Designing Microsoft ASP.NET Applications

Douglas J. Reilly

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2002 by Douglas J. Reilly

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Reilly, Douglas J.

Designing Microsoft ASP.NET Applications / Douglas J. Reilly.

p. cm.

Includes index.

ISBN 0-7356-1348-6

1. Internet programming. 2. Active server pages. 3. Web servers. I. Title.
QA76.625 .R45 2001

005.2'76-dc21 2001051310

Printed and bound in the United States of America.

123456789 QWE 654321

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For
further information about international editions, contact your local Microsoft Corporation

office or contact Microsoft Press International directly at fax (425) 706-7329. Visit our Web
site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

ActiveX, JScript, Microsoft, Microsoft Press, MS-DOS, Visual Basic, Visual C++, Visual
Studio, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred.

Acquisitions Editor
David Clark

Project Editor
Sally Stickney

Manuscript Editor
Jennifer Harris

Body Part No. X08-06257
For Jean, Tim, and Erin-
1 owe my life to the people I love.

The manuscript for this book was prepared and galleyed using Microsoft Word 2002. Pages
were composed by Microsoft Press using Adobe PageMaker 6.52 for Windows, with text in
Garamond and display type in Helvetica Condensed. Composed pages were delivered to the
printer as electronic prepress files.

Cover Designer
Methodologie, Inc.

Interior Graphic Designer
James D. Kramer

Principal Compositor
Carl Diltz

Interior Artist
Joel Panchot

Principal Copy Editor
Cheryl Penner

Indexer
Shane-Armstrong Information Systems

About the Author

Ever since he convinced his wife to spend what seemed like far too much money on an Atari
800, Douglas J. Reilly has loved to play with computers. For many years before that, he made
a living repairing photocopiers and early personal computers. But after a while, the software
seemed to be more fun than the hardware.

Doug is the owner of Access Microsystems Inc., a small consulting firm that develops
software using Microsoft Visual C++, Borland Delphi, Microsoft Access, and the Microsoft
NET Framework. He has created applications to electronically test job applicants, track
retailer's inventory, and repair damaged databases. Currently he is working on a variety of
healthcare applications for the St. Barnabas Health Care System as well as applications for the

golf and leisure industry for Golf Society of the U.S., both in New Jersey. In addition to
developing software, Doug has published articles in Dr. Dobb's Journal and Software
Development, and he wrote a column in the Pervasive Software Developer's Journal. He has
also published another book with Microsoft Press, Inside Server-Based Applications (2000).

Doug lives with his wife, Jean, and their two children, Tim and Erin. When not programming,
he enjoys music, reading, and bicycle riding, although book writing and other concerns have

conspired against serious riding this year. Maybe next year.

Doug can be reached by e-mail at doug@ProgrammingASP.NET.

Acknowledgments

I'm one of a relatively small group of people: long-term survivors of liver cancer. As I was
writing my last book, I was diagnosed with and treated for liver cancer. That I am here to
write about it almost four years later is a testament to good fortune, good technology, and
good people. First among the good people who got me this far is Dr. Hans Gerdes at
Memorial Sloan Kettering Cancer Center, who, along with his office assistant, Joanne Booth-
Pezantez, didn't take 'We don't know what that spot on Doug's liver is' for an answer. Dr.
Gerdes is more than a doctor; he has become someone I trust for advice and support for all the
chaos caused by Familial Adenomatous Polyposis, the disease at the root of my family's
health problems. For more information on this and other hereditary colon cancers, see
http://www.hereditarycc.org.

I must mention the 'Freds' (Fred Stodolak and Fred Paliani), Jim Hoffman, Rich Iavarone,
Tara O'Neill, and Jason Nadal at Golf Society of the U.S. The Freds provided a work
environment that allowed me to use neat technology while not requiring me to dress up. They
also kindly allowed me to use a couple of the articles from the Golf Society of the U.S. Web
site (http://www.golfsociety.com) for an example in Chapter 10. Jim was the best boss a guy
could have, especially a guy like me who likes to hole up in the basement and play with
computers. Jim has looked at some of the chapters, and his honest assessment of what makes
sense and what doesn't has helped me a great deal. Rich and Jason have given me a hand on
occasion with JavaScript questions. Tara worked some magic on my picture for use in the
author bio page. Trust me, she didn't have much to work with! Thanks, all.

In my spare time, I do a great deal of work for the St. Barnabas Healthcare System (SBHCS).
Kathy Collins and Rich Wheatley have allowed me to continue working on cool projects in
the four years or so since I left full-time employment there. SBHCS has provided a wonderful
environment for creating cool systems that work on one of the largest intranets in the state. In
addition to Rich and Kathy, I also work closely with Darcy Kindred (an interface goddess),
Ryan Grim, and Joanne Gibson, among others. Thanks for your patience while I was writing
this book. A special thanks to the folks in the SBHCS Behavioral Health Call Center, who
have put up with delays in making changes to their system due to my too busy schedule
during the writing of this book.

Susan Warren at Microsoft was an amazing help, answering more than one frazzled e-mail
when I was late delivering a chapter and the examples just wouldn't work. Her patience in

pointing out my mistakes and her willingness to dig in to get to the bottom of things when

there was a real problem helped immensely. Susan, along with Scott Guthrie and Rob

Howard, also provided great support for me and all the ASP.NET authors, starting what seems
like a lifetime ago, back at the first ASP.NET author's summit.

At that first ASP.NET author's summit, [happened to get teamed up with G. Andrew Duthie
of Graymad Enterprises for a hands-on exercise. Since then, we have corresponded and
commiserated through e-mail and in person at various conferences. Andrew's book on
ASP.NET should be finished 'real soon now,' and I encourage you to take a look at it when it
hits the shelves. Andrew is perhaps the most outspoken proponent of Microsoft technology
that I know, and he uses that technology to do some neat things. Others who I trust for
technical feedback and just plain advice include Ed Colosi, Tom Dignan, Michael Zaccardi,
and Sue Shaw. Claudette Moore, my agent, worked harder on this book than she might on
some others. Thank you for getting in there and helping me organize my thoughts.

Writing a book for Microsoft Press is different than most other book-writing experiences. But
writing this book was different than even the normal Microsoft Press experience. This is not
exactly the book I had initially planned, due in part to the huge success of ASP.NET, even in
beta. Because of this unexpected success, it was important to get the book out there, even if
that meant some last-minute changes. My editor, Sally Stickney; Jennifer Harris, the
manuscript editor; David Clark, the acquisitions editor; and Robert Lyon, the technical editor,
have all been amazing even in the face of seemingly unreasonable deadlines, the normal beta
software weirdness, and my constantly remembering one more great thing I needed to add.
Robert especially has saved me from myself on more than one occasion. Thanks!

Of course, living with an author while he or she is writing a book can be quite an experience
as well. Erin, my daughter, has ensured that I continue to be involved in some of the finer
things in life, such as Ani DiFranco's music. I can't wait for that concert coming up! My son,
Tim, reminded me all summer how important exercise is, and I really did listen. Thanks for
the walks and the bike rides!

Jean, my wife of 23 years, has long been the rock that grounds our family. While I may drift
off on this or that tangent, Jean is the one who makes sure everything that needs to be done
gets done. In the case of our family, that includes almost daily dealings with one health
insurance company or another. For that alone, she has earned a seat in heaven. Of course,
there's much more than that. You know that whole, 'In sickness and in health, for better or
worse' agreement? Jean really meant it! There has been more health than sickness, and more
better than worse, but you really know someone will be there for you when they are there for
you at the worst time of your life and show no signs of giving up on you. Jean, may we spend
forever together, with 100-year extensions!

Introduction

When I look down, I miss all the good stuff.
And when I look up, 1 just trip over things.
-Ani DiFranco

When I first heard about ASP.NET at a Microsoft author's conference over a year ago, |
thought it might just be too good to be true. I can now create Web pages that are based on
compiled code, in one of many very cool, object-oriented languages? I can use real variables
with types and all? I can create server-side components using the .NET languages that will

allow me to encapsulate all kinds of functionality that my applications need, and I don't have
to worry about deploying COM components? I can use special validator components to
magically test values entered on the client and the server? As I said, it sounded too good to be
true.

In fact, ASP.NET lets you do all that and more. ASP.NET has quite simply changed the way I
build Web applications. While doing some heavy-duty Active Server Pages (ASP)
programming, [always tried to move any functionality I could into the database because the
deployment issues in the database were much easier to deal with than the deployment issues
with ASP files spread over a cluster of machines. I no longer have to do that, and neither will
you!

Of course, with the new abilities comes some additional complexity. The only thing harder
than working with all this new Microsoft NET Framework complexity is trying to describe it.
While working on many of the chapters in this book, I felt like the writer quoted above.
Dealing with all the nitty-gritty details might hide the total coolness of what I was doing, yet
just looking at the cool results without seeing the details can trip you up.

I've tried to give you the details you need to know to get the job done, but the entire NET
Framework is Ahuge. There are literally thousands of classes. In many places, I've referred you
to the MSDN documentation included with the .NET Framework, and I encourage you to use
it. If you need to do something with strings, look up the System.String class on MSDN. If file
access is important, look at the System.IO namespace. I've tried to refrain from reproducing
the same information that the MSDN documentation offers, except in areas in which
exhaustive reference source, and this book 1s more of a tutorial that, after some basics are
covered, will take you through real-world problems and solutions. Both types of information
sources have their place.

Who Should Read This Book

ASP.NET provides an opportunity for developers currently working with ASP to create more
powerful and scalable Web applications. At the same time, ASP.NET provides developers
who haven't previously been involved with Web development with a new opportunity to
begin developing Web applications. Because of the two likely audiences for this book, I don't
assume that all readers will have tremendous experience with Web development. That said, if
you don't understand HTML at all, you need to make sure you know at least what's covered in
Appendix B.

Because you can use both Microsoft Visual Basic .NET and C# with ASP.NET, I don't focus
on one language to the exclusion of the other. A Visual Basic programmer or a C++
programmer new to ASP.NET should be able to follow the samples. The samples alternate
between Visual Basic .NET and C#. In the few cases in which the programming language
matters, ['ve shown the samples in both languages or, more frequently, pointed out the
differences between the languages. Learning the .NET Framework is the better part of the
work required to learn to use ASP.NET.

Overview of the Book

Chapter 1 introduces you to ASP.NET development. To help you better understand
ASP.NET, I go through the earlier alternatives to ASP.NET. If you don't have extensive Web
development experience, this chapter will be very important. Chapter 2 introduces managed
code and the common language runtime. Developing .NET applications is very different from
developing traditional Win32 applications. If you're new to .NET development (and virtually
everyone is at this point), this chapter will bring you up to speed.

The bane of many Visual Basic and C++ developers (and especially those who work in both
languages) is the lack of common types. For Visual Basic developers, the inability to easily
get to all the Win32 API is an additional problem. The .NET Framework, which addresses
both of these issues, is covered in Chapter 3. In Chapter 4, I dig into ASP.NET development,
showing samples in both Visual Basic .NET and C#. I show you how to create ASP.NET
applications in Visual Studio .NET. Visual Studio .NET provides a very convenient
environment for developing ASP.NET applications, but it is different than developing using
simpler tools such as a text editor.

Chapter 5 looks at ASP.NET Web Forms. At the heart of all ASP.NET applications are Web
Forms. Developers new to ASP.NET but experienced with ASP need to know that the
development patterns used in ASP.NET are different than those used in ASP. Visual Basic
developers need to understand the many ways that Web Forms differ from the forms they're
used to. Chapter 5 covers these differences.

Chapter 6 introduces you to a new way of developing components. In addition to creating user
controls, ASP.NET developers can create components entirely in the same languages that
their Web Forms use. Or they can create components in a different language the NET
Framework supports, if that better suits their needs. Chapter 7 demonstrates how to create
components that mix and match client and server functionality. Sometimes it makes sense to
do a task on the client, and sometimes it makes sense to do it on the server. Chapter 7 walks
you through creating components that allow you to do the work of the component (the client,
the server, or a combination of both) wherever it makes sense.

Chapter 8 introduces ADO.NET. No introduction to ADO.NET would be complete without
some discussion of XML, and you'll find that there as well. Chapter 9 combines ADO.NET
with some of the ASP.NET server controls that allow you to create data grids and tables more
easily than you might think possible. In addition, I use an example database to show you how
to create a form that allows the user to add, edit, and delete records.

Finally, Chapter 10 uses the same example database to allow information to be shared using
XML Web services. XML Web services are a new way to share functionality across the
enterprise or across the world.

About the Companion CD

All the sample code is on the companion CD that accompanies this book. The code has been
tested using post-Beta 2 builds of Microsoft Visual Studio .NET. The primary test
configuration has been Microsoft Windows 2000 Server with Service Pack 2 and Information
Internet Services (IIS) installed. Chapters 8, 9, and 10 demonstrate database access and
require Microsoft SQL Server 2000 to be installed. Chapters 9 and 10 use a SQL Server 2000
database named GolfArticles that is provided on the CD.

Each sample folder has a Readme file that describes how to set up and test the sample. Be
sure to review these Readme files when testing the samples.

I could add value to what's there. The MSDN documentation is an amazing, System
Requirements

You'll need the following software to run the samples included on the companion CD:

e Microsoft Visual Studio .NET Beta 2 or later
¢ Microsoft Windows 2000 or Microsoft Windows XP
e Microsoft SQL Server 2000 (for samples in Chapters 8, 9, and 10)

Do You Have Any Questions

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. Should you run into any problems or issues, refer to the following resources.

Author

In the end, in spite of all the help from the folks at Microsoft and Microsoft Press, any errors
or omissions are mine. ASP.NET is a new technology, and it was still in flux as I wrote this
book. On more than one occasion, Robert Lyon, the technical editor of this book, found that
what was clear and unambiguously presented in one build of the .NET documentation would
be either completely wrong or unclear in a later build. Such are the challenges of writing
books on Beta software. Recent builds have been much more stable, and the documentation
has settled down, with new builds very rarely changing a behavior, and much more often
expanding on a topic, making it clearer.

That said, I fear that you may find something here and there that doesn't quite jive with the
final build, or certain topics that require clarification. If you do, please feel free to let me
know. Future editions can be better as a result, and in any event, I intend to create a page on
my Web site that will allow you to see any changes or corrections. Thank you for reading the
book!

Douglas Reilly
doug@ProgrammingASP.NET
http://www.ProgrammingASP.NET

Microsoft Press

Microsoft Press provides corrections for books through the World Wide Web at:
http://www.microsoft.com/mspress/support/

If you have comments, questions, or ideas regarding this book or the companion CD, please
send them to Microsoft Press using either of the following methods:

E-mail:
mspinput@microsoft.com

Postal Mail:

Microsoft Press

Attn: Designing Microsoft ASP.NET Applications Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through the above addresses.

Chapter 1: Introduction to ASP.NET
Development

Overview

Although this book is about ASP.NET, you can't fully appreciate this new technology unless
you understand how Web development has evolved over the last few years. In this first
chapter, I'll provide you with a brief history of the various ways in which Web applications
have traditionally been developed. I'll start with HTML and then go quickly through the
Common Gateway Interface (CGI), the Internet Server Application Programming Interface
(ISAPI), and Active Server Pages (ASP). Although these historical alternatives are all
perfectly acceptable ways to create Web applications, ASP.NET has many capabilities that
make it easier for Web developers to create scalable, dynamic Web applications.

In the beginning, there was Hypertext Markup Language (HTML). And it was good. In fact, it
was-and still is-very good. HTML is a markup language-that is, a language used to describe
the presentation of text and graphics. HTML documents contain tags that control elements
within an HTML document. Tags are keywords, often with attributes, enclosed within less
than and greater than signs (<>) (also called angle brackets). For example, the <BODY> tag
describes the body of a document. Most (though not all) tags have an end tag that contains the
element name prefixed with a slash (/)-for example, </BODY>. Tags used to break lines and
start paragraphs (
 for line breaks and <P> for paragraphs) typically are not matched
with end tags. For those of you who want to know more about HTML, see Appendix B, which
is a short HTML primer.

For static content that rarely changes and isn't customized for each viewer, HTML as it stands
is reasonable, and for years after the introduction of HTML, this static content was good
enough. Think back to the early 1990s and the difficulty involved with sharing documents.
Back then, if you had a word processing document, it might be in WordPerfect format, or
perhaps in WordStar or Microsoft Word format. Documents from one program were almost
universally inaccessible to users of the other programs, and the lingua franca of the day, plain
ASCII, might convey the actual content but at the cost of all formatting.

HTML allowed documents to be viewed by users who not only did not have the same word
processing application but who also might not even use the same type of computer, and in any
event, might be thousands of miles apart. To this day, one common use for HTML is to
publish documents on the Internet or local intranets in a format that virtually all users can
access.

HTML and the protocol that serves it across the Web, Hypertext Transfer Protocol (HTTP),
had some additional advantages when they were first introduced. HTTP is a lightweight
protocol, and made very efficient use of the extremely limited bandwidth available at the
time. I now communicate with the Web over a very fast cable modem, but for many years, I
accessed Web pages over a 28.8 or 56 Kbps modem. Although I enjoy the greater bandwidth
of today, I was still able to access HTML documents at the slower modem speeds. In addition
to HTTP's modest use of network bandwidth, serving static HTML pages didn't seriously
stress the server, the machine that hosted the HTML content.

The Problem: Developing Dynamic Web Applications

Eventually, folks realized that in addition to mere page viewing, HTTP could be used for
dynamic content. Note that by dynamic content, 1 do not mean the animated icons and dancing
farm animals that are visible on many Web pages. Generally, these sorts of animations are
created using client-side JavaScript within the user's browser. What I do mean by dynamic
content is content tailored to the individual user for a particular visit. Dynamic content allows
communication in both directions. Using a form on a Web page, a user can send requests for
customized content. For instance, by entering a package tracking number, a user can retrieve
details about the status of a particular shipment. Of course, the communications between the
user and the server include more than just forms and customized content-cookies, or small bits
of information, might be saved on the user's machine to help identify the user either later in
the session or on his or her next visit to the Web site.

Note Client-side programming using JavaScript or another scripting language usually isn't
enough to create fully dynamic Web pages. For sure, it can be useful for more than just
animated icons. A particularly effective use is providing client-side validation without
requiring a round-trip to the server. ASP.NET makes using client-side validation code
remarkably easy. In Chapter 5, I'll cover some of the standard validation routines, and in
Chapter 6, I'll explain how to create your own components that can use client-side and
server-side code together to provide an efficient and reliable application.

In the mid-1990s, many companies were under increasing pressure to lower total cost of
ownership. Traditional 'fat client' applications, with dueling dynamic-link libraries (DLLs)
and registry settings, were becoming an increasingly large part of this cost. Many companies
saw Web-based applications as a way to quickly deploy mission-critical applications across
the enterprise with minimal impact on the client machines. For example, as I'm writing this,
I'm working on several applications that are deployed via e-mail, giving the user the Uniform
Resource Locator (URL) as well as some initial details required for operation of the system.
An administrator registering a new user on the system triggers these automatic e-mail notices,
minimizing the work required to deploy an application.

Managing all this dynamic content became much more of a challenge than simply placing
static HTML documents in an appropriate directory and allowing users to read it. There are
several ways to provide this dynamic content. In the sections that follow, I'll describe the
various techniques for creating dynamic content. Each technique has its pros and cons, and
each was specifically designed to provide dynamic content.

One Solution: Common Gateway Interface

An early solution for providing dynamic Web content, and still extremely popular in the
UNIX world, is the Common Gateway Interface (CGI) specification. CGI applications are
executable programs that can run on a Web server and can be used to create dynamic Web
content. For instance, Listing 1-1 is a simple CGI console application that displays 'Hello CGI
World' in a browser.

Listing 1-1 A simple CGI application

// SayHelloCGI.cpp: A simple CGI application
//

#include "stdafx.h"
#include <stdio.h>

int main(int argc, char* argvl[])

{

printf ("HTTP/1.0 200 OK\r\nContent-Type: text/html\r\n\r\n");
printf ("<HTML>\r\n<HEAD>") ;

printf ("<TITLE>Hello CGI World</TITLE></HEAD>\r\n") ;

printf ("<BODY>\r\n<CENTER><H3>Hello CGI World</H3></CENTER>");
printf ("
\r\n</BODY>\r\n") ;

printf ("</HTML>\r\n") ;

return 0;

[

This very simple CGI program prints both the header information and the HTML that
produces the page shown in Figure 1-1. The first printf function sends out the minimum
headers required. The first header gives the HTTP version (HT7TP/1.0) as well as a code
indicating success (200 OK). The next line gives the content type-in this case, text/html. The
content type tells the browser how to interpret the content. For instance, if we used
application/msword instead of text/html, the browser would expect the balance of the content
to be a Microsoft Word or Rich Text Format (RTF) file rather than HTML. Following the last
header are two carriage return/line feed pairs, signaling the end of the headers. After that
comes the normal HTML content.

Figure 1-1: The browser screen produced by the program in Listing 1-1
About Console Applications
Although the program in Listing 1-1 can be compiled as a standard 16-bit MS-DOS

application, I've compiled it as a full 32-bit console application. When run, this application
looks like an old-fashioned MS-DOS text-mode application, as shown below, but it truly is a

full 32-bit application, able to call virtually all the Win32 functions, load DLLs, and so on.
There are usually better ways to create quick-and-dirty applications these days, but some
applications-notably command-line tools-are really more appropriate as console applications.
Service applications-applications that run even when no user is logged on-are console
applications that call a couple of special application programming interface (API) functions to
allow them to run as services.

In most typical console applications, standard input refers to the input the program will get
from the keyboard. Standard output is normally written to the screen. A CGI application reads
from standard input and writes to standard output. In most operating systems, standard input
and standard output can be redirected, and that is exactly what happens to a program run as a
CGI program.

The Good News About CGI

A CGI program can do virtually anything you can imagine. You can use a CGI program to
access databases, read files, work with the registry, and everything else that a Win32 program
can normally do.

The example application in Listing 1-1 uses C/C++, but there's nothing to prevent you from
using any other programming language or development environment to create a console
application that can read from standard input and write to standard output. PERL is often used
in the UNIX world to create CGI programs, and in the Win32 world, Borland's Delphi offers
explicit support for CGI applications, providing classes to manage reading from and writing
to standard input and standard output.

If you teach a group of programmers who are experienced in creating text-mode programs a
little bit about HTML, it's likely that they will be able to create halfway decent CGI programs.
CGI programs are easy to test, and the code/test/debug cycle is straightforward. You can
simply have the compiler deposit the executable file in the correct directory, test the
application in the browser, and then go back to the editor to make changes, repeating the
process as necessary.

The Bad News About CGI

To understand the drawbacks of CGI, you have to consider exactly what's happening when a
CGI program is executed. For example, to call the application in Listing 1-1, I might use a
URL like this:

http://localhost/savhellocgi/sayvhellocgi.exe

In Microsoft Internet Information Services (IIS), this URL will do one of two things. It will
either offer to download the program SayHelloCGl.exe from the sayhellocgi virtual directory
to the local machine, or it will execute the program. We obviously want the program executed
in this case, and to allow that to happen, you must allow execute permissions for the virtual
directory in question. (See Appendix A for details on how to set these permissions.)

If execute permissions is allowed, when this URL is entered, SayHelloCGI.exe will be
executed, with information about the request available via standard input and with whatever is
sent to standard output sent to the browser. If the headers aren't properly formed-for example,
if you don't place the second carriage return/line feed pair after the last of the headers-some
browsers will simply ignore the text, whereas others will display an error message along with
the text written to standard output. Once the CGI program completes its task, it exits.

The CGI model is good because once the program has been run and it exits, you can modify
or remove the CGI program just as you can any other program; however, the ability to do this
is at the heart of the problem with CGI. When a CGI program is executed, it is loaded into
memory, and when the program finishes, it is then completely removed from memory. A lot
of work is associated with creating and destroying processes. Creating a process is a relatively
expensive operation compared to, say, simply reading an HTML file. This creation and
destruction of processes for each request eventually leads to performance problems. Also, an
issue related to resources is involved. If there are 100 clients accessing the same CGI
program, there will be 100 instances of that program in memory. This can quickly eat up
resources on a Web server and cause scalability problems. As Web sites evolved from mere
conveniences to large mission-critical e-commerce organizations, it became apparent that a
solution that addressed problems with CGI was needed.

Another Solution: Internet Server Application
Programming Interface

To overcome the performance and scalability problems that CGI brings, Microsoft developed
a new way for developers to build scalable applications. This high-performance alternative is
called the Internet Server Application Programming Interface (ISAPI). Instead of housing
functionality in executable files, ISAPI uses DLLs. Using DLLs instead of executable
programs has some definite performance and scalability advantages.

There are two distinct types of ISAPI DLLs: ISAPI extensions and ISAPI filters. ISAPI
extensions are explicitly called in a URL sent to the IIS server, as shown here:

http://localhost/sayhelloisapi/savhelloisapi.dll

The ISAPI extension could also be called with arguments that will allow a single ISAPI
extension to perform multiple tasks. Just as in the CGI example, the directory must have
execute permissions enabled, or the DLL will be downloaded to the client rather than run on
the server. ISAPI extensions are typically used to process client requests and output a
response as HTML, which is very similar to the way CGI programs are used.

ISAPI filters perform a function that can't be directly duplicated with CGI applications. ISAPI
filters are never explicitly called; instead, they are called by IIS in response to certain events
in the life of a request. The developer can request that an ISAPI filter be called whenever any
of the following events occur:

e When the server has preprocessed the client headers

e When the server authenticates the client

e When the server is mapping a logical URL to a physical URL

o Before raw data is sent from the client to the server

o After raw data is sent from the client to the server but before the server processes it
e When the server logs information

e When the session is ending

As with any filter, ISAPI filters should request only the notifications it requires and process
them as quickly as possible. One of the more common uses of ISAPI filters is to provide
custom authentication. Another use is to modify the HTML that will be sent to the client. For
example, an ISAPI filter could be used to change the background color of each page. Because
ISAPI filters aren't nearly as common as ISAPI extensions, I won't cover them any further in
this book. If you want to learn more about ISAPI extensions, you can check out my book
Inside Server-Based Applications (Microsoft Press, 1999).

ISAPI specifies several entry-point functions that must be exported from the DLL. Using
these entry points, IIS can load the DLL; call the functions that it implements, passing in
parameters as required; and receive the data to write back to the browser. ISAPI requires only
two entry-point functions to be implemented (GetExtensionVersion and HTTPExtensionProc).

ISAPI extensions are often created using the Microsoft Foundation Class Library (MFC)
ISAPI classes. Using these MFC classes can make developing your ISAPI extensions a lot
easier. For example, if you select the ISAPI Extension Wizard in the New Projects dialog box
in Microsoft Visual C++ 6.0, the first screen of the wizard will appear, as shown in Figure 1-
2. If you're creating only an ISAPI extension, this is the only step required. Click Finish, and
the ISAPI Extension Wizard will create the files needed to create an ISAPI extension. In this
example, the ISAPI extension is named SayHelloISAPI.

Figure 1-2: The first step in creating an ISAPI extension in Visual C++ 6.0

One of the functions created by the ISAPI Extension Wizard is named Default. To duplicate
the functionality of the CGI program in Listing 1-1, I've modified the wizard-provided
implementation of Default, as shown in Listing 1-2.

Listing 1-2 Default function in a simple ISAPI extension

[1177
// CSayHelloISAPIExtension command handlers

void CSayHelloISAPIExtension::Default (CHttpServerContext* pCtxt)

{
StartContent (pCtxt) ;
WriteTitle (pCtxt);

*pCtxt <<
_T("<CENTER><H3>Hello ISAPI World</H3></CENTER>") ;
*pCtxt << T(" \r\n");

EndContent (pCtxt) ;
}

Notice that in this example, all that is being explicitly written is the actual content that appears
in the browser window. The default implementation of StartContent writes the start <BODY>
and <HTML> tags. The default implementation of WriteTitle calls GetTitle and then writes
that title within the <TITLE> </TITLE> tags. In this case, | wanted to replace the default
implementation of GetTitle so that I could provide my own title, as in the CGI example in
Listing 1-1. The following code fragment does exactly that:

LPCTSTR CSayHelloISAPIExtension::GetTitle () const

{
return "Hello ISAPI World";

}
EndContent writes the ending </BODY> and </HTML> tags.
After compiling the ISAPI extension DLL and setting up the appropriate virtual directory in

IIS, the ISAPI DLL can be copied to the directory and run by entering the correct URL. The
browser will display a screen similar to the one shown in Figure 1-3.

Figure 1-3: The browser screen created by the SayHelloISAPI example

The Good News About ISAPI

ISAPI addresses many of the weaknesses of CGI applications. Unlike CGI applications,
which create and destroy processes with each request, the code of an ISAPI extension is
generally loaded once for the lifetime of the server (unless the memory is needed for other
purposes-in practice, not a very common event). As an added bonus, the ISAPI application
generally runs within the process space of IIS, allowing the ISAPI extension to have better
communication with IIS. Recent versions of IIS have given the administrator greater control
over which memory space each application runs within. Commonly, new or distrusted
applications are run in a process separate from the IIS server itself. Running in an existing
process space and remaining in memory offers significant advantages in both performance
and scalability.

Like a CGI application, a single ISAPI application can perform multiple tasks by accepting
parameters passed in the URL. One difference in ISAPI is that the MFC classes hide many of
the parameter-cracking details from the ISAPI extension developer. Using parse maps
(preprocessor macros that are common throughout MFC applications), requests are
transparently mapped to member functions of the main class of the ISAPI extension, a
descendant of the CHttpServer class. Even better for people who aren't MFC fans, the ISAPI
extensions can run using only the ISAPI-related classes, leaving behind the bulk of the MFC
class structure. In a lightweight, server-based application, this lack of baggage can be a
significant advantage.

The Bad News About ISAPI

The problems with ISAPI are almost all associated with ISAPI application development. First
and foremost, the ISAPI extensions developer isn't your average developer. Developing an
ISAPI application requires a developer who is at least familiar with C++ and MFC as well as
HTML. To say that these two skill sets are not related is an understatement. Although a fair
number of developers are familiar with MFC and a large number of developers are familiar
with HTML, the intersection of these two skill sets just isn't that common; MFC developers
have likely been working on traditional Windows applications, where HTML knowledge isn't
a requirement. Unlike some of the other Internet development technologies we'll look at in
this chapter, ISAPI development can't be easily divided between the core of the application
and the details of presentation. ISAPI has a single, monolithic DLL, and without providing
your own, homegrown scripting, there's no easy way for the HTML user interface designer
and the core business logic designer to independently perform their tasks.

The second problem with developing ISAPI applications once you've found appropriate
development staff occurs when testing builds of your DLL. As I was generating the simple
SayHelloISAPI application, I first called the URL and then, while getting ready to shoot the
screen for Figure 1-3, realized that I had forgotten to center the text in the browser, as I had in
the CGI example. I recompiled the example and tried to copy it back to the appropriate
directory, only to be reminded of another limitation of ISAPI applications: by default, the
ISAPI application is loaded in memory and held there until the World Wide Web Publishing
service is stopped. Thus, until the service was stopped, I couldn't replace the ISAPI
application. It's possible to request that ISAPI applications not be cached by IIS. On a
development machine, that's generally what [would do. However, before you release an
ISAPI extension, you must test the application with caching turned off to verify that you don't
have bugs hidden by variables always being initialized because the DLL is loaded with each
request.

Beyond the problem of actually replacing your ISAPI DLL on a running server, problems
arise when you're trying to debug the DLL. MFC developers in particular, and Visual C++
developers in general, are used to the convenient debugging provided by the Visual C++
integrated development environment (IDE) when creating standard applications. Although it
isn't impossible to debug an ISAPI application using the Visual C++ IDE, it isn't easy.

Note ASP.NET programmers who still need some of the power and flexibility that ISAPI
applications and filters offer can use HTTPhandlers and HTTPmodules.

A Better Solution: Active Server Pages

If you're wondering why we've dwelt on the alternatives to ASP.NET in a book about
programming ASP.NET, the answer lies in the details of the implementation of ASP.NET and
its predecessor, Active Server Pages (ASP). Understanding ISAPI is required for a deeper
understanding of ASP and thus ASP.NET.

During the beta of IIS 2.0, which became part of Windows NT 4.0, Microsoft introduced a
new technology initially codenamed 'Denali.' This was during Microsoft's 'Active' period, and
so the technology was eventually named Active Server Pages, or ASP. Several versions of
ASP have been released, most notably the versions included with Windows NT 4.0 Option
Pack (ASP 2.0 and IIS 4.0) and Windows 2000 (ASP 3.0 and IIS 5.0). For the purposes of this
discussion, I'll consider ASP as a whole, without referring to version differences.

How Does ASP Work?

The more inquisitive among you may be wondering, 'How does ASP convert scripts into
HTML?' The short answer is ISAPI. Let me explain.

If you dig deep into IIS, you'll find the Application Configuration dialog box, shown here.
This dialog box controls what is done when each of a dozen or so file extensions are passed in
a URL. Notice that for URLs with an .asp extension, ASP.dll is specified.

x
dipp Miapsings | Ape Ciptins | Aps Diekbugang |
F
Apphc stion M aopngt

Ederaion | Executabie Path | Wesba [«
™ DAWINNT \pitemiveebhitr. 8 GET HEAD

s L AWINMNT S yaben X of GE T HEAD

; GE T HEAD

e " GE T HEAD

oty ipdl GET HEAD =
A58 sapdl GET HEAD

™ DNWINKT S bam 3T unslsndion & GET POST

s D:MWINKTAS b 3 natsnviiizod .. OFTIONS G

i D AWM TS i 2 Norsl
shirl O WM K TS wiban 3 anets
air O SwAMM TS pahasn Rty dl GET FOST

Fwrdv T SRR TS i Pt ol GFT POAT ll

ares dll GET POST
eorc.dll GET POST

ad | B | Rewee |

lTll:-ul me.]

The following screen shot shows the Dependency Walker tool included with Visual C++. The
middle pane on the right side shows the functions that are exported from ASP.dIl.
Interestingly, two of the functions exported are GetExtensionVersion and HttpExtensionProc,
functions required for ISAPI extensions. There's also an optional function,
TerminateExtension, that ISAPI extensions may support.

You might expect that ASP would be implemented as an ISAPI filter, but as you can see in
this investigation of the ASP.dll included with IIS 5.0, ASP is implemented using an ISAPI
extension. It's surprisingly simple to create your own ASP-like system. Simply register an
extension you want to process and add it to the Application Configuration dialog box. Next
create an ISAPI DLL that will be called when a file with the specified extension is included in
a URL. When a URL with the specified file extension is requested, the HttpExtensionProc
function in the ISAPI DLL is called. ISAPI DLLs have access to callback functions to allow
them to get all the information they need to process requests.

Why might you create your own ISAPI DLL and map it to a specific file extension? If you
have very specialized scripting requirements, this might be a reasonable solution if no other
reasonable scripting alternative is available. Or you might want to create an ASP-like
scripting engine in a language not currently available. With the advent of ASP.NET, there's
very little reason to implement a different language in exactly this way. ASP.NET provides a
much more convenient and powerful way to include of new languages.

ASP is a different type of development environment. First, ASP is a scripting environment.
You simply edit the page, place it in a properly configured directory with the proper
permissions assigned, and call it from a browser. Second, and something that was originally
quite impressive but would later become a significant obstacle to development, ASP code can
be mixed with standard HTML.

Note Active Server Pages, long known as ASP, has unfortunately become a victim of a name
collision: ASP is also used to refer to Application Service Providers. To avoid
confusion, throughout this book, ASP refers to Active Server Pages. I'll refer to
Application Service Providers as Application Service Providers rather than the using the
abbreviation ASP.

ASP code is generally written in Microsoft Visual Basic Scripting Edition (VBScript), but
Microsoft JScript is also available. Listing 1-3 is a sample ASP application, SayHelloASP,
written in VBScript.

Listinﬁ 1-3 The SaiHelloASP samﬁle aﬁilication

<% Option Explicit %>

<HTML>

<HEAD>

<TITLE>Hello ASP World</TITLE>

</HEAD>

<BODY>

<CENTER>

<%

Dim x

For x=1 to 5
Response.Write ("<FONT size=" & x)
Response.Write (">Hello ASP World
" & vbCrLf)

Next

5>

</CENTER>

</BODY>

</HTML>

The SayHelloASP application's output is shown in Figure 1-4.

_inlx]
Ble Edt Wew Fgeetes Tods Heb [@ |
eback v = - () [F A Dsewsn [EFwectes Py | D b
Agirmes [@] rirp: (o abentisn el rtelons, a0 =] e ||unks

=
Ml ASP Warkd
Hallo AP Word

Hello AST Werld
Hello ASP Waorld
Hello ASP World

x|

£] Dore £ Local nbranst

Figure 1-4: The output from the SayHelloASP sample in Listing 1-3

The SayHelloASP example is a little grander than the previous SayHelloCGI and
SayHelloISAPI examples, to show you some of the power of ASP. Rather than simply
displaying 'Hello ASP World' a single time, here the text is displayed in a loop, with the text
gradually increasing in size. The first line in Listing 1-3 is a directive to the VBScript engine,
Option Explicit. This directive instructs VBScript to insist that all variables be explicitly
declared. (I'll elaborate on that directive and its implications in the section "The Bad News
About ASP' later in this chapter.) The directive is enclosed within a <% and %> character
pair. This character pair represents the start and end delimiters for scripting within an ASP
page. Scripting to be executed on the client can be enclosed within the
<SCRIPT></SCRIPT> tags.

What follows in the next six lines is standard HTML code, just like you would see in a typical
HTML file. After these six lines, the code enters another section of script (denoted by the <%
delimiter). A variable named x is declared, but notice that the variable isn't declared as any

particular type of variable. A For loop increments x from 1 through 5, and within the loop, the
Write method of the Response object is used. The Response object is made available to all
ASP pages, along with several other objects, including Request, Server, Session, and
Application objects. At the end of the loop, the script section is terminated using a %>
delimiter, and then I finish up with a few lines of standard HTML.

The For loop could also be written as follows:

<%
Dim x
For x = 1 To 5
&>
<FONT size=<%=x %>>Hello ASP World

<%
Next
%>

In this version, the loop doesn't use the Response. Write method to write out the five versions
of the 'Hello ASP World' line. Instead, the font tag and the text are written directly, with one
special string, <%=x %>. Within HTML code on an ASP page, using <%= followed by a
variable and an end delimiter (%6>) is a shortcut for using Response. Write to write a variable
to the HTML stream.

Note Using the <%=variable%> syntax has some debugging implications. If you receive an
error message related to, for example, the variable not being declared, the message
might refer to Response. Write(variable) rather than the actual syntax used. If you
receive an error message referring to code you don't actually have in your script, you
should look at these kinds of script shortcuts.

The Good News About ASP

ASP became an instant hit, in large part because it made something that was difficult (create
dynamic Web content) relatively easy. Creating CGI applications and ISAPI applications
wasn't terribly difficult, but using ASP was much simpler.

By default, ASP uses VBScript. Literally millions of developers are at least somewhat
familiar with Visual Basic, Visual Basic for Applications (VBA), or VBScript. For these
developers, ASP was the way to enter the Internet age. Certainly the developers could have
learned a new programming language, but they didn't have to with ASP. Partly because of its
use of VBScript, ASP became a viable way to build Web applications.

Just as important was the relatively easy access to databases allowed through Microsoft
ActiveX Data Objects (ADO). When you need to generate dynamic content, that dynamic
content obviously needs to come from somewhere, and ADO made it easy to get at that data.

Finally, and perhaps most important, the ASP development model allowed developers to
essentially write code and run it. There was no need to perform compilation or elaborate
installation steps. As you'll see in Chapter 4, the ASP.NET architects were careful to capture
this same development model, even though what's going on under the covers is quite a bit
different.

The Bad News About ASP

ASP is a powerful tool for Web developers who need to build large, scalable Web
applications. Web sites such as www.microsoft.com and www.dell.com and many other sites
large and small have used ASP with great success. I have no experience on such massive Web
sites, but I've done a fair amount of work with ASP on a moderate-size site for SportSoft
Golf, www.golfsocietyonline.com. Much of my experience with real-world Internet
application scalability comes from working with this site, which I think is fairly representative
of such moderate-size sites.

The first thing I looked into when considering ASP on sites larger than single-server intranet
sites was the overhead of interpreting the VBScript or JScript code on each request. To my
great surprise, with just a few notable exceptions, ASP was almost always fast enough.

On most moderate-size ASP sites, more bottlenecks are caused by database access and
updates than by the ASP scripting engine. Later versions of ASP have become increasingly
efficient in serving up pages, even pages with somewhat complex scripting.

Why Is VBScript String Manipulation So Slow?

My background is very heavy on C and C++, much lighter on Visual Basic, VBA, and
VBScript. One of my greatest complaints about Visual Basic in general, and VBScript in
particular, was the seemingly abysmal string handling performance. For instance, to use a
silly example, try to append 50,000 As to a string in Visual Basic, like so:

Private Sub GoSlow Click()
Dim tstr As String
Dim tloop As Long

For tloop = 1 To 50000
tstr = tstr & "A"
Next
MsgBox "Done"
End Sub

On my 400 MHz Dual Pentium machine, this code takes about 12 seconds to run. This is an
extreme example, of course, but it surely shouldn't take that long to append characters to a
string, even 50,000 of them.

Bob Snyder, active in the Microsoft Access and Visual Basic communities, showed me a
better way to achieve the same results in a much more efficient manner, as shown here:

Private Sub GoFast Click()
Dim tstr As String
Dim tloop As Long

tstr = Space(50000)
For tloop = 1 To 50000
Mid(tstr, tloop, 1) = "A"
Next
MsgBox "Done"
End Sub

On the same machine, the previous code took 12 seconds to append 50,000 A's to a string;
with this code, inserting 50,000 A4's into a previously allocated string is instantaneous!

Clearly, the issue isn't string handling per se but the allocation of strings. In the GoSlow Click
subroutine, each of the 50,000 times that tstr = tstr & ‘A’ is called, tstr is reallocated.

The problem with this solution for ASP developers is that VBScript provides a Mid function,
not a Mid statement, which would be required for use on the left side of the equals sign.

ASP.NET will have similar performance when manipulating strings in the same way, but
ASP.NET does allow you to use the new StringBuilder class as an alternative. The
StringBuilder class has better performance when manipulating lots of strings.

What ASP doesn't provide is a flexible, powerful, and truly scalable programming
environment. For example, in Listing 1-3, when declaring the variable x, I don't specify a
type. I can't, because all variables in VBScript are the Variant data type, able to hold any data,
but not permanently a particular type. For instance, I could have said x = 'duck’ and then
followed that with x =7 and that would be perfectly valid code. The lack of strongly typed
variables makes VBScript prone to all sorts of errors not seen in strongly typed languages.

Recall that the first line in the SayHelloASP example in Listing 1-3 is an Option Explicit
directive. Without this directive, VBScript will happily create a variable the first time it's
used. Thus, if you have a variable named x/ and you mistype it as x/ (x and the letter /, not x
and the numeral 7), VBScript will happily create a new variable x/ with no value. Not needing
to declare variables seems convenient. In fact, a review of scripting languages even gave
points to ASP and another scripting environment for not requiring variables to be declared,
but this isn't appropriate for professional developers creating reliable, scalable sites.

Another problem is the ability to mix and match standard HTML and scripting. More to the
point, the problem is the necessity to intersperse code directives within HTML. In addition to
hurting performance by requiring a context change each time a script section is entered and
exited, this intermixing code into raw HTML makes it extremely difficult to separate the
presentation from the core of the application.

A concrete example of this is the difficulty I have when working with SportSoft Golf to create
content for syndication. Syndication relies on a business model very much like that of an
Application Service Provider. SportSoft Golf provides the content. Their customers link the
SportSoft Golf site to their own sites. The actual location of the content-whether it's on the
customer's site or on the SportSoft Golf site-should be transparent to the ultimate consumer of
the content. To accomplish that, the content provided by SportSoft Golf must look like the
content of each of its customer's sites.

To perform this magic of creating content that looks and feels like the home sites of many
different customers requires a separation between presentation and content. Although this can
be done using ASP, it is painfully difficult. One common solution is to use a complex set of
include files that allow content to be included separately. Using include files alone isn't
sufficient, but it can work in combination with a complex set of variables that allow
presentation details, such as the colors for tables, to work their way into the content.

Maintaining multiple include files and allowing the unstructured sharing of presentation
details between the files defining the content and the files defining the presentation is a
daunting task. This, combined with the real and perceived weaknesses of VBScript, has
served to limit acceptance of ASP within many areas of the development community,
especially C/C++ programmers.

A New Solution: ASP.NET

When version 3.0 of ASP was released along with Windows 2000, it became clearer that the
future of software development was closely tied to the future of the Web. As part of its NET
initiative, Microsoft has introduced ASP.NET, a new version of ASP that retains the model of
development ASP developers have come to know and love: you can create the code and place
it in the correct directory with the proper permissions, and it will just work. ASP.NET also
introduces innovations that allow easier separation of the development of the core of an
application and its presentation.

ASP.NET adds many features to and enhances many of the capabilities in classic ASP.
ASP.NET isn't merely an incremental improvement to ASP; it's really a completely new
product, albeit a new product designed to allow the same development experience that ASP
developers have enjoyed. Here are some of the notable features of ASP.NET:

e .NET Framework The .NET Framework is an architecture that makes it easier to
design Web and traditional applications. (Chapter 2 provides an overview of the .NET
Framework.)

e Common language runtime The common language runtime provides a set of
services for all ASP.NET languages. If you're an ASP developer who has had to
combine ASP scripting with COM objects, you'll appreciate the beauty of a common
set of types across many languages. (The common language runtime is discussed in
Chapter 2.)

o Compiled languages ASP.NET provides enhanced performance through the use of
compiled languages. Compiled languages allow the developer to verify that code is at
least syntactically correct. ASP doesn't provide any such facility, so simple syntax
errors might not be caught until the first time the code is executed. (Chapter 2
describes the compilation process and managed code.)

e Cool new languages Visual Basic .NET is a completely new version of Visual Basic
that provides a new, cleaner syntax. C# (pronounced 'C sharp') is a new language
designed to look and feel a lot like C++, but without some of the unsafe features that
make C++ difficult to use to create reliable applications. These two languages are
available out of the box, but other languages will be available from third parties as
well. As of this writing, COBOL and Eiffel implementations should be available for
Visual Studio .NET as well. (Visual Basic .NET and C# are discussed in Chapters 3
and 4.)

e Visual Studio .NET Visual Studio .NET is a cool new development environment that
brings rapid application development (RAD) to the server. (Visual Studio .NET is
introduced in Chapter 4.)

o Improved components The .NET Framework supports the use of new types of
components that can be conveniently replaced in a running application. (Creating
components for ASP.NET is discussed in Chapters 6 and 7.)

e Web Forms Web Forms allow Visual Basic-like development, with event handlers
for common HTML widgets. (Web Forms are discussed in Chapter 5.)

e XML Web services XML Web services enable developers to create services and then
make them available using industry standard protocols. (Web services are discussed in
Chapter 10.)

e ADO.NET ADO for the NET Framework is a new version of the technology that
allows ASP.NET applications to more conveniently get at data residing in relational
databases and in other formats, such as Extensible Markup Language (XML.) (XML
and ADO.NET are discussed in Chapters 8 and 9.)

Conclusion

This brief history of Web development should provide you with a foundation as you continue
reading about ASP.NET. Learning a programming language or development environment is
much like learning a human language. Although books that cover the syntax and vocabulary
are helpful, it's often just as useful to understand the history of the people who use the
language.

If you're an ASP developer, much of this chapter might be a review for you, but I hope that
you've added something to your understanding of the history of ASP. If you're new to ASP
and ASP.NET, understanding the history of ASP and what came before it will be useful as

you begin to explore the exciting new technologies that make up ASP.NET.

Chapter 2: Managed Code and the
Common Language Runtime

Overview

As you'll recall from Chapter 1, with Active Server Pages (ASP), the two scripting language
choices were Visual Basic Scripting Edition (VBScript) and JScript. ASP pages were placed
in directories with the proper Internet Information Services (IIS) permissions, and when a
client requested a page, any script code on the page was interpreted and the finished HTML
for the page was returned to the client. This provided a convenient development model even
for nonprogrammers. Unlike with Internet Server Application Programming Interface (ISAPI)
or COM+ components, the code on an ASP page could be changed as needed. Barring client-
side caching of a page, any change was immediately visible to clients.

One of the most significant improvements that ASP.NET offers is the way code is used at
runtime. As mentioned in Chapter 1, although the ASP.NET and ASP development models
are similar, the two technologies differ quite a bit behind the scenes. Instead of interpreting
the page source each time a client requests a page, ASP.NET seamlessly compiles the page to
Microsoft intermediate language (MSIL) code the first time the page is requested. Once the
page is compiled in MSIL, the just-in-time (JIT) compiler converts the MSIL to native code.

Note Rather than wait for an ASP.NET page to be compiled in MSIL on first use, it's also
possible to force all pages in a site to be compiled in MSIL at one time, thus catching
syntax errors and other compile-time errors in a single step. The easiest way to compile
all files at once is to build the application using Microsoft Visual Studio .NET.

In this chapter, I'll first introduce you to the .NET Framework, and then we'll look more
closely at MSIL and the JIT compiler. Once you're familiar with MSIL code, I'll explain how
the JIT compiler enables ASP.NET to use the same development model as ASP. Next we'll
look at managed code and data, including some of the benefits and costs of using managed
code. Finally, I'll talk about unsafe code, code that exists outside the managed runtime.

Overview of the .NET Framework

The .NET Framework is designed from the ground up to allow developers of both Web and
traditional applications to build their applications more efficiently and enable them to work
more flexibly. One of the most significant features of the .NET Framework is that it enables
code written in multiple languages to work together seamlessly. Figure 2-1 shows the
structure of the .NET Framework at a very high level.

Visual Basic .
MET c# JSeript NET
Common language specification (CLS)

ASPNET Windows
[webFoems | [xmLweb services | Farms E
7]
ADG.NET and XML g
=z
3

MET Framework classes
LCommon language runtime
Windows COM+ sarvices

Figure 2-1 : The .NET Framework architecture

Underlying the entire framework are system services. In the current implementation, this base
is the Win32 API and COM+ services, although the abstraction would allow any operating
system to provide the services, in theory if not in practice. Traditionally, applications have
called the operating system's API directly. In the Win32 programming world, this model is
difficult for Visual Basic programmers because some APIs require using data structures that
are convenient for C/C++ programmers but much less convenient for Visual Basic
programmers.

Layered on top of the system services is the common language runtime. The runtime loads
and runs code written in any language that targets the runtime. Code targeted to the runtime is
called managed code. (I'll describe managed code in detail later in this chapter.) The runtime
also provides integrated, pervasive security. Previous Win32 environments provided security
only for file systems and network resources, if at all. For example, file security on Microsoft
Windows NT and Microsoft Windows 2000 is available only for volumes formatted using
NTES. The runtime provides code access security that allows developers to specify the
permissions required to run the code. At load time and as methods are called, the runtime can
determine whether the c