:

hr = CoGetObjectContext (IID_IObjectContextInfo,

(void **)&m_spObjectContext) ;

The same behavior results regardless of whether you use GetObjectContext or
CoGetObjectContext, because GetObjectContext in COM+ wraps a call to CoGet-
ObjectContext. In Visual C++ you would also have to add a reference to the
COM+ Services header file (comsvcs.h) as well as add a reference to the associ-
ated object file (comsvcs.lib) to the component’s library path.

Once you have a reference to IObjectContext, you can call its methods, listed in
Table 5-1.

Table 5-1. IObjectContext Methods

Method Description

Createlnstance Instantiates an object

DisableCommit Indicates that the component is not ready to commit a transaction

EnableCommit Indicates that the component is in process still, but transactions can
be committed

IsCallerInRole Indicates whether the caller is within a specified role (role-based
security)

IsInTransaction Indicates whether the component is within a transaction

IsSecurityEnabled | Indicates whether security is enabled

SetAbort Indicates that the component is finished with its work and the trans-
action is aborted

SetComplete Indicates that the component is finished with its work and the trans-
action is ready to be committed

IObjectContext also has properties, such as the following:

Contextinfo
Returns a reference to the context information object associated with the com-
ponent

4~ ~4]e

,ch05.18477 Page 118 Thursday, February 22,2001 1:29 PM

118 Chapter 5: COM+ Services and ASP Components and Applications

Count
Indicates the number of named properties for the object

Item
Contains the named properties

Security
Returns a reference to the Security object associated with the ObjectContext

We'll look at the context information interface, IObjectContextInfo, in more
detail in the next section. The Item collection is used to access the ASP built-in
objects. You can access it directly within Visual Basic:

Dim oc As ObjectContext

Dim app As Application

Set oc = GetObjectConext

Set app = oc.Item("Application")

You can also access the ASP objects via ObjectContext:
Set app = oc("Application")

In other programming languages, you’ll have to access the ASP objects using other
techniques. For instance, in C++, you'll need to query for an instance of the
IGetContextProperties interface in order to access a specific ASP object:

CComPtr<IGetContextProperties> pProps; //Context Properties

// get ObjectContext
hr = CoGetObjectContext (IID_IObjectContext,

(void **)&m_spObjectContext) ;
if (FAILED(hr)) return hr;

// get context properties

hr = m_spObjectContext->QueryInterface(IID_IGetContextProperties,
(void**) &pProps) ;

if (FAILED(hr)) return hr;

// get Response property

bstrProp = "Response";

hr = pProps->GetProperty(bstrProp, &vt) ;
if (FAILED(hr)) return hr;

piDispatch = vt. pdispval;
hr = piDispatch->QueryInterface(IID_IResponse,
(void**)&m piResponse) ;

The documentation for IGetContextProperties states that it is valid only within
the Windows NT environment, but it can still be used to access the ASP built-in
objects within Windows 2000.

é ,ch05.18477 Page 119 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 119

Chapter 7, Creating a Simple Visual Basic ASP Component, demon-
strates how to access ObjectContext within Visual Basic, including
using this object to access the ASP built-in objects. Chapter 14, Cre-
ating C++ ASP Components demonstrates the same for Visual C++,
and Chapters 20, 21, and 22 describe how to access ObjectContext
within Java, Delphi, and Perl components. Each uses different tech-
niques, but the result is the same—a reference to the component’s
associated ObjectContext and the ability to use this object to commit
or abort transactions, as well as to access the ASP objects.

10bjectContextinfo

The IObjectContextInfo interface is used to get transaction, activity, and con-
text information about the current component. With this interface you can access a
pointer to the ITransaction interface. Table 5-2 shows the IObjectContext-
Info methods.

Table 5-2. IObjectContextInfo Methods

Method Description

GetActivityld Returns the current activity identifier
GetContextld Returns the current context identifier
GetTransaction Returns pointer to the ITransaction interface

GetTransactionld | Returns the current transaction identifier

IsInTransaction Indicates whether the component is running within a transaction

If you're using synchronization with your COM+ component (described later),
using GetActivityld returns the identifier of the current activity; otherwise, you’ll
receive a null value.

The GetTransaction method actually returns a reference to the ITransaction
interface. You can use this interface to commit and abort the transaction, though
you should perform these functions through ObjectContext or through the
IContextState interface, discussed next.

IContextState

IContextState gives you finer control of transactions and activation than
IObjectContext. For instance, with IObjectContext, you mark that a compo-
nent is finished with its processing and wants to commit a transaction using Set-
Complete; you use SetAbort to mark that a component is finished processing and
wants to abort the current transaction.

4~ ~4]e

é ,ch05.18477 Page 120 Thursday, February 22, 2001 1:29 PM

120 Chapter 5: COM+ Services and ASP Components and Applications

There are actually two conditional bits that are set when you use SetComplete or
SetAbort. The first is the done bit, and setting it indicates to COM+ that the compo-
nent is finished processing. The second is the consistency bit. Setting this bit con-
trols whether the component’s transaction can be committed or must be aborted.

The IObjectContext SetAbort and SetComplete methods set both bits at a time—
both set the done bit to True, indicating that the component is finished with its
processing. However, with IContextState, you can mark that a component is
finished processing and mark its transaction state separately.

IContextState has four methods, shown in Table 5-3.

Table 5-3. IContextState Methods

Method Description

GetDeactivateOnReturn Gets the status of the done bit

GetMyTransactionVote Gets the status of the consistency bit

SetDeactivateOnReturn Signals that the component is finished

SetMyTransactionVote Indicates whether the component’s transaction can be
committed or aborted

You can get and set the done bit using the SetDeactivateOnReturn and GetDeacti-
vateOnReturn methods. If the value of the done bit is True, the component deacti-
vates when the component’s method finishes; otherwise, the component is not
deactivated.

To try this out, you’ll create a Visual Basic component that implements IObject-
Control in order to capture the JIT events (IObjectControl is described in detail
in the next section). The component will have two methods, both of which call
IContextState’s SetDeactivateOnReturn method. The first function will call the
method, passing in a Boolean value of False; the second one will pass in a Bool-
ean value of True.

If you don’t have Visual Basic, you can access the component
described in this section from the examples included with the book.
All you need to do is register the component using regsvr32.exe
before accessing the ASP test page.

Create a Visual Basic project, name it asp0501, and name the generated compo-
nent class done. Attach the COM+ Services and Microsoft Active Server Pages type
libraries to the project. Once the type libraries are added as resources, implement
the IObjectControl JIT methods Activate, Deactivate, and CanBePooled, as
shown in Example 5-1

4~ ~4]e

,ch05.18477 Page 121 Thursday, February 22,2001 1:29 PM

The COM+ Interfaces 121

Example 5-1. Implementing the IObjectControl JIT Functions

Implements ObjectControl
Dim objResponse As Response

Private Sub ObjectControl_Activate()
Set objResponse = GetObjectContext () .Item("Response")
objResponse.Write "<h3>Activated</h3>"

End Sub

Private Sub ObjectControl_Deactivate ()
objResponse.Write "<h3>Deactivated</h3>"
Set objResponse = Nothing

End Sub

Private Function ObjectControl_CanBePooled() As Boolean
ObjectControl_CanBePooled = False
End Function

In the Activate method, a reference to the ASP built-in Response object is created
and used to display a message that the component is activated. In the Deactivate
method, a message is written to the web page that the component is deactivated.
By examining these messages, we can determine when the component is acti-
vated and deactivated.

Next, add the two component functions that are called by the ASP page. The first,
named functionl, accesses IContextState and calls its SetDeactivateOnReturn
method, passing in a value of False. The second function, function2, also calls
SetDeactivateOnReturn, but this time it passes in a value of True. Example 5-2
shows the code for both functions, which you should add to your component.

Example 5-2. Subroutines That Call SetDeactivateOnReturn

Sub functionl ()

Dim iCntxt As IContextState
Set iCntxt = GetObjectContext

iCntxt.SetDeactivateOnReturn False
End Sub

Sub function2 ()

Dim iCntxt As IContextState
Set iCntxt = GetObjectContext

iCntxt.SetDeactivateOnReturn True
End Sub

é ,ch05.18477 Page 122 Thursday, February 22, 2001 1:29 PM

122 Chapter 5: COM+ Services and ASP Components and Applications

Once the component project is compiled and added to a COM+ application, test the
new component using ASP script similar to the following (found in asp0O501.asp):

<%

Dim obj

Set obj = Server.CreateObject ("asp0501.done")
Response.Write "Calling function 2" & "
"
obj . function2

Response.Write "Calling function 1" & "
"
obj.functionl

Response.Write "Calling function 2" & "
"

obj . function2
%>

The first function called is function2, which deactivates the component when the
function returns. Because of this, the Activated message should be displayed when
the component function is accessed, and the Deactivated message should be dis-
played when the function returns, before the “Calling function 1” message.

However, when the first function—which doesn’t deactivate the component—is
called, the Deactivated message should not appear when the function returns.

Finally, when function2 is called again, both the Activated and Deactivated mes-
sages should be displayed, generating a web page that has the following messages:

Calling function 2
Activated
Deactivated
Calling function 1
Activated

Calling function 2

Deactivated

As you can see, with IContextState, you can control component activation with-
out impacting on the component’s transaction, whether the component is within a
transaction or not.

10bjectControl

The last section demonstrated how the lifetime of a component is manipulated
using the IContextState interface. The example also used JIT—just-in-time acti-

4~ ~4]e

é ,ch05.18477 Page 123 Thursday, February 22, 2001 1:29 PM

The COM+ Interfaces 123

vation—to control the component’s instantiation and to write out to the web page
when the component is activated and deactivated through the IObjectControl
interface’s Activate and Deactivate methods.

Enabling support of JIT for a component means that the component isn’t activated
until it’s actually needed, rather than when it is first created within an ASP page. In
addition, the component isn’'t deactivated until the component marks that it is
ready to be deactivated, the component is destroyed within the ASP page (i.e., set
to Nothing if you're using VBScript), or the process leaves the page scope.

The process of activation and deactivation is controlled by COM+, with program-
matic cues provided by developers, such as the one demonstrated in the last sec-
tion when IContextState’s SetDeactivateOnReturn method is called.

As a component developer, you can capture when the component is activated and
deactivated by implementing IObjectControl’s Activate and Deactivate meth-
ods. By using these, you don’t hold on to resources, such as a reference to the
Response object shown in Example 5-1, while the component is idle and waiting
for its methods to be called.

If you implement IObjectControl, you must implement both the Activate and
Deactivate methods in addition to the CanBePooled method. This latter method
defines whether the component is in a state in which it can be pooled. Later in the
chapter, we’ll look more closely at component pooling when we look at the
COM+ Services.

To take advantage of JIT, your component must be installed in a COM+ applica-
tion, and JIT must be enabled. However, support for JIT is enabled by default for
every component within a COM+ application, as shown in Figure 5-1.

The IObjectControl and IObjectContext interfaces were implemented in Win-
dows NT and managed through MTS. In fact, except for components that use spe-
cific NT services, the ASP components that you created for Windows NT should
port without problems to Windows 2000 and COM+, as will be discussed in the
next section.

In Windows NT, you had t