
Designing Microsoft ASP.NET Applications 
Douglas J. Reilly  

PUBLISHED BY 
Microsoft Press 
A Division of Microsoft Corporation 
One Microsoft Way 
Redmond, Washington 98052-6399 

Copyright © 2002 by Douglas J. Reilly 

All rights reserved. No part of the contents of this book may be reproduced or transmitted in 
any form  
or by any means without the written permission of the publisher. 

Library of Congress Cataloging-in-Publication Data 
Reilly, Douglas J. 
Designing Microsoft ASP.NET Applications / Douglas J. Reilly. 
p. cm. 
Includes index. 
ISBN 0-7356-1348-6 
1. Internet programming.  2. Active server pages.  3. Web servers.  I. Title. 
QA76.625 .R45 2001 
005.2'76-dc21 2001051310 

Printed and bound in the United States of America. 

1 2 3 4 5 6 7 8 9   QWE   6 5 4 3 2 1  

Distributed in Canada by Penguin Books Canada Limited. 

A CIP catalogue record for this book is available from the British Library. 

Microsoft Press books are available through booksellers and distributors worldwide. For 
further information about international editions, contact your local Microsoft Corporation 
office or contact Microsoft Press International directly at fax (425) 706-7329. Visit our Web 
site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com. 

ActiveX, JScript, Microsoft, Microsoft Press, MS-DOS, Visual Basic, Visual C++, Visual 
Studio, Windows, and Windows NT are either registered trademarks or trademarks of 
Microsoft Corporation in the United States and/or other countries. Other product and 
company names mentioned herein may be the trademarks of their respective owners. 

The example companies, organizations, products, domain names, e-mail addresses, logos, 
people, places, and events depicted herein are fictitious. No association with any real 
company, organization, product, domain name, e-mail address, logo, person, place, or event is 
intended or should be inferred. 



Acquisitions Editor 
David Clark 

Project Editor 
Sally Stickney 

Manuscript Editor 
Jennifer Harris 

Body Part No. X08-06257 

For Jean, Tim, and Erin-  

I owe my life to the people I love.  

The manuscript for this book was prepared and galleyed using Microsoft Word 2002. Pages 
were composed by Microsoft Press using Adobe PageMaker 6.52 for Windows, with text in 
Garamond and display type in Helvetica Condensed. Composed pages were delivered to the 
printer as electronic prepress files. 

Cover Designer 
Methodologie, Inc. 

Interior Graphic Designer 
James D. Kramer 

Principal Compositor 
Carl Diltz 

Interior Artist 
Joel Panchot 

Principal Copy Editor 
Cheryl Penner 

Indexer 
Shane-Armstrong Information Systems 

About the Author 
Ever since he convinced his wife to spend what seemed like far too much money on an Atari 
800, Douglas J. Reilly has loved to play with computers. For many years before that, he made 
a living repairing photocopiers and early personal computers. But after a while, the software 
seemed to be more fun than the hardware. 

Doug is the owner of Access Microsystems Inc., a small consulting firm that develops 
software using Microsoft Visual C++, Borland Delphi, Microsoft Access, and the Microsoft 
.NET Framework. He has created applications to electronically test job applicants, track 
retailer's inventory, and repair damaged databases. Currently he is working on a variety of 
healthcare applications for the St. Barnabas Health Care System as well as applications for the 



golf and leisure industry for Golf Society of the U.S., both in New Jersey. In addition to 
developing software, Doug has published articles in Dr. Dobb's Journal and Software 
Development, and he wrote a column in the Pervasive Software Developer's Journal. He has 
also published another book with Microsoft Press, Inside Server-Based Applications (2000). 

Doug lives with his wife, Jean, and their two children, Tim and Erin. When not programming, 
he enjoys music, reading, and bicycle riding, although book writing and other concerns have 
conspired against serious riding this year. Maybe next year. 

Doug can be reached by e-mail at doug@ProgrammingASP.NET. 

Acknowledgments 
I'm one of a relatively small group of people: long-term survivors of liver cancer. As I was 
writing my last book, I was diagnosed with and treated for liver cancer. That I am here to 
write about it almost four years later is a testament to good fortune, good technology, and 
good people. First among the good people who got me this far is Dr. Hans Gerdes at 
Memorial Sloan Kettering Cancer Center, who, along with his office assistant, Joanne Booth-
Pezantez, didn't take 'We don't know what that spot on Doug's liver is' for an answer. Dr. 
Gerdes is more than a doctor; he has become someone I trust for advice and support for all the 
chaos caused by Familial Adenomatous Polyposis, the disease at the root of my family's 
health problems. For more information on this and other hereditary colon cancers, see 
http://www.hereditarycc.org. 

I must mention the 'Freds' (Fred Stodolak and Fred Paliani), Jim Hoffman, Rich Iavarone, 
Tara O'Neill, and Jason Nadal at Golf Society of the U.S. The Freds provided a work 
environment that allowed me to use neat technology while not requiring me to dress up. They 
also kindly allowed me to use a couple of the articles from the Golf Society of the U.S. Web 
site (http://www.golfsociety.com) for an example in Chapter 10. Jim was the best boss a guy 
could have, especially a guy like me who likes to hole up in the basement and play with 
computers. Jim has looked at some of the chapters, and his honest assessment of what makes 
sense and what doesn't has helped me a great deal. Rich and Jason have given me a hand on 
occasion with JavaScript questions. Tara worked some magic on my picture for use in the 
author bio page. Trust me, she didn't have much to work with! Thanks, all. 

In my spare time, I do a great deal of work for the St. Barnabas Healthcare System (SBHCS). 
Kathy Collins and Rich Wheatley have allowed me to continue working on cool projects in 
the four years or so since I left full-time employment there. SBHCS has provided a wonderful 
environment for creating cool systems that work on one of the largest intranets in the state. In 
addition to Rich and Kathy, I also work closely with Darcy Kindred (an interface goddess), 
Ryan Grim, and Joanne Gibson, among others. Thanks for your patience while I was writing 
this book. A special thanks to the folks in the SBHCS Behavioral Health Call Center, who 
have put up with delays in making changes to their system due to my too busy schedule 
during the writing of this book.  

Susan Warren at Microsoft was an amazing help, answering more than one frazzled e-mail 
when I was late delivering a chapter and the examples just wouldn't work. Her patience in 
pointing out my mistakes and her willingness to dig in to get to the bottom of things when 
there was a real problem helped immensely. Susan, along with Scott Guthrie and Rob 



Howard, also provided great support for me and all the ASP.NET authors, starting what seems 
like a lifetime ago, back at the first ASP.NET author's summit. 

At that first ASP.NET author's summit, I happened to get teamed up with G. Andrew Duthie 
of Graymad Enterprises for a hands-on exercise. Since then, we have corresponded and 
commiserated through e-mail and in person at various conferences. Andrew's book on 
ASP.NET should be finished 'real soon now,' and I encourage you to take a look at it when it 
hits the shelves. Andrew is perhaps the most outspoken proponent of Microsoft technology 
that I know, and he uses that technology to do some neat things. Others who I trust for 
technical feedback and just plain advice include Ed Colosi, Tom Dignan, Michael Zaccardi, 
and Sue Shaw. Claudette Moore, my agent, worked harder on this book than she might on 
some others. Thank you for getting in there and helping me organize my thoughts. 

Writing a book for Microsoft Press is different than most other book-writing experiences. But 
writing this book was different than even the normal Microsoft Press experience. This is not 
exactly the book I had initially planned, due in part to the huge success of ASP.NET, even in 
beta. Because of this unexpected success, it was important to get the book out there, even if 
that meant some last-minute changes. My editor, Sally Stickney; Jennifer Harris, the 
manuscript editor; David Clark, the acquisitions editor; and Robert Lyon, the technical editor, 
have all been amazing even in the face of seemingly unreasonable deadlines, the normal beta 
software weirdness, and my constantly remembering one more great thing I needed to add. 
Robert especially has saved me from myself on more than one occasion. Thanks! 

Of course, living with an author while he or she is writing a book can be quite an experience 
as well. Erin, my daughter, has ensured that I continue to be involved in some of the finer 
things in life, such as Ani DiFranco's music. I can't wait for that concert coming up! My son, 
Tim, reminded me all summer how important exercise is, and I really did listen. Thanks for 
the walks and the bike rides! 

Jean, my wife of 23 years, has long been the rock that grounds our family. While I may drift 
off on this or that tangent, Jean is the one who makes sure everything that needs to be done 
gets done. In the case of our family, that includes almost daily dealings with one health 
insurance company or another. For that alone, she has earned a seat in heaven. Of course, 
there's much more than that. You know that whole, 'In sickness and in health, for better or 
worse' agreement? Jean really meant it! There has been more health than sickness, and more 
better than worse, but you really know someone will be there for you when they are there for 
you at the worst time of your life and show no signs of giving up on you. Jean, may we spend 
forever together, with 100-year extensions! 

Introduction 
When I look down, I miss all the good stuff. 
And when I look up, I just trip over things. 
-Ani DiFranco 

When I first heard about ASP.NET at a Microsoft author's conference over a year ago, I 
thought it might just be too good to be true. I can now create Web pages that are based on 
compiled code, in one of many very cool, object-oriented languages? I can use real variables 
with types and all? I can create server-side components using the .NET languages that will 



allow me to encapsulate all kinds of functionality that my applications need, and I don't have 
to worry about deploying COM components? I can use special validator components to 
magically test values entered on the client and the server? As I said, it sounded too good to be 
true. 

In fact, ASP.NET lets you do all that and more. ASP.NET has quite simply changed the way I 
build Web applications. While doing some heavy-duty Active Server Pages (ASP) 
programming, I always tried to move any functionality I could into the database because the 
deployment issues in the database were much easier to deal with than the deployment issues 
with ASP files spread over a cluster of machines. I no longer have to do that, and neither will 
you! 

Of course, with the new abilities comes some additional complexity. The only thing harder 
than working with all this new Microsoft .NET Framework complexity is trying to describe it. 
While working on many of the chapters in this book, I felt like the writer quoted above. 
Dealing with all the nitty-gritty details might hide the total coolness of what I was doing, yet 
just looking at the cool results without seeing the details can trip you up. 

I've tried to give you the details you need to know to get the job done, but the entire .NET 
Framework is huge. There are literally thousands of classes. In many places, I've referred you 
to the MSDN documentation included with the .NET Framework, and I encourage you to use 
it. If you need to do something with strings, look up the System.String class on MSDN. If file 
access is important, look at the System.IO namespace. I've tried to refrain from reproducing 
the same information that the MSDN documentation offers, except in areas in which 
exhaustive reference source, and this book is more of a tutorial that, after some basics are 
covered, will take you through real-world problems and solutions. Both types of information 
sources have their place. 

Who Should Read This Book 
ASP.NET provides an opportunity for developers currently working with ASP to create more 
powerful and scalable Web applications. At the same time, ASP.NET provides developers 
who haven't previously been involved with Web development with a new opportunity to 
begin developing Web applications. Because of the two likely audiences for this book, I don't 
assume that all readers will have tremendous experience with Web development. That said, if 
you don't understand HTML at all, you need to make sure you know at least what's covered in 
Appendix B. 

Because you can use both Microsoft Visual Basic .NET and C# with ASP.NET, I don't focus 
on one language to the exclusion of the other. A Visual Basic programmer or a C++ 
programmer new to ASP.NET should be able to follow the samples. The samples alternate 
between Visual Basic .NET and C#. In the few cases in which the programming language 
matters, I've shown the samples in both languages or, more frequently, pointed out the 
differences between the languages. Learning the .NET Framework is the better part of the 
work required to learn to use ASP.NET. 

Overview of the Book 



Chapter 1 introduces you to ASP.NET development. To help you better understand 
ASP.NET, I go through the earlier alternatives to ASP.NET. If you don't have extensive Web 
development experience, this chapter will be very important. Chapter 2 introduces managed 
code and the common language runtime. Developing .NET applications is very different from 
developing traditional Win32 applications. If you're new to .NET development (and virtually 
everyone is at this point), this chapter will bring you up to speed. 

The bane of many Visual Basic and C++ developers (and especially those who work in both 
languages) is the lack of common types. For Visual Basic developers, the inability to easily 
get to all the Win32 API is an additional problem. The .NET Framework, which addresses 
both of these issues, is covered in Chapter 3. In Chapter 4, I dig into ASP.NET development, 
showing samples in both Visual Basic .NET and C#. I show you how to create ASP.NET 
applications in Visual Studio .NET. Visual Studio .NET provides a very convenient 
environment for developing ASP.NET applications, but it is different than developing using 
simpler tools such as a text editor.  

Chapter 5 looks at ASP.NET Web Forms. At the heart of all ASP.NET applications are Web 
Forms. Developers new to ASP.NET but experienced with ASP need to know that the 
development patterns used in ASP.NET are different than those used in ASP. Visual Basic 
developers need to understand the many ways that Web Forms differ from the forms they're 
used to. Chapter 5 covers these differences. 

Chapter 6 introduces you to a new way of developing components. In addition to creating user 
controls, ASP.NET developers can create components entirely in the same languages that 
their Web Forms use. Or they can create components in a different language the .NET 
Framework supports, if that better suits their needs. Chapter 7 demonstrates how to create 
components that mix and match client and server functionality. Sometimes it makes sense to 
do a task on the client, and sometimes it makes sense to do it on the server. Chapter 7 walks 
you through creating components that allow you to do the work of the component (the client, 
the server, or a combination of both) wherever it makes sense. 

Chapter 8 introduces ADO.NET. No introduction to ADO.NET would be complete without 
some discussion of XML, and you'll find that there as well. Chapter 9 combines ADO.NET 
with some of the ASP.NET server controls that allow you to create data grids and tables more 
easily than you might think possible. In addition, I use an example database to show you how 
to create a form that allows the user to add, edit, and delete records. 

Finally, Chapter 10 uses the same example database to allow information to be shared using 
XML Web services. XML Web services are a new way to share functionality across the 
enterprise or across the world. 

About the Companion CD 
All the sample code is on the companion CD that accompanies this book. The code has been 
tested using post-Beta 2 builds of Microsoft Visual Studio .NET. The primary test 
configuration has been Microsoft Windows 2000 Server with Service Pack 2 and Information 
Internet Services (IIS) installed. Chapters 8, 9, and 10 demonstrate database access and 
require Microsoft SQL Server 2000 to be installed. Chapters 9 and 10 use a SQL Server 2000 
database named GolfArticles that is provided on the CD.  



Each sample folder has a Readme file that describes how to set up and test the sample. Be 
sure to review these Readme files when testing the samples. 

I could add value to what's there. The MSDN documentation is an amazing, System 
Requirements 

You'll need the following software to run the samples included on the companion CD: 

• Microsoft Visual Studio .NET Beta 2 or later 
• Microsoft Windows 2000 or Microsoft Windows XP 
• Microsoft SQL Server 2000 (for samples in Chapters 8, 9, and 10) 

Do You Have Any Questions 
Every effort has been made to ensure the accuracy of this book and the contents of the 
companion CD. Should you run into any problems or issues, refer to the following resources. 

Author 

In the end, in spite of all the help from the folks at Microsoft and Microsoft Press, any errors 
or omissions are mine. ASP.NET is a new technology, and it was still in flux as I wrote this 
book. On more than one occasion, Robert Lyon, the technical editor of this book, found that 
what was clear and unambiguously presented in one build of the .NET documentation would 
be either completely wrong or unclear in a later build. Such are the challenges of writing 
books on Beta software. Recent builds have been much more stable, and the documentation 
has settled down, with new builds very rarely changing a behavior, and much more often 
expanding on a topic, making it clearer. 

That said, I fear that you may find something here and there that doesn't quite jive with the 
final build, or certain topics that require clarification. If you do, please feel free to let me 
know. Future editions can be better as a result, and in any event, I intend to create a page on 
my Web site that will allow you to see any changes or corrections. Thank you for reading the 
book! 

Douglas Reilly 
doug@ProgrammingASP.NET  
http://www.ProgrammingASP.NET  

Microsoft Press 

Microsoft Press provides corrections for books through the World Wide Web at: 
http://www.microsoft.com/mspress/support/  

If you have comments, questions, or ideas regarding this book or the companion CD, please 
send them to Microsoft Press using either of the following methods: 

E-mail: 
mspinput@microsoft.com  



Postal Mail: 
Microsoft Press 
Attn: Designing Microsoft ASP.NET Applications Editor 
One Microsoft Way 
Redmond, WA 98052-6399 

Please note that product support is not offered through the above addresses. 

Chapter 1: Introduction to ASP.NET 
Development 
Overview 
Although this book is about ASP.NET, you can't fully appreciate this new technology unless 
you understand how Web development has evolved over the last few years. In this first 
chapter, I'll provide you with a brief history of the various ways in which Web applications 
have traditionally been developed. I'll start with HTML and then go quickly through the 
Common Gateway Interface (CGI), the Internet Server Application Programming Interface 
(ISAPI), and Active Server Pages (ASP). Although these historical alternatives are all 
perfectly acceptable ways to create Web applications, ASP.NET has many capabilities that 
make it easier for Web developers to create scalable, dynamic Web applications. 

In the beginning, there was Hypertext Markup Language (HTML). And it was good. In fact, it 
was-and still is-very good. HTML is a markup language-that is, a language used to describe 
the presentation of text and graphics. HTML documents contain tags that control elements 
within an HTML document. Tags are keywords, often with attributes, enclosed within less 
than and greater than signs (<>) (also called angle brackets). For example, the <BODY> tag 
describes the body of a document. Most (though not all) tags have an end tag that contains the 
element name prefixed with a slash (/)-for example, </BODY>. Tags used to break lines and 
start paragraphs (<BR> for line breaks and <P> for paragraphs) typically are not matched 
with end tags. For those of you who want to know more about HTML, see Appendix B, which 
is a short HTML primer.  

For static content that rarely changes and isn't customized for each viewer, HTML as it stands 
is reasonable, and for years after the introduction of HTML, this static content was good 
enough. Think back to the early 1990s and the difficulty involved with sharing documents. 
Back then, if you had a word processing document, it might be in WordPerfect format, or 
perhaps in WordStar or Microsoft Word format. Documents from one program were almost 
universally inaccessible to users of the other programs, and the lingua franca of the day, plain 
ASCII, might convey the actual content but at the cost of all formatting. 

HTML allowed documents to be viewed by users who not only did not have the same word 
processing application but who also might not even use the same type of computer, and in any 
event, might be thousands of miles apart. To this day, one common use for HTML is to 
publish documents on the Internet or local intranets in a format that virtually all users can 
access. 



HTML and the protocol that serves it across the Web, Hypertext Transfer Protocol (HTTP), 
had some additional advantages when they were first introduced. HTTP is a lightweight 
protocol, and made very efficient use of the extremely limited bandwidth available at the 
time. I now communicate with the Web over a very fast cable modem, but for many years, I 
accessed Web pages over a 28.8 or 56 Kbps modem. Although I enjoy the greater bandwidth 
of today, I was still able to access HTML documents at the slower modem speeds. In addition 
to HTTP's modest use of network bandwidth, serving static HTML pages didn't seriously 
stress the server, the machine that hosted the HTML content. 

The Problem: Developing Dynamic Web Applications 
Eventually, folks realized that in addition to mere page viewing, HTTP could be used for 
dynamic content. Note that by dynamic content, I do not mean the animated icons and dancing 
farm animals that are visible on many Web pages. Generally, these sorts of animations are 
created using client-side JavaScript within the user's browser. What I do mean by dynamic 
content is content tailored to the individual user for a particular visit. Dynamic content allows 
communication in both directions. Using a form on a Web page, a user can send requests for 
customized content. For instance, by entering a package tracking number, a user can retrieve 
details about the status of a particular shipment. Of course, the communications between the 
user and the server include more than just forms and customized content-cookies, or small bits 
of information, might be saved on the user's machine to help identify the user either later in 
the session or on his or her next visit to the Web site.  

 Note Client-side programming using JavaScript or another scripting language usually isn't 
enough to create fully dynamic Web pages. For sure, it can be useful for more than just 
animated icons. A particularly effective use is providing client-side validation without 
requiring a round-trip to the server. ASP.NET makes using client-side validation code 
remarkably easy. In Chapter 5, I'll cover some of the standard validation routines, and in 
Chapter 6, I'll explain how to create your own components that can use client-side and 
server-side code together to provide an efficient and reliable application. 

In the mid-1990s, many companies were under increasing pressure to lower total cost of 
ownership. Traditional 'fat client' applications, with dueling dynamic-link libraries (DLLs) 
and registry settings, were becoming an increasingly large part of this cost. Many companies 
saw Web-based applications as a way to quickly deploy mission-critical applications across 
the enterprise with minimal impact on the client machines. For example, as I'm writing this, 
I'm working on several applications that are deployed via e-mail, giving the user the Uniform 
Resource Locator (URL) as well as some initial details required for operation of the system. 
An administrator registering a new user on the system triggers these automatic e-mail notices, 
minimizing the work required to deploy an application. 

Managing all this dynamic content became much more of a challenge than simply placing 
static HTML documents in an appropriate directory and allowing users to read it. There are 
several ways to provide this dynamic content. In the sections that follow, I'll describe the 
various techniques for creating dynamic content. Each technique has its pros and cons, and 
each was specifically designed to provide dynamic content. 

One Solution: Common Gateway Interface 



An early solution for providing dynamic Web content, and still extremely popular in the 
UNIX world, is the Common Gateway Interface (CGI) specification. CGI applications are 
executable programs that can run on a Web server and can be used to create dynamic Web 
content. For instance, Listing 1-1 is a simple CGI console application that displays 'Hello CGI 
World' in a browser.  

Listing 1-1 A simple CGI application  
 
// SayHelloCGI.cpp: A simple CGI application 
// 
 
#include "stdafx.h" 
#include <stdio.h> 
 
int main(int argc, char* argv[]) 
{ 
 
    printf("HTTP/1.0 200 OK\r\nContent-Type: text/html\r\n\r\n"); 
    printf("<HTML>\r\n<HEAD>"); 
    printf("<TITLE>Hello CGI World</TITLE></HEAD>\r\n"); 
    printf("<BODY>\r\n<CENTER><H3>Hello CGI World</H3></CENTER>"); 
    printf("<BR>\r\n</BODY>\r\n"); 
    printf("</HTML>\r\n"); 
    return 0; 
} 

 
 

This very simple CGI program prints both the header information and the HTML that 
produces the page shown in Figure 1-1. The first printf function sends out the minimum 
headers required. The first header gives the HTTP version (HTTP/1.0) as well as a code 
indicating success (200 OK). The next line gives the content type-in this case, text/html. The 
content type tells the browser how to interpret the content. For instance, if we used 
application/msword instead of text/html, the browser would expect the balance of the content 
to be a Microsoft Word or Rich Text Format (RTF) file rather than HTML. Following the last 
header are two carriage return/line feed pairs, signaling the end of the headers. After that 
comes the normal HTML content. 

 
Figure 1-1:  The browser screen produced by the program in Listing 1-1  
 

About Console Applications 

Although the program in Listing 1-1 can be compiled as a standard 16-bit MS-DOS 
application, I've compiled it as a full 32-bit console application. When run, this application 
looks like an old-fashioned MS-DOS text-mode application, as shown below, but it truly is a 



full 32-bit application, able to call virtually all the Win32 functions, load DLLs, and so on. 
There are usually better ways to create quick-and-dirty applications these days, but some 
applications-notably command-line tools-are really more appropriate as console applications. 
Service applications-applications that run even when no user is logged on-are console 
applications that call a couple of special application programming interface (API) functions to 
allow them to run as services. 

 
 
 

In most typical console applications, standard input refers to the input the program will get 
from the keyboard. Standard output is normally written to the screen. A CGI application reads 
from standard input and writes to standard output. In most operating systems, standard input 
and standard output can be redirected, and that is exactly what happens to a program run as a 
CGI program. 

The Good News About CGI 

A CGI program can do virtually anything you can imagine. You can use a CGI program to 
access databases, read files, work with the registry, and everything else that a Win32 program 
can normally do. 

The example application in Listing 1-1 uses C/C++, but there's nothing to prevent you from 
using any other programming language or development environment to create a console 
application that can read from standard input and write to standard output. PERL is often used 
in the UNIX world to create CGI programs, and in the Win32 world, Borland's Delphi offers 
explicit support for CGI applications, providing classes to manage reading from and writing 
to standard input and standard output.  

If you teach a group of programmers who are experienced in creating text-mode programs a 
little bit about HTML, it's likely that they will be able to create halfway decent CGI programs. 
CGI programs are easy to test, and the code/test/debug cycle is straightforward. You can 
simply have the compiler deposit the executable file in the correct directory, test the 
application in the browser, and then go back to the editor to make changes, repeating the 
process as necessary. 

The Bad News About CGI 

To understand the drawbacks of CGI, you have to consider exactly what's happening when a 
CGI program is executed. For example, to call the application in Listing 1-1, I might use a 
URL like this: 



http://localhost/sayhellocgi/sayhellocgi.exe  

In Microsoft Internet Information Services (IIS), this URL will do one of two things. It will 
either offer to download the program SayHelloCGI.exe from the sayhellocgi virtual directory 
to the local machine, or it will execute the program. We obviously want the program executed 
in this case, and to allow that to happen, you must allow execute permissions for the virtual 
directory in question. (See Appendix A for details on how to set these permissions.) 

If execute permissions is allowed, when this URL is entered, SayHelloCGI.exe will be 
executed, with information about the request available via standard input and with whatever is 
sent to standard output sent to the browser. If the headers aren't properly formed-for example, 
if you don't place the second carriage return/line feed pair after the last of the headers-some 
browsers will simply ignore the text, whereas others will display an error message along with 
the text written to standard output. Once the CGI program completes its task, it exits. 

The CGI model is good because once the program has been run and it exits, you can modify 
or remove the CGI program just as you can any other program; however, the ability to do this 
is at the heart of the problem with CGI. When a CGI program is executed, it is loaded into 
memory, and when the program finishes, it is then completely removed from memory. A lot 
of work is associated with creating and destroying processes. Creating a process is a relatively 
expensive operation compared to, say, simply reading an HTML file. This creation and 
destruction of processes for each request eventually leads to performance problems. Also, an 
issue related to resources is involved. If there are 100 clients accessing the same CGI 
program, there will be 100 instances of that program in memory. This can quickly eat up 
resources on a Web server and cause scalability problems. As Web sites evolved from mere 
conveniences to large mission-critical e-commerce organizations, it became apparent that a 
solution that addressed problems with CGI was needed. 

Another Solution: Internet Server Application 
Programming Interface 
To overcome the performance and scalability problems that CGI brings, Microsoft developed 
a new way for developers to build scalable applications. This high-performance alternative is 
called the Internet Server Application Programming Interface (ISAPI). Instead of housing 
functionality in executable files, ISAPI uses DLLs. Using DLLs instead of executable 
programs has some definite performance and scalability advantages. 

There are two distinct types of ISAPI DLLs: ISAPI extensions and ISAPI filters. ISAPI 
extensions are explicitly called in a URL sent to the IIS server, as shown here: 

http://localhost/sayhelloisapi/sayhelloisapi.dll  

The ISAPI extension could also be called with arguments that will allow a single ISAPI 
extension to perform multiple tasks. Just as in the CGI example, the directory must have 
execute permissions enabled, or the DLL will be downloaded to the client rather than run on 
the server. ISAPI extensions are typically used to process client requests and output a 
response as HTML, which is very similar to the way CGI programs are used. 



ISAPI filters perform a function that can't be directly duplicated with CGI applications. ISAPI 
filters are never explicitly called; instead, they are called by IIS in response to certain events 
in the life of a request. The developer can request that an ISAPI filter be called whenever any 
of the following events occur: 

• When the server has preprocessed the client headers 
• When the server authenticates the client 
• When the server is mapping a logical URL to a physical URL 
• Before raw data is sent from the client to the server 
• After raw data is sent from the client to the server but before the server processes it 
• When the server logs information 
• When the session is ending  

As with any filter, ISAPI filters should request only the notifications it requires and process 
them as quickly as possible. One of the more common uses of ISAPI filters is to provide 
custom authentication. Another use is to modify the HTML that will be sent to the client. For 
example, an ISAPI filter could be used to change the background color of each page. Because 
ISAPI filters aren't nearly as common as ISAPI extensions, I won't cover them any further in 
this book. If you want to learn more about ISAPI extensions, you can check out my book 
Inside Server-Based Applications (Microsoft Press, 1999). 

ISAPI specifies several entry-point functions that must be exported from the DLL. Using 
these entry points, IIS can load the DLL; call the functions that it implements, passing in 
parameters as required; and receive the data to write back to the browser. ISAPI requires only 
two entry-point functions to be implemented (GetExtensionVersion and HTTPExtensionProc). 

ISAPI extensions are often created using the Microsoft Foundation Class Library (MFC) 
ISAPI classes. Using these MFC classes can make developing your ISAPI extensions a lot 
easier. For example, if you select the ISAPI Extension Wizard in the New Projects dialog box 
in Microsoft Visual C++ 6.0, the first screen of the wizard will appear, as shown in Figure 1-
2. If you're creating only an ISAPI extension, this is the only step required. Click Finish, and 
the ISAPI Extension Wizard will create the files needed to create an ISAPI extension. In this 
example, the ISAPI extension is named SayHelloISAPI. 

 
Figure 1-2:  The first step in creating an ISAPI extension in Visual C++ 6.0  



One of the functions created by the ISAPI Extension Wizard is named Default. To duplicate 
the functionality of the CGI program in Listing 1-1, I've modified the wizard-provided 
implementation of Default, as shown in Listing 1-2.  

Listing 1-2 Default function in a simple ISAPI extension  
 
/////////////////////////////////////////////////////////////////////// 
// CSayHelloISAPIExtension command handlers 
 
void CSayHelloISAPIExtension::Default(CHttpServerContext* pCtxt) 
{ 
    StartContent(pCtxt); 
    WriteTitle(pCtxt); 
 
    *pCtxt <<  
        _T("<CENTER><H3>Hello ISAPI World</H3></CENTER>"); 
    *pCtxt << _T(" \r\n"); 
 
    EndContent(pCtxt); 
} 

 
 

Notice that in this example, all that is being explicitly written is the actual content that appears 
in the browser window. The default implementation of StartContent writes the start <BODY> 
and <HTML> tags. The default implementation of WriteTitle calls GetTitle and then writes 
that title within the <TITLE> </TITLE> tags. In this case, I wanted to replace the default 
implementation of GetTitle so that I could provide my own title, as in the CGI example in 
Listing 1-1. The following code fragment does exactly that: 

LPCTSTR CSayHelloISAPIExtension::GetTitle() const 
{ 
    return "Hello ISAPI World"; 
} 

EndContent writes the ending </BODY> and </HTML> tags. 

After compiling the ISAPI extension DLL and setting up the appropriate virtual directory in 
IIS, the ISAPI DLL can be copied to the directory and run by entering the correct URL. The 
browser will display a screen similar to the one shown in Figure 1-3. 

 
Figure 1-3:  The browser screen created by the SayHelloISAPI example  

The Good News About ISAPI 



ISAPI addresses many of the weaknesses of CGI applications. Unlike CGI applications, 
which create and destroy processes with each request, the code of an ISAPI extension is 
generally loaded once for the lifetime of the server (unless the memory is needed for other 
purposes-in practice, not a very common event). As an added bonus, the ISAPI application 
generally runs within the process space of IIS, allowing the ISAPI extension to have better 
communication with IIS. Recent versions of IIS have given the administrator greater control 
over which memory space each application runs within. Commonly, new or distrusted 
applications are run in a process separate from the IIS server itself. Running in an existing 
process space and remaining in memory offers significant advantages in both performance 
and scalability. 

Like a CGI application, a single ISAPI application can perform multiple tasks by accepting 
parameters passed in the URL. One difference in ISAPI is that the MFC classes hide many of 
the parameter-cracking details from the ISAPI extension developer. Using parse maps 
(preprocessor macros that are common throughout MFC applications), requests are 
transparently mapped to member functions of the main class of the ISAPI extension, a 
descendant of the CHttpServer class. Even better for people who aren't MFC fans, the ISAPI 
extensions can run using only the ISAPI-related classes, leaving behind the bulk of the MFC 
class structure. In a lightweight, server-based application, this lack of baggage can be a 
significant advantage. 

The Bad News About ISAPI 

The problems with ISAPI are almost all associated with ISAPI application development. First 
and foremost, the ISAPI extensions developer isn't your average developer. Developing an 
ISAPI application requires a developer who is at least familiar with C++ and MFC as well as 
HTML. To say that these two skill sets are not related is an understatement. Although a fair 
number of developers are familiar with MFC and a large number of developers are familiar 
with HTML, the intersection of these two skill sets just isn't that common; MFC developers 
have likely been working on traditional Windows applications, where HTML knowledge isn't 
a requirement. Unlike some of the other Internet development technologies we'll look at in 
this chapter, ISAPI development can't be easily divided between the core of the application 
and the details of presentation. ISAPI has a single, monolithic DLL, and without providing 
your own, homegrown scripting, there's no easy way for the HTML user interface designer 
and the core business logic designer to independently perform their tasks.  

The second problem with developing ISAPI applications once you've found appropriate 
development staff occurs when testing builds of your DLL. As I was generating the simple 
SayHelloISAPI application, I first called the URL and then, while getting ready to shoot the 
screen for Figure 1-3, realized that I had forgotten to center the text in the browser, as I had in 
the CGI example. I recompiled the example and tried to copy it back to the appropriate 
directory, only to be reminded of another limitation of ISAPI applications: by default, the 
ISAPI application is loaded in memory and held there until the World Wide Web Publishing 
service is stopped. Thus, until the service was stopped, I couldn't replace the ISAPI 
application. It's possible to request that ISAPI applications not be cached by IIS. On a 
development machine, that's generally what I would do. However, before you release an 
ISAPI extension, you must test the application with caching turned off to verify that you don't 
have bugs hidden by variables always being initialized because the DLL is loaded with each 
request. 



Beyond the problem of actually replacing your ISAPI DLL on a running server, problems 
arise when you're trying to debug the DLL. MFC developers in particular, and Visual C++ 
developers in general, are used to the convenient debugging provided by the Visual C++ 
integrated development environment (IDE) when creating standard applications. Although it 
isn't impossible to debug an ISAPI application using the Visual C++ IDE, it isn't easy. 

 Note ASP.NET programmers who still need some of the power and flexibility that ISAPI 
applications and filters offer can use HTTPhandlers and HTTPmodules. 

A Better Solution: Active Server Pages 
If you're wondering why we've dwelt on the alternatives to ASP.NET in a book about 
programming ASP.NET, the answer lies in the details of the implementation of ASP.NET and 
its predecessor, Active Server Pages (ASP). Understanding ISAPI is required for a deeper 
understanding of ASP and thus ASP.NET.  

During the beta of IIS 2.0, which became part of Windows NT 4.0, Microsoft introduced a 
new technology initially codenamed 'Denali.' This was during Microsoft's 'Active' period, and 
so the technology was eventually named Active Server Pages, or ASP. Several versions of 
ASP have been released, most notably the versions included with Windows NT 4.0 Option 
Pack (ASP 2.0 and IIS 4.0) and Windows 2000 (ASP 3.0 and IIS 5.0). For the purposes of this 
discussion, I'll consider ASP as a whole, without referring to version differences. 

 
How Does ASP Work? 

The more inquisitive among you may be wondering, 'How does ASP convert scripts into 
HTML?' The short answer is ISAPI. Let me explain. 

If you dig deep into IIS, you'll find the Application Configuration dialog box, shown here. 
This dialog box controls what is done when each of a dozen or so file extensions are passed in 
a URL. Notice that for URLs with an .asp extension, ASP.dll is specified. 

 



The following screen shot shows the Dependency Walker tool included with Visual C++. The 
middle pane on the right side shows the functions that are exported from ASP.dll. 
Interestingly, two of the functions exported are GetExtensionVersion and HttpExtensionProc, 
functions required for ISAPI extensions. There's also an optional function, 
TerminateExtension, that ISAPI extensions may support.  

 

You might expect that ASP would be implemented as an ISAPI filter, but as you can see in 
this investigation of the ASP.dll included with IIS 5.0, ASP is implemented using an ISAPI 
extension. It's surprisingly simple to create your own ASP-like system. Simply register an 
extension you want to process and add it to the Application Configuration dialog box. Next 
create an ISAPI DLL that will be called when a file with the specified extension is included in 
a URL. When a URL with the specified file extension is requested, the HttpExtensionProc 
function in the ISAPI DLL is called. ISAPI DLLs have access to callback functions to allow 
them to get all the information they need to process requests. 

Why might you create your own ISAPI DLL and map it to a specific file extension? If you 
have very specialized scripting requirements, this might be a reasonable solution if no other 
reasonable scripting alternative is available. Or you might want to create an ASP-like 
scripting engine in a language not currently available. With the advent of ASP.NET, there's 
very little reason to implement a different language in exactly this way. ASP.NET provides a 
much more convenient and powerful way to include of new languages. 

 
 

ASP is a different type of development environment. First, ASP is a scripting environment. 
You simply edit the page, place it in a properly configured directory with the proper 
permissions assigned, and call it from a browser. Second, and something that was originally 
quite impressive but would later become a significant obstacle to development, ASP code can 
be mixed with standard HTML.  

 Note Active Server Pages, long known as ASP, has unfortunately become a victim of a name 
collision: ASP is also used to refer to Application Service Providers. To avoid 
confusion, throughout this book, ASP refers to Active Server Pages. I'll refer to 
Application Service Providers as Application Service Providers rather than the using the 
abbreviation ASP. 



ASP code is generally written in Microsoft Visual Basic Scripting Edition (VBScript), but 
Microsoft JScript is also available. Listing 1-3 is a sample ASP application, SayHelloASP, 
written in VBScript. 

Listing 1-3 The SayHelloASP sample application  
 
<% Option Explicit %> 
<HTML> 
<HEAD> 
<TITLE>Hello ASP World</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<% 
Dim x 
For x=1 to 5 
    Response.Write("<FONT size=" & x) 
    Response.Write(">Hello ASP World</FONT><BR>" & vbCrLf) 
Next 
%> 
</CENTER> 
</BODY> 
</HTML> 

 
 

The SayHelloASP application's output is shown in Figure 1-4. 

 
Figure 1-4:  The output from the SayHelloASP sample in Listing 1-3  

The SayHelloASP example is a little grander than the previous SayHelloCGI and 
SayHelloISAPI examples, to show you some of the power of ASP. Rather than simply 
displaying 'Hello ASP World' a single time, here the text is displayed in a loop, with the text 
gradually increasing in size. The first line in Listing 1-3 is a directive to the VBScript engine, 
Option Explicit. This directive instructs VBScript to insist that all variables be explicitly 
declared. (I'll elaborate on that directive and its implications in the section 'The Bad News 
About ASP' later in this chapter.) The directive is enclosed within a <% and %> character 
pair. This character pair represents the start and end delimiters for scripting within an ASP 
page. Scripting to be executed on the client can be enclosed within the 
<SCRIPT></SCRIPT> tags. 

What follows in the next six lines is standard HTML code, just like you would see in a typical 
HTML file. After these six lines, the code enters another section of script (denoted by the <% 
delimiter). A variable named x is declared, but notice that the variable isn't declared as any 



particular type of variable. A For loop increments x from 1 through 5, and within the loop, the 
Write method of the Response object is used. The Response object is made available to all 
ASP pages, along with several other objects, including Request, Server, Session, and 
Application objects. At the end of the loop, the script section is terminated using a %> 
delimiter, and then I finish up with a few lines of standard HTML. 

The For loop could also be written as follows: 

<% 
Dim x 
For x = 1 To 5 
%> 
    <FONT size=<%=x %>>Hello ASP World</FONT><BR> 
<% 
Next 
%> 

In this version, the loop doesn't use the Response.Write method to write out the five versions 
of the 'Hello ASP World' line. Instead, the font tag and the text are written directly, with one 
special string, <%=x %>. Within HTML code on an ASP page, using <%= followed by a 
variable and an end delimiter (%>) is a shortcut for using Response.Write to write a variable 
to the HTML stream. 

 Note Using the <%=variable%> syntax has some debugging implications. If you receive an 
error message related to, for example, the variable not being declared, the message 
might refer to Response.Write(variable) rather than the actual syntax used. If you 
receive an error message referring to code you don't actually have in your script, you 
should look at these kinds of script shortcuts.  

The Good News About ASP 

ASP became an instant hit, in large part because it made something that was difficult (create 
dynamic Web content) relatively easy. Creating CGI applications and ISAPI applications 
wasn't terribly difficult, but using ASP was much simpler. 

By default, ASP uses VBScript. Literally millions of developers are at least somewhat 
familiar with Visual Basic, Visual Basic for Applications (VBA), or VBScript. For these 
developers, ASP was the way to enter the Internet age. Certainly the developers could have 
learned a new programming language, but they didn't have to with ASP. Partly because of its 
use of VBScript, ASP became a viable way to build Web applications. 

Just as important was the relatively easy access to databases allowed through Microsoft 
ActiveX Data Objects (ADO). When you need to generate dynamic content, that dynamic 
content obviously needs to come from somewhere, and ADO made it easy to get at that data. 

Finally, and perhaps most important, the ASP development model allowed developers to 
essentially write code and run it. There was no need to perform compilation or elaborate 
installation steps. As you'll see in Chapter 4, the ASP.NET architects were careful to capture 
this same development model, even though what's going on under the covers is quite a bit 
different. 



The Bad News About ASP 

ASP is a powerful tool for Web developers who need to build large, scalable Web 
applications. Web sites such as www.microsoft.com and www.dell.com and many other sites 
large and small have used ASP with great success. I have no experience on such massive Web 
sites, but I've done a fair amount of work with ASP on a moderate-size site for SportSoft 
Golf, www.golfsocietyonline.com. Much of my experience with real-world Internet 
application scalability comes from working with this site, which I think is fairly representative 
of such moderate-size sites. 

The first thing I looked into when considering ASP on sites larger than single-server intranet 
sites was the overhead of interpreting the VBScript or JScript code on each request. To my 
great surprise, with just a few notable exceptions, ASP was almost always fast enough. 

On most moderate-size ASP sites, more bottlenecks are caused by database access and 
updates than by the ASP scripting engine. Later versions of ASP have become increasingly 
efficient in serving up pages, even pages with somewhat complex scripting.  

 
Why Is VBScript String Manipulation So Slow? 

My background is very heavy on C and C++, much lighter on Visual Basic, VBA, and 
VBScript. One of my greatest complaints about Visual Basic in general, and VBScript in 
particular, was the seemingly abysmal string handling performance. For instance, to use a 
silly example, try to append 50,000 A's to a string in Visual Basic, like so: 

Private Sub GoSlow_Click() 
    Dim tstr As String 
    Dim tloop As Long 
 
    For tloop = 1 To 50000 
        tstr = tstr & "A" 
    Next 
    MsgBox "Done" 
End Sub 

On my 400 MHz Dual Pentium machine, this code takes about 12 seconds to run. This is an 
extreme example, of course, but it surely shouldn't take that long to append characters to a 
string, even 50,000 of them. 

Bob Snyder, active in the Microsoft Access and Visual Basic communities, showed me a 
better way to achieve the same results in a much more efficient manner, as shown here: 

Private Sub GoFast_Click() 
    Dim tstr As String 
    Dim tloop As Long 
     
    tstr = Space(50000) 
    For tloop = 1 To 50000 
        Mid(tstr, tloop, 1) = "A" 
    Next 
    MsgBox "Done" 
End Sub 



On the same machine, the previous code took 12 seconds to append 50,000 A's to a string; 
with this code, inserting 50,000 A's into a previously allocated string is instantaneous! 
Clearly, the issue isn't string handling per se but the allocation of strings. In the GoSlow_Click 
subroutine, each of the 50,000 times that tstr = tstr & 'A' is called, tstr is reallocated. 

The problem with this solution for ASP developers is that VBScript provides a Mid function, 
not a Mid statement, which would be required for use on the left side of the equals sign. 

ASP.NET will have similar performance when manipulating strings in the same way, but 
ASP.NET does allow you to use the new StringBuilder class as an alternative. The 
StringBuilder class has better performance when manipulating lots of strings.  

 
 

What ASP doesn't provide is a flexible, powerful, and truly scalable programming 
environment. For example, in Listing 1-3, when declaring the variable x, I don't specify a 
type. I can't, because all variables in VBScript are the Variant data type, able to hold any data, 
but not permanently a particular type. For instance, I could have said x = 'duck' and then 
followed that with x = 7 and that would be perfectly valid code. The lack of strongly typed 
variables makes VBScript prone to all sorts of errors not seen in strongly typed languages. 

Recall that the first line in the SayHelloASP example in Listing 1-3 is an Option Explicit 
directive. Without this directive, VBScript will happily create a variable the first time it's 
used. Thus, if you have a variable named x1 and you mistype it as xl (x and the letter l, not x 
and the numeral 1), VBScript will happily create a new variable xl with no value. Not needing 
to declare variables seems convenient. In fact, a review of scripting languages even gave 
points to ASP and another scripting environment for not requiring variables to be declared, 
but this isn't appropriate for professional developers creating reliable, scalable sites. 

Another problem is the ability to mix and match standard HTML and scripting. More to the 
point, the problem is the necessity to intersperse code directives within HTML. In addition to 
hurting performance by requiring a context change each time a script section is entered and 
exited, this intermixing code into raw HTML makes it extremely difficult to separate the 
presentation from the core of the application. 

A concrete example of this is the difficulty I have when working with SportSoft Golf to create 
content for syndication. Syndication relies on a business model very much like that of an 
Application Service Provider. SportSoft Golf provides the content. Their customers link the 
SportSoft Golf site to their own sites. The actual location of the content-whether it's on the 
customer's site or on the SportSoft Golf site-should be transparent to the ultimate consumer of 
the content. To accomplish that, the content provided by SportSoft Golf must look like the 
content of each of its customer's sites. 

To perform this magic of creating content that looks and feels like the home sites of many 
different customers requires a separation between presentation and content. Although this can 
be done using ASP, it is painfully difficult. One common solution is to use a complex set of 
include files that allow content to be included separately. Using include files alone isn't 
sufficient, but it can work in combination with a complex set of variables that allow 
presentation details, such as the colors for tables, to work their way into the content. 



Maintaining multiple include files and allowing the unstructured sharing of presentation 
details between the files defining the content and the files defining the presentation is a 
daunting task. This, combined with the real and perceived weaknesses of VBScript, has 
served to limit acceptance of ASP within many areas of the development community, 
especially C/C++ programmers. 

A New Solution: ASP.NET 
When version 3.0 of ASP was released along with Windows 2000, it became clearer that the 
future of software development was closely tied to the future of the Web. As part of its .NET 
initiative, Microsoft has introduced ASP.NET, a new version of ASP that retains the model of 
development ASP developers have come to know and love: you can create the code and place 
it in the correct directory with the proper permissions, and it will just work. ASP.NET also 
introduces innovations that allow easier separation of the development of the core of an 
application and its presentation. 

ASP.NET adds many features to and enhances many of the capabilities in classic ASP. 
ASP.NET isn't merely an incremental improvement to ASP; it's really a completely new 
product, albeit a new product designed to allow the same development experience that ASP 
developers have enjoyed. Here are some of the notable features of ASP.NET: 

• .NET Framework  The .NET Framework is an architecture that makes it easier to 
design Web and traditional applications. (Chapter 2 provides an overview of the .NET 
Framework.) 

• Common language runtime  The common language runtime provides a set of 
services for all ASP.NET languages. If you're an ASP developer who has had to 
combine ASP scripting with COM objects, you'll appreciate the beauty of a common 
set of types across many languages. (The common language runtime is discussed in 
Chapter 2.) 

• Compiled languages  ASP.NET provides enhanced performance through the use of 
compiled languages. Compiled languages allow the developer to verify that code is at 
least syntactically correct. ASP doesn't provide any such facility, so simple syntax 
errors might not be caught until the first time the code is executed. (Chapter 2 
describes the compilation process and managed code.) 

• Cool new languages  Visual Basic .NET is a completely new version of Visual Basic 
that provides a new, cleaner syntax. C# (pronounced 'C sharp') is a new language 
designed to look and feel a lot like C++, but without some of the unsafe features that 
make C++ difficult to use to create reliable applications. These two languages are 
available out of the box, but other languages will be available from third parties as 
well. As of this writing, COBOL and Eiffel implementations should be available for 
Visual Studio .NET as well. (Visual Basic .NET and C# are discussed in Chapters 3 
and 4.)  

• Visual Studio .NET  Visual Studio .NET is a cool new development environment that 
brings rapid application development (RAD) to the server. (Visual Studio .NET is 
introduced in Chapter 4.) 

• Improved components  The .NET Framework supports the use of new types of 
components that can be conveniently replaced in a running application. (Creating 
components for ASP.NET is discussed in Chapters 6 and 7.) 

• Web Forms  Web Forms allow Visual Basic-like development, with event handlers 
for common HTML widgets. (Web Forms are discussed in Chapter 5.) 



• XML Web services  XML Web services enable developers to create services and then 
make them available using industry standard protocols. (Web services are discussed in 
Chapter 10.) 

• ADO.NET  ADO for the .NET Framework is a new version of the technology that 
allows ASP.NET applications to more conveniently get at data residing in relational 
databases and in other formats, such as Extensible Markup Language (XML.) (XML 
and ADO.NET are discussed in Chapters 8 and 9.) 

Conclusion 
This brief history of Web development should provide you with a foundation as you continue 
reading about ASP.NET. Learning a programming language or development environment is 
much like learning a human language. Although books that cover the syntax and vocabulary 
are helpful, it's often just as useful to understand the history of the people who use the 
language. 

If you're an ASP developer, much of this chapter might be a review for you, but I hope that 
you've added something to your understanding of the history of ASP. If you're new to ASP 
and ASP.NET, understanding the history of ASP and what came before it will be useful as 
you begin to explore the exciting new technologies that make up ASP.NET. 

Chapter 2: Managed Code and the 
Common Language Runtime 
Overview 
As you'll recall from Chapter 1, with Active Server Pages (ASP), the two scripting language 
choices were Visual Basic Scripting Edition (VBScript) and JScript. ASP pages were placed 
in directories with the proper Internet Information Services (IIS) permissions, and when a 
client requested a page, any script code on the page was interpreted and the finished HTML 
for the page was returned to the client. This provided a convenient development model even 
for nonprogrammers. Unlike with Internet Server Application Programming Interface (ISAPI) 
or COM+ components, the code on an ASP page could be changed as needed. Barring client-
side caching of a page, any change was immediately visible to clients. 

One of the most significant improvements that ASP.NET offers is the way code is used at 
runtime. As mentioned in Chapter 1, although the ASP.NET and ASP development models 
are similar, the two technologies differ quite a bit behind the scenes. Instead of interpreting 
the page source each time a client requests a page, ASP.NET seamlessly compiles the page to 
Microsoft intermediate language (MSIL) code the first time the page is requested. Once the 
page is compiled in MSIL, the just-in-time (JIT) compiler converts the MSIL to native code. 

 Note Rather than wait for an ASP.NET page to be compiled in MSIL on first use, it's also 
possible to force all pages in a site to be compiled in MSIL at one time, thus catching 
syntax errors and other compile-time errors in a single step. The easiest way to compile 
all files at once is to build the application using Microsoft Visual Studio .NET.  



In this chapter, I'll first introduce you to the .NET Framework, and then we'll look more 
closely at MSIL and the JIT compiler. Once you're familiar with MSIL code, I'll explain how 
the JIT compiler enables ASP.NET to use the same development model as ASP. Next we'll 
look at managed code and data, including some of the benefits and costs of using managed 
code. Finally, I'll talk about unsafe code, code that exists outside the managed runtime. 

Overview of the .NET Framework 
The .NET Framework is designed from the ground up to allow developers of both Web and 
traditional applications to build their applications more efficiently and enable them to work 
more flexibly. One of the most significant features of the .NET Framework is that it enables 
code written in multiple languages to work together seamlessly. Figure 2-1 shows the 
structure of the .NET Framework at a very high level. 

 
Figure 2-1 : The .NET Framework architecture  

Underlying the entire framework are system services. In the current implementation, this base 
is the Win32 API and COM+ services, although the abstraction would allow any operating 
system to provide the services, in theory if not in practice. Traditionally, applications have 
called the operating system's API directly. In the Win32 programming world, this model is 
difficult for Visual Basic programmers because some APIs require using data structures that 
are convenient for C/C++ programmers but much less convenient for Visual Basic 
programmers.  

Layered on top of the system services is the common language runtime. The runtime loads 
and runs code written in any language that targets the runtime. Code targeted to the runtime is 
called managed code. (I'll describe managed code in detail later in this chapter.) The runtime 
also provides integrated, pervasive security. Previous Win32 environments provided security 
only for file systems and network resources, if at all. For example, file security on Microsoft 
Windows NT and Microsoft Windows 2000 is available only for volumes formatted using 
NTFS. The runtime provides code access security that allows developers to specify the 
permissions required to run the code. At load time and as methods are called, the runtime can 
determine whether the code can be granted the access required. Developers can also explicitly 
specify limited permissions, meaning that code designed to do something simple and not very 



dangerous can seek the minimal permissions. Compare this situation to today's VBScript-
enabled mail readers, such as Microsoft Outlook, that have been targeted by virus developers. 
Even on a secure system, if a user with Administrator rights opens a VBScript virus, the script 
can do whatever the administrator can do. The role-based security that the runtime provides 
allows permissions to be set based on the user on whose behalf the code is running. 

Relying on the runtime are the .NET Framework classes. The .NET Framework classes 
provide classes that can be called from any .NET-enabled programming language. The classes 
follow a coherent set of naming and design guidelines in mind, making it easier for 
developers to learn the classes quickly. We'll introduce the class libraries in Chapter 3; they 
cover virtually all the areas a developer would expect, from data access services to threading 
and networking. 

On the top of the .NET Framework class library is ADO.NET and XML data. ADO.NET is a 
set of classes that provide data access support for the .NET Framework. ADO.NET is based 
on ADO but is designed to work with XML and to work in a disconnected environment. 

On top of ADO.NET and XML lies specific support for two different types of applications. 
One is the traditional client application that uses Windows Forms, a combination of what 
Visual Basic and the Microsoft Foundation Class Library (MFC) had to offer. The other type 
of application available is ASP.NET, including Web Forms, and XML Web services. 

On top of ASP.NET and the Windows Forms is the common language specification (CLS) 
and the languages that follow the CLS. The CLS is a set of rules that a CLS-compliant 
language needs to follow, ensuring that each language has a common set of features. 

Introduction to Microsoft Intermediate Language 
Although this description of the workings of ASP.NET and the .NET Framework might sound 
a lot like a description of the way a Java Virtual Machine (JVM) works, ASP.NET and JVM 
are different. A Java compiler creates byte code, and that byte code is passed through the 
JVM at runtime. This approach is slightly different than using an intermediate language to 
generate native code at runtime, but that slight difference has enormous implications with 
respect to performance. 

Java's use of byte code is really nothing new. Long ago, other environments used this same 
structure and generally failed, partly because the hardware wasn't up to the task and partly just 
because the Internet didn't exist. What the .NET Framework offers that is genuinely different 
is code that isn't interpreted at runtime but rather becomes native code that is executed 
directly. One of Java's strengths (and also something that can drive developers crazy at times) 
is the tight security the Java/JVM model provides. The .NET Framework provides the same 
level of security, along with the ability to run native code, provided the user has the proper 
security clearance. 

One significant advantage that the .NET Framework offers over Java and the JVM is the 
choice of programming language. If you target the JVM, you must use Java. Java is a 
perfectly fine programming language, but it's just one language. Developers comfortable with 
Visual Basic or C++ would have to spend time learning how to use the Java/JVM model. The 
.NET Framework allows developers to work in whatever language they're most comfortable 
with, from Visual Basic and C# to Eiffel and COBOL. 



Let's take a look at the world's simplest Visual Basic .NET program: 

Public Module modmain 
    Sub Main() 
        System.Console.WriteLine("Hello .NET World!") 
    End Sub 
End Module 

For a moment, ignore anything you don't recognize here from earlier versions of Visual Basic. 
The intent of this program should be clear-it simply writes the string 'Hello .NET World!' to 
the console. The details of this program are unimportant for now; it's the output we're 
interested in. This program, when compiled on a machine with the .NET Framework installed, 
will compile when the following command line is executed: 

vbc HelloDotNet.vb /out:HelloDotNet.exe  
 Note Knowing how to use the command-line compiler isn't essential for an ASP.NET 

programmer, especially one who is planning to use Visual Studio .NET. At times, 
however, knowing how to compile from the command line can give you a better 
understanding of what is happening in Visual Studio .NET, as well as automate tasks. 

The resulting executable file is about 3 KB, and when run, it does indeed print 'Hello .NET 
World!' to the console, as advertised. The executable file consists of two parts: the first part is 
MSIL code that is used to generate the native code. The second part is metadata, which is 
information about the code and other elements that is required by the runtime. The .NET 
Framework includes a program named MSIL Disassembler (Ildasm.exe). Running the MSIL 
Disassembler and passing in the name of the executable file we just created results in the 
output shown in Figure 2-2. 

 
Figure 2-2 : The Ildasm.exe window when HelloDotNet.exe is examined  

For our purposes, the significant part of the output is the last item in the tree: Main : void(). 
C/C++ veterans will recognize the reference to void. In this case, it confirms that this is a 
section of code that doesn't return any value. A function that returns void in C/C++ is the 
same as a Visual Basic Sub function. When you double-click on this item, a window 
containing the following code appears: 

.method public static void  Main() cil managed 
{ 
  .entrypoint 
  .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() =  
    ( 01 00 00 00 ) 
  // Code size       11 (0xb) 
  .maxstack  8 
  IL_0000:  ldstr      "Hello .NET World!" 
  IL_0005:  call       void [mscorlib]System.Console::WriteLine(string) 
  IL_000a:  ret 



} // end of method modmain::Main  

Even without the source code for this simple routine, and knowing nothing about MSIL, it's 
not too difficult to figure out what's going on. Line IL_0000 is loading the constant string 
'Hello .NET World!'. The next line is calling another void function, 
System.Console::WriteLine. This function expects a string. Notice also the reference to 
mscorlib-for now, you can take it on faith that this is a major library in the .NET Framework. 

Pressing Ctrl+M displays a window containing the metadata for HelloDotNet.exe, shown in 
Listing 2-1. 

Listing 2-1 Output from Ildasm.exe that shows metadata for HelloDotNet.exe  
 
ScopeName : HelloDotNet.exe 
MVID      : {D9382B73-AF72-4778-8184-38EEA6400342} 
=========================================================== 
Global functions 
--------------------------- 
 
Global fields 
--------------------------- 
 
Global MemberRefs 
--------------------------- 
 
TypeDef #1 
--------------------------- 
    TypDefName: modmain  (02000002) 
    Flags     : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass]  (000001
01) 
    Extends   : 01000001 [TypeRef] System.Object 
    Method #1 [ENTRYPOINT] 
    --------------------------- 
        MethodName: Main (06000001) 
        Flags     : [Public] [Static] [ReuseSlot]  (00000016) 
        RVA       : 0x00002050 
        ImplFlags : [IL] [Managed]  (00000000) 
        CallCnvntn: [DEFAULT] 
        ReturnType: Void 
        No arguments. 
        CustomAttribute #1 (0c000001) 
        --------------------------- 
            CustomAttribute Type: 0a000003 
            CustomAttributeName: System.STAThreadAttribute ::  
              instance void .ctor() 
            Length: 4 
            Value : 01 00 00 00 
                                      >                < 
            ctor args: () 
    CustomAttribute #1 (0c000002) 
    --------------------------- 
        CustomAttribute Type: 0a000002 
          CustomAttributeName:  
          Microsoft.VisualBasic.CompilerServices.StandardModuleAttribute 
            :: instance void .ctor() 
        Length: 4 
        Value : 01 00 00 00 
                                      >                < 
        ctor args: () 



TypeRef #1 (01000001) 
--------------------------- 
Token:             0x01000001 
ResolutionScope:   0x23000001 
TypeRefName:       System.Object 
 
TypeRef #2 (01000002) 
--------------------------- 
Token:             0x01000002 
ResolutionScope:   0x23000001 
TypeRefName:       System.Console 
    MemberRef #1 
    --------------------------- 
        Member: (0a000001) WriteLine:  
        CallCnvntn: [DEFAULT] 
        ReturnType: Void 
        1 Arguments 
            Argument #1:  String 
 
TypeRef #3 (01000003) 
--------------------------- 
Token:             0x01000003 
ResolutionScope:   0x23000002 
TypeRefName:        
  Microsoft.VisualBasic.CompilerServices.StandardModuleAttribute 
    MemberRef #1 
    --------------------------- 
        Member: (0a000002) .ctor:  
        CallCnvntn: [DEFAULT] 
        hasThis  
        ReturnType: Void 
        No arguments. 
 
TypeRef #4 (01000004) 
--------------------------- 
Token:             0x01000004 
ResolutionScope:   0x23000001 
TypeRefName:       System.STAThreadAttribute 
    MemberRef #1 
    --------------------------- 
        Member: (0a000003) .ctor:  
        CallCnvntn: [DEFAULT] 
        hasThis  
        ReturnType: Void 
        No arguments. 
 
Assembly 
--------------------------- 
    Token: 0x20000001 
    Name : HelloDotNet 
    Public Key    : 
    Hash Algorithm : 0x00008004 
    Major Version: 0x00000000 
    Minor Version: 0x00000000 
    Build Number: 0x00000000 
    Revision Number: 0x00000000 
    Locale: <null> 
    Flags : [SideBySideCompatible]  (00000000) 
 
AssemblyRef #1 
--------------------------- 



    Token: 0x23000001 
    Public Key or Token: b7 7a 5c 56 19 34 e0 89  
    Name: mscorlib 
    Major Version: 0x00000001 
    Minor Version: 0x00000000 
    Build Number: 0x00000c1e 
    Revision Number: 0x00000000 
    Locale: <null> 
    HashValue Blob: 
    Flags: [none] (00000000) 
 
AssemblyRef #2 
--------------------------- 
    Token: 0x23000002 
    Public Key or Token: b0 3f 5f 7f 11 d5 0a 3a  
    Name: Microsoft.VisualBasic 
    Major Version: 0x00000007 
    Minor Version: 0x00000000 
    Build Number: 0x00000000 
    Revision Number: 0x00000000 
    Locale: <null> 
    HashValue Blob: 
    Flags: [none] (00000000) 
 
User Strings 
--------------------------- 
70000001 : (17) L"Hello .NET World!" 

 
 

The first thing you'll notice is that the metadata contains lots of information. The metadata is 
organized into tables, which essentially describe what your code defines and references. For 
example, TypeDef #1 is a definition table that includes information about the Main procedure 
that is defined in the code. In the TypeDef #1 table, you can see that the Main procedure 
doesn't return a value (ReturnType: Void) and doesn't take any arguments (No arguments). 
TypeRef #2 is a reference table that includes information about the .NET Framework 
System.Console class that is referenced in the code. The TypeDef #2 table references the 
WriteLine method, which doesn't return a value and takes one argument of type String. The 
metadata can also include name and version information, referenced files and assemblies, 
security permissions, and other information. 

You might be asking yourself, Why is all this metadata needed? One reason is that it provides 
a language-independent description of the code. Another reason is that it makes your 
assembly self-describing and enables other environments to discover functionality about your 
assembly. An assembly is one or more files that can be logically grouped and deployed. 
HelloDotNet.exe is actually a single file assembly. I'll talk more about assemblies in Chapter 
6. 

When designing Web services, the metadata can be used to create a WSDL (Web services 
Description Language) file, which can be used to discover information exposed by the 
service. You'll learn more about Web services in Chapter 10, but briefly a Web service is a 
software component or service that is exposed over the Web. To give you a sneak preview, 
Figure 2-3 shows a Web page automatically generated by pointing to an ASP.NET page 
designed as a Web service.  



 
Figure 2-3 : A Web page automatically generated from a Web service  

As you can see, the Web service being run has an Add method that, not surprisingly, expects 
two parameters. Type 2 in each of the Value boxes, and click Invoke. The result is returned as 
an XML result set, as shown in Figure 2-4. I'll cover XML and data access in general in 
Chapter 8.  

 
Figure 2-4 : The result screen that appears when you invoke the Add method in Figure 2-3  

The information gathered from examining the metadata lets potential users discover the 
required parameters and test the Web service without constructing any test frames. This 
capability will become increasingly important as Web services become the default method for 
exposing functionality over the Web. 

 Note In general, the ability to discover the details of code created based on the .NET 
Framework is beneficial. However, developers who are distributing binary code to run 
on client workstations rather than creating Web pages and Web services might not 
consider this capability an asset. As of this writing, there's no supported way to suppress 
this information, although in theory there's nothing to prevent the obfuscation of the 
information. For example, you could rename a method named GetSecretCode with a 
nonsense name such as DDFeewsayppfgeEk to change its visibility without 
compromising the runtime's ability to look at the code as required for security checks. 
This sort of obfuscation is used to conceal client-side JScript code as well as C language 
code that needs to be distributed in source code form. Fortunately, developers creating 
ASP.NET applications don't usually need to be concerned with this issue. 

Getting the JITters-Just in Time! 
In theory, as with Java, MSIL can be compiled and run in any environment that supports the 
runtime. As of this writing, this environment includes only the Intel architecture running 
Microsoft Windows, but it's safe to assume that the runtime will become available in other 
environments as well. What makes the potential for multiple platforms possible is the just-in-
time (JIT) compiler. Figure 2-5 shows the compilation and execution process.  



 
Figure 2-5 : The compilation and execution of managed code  

When you think about it, compiling an application from assembly code such as MSIL should 
impose some burden on the performance of the application. In practice, the overhead seems to 
be a difference small enough that in most cases no one will notice. Part of the reason for this 
low cost is certainly cleverness on the part of the developers of the JIT compiler, but just as 
much of the credit goes to the way programs are commonly used. Generally, not every single 
line of code within a program is used each time the program is run. For example, code related 
to error conditions might virtually never be executed. To take advantage of this fact, rather 
than compile the entire MSIL code into a native executable file at the start, the JIT compiler 
compiles code only as it is needed, and it then caches the compiled native code for reuse. The 
mechanics of the JIT compilation are fairly straightforward. As a class is loaded, the loader 
attaches a stub to each method of the class. The first time the method is called, the stub code 
passes control to the JIT compiler, which compiles the MSIL into native code. The stub is 
then modified to point to the native code just created, so subsequent calls go directly to the 
native code. 

Managed Code and Data 
So what is managed code, then? Managed code is code that provides enough information to 
allow the common language runtime to perform the following tasks: 

• Given an address inside the code, locate the metadata describing the method 
• Walk the stack 
• Handle exceptions 
• Store and retrieve security information  

For the runtime to carry out these tasks, the code must pass a verification process-unless a 
network administrator has established a policy that allows code to run without verification. 
During the verification process, the JIT compiler examines the MSIL code and the metadata 
to determine whether the code can be classified as type-safe. Type-safe code is code that can 
be determined to access only memory locations that it owns. This restriction ensures that the 
code works and plays well with other programs and that the code is safe from causing 
accidental or malicious corruption. Without type safety, there's no way to reliably enforce 
security restrictions. 

Related to managed code is managed data. Managed data is data that is allocated and freed 
automatically through the runtime using a process called garbage collection. With garbage 
collection, whenever an allocated item goes out of scope, the runtime cleans it up. 



One consequence of using garbage collection is that the time and potentially even the order of 
destruction of objects can't be determined. For instance, consider the following C# code 
snippet. (I'll introduce C# in Chapter 3; but even without knowing anything about C#, you 
should be able to understand this simple example.) 

class MainApp { 
    public static void Main() 
    { 
        System.String Hello = "Hello"; 
        System.String World = "World!"; 
        System.Console.WriteLine(Hello); 
        System.Console.WriteLine(World); 
    } 
} 

Here two String objects are created, one containing the literal 'Hello' and the other containing 
the literal 'World!'. Although the literals are declared in that order, there's no assurance that 
they will be destroyed in any particular order. Furthermore, there's no assurance that they will 
be destroyed as the strings go out of scope. The order, or timing, in the preceding example is 
meaningless, but it might make a difference in other examples. 

The nondeterministic freeing of objects isn't a problem unless the object holds some persistent 
resources that the runtime doesn't manage-for instance, a database connection or a window 
handle. When an object holds such resources, the solution is to provide a Dispose method and 
implement the IDisposable interface, which can be explicitly called to free resources. You'll 
see examples of this technique in subsequent chapters. 

About Unsafe Code 
There are cases in which you can't use managed code. For instance, many native Win32 
functions require pointers. One of the problems C/C++ programmers often had with Visual 
Basic was the lack of pointers. Visual Basic .NET still doesn't support pointers, but it does 
support a similar mechanism called a reference type. Still, in some cases, pointers can come in 
handy. You might also need to access unmanaged legacy code. In the best of all worlds, all 
our programs would magically be converted to managed code because of the advantages it 
offers, but sometimes this isn't possible. So what about the times when you really need a 
pointer or need to access legacy code? For these situations, C# provides a special keyword: 
unsafe. A method or a section of code can be declared as unsafe, and when compiled using the 
/unsafe compiler switch, will generate unsafe (unmanaged) code that isn't verifiable by the 
runtime. 

In addition to unsafe, C# provides the fixed keyword. During the process of garbage 
collection, variables are often moved to make more efficient use of memory. If several 
smaller blocks of free memory are required for a single, larger allocation, the garbage 
collector can move the blocks to make the single larger block available. Such rearranging 
would obviously be disastrous for any program that had stored, within unsafe code, a pointer 
to one of the variables the garbage collector moved. The fixed keyword was added for just this 
situation. Within a fixed block, the variables referenced will be pinned and won't be movable. 
After exiting the fixed block, the variables are once again available for the garbage collector 
to move as required. 



Conclusion 
ASP programmers seldom needed to understand the underlying Win32 API that supported 
ASP within IIS. Indeed, VBScript and JScript offered extremely limited options for doing 
anything more than the language itself allowed. 

ASP.NET programmers, on the other hand, have full access to all that the .NET Framework 
has to offer. Using C# or Visual Basic .NET, along with the .NET Framework, enable the 
ASP.NET programmer to do virtually anything the Win32 programmer can do.  

Chapter 3: The .NET Framework Objects 
and Languages  
Overview 
When developing real-world systems today, you'll encounter two significant problems: one is 
the problem of making software work on multiple platforms, and the other is the problem of 
enabling the various pieces of an application written in different languages to communicate. 
As you'll see in this chapter, the .NET Framework offers elegant solutions to both these 
problems. But first, let's review a little history. 

One attempt to solve the problem of creating software that will work on multiple platforms 
has been to use Sun Microsystems' Java programming language. To run Java, a computer 
must have a Java Virtual Machine (JVM), which will interpret the Java byte code at runtime. 
Because JVMs are available in browsers for multiple platforms, it would appear that Java has 
solved part of the problem. In reality, however, there can be incompatibility in the execution 
of the same Java byte code even on the same platform. For example, in a recent Java project, I 
needed to use radio buttons but without any text associated with them. I accomplished this by 
setting the radio button text to an empty string. This approach worked, but in Microsoft 
Internet Explorer, when the radio button with no text was selected, a small dotted-line box 
appeared next to the radio button where the text would have been. The solution seemed 
simple: instead of not setting the text of the radio button or setting the text of the radio button 
to an empty string, I explicitly set the text of the radio button to null. This remedy worked for 
a time. Unfortunately, when a new version of Netscape Navigator came out, setting the text of 
the radio button to null not only didn't work, but also actually caused the browser to end hard, 
displaying an error message referencing some C++ source code. So much for Java's cross-
platform compatibility.  

In the beginning of the PC revolution, cross-platform compatibility was a much bigger 
requirement. With so many slightly different variants of PCs, as well as other platforms, 
having a single development environment was very important. Several circumstances have 
minimized this issue. First, Intel x86 assembly code has become close to a universal assembly 
language. Virtually any application of any significance these days is available for an Intel-
based machine. Even other hardware platforms, notably the Apple Macintosh, provide 
emulation environments that allow Intel-based applications to run. 



The second important change that has affected the issue of cross-platform compatibility has 
been the explosion of the Internet. The Internet provides a single platform that allows 
applications from a variety of platforms to work on virtually any other platform, including 
even the newer ones, such as wireless devices. For many applications, HTML, along with 
client-side JavaScript, provides a rich enough environment. Of course, in some places, the 
Internet boom has increased the requirement for cross-platform execution-notably in creating 
richer user interfaces on the client side-and here's where Java has found a place. 

As I mentioned at the beginning of the chapter, another difficulty for software developers 
today is enabling the various pieces of an application written in different languages to 
communicate. Currently, a number of languages and technologies are used on the dominant 
platform (Microsoft Windows running on an Intel processor). Common languages include 
Microsoft Visual Basic, C/C++, and Borland Delphi. Less common, but still used, are 
languages such as COBOL, Fortran, and PERL.  

From the first days of Windows development, it has been possible to call into dynamic-link 
libraries (DLLs) from virtually any significant program development environment, but that 
doesn't mean it's always been easy. For example, something as simple as passing a string as a 
parameter that will accept some information can cause great problems. In most programming 
languages, you must ensure that before the string is passed in, it has sufficient allocated space. 
This task isn't something that many programmers in some programming environments are 
used to doing. For instance, in Visual Basic, strings are managed, and if you pass a string into 
another function by reference, the string can have information added to it without worrying 
about who allocated the space. User-defined data types are much worse, and on at least one 
occasion not so long ago, the way that Visual Basic padded members of user-defined types 
wreaked havoc on many a program that had relied on structures being packaged just so.  

In recent years, COM has been the glue that holds components from the various languages 
together. COM provides a least common denominator approach to things like data types and 
does nothing to address issues involved with using the Win32 API. Using the Win32 API 
from Visual Basic requires some very un-Visual-Basic-like data structures, and the Win32 
API can often be difficult to use from other languages as well. The string type supported by 
COM is BSTR, a not entirely friendly type for C/C++ programmers. 

The .NET Framework offers solutions to all these problems. First it provides a system of data 
types that can be marshaled between multiple .NET languages without any loss of fidelity. 
Developers using the .NET Framework will no longer have to worry about what language 
might be consuming the class or component they're writing. They can spend more time 
solving the problem at hand and less time worrying about how the C++ client for the server 
program is going to interpret a string or a currency type. 

Next the .NET Framework provides a virtual execution environment that addresses the need 
for portability without forsaking performance. Applications built on the .NET platform run as 
native applications on whatever platform they're running on. I'll explain the technological 
magic that allows this to occur in the following sections. 

The .NET Solution to Type Compatibility 
One of the traits that distinguishes any great programming environment is a well thought out 
object model. It's difficult to work with a patchwork of poorly designed objects and continue 



to create world-class software. Given a good object model, you can easily extend it with your 
own code. The underlying support for the object model of the .NET Framework is the type 
system the framework offers. 

Let me clarify a few terms here. When I talk about the type of a variable, I'm talking about 
what the variable is designed to hold. For example, if a variable is an integer type, you 
wouldn't expect that setting it equal to 'dog' or 'Fred' would work. Likewise, if the type were a 
date type, 7/24/1956 would be a reasonable value, but 7 wouldn't be. 

Classic Active Server Pages (ASP) programmers are used to a development language that 
doesn't use variables with types. More accurately, every variable is a single type: Variant. 
Thus, a variable can hold 7 in one line and 'Fred' in the next. Many beginning programmers 
find having a single data type convenient, but more experienced programmers realize the 
mess that this limitation can cause. Although forcing you to explicitly change variables from 
one type to another can be more work, it does ensure that you're converting a variable in a 
way you intended.  

Figure 3-1 shows the relationship between the various types the .NET Framework supports. 
Some of the types are probably familiar to you, and some refer to concepts that might be new 
to you, such as boxing and value types vs. reference types. I'll explain the new concepts 
associated with .NET Framework types as they come up in this chapter. 

 
Figure 3-1 : The .NET Framework type system  

Value Types 

Value types refer to generally small types that are represented as a series of bits. For example, 
native C/C++ and Visual Basic 6.0 both have int and long types used to represent numbers. 
These types are commonly used for much of the processing within any program. 

 Note One of the problems with the type system in the Visual Studio 6.0 programming 
languages is the lack of consistency. Here's an example: Imagine my surprise when one 
day I discovered that an ASP page that had worked for some time suddenly broke very 
badly. The error message indicated some kind of numeric overflow. Upon inspection, 
the error was obvious. The user ID field within the system had exceeded the upper 
bound for an integer within Visual Basic, and my call to CInt broke. The confusion was 
understandable for an old C/C++ programmer. In the Win32 C/C++ world, an int type is 
4 bytes wide, whereas in Visual Basic 6.0, it is only 2 bytes wide. Using the .NET 
Framework, with its common set of types across all languages, should reduce this sort of 
confusion.  



Table 3-1 lists some of the built-in value types in the .NET Framework and indicates whether 
they are common language specification (CLS) compliant.  

Table 3-1 : Various Value Types in the .NET Framework  
Class Name CLS Compliant Description 
System.Byte  Yes Unsigned 8-bit integer 
System.SByte  No Signed 8-bit integer 
System.Int16  Yes Signed 16-bit integer 
System.Int32  Yes Signed 32-bit integer 
System.Int64  Yes Signed 64-bit integer 
System.UInt16  No Unsigned 16-bit integer 
System.UInt32  No Unsigned 32-bit integer 
System.UInt64  No Unsigned 64-bit integer 
System.Single  Yes 32-bit floating point 

number 
System.Double  Yes 64-bit floating point 

number 
System.Boolean  Yes True or false value 
System.Char  Yes Unicode 16-bit character 
System.Decimal  Yes 96-bit decimal number 
System.IntPtr  Yes Signed integer that is 

platform dependent 
System.UIntPtr  No Unsigned integer that is 

platform dependent 
System.Object  Yes Root object 
System.String  Yes Fixed-length string of 

Unicode characters 
 Note Visual Basic .NET doesn't allow the use of signed bytes (System.SByte) or unsigned 

integer values of any kind (System.UInt16, System.UInt32, or System.UInt64). Any 
reference to these types will generate an error. There are no such restrictions in C# code, 
but to achieve the highest cross-language audience, you should avoid signed byte or 
unsigned integer values unless they are absolutely required. Using unsigned types 
should be less of an issue in Visual Basic .NET because of the large range of the 
System.Int64 type.  

All the types ending in 16 would be referred to as WORD size values in Win32. Those ending 
in 32 would be referred to as DWORD size values in Win32, and those ending in 64 would be 
referred to as QWORD size values in Win32. In reality, when using any of the languages that 
support .NET, you won't generally use the full System value types. For example, in C#, the int 
type is internally a System.Int32. You could use System.Int32 rather than int, of course, but 
that's not a good idea because it will make your code more difficult to read. In some 
situations, using the full System value type name makes sense. If you're creating components 
for commercial release, it might be better to be explicit about the type used because .NET 
language implementers might not implement types exactly as you would expect. 



Reference Types 

Reference types are types that are represented as a location for a sequence of bits. In fact, 
these types store only a reference to the real data. In many respects, these types are like 
pointers in that they point to the actual data stored on the common language runtime heap and 
can be accessed only through the reference. Remember that direct access to the underlying 
data isn't allowed so that the garbage collector can track outstanding references and then 
release the data when all references are released. 

One potential problem with consistent object models, such as the one included with the .NET 
Framework, is the overhead they can bring. For example, all the objects available in the .NET 
Framework are derived from the System.Object base type. Table 3-2 shows the methods that 
System.Object provides. 

Although System.Object is still a relatively lightweight object, carrying around a full-fledged 
object for each integer could hinder performance. Imagine that rather than just an integer here 
or there you have a large array of integers, each carried in its own object. This situation would 
not be workable. 

Table 3-2 : Methods of System.Object  
Method Description 
Equals(Obj)  Returns true if the Obj is the same instance as 

the instance that Equals is called on by 
default; can be overridden to test for equality 
for value types. 

Equals(ObjA, ObjB)  Returns true if ObjA is the same as ObjB. 
Finalize  Protected method called to allow the object to 

clean up resources when it is garbage 
collected; default implementation does 
nothing. In C#, you would use the destructor 
rather than Finalize. 

GetHashCode  Serves as a hash function for a particular type; 
suitable for hashing algorithms and data 
structures.  

GetType  Returns a Type object that exposes the 
metadata associated with the object the 
method is called on. 

MemberwiseClone  A protected method that provides a shallow 
copy of the object. A shallow copy copies 
only the contents of the current object, not any 
referenced objects. 

New  A Visual Basic .NET method for object 
construction. 

Object  A C# method for object construction. 
ReferenceEquals(ObjA, ObjB)  Returns true if ObjA and ObjB are the same 

instance or both are null. 



Table 3-2 : Methods of System.Object  
Method Description 
ToString  Returns a string representing the object. For 

example, for an integer type, would return the 
value. 

The three general reference type declarations are listed here: 

• Self-describing types  The type of any self-describing type can be determined from its 
value. Self-describing types are further broken down into class types and arrays. Much 
like classes in other languages and frameworks, a class in the .NET Framework serves 
as a container for the properties and methods of an object. Classes are further divided 
into user-defined classes, boxed value types, and delegates. 

• Interface  This type provides a way to package a description of a set of functionality. 
• Pointer  This type refers to a value that is used to point to another object. The value of 

a pointer type is not an object, so you can't determine the exact type from such a value. 
(You don't need a deep understanding of pointers to follow most of the code presented 
in this book.) 

These types are not tightly bound to any particular .NET language. Both Visual Basic .NET 
and C# provide syntax to support each of these reference types.  

Built-In Reference Types 

One of the built-in reference types that Visual Basic .NET and C# provide is the Object class 
(in C#, object with a lowercase o). Both types are based on the System.Object type described 
earlier.  

Value types have many purposes and allow for the more efficient use of resources. What 
happens when you want to use a value type as an object? For example, one of the methods of 
System.Object is ToString, often used for debugging purposes. The process is called boxing 
variables. 

For example, suppose you have an int variable named i and you want to do something with a 
string representation of that variable. Consider this code fragment: 

using System; 
 
class test 
{ 
    static void Main() 
    { 
        int i=5; 
        object box=i; 
        System.Console.WriteLine(box.ToString()); 
        System.Console.WriteLine(i.ToString()); 
        System.Console.WriteLine(box.GetType()); 
        System.Console.WriteLine(i.GetType()); 
    } 
} 



First we assign the integer i the value 5. Next we declare an object named box and assign it 
the value i. This line internally boxes the simple value type into an object and makes box refer 
to that reference type variable-hence the term boxing. On the following line, we print to the 
console (using System.Console.WriteLine)box.ToString(). ToString is a method of object, and 
the result is what you would expect: a 5 is displayed on the console.  

A bit more surprisingly, the next line, which prints i.ToString(), also displays 5 on the 
console. This case is a bit different because there's not an object in sight and yet calling 
ToString, a method of object, still does exactly what you would hope. This occurs through the 
magic of the .NET Framework, which boxes the value type (in this case, the integer i) in an 
object. Thus, the method is called on the boxed version of the integer variable. 

The next two lines use the same principles to display the type of object, using the GetType 
method of object. Notice that both the explicit boxed version of i held in the box object and 
the version boxed on the fly implicitly are of type System.Int32. Neither of these methods will 
likely be used except for debugging, but the ability to have an object contain a reference to 
any number of different types is useful.  

Boxing of a value type implies making a copy of the value being boxed. For example, 
suppose we added the following lines to the preceding code: 

i=12; 
System.Console.WriteLine(box.ToString()); 
System.Console.WriteLine(i.ToString()); 

The first line (which refers to a copy of i as it existed at the first assignment) will still display 
5 on the console, but the second line, which refers to a copy of i boxed just for this statement, 
will refer to the new value of i and will thus display 12 on the console. This happens because 
the type being boxed is a value type.  

If, on the other hand, we were boxing a reference type, the object would not reference a copy 
but rather the object, as in the following code: 

using System; 
 
class intHolder 
{ 
    public int i; 
} 
 
class test{ 
    static void Main() 
    { 
        object box; 
        intHolder ih = new intHolder(); 
        ih.i=22; 
 
        box=ih; 
 
        ih.i=99; 
        System.Console.WriteLine(((intHolder)box).i.ToString()); 
        System.Console.WriteLine(ih.i.ToString ()); 
    } 
} 



Both calls to System.Console.WriteLine would display 99 because box now refers to the 
reference type intHolder, not to a copy of it. If the type intHolder were declared as a struct 
rather than a class, the first line would display 22 because that would be the value of the copy 
of ih used when ih was boxed in the box object. 

 Note These examples have been using C#, but the general principles apply to all languages 
designed to support the .NET runtime.  

The String class, available in both Visual Basic .NET and C#, provides virtually all the string 
handling you could ever need. Just as important, the methods offered are identical in both 
languages, and future supported .NET languages should also provide the same functionality. 
The following code snippet only hints at the capabilities available within the String class: 

Public Module test 
 
Sub Main() 
    Dim s as String  
    Dim i as integer 
    s="This is a test      " 
    System.Console.WriteLine(s & "|") 
 
    s=s.Trim() 
    System.Console.WriteLine(s & "|") 
 
    s="46" 
    i=4 
    System.Console.WriteLine(i + System.Convert.ToInt32(s)) 
End Sub 
 
End module 

When run, this short program produces the following output: 

This is a test      | 
This is a test| 
50 

First a string is created, with lots of trailing spaces. This string is sent to the console, and the 
result is exactly as you might expect. Next the Trim method is called, and the string is now 
printed without any spaces between the word 'test' and the vertical bar. Next we set s equal to 
the literal '46'. In doing so, notice that the old string ('This is a test') isn't modified by setting s 
equal to '46' but rather a new copy is created. Strings are immutable-once created, they are not 
directly modified. There is a StringBuilder class that can be used if it's convenient to directly 
modify an existing string rather than create a new copy. Situations in which you might make 
many modifications to a large string might be appropriate places to use the StringBuilder class 
rather than creating a new string for each modification because the overhead of allocating and 
freeing a large block repeatedly might cause a performance problem. Finally, we convert the 
string to an Int32, add it to another integer value, and display the result.  

Most Visual Basic programmers are used to working with strings as you've seen here (making 
assignments directly to variables, with system support for tasks such as trimming strings). 
However, this isn't something that all C/C++ programmers are used to (although many C++ 
programmers are using the Standard Template Library's string classes and would thus be 
accustomed to this kind of convenience).  



Essentially, the same code could be written in C#, and just as important, when strings are sent 
from code in one .NET language to another, there's not the sort of confusion that was possible 
with traditional Win32 languages. In the course of working with lots of different Win32 
programming languages, I've encountered at least three varieties of strings:  

• The zero-terminated string, native to Win32 programming and C/C++ 
• The Basic string, or BSTR, native to Visual Basic and COM 
• The length-prefixed string, with a length byte followed by the actual string, native to 

Pascal 

In addition, there are variants of the zero-terminated string that use 2-byte-wide characters 
(Unicode). The .NET Framework provides a cross-language standard for storing strings. 

Other Objects in the .NET Framework 
The .NET Framework provides literally hundreds of other classes that enable you to do things 
that would have previously required dropping to the Win32 API. Table 3-3 lists some of these 
classes, along with a brief description of what they do.  

Table 3-3 : Overview of Some Classes Within the .NET Framework  
Object Description 
Microsoft.Win32.Registry  Manipulates the registry. 
System.Array  Provides support for arrays, including 

searching and sorting. 
System.Collections  Provides support for collections and includes 

classes such as ArrayList, BitArray, and Stack 
that make using data simpler. 

System.Data  Provides support for all sorts of data access, 
including support for ADO.NET. (ADO.NET 
is covered in Chapter 8.) 

System.DateTime  Provides support for working with dates and 
times. 

System.Diagnostics  Provides convenient support for writing to the 
event log and for other debugging tasks, as 
well as for accessing process information. 

System.Net  Provides support for the Domain Name 
System (DNS), cookies, Web requests, and 
Web responses. 

System.Net.Sockets  Provides support for using TCP/IP sockets, 
much like WinSock in Win32, but somewhat 
cleaner. 

System.Reflection  Provides a managed view of loaded types and 
methods, as well as the ability to create and 
invoke types. 

System.Threading  Provides support for creating and managing 
multiple threads of execution. 



Table 3-3 : Overview of Some Classes Within the .NET Framework  
Object Description 
System.Web.UI  Enables you to create controls and pages that 

will appear in Web applications. 
System.Xml  Provides support for XML, including 

Document Object Model (DOM) level 2 core 
and Simple Object Access Protocol (SOAP) 
1.1.  

 
Operations That Still Require Dropping to the Win32 API 

Although the set of objects present in the .NET Framework is rich, there are still occasions in 
which you'll have to drop to the Win32 API. For example, Memory Mapped Files (MMF) is 
one feature that as of this writing won't be directly supported within the .NET Framework. 
MMF allows multiple applications to share data in a convenient way. I've used MMF to allow 
a Win32 program written in C++ to communicate with another Win32 program written using 
Borland Delphi. In both languages, the result was a pointer that could be written to and read 
just like a traditional in-memory pointer. 

Both Visual Basic .NET and C# have the ability to call down to the Win32 API as well as to 
any standard Win32 DLL that you need to call.  

 
 

Table 3-3 just touches on the capabilities of the .NET Framework classes. Until now, some of 
the services offered haven't been available even as a standard part of the Win32 environment 
(for instance, XML support). Other things, such as threading, are supported in a way that 
makes possible what wasn't possible previously. These threading objects allow Visual Basic 
programmers to safely use multiple threads of execution. Because these objects execute 
within a managed context, all the advantages of managed code are there (security and 
reliability), and you're still able to do most of what you really need to do to build powerful 
applications. 

Overview of Visual Basic .NET 
Seldom has a company the size of Microsoft taken such a chance with one of its flagship 
products as Microsoft has done with Visual Basic .NET. Visual Basic .NET maintains much 
of the ease of use that has made Visual Basic famous, but it does so while breaking virtually 
all existing programs. Furthermore, ASP programmers accustomed to Visual Basic Scripting 
Edition (VBScript) face a learning curve to be able to take full advantage of what Visual 
Basic .NET has to offer. 

That said, the changes to Visual Basic should also silence the critics who often berate Visual 
Basic as a toy language. Among the major complaints of programmers who are not fans of 
Visual Basic is the error handling-sometimes called 'On Error Goto Hell' error handling. In 
fact, the Visual Basic error handling can be made to work correctly, but in practice, it's 
difficult to get right, and it's often handled badly. VBScript's error handling was even more 



limited, making the error handling available in Visual Basic look good, which was bad news 
for ASP programmers. The changes to Visual Basic's error handling are just one of several 
areas in Visual Basic that have improved dramatically in Visual Basic .NET, albeit at the cost 
of compatibility with all existing code. 

Out with the Old! 

In many respects, Visual Basic is a victim of its own success. There's a joke about the 
universe being created in seven days: God was able to do it because there was no installed 
base. I expect the Visual Basic team can appreciate this punch line all too well. Making 
changes in the primary development platform for many Windows developers is a tricky 
business. Each new version has brought along new features but for the most part has allowed 
older code to continue to function. Visual Basic .NET marks a break with that tradition.  

Such drastic changes are required for a lot of reasons. The most significant is that the 
underlying platform Visual Basic .NET is written for is no longer Win32 but rather the .NET 
Framework. This in and of itself requires many changes. For example, although it's possible 
to use the exception handling offered by the .NET Framework while continuing with the 
earlier 'On Error Goto' model, doing so would have been at the price of fully exploiting the 
new framework. Before we get into all the new features offered, it's worthwhile to take a 
moment to look at the two biggest compatibility issues between Visual Basic 6.0 and Visual 
Basic .NET, which involve the Set statement and the default calling convention. 

The Set Statement Goes Away 

One of the many areas in which Visual Basic could be confusing to newcomers was in its use 
of the Set keyword. For example, if you wanted to create an instance of an ActiveX control 
with the ProgID Foo.Bar, you would use code such as the following: 

Dim foo As Foo.Bar 
Set foo = New Foo.Bar 

Creating an object requires using the Set keyword. Unfortunately, many developers don't have 
a good understanding of what exactly is and is not an 'object' from the Visual Basic point of 
view; I've seen more than a few programmers who play with using or not using the Set 
keyword in a vain attempt to get their programs going. Sometimes the result is a working 
program, because the presence or absence of the Set keyword was the problem, but as often as 
not the real problem remains hidden until you look at the code more closely. 

Why was the Set keyword ever used? In Visual Basic 6.0 and earlier, objects had default 
properties that didn't require a parameter. So if an object foo had a parameterless default 
property called bar, without using Set there was the chance for ambiguity, as in the following 
example: 

Dim f as foo 
Dim o as Object 
foo=o 

In this case, it's unclear whether foo.bar should be set to o or whether foo should be set to o. 
Visual Basic .NET eliminates the need for using Set by eliminating parameterless default 



properties. More than eliminating the need for Set, in Visual Basic .NET, the Set keyword is 
no longer allowed. 

Default Parameter Calling Conventions 

The second area that will require significant source code changes in the move to Visual Basic 
.NET involves changes to the way parameters are passed to functions and subroutines. In 
earlier versions of Visual Basic, by default, all parameters were passed in by reference. A 
parameter passed in by reference means that instead of getting a copy of the parameter, the 
parameter is really a pointer to the parameter being passed. Consider the following code that 
could be used in Visual Basic 6.0:  

Private Sub Command1_Click() 
    Dim l As Long 
    Dim OldL As Long 
    Dim t As Long 
    l = CLng(Timer()) 
    OldL = l 
    t = CallingByReference(l) 
    MsgBox "l was " & CStr(OldL) & " but is now " & l 
End Sub 
 
Function CallingByReference(Ref As Long) As Integer 
    Ref = Ref Mod 60 
    CallingByReference = Ref 
End Function 

Running this code any time (after 12:01 a.m.) will result in two different values, as shown in 
Figure 3-2. 

 
Figure 3-2 : Message box displayed after calling CallingByReference  

The ability to modify parameters is often useful, but it can sometimes confuse beginners. For 
example, a beginning programmer glancing at this code won't see the relationship between the 
variable l and the variable Ref in CallingByReference. 

Of course, in Visual Basic 6.0 and earlier, you could always declare the parameter explicitly 
to be passed by value. Here's a Visual Basic 6.0 function that uses call by value: 

Function CallingByValue(ByVal Ref As Long) As Integer 
    Ref = Ref Mod 60 
    CallingByValue = Ref 
End Function 

By using the CallingByValue function rather than CallingByReference, the l value isn't 
modified. Figure 3-3 shows a sample message box after using CallingByValue instead.  



 
Figure 3-3 : Message box displayed after calling CallingByValue  

It's good form to explicitly declare the calling convention to avoid any confusion, and that 
will be the standard for the Visual Basic .NET programs that follow. 

 Note If a parameter is very large, passing it by reference can be more efficient than passing it 
by value, even if it's not the intention of the function to modify the parameter.  

In with the New! 

Although for some, the break with compatibility will be the big news about Visual Basic 
.NET, the far more important news is about the improvements to the language. The pain of the 
compatibility breaks will be temporary, but the gain from the new features will be long 
lasting. For developers familiar with working under the constraints of VBScript in ASP, the 
improvements are nothing short of earth shattering. 

Inheritance and Polymorphism 

In recent versions, Visual Basic has tried to become a more object-oriented language, with 
some success. To be considered object oriented, a language must meet three primary 
requirements. The language must be polymorphic, meaning that you can call a method of an 
object and, depending on the exact type of the object, different underlying methods are called. 
A second requirement for a language to be considered object oriented is encapsulation. 
Encapsulation means that there is a separation between what the object exposes and the 
internal workings of the object. For example, if an object exposes a collection of strings, it 
shouldn't expose details of implementation, such as whether the collection of strings is stored 
in an array, a linked list, or a stack. Perhaps the most important requirement is inheritance. 
Inheritance is the ability to derive one type from another. For example, given a simple class 

Public Class Base 
    Public Function foo 
        System.Console.Writeline("Base Foo") 
    End Function 
End Class 

we could create another class: 

Public Class Derived 
    Inherits Base 
    Public Function bar 
        System.Console.Writeline("Derived Bar") 
    End Function 
End Class 

If we created an instance of class Derived and called foo, 'Base Foo' would be displayed on 
the console.  



Inheritance is a convenient way to reuse code, well beyond the cutting and pasting that has 
often been the standard technique for code reuse in the past. For example, imagine a set of 
classes representing shapes. All shapes have some characteristics in common-for instance, 
they might have a position as well as a length and a width. You might also have some 
common actions that the shapes would take-for example, Draw or Move. Using inheritance, a 
hierarchy of shapes could be created, all originally descended from the class Shape, which 
might look like this (in abbreviated form): 

MustInherit Class Shape 
    Private myX as Integer 
    Private myY as Integer 
    Public Sub New() 
        myX = 0 
        myY = 0 
    End Sub 
    Public Property X 
        Get 
            X = myX 
        End Get 
        Set 
            myX = Value 
            Draw() 
        End Set 
    End Property 
    Public Property Y 
        Get 
            Y = myY 
        End Get 
        Set 
            myY = Value 
            Draw() 
        End Set 
    End Property 
    MustOverride Function Draw() 
End Class 
 
Class Square 
    Inherits Shape 
    Overrides Function Draw() 
        ‘ A Square-Specific Implementation 
    End Function 
End Class 

In this simple example, if you create an instance of class Square named s, setting the property 
s.X will call the Set property as defined in Shape and call the Draw method that is part of the 
Square class. Furthermore, if the Square object s is passed to a method that takes a Shape 
object, when Draw is called on the object in that method, the Draw associated with the 
Square object is called.  

Classes can have behaviors with the same name. The ability of the language to determine, 
based on the type of object, what behavior is used when requested is called polymorphism.  

A Word About Multiple Inheritance 

Visual Basic .NET doesn't support multiple inheritance-there can be only one Inherits 
keyword per class. In some object models (notably C++), multiple inheritance is used as a 



way to allow, for example, a Dog object to derive from both Animal and Pet. Single 
inheritance isn't a terrible limitation, and it eliminates the possibility of method ambiguity. 
For example, if Dog is derived from both Animal and Pet, and if both hierarchies have a 
method MakeNoise, there could be ambiguity over exactly which method should be called. 

You can get around this single inheritance restriction in many ways. In this case, Animal 
could be used as the base class, Pet could be derived from Animal, and Dog could be derived 
from Pet. This is not multiple inheritance because there is only a single Inherits at each level. 
(This solution would eliminate the PetRock class because a Pet Rock might be considered a 
pet, but it isn't an animal.) 

An alternative solution is to create Animal, from that derive a Dog class, and then also have 
the Dog class implement the Pet interface. An interface is like a class except that it contains 
only methods, and the methods aren't implemented at the interface level. A class can 
implement an interface simply by declaring that it does implement the interface by using the 
Implements keyword and by providing methods that match each of the methods in the 
interface. Methods can implement any number of interfaces.  

Structured Exception Handling 

There are two general models for handling errors. The first model makes reporting errors the 
responsibility of any given function, with any code that calls the function responsible for 
taking action based on the report of an error. This approach is typified by code such as the 
following: 

Ret = SomeFunc(SomeParam) 
If Ret = 0 then 
    ‘ An error occurred, so do something about it. 
End If 
‘ Continue processing. 

This kind of error handling has several problems. Using it often requires error processing to 
be mixed up with returned results. For example, in C, the fopen function returns a file pointer 
that can be used for other functions that require a file pointer, such as fgets and the like. If the 
file can't be opened, however, fopen returns not a file pointer but NULL, indicating that an 
error occurred opening the file. Thus, the return value from the function is either a file handle 
or something entirely different, a signal that an error occurred. 

Many developers can live with the lack of purity of the returned value, but most developers 
don't always remember to check the return result for the exceptional value indicating an error. 
In practice, most C programmers do check for the return code from calls to fopen because it 
has a fairly large chance of failure. However, many C programmers do not check for errors in 
functions like fputs because that function, using a valid file pointer, fails relatively rarely. 
Thus, many file writes will fail because the disk is full or, for other reasons, go unnoticed. 

The second model for error handling is exception handling. In this sort of system, an error 
throws an exception and that exception bubbles up the stack until an appropriate handler is 
found. Although Visual Basic offers a sort of exception handling using the On Error 
statement, the form in which it was exposed wasn't the most convenient. For VBScript 
programmers in ASP, the options were even more limited because the system didn't allow all 



the control over exception handling Visual Basic or Visual Basic for Applications (VBA) 
allowed. 

The preferred sort of exception handling is structured exception handling. Although 
structured exception handling is more a feature of the .NET Framework than of Visual Basic 
.NET per se, it is a critical change that will allow developers to create far more robust and 
reliable applications. The general form of structured exception handling is shown here: 

Try 
    ‘ Some code that might throw an exception 
Catch e As Exception 
    ‘ Handle the error. 
Finally 
    ‘ Used to do things that should always be done, 
    ‘ whether or not an exception occurs 
End Try 

Any code that might throw an exception should be placed within a Try block. It's possible that 
some or all exceptions might not be appropriately handled at this level. If that's the case, the 
exception can be rethrown (using the Throw keyword) and the Finally block will still be 
executed. For example, if within the Try block you're opening a database connection, the 
Finally block should be where the database connection will be closed because that block of 
code will always be executed. Within the Finally block, you might need to ensure that the 
database connection is in fact open because the exception could've been thrown before the 
database connection was successfully opened. You can have multiple Catch blocks so that 
you can catch specific exceptions. The Finally block allows all cleanup for the code in the Try 
block to appear in only a single place, rather than existing once for when the code executed 
normally and once in each of the Catch blocks. 

Function Overloading 

Function overloading allows the existence of multiple functions with the same name, 
differing only in the parameters. For example, if you were creating a method to send a string 
to a browser, you might declare several functions, each named Write. One version would 
accept a string as a parameter; another, an integer; and yet another, a DateTime object. 

If you're a VBScript programmer, you might wonder what the big deal is. In the old ASP 
object model under VBScript, you could, for example, call the Response.Write method with a 
string-or an integer, or a date-and it would seem to work as you would expect. There's a subtle 
difference, however. In VBScript, all variables are the Variant type, a sort of chameleon 
variable that becomes whatever is poured into it. The Response.Write method simply takes 
whatever is passed and writes the resulting string to the HTML stream. Function overloading 
is different in that the specific Write methods provided will be called based on the type of 
argument. If the Write method is called with an argument that can't be converted implicitly to 
one of the types that one of the overloaded Write functions expects, a compile time error is 
generated. 

Overloading can also be used to cleanly extend existing systems without breaking existing 
code. For example, if a Write method exists that accepts a string, and if there were an option 
to write with a color, a Write method that accepts a string and a color could be created. The 
code inside the existing Write method that takes a string could then be replaced cleanly with a 
call to the new Write method that accepts a string and a color, with the color being passed in 



the default color. Existing consumers of the Write method would be none the wiser, and the 
natural extension to the Write method could be used in new code.  

Stronger Typing of Variables 

One of the big changes for ASP programmers moving from VBScript to Visual Basic .NET is 
the introduction of stronger typing of variables. Although it was possible to require 
declaration of variables in VBScript, it wasn't possible to declare specific types. Statements 
such as the following were possible: 

Dim X 
 
X="Hello There" 
X=7 
 
Response.Write(X) 

In this example, the variable X is set to a string, and in the next line, it's set to an integer. The 
result of the Response.Write method is a string containing the number 7. This is possible 
because all variables in VBScript are the Variant type. To help catch potential data conversion 
errors, Visual Basic .NET has a new statement named Option Strict that is stricter than Option 
Explicit. Using Option Strict will cause Visual Basic .NET to generate an error if a data type 
conversion results in data loss, if a variable is undeclared, or if a variable is late bound.. This 
isn't news to most non-Visual Basic programmers, but for Visual Basic .NET programmers 
trying to create professional, reliable applications, it's a huge step forward. 

Short-Circuit Evaluation 

Another problem that C/C++ programmers coming to Visual Basic face is the way in which 
logical expressions are evaluated. For example, imagine that you have the following code in 
an ASP page: 

While rs.EOF=False And rs("Grouping")=thisGroup  
    ‘ Do something for all members of "thisGroup". 
Wend 

Programmers used to C and C++ will presume that if rs.EOF is True, the evaluation of the 
expression will end. In VBScript and Visual Basic 6.0, this isn't the case. In this example, 
even if rs.EOF is True, rs('Grouping') will be evaluated, causing an error to be raised. Of 
course, once rs.EOF is True, we really don't care about the other part of the expression 
because by definition it has no meaning. 

Visual Basic .NET includes two new logical operators (AndAlso and OrElse) that are used for 
short-circuit evaluation of expressions. In the preceding example, you could replace the And 
operator with AndAlso: 

While rs.EOF=False AndAlso rs("Grouping")=thisGroup  
    ‘ Do something for all members of "thisGroup". 
Wend 

Once rs.EOF evaluates to True, the program can just stop the expression evaluation because 
it's guaranteed that the expression in total can never evaluate to True. We can use this 



evaluation order to our advantage by ordering the parts of a logical expression from least 
expensive to evaluate to most expensive. However, you need to remember that short-circuit 
evaluation means that parts of an expression might not always run, which can cause side 
effects. And and Or continue to operate as they did in Visual Basic 6.0 and earlier, forcing 
evaluation of all parts of a predicate. 

Miscellaneous Changes  

Here's a list of some of the other changes in Visual Basic .NET. 

• All arrays use zero-based indexing. There are ways around this, using classes from the 
.NET Framework, but within the language itself, all arrays are zero-based. One 
interesting change designed to help port existing code is what happens when you 
declare an array. Consider the following declaration: 

Dim a(5) as Integer 

The result will be a six element array, from a(0) through a(5). This allows developers to 
continue using arrays as they have in the past. Developers who are creating cross-language 
components need to be aware of this behavior and explicitly document how the component 
will base the array. 

• The Option Base statement isn't supported. 
• Arrays don't have a fixed size. Arrays can be declared with a size; declared without a 

size and sized by calling New; or declared, initialized, and sized in a single statement, 
like this: 

Dim Month() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

In Visual Basic .NET, you can resize arrays with the ReDim statement. In Visual Basic 6.0, 
you couldn't resize arrays with a specified size. 

• String lengths can't be explicitly declared. 
• ReDim can't be used as a declaration. The variable must be declared using Dim first. 
• The Currency data type is no longer supported. The Decimal data type can be 

substituted. 
• The Type statement is no longer supported. Use the Structure…End Structure 

construction instead. Each Structure member must have an access modifier: Public, 
Protected, Friend, Protected Friend, or Private. Dim can be used-in which case, the 
access to the member is Public.  

• Multiple variable declarations on a single line without the type repeated result in all 
variables on the line being declared as the same type, as in the following example: 

Dim I, J as Integer 

In Visual Basic 6.0, this line will result in I being a Variant and J being an integer, but in 
Visual Basic .NET, both I and J are integers. 

• Variables declared within a block of code have block-level scope rather than 
procedure-level scope. Thus, if a variable I is declared within a While block, it's 
visible only within the block. Note that the lifetime of the variable is the same as that 



of the procedure, so if a block that declares a variable will be entered more than once, 
the variable should be initialized on each entry to the block. 

• Parentheses are always required when you're calling procedures with nonempty 
parameter lists. 

• Rather than While and Wend, Visual Basic .NET uses While and End While. Wend 
isn't supported. 

• IsNull is replaced by IsDBNull, and IsObject is replaced by IsReference. 

C# (C Sharp) Overview 
For many C and C++ programmers, the most anxiously anticipated feature of ASP.NET is the 
ability to use C#. C# is a new language, crafted specifically to work well within the .NET 
Framework. In particular, it is designed to work well within a managed code environment. 
One of the elements of C and C++ that makes these languages unsuitable for such an 
environment is the use of pointers. Although C and C++ can be used without using pointers, 
it's extremely difficult to do so. As discussed in Chapter 2, pointers make for unsafe code and 
thus can't be allowed in ASP.NET, except under extraordinary circumstances. 

C# provides a syntax much like that of C++, while at the same time making use of all the 
features of the .NET Framework, including the class library and garbage collection. Curly 
braces mark blocks, and many of the keywords (while, for, if, and so on) work exactly as they 
would in C++. These similarities make C# a comfortable starting place for C++ programmers 
looking to begin ASP.NET development.  

Differences Between C++ and C# 

If C# were exactly the same as C++, there'd be no reason for its existence. Clearly, there was 
a need for a programming language somewhat lighter and considerably safer than C++. For 
many people, Java has been that language, but Java too has some weaknesses that have been 
addressed in C#. Because C++ programmers moving to the ASP.NET environment will be a 
primary target for C#, let's begin with a look at the differences between C++ and C#. 

Safer Memory Management 

One of the places in which virtually all C++ programmers create trouble for themselves is in 
the use of memory management and pointers. For example, although most modern C++ 
compilers issue warnings about using uninitialized pointers, the warnings can be ignored. Just 
as important, when a pointer is initialized and the object or block of memory it points to is 
freed, nothing prevents the program from using the pointer again, since it's likely not pointing 
to NULL, but instead to the memory that has just been freed. This situation can make for some 
errors that are terribly difficult to debug. In some cases, the errors will appear only in certain 
circumstances, and even completely disappear when debugging code is in place-a C++ 
programmer's worst nightmare. C# has the answer. 

In C#, rather than having to explicitly free objects that have been created, the garbage 
collector keeps track of the references to managed objects. When there are no longer any 
references to an object, the object can be deleted. This approach is much cleaner than, for 
instance, the methods used for COM objects, which required programmer intervention to 
track the count of references. 



C# doesn't support pointers in safe or managed code. C# does support a reference mechanism 
when passing parameters to functions, which has the same effect as pointers, but eliminating 
pointers in safe code decreases the likelihood of incorrectly accessing memory. 

No Templates 

One of the disappointments for C++ programmers moving to C# is the lack of templates. 
Templates provide the ability to create parameterized types. For example, if you create an 
integer array class, you might someday need a floating-point array class. Templates provided 
a clean way to accomplish this, without requiring you to cut and paste code from the integer 
array class to the floating-point array class. Templates generally were implemented in such a 
way that behind the scenes the compiler was in fact doing almost exactly that, but it wasn't 
something the programmer needed to get involved with.  

It's extremely unlikely that templates will ever be added to C#. Currently, the developers of 
C# are looking at other alternatives for providing generic implementations that won't involve 
templates as such. The .NET Framework provides features such as array classes, so scenarios 
such as the preceding example won't likely present a problem. In other scenarios, however, 
some form of generics would be extremely useful. 

No Multiple Inheritance 

Like Visual Basic .NET, C# doesn't provide multiple inheritance. And as with Visual Basic 
.NET, this isn't a major problem. In C# (and Visual Basic .NET) you can create a class that 
implements multiple interfaces, which is often sufficient. Many C++ programmers have 
survived without the use of multiple inheritance, and I'm sure C# programmers won't be 
significantly harmed by this C++ feature not being present in C#. 

No Global Functions 

Unlike C++, which was designed from the ground up as a language that would allow 
programmers to move naturally toward using classes and other object-oriented features, C# is 
designed to force the use of many object-oriented practices. When C++ was designed, 
virtually all C programs could be converted to C++ simply by changing the extension from .c 
to .cpp and recompiling. Of course, these 'C++' programs weren't really in C++, and the major 
benefit of compiling them as C++ programs was to take advantage of enhanced warnings for 
things like functions used but not declared.  

Moving to C# is a totally different experience. For example, every C and C++ programming 
book or class for the last 20 years has contained a Hello World program that looked 
something like this: 

main() 
{ 
    printf("hello, world\n"); 
} 

This program, which will compile and run with most C or C++ compilers, is not a valid C# 
program. All functions in a normal C# program are methods of a class. For example, here's a 
C# version of Hello World: 



public class Hello1 
{ 
    public static void Main() 
    { 
        System.Console.WriteLine("Hello, World!"); 
    } 
} 

All standard C# console applications use the method of some class named Main as the entry 
point. In practice, this isn't an issue for most ASP.NET programs, but it is important to 
remember that there are no global functions-everything is a method of a class. 

No Preprocessor Macros 

In C and C++, it was common to use macros that the preprocessor interpreted. The 
preprocessor works before the code is compiled, and in the case of macros, one string is 
replaced by another before compiling takes place. The preprocessor was extremely 
convenient, but it also was used in ways that eventually caused problems.  

C# doesn't have a separate preprocessor, but it processes preprocessor directives as if there 
was one. The preprocessor directives are mostly the same as for the C and C++ preprocessor, 
such as #if, #else, and #endif as well as preprocessor directives used by Visual Studio .NET, 
such as #region and #endregion. However, the #ifdef directive is not present. 

Things You Can Do in C# but Not in Visual Basic .NET 

One of the most common questions on the Usenet newsgroups about C# and Visual Basic 
.NET is, 'What can I do in C# that I can't do in Visual Basic .NET?' As of this writing, C# has 
only one significant feature that isn't present in Visual Basic .NET and has several features 
that are mandatory in C# but optional in Visual Basic .NET. 

Operator Overloading 

In our examination of Visual Basic .NET, we looked at function overloading-that is, the 
ability to have multiple functions with the same name but different argument lists. C# offers 
this sort of overloading, as well as operator overloading, which Visual Basic .NET doesn't 
support. Operator overloading allows you to create a method that will be called when an 
operator, such as +, -, ++ (increment), or - (decrement) is used. Operator overloading in C# is 
similar to operator overloading in C++, but there are some notable differences. Table 3-4 lists 
the operators and indicates whether they can be overloaded in C#.  

Table 3-4 : C# Operators and Their Overloadability  
Operators Operator Type Overloadability 
+, -, !, ~, ++, -, true, false Unary Can be overloaded. 
+, -, *, /, %, &, |, ^, <<, >> Binary Can be overloaded. 
==, !=, <, >, <=, >= Comparison Can be overloaded, but only 

in pairs. For example, if == 
(equality comparison 
operator) is overloaded, != 
(inequality operator) must also 



Table 3-4 : C# Operators and Their Overloadability  
Operators Operator Type Overloadability 

be overloaded. 
&&, || Conditional logical Can't be overloaded, but are 

evaluated using the & and | 
operators, which can be 
overloaded. 

[] Array indexing Can't be overloaded, but the 
same effect can be obtained 
using indexers. This operator 
can be used, for example, to 
create a virtual array. 

() Cast Can't be overloaded, but the 
same effect can be obtained 
using conversion operators 
(implicit and explicit). 

+=, -=, *=, /=, %=, &=, |=, ^=, 
<<=, >>= 

Assignment Can't be overloaded, although 
they are evaluated so that, for 
example, += uses the + 
operator. 

=, comma (,), ?:, ->, new, is, 
sizeof, typeof 

Other Can't be overloaded. 

There's a television commercial in my part of the country that shows a group of people 
anxiously awaiting one of those big building implosions. The building is surrounded by lots 
of other buildings, and so when it seems to implode correctly, everyone looks relieved, but 
then suddenly the contractor gives a signal and several other buildings nearby implode as 
well. A reporter asks, 'What are you doing?' and the contractor replies, 'We had some extra 
dynamite, and so we figured, what the heck.' Overloading operators is a lot like that. It 
certainly has a place, and it is often quite useful. But just because you can, doesn't mean you 
should. A brief example might help you understand how you can use operator overloading:  

public class MyColor 
{ 
    public int red=0; 
    public int green=0; 
    public int blue=0; 
    public MyColor(int red,int green,int blue) 
    { 
        this.red=red; 
        this.green=green; 
        this.blue=blue; 
    } 
    public static MyColor operator + (MyColor c1, MyColor c2) 
    { 
        return new MyColor(c1.red+c2.red,  
            c1.green+c2.green,  
            c1.blue+c2.blue); 
    } 
 
    public static void Main() 



    { 
        MyColor red = new MyColor(255,0,0); 
        MyColor green = new MyColor(0,255,0); 
 
        MyColor yellow = red + green; 
        System.Console.WriteLine("RGB of yellow={0},{1},{2}", 
            yellow.red, 
            yellow.green, 
            yellow.blue); 
    } 
} 

This isn't a terribly useful example of operator overloading; it simply illustrates how 
overloading is done. In this example, the plus sign (+) operator is overloaded for the MyColor 
class. Here, the MyColor instance c1 is the instance to the left of the plus sign, and the 
instance c2 is the instance to the right of the plus sign. 

The following rules of thumb apply to operator overloading[*]: 

• Do supply standard math operators (+, −, * and /) for all classes that represent 
numbers. The classic example is a complex number class.  

• Do supply overloaded operators to do things folks will expect. For example, providing 
an equality operator for strings is a no-brainer. 

• Do remember the audience's expectations that some operators (such as + and −, * and 
/) are opposites. Overloaded operators should have opposite effects. 

• Don't violate people's expectations of what an operator will do. Making an overloaded 
plus sign (+) operator subtract is an easy example of a bad idea, but confusion can be 
subtler as well. For example, what should the increment operator do to the string 'Hi 
there'? Should it be 'i there'? How about 'Ij!uidsd'? (Each character has its ASCII value 
increased by 1.) If it's not obvious what an operator should do, don't create one. 

• Don't overload an operator to modify data where the operator for native types doesn't 
do so. For example, don't overload a comparison operator such as the equality operator 
(==) so that it modifies either side of the equality test. 

• Do create a method that will allow users of .NET languages that don't work with 
operator overloading to get the same functionality. 

Forced Early Binding 

One of the things that C++ programmers expect is that variables will always be declared and 
will always have a specific type associated with them. Visual Basic programmers have 
historically not been required to do this, although the better Visual Basic programmers will 
always use Option Explicit to force variables to be declared. Prior to Visual Basic .NET, not 
only was declaring a variable at all not required, but it was also not possible to force the type 
of variables to be declared. 

Visual Basic .NET provides a new directive, Option Strict, that prevents implicit conversions 
as well as late binding. Late binding occurs when an object is created and only at runtime is 
the type of the object determined. This approach can be useful, but in the case of COM 
objects, for example, it can force almost a doubling of communications overhead between the 
client program and the COM object. Deciding early (at compile time) the sort of object that 
will be used can enable the compiler to create faster code. 



 Note One problem with the Option Explicit and Option Strict directives in Visual Basic is that 
you have to remember to use them. Fortunately, there's a way within ASP.NET to force 
the use of these options on an application-by-application basis. You'll learn much more 
about these options in Chapter 4.  

C# doesn't require such directives as Option Explicit and Option Strict. More to the point, you 
can't use variables without declaring them, and you can't use variables without declaring the 
type of the variable. I've actually read reviews of Internet dynamic content development 
systems, including ASP, in which extra points were awarded to ASP simply because it 
allowed users to use variables without declarations. ASP.NET still gives you that option using 
Visual Studio .NET; however, I encourage you to use the Option Strict directive in Visual 
Basic .NET code. 

C# doesn't allow late binding, and this may be the only area in which you can be assured that 
C# programs will outperform Visual Basic .NET programs. In general, all .NET languages 
perform about the same. In the case of Visual Basic .NET and C#, similar programs will 
generate similar MSIL code, and thus the .NET Framework will execute both programs with 
about the same speed. In complicated programs, it's possible to use late binding in Visual 
Basic .NET inadvertently, resulting in a program that will perform somewhat more slowly 
than a C# program with equivalent functionality. 

[*]From Douglas J. Reilly, Computer Language (October 1992), page 57.  

Conclusion 
In this chapter, you've learned most of what you need to know to be comfortable with 
ASP.NET. I hope this brief introduction to types, objects, and the standard languages the 
.NET Framework supports has been helpful. In the next chapter, we'll dive into ASP.NET 
programming. If you're comfortable with HTML, you should be ready to go. If not, you might 
want to skip ahead to Appendix B, which covers everything you need to know about HTML 
to enjoy the balance of this book. 

Enough introduction! Let's get into Chapter 4, where we'll start creating ASP.NET 
applications. 

Chapter 4: ASP.NET Development 101 
Once you've decided that you need to create dynamic Web content (and you certainly will), 
your next decision is to choose the tools you'll use to develop it. In Chapter 1, you learned 
about some of the traditional options, such as the Common Gateway Interface (CGI), the 
Internet Server Application Programmers Interface (ISAPI), and Active Server Pages (ASP). 
ASP.NET is the newest tool for developing dynamic Web applications, and in this chapter, 
you'll find out what you need to know to start using it. ASP.NET development has much in 
common with traditional ASP development, but it also has many differences. Throughout the 
chapter, you'll see special notes that I've added to highlight the differences between ASP and 
ASP.NET for you ASP programming veterans. 

Hello ASP.NET World! 



As with all discussions of programming languages, it's almost mandatory that the first 
example presented be of the 'Hello World' variety. The brief introduction to ASP in Chapter 1 
showed the typical 'Hello World' example. This example is reproduced in Listing 4-1. 

Listing 4-1  SayHelloASP.asp sample application listing  
 
<% Option Explicit %> 
<HTML> 
<HEAD> 
<TITLE>Hello ASP World</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<% 
Dim x 
For x=1 to 5 
    Response.Write("<FONT size=" & x) 
    Response.Write(">Hello ASP World</FONT><BR>" & vbCrLf) 
Next 
%> 
</CENTER> 
</BODY> 
</HTML> 

 
 

A C# Example 

The source code to produce basically the same result, written for ASP.NET, is shown in 
Listing 4-2. 

Listing 4-2  SayHelloASPDOTNET.aspx sample application listing  
 
<%@ Page Language="C#" %> 
 
<HTML> 
<HEAD> 
<TITLE> 
My First ASPX Page 
</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<% 
 
int loop; 
String s=""; 
for ( loop=1 ; loop<=5 ; loop++ ) 
{ 
    s=s +  
        String.Format( 
        "<FONT SIZE={0}>Hello ASP.NET World</FONT><BR>", 
        loop); 
} 
Message.InnerHtml=s; 
%> 
<SPAN id="Message" runat=server/> 
 



</CENTER> 
</BODY> 
</HTML> 

 
 
 ASP.NET Differences  ASP file names have the extension .asp. ASP.NET file names 

generally have the extension .aspx. (Other extensions are associated 
with ASP.NET, but the rough equivalent of .asp for ASP.NET 
applications is .aspx.) ASP and ASP.NET files can coexist side by 
side on a Web site; however, they won't share common application 
settings or session information. It's generally better to have ASP and 
ASP.NET applications in separate directories, interacting only via 
standard arguments on URLs or through a common database. 

As you go through Listing 4-2, you'll notice lots of differences between the ASP.NET version 
and the ASP version in Listing 4-1. The first difference is the language used. Rather than 
Visual Basic Scripting Edition (VBScript), or even any version of Visual Basic, the page uses 
C#. In the first line, rather than the Option Explicit directive in the ASP example, 
SayHelloASPDOTNET.aspx uses a Page directive that also specifies the language to be used-
in this case, C#. Because the page uses C#, Option Explicit isn't required to force declaration 
of variables, and in any event, it isn't supported. 

The Page directive has several attributes that are important to know about. A partial list is 
shown in Table 4-1.  

Table 4-1  : Attributes of the Page Directive  
Attribute Description 
Buffer  Indicates whether HTTP response buffering is 

enabled. If true (the default), page buffering is 
enabled; if false, buffering is not enabled. 
Generally, buffering a page until all content is 
written can improve performance of the page, 
although it can make the page appear to be 
slower because nothing is visible on the 
browser until all content is written. Complex 
pages often exist within HTML tables. If an 
entire page is contained within a table, it won't 
be rendered until the table is closed out, so 
explicit buffering when content is within a 
table has no downside. 

ContentType  Defines the HTTP content type of the 
response as a standard Multipurpose Internet 
Mail Extensions (MIME) type. For instance, 
if this attribute is set to Application/MSWord, 
the application associated with the .doc file 
type will be called to open the document, 
instead of the standard HTML browser. 

EnableSessionState  If true, enables session state; if ReadOnly, 
allows reading but not writing of session state; 



Table 4-1  : Attributes of the Page Directive  
Attribute Description 

and if false, disables session state. 
EnableViewState  Indicates (true or false) whether view state is 

maintained across page requests. 
ErrorPage  Sets a target URL for redirection if an 

unhandled error occurs. 
Explicit  If set to true, the Option Explicit mode in 

Visual Basic .NET is enabled, requiring 
variables be declared. 

Inherits  Defines a code-behind class for the page to 
inherit. This attribute can be any class derived 
from the Page class. 

Language  Specifies the language used in all inline code 
blocks (enclosed in <% %>). This attribute 
can be any .NET supported language, 
including Visual Basic, C#, or JScript .NET. 

Strict  If set to true, the Option Strict mode in Visual 
Basic .NET is enabled, forcing the type of 
variable to be declared and disallowing 
narrowing type conversions. 

Trace  Indicates (true or false) whether tracing is 
enabled. The default setting is False. This 
attribute is used for debugging. 

Transaction  Indicates whether transactions are supported 
on the page. This attribute can be set to 
NotSupported, Supported, Required, or 
RequiresNew. 

WarningLevel  Indicates the warning level at which the 
compiler should abort compilation of a page. 
This attribute can be set to 0 through 4. 

There can be only one page directive per .aspx page. After the Page directive, the next few 
lines of SayHelloASPDOTNET.aspx are fairly standard HTML. Inside the code block 
(between the opening <% and the closing %>), you can see that the language used is C#. 
C/C++ programmers should be comfortable with the code that follows within the script block. 

Two variables are declared, an integer named loop and a string named s. The for loop steps 
through the font sizes between 1 and 5. I use the variable s to hold all the HTML code to be 
written out. After the loop, rather than using Response.Write to write the output (a very ASP 
way of doing things), I set the InnerHtml property of the Message object. Message is an 
HTML <SPAN> tag declared farther down in the actual HTML, as follows: 

<SPAN id="Message" runat=server/> 
 ASP.NET Differences  If you tried to use Response.Write to write the text in this example, it 

wouldn't compile. Strictly speaking, this isn't a limitation of 



ASP.NET, but rather a difference between Visual Basic and C#. 
Visual Basic isn't case-sensitive; C# is.  

Notice that the id attribute of the SPAN element is what is used to reference the HTML object. 
One other important feature of the SPAN element is that it has a runat attribute, indicating that 
it should be run at the server. Running controls on the server is common in ASP.NET 
applications. Also notice that there's no closing </SPAN> tag. This seeming omission isn't a 
problem because the trailing /> in the tag indicates that it's a start tag and an end tag. 

 Note Even if you explicitly place text within the <SPAN id='Message' runat=server> tag and 
a </SPAN> end tag, the text won't be rendered in the browser because the line 
Message.InnerHtml=s; resets the text to the string in the variable s. If instead you 
changed that line to read Message.InnerHtml= Message.InnerHtml + s;, the text in the 
actual HTML between the <SPAN></SPAN> tags would be displayed, followed by the 
text created in the loop. 

A Visual Basic .NET Example 

The same page created using Visual Basic .NET is shown in Listing 4-3. This listing isn't 
much different from the C# example presented in Listing 4-2. 

Listing 4-3 SayHelloASPDOTNETVB.aspx sample application listing  
 
<%@ Page Language="VB" %> 
 
<HTML> 
<HEAD> 
<TITLE> 
My First ASPX Page 
</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<% 
 
Dim tLoop as Integer 
Dim s as String 
s="" 
For tLoop=1 to 5 
    s= s + String.Format( _ 
        "<FONT SIZE={0}>Hello ASP.NET World</FONT><BR>", _ 
        tLoop) 
 
Next 
Message.InnerHtml=s 
%> 
<SPAN id="Message" runat=server /> 
 
</CENTER> 
</BODY> 
</HTML> 

 
 



Figure 4-1 shows the output from the Visual Basic .NET version of the page; however, both 
the Visual Basic .NET and the C# versions produce nearly identical output. 

 
Figure 4-1 : Output of the Visual Basic .NET version of the ASP.NET example shown in 
Listing 4-3  

I've made some obvious syntax changes in this example, such as removing semicolons at the 
ends of statements, changing curly braces ({ and }) and the for loop syntax, as well as 
changing variable declarations. In addition, although I commonly use a variable named loop 
in C/C++ and now in C#, loop is a reserved word in Visual Basic .NET-therefore, I changed 
the variable name. 

The ASP.NET Development Model 
Developing applications using ASP.NET is similar to developing applications using earlier 
versions of ASP, as far as the overall development model is concerned. Figure 4-2 shows the 
general workflow from the ASP developer's perspective. The process consists of editing the 
page, testing the page, possibly returning to edit the page again, and so on. 

 
Figure 4-2 : The ASP development cycle  



For the ASP.NET developer, the process is exactly the same, but the underlying activity is 
slightly different. Figure 4-3 shows the real process, which is edit-compile-test. The compile 
portion of the process is transparent to the developer. Every time an application is run, if the 
page being run hasn't been compiled, it's compiled automatically.  

 
Figure 4-3 : The ASP.NET development cycle  

What's interesting about the ASP.NET development cycle is that while the developer's 
impression is that nothing has changed in moving from ASP to ASP.NET, the change under 
the covers has a tremendous impact. The primary benefits, aside from the new languages and 
the .NET Framework, are that ASP.NET applications offer better performance than ASP and 
greater reliability, since compiling the application ensures that blatant syntax errors are caught 
on the first compilation, instead of being discovered only when the actual code is run. 

Creating an ASP.NET Web Application with Visual Studio 
.NET 
Although the ASP.NET Web Application is just one of the types of applications that are 
possible with ASP.NET, it's the type of application you'll create most often. You don't have to 
use Visual Studio .NET to create an ASP.NET Web application, but your life as a developer 
will sure be easier if you do. 

When you start Visual Studio .NET, the Start Page is the first screen that appears. The Start 
Page is designed to introduce you to the Visual Studio .NET environment as well as to allow 
you to perform many common tasks easily. One of the nicer features of the Start Page is the 
My Profile option. When this option is selected, you'll see a page similar to the screen shown 
in Figure 4-4.  



 
Figure 4-4 : The Visual Studio .NET My Profile screen  

Many developers moving to Visual Studio .NET will be coming from one of three integrated 
development environments (IDEs): Visual InterDev, Visual Basic, or Visual C++. 
Historically, these IDEs have been quite different, and developers who work in one IDE often 
have strong feelings about the other IDEs. To allow each developer to feel more comfortable 
with the new, common IDE, Visual Studio .NET allows you to configure different screen 
layouts and keyboard schemes to resemble what you're used to. Of course, not everyone will 
be happy with all the decisions the designers of the new IDE made, but having a common IDE 
is a necessary step toward supporting multilanguage development. 

 Note Although the IDE supports creating applications in Visual Basic .NET, C#, or C++, it 
doesn't currently allow you to create a single ASP.NET application with both Visual 
Basic .NET and C# pages in any clean way. I would hope that future versions of the IDE 
will allow greater integration of different languages within the same solution. The term 
solution, by the way, is the Visual Studio .NET term used to describe a container that 
can group multiple related projects.  

Changing the screen layouts to emulate the various Visual Studio 6.0 IDEs is an interesting 
exercise and can give you a feeling of déjà vu. Although I've been quite fond of the Visual 
C++ 6.0 layout, for the examples in the book, I've used the Visual Studio Default layout. 
After months of use in one form or another, I find the default layout to be quite good. 

Once Visual Studio .NET is open, you can create a new project in a variety of ways. The most 
general way is to click the File menu, point to New, and then click Project. Doing this 
displays the dialog box shown in Figure 4-5. 



 
Figure 4-5 : The Visual Studio .NET New Project dialog box  

The folder view on the left enables you to select the language you want to use for the project 
or one of several types of special projects. Most often, you'll create a project in one of the 
language folders. In the Other Projects folder, if you're using the Enterprise edition of Visual 
Studio .NET, you'll see enterprise template projects that can be useful when you're creating 
larger distributed applications. 

Depending on the type of project you select, the Location text box in the New Project dialog 
box might change to a folder location or a URL of the local Web server. In Figure 4-5, the 
location is a virtual directory on the root of the current Web directory because the project type 
selected is ASP.NET Web Application.  

Visual Studio .NET Interactions with Internet Information Services (IIS) 

For this example, I'll select the Visual Basic ASP.NET Web Application and name the project 
chap04. When I click OK, several things happen. As with Visual C++ 6.0, the name of the 
project becomes the name of the directory where the application is stored. In addition, Visual 
Studio .NET contacts the Web server (in this example, the local Web server) and creates an 
application directory by the same name. After the project is created, when I look at the 
Internet Information Services console, I see the application directory created, as shown in 
Figure 4-6. 

 
Figure 4-6 : The Web application directory created by Visual Studio .NET when a new 
ASP.NET application is created  

The right pane lists all the files created by Visual Studio .NET. The most significant files for 
you as the developer are the Web Form file (cleverly named WebForm1.aspx) and the code-



behind file (named WebForm1.aspx.vb). If this were a C# project, the code-behind file would 
be named WebForm1.aspx.cs. You can use the Web.config file to customize the application 
settings, as I'll discuss shortly. Visual Studio .NET also creates a bin folder, in which all the 
compiled code for the application is stored. 

Looking at the properties of the application directory (right-click on the chap04 application 
package icon and select Properties), you see nothing that unusual. From the Properties page, 
you can click the Configuration button to display the Application Configuration dialog box 
shown in Figure 4-7.  

 
Figure 4-7 : Application Configuration dialog box for newly created chap04 application 
directory  

The App Mappings tab displays the executable or DLL that will process a given extension. In 
this case, the entire executable path is too large to be seen in the dialog box, but you can take 
my word for it that all ASP.NET extensions are mapped in IIS to 
C:\WINNT\Microsoft.NET\Framework\v1.0.2941\aspnet_isapi.dll. As I write this, I'm using 
version 1.0.2941 of the .NET Framework, so you can see that the version is part of the path to 
the DLL that handles ASP.NET applications. The significance of the long path that includes 
the version number is that it should be possible to have different ASP.NET applications using 
different versions of ASP.NET. 

Your First Visual Studio .NET Web Page 

Once Visual Studio .NET has created the project files and the application directory in IIS, 
Visual Studio will look something like Figure 4-8. A couple of things are significant about 
Visual Studio. First, notice the faint grid on the WebForm1.aspx tab. These lines are shown 
when Grid Layout is enabled. Grid Layout allows you to place components precisely, as you 
would on a traditional Visual Basic form.  



 
Figure 4-8 : Visual Studio as soon as the new Web Application project has been created in 
Grid Layout  
 Note The way this magic of providing precise component layout works is worth a brief note. 

Traditionally, HTML hasn't been able to give you such fine control of the exact 
placement of components within a Web page. When you place a component using Grid 
Layout, the component is positioned using DHTML and Cascading Style Sheets (CSS) 
to it to tell the browser exactly where to render it. This idea is very cool but presents two 
possible problems. The first is what to do about downscale browsers that don't support 
DHTML and CSS. To allow the illusion of precise placement to continue, a complex set 
of tables is sent to the browser, doing an acceptable job of placing components in most 
cases. A second problem is that trying to use such precise control of a page might cause 
some developers to create layouts that are fragile. For example, if the fonts installed 
don't exactly match the fonts the developer used, the layout will likely be different. The 
decision is left to the developer: the Page Layout can be changed from Grid Layout to 
Flow Layout if you don't want that level of control. This setting is in the property dialog 
box of the page. If you're developing applications for the Internet rather than an intranet, 
on which you have control over the clients, it might not be reasonable to take advantage 
of the admittedly convenient Grid Layout. In general, examples in this book won't use 
Grid Layout but will instead use tables to align components. The next example is an 
exception because I'm trying to show the IDE, and Grid Layout does show that off quite 
well.  

Display the Toolbox by clicking the Toolbox tab on the left of the screen (just below the 
Server Explorer) or by clicking the Toolbox button on the toolbar. In this example, I'll add 
two labels and place them on the design grid, one on the top and one below it, both just about 
centered. I'll make the lower label a bit wider than the top label. Your screen should look 
something like the screen shown in Figure 4-9. 



 
Figure 4-9 : The chap04 main form with two labels added to the form  

There are two major ways to modify objects on an ASP.NET page at design time. One way is 
to use the Properties window. This window is by default in the lower right corner of Visual 
Studio. To change the top label, just click that label (it should be Label1 on the form) and 
modify the properties. Then change the Text property to read, 'Your First ASP.NET Page'. 
You may need to resize the label to keep all the text on a single line. Next, go to the Font 
property. This property has a + next to it, meaning that you can expand it to get to 
subproperties. Change the Bold subproperty to True. As you make the preceding changes, the 
changes will show up in the designer immediately. 

The second way to modify objects at design time is to change the code. Let's use code to 
change the other label, Label2. You have a couple coding options for changing the text of a 
label. First, notice the two tabs at the bottom of the design surface: the active tab, Design, and 
another tab, HTML. Click the HTML tab, and you'll see the HTML code, looking very much 
like HTML displayed in Visual InterDev 6.0. Figure 4-10 shows what that screen will look 
like.  

 
Figure 4-10 : HTML code as it appears in Visual Studio .NET  

Although it's not visible in the figure, at the very end of the line with the Label1 tag, the text I 
entered in the Properties window is between the opening and closing asp:Label tags. The 



Font-Bold attribute is also set to True, based on the change I made in the Properties window. 
The designer is a two-way designer; that is, changes made in HTML view also appear on the 
Design view. For example, if you click the <body> opening tag, the Properties window 
changes to reflect the properties of the body tag. Scroll down in the Properties window to the 
bgcolor property, click on the field, and you can either enter a valid HTML color directly or 
click the ellipsis button and use the Color Picker dialog box to pick the color. I selected a pale 
yellow, also known as #ffffcc. The appropriate attribute/value pair is added to the body tag. 
Now, if you click back to Design view, the background will be the selected color. 

Changing text in Design view or HTML view is fine, but you often need to change properties 
at runtime. To see the Visual Basic code for this page, select Code from the View or simply 
press the F7 key. The active pane will change to Webform1.aspx.vb, and the Visual Basic 
.NET code will appear. There is very little code, and some of that is hidden from view, by 
default. Ignore the hidden code for now. The method that matters is Page_Load, which should 
look like the following (reformatted a bit here for clarity): 

    Private Sub Page_Load(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles MyBase.Load 
        ‘Put user code to initialize the page here 
    End Sub 

Rather than putting just static text into Label2, I will put some static text and the current date 
and time, something that is certain to change each time I refresh. I add the following code just 
under the wizard comment about placing user code to initialize the page here: 

        Label2.Text = "The current date and time is " + Now() 

This code is very Visual Basic-like, and it should be clear exactly what I'm doing. Notice that 
I'm using the plus sign (+) rather than the ampersand (&) for concatenating strings. Use of the 
plus sign was discouraged in previous versions of Visual Basic but works correctly in both 
Visual Basic .NET and C#, and so I'll always use the plus sign to concatenate strings 
throughout this book. 

Once I've made all the changes I want to, I can go to the Debug menu and select Start, which 
will start the application with the debugger. If anything has been changed since the last time 
the application was run, the affected items will be compiled, so the first time you run the 
application, it will take longer than normal. If all has gone well, a screen similar to the one 
shown in Figure 4-11 will appear. 

 
Figure 4-11 : The chap04 example page when run after the modifications described in the text  



This is a very simple application, but I hope it gives you a feel for some of what is possible in 
the Visual Studio .NET IDE. Although some of the design features have been available in 
tools such as Visual InterDev 6.0, the implementation in Visual Studio .NET is much better. I 
virtually never used the designer in Visual InterDev 6.0 because it had a nasty habit of 
completely reformatting my nicely formatted HTML. Visual Studio .NET is more intelligent 
about how it formats your text moving from the designer to the editor, and there are 
configuration options to control most of the reformatting Visual Studio .NET does.  

The server components, such as the Label control, haven't been available before. The label 
components are barely the tip of the iceberg as far as server controls go. In subsequent 
chapters, we'll return to developing ASP.NET Web Forms as well as using server controls-
even creating your own server controls. 

Other Types of ASP.NET Applications 
Except for the preceding ASP.NET example, the examples we've looked at so far are very 
similar to existing ASP applications. A page is requested, and after server-side processing, the 
HTML code is sent to the browser. If all ASP.NET had to offer was greater efficiency doing 
what ASP has always allowed, it would still be a great improvement over ASP. But as the 
late-night infomercial hucksters often say, 'But wait, there's more!' 

In addition to the ASP-like applications you're already familiar with, you can use ASP.NET to 
help develop two other types of scalable applications: XML Web services and applications 
using the HTTP runtime, HTTP handlers, and HTTP modules. 

XML Web Services 

How often have you had a neat bit of processing that you needed to share with another 
application, either on an enterprise-wide intranet or over the Internet? For example, suppose 
you have a bit of code that does some specialized validation, such as a credit card validation 
function. Given a credit card number, the function returns feedback on whether the card is 
valid. The function might directly interact with a database, or perhaps it might even interact 
with some service that has a less than convenient programmer's interface. If you have multiple 
applications that need to access that functionality, you've had a few ways to make the 
functionality available. 

One way would have been to create a service application that would communicate with the 
various users of the function via TCP/IP, using a custom protocol. This option isn't terrible, 
but it does lead to a Tower of Babel of interfaces and protocols. Does the system expect the 
credit card confirmation result in uppercase ('YES' or 'NO') or lowercase ('yes' or 'no')? Does 
the system use commas to delimit the confirmation result from the authorization code, or 
tildes (~)? What port is it on? Will it work through firewalls? Will anyone remember this a 
year from now?  

The second option has been to create a Web page that, given arguments appended on the 
URL, will produce a result and return it as a page that can be read by the requesting 
application rather than displayed in the browser. This option does resolve the problem of 
making the function available through firewalls, but it does nothing to address the problem of 
a custom interface that can be easily forgotten. 



The solution is XML Web services. Briefly, XML Web services are software components that 
provide services to applications over the Web and use Extensible Markup Language (XML) 
for sending and receiving messages (I'll cover XML Web services in greater detail in Chapter 
10.) XML Web services are not dependent on the .NET Framework. As a matter of fact, XML 
Web services don't even require a Windows operating system on the server, and they can be 
created using any tool that can create a Simple Object Access Protocol (SOAP) compliant 
application. (MSDN contains an article, 'Develop a Web Service: Up and Running with the 
SOAP Toolkit for Visual Studio' that describes creating an XML Web service using the 
SOAP Toolkit in conjunction with Visual Studio 6.0; see 
http://msdn.microsoft.com/library/periodic/period00/webservice.htm.) 

So why are XML Web services in ASP.NET such a big deal? The reason is the simplicity 
ASP.NET brings to creating them. 

 Note XML Web services will revolutionize the way services are available on the Web. For 
example, at the time of this writing, Microsoft and eBay had announced an agreement to 
use XML Web services to integrate Microsoft services, such as Carpoint, bCentral, and 
WebTV, with eBay's marketplace. The kind of cooperation planned would be difficult 
without using XML Web services. 

How simple is it to use the .NET Framework to create XML Web services? Listing 4-4 shows 
the XML Web service code required in Visual Basic .NET, including the code generated by 
Visual Studio .NET. The generated code appears between the #Region and #End Region tags.  

Listing 4-4 Simple HelloWorld XML Web service code  
 
Imports System.Web.Services 
 
Public Class Service1 
    Inherits System.Web.Services.WebService 
 
#Region " Web Services Designer Generated Code " 
     
    Public Sub New() 
        MyBase.New() 
         
        ‘This call is required by the Web Services Designer. 
        InitializeComponent() 
         
        ‘Add your own initialization code after the  
        ‘InitializeComponent() call 
 
    End Sub 
     
    ‘ Required by the Web Services Designer 
    Private components As System.ComponentModel.Container 
 
    ‘NOTE: The following procedure is required by the Web Services Designer 
    ‘It can be modified using the Web Services Designer. 
    ‘Do not modify it using the code editor. 
    <System.Diagnostics.DebuggerStepThrough()> _ 
      Private Sub InitializeComponent() 
        components = New System.ComponentModel.Container() 
    End Sub 
     
    Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean) 



        ‘CODEGEN: This procedure is required by the Web Services Designer 
        ‘Do not modify it using the code editor. 
    End Sub 
     
#End Region 
     
    ‘ WEB SERVICE EXAMPLE 
    ‘ The HelloWorld() example service returns the string Hello World. 
    ‘ To build, uncomment the following lines then save and build the proje
ct. 
    ‘ To test this web service, ensure that the .asmx file is the start pag
e 
    ‘ and press F5. 
    ‘ 
    <WebMethod()> Public Function HelloWorld() As String 
        HelloWorld = "Hello World" 
    End Function 
 
End Class 

 
 

Figure 4-12 shows the results of calling the XML Web service-the XML message that is the 
string returned by the HelloWorld method of the class Service1. Of course, the more 
interesting case is when parameters are passed into the service and the service does something 
interesting with them to generate results. 

 
Figure 4-12 : The results returned by calling the HelloWorld XML Web service shown in 
Listing 4-4  

XML Web services open up a new world for application developers and let even the smallest 
development firm expose services over the Web that will create entirely new market 
opportunities. 

HTTP Handlers and HTTP Modules 

Additional types of ASP.NET applications are HTTP handlers and HTTP modules. These 
applications are roughly equivalent to ISAPI extensions and ISAPI filters, respectively. In the 
ASP world, you would resort to ISAPI extensions or filters under the following two 
circumstances: 

• You hit a performance or scalability wall. 
• You need the flexibility offered only by ISAPI extensions or filters. 



The first condition isn't likely to be an issue with the current ASP.NET applications that you 
can develop. Given that ASP.NET applications are compiled using the same runtime as HTTP 
handlers and HTTP modules, performance and scalability aren't likely to be an issue. 

The second condition is much more likely to persist-thus the need for HTTP handlers and 
HTTP modules. HTTP handlers are helpful if, for example, you need to port an existing CGI 
application to ASP.NET or if you need to do somewhat unusual things, like return binary 
data. HTTP modules can act like the binary equivalent of the Global.asax file, catching 
various events, and giving the application developer the greatest flexibility. 

Configuring an Application 
One element seems to be missing from the Visual Basic .NET code shown in Listing 4-3. 
Although I've often extolled the virtue of using Option Explicit, I didn't use it in this example, 
which can be done by setting Explicit='true' in @ Page. I can assure you that the page does 
require variables to be declared-I missed one of the references to loop when converting the 
application from C# to Visual Basic .NET and an error page did in fact appear, as shown in 
Figure 4-13. 

 
Figure 4-13 : The error message that appears when a variable is not declared in the source 
from Listing 4-3  

This error message contains quite a bit more information than ASP error messages had, and it 
includes the section of code that produced the error, with the line in which the error occurred 
displayed in red. By default, this detailed error message will appear only on the machine on 
which the application is running. This is good default behavior because it's possible that the 
source code displayed could include information about database user names and passwords, or 
worse. 

So if I didn't set Explicit to true, why did I get the error message about the undeclared variable 
(badly reported in this example as 'Expected an expression')? The answer is the Web.config 
file. In addition to specifying Explicit and Strict on each page, Web.config provides an 
application-global way to configure these and other application settings. Listing 4-5 shows a 
simple Web.config file.  

Listing 4-5 Simple Web.config file, with explicit and strict set to 'true', eliminating the need 
for setting these on each Visual Basic .NET page  
 



<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
    <system.web> 
        <compilation  
            debug="true"  
            defaultLanguage="C#"  
            explicit="true"  
            batch="true" 
            batchTimeout="30"  
            strict="true" > 
        </compilation> 
    </system.web> 
</configuration> 

If you're familiar with XML, you'll recognize Listing 4-5 as a simple, well-formed XML 
document. In Chapter 8, we'll discuss XML, but in the meantime, you'll need to be aware of 
the following aspects of XML: 

• XML always uses matched start and end tags, unlike HTML, which allows omission 
of many end tags. For some tags, the start and end tags can be represented as a single 
tag. For example, the following tag is valid: 

<compilation debug="true" /> 

• XML is case-sensitive. Thus, the following tag is not valid, because  
</Compilation> is not seen as a closing tag for <compilation>: 

<compilation debug="true"> </Compilation> 

Although early betas of the .NET Framework were forgiving about the case of attributes 
values (for example, true and True were considered the same), from Beta 2 onward, the 
configuration files are, correctly, completely case-sensitive. 

• XML values are enclosed in quotation marks. Thus, the following tag is not valid: 

<compilation debug=true />  

XML is the preferred data language of the .NET Framework. As of this writing, however, no 
automated administrative tool is available for editing the Web.config file. This isn't a terrible 
problem because XML is an easy format to follow, but it does mean that you'll need to 
manually tweak these files using a normal editor program such as Notepad (known 
affectionately as Notepad.NET to some of the early ASP.NET adopters). I won't cover all the 
many possible configuration options because they're described in the .NET Framework 
Software Development Kit (SDK) documentation; however, I will go through the important 
configuration options and their implications and explain each of the sections of the 
Web.config file.  

 
 

Where Does the Web.config File Go? 



One of the frustrations for ASP programmers is the odd patchwork of files that grows up 
around any complex Web site. With ASP, the only configuration file was Global.asa, and in 
fact, this file is similar to the ASP.NET Global.asax file. ASP beginners often ask, 'Where do 
I put the Global.asa file?' It turns out that in practice you had to put a Global.asa file in almost 
every directory. 

In ASP.NET, the Web.config file provides a mechanism that should allow many sites to have 
far fewer redundant configuration settings within each virtual site. There is a root 
configuration file, in the same format as the Web.config files, named Machine.config. This 
file is included with the .NET Framework and contains many default settings. It is located 
under the Windows root, in the %windir%\Microsoft.NET\Framework\<version>\CONFIG 
folder. All other directories on the site inherit settings from this root file and from all 
Web.config files that exist higher in the logical hierarchy. 

For example, one possible elementsection in the Web.config file is appSettings. This section 
is normally used to make certain variables available to all pages within an application, to 
multiple applications (if the variable exists in a virtual directory with other applications 
located logically under it), or even to all applications on the machine (if the appSettings 
section is located in the Machine.config file). Individual appSettings values can be overridden 
based on the location of the Web.config file in the hierarchy. Suppose, for example, that 
Machine.config contains the following section (within the <configuration></configuration> 
tags): 

<appSettings> 
    <add key="dsn" value="myDSN" /> 
</appSettings> 

Suppose further that there is a virtual directory named Test that has the following section 
within the <configuration></configuration> tags: 

<appSettings> 
    <add key="dsn" value="myLocalDSN" /> 
</appSettings> 

If these are the only appSettings sections on the machine, any page that retrieves the 'dsn' key 
from appSettings will receive the value 'myDSN', except any page within the Test application. 
Pages within the Test application or directories logically located below Test will receive the 
value 'myLocalDSN'.  

 Caution If hacking in the registry isn't enough fun for you and you're looking for a new way 
to hose your machine, do try improperly nesting sections of the Web.config or 
Machine.config files. Although this will mess up only your ASP.NET applications, it 
will thoroughly mess them up. It's possible that future versions of ASP.NET will be 
more forgiving of such errors, but the current version is not. Starting with Beta 2 of 
ASP.NET, all Web.config files are also case-sensitive. This requirement is 
reasonable from the standpoint that a well-formed XML file is case-sensitive, and the 
Web.config files are designed to be well-formed XML files. That said, the need for 
case-sensitivity can still be a pain. 

 
Don't Try This at Home! 



Imagine, if you will, a resource that's physically located at c:\Subdir1\Subdir2\Resource.aspx. 
VirtualDirectory1 is mapped to c:\SubDir1, and VirtualDirectory2 is mapped to 
c:\Subdir1\Subdir2. If you access Resource.aspx via 
http://localhost/VirtualDirectory1/Subdir2/Resource.aspx, you could access the file with 
completely different settings than if you used 
http://localhost/VirtualDirectory2/Resource.aspx. You can do this because the inheritance of 
configuration information from Web.config isn't based on the physical directory hierarchy but 
rather on the logical hierarchy defined by the virtual directory structure. 

Obviously, avoiding this kind of setup is important to ensure that all access to a resource uses 
the same set of configuration settings. 

The configuration files contain many sections. What follows in this section is an alphabetic 
listing and description of the significant sections, along with an example here and there to 
clarify things as needed. 

 
 

The authentication Section 

ASP.NET allows you to authenticate users in a number of ways. An example of the 
authentication section of the Web.config file, set up for forms-based authentication, is shown 
here: 

<authentication mode="Forms"> 
    <forms name=".ASPXUSERDEMO" loginUrl="login.aspx"  
        protection="All" timeout="60" /> 
</authentication> 

The options for the mode attribute of the <authentication> tag are listed in Table 4-2. 

Table 4-2 : Options of the mode Attribute  
Option Description 
Forms  Uses a user-provided form to gather 

identifying information 
Windows  Uses Windows authentication to obtain the 

identity of the user 
Passport  Uses Microsoft Passport authentication 
None  Uses no authentication 

Windows authentication in ASP.NET is similar to Windows authentication in earlier versions 
of ASP. Windows authentication generally piggybacks on IIS support for authentication using 
the Windows user database. One addition is the use of Windows authentication in addition to 
specific user and role authorization, as discussed in the next section. 

Passport authentication uses an external user database. Computers using Passport 
authentication must have the Passport SDK installed. ASP.NET provides a wrapper around 
the Passport SDK. 



Forms-based authentication is commonly used for Internet applications, where it's likely that 
not all users will be members of a Windows domain. Although this type of authentication can 
be implemented using traditional ASP, ASP.NET makes forms-based authentication much 
easier by creating a formalized framework to support it. 

 ASP.NET Differences  In ASP, the standard method for conducting forms-based 
authentication is to use the Session_OnStart event handler, placed in 
Global.asa to redirect new sessions to a login page. This method 
doesn't scale well because the session state in ASP can't be 
maintained across a Web server farm. The forms-based 
authentication method provides a cleaner way to ensure that users 
are logged in. 

 Note When most of the attributes within all the configuration files are specified, they are 
specified using camel casing, meaning that the initial letter of the attribute name is 
lowercase but the initial letter of embedded words are capitalized, for example loginUrl. 
This convention is different from some earlier public betas, in which the same attribute 
might have been specified using Pascal casing, resulting in LoginUrl.  

When forms-based authentication is specified, the <forms> subtag can be used. The <forms> 
tag has the attributes listed in Table 4-3. 

Table 4-3 : Attributes of the <forms> Tag  
Attribute Description 
loginUrl  The URL to which unauthenticated users are 

redirected. This URL can be on the same 
machine or on a different machine, but if it's 
on a different machine, the decryptionKey 
attribute must be the same for both machines. 
decryptionKey is an attribute of the 
<machineKey> tag in Machine.config. 

name  The name of the cookie to use for 
authentication purposes. If more than a single 
application on the machine uses forms-based 
authentication, the cookie name should be 
different for each application. ASP.NET uses 
/ as the path of the cookie. 

timeout  The number of minutes for expiration of the 
cookie. The cookie will be refreshed if half 
the timeout number of minutes has elapsed-an 
effort to reduce the number of warnings users 
will get about receiving cookies, if they have 
cookie warnings turned on. Because cookies 
can be refreshed, the timeout value might lose 
precision. Thus, you can't absolutely depend 
on a cookie timing out in exactly the number 
of seconds specified by the timeout attribute. 
The default value is 30. 

path  The path for cookies. Defaults to /. This 



Table 4-3 : Attributes of the <forms> Tag  
Attribute Description 

attribute can be changed by specifying a value 
in the <forms> tag or can be changed 
programmatically. 

protection  The type of cookie protection. Allowed values 
are Validation, Encryption, None, and All. 
Validation validates the cookie data but 
doesn't encrypt it. Encryption encrypts the 
cookie data but doesn't validate it. None does 
neither. All (the default) both encrypts the 
cookie data and validates it, detecting any 
alteration in transit. For all but the least 
important data, the default is a reasonable 
choice, at the cost of some performance. 

 Note Why validate the cookie? Because the cookie can be used to tie into information that 
shouldn't be shared, validating the cookie data and rejecting it if it has been tampered 
with can ensure that no one can, say, 'hijack' another shopper's shopping cart.  

A simple example of forms-based authentication is shown in Listings 4-6, 4-7, and 4-8. This 
simple-minded example uses a hard-coded user name and password within Login.aspx, as 
shown in Listing 4-6. These listings also introduce a new class of user interface objects. In 
Listing 4-6, the button used on the screen isn't a standard HTML submit button or even a 
standard HTML button but rather an asp:button. We'll examine these objects in much greater 
detail in Chapter 5. For now, just assume that they behave as you might expect. And just take 
it on faith that the OnClick event causes the code in Login_Click at the top of the page to be 
fired. Some of the details within Login_Click in Listing 4-6 aren't important, but the call to 
FormsAuthentication.RedirectFromLoginPage is. The first parameter passed to this method is 
the name of the user, obtained from UserEmail.Value, using magic not yet described (See 
Chapter 5 for more information on getting values from server controls.) The second 
parameter, hard-coded to false here, indicates that a persistent cookie shouldn't be used.  

Listing 4-6 A login page for authentication sample (Login.aspx)  
 
<%@ Import Namespace="System.Web.Security " %> 
 
<html> 
 
    <script language="C#" runat=server> 
    void Login_Click(Object sender, EventArgs E)  
    { 
        // Authenticate user: This sample accepts only one user with 
        // a name of doug@programmingasp.net and a password of  
        // ‘password' 
        if ((UserEmail.Value == "doug@programmingasp.net") &&  
          (UserPass.Value == "password"))  
        { 
            FormsAuthentication.RedirectFromLoginPage( 
              UserEmail.Value, false); 
        } 
        else  
        { 



            Msg.Text = "Invalid Credentials: Please try again"; 
        } 
    } 
    </script> 
    <body> 
    <form runat=server> 
        <center> 
        <h3> 
        <font face="Verdana" color=blue>Login Page</font> 
        </h3> 
        <table> 
            <tr> 
                <td> 
                    Email: 
                </td> 
                <td> 
                    <input id="UserEmail"  
                    type="text"  
                    runat=server  
                    size=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                    ControlToValidate="UserEmail"  
                    Display="Static" ErrorMessage="*"  
                    runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Password: 
                </td> 
                <td> 
                    <input id="UserPass"  
                    type=password  
                    runat=server size=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                    ControlToValidate="UserPass"  
                    Display="Static" ErrorMessage="*"  
                    runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <asp:button text="Login"  
                    OnClick="Login_Click"  
                    runat=server> 
                    </asp:button> 
                    <p> 
                    <asp:Label id="Msg" ForeColor="red"  
                    Font-Name="Verdana"  
                    Font-Size="10" runat=server /> 
                </td> 
            </tr> 
        </table> 
        </center> 
    </form> 
    </body> 
</html> 



 
 

Listing 4-7 also shows a pedestrian example (well, pedestrian once you understand how all 
the ASP.NET form magic works-and you'll learn all about that in Chapter 5). The form 
simply identifies the user and allows the user to log out. 

Listing 4-7 A restricted page for authentication sample that allows you to logout 
(Default.aspx)  
 
<%@ Import Namespace="System.Web.Security " %> 
 
<html> 
 
    <script language="C#" runat=server> 
    void Page_Load(Object Src, EventArgs E ) { 
        Welcome.Text = "Hello, " + User.Identity.Name; 
    } 
 
    void Signout_Click(Object sender, EventArgs E) { 
        FormsAuthentication.SignOut(); 
        Response.Redirect("login.aspx"); 
    } 
    </script> 
 
    <body> 
        <h3> 
        <font face="Verdana">Using Cookie Authentication</font> 
        </h3> 
        <form runat=server> 
            <h3> 
                <asp:label id="Welcome" runat=server /> 
            </h3> 
            <asp:button text="Signout" OnClick="Signout_Click" runat=server
 /> 
        </form> 
    </body> 
</html> 

 
 

Listing 4-8 is the configuration file for this application, named Web.config. This too is a plain 
vanilla file. The authentication section is the part we're interested in, and it's essentially the 
same as the authentication tag shown earlier. Also of interest is the authorization tag, which is 
related to authentication as well, as described in the next section. 

 Note This Web.config file must be at the root of the Web application directory in IIS. Also, 
the directory must be configured as an application directory, not a virtual directory.  

Listing 4-8 Configuration file for authentication sample  
 
<configuration> 
  <system.web> 
      <authentication mode="Forms"> 
        <forms name=".ASPXUSERDEMO" loginUrl="login.aspx" protection="All"  
          timeout="60" /> 
      </authentication> 



      <authorization> 
        <deny users="?" /> 
      </authorization> 
    <globalization requestEncoding="UTF-8" responseEncoding="UTF-8" /> 
  </system.web> 
</configuration> 

 
 

There's one more possible twist to forms-based authentication. Within the <authentication> 
tags, a credentials section is allowed, where user and password information is allowed. For 
example, these lines could be added to the authentication section of the Web.config file 
shown in Listing 4-8. 

<credentials passwordFormat="Clear" > 
    <user name="Mary" password="littlelamb"/> 
    <user name="Jill" password="uphill"/> 
</credentials> 

The <credentials> tag has one attribute, named passwordFormat. The possible values for the 
passwordFormat attribute are shown in Table 4-4. 

Table 4-4 : Options of the passwordFormat Attribute  
Option Description 
Clear  Stores passwords in clear text. This value is 

not at all secure, but it is convenient for 
testing. 

SHA1  SHA stands for Secure Hash Algorithm. 
SHA1 stores passwords as SHA1 digests. 
SHA1 uses a 160-bit hash size. SHA1 was 
designed to correct a problem in the original 
SHA algorithm. 

MD5  Stores passwords as MD5 digests. MD5 
produces a 128-bit 'fingerprint.' This value is 
much more reliable than a traditional 
checksum. 

To validate a user name and password from the form, the form needs to call the Authenticate 
method of the System.Web.Security.FormsAuthentication class.  

The authorization Section 

After the system has identified a user, you might want to control whether the user is allowed 
to use the application. The authorization section enables you to do exactly that by using 
<allow> and <deny> tags, which can specify individual users, or groups of users, called 
roles. Using Windows authentication, as described in the previous section, will cause 
Windows NT groups to be mapped to roles. 

The <allow> and <deny> tags are searched until the first match is found for the user being 
authorized. If the first match is in the <allow> tag, the user is allowed; if the first match is in 



the <deny> tag, the user is denied. Access is denied if no matching rule is found. In general, 
for sites where authorization is important, a <deny users='*' /> tag should be present to make 
the denial explicit. 

The customErrors Section 

For developers, one of the problems with ASP is a lack of clarity in error messages. ASP.NET 
has addressed this issue by creating far better error messages, often including not only the 
single line of code that triggered the error but also a couple lines before and after. This 
additional information is important because often an error on one line is in fact caused by an 
error on the previous line. Figure 4-14 shows an example ASP.NET error message. 

 
Figure 4-14 : An ASP.NET error message  

This error page provides a couple links at the bottom that are useful to the developer. The first 
is Show Detailed Compiler Output. Clicking this link shows the output that would be seen if 
the command-line compiler were called directly. This output can be useful if there are 
warnings that occur before the error that might give clues to exactly what's happening. The 
second link is Show Complete Compilation Source. Clicking this link shows a detailed listing 
of exactly what the compiler is using to generate the page. The simple Login.aspx page shown 
in Listing 4-6 is expanded to over 400 lines of detailed listing as ASP.NET takes the source 
provided (both the code and the HTML source) and produces the code required to create the 
page. Understanding this code isn't essential, but it can be useful in some debugging 
situations. 

One thing you should notice about the error page is that in showing the context, it actually 
shows the user name and password that the login page is expecting! Of course, this example is 
contrived. No one would use such a 'security' system in a real application. However, people 
might have other code that they'd prefer users not see, such as database user names and 
passwords embedded in connection strings. Embedding connection strings into the application 
is a bad idea for lots of reasons, but in any event, preventing exposure of source code to users 
is always a good idea. 

The customErrors section of Web.config can be used to ensure that this sort of error message 
appears only to developers during development and testing, and not to users. The 
<customErrors> tag supports the attributes listed in Table 4-5. 



 
 

Table 4-5 : Attributes of the <customErrors> Tag  
Attribute Option Description 
defaultRedirect    Specifies a URL to 

redirect the user to 
mode    Specifies whether 

custom errors are 
enabled, disabled, or 
shown only on remote 
clients 

  On  Specifies that custom 
errors are enabled 

  Off  Specifies that custom 
errors are disabled 

  RemoteOnly  Specifies that custom 
errors are shown only on 
remote clients 

 

The default behavior for mode is RemoteOnly, meaning that the type of error page shown in 
Figure 4-14 will not be shown to remote users; instead, a custom error page will appear. The 
default page shown to remote users is really designed for developers. It explains how to view 
the details of the error by making changes to the customErrors section of Web.config. By 
setting the defaultRedirect attribute, the user can be redirected to a page that can, for example, 
notify the administrator of the site where an error occurred.  

There is also an <error> subtag for the <customErrors> tag. The <error> subtag can occur 
multiple times. The two attributes in Table 4-6 are supported for the <error> subtag. 

Table 4-6 : Attributes of the <error> Subtag  
Attribute Description 
statusCode  Specifies an error code that redirects a 

browser to a nondefault error page 
redirect  Specifies the page to redirect to when the 

error specified in statusCode occurs 

The httpHandlers Section 

The httpHandlers section maps incoming requests to the appropriate IHttpHandler or 
IHttpHandlerFactory class, according to the URL and the HTTP verb requested. 

 Note When I talk about HTTP verbs, I mean the keywords used to specify what action the 
Web server should take. If you're an HTML developer, the most common HTTP verbs 
will be POST and GET. When you create an HTML form, you have these two options 
for the METHOD attribute of the <FORM> tag. When GET is specified, any form 
values are appended to the URL specified in the ACTION attribute. When POST is 



specified, form element data is sent as part of the message body. The practical 
difference is that when GET is used, all form elements are sent on the URL, possibly 
displaying information in the address box that you'd rather not display. (Imagine using 
GET for a login form-the form data, user name, and password will be appended to the 
URL.) POST is preferred, but in practice ASP.NET developers generally allow the 
framework to handle this type of detail. As you'll see in Chapter 5, most ASP.NET form 
tags simply use the runat=server attribute/value pair. 

The httpHandlers section in Web.config specifies the HTTP handlers that the applications 
will use as well as the order in which they will be used. The httpHandlers section supports 
three subtags: <add>, <remove>, and <clear>. The HTTP handler that will be used by an 
incoming request is determined by looking at all directories that are at a higher level 
(logically, not physically) and processing all the <add> and <remove> tags. An HTTP 
module included at a higher level with an <add> tag can be removed at a lower level with a 
<remove> tag.  

The <add> subtag adds an HTTP handler, and it supports the three attributes listed in Table 
4-7. 

Table 4-7 : Attributes of the <add> Subtag in httpHandlers  
Attribute Description 
verb  A comma-separated list of HTTP verbs, such 

as GET, PUT, POST, or the wildcard 
character (*). 

path  A single URL path or a simple wildcard, such 
as *.aspx. 

type  An assembly and class combination. 
Assemblies are groups of functionality 
grouped together for convenience. The .NET 
Framework first searches in the application's 
private bin directory and then in the system 
assembly cache. 

The <remove> subtag removes an HTTP handler specified previously in an <add> subtag. 
The verb/path in a <remove> subtag must exactly match the verb/path specified in a previous 
<add> subtag. Although it might seem silly to add and remove HTTP handlers, remember 
that the configuration files are read from the root through to the current directory (logically 
speaking, not physically), so it's not unreasonable to expect that there will be times when a 
handler needed at a higher level isn't needed in every application located logically below. The 
<remove> subtag supports two attributes, verb and path. These are exactly the same as their 
<add> subtag counterparts. 

The final subtag supported by the httpHandlers section is the <clear> subtag. When this 
subtag is present, all HTTP handler mappings inherited or configured are cleared. Here is a 
simple example of an httpHandlers section: 

<httpHandlers> 
    <add verb="*" path="MyApp.New" type="MyApp.New, MyApp" /> 
    <add verb="*" path="MyApp.Baz" type=" MyApp.Baz, MyApp" /> 



</httpHandlers> 

In this example, all HTTP verbs that are used on MyApp.New will be mapped to MyApp.New 
class in the MyApp assembly. All HTTP verbs used on MyApp.Baz will be referred to 
MyApp.Baz class, in the MyApp assembly. 

The httpModules Section 

The httpModules section of Web.config contains information similar to the httpHandlers 
section described in the preceding section. The httpModules section supports three subtags, 
<add>, <remove>, and <clear>, just as in the httpHandlers section. The <add> subtag 
supports two attributes, type and name, as described in Table 4-8.  

Table 4-8 : Attributes of the <add> Subtag in httpModules  
Attribute Description 
type  Specifies a comma-separated class/assembly 

combination. ASP.NET searches the 
application's private bin directory and then the 
system assembly cache. 

name  Specifies the name that the application uses to 
refer to the module identified in type. 

The <remove> subtag works exactly the same as the <remove> subtag in the httpHandlers 
section. The type and name attributes are used to match previously added HTTP modules. The 
<clear> subtag removes all HTTP module mappings from an application. 

The identity Section 

The identity section of Web.config controls the application identity of the Web application. 
This section allows you to set up impersonation. Impersonation is when the identity of the 
user on the client machine is used to determine what files on the server can be accessed. For 
example, suppose you have two virtual directories on an intranet-accessible Web server, one 
named Employees and the other named Managers. If all users are using Windows and have 
Windows 2000 domain user accounts and the Web server has both directories on an NTFS 
volume, instead of using application logic to prevent nonmanagers from accessing the 
Managers virtual directory, you could apply NTFS permissions to the files in the Managers 
directory that allowed only managers to access the files in that directory. 

The <identity> tag supports three attributes, as described in Table 4-9. 

Table 4-9 : Attributes of the <identity> Tag  
Attribute Option Description 
impersonate    Specifies whether client 

impersonation is used on each 
request 

  true  Specifies that client 
impersonation is used 



Table 4-9 : Attributes of the <identity> Tag  
Attribute Option Description 
  false  Specifies that client 

impersonation is not used, 
which is the default 

userName    Specifies the user name to use 
if impersonate is set to false  

password    Specifies the password to use if 
impersonate is set to false  

The pages Section 

The pages section of the Web.config file contains page-specific information that can be 
configured on the machine, site, application, or virtual directory level. The <pages> tag 
supports six attributes, as listed in Table 4-10. 

Table 4-10 : Attributes of the <pages> Tag  
Attribute Option Description 
buffer    Specifies whether 

the URL resource 
uses response 
buffering 

  true  Specifies that 
response buffering is 
enabled 

  false  Specifies that 
response buffering is 
disabled 

enableSessionState    Specifies whether 
session state is 
enabled 

  true  Specifies that 
session state is 
enabled 

  false  Specifies that 
session state is 
disabled 

  ReadOnly  Specifies that 
session state data 
can be read but not 
written 

enableViewState    Specifies whether 
view state (the state 
of controls) is 
enabled 



Table 4-10 : Attributes of the <pages> Tag  
Attribute Option Description 
  true  Specifies that view 

state is enabled 
  False  Specifies that view 

state is disabled 
pageBaseType    Specifies a code-

behind class that 
.aspx pages inherit 

userControlBaseType    Specifies a user 
control that user 
controls inherit 

autoEventWireup    Indicates whether 
page events are 
automatically 
enabled 

  true  Indicates that page 
events are 
automatically 
enabled 

  false  Indicates that page 
events are not 
automatically 
enabled 

 Note The autoEventWireup attribute seemed like a good idea at the time. Events are wired up 
based on the names of methods and components. Given a control named button1, 
button1_Click would handle the click event. In general, the attribute is more trouble than 
it's worth and has been the cause of no end of confusion on the ASP.NET newsgroups. 
All the examples in this book will use manual event wireup.  

 ASP.NET Differences  ASP developers are used to the fact that if you move beyond a single 
server, session state can't be saved using the standard ASP session 
state mechanisms. The problem is that in ASP, session state is stored 
directly on the Web server. In a clustered Web server farm 
environment, there's no assurance that each request from a particular 
client will go to a particular server in the cluster. Workarounds in 
ASP include saving small bits of session state in encrypted cookies 
and then using that little bit of session state to go to a database to get 
other information. Another workaround is to use a session identifier 
that gets passed from page to page and use that to get to a database. 
ASP.NET eliminates the need for these workarounds. Session state 
can be saved in a state server or SQL Server database. You'll find 
more information on session state in the section 'The sessionState 
Section' later in this chapter. 

The processModel Section 



The processModel section of Web.config controls the ASP.NET process model settings on an 
IIS Web server. This section is different from the other sections we've looked at in that it's 
read by the aspnet_isapi unmanaged DLL rather than the managed code configuration system. 
The processModel section sets many performance-tuning details. 

 Caution Many features can be configured using the processModel section, including attributes 
that specify how ASP.NET runs on multiprocessor machines. You can do things such 
as set the CPU mask, meaning that you can control which processors ASP.NET will 
use to execute its code. If this sounds like a good idea, think again. Microsoft has 
spent perhaps millions of dollars and untold hours creating the Windows 2000 
process scheduling system, which efficiently handles doling out works to the 
multiple processors in a multiple CPU system. Only under unique circumstances are 
you likely to do better manually mucking with setting processor affinity. 

The <processModel> tag supports many attributes. The most common ones are described in 
Table 4-11. 

Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 
enable    Specifies whether the 

process model is enabled. 
  true  Indicates that the process 

model is enabled. 
  false  Indicates that the process 

model is not enabled. 
timeout    Specifies the number of 

minutes until ASP.NET 
launches a new worker 
process to take the place of 
the current one. The default 
is infinite. 

idleTimeout    Specifies the number of 
minutes of inactivity until 
ASP.NET automatically 
shuts down the worker 
process. The default is 
infinite. 

shutdownTimeout    Specifies the number of 
minutes allowed for a worker 
process to shut itself down. 
If the timeout expires and the 
worker process hasn't shut 
itself down, ASP.NET shuts 
down the process. The 
format is hr:min:sec. The 
default is 5 seconds, or 
0:00:05. 



Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 
requestLimit    Specifies the number of 

requests allowed before 
ASP.NET automatically 
launches a new worker 
process to take the place of 
the current one. The default 
is infinite. 

requestQueueLimit    Specifies the number of 
requests allowed in the 
queue before ASP.NET 
launches a new worker 
process and reassigns the 
requests. The default is 5000.

memoryLimit    Specifies the maximum 
memory size, as a percentage 
of total system memory, that 
the worker process can 
consume before ASP.NET 
launches a new process and 
reassigns existing requests. 
The default is 40. A percent 
sign (%) is not specified; 
only the number. 

cpuMask    Specifies a bitmask value 
that indicates which 
processors in a multiple-
processor system are eligible 
to run ASP.NET processes. 
On a computer with four 
CPUs, a value of 0111 
binary (7 decimal) would 
mean that CPUs 0 through 2 
would run an ASP.NET 
process and CPU 3 would 
not. This attribute interacts 
with the webGarden 
attribute. 

webGarden    Controls CPU affinity when 
used in conjunction with the 
cpuMask attribute. A 
multiple-processor system is 
called a Web garden, 
presumably in contrast to a 
multiple-PC cluster, often 
called a Web server farm. 

  true  Specifies that the system 



Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 

should use the Windows 
CPU scheduling system. 
This is the default. 

  false  Specifies that cpuMask is 
used to specify which CPUs 
are eligible to run ASP.NET 
processes. 

userName    Specifies an account that 
worker processes should use. 
By default, processes run 
using the IIS account. 

password    Specifies the password for 
the account specified in the 
username attribute. 

logLevel    Specifies event types logged 
to the event log. 

  All  Specifies all process events 
are logged. 

  None  Specifies no process events 
are logged. 

  Errors  Specifies only errors are 
logged. These include 
unexpected shutdowns, 
memory limit shutdowns, 
and deadlock shutdowns. 
Errors is the default. 

clientConnectedCheck    Specifies the time a request 
is left in the queue before a 
check is made to see if client 
is still connected. 

comAuthenticationLevel    Specifies the level of 
authentication for DCOM 
security. The options for this 
attribute are: Default, None, 
Connect, Call, Pkt, 
PktIntegrity, and PktPrivacy. 
The default is Connect. 

comImpersonationLevel    Specifies the authentication 
level for COM security. The 
options for this attribute are: 
Default, Anonymous, 
Identify, Impersonate, and 
Delegate. (Anonymous is 
currently not supported.) 



Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 
maxWorkerThreads  5 to 100  Specifies the maximum 

number of worker threads to 
be used for the process on a 
per CPU basis. The default is 
25. 

maxIoThreads  5 to 100  Specifies the maximum 
number of I/O threads to 
used for the process on a per 
CPU basis. The default is 25.

ASP.NET runs one process per eligible CPU. On a four-processor system, if all CPUs are 
eligible to run ASP.NET (based on the settings for the cpuMask and webGarden attributes), 
four ASP.NET processes will be started. Given a cpuMask of 7 (as described earlier), only 
three ASP.NET processes will be created.  

The sessionState Section 

Session state support in ASP.NET is much more extensive and flexible than it was in ASP. 
For developers of small Internet or intranet Web sites, the session support offered by ASP was 
adequate. The problem was that ASP session state didn't scale out to multiple Web servers. 
ASP session state was stored on the Web server, and so using a system like Microsoft's 
Network Load Balancing provided no assurance that the same server in a Web server farm 
would service each request from a particular client. Another limitation of ASP session state is 
that it requires cookies to work. This constraint has become less of a problem because now 
virtually all browsers support cookies, and the sheer number of Internet sites that require 
cookies enabled have forced all but the most paranoid users to accept at least nonpersistent 
cookies. 

The sessionState section of Web.config controls how session state is managed. The 
<sessionState> tag supports five attributes, as described in Table 4-12. 

Table 4-12 : Attributes of the <sessionState> Tag  
Attribute Option Description 
mode    Specifies where session state is 

stored. 
  Off  Specifies that no session state is 

saved. 
  Inproc  Specifies that session state is 

saved locally, similar to ASP 
session state. 

  StateServer  Specifies that session state is 
saved on a remote state server. 

  SqlServer  Specifies that session state is 
saved in a SQL Server. 



Table 4-12 : Attributes of the <sessionState> Tag  
Attribute Option Description 
cookieless    Specifies whether session state 

should be saved without using 
client cookies. 

  true  Specifies that sessions without 
cookies are being used. 

  false  Specifies that sessions do use 
cookies. This is the default. 

timeout    Specifies the number of minutes 
a session can be idle before it is 
abandoned. The default is 20 
minutes, the same as in ASP. 

stateConnectionString    Specifies the server name and 
port where session state is stored 
remotely (for example, 
192.168.1.100:8484). This 
attribute is required when mode 
is set to StateServer. 

sqlConnectionString    Specifies the connection string 
for the SQL Server where the 
state is to be saved (for example, 
data source=192.168.1.100;user 
id=sa;password=). This 
attribute is required when mode 
is set to SqlServer. 

The same rules about trying to minimize the amount of data stored in session state that 
applied in ASP still apply in ASP.NET. 

The trace Section 

One of the problems developers experienced with ASP was difficulty obtaining detailed 
debugging information. Exactly what was the page doing when an error occurred? What 
portions of the code had been run? ASP.NET has much improved debugging information, and 
the trace section of the Web.config file allows you to specify settings for the trace service. 
Figure 4-15 shows a page that has been run with tracing enabled and pageOutput set to true. 



 
Figure 4-15 : The output of the Login.aspx page shown in Listing 4-6 when tracing is enabled 
and pageOutput is set to true  

The <trace> tag supports five attributes, as described in Table 4-13. 

Table 4-13 : Attributes of the <trace> Tag  
Attribute Option Description 
enabled    Specifies whether 

tracing is enabled. 
  true  Specifies that tracing is 

enabled. 
  false  Specifies that tracing is 

disabled. This is the 
default. 

requestLimit    Specifies the number of 
trace requests to save on 
the server. The default is 
10. 

pageOutput    Specifies whether trace 
information should be 
displayed at the end of 
each page. 

  true  Specifies that trace 
output is appended to 
each page. 

  false  Specifies that trace 
output is not appended 
to each page. This is the 
default. 

traceMode    Sets the order of trace 
output. 

  SortByTime  Specifies that output is 
sorted by time (thus, 



Table 4-13 : Attributes of the <trace> Tag  
Attribute Option Description 

displayed in the order 
the events being traced 
occurred). This is the 
default. 

  SortByCategory  Specifies that output is 
displayed alphabetically 
by category. See the text 
in this section for 
information about user-
defined categories. 

localOnly    Specifies whether the 
trace viewer is available 
only on the host Web 
server. 

  true  Specifies that trace 
output is available only 
on the server console. 
This is the default. 

  false  Specifies that trace 
output is available on 
any client, not just the 
Web server. 

In Figure 4-15, all trace output has a category of aspx.page, and it is generated automatically 
by the .NET Framework, with no explicit trace code in the page source. However, this is only 
half the power of ASP.NET tracing. Suppose, for example, that the login page from Listing 4-
6 wasn't responding the way you expected. Perhaps the following code seemed not to be 
working correctly:  

if ((UserEmail.Value == "doug@programmingasp.net") &&  
  (UserPass.Value == "password"))  
{ 
    FormsAuthentication.RedirectFromLoginPage( 
      UserEmail.Value, false); 
} 
else  
{ 
    Msg.Text = "Invalid Credentials: Please try again"; 
} 

You can use the Trace class to add user-defined trace statements in the trace output, like this: 

if ((UserEmail.Value == "doug@programmingasp.net") &&  
  (UserPass.Value == "password"))  
{ 
    Trace.Write("MyCategory", "Authenticated"); 
    FormsAuthentication.RedirectFromLoginPage( 
      UserEmail.Value,false); 
} 



else  
{ 
    Msg.Text = "Invalid Credentials: Please try again"; 
    Trace.Write("MyCategory", "Invalid Credentials"); 
} 

If you ran the page shown in Listing 4-6 with the modifications shown above and entered an 
invalid user name or password, the trace would have one 'MyCategory' trace line inserted into 
the output, as shown in Figure 4-16. 

 
Figure 4-16 : Trace output with explicit trace category added  

In addition to the Web.config sections described in this chapter, there are a couple other 
sections that are not generally modified (such as the globalization section). 

Creating an ASP.NET Web Application with Visual Studio 
.NET 
Although the ASP.NET Web Application is just one of the types of applications that are 
possible with ASP.NET, it's the type of application you'll create most often. You don't have to 
use Visual Studio .NET to create an ASP.NET Web application, but your life as a developer 
will sure be easier if you do. 

When you start Visual Studio .NET, the Start Page is the first screen that appears. The Start 
Page is designed to introduce you to the Visual Studio .NET environment as well as to allow 
you to perform many common tasks easily. One of the nicer features of the Start Page is the 
My Profile option. When this option is selected, you'll see a page similar to the screen shown 
in Figure 4-4.  



 
Figure 4-4 : The Visual Studio .NET My Profile screen  

Many developers moving to Visual Studio .NET will be coming from one of three integrated 
development environments (IDEs): Visual InterDev, Visual Basic, or Visual C++. 
Historically, these IDEs have been quite different, and developers who work in one IDE often 
have strong feelings about the other IDEs. To allow each developer to feel more comfortable 
with the new, common IDE, Visual Studio .NET allows you to configure different screen 
layouts and keyboard schemes to resemble what you're used to. Of course, not everyone will 
be happy with all the decisions the designers of the new IDE made, but having a common IDE 
is a necessary step toward supporting multilanguage development. 

 Note Although the IDE supports creating applications in Visual Basic .NET, C#, or C++, it 
doesn't currently allow you to create a single ASP.NET application with both Visual 
Basic .NET and C# pages in any clean way. I would hope that future versions of the IDE 
will allow greater integration of different languages within the same solution. The term 
solution, by the way, is the Visual Studio .NET term used to describe a container that 
can group multiple related projects.  

Changing the screen layouts to emulate the various Visual Studio 6.0 IDEs is an interesting 
exercise and can give you a feeling of déjà vu. Although I've been quite fond of the Visual 
C++ 6.0 layout, for the examples in the book, I've used the Visual Studio Default layout. 
After months of use in one form or another, I find the default layout to be quite good. 

Once Visual Studio .NET is open, you can create a new project in a variety of ways. The most 
general way is to click the File menu, point to New, and then click Project. Doing this 
displays the dialog box shown in Figure 4-5. 



 
Figure 4-5 : The Visual Studio .NET New Project dialog box  

The folder view on the left enables you to select the language you want to use for the project 
or one of several types of special projects. Most often, you'll create a project in one of the 
language folders. In the Other Projects folder, if you're using the Enterprise edition of Visual 
Studio .NET, you'll see enterprise template projects that can be useful when you're creating 
larger distributed applications. 

Depending on the type of project you select, the Location text box in the New Project dialog 
box might change to a folder location or a URL of the local Web server. In Figure 4-5, the 
location is a virtual directory on the root of the current Web directory because the project type 
selected is ASP.NET Web Application.  

Visual Studio .NET Interactions with Internet Information Services (IIS) 

For this example, I'll select the Visual Basic ASP.NET Web Application and name the project 
chap04. When I click OK, several things happen. As with Visual C++ 6.0, the name of the 
project becomes the name of the directory where the application is stored. In addition, Visual 
Studio .NET contacts the Web server (in this example, the local Web server) and creates an 
application directory by the same name. After the project is created, when I look at the 
Internet Information Services console, I see the application directory created, as shown in 
Figure 4-6. 

 
Figure 4-6 : The Web application directory created by Visual Studio .NET when a new 
ASP.NET application is created  

The right pane lists all the files created by Visual Studio .NET. The most significant files for 
you as the developer are the Web Form file (cleverly named WebForm1.aspx) and the code-



behind file (named WebForm1.aspx.vb). If this were a C# project, the code-behind file would 
be named WebForm1.aspx.cs. You can use the Web.config file to customize the application 
settings, as I'll discuss shortly. Visual Studio .NET also creates a bin folder, in which all the 
compiled code for the application is stored. 

Looking at the properties of the application directory (right-click on the chap04 application 
package icon and select Properties), you see nothing that unusual. From the Properties page, 
you can click the Configuration button to display the Application Configuration dialog box 
shown in Figure 4-7.  

 
Figure 4-7 : Application Configuration dialog box for newly created chap04 application 
directory  

The App Mappings tab displays the executable or DLL that will process a given extension. In 
this case, the entire executable path is too large to be seen in the dialog box, but you can take 
my word for it that all ASP.NET extensions are mapped in IIS to 
C:\WINNT\Microsoft.NET\Framework\v1.0.2941\aspnet_isapi.dll. As I write this, I'm using 
version 1.0.2941 of the .NET Framework, so you can see that the version is part of the path to 
the DLL that handles ASP.NET applications. The significance of the long path that includes 
the version number is that it should be possible to have different ASP.NET applications using 
different versions of ASP.NET. 

Your First Visual Studio .NET Web Page 

Once Visual Studio .NET has created the project files and the application directory in IIS, 
Visual Studio will look something like Figure 4-8. A couple of things are significant about 
Visual Studio. First, notice the faint grid on the WebForm1.aspx tab. These lines are shown 
when Grid Layout is enabled. Grid Layout allows you to place components precisely, as you 
would on a traditional Visual Basic form.  



 
Figure 4-8 : Visual Studio as soon as the new Web Application project has been created in 
Grid Layout  
 Note The way this magic of providing precise component layout works is worth a brief note. 

Traditionally, HTML hasn't been able to give you such fine control of the exact 
placement of components within a Web page. When you place a component using Grid 
Layout, the component is positioned using DHTML and Cascading Style Sheets (CSS) 
to it to tell the browser exactly where to render it. This idea is very cool but presents two 
possible problems. The first is what to do about downscale browsers that don't support 
DHTML and CSS. To allow the illusion of precise placement to continue, a complex set 
of tables is sent to the browser, doing an acceptable job of placing components in most 
cases. A second problem is that trying to use such precise control of a page might cause 
some developers to create layouts that are fragile. For example, if the fonts installed 
don't exactly match the fonts the developer used, the layout will likely be different. The 
decision is left to the developer: the Page Layout can be changed from Grid Layout to 
Flow Layout if you don't want that level of control. This setting is in the property dialog 
box of the page. If you're developing applications for the Internet rather than an intranet, 
on which you have control over the clients, it might not be reasonable to take advantage 
of the admittedly convenient Grid Layout. In general, examples in this book won't use 
Grid Layout but will instead use tables to align components. The next example is an 
exception because I'm trying to show the IDE, and Grid Layout does show that off quite 
well.  

Display the Toolbox by clicking the Toolbox tab on the left of the screen (just below the 
Server Explorer) or by clicking the Toolbox button on the toolbar. In this example, I'll add 
two labels and place them on the design grid, one on the top and one below it, both just about 
centered. I'll make the lower label a bit wider than the top label. Your screen should look 
something like the screen shown in Figure 4-9. 



 
Figure 4-9 : The chap04 main form with two labels added to the form  

There are two major ways to modify objects on an ASP.NET page at design time. One way is 
to use the Properties window. This window is by default in the lower right corner of Visual 
Studio. To change the top label, just click that label (it should be Label1 on the form) and 
modify the properties. Then change the Text property to read, 'Your First ASP.NET Page'. 
You may need to resize the label to keep all the text on a single line. Next, go to the Font 
property. This property has a + next to it, meaning that you can expand it to get to 
subproperties. Change the Bold subproperty to True. As you make the preceding changes, the 
changes will show up in the designer immediately. 

The second way to modify objects at design time is to change the code. Let's use code to 
change the other label, Label2. You have a couple coding options for changing the text of a 
label. First, notice the two tabs at the bottom of the design surface: the active tab, Design, and 
another tab, HTML. Click the HTML tab, and you'll see the HTML code, looking very much 
like HTML displayed in Visual InterDev 6.0. Figure 4-10 shows what that screen will look 
like.  

 
Figure 4-10 : HTML code as it appears in Visual Studio .NET  

Although it's not visible in the figure, at the very end of the line with the Label1 tag, the text I 
entered in the Properties window is between the opening and closing asp:Label tags. The 



Font-Bold attribute is also set to True, based on the change I made in the Properties window. 
The designer is a two-way designer; that is, changes made in HTML view also appear on the 
Design view. For example, if you click the <body> opening tag, the Properties window 
changes to reflect the properties of the body tag. Scroll down in the Properties window to the 
bgcolor property, click on the field, and you can either enter a valid HTML color directly or 
click the ellipsis button and use the Color Picker dialog box to pick the color. I selected a pale 
yellow, also known as #ffffcc. The appropriate attribute/value pair is added to the body tag. 
Now, if you click back to Design view, the background will be the selected color. 

Changing text in Design view or HTML view is fine, but you often need to change properties 
at runtime. To see the Visual Basic code for this page, select Code from the View or simply 
press the F7 key. The active pane will change to Webform1.aspx.vb, and the Visual Basic 
.NET code will appear. There is very little code, and some of that is hidden from view, by 
default. Ignore the hidden code for now. The method that matters is Page_Load, which should 
look like the following (reformatted a bit here for clarity): 

    Private Sub Page_Load(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles MyBase.Load 
        ‘Put user code to initialize the page here 
    End Sub 

Rather than putting just static text into Label2, I will put some static text and the current date 
and time, something that is certain to change each time I refresh. I add the following code just 
under the wizard comment about placing user code to initialize the page here: 

        Label2.Text = "The current date and time is " + Now() 

This code is very Visual Basic-like, and it should be clear exactly what I'm doing. Notice that 
I'm using the plus sign (+) rather than the ampersand (&) for concatenating strings. Use of the 
plus sign was discouraged in previous versions of Visual Basic but works correctly in both 
Visual Basic .NET and C#, and so I'll always use the plus sign to concatenate strings 
throughout this book. 

Once I've made all the changes I want to, I can go to the Debug menu and select Start, which 
will start the application with the debugger. If anything has been changed since the last time 
the application was run, the affected items will be compiled, so the first time you run the 
application, it will take longer than normal. If all has gone well, a screen similar to the one 
shown in Figure 4-11 will appear. 

 
Figure 4-11 : The chap04 example page when run after the modifications described in the text  



This is a very simple application, but I hope it gives you a feel for some of what is possible in 
the Visual Studio .NET IDE. Although some of the design features have been available in 
tools such as Visual InterDev 6.0, the implementation in Visual Studio .NET is much better. I 
virtually never used the designer in Visual InterDev 6.0 because it had a nasty habit of 
completely reformatting my nicely formatted HTML. Visual Studio .NET is more intelligent 
about how it formats your text moving from the designer to the editor, and there are 
configuration options to control most of the reformatting Visual Studio .NET does.  

The server components, such as the Label control, haven't been available before. The label 
components are barely the tip of the iceberg as far as server controls go. In subsequent 
chapters, we'll return to developing ASP.NET Web Forms as well as using server controls-
even creating your own server controls. 

Other Types of ASP.NET Applications 
Except for the preceding ASP.NET example, the examples we've looked at so far are very 
similar to existing ASP applications. A page is requested, and after server-side processing, the 
HTML code is sent to the browser. If all ASP.NET had to offer was greater efficiency doing 
what ASP has always allowed, it would still be a great improvement over ASP. But as the 
late-night infomercial hucksters often say, 'But wait, there's more!' 

In addition to the ASP-like applications you're already familiar with, you can use ASP.NET to 
help develop two other types of scalable applications: XML Web services and applications 
using the HTTP runtime, HTTP handlers, and HTTP modules. 

XML Web Services 

How often have you had a neat bit of processing that you needed to share with another 
application, either on an enterprise-wide intranet or over the Internet? For example, suppose 
you have a bit of code that does some specialized validation, such as a credit card validation 
function. Given a credit card number, the function returns feedback on whether the card is 
valid. The function might directly interact with a database, or perhaps it might even interact 
with some service that has a less than convenient programmer's interface. If you have multiple 
applications that need to access that functionality, you've had a few ways to make the 
functionality available. 

One way would have been to create a service application that would communicate with the 
various users of the function via TCP/IP, using a custom protocol. This option isn't terrible, 
but it does lead to a Tower of Babel of interfaces and protocols. Does the system expect the 
credit card confirmation result in uppercase ('YES' or 'NO') or lowercase ('yes' or 'no')? Does 
the system use commas to delimit the confirmation result from the authorization code, or 
tildes (~)? What port is it on? Will it work through firewalls? Will anyone remember this a 
year from now?  

The second option has been to create a Web page that, given arguments appended on the 
URL, will produce a result and return it as a page that can be read by the requesting 
application rather than displayed in the browser. This option does resolve the problem of 
making the function available through firewalls, but it does nothing to address the problem of 
a custom interface that can be easily forgotten. 



The solution is XML Web services. Briefly, XML Web services are software components that 
provide services to applications over the Web and use Extensible Markup Language (XML) 
for sending and receiving messages (I'll cover XML Web services in greater detail in Chapter 
10.) XML Web services are not dependent on the .NET Framework. As a matter of fact, XML 
Web services don't even require a Windows operating system on the server, and they can be 
created using any tool that can create a Simple Object Access Protocol (SOAP) compliant 
application. (MSDN contains an article, 'Develop a Web Service: Up and Running with the 
SOAP Toolkit for Visual Studio' that describes creating an XML Web service using the 
SOAP Toolkit in conjunction with Visual Studio 6.0; see 
http://msdn.microsoft.com/library/periodic/period00/webservice.htm.) 

So why are XML Web services in ASP.NET such a big deal? The reason is the simplicity 
ASP.NET brings to creating them. 

 Note XML Web services will revolutionize the way services are available on the Web. For 
example, at the time of this writing, Microsoft and eBay had announced an agreement to 
use XML Web services to integrate Microsoft services, such as Carpoint, bCentral, and 
WebTV, with eBay's marketplace. The kind of cooperation planned would be difficult 
without using XML Web services. 

How simple is it to use the .NET Framework to create XML Web services? Listing 4-4 shows 
the XML Web service code required in Visual Basic .NET, including the code generated by 
Visual Studio .NET. The generated code appears between the #Region and #End Region tags.  

Listing 4-4 Simple HelloWorld XML Web service code  
 
Imports System.Web.Services 
 
Public Class Service1 
    Inherits System.Web.Services.WebService 
 
#Region " Web Services Designer Generated Code " 
     
    Public Sub New() 
        MyBase.New() 
         
        ‘This call is required by the Web Services Designer. 
        InitializeComponent() 
         
        ‘Add your own initialization code after the  
        ‘InitializeComponent() call 
 
    End Sub 
     
    ‘ Required by the Web Services Designer 
    Private components As System.ComponentModel.Container 
 
    ‘NOTE: The following procedure is required by the Web Services Designer 
    ‘It can be modified using the Web Services Designer. 
    ‘Do not modify it using the code editor. 
    <System.Diagnostics.DebuggerStepThrough()> _ 
      Private Sub InitializeComponent() 
        components = New System.ComponentModel.Container() 
    End Sub 
     
    Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean) 



        ‘CODEGEN: This procedure is required by the Web Services Designer 
        ‘Do not modify it using the code editor. 
    End Sub 
     
#End Region 
     
    ‘ WEB SERVICE EXAMPLE 
    ‘ The HelloWorld() example service returns the string Hello World. 
    ‘ To build, uncomment the following lines then save and build the proje
ct. 
    ‘ To test this web service, ensure that the .asmx file is the start pag
e 
    ‘ and press F5. 
    ‘ 
    <WebMethod()> Public Function HelloWorld() As String 
        HelloWorld = "Hello World" 
    End Function 
 
End Class 

 
 

Figure 4-12 shows the results of calling the XML Web service-the XML message that is the 
string returned by the HelloWorld method of the class Service1. Of course, the more 
interesting case is when parameters are passed into the service and the service does something 
interesting with them to generate results. 

 
Figure 4-12 : The results returned by calling the HelloWorld XML Web service shown in 
Listing 4-4  

XML Web services open up a new world for application developers and let even the smallest 
development firm expose services over the Web that will create entirely new market 
opportunities. 

HTTP Handlers and HTTP Modules 

Additional types of ASP.NET applications are HTTP handlers and HTTP modules. These 
applications are roughly equivalent to ISAPI extensions and ISAPI filters, respectively. In the 
ASP world, you would resort to ISAPI extensions or filters under the following two 
circumstances: 

• You hit a performance or scalability wall. 
• You need the flexibility offered only by ISAPI extensions or filters. 



The first condition isn't likely to be an issue with the current ASP.NET applications that you 
can develop. Given that ASP.NET applications are compiled using the same runtime as HTTP 
handlers and HTTP modules, performance and scalability aren't likely to be an issue. 

The second condition is much more likely to persist-thus the need for HTTP handlers and 
HTTP modules. HTTP handlers are helpful if, for example, you need to port an existing CGI 
application to ASP.NET or if you need to do somewhat unusual things, like return binary 
data. HTTP modules can act like the binary equivalent of the Global.asax file, catching 
various events, and giving the application developer the greatest flexibility. 

Configuring an Application 
One element seems to be missing from the Visual Basic .NET code shown in Listing 4-3. 
Although I've often extolled the virtue of using Option Explicit, I didn't use it in this example, 
which can be done by setting Explicit='true' in @ Page. I can assure you that the page does 
require variables to be declared-I missed one of the references to loop when converting the 
application from C# to Visual Basic .NET and an error page did in fact appear, as shown in 
Figure 4-13. 

 
Figure 4-13 : The error message that appears when a variable is not declared in the source 
from Listing 4-3  

This error message contains quite a bit more information than ASP error messages had, and it 
includes the section of code that produced the error, with the line in which the error occurred 
displayed in red. By default, this detailed error message will appear only on the machine on 
which the application is running. This is good default behavior because it's possible that the 
source code displayed could include information about database user names and passwords, or 
worse. 

So if I didn't set Explicit to true, why did I get the error message about the undeclared variable 
(badly reported in this example as 'Expected an expression')? The answer is the Web.config 
file. In addition to specifying Explicit and Strict on each page, Web.config provides an 
application-global way to configure these and other application settings. Listing 4-5 shows a 
simple Web.config file.  

Listing 4-5 Simple Web.config file, with explicit and strict set to 'true', eliminating the need 
for setting these on each Visual Basic .NET page  
 



<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
    <system.web> 
        <compilation  
            debug="true"  
            defaultLanguage="C#"  
            explicit="true"  
            batch="true" 
            batchTimeout="30"  
            strict="true" > 
        </compilation> 
    </system.web> 
</configuration> 

If you're familiar with XML, you'll recognize Listing 4-5 as a simple, well-formed XML 
document. In Chapter 8, we'll discuss XML, but in the meantime, you'll need to be aware of 
the following aspects of XML: 

• XML always uses matched start and end tags, unlike HTML, which allows omission 
of many end tags. For some tags, the start and end tags can be represented as a single 
tag. For example, the following tag is valid: 

<compilation debug="true" /> 

• XML is case-sensitive. Thus, the following tag is not valid, because  
</Compilation> is not seen as a closing tag for <compilation>: 

<compilation debug="true"> </Compilation> 

Although early betas of the .NET Framework were forgiving about the case of attributes 
values (for example, true and True were considered the same), from Beta 2 onward, the 
configuration files are, correctly, completely case-sensitive. 

• XML values are enclosed in quotation marks. Thus, the following tag is not valid: 

<compilation debug=true />  

XML is the preferred data language of the .NET Framework. As of this writing, however, no 
automated administrative tool is available for editing the Web.config file. This isn't a terrible 
problem because XML is an easy format to follow, but it does mean that you'll need to 
manually tweak these files using a normal editor program such as Notepad (known 
affectionately as Notepad.NET to some of the early ASP.NET adopters). I won't cover all the 
many possible configuration options because they're described in the .NET Framework 
Software Development Kit (SDK) documentation; however, I will go through the important 
configuration options and their implications and explain each of the sections of the 
Web.config file.  

 
 

Where Does the Web.config File Go? 



One of the frustrations for ASP programmers is the odd patchwork of files that grows up 
around any complex Web site. With ASP, the only configuration file was Global.asa, and in 
fact, this file is similar to the ASP.NET Global.asax file. ASP beginners often ask, 'Where do 
I put the Global.asa file?' It turns out that in practice you had to put a Global.asa file in almost 
every directory. 

In ASP.NET, the Web.config file provides a mechanism that should allow many sites to have 
far fewer redundant configuration settings within each virtual site. There is a root 
configuration file, in the same format as the Web.config files, named Machine.config. This 
file is included with the .NET Framework and contains many default settings. It is located 
under the Windows root, in the %windir%\Microsoft.NET\Framework\<version>\CONFIG 
folder. All other directories on the site inherit settings from this root file and from all 
Web.config files that exist higher in the logical hierarchy. 

For example, one possible elementsection in the Web.config file is appSettings. This section 
is normally used to make certain variables available to all pages within an application, to 
multiple applications (if the variable exists in a virtual directory with other applications 
located logically under it), or even to all applications on the machine (if the appSettings 
section is located in the Machine.config file). Individual appSettings values can be overridden 
based on the location of the Web.config file in the hierarchy. Suppose, for example, that 
Machine.config contains the following section (within the <configuration></configuration> 
tags): 

<appSettings> 
    <add key="dsn" value="myDSN" /> 
</appSettings> 

Suppose further that there is a virtual directory named Test that has the following section 
within the <configuration></configuration> tags: 

<appSettings> 
    <add key="dsn" value="myLocalDSN" /> 
</appSettings> 

If these are the only appSettings sections on the machine, any page that retrieves the 'dsn' key 
from appSettings will receive the value 'myDSN', except any page within the Test application. 
Pages within the Test application or directories logically located below Test will receive the 
value 'myLocalDSN'.  

 Caution If hacking in the registry isn't enough fun for you and you're looking for a new way 
to hose your machine, do try improperly nesting sections of the Web.config or 
Machine.config files. Although this will mess up only your ASP.NET applications, it 
will thoroughly mess them up. It's possible that future versions of ASP.NET will be 
more forgiving of such errors, but the current version is not. Starting with Beta 2 of 
ASP.NET, all Web.config files are also case-sensitive. This requirement is 
reasonable from the standpoint that a well-formed XML file is case-sensitive, and the 
Web.config files are designed to be well-formed XML files. That said, the need for 
case-sensitivity can still be a pain. 

 
Don't Try This at Home! 



Imagine, if you will, a resource that's physically located at c:\Subdir1\Subdir2\Resource.aspx. 
VirtualDirectory1 is mapped to c:\SubDir1, and VirtualDirectory2 is mapped to 
c:\Subdir1\Subdir2. If you access Resource.aspx via 
http://localhost/VirtualDirectory1/Subdir2/Resource.aspx, you could access the file with 
completely different settings than if you used 
http://localhost/VirtualDirectory2/Resource.aspx. You can do this because the inheritance of 
configuration information from Web.config isn't based on the physical directory hierarchy but 
rather on the logical hierarchy defined by the virtual directory structure. 

Obviously, avoiding this kind of setup is important to ensure that all access to a resource uses 
the same set of configuration settings. 

The configuration files contain many sections. What follows in this section is an alphabetic 
listing and description of the significant sections, along with an example here and there to 
clarify things as needed. 

 
 

The authentication Section 

ASP.NET allows you to authenticate users in a number of ways. An example of the 
authentication section of the Web.config file, set up for forms-based authentication, is shown 
here: 

<authentication mode="Forms"> 
    <forms name=".ASPXUSERDEMO" loginUrl="login.aspx"  
        protection="All" timeout="60" /> 
</authentication> 

The options for the mode attribute of the <authentication> tag are listed in Table 4-2. 

Table 4-2 : Options of the mode Attribute  
Option Description 
Forms  Uses a user-provided form to gather 

identifying information 
Windows  Uses Windows authentication to obtain the 

identity of the user 
Passport  Uses Microsoft Passport authentication 
None  Uses no authentication 

Windows authentication in ASP.NET is similar to Windows authentication in earlier versions 
of ASP. Windows authentication generally piggybacks on IIS support for authentication using 
the Windows user database. One addition is the use of Windows authentication in addition to 
specific user and role authorization, as discussed in the next section. 

Passport authentication uses an external user database. Computers using Passport 
authentication must have the Passport SDK installed. ASP.NET provides a wrapper around 
the Passport SDK. 



Forms-based authentication is commonly used for Internet applications, where it's likely that 
not all users will be members of a Windows domain. Although this type of authentication can 
be implemented using traditional ASP, ASP.NET makes forms-based authentication much 
easier by creating a formalized framework to support it. 

 ASP.NET Differences  In ASP, the standard method for conducting forms-based 
authentication is to use the Session_OnStart event handler, placed in 
Global.asa to redirect new sessions to a login page. This method 
doesn't scale well because the session state in ASP can't be 
maintained across a Web server farm. The forms-based 
authentication method provides a cleaner way to ensure that users 
are logged in. 

 Note When most of the attributes within all the configuration files are specified, they are 
specified using camel casing, meaning that the initial letter of the attribute name is 
lowercase but the initial letter of embedded words are capitalized, for example loginUrl. 
This convention is different from some earlier public betas, in which the same attribute 
might have been specified using Pascal casing, resulting in LoginUrl.  

When forms-based authentication is specified, the <forms> subtag can be used. The <forms> 
tag has the attributes listed in Table 4-3. 

Table 4-3 : Attributes of the <forms> Tag  
Attribute Description 
loginUrl  The URL to which unauthenticated users are 

redirected. This URL can be on the same 
machine or on a different machine, but if it's 
on a different machine, the decryptionKey 
attribute must be the same for both machines. 
decryptionKey is an attribute of the 
<machineKey> tag in Machine.config. 

name  The name of the cookie to use for 
authentication purposes. If more than a single 
application on the machine uses forms-based 
authentication, the cookie name should be 
different for each application. ASP.NET uses 
/ as the path of the cookie. 

timeout  The number of minutes for expiration of the 
cookie. The cookie will be refreshed if half 
the timeout number of minutes has elapsed-an 
effort to reduce the number of warnings users 
will get about receiving cookies, if they have 
cookie warnings turned on. Because cookies 
can be refreshed, the timeout value might lose 
precision. Thus, you can't absolutely depend 
on a cookie timing out in exactly the number 
of seconds specified by the timeout attribute. 
The default value is 30. 

path  The path for cookies. Defaults to /. This 



Table 4-3 : Attributes of the <forms> Tag  
Attribute Description 

attribute can be changed by specifying a value 
in the <forms> tag or can be changed 
programmatically. 

protection  The type of cookie protection. Allowed values 
are Validation, Encryption, None, and All. 
Validation validates the cookie data but 
doesn't encrypt it. Encryption encrypts the 
cookie data but doesn't validate it. None does 
neither. All (the default) both encrypts the 
cookie data and validates it, detecting any 
alteration in transit. For all but the least 
important data, the default is a reasonable 
choice, at the cost of some performance. 

 Note Why validate the cookie? Because the cookie can be used to tie into information that 
shouldn't be shared, validating the cookie data and rejecting it if it has been tampered 
with can ensure that no one can, say, 'hijack' another shopper's shopping cart.  

A simple example of forms-based authentication is shown in Listings 4-6, 4-7, and 4-8. This 
simple-minded example uses a hard-coded user name and password within Login.aspx, as 
shown in Listing 4-6. These listings also introduce a new class of user interface objects. In 
Listing 4-6, the button used on the screen isn't a standard HTML submit button or even a 
standard HTML button but rather an asp:button. We'll examine these objects in much greater 
detail in Chapter 5. For now, just assume that they behave as you might expect. And just take 
it on faith that the OnClick event causes the code in Login_Click at the top of the page to be 
fired. Some of the details within Login_Click in Listing 4-6 aren't important, but the call to 
FormsAuthentication.RedirectFromLoginPage is. The first parameter passed to this method is 
the name of the user, obtained from UserEmail.Value, using magic not yet described (See 
Chapter 5 for more information on getting values from server controls.) The second 
parameter, hard-coded to false here, indicates that a persistent cookie shouldn't be used.  

Listing 4-6 A login page for authentication sample (Login.aspx)  
 
<%@ Import Namespace="System.Web.Security " %> 
 
<html> 
 
    <script language="C#" runat=server> 
    void Login_Click(Object sender, EventArgs E)  
    { 
        // Authenticate user: This sample accepts only one user with 
        // a name of doug@programmingasp.net and a password of  
        // ‘password' 
        if ((UserEmail.Value == "doug@programmingasp.net") &&  
          (UserPass.Value == "password"))  
        { 
            FormsAuthentication.RedirectFromLoginPage( 
              UserEmail.Value, false); 
        } 
        else  
        { 



            Msg.Text = "Invalid Credentials: Please try again"; 
        } 
    } 
    </script> 
    <body> 
    <form runat=server> 
        <center> 
        <h3> 
        <font face="Verdana" color=blue>Login Page</font> 
        </h3> 
        <table> 
            <tr> 
                <td> 
                    Email: 
                </td> 
                <td> 
                    <input id="UserEmail"  
                    type="text"  
                    runat=server  
                    size=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                    ControlToValidate="UserEmail"  
                    Display="Static" ErrorMessage="*"  
                    runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Password: 
                </td> 
                <td> 
                    <input id="UserPass"  
                    type=password  
                    runat=server size=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                    ControlToValidate="UserPass"  
                    Display="Static" ErrorMessage="*"  
                    runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <asp:button text="Login"  
                    OnClick="Login_Click"  
                    runat=server> 
                    </asp:button> 
                    <p> 
                    <asp:Label id="Msg" ForeColor="red"  
                    Font-Name="Verdana"  
                    Font-Size="10" runat=server /> 
                </td> 
            </tr> 
        </table> 
        </center> 
    </form> 
    </body> 
</html> 



 
 

Listing 4-7 also shows a pedestrian example (well, pedestrian once you understand how all 
the ASP.NET form magic works-and you'll learn all about that in Chapter 5). The form 
simply identifies the user and allows the user to log out. 

Listing 4-7 A restricted page for authentication sample that allows you to logout 
(Default.aspx)  
 
<%@ Import Namespace="System.Web.Security " %> 
 
<html> 
 
    <script language="C#" runat=server> 
    void Page_Load(Object Src, EventArgs E ) { 
        Welcome.Text = "Hello, " + User.Identity.Name; 
    } 
 
    void Signout_Click(Object sender, EventArgs E) { 
        FormsAuthentication.SignOut(); 
        Response.Redirect("login.aspx"); 
    } 
    </script> 
 
    <body> 
        <h3> 
        <font face="Verdana">Using Cookie Authentication</font> 
        </h3> 
        <form runat=server> 
            <h3> 
                <asp:label id="Welcome" runat=server /> 
            </h3> 
            <asp:button text="Signout" OnClick="Signout_Click" runat=server
 /> 
        </form> 
    </body> 
</html> 

 
 

Listing 4-8 is the configuration file for this application, named Web.config. This too is a plain 
vanilla file. The authentication section is the part we're interested in, and it's essentially the 
same as the authentication tag shown earlier. Also of interest is the authorization tag, which is 
related to authentication as well, as described in the next section. 

 Note This Web.config file must be at the root of the Web application directory in IIS. Also, 
the directory must be configured as an application directory, not a virtual directory.  

Listing 4-8 Configuration file for authentication sample  
 
<configuration> 
  <system.web> 
      <authentication mode="Forms"> 
        <forms name=".ASPXUSERDEMO" loginUrl="login.aspx" protection="All"  
          timeout="60" /> 
      </authentication> 



      <authorization> 
        <deny users="?" /> 
      </authorization> 
    <globalization requestEncoding="UTF-8" responseEncoding="UTF-8" /> 
  </system.web> 
</configuration> 

 
 

There's one more possible twist to forms-based authentication. Within the <authentication> 
tags, a credentials section is allowed, where user and password information is allowed. For 
example, these lines could be added to the authentication section of the Web.config file 
shown in Listing 4-8. 

<credentials passwordFormat="Clear" > 
    <user name="Mary" password="littlelamb"/> 
    <user name="Jill" password="uphill"/> 
</credentials> 

The <credentials> tag has one attribute, named passwordFormat. The possible values for the 
passwordFormat attribute are shown in Table 4-4. 

Table 4-4 : Options of the passwordFormat Attribute  
Option Description 
Clear  Stores passwords in clear text. This value is 

not at all secure, but it is convenient for 
testing. 

SHA1  SHA stands for Secure Hash Algorithm. 
SHA1 stores passwords as SHA1 digests. 
SHA1 uses a 160-bit hash size. SHA1 was 
designed to correct a problem in the original 
SHA algorithm. 

MD5  Stores passwords as MD5 digests. MD5 
produces a 128-bit 'fingerprint.' This value is 
much more reliable than a traditional 
checksum. 

To validate a user name and password from the form, the form needs to call the Authenticate 
method of the System.Web.Security.FormsAuthentication class.  

The authorization Section 

After the system has identified a user, you might want to control whether the user is allowed 
to use the application. The authorization section enables you to do exactly that by using 
<allow> and <deny> tags, which can specify individual users, or groups of users, called 
roles. Using Windows authentication, as described in the previous section, will cause 
Windows NT groups to be mapped to roles. 

The <allow> and <deny> tags are searched until the first match is found for the user being 
authorized. If the first match is in the <allow> tag, the user is allowed; if the first match is in 



the <deny> tag, the user is denied. Access is denied if no matching rule is found. In general, 
for sites where authorization is important, a <deny users='*' /> tag should be present to make 
the denial explicit. 

The customErrors Section 

For developers, one of the problems with ASP is a lack of clarity in error messages. ASP.NET 
has addressed this issue by creating far better error messages, often including not only the 
single line of code that triggered the error but also a couple lines before and after. This 
additional information is important because often an error on one line is in fact caused by an 
error on the previous line. Figure 4-14 shows an example ASP.NET error message. 

 
Figure 4-14 : An ASP.NET error message  

This error page provides a couple links at the bottom that are useful to the developer. The first 
is Show Detailed Compiler Output. Clicking this link shows the output that would be seen if 
the command-line compiler were called directly. This output can be useful if there are 
warnings that occur before the error that might give clues to exactly what's happening. The 
second link is Show Complete Compilation Source. Clicking this link shows a detailed listing 
of exactly what the compiler is using to generate the page. The simple Login.aspx page shown 
in Listing 4-6 is expanded to over 400 lines of detailed listing as ASP.NET takes the source 
provided (both the code and the HTML source) and produces the code required to create the 
page. Understanding this code isn't essential, but it can be useful in some debugging 
situations. 

One thing you should notice about the error page is that in showing the context, it actually 
shows the user name and password that the login page is expecting! Of course, this example is 
contrived. No one would use such a 'security' system in a real application. However, people 
might have other code that they'd prefer users not see, such as database user names and 
passwords embedded in connection strings. Embedding connection strings into the application 
is a bad idea for lots of reasons, but in any event, preventing exposure of source code to users 
is always a good idea. 

The customErrors section of Web.config can be used to ensure that this sort of error message 
appears only to developers during development and testing, and not to users. The 
<customErrors> tag supports the attributes listed in Table 4-5. 



 
 

Table 4-5 : Attributes of the <customErrors> Tag  
Attribute Option Description 
defaultRedirect    Specifies a URL to 

redirect the user to 
mode    Specifies whether 

custom errors are 
enabled, disabled, or 
shown only on remote 
clients 

  On  Specifies that custom 
errors are enabled 

  Off  Specifies that custom 
errors are disabled 

  RemoteOnly  Specifies that custom 
errors are shown only on 
remote clients 

 

The default behavior for mode is RemoteOnly, meaning that the type of error page shown in 
Figure 4-14 will not be shown to remote users; instead, a custom error page will appear. The 
default page shown to remote users is really designed for developers. It explains how to view 
the details of the error by making changes to the customErrors section of Web.config. By 
setting the defaultRedirect attribute, the user can be redirected to a page that can, for example, 
notify the administrator of the site where an error occurred.  

There is also an <error> subtag for the <customErrors> tag. The <error> subtag can occur 
multiple times. The two attributes in Table 4-6 are supported for the <error> subtag. 

Table 4-6 : Attributes of the <error> Subtag  
Attribute Description 
statusCode  Specifies an error code that redirects a 

browser to a nondefault error page 
redirect  Specifies the page to redirect to when the 

error specified in statusCode occurs 

The httpHandlers Section 

The httpHandlers section maps incoming requests to the appropriate IHttpHandler or 
IHttpHandlerFactory class, according to the URL and the HTTP verb requested. 

 Note When I talk about HTTP verbs, I mean the keywords used to specify what action the 
Web server should take. If you're an HTML developer, the most common HTTP verbs 
will be POST and GET. When you create an HTML form, you have these two options 
for the METHOD attribute of the <FORM> tag. When GET is specified, any form 
values are appended to the URL specified in the ACTION attribute. When POST is 



specified, form element data is sent as part of the message body. The practical 
difference is that when GET is used, all form elements are sent on the URL, possibly 
displaying information in the address box that you'd rather not display. (Imagine using 
GET for a login form-the form data, user name, and password will be appended to the 
URL.) POST is preferred, but in practice ASP.NET developers generally allow the 
framework to handle this type of detail. As you'll see in Chapter 5, most ASP.NET form 
tags simply use the runat=server attribute/value pair. 

The httpHandlers section in Web.config specifies the HTTP handlers that the applications 
will use as well as the order in which they will be used. The httpHandlers section supports 
three subtags: <add>, <remove>, and <clear>. The HTTP handler that will be used by an 
incoming request is determined by looking at all directories that are at a higher level 
(logically, not physically) and processing all the <add> and <remove> tags. An HTTP 
module included at a higher level with an <add> tag can be removed at a lower level with a 
<remove> tag.  

The <add> subtag adds an HTTP handler, and it supports the three attributes listed in Table 
4-7. 

Table 4-7 : Attributes of the <add> Subtag in httpHandlers  
Attribute Description 
verb  A comma-separated list of HTTP verbs, such 

as GET, PUT, POST, or the wildcard 
character (*). 

path  A single URL path or a simple wildcard, such 
as *.aspx. 

type  An assembly and class combination. 
Assemblies are groups of functionality 
grouped together for convenience. The .NET 
Framework first searches in the application's 
private bin directory and then in the system 
assembly cache. 

The <remove> subtag removes an HTTP handler specified previously in an <add> subtag. 
The verb/path in a <remove> subtag must exactly match the verb/path specified in a previous 
<add> subtag. Although it might seem silly to add and remove HTTP handlers, remember 
that the configuration files are read from the root through to the current directory (logically 
speaking, not physically), so it's not unreasonable to expect that there will be times when a 
handler needed at a higher level isn't needed in every application located logically below. The 
<remove> subtag supports two attributes, verb and path. These are exactly the same as their 
<add> subtag counterparts. 

The final subtag supported by the httpHandlers section is the <clear> subtag. When this 
subtag is present, all HTTP handler mappings inherited or configured are cleared. Here is a 
simple example of an httpHandlers section: 

<httpHandlers> 
    <add verb="*" path="MyApp.New" type="MyApp.New, MyApp" /> 
    <add verb="*" path="MyApp.Baz" type=" MyApp.Baz, MyApp" /> 



</httpHandlers> 

In this example, all HTTP verbs that are used on MyApp.New will be mapped to MyApp.New 
class in the MyApp assembly. All HTTP verbs used on MyApp.Baz will be referred to 
MyApp.Baz class, in the MyApp assembly. 

The httpModules Section 

The httpModules section of Web.config contains information similar to the httpHandlers 
section described in the preceding section. The httpModules section supports three subtags, 
<add>, <remove>, and <clear>, just as in the httpHandlers section. The <add> subtag 
supports two attributes, type and name, as described in Table 4-8.  

Table 4-8 : Attributes of the <add> Subtag in httpModules  
Attribute Description 
type  Specifies a comma-separated class/assembly 

combination. ASP.NET searches the 
application's private bin directory and then the 
system assembly cache. 

name  Specifies the name that the application uses to 
refer to the module identified in type. 

The <remove> subtag works exactly the same as the <remove> subtag in the httpHandlers 
section. The type and name attributes are used to match previously added HTTP modules. The 
<clear> subtag removes all HTTP module mappings from an application. 

The identity Section 

The identity section of Web.config controls the application identity of the Web application. 
This section allows you to set up impersonation. Impersonation is when the identity of the 
user on the client machine is used to determine what files on the server can be accessed. For 
example, suppose you have two virtual directories on an intranet-accessible Web server, one 
named Employees and the other named Managers. If all users are using Windows and have 
Windows 2000 domain user accounts and the Web server has both directories on an NTFS 
volume, instead of using application logic to prevent nonmanagers from accessing the 
Managers virtual directory, you could apply NTFS permissions to the files in the Managers 
directory that allowed only managers to access the files in that directory. 

The <identity> tag supports three attributes, as described in Table 4-9. 

Table 4-9 : Attributes of the <identity> Tag  
Attribute Option Description 
impersonate    Specifies whether client 

impersonation is used on each 
request 

  true  Specifies that client 
impersonation is used 



Table 4-9 : Attributes of the <identity> Tag  
Attribute Option Description 
  false  Specifies that client 

impersonation is not used, 
which is the default 

userName    Specifies the user name to use 
if impersonate is set to false  

password    Specifies the password to use if 
impersonate is set to false  

The pages Section 

The pages section of the Web.config file contains page-specific information that can be 
configured on the machine, site, application, or virtual directory level. The <pages> tag 
supports six attributes, as listed in Table 4-10. 

Table 4-10 : Attributes of the <pages> Tag  
Attribute Option Description 
buffer    Specifies whether 

the URL resource 
uses response 
buffering 

  true  Specifies that 
response buffering is 
enabled 

  false  Specifies that 
response buffering is 
disabled 

enableSessionState    Specifies whether 
session state is 
enabled 

  true  Specifies that 
session state is 
enabled 

  false  Specifies that 
session state is 
disabled 

  ReadOnly  Specifies that 
session state data 
can be read but not 
written 

enableViewState    Specifies whether 
view state (the state 
of controls) is 
enabled 



Table 4-10 : Attributes of the <pages> Tag  
Attribute Option Description 
  true  Specifies that view 

state is enabled 
  False  Specifies that view 

state is disabled 
pageBaseType    Specifies a code-

behind class that 
.aspx pages inherit 

userControlBaseType    Specifies a user 
control that user 
controls inherit 

autoEventWireup    Indicates whether 
page events are 
automatically 
enabled 

  true  Indicates that page 
events are 
automatically 
enabled 

  false  Indicates that page 
events are not 
automatically 
enabled 

 Note The autoEventWireup attribute seemed like a good idea at the time. Events are wired up 
based on the names of methods and components. Given a control named button1, 
button1_Click would handle the click event. In general, the attribute is more trouble than 
it's worth and has been the cause of no end of confusion on the ASP.NET newsgroups. 
All the examples in this book will use manual event wireup.  

 ASP.NET Differences  ASP developers are used to the fact that if you move beyond a single 
server, session state can't be saved using the standard ASP session 
state mechanisms. The problem is that in ASP, session state is stored 
directly on the Web server. In a clustered Web server farm 
environment, there's no assurance that each request from a particular 
client will go to a particular server in the cluster. Workarounds in 
ASP include saving small bits of session state in encrypted cookies 
and then using that little bit of session state to go to a database to get 
other information. Another workaround is to use a session identifier 
that gets passed from page to page and use that to get to a database. 
ASP.NET eliminates the need for these workarounds. Session state 
can be saved in a state server or SQL Server database. You'll find 
more information on session state in the section 'The sessionState 
Section' later in this chapter. 

The processModel Section 



The processModel section of Web.config controls the ASP.NET process model settings on an 
IIS Web server. This section is different from the other sections we've looked at in that it's 
read by the aspnet_isapi unmanaged DLL rather than the managed code configuration system. 
The processModel section sets many performance-tuning details. 

 Caution Many features can be configured using the processModel section, including attributes 
that specify how ASP.NET runs on multiprocessor machines. You can do things such 
as set the CPU mask, meaning that you can control which processors ASP.NET will 
use to execute its code. If this sounds like a good idea, think again. Microsoft has 
spent perhaps millions of dollars and untold hours creating the Windows 2000 
process scheduling system, which efficiently handles doling out works to the 
multiple processors in a multiple CPU system. Only under unique circumstances are 
you likely to do better manually mucking with setting processor affinity. 

The <processModel> tag supports many attributes. The most common ones are described in 
Table 4-11. 

Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 
enable    Specifies whether the 

process model is enabled. 
  true  Indicates that the process 

model is enabled. 
  false  Indicates that the process 

model is not enabled. 
timeout    Specifies the number of 

minutes until ASP.NET 
launches a new worker 
process to take the place of 
the current one. The default 
is infinite. 

idleTimeout    Specifies the number of 
minutes of inactivity until 
ASP.NET automatically 
shuts down the worker 
process. The default is 
infinite. 

shutdownTimeout    Specifies the number of 
minutes allowed for a worker 
process to shut itself down. 
If the timeout expires and the 
worker process hasn't shut 
itself down, ASP.NET shuts 
down the process. The 
format is hr:min:sec. The 
default is 5 seconds, or 
0:00:05. 



Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 
requestLimit    Specifies the number of 

requests allowed before 
ASP.NET automatically 
launches a new worker 
process to take the place of 
the current one. The default 
is infinite. 

requestQueueLimit    Specifies the number of 
requests allowed in the 
queue before ASP.NET 
launches a new worker 
process and reassigns the 
requests. The default is 5000.

memoryLimit    Specifies the maximum 
memory size, as a percentage 
of total system memory, that 
the worker process can 
consume before ASP.NET 
launches a new process and 
reassigns existing requests. 
The default is 40. A percent 
sign (%) is not specified; 
only the number. 

cpuMask    Specifies a bitmask value 
that indicates which 
processors in a multiple-
processor system are eligible 
to run ASP.NET processes. 
On a computer with four 
CPUs, a value of 0111 
binary (7 decimal) would 
mean that CPUs 0 through 2 
would run an ASP.NET 
process and CPU 3 would 
not. This attribute interacts 
with the webGarden 
attribute. 

webGarden    Controls CPU affinity when 
used in conjunction with the 
cpuMask attribute. A 
multiple-processor system is 
called a Web garden, 
presumably in contrast to a 
multiple-PC cluster, often 
called a Web server farm. 

  true  Specifies that the system 



Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 

should use the Windows 
CPU scheduling system. 
This is the default. 

  false  Specifies that cpuMask is 
used to specify which CPUs 
are eligible to run ASP.NET 
processes. 

userName    Specifies an account that 
worker processes should use. 
By default, processes run 
using the IIS account. 

password    Specifies the password for 
the account specified in the 
username attribute. 

logLevel    Specifies event types logged 
to the event log. 

  All  Specifies all process events 
are logged. 

  None  Specifies no process events 
are logged. 

  Errors  Specifies only errors are 
logged. These include 
unexpected shutdowns, 
memory limit shutdowns, 
and deadlock shutdowns. 
Errors is the default. 

clientConnectedCheck    Specifies the time a request 
is left in the queue before a 
check is made to see if client 
is still connected. 

comAuthenticationLevel    Specifies the level of 
authentication for DCOM 
security. The options for this 
attribute are: Default, None, 
Connect, Call, Pkt, 
PktIntegrity, and PktPrivacy. 
The default is Connect. 

comImpersonationLevel    Specifies the authentication 
level for COM security. The 
options for this attribute are: 
Default, Anonymous, 
Identify, Impersonate, and 
Delegate. (Anonymous is 
currently not supported.) 



Table 4-11 : Attributes of the <processModel> Tag  
Attribute Option Description 
maxWorkerThreads  5 to 100  Specifies the maximum 

number of worker threads to 
be used for the process on a 
per CPU basis. The default is 
25. 

maxIoThreads  5 to 100  Specifies the maximum 
number of I/O threads to 
used for the process on a per 
CPU basis. The default is 25.

ASP.NET runs one process per eligible CPU. On a four-processor system, if all CPUs are 
eligible to run ASP.NET (based on the settings for the cpuMask and webGarden attributes), 
four ASP.NET processes will be started. Given a cpuMask of 7 (as described earlier), only 
three ASP.NET processes will be created.  

The sessionState Section 

Session state support in ASP.NET is much more extensive and flexible than it was in ASP. 
For developers of small Internet or intranet Web sites, the session support offered by ASP was 
adequate. The problem was that ASP session state didn't scale out to multiple Web servers. 
ASP session state was stored on the Web server, and so using a system like Microsoft's 
Network Load Balancing provided no assurance that the same server in a Web server farm 
would service each request from a particular client. Another limitation of ASP session state is 
that it requires cookies to work. This constraint has become less of a problem because now 
virtually all browsers support cookies, and the sheer number of Internet sites that require 
cookies enabled have forced all but the most paranoid users to accept at least nonpersistent 
cookies. 

The sessionState section of Web.config controls how session state is managed. The 
<sessionState> tag supports five attributes, as described in Table 4-12. 

Table 4-12 : Attributes of the <sessionState> Tag  
Attribute Option Description 
mode    Specifies where session state is 

stored. 
  Off  Specifies that no session state is 

saved. 
  Inproc  Specifies that session state is 

saved locally, similar to ASP 
session state. 

  StateServer  Specifies that session state is 
saved on a remote state server. 

  SqlServer  Specifies that session state is 
saved in a SQL Server. 



Table 4-12 : Attributes of the <sessionState> Tag  
Attribute Option Description 
cookieless    Specifies whether session state 

should be saved without using 
client cookies. 

  true  Specifies that sessions without 
cookies are being used. 

  false  Specifies that sessions do use 
cookies. This is the default. 

timeout    Specifies the number of minutes 
a session can be idle before it is 
abandoned. The default is 20 
minutes, the same as in ASP. 

stateConnectionString    Specifies the server name and 
port where session state is stored 
remotely (for example, 
192.168.1.100:8484). This 
attribute is required when mode 
is set to StateServer. 

sqlConnectionString    Specifies the connection string 
for the SQL Server where the 
state is to be saved (for example, 
data source=192.168.1.100;user 
id=sa;password=). This 
attribute is required when mode 
is set to SqlServer. 

The same rules about trying to minimize the amount of data stored in session state that 
applied in ASP still apply in ASP.NET. 

The trace Section 

One of the problems developers experienced with ASP was difficulty obtaining detailed 
debugging information. Exactly what was the page doing when an error occurred? What 
portions of the code had been run? ASP.NET has much improved debugging information, and 
the trace section of the Web.config file allows you to specify settings for the trace service. 
Figure 4-15 shows a page that has been run with tracing enabled and pageOutput set to true. 



 
Figure 4-15 : The output of the Login.aspx page shown in Listing 4-6 when tracing is enabled 
and pageOutput is set to true  

The <trace> tag supports five attributes, as described in Table 4-13. 

Table 4-13 : Attributes of the <trace> Tag  
Attribute Option Description 
enabled    Specifies whether 

tracing is enabled. 
  true  Specifies that tracing is 

enabled. 
  false  Specifies that tracing is 

disabled. This is the 
default. 

requestLimit    Specifies the number of 
trace requests to save on 
the server. The default is 
10. 

pageOutput    Specifies whether trace 
information should be 
displayed at the end of 
each page. 

  true  Specifies that trace 
output is appended to 
each page. 

  false  Specifies that trace 
output is not appended 
to each page. This is the 
default. 

traceMode    Sets the order of trace 
output. 

  SortByTime  Specifies that output is 
sorted by time (thus, 



Table 4-13 : Attributes of the <trace> Tag  
Attribute Option Description 

displayed in the order 
the events being traced 
occurred). This is the 
default. 

  SortByCategory  Specifies that output is 
displayed alphabetically 
by category. See the text 
in this section for 
information about user-
defined categories. 

localOnly    Specifies whether the 
trace viewer is available 
only on the host Web 
server. 

  true  Specifies that trace 
output is available only 
on the server console. 
This is the default. 

  false  Specifies that trace 
output is available on 
any client, not just the 
Web server. 

In Figure 4-15, all trace output has a category of aspx.page, and it is generated automatically 
by the .NET Framework, with no explicit trace code in the page source. However, this is only 
half the power of ASP.NET tracing. Suppose, for example, that the login page from Listing 4-
6 wasn't responding the way you expected. Perhaps the following code seemed not to be 
working correctly:  

if ((UserEmail.Value == "doug@programmingasp.net") &&  
  (UserPass.Value == "password"))  
{ 
    FormsAuthentication.RedirectFromLoginPage( 
      UserEmail.Value, false); 
} 
else  
{ 
    Msg.Text = "Invalid Credentials: Please try again"; 
} 

You can use the Trace class to add user-defined trace statements in the trace output, like this: 

if ((UserEmail.Value == "doug@programmingasp.net") &&  
  (UserPass.Value == "password"))  
{ 
    Trace.Write("MyCategory", "Authenticated"); 
    FormsAuthentication.RedirectFromLoginPage( 
      UserEmail.Value,false); 
} 



else  
{ 
    Msg.Text = "Invalid Credentials: Please try again"; 
    Trace.Write("MyCategory", "Invalid Credentials"); 
} 

If you ran the page shown in Listing 4-6 with the modifications shown above and entered an 
invalid user name or password, the trace would have one 'MyCategory' trace line inserted into 
the output, as shown in Figure 4-16. 

 
Figure 4-16 : Trace output with explicit trace category added  

In addition to the Web.config sections described in this chapter, there are a couple other 
sections that are not generally modified (such as the globalization section). 

Conclusion 
One important thing to keep in mind about these configuration settings is that in many cases, 
the default values are completely acceptable. In the real world, most of the sections described 
in this chapter won't exist in your Web.config files because the default values will suffice. In 
addition, tools such as Visual Studio .NET will interact with some of these settings on their 
own; thus, the default behavior you see if you're using Visual Studio .NET might be slightly 
different from what has been described as the ASP.NET default. Users of Visual Studio .NET 
will notice other significant differences compared to the experience of someone using an 
editor that isn't at all .NET aware. In general, most of the examples in the following chapters 
use Visual Studio .NET, but with special attention paid to the 'magic' that Visual Studio .NET 
performs on your behalf. Generally, Visual Studio .NET is doing things that are helpful, but 
understanding what is going on 'behind the curtain' will help on those occasions when the 
special Visual Studio .NET behavior isn't what you're looking for. 

With this background, you should know enough to move on to Chapter 5, which covers the 
most important type of ASP.NET application-the Web Form. Web Forms provide ASP.NET 
developers with the kind of rapid application development (RAD) for the server that ASP 
programmers could only dream of. The dream has arrived, and in Chapter 5 you'll see how to 
make it work for you! 

Chapter 5: Web Forms 



The most common requirement for a dynamic Web application is getting the user's input, 
processing it, and providing feedback in the event of data-entry errors. HTML provides basic 
support for many widgets, including text boxes, drop-down lists, list boxes, check boxes, and 
radio buttons as well as traditional buttons and submit buttons. This basic HTML support for 
forms was the building block for Active Server Pages (ASP) developers, who were able to 
add additional processing and validation to user input in HTML forms. Validation especially 
is different in HTML forms than in traditional Microsoft Windows application forms. For 
instance, 5/35/2001 isn't correct input when a date is required. Unlike a Microsoft Visual 
Basic 6.0 application or a Windows Forms application, your ASP.NET application can't 
conveniently create forms with masked inputs that will make invalid entries impossible. There 
is no ASP.NET equivalent for the DateTimePicker control in the Windows Common 
Controls, which automatically ensures that each part of the date-month, day, and year-is 
correct and consistent. 

 Note It's certainly possible to use JavaScript to micromanage the input on a Web Form, 
disallowing invalid entries such as 5/35/2001 as a date as they're entered, but generally 
that isn't the way Web applications work. ASP developers commonly code defensively, 
writing basic validation code using JavaScript that will be executed on the Web client, 
as well as writing additional validation code that will be executed on the server, in case 
the client-side validation isn't effective because the browser doesn't have the required 
features or the required settings. 

Using the Classic ASP Program Architecture 
ASP provided little direct support for form validation, and thus you were free to do pretty 
much as you pleased. Even within the same development group, you can generally find one or 
more models for accepting and validating input. I'm sorry to report that even within a single 
developer's code, you might find more than one structure for handling form validation (at 
least if I'm the developer in question…). 

Every HTML form has an action attribute in the <FORM> tag that points to a URL. The 
URL can be absolute, beginning with http://, or relative, perhaps beginning with a slash (/) to 
refer to the root of the current site, or just a file name that must exist in the same folder as the 
page the form is in. When the form is submitted, the contents of the form are sent to the URL 
referred to by the action attribute of the <FORM> tag. 

The two common ASP structures are shown in Figures 5-1 and 5-2. 



 
Figure 5-1 : One possible ASP structure for form validation  

 
Figure 5-2 : Another possible ASP structure for form validation  

The ASP structure in Figure 5-1 has a form in Default.asp with the action attribute of the 
<FORM> tag pointing to AcceptData.asp. The job of AcceptData.asp is to validate the 
information in the form from Default.asp and then return the user to Default.asp to correct 
some information, process the information and then display a status message, or redirect the 
user to another page.  

The ASP structure in Figure 5-2 has a form in Default.asp with the action attribute of the 
<FORM> tag pointing to Default.asp. This page is self-referencing, meaning that the 
information entered in the form will be posted back to the same page the form is on, and the 
page should allow different behaviors based on whether this is the first time the form is 
displayed or this is a postback. A postback occurs when a form is filled in and the submit 
button is clicked. There are several ways to detect whether a postback is in progress, but my 
preferred method is to have a hidden field in the form, named postback. 



The structures shown in Figures 5-1 and 5-2 both have advantages, but I generally prefer the 
structure shown in Figure 5-2, for the following reasons: 

• All logic for a given form is located in a single place. If you need to add or delete a 
control in the form, all logic to handle it should be in one page. 

• No redirect is required to allow the user to correct an error. This is also an advantage 
in cases where the user interface needs to be refreshed based on information entered 
by the user in a first pass. For instance, in a recent hospital registration system I 
worked on, the user admitting a patient would first select the patient service, and then 
based on whether the service was for an inpatient or an outpatient, when the user 
submitted the form, the form would be refreshed with an additional control where the 
room and bed could be specified. 

• When an error occurs, all the information passed doesn't need to be reconstructed for 
the redirection back to the original page. 

Commonly, when the postback succeeds and the information entered is valid, the information 
is processed and the user is redirected to another page.  

Redirecting to another page for validation has some advantages. First, if multiple pages need 
to perform similar validations, it's possible to do them all on one page, which might be 
important when certain validations involve lots of complex code. An alternative to 
centralizing all such complex validations on a single page is to use include files, but this 
solution comes with its own problems. 

The ASP.NET form validation architecture is much more structured than what ASP had to 
offer. The goal of ASP.NET was to bring RAD to the server. To a great extent, ASP.NET has 
succeeded in doing this. 

 ASP.NET Differences  ASP.NET provides a richer framework for form validation than 
ASP, but ASP.NET really works best if you use the preferred 
structure mentioned earlier (in Figure 5-2), in which pages postback 
to themselves. You can force some other structure on ASP.NET, but 
it won't be fun, and you'll be working against, rather than with, 
ASP.NET. 'Use the Force, Luke!' 

 
ASP.NET Forms vs. Visual Basic 6.0 Forms 

Most of this chapter compares classic ASP to ASP.NET. The differences are striking. If 
you're moving from Visual Basic 6.0 to ASP.NET, whether you decide to use Visual Basic 
.NET or C#, the changes in the overall architecture of forms are even more striking. 

Certain things that are reasonable and easy to do in a traditional Visual Basic application are 
less reasonable, and certainly harder to do, in the ASP.NET forms model. For example, it's 
not uncommon to create a traditional application in which exiting from one control changes 
the contents of the next control. I've worked on an application in which users select a facility 
type in a drop-down list. After they tab out of the facility type drop-down list, the facility 
name drop-down list changes its contents to reflect only facilities of the selected type. 
Modifying controls on the fly might not be the best structure for an ASP.NET form because 
repopulating the next control commonly requires a round-trip to the server.  



At a deeper level, the biggest shock for Visual Basic developers who begin developing 
ASP.NET forms will be the lifetime of a page and the variables defined within it. An 
ASP.NET page is like a forgetful child. Tell it something (set a variable in the underlying 
page class), and the next time you see the page and ask it about that variable, the page will 
have forgotten everything you ever told it about the variable. This lack of retention isn't 
unreasonable, given that HTTP is a stateless protocol. If you connect to a large commercial 
Web site-for instance, MSDN-there's no guarantee that each time you request the same page 
from the site, the page will come from the same Web server. 

One solution for maintaining state information is to use the ViewState property. The 
ViewState property persists values between round-trips to the server using a hidden variable in 
the page, named __VIEWSTATE. This variable is opaque (its meaning is not obvious, or even 
easily discernible), and you shouldn't alter it directly. 

Imagine you have an integer value within a page class, named tries, used to count the number 
of times a particular user has refreshed a page. To persist this integer, you could do something 
like the following: 

ViewState ("tries")=tries 

An alternative would be to encapsulate the value into a property of the class. In Visual Basic 
.NET, you could do something like this: 

Public Property tries() As Integer 
    Get 
        Return CInt(ViewState ("tries")) 
    End Get 
    Set(ByVal Value As Integer) 
        ViewState("tries") = Value 
    End Set 
End Property 

Using a property enables your Visual Basic .NET code to cleanly use MyClass1.tries when it 
needs to access the value of tries, but under the covers, the value will be retrieved and set on 
the ViewState property. 

Adding to the confusion, some things are saved automatically between round-trips to the 
server. By default, ASP.NET automatically saves the contents entered into controls between 
round-trips to the server as well as the properties of controls declared on the page.  

 
 

An Example of ASP.NET Form Validation 

In the discussion of forms authentication in Chapter 4, Listing 4-6 showed a simple login page 
that allowed entry of a user's e-mail address and password, to be compared with a hard-coded 
set of acceptable values. Listing 5-1 shows this same form. 

Listing 5-1 Login.aspx, a login page  
 
<%@ Import Namespace="System.Web.Security " %> 



 
<html> 
 
    <script language="C#" runat=server> 
    void Login_Click(Object sender, EventArgs E)  
    { 
        // Authenticate user: This sample accepts only one user with 
        // a name of doug@programmingasp.net and a password of  
        // ‘password' 
        if ((UserEmail.Value == "doug@programmingasp.net") &&  
          (UserPass.Value == "password"))  
        { 
            FormsAuthentication.RedirectFromLoginPage( 
              UserEmail.Value,false); 
        } 
        else  
        { 
            Msg.Text = "Invalid Credentials: Please try again"; 
        } 
    } 
    </script> 
 
    <body> 
    <form runat=server> 
        <center> 
        <h3> 
        <font face="Verdana" color=blue>Login Page</font> 
        </h3> 
        <table> 
            <tr> 
                <td> 
                    Email: 
                </td> 
                <td> 
                    <input id="UserEmail"  
                    type="text"  
                    runat=server  
                    size=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                        ControlToValidate="UserEmail"  
                        Display="Static" ErrorMessage="*"  
                        runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Password: 
                </td> 
                <td> 
                    <input id="UserPass"  
                    type=password  
                    runat=server size=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                        ControlToValidate="UserPass"  
                        Display="Static" ErrorMessage="*"  
                        runat=server /> 
                </td> 



            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <asp:button text="Login"  
                        OnClick="Login_Click"  
                        runat=server> 
                    </asp:button> 
                    <p> 
                    <asp:Label id="Msg" ForeColor="red"  
                    Font-Name="Verdana"  
                    Font-Size="10" runat=server /> 
                </td> 
            </tr> 
        </table> 
        </center> 
    </form> 
    </body> 
</html> 

 
 

Login.aspx has a great deal in common with both a traditional ASP page and a traditional 
HTML page. At the very top of the page is an import declaration, used to import the 
System.Web.Security namespace. As you might recall, Login.aspx is the page that users will 
be redirected to when they first visit the site, specified by a configuration setting in the 
Web.config file. The System.Web.Security namespace is used to enable the page to properly 
redirect the user to the page initially requested.  

 ASP.NET Differences  In traditional ASP programming, one way to import functionality 
into a page was to use include statements. ASP.NET supports the 
import statement that allows you to import namespaces. However, 
the .NET implementation does not allow wildcards in the import as 
Java does-that is, you can't import System.Web.* and then use the 
System.Web.Security namespace. 

After the <HTML> start tag comes a script block, delimited by <SCRIPT> </SCRIPT> tags. 
The script block contains a single C# function, Login_Click. This function does little more 
than compare some values from the form to some hard-coded values and either uses a method 
from System.Web.Security.FormsAuthentication to redirect the user back to the originally 
requested page or sets the text property of a label on the form to instruct the user to try again. 

 ASP.NET Differences  In ASP, functions can be enclosed in <SCRIPT></SCRIPT> tags, 
as in the example shown in Listing 5-1, or in <% and %> tags, 
which are used to enclose code. ASP.NET only supports functions 
inside script blocks. Currently, the error message that appears if you 
inadvertently use <% and %> tags to enclose function declarations 
might not clearly describe the problem. You can, however, still use 
<% and %> tags inline to display results. In any event, as you'll see 
shortly, there's a better way to code ASP.NET applications.  

Also note that within the <SCRIPT></SCRIPT> tags the Login_Click function is never 
directly called. In a moment, I'll explain exactly how this function gets called. 



Within the body of the page (just inside the <BODY></BODY> tags), a form is started, using 
a <FORM> start tag. Unlike a traditional ASP or HTML form tag, the only attribute specified 
here is the runat attribute, set to server. There's no mention of using post or get, and no action 
attribute to specify the page to be called when the form is submitted. An ASP.NET form that 
uses a runat=server attribute/value pair always posts back to itself. Although using the runat 
attribute here isn't something you'd do in classic ASP, using the runat attribute for script 
blocks should be familiar to ASP programmers. ASP.NET supports the runat attribute for 
many HTML tags, and using runat always implies the same thing- that there will be some 
activity on the server to support this component.  

The form contains a great deal of standard-looking HTML code, including tables and text box 
input elements. The text box input elements do have one unfamiliar feature, the same 
runat=server attribute/value pair that the <FORM> tag uses. 

ASP.NET Server Controls vs. HTML Server Controls 

You'll notice some unfamiliar tags contained within Listing 5-1. These tags begin with 
<ASP:. In some cases, the string after ASP: does look familiar (as in ASP:Button and 
ASP:Label), and in others, it is unfamiliar (for example, ASP:RequiredFieldValidator). These 
tags are ASP.NET server controls. These controls run on the server, and in some respects, 
they behave like the HTML controls we've seen with the runat=server attribute/value pair. 
When controls have the runat=server attribute/value pair, they can trigger server-side 
functions. In this example, the Login_Click method is called when the ASP.NET button server 
control is clicked. But if these controls are similar, why do both sets exist? 

There are several reasons for having two sets of controls. First, some of the controls don't 
have pure HTML equivalents. Although creating an HTML server control for an input box or 
a button by using a standard HTML tag and adding runat=server seems like a natural 
extension, a control like RequiredFieldValidator requires something different, as it has no 
pure HTML equivalent. But before we delve into exactly what a RequiredFieldValidator 
control would do, it's useful to understand the basic differences between the two types of 
server controls, HTML server controls and ASP.NET server controls. 

HTML server controls provide the following features: 

• An object model that allows controls to be manipulated programmatically. 
• An event model that allows you to handle events for the controls in a way similar to 

client-side event handling, except here event handling happens on the server. 
• The ability to handle events on the client side, the server side, or both. It might seem 

odd to handle events on both the client and the server, but there are good reasons why 
this might be appropriate and reasonable. I'll supply more information on this feature 
in Chapter 7. 

• Automatic maintenance of values between trips to the server. Enter a value in an 
HTML text box server control, and after a submit operation, the control can maintain 
the text that was entered. 

• Interaction with validation controls. We'll look at this feature in more detail in the next 
section, 'Using Validator Controls.'  

• Data binding to one or more properties of the control. 
• Support for HTML 4.0 style sheets, if the browser supports it. 



o Pass-through custom attributes. You can add attributes to the HTML server 
control, and the .NET Framework will read attributes and render them without 
any change in functionality. 

ASP.NET server controls provide everything that HTML server controls provide and more. 
However, ASP.NET server controls don't have a one-to-one mapping to standard HTML 
elements. (For example, the RequiredFieldValidator control has no standard HTML 
equivalent.) ASP.NET server controls provide the following features: 

• A rich object model that allows for type-safe programming. 
• Automatic browser detection. The controls detect the browser's capabilities and 

provide client-side code appropriate to the client. 
• For some controls, the ability to modify the look and feel using templates. (C++ 

programmers, these are not at all what you think of as templates!) 
• For some controls, the ability to specify whether an event for a control should be 

cached for later form submission or posted immediately to the server. 
o The ability to pass events to a parent control from a nested control. For 

example, a button in a table can have an event passed to the containing table. 

Login.aspx in Listing 5-1 uses both HTML server controls and ASP.NET server controls. 
Most of the examples in this book use ASP.NET server controls. For programmers used to 
working in type-safe languages, such as C and C++, using ASP.NET server controls will be 
more comfortable, as they provide a type-safe object model. 

Using Validator Controls 
Because the RequiredFieldValidator control is the first of the validator controls we'll look at 
in this section, it's useful to review the class hierarchy for the RequiredFieldValidator class 
(shown in Figure 5-3). We know that everything in the .NET Framework descends from 
Object, so it's no surprise that the most remote descendant of the RequiredFieldValidator 
class is Object.  

 
Figure 5-3 : Object class hierarchy for RequiredFieldValidator in the .NET Framework  

The RequiredFieldValidator Control 

To understand this hierarchy, it's useful to see the RequiredFieldValidator control at work. 
Login.aspx, shown in Listing 5-1, uses the RequiredFieldValidator control. Figure 5-4 shows 
Login.aspx and what happens when we submit the form with neither field filled in. 



 
Figure 5-4 : The Login.aspx page when the Login button is clicked and the fields are not filled 
in  

The form validator controls all have an ErrorMessage attribute that in this example has been 
set to '*', and thus an asterisk is displayed next to any field that doesn't validate properly. The 
RequiredFieldValidator control is perhaps the simplest validator control-it checks to see 
whether a field has a value. How does a validator control work? That depends on several 
factors. As with many aspects of ASP.NET, it's useful to look at the HTML code that the 
browser sees, to determine how your request for a validator control is translated into 
something that a browser can work with. Listing 5-2 shows the HTML sent to the browser 
before the validator controls are fired (with the listing reformatted to make it easier to read). 

Listing 5-2 The HTML source that the browser sees when Login.aspx is requested and before 
the validator controls are fired  
 
<html> 
    <body> 
    <form name="_ctl0" method="post"  
    action="login.aspx"  
    language="javascript"  
    onsubmit="ValidatorOnSubmit();"  
    id="_ctl0"> 
    <input type="hidden" name="__VIEWSTATE"  
    value="dDwxMDgxMzYzOTAxOzs+" /> 
 
    <script language="javascript"  
    src="/aspnet_client/system_web/1_0_3217_0/WebUIValidation.js"> 
    </script> 
        <center> 
        <h3> 
        <font face="Verdana" color=blue>Login Page</font> 
        </h3> 
        <table> 
            <tr> 
                <td> 
                    Email: 
                </td> 
                <td> 
                    <input name="UserEmail"  
                    id="UserEmail"  
                    type="text"  
                    size="30" /> 
                </td> 
                <td> 
                    <span id="_ctl1"  



                    controltovalidate="UserEmail"  
                    errormessage="*"  
                    evaluationfunction= 
                      "RequiredFieldValidatorEvaluateIsValid"  
                    initialvalue=""  
                    style="color:Red;visibility:hidden;">*</span> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Password: 
                </td> 
                <td> 
                    <input name="UserPass" id="UserPass"  
                    type="password" size="30" /> 
                </td> 
                <td> 
                    <span id="_ctl2" controltovalidate="UserPass"  
                    errormessage="*"  
                    evaluationfunction= 
                      "RequiredFieldValidatorEvaluateIsValid"  
                    initialvalue=""  
                    style="color:Red;visibility:hidden;">*</span> 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <input type="submit"  
                    name="_ctl3" value="Login"  
                    onclick="if (typeof(Page_ClientValidate) == ‘function')
  
                      Page_ClientValidate(); " 
                    language="javascript" /> 
                    <p> 
                    <span id="Msg"  
                    style="color:Red;font-family:Verdana;font-size:10pt;"> 
                    </span> 
                </td> 
            </tr> 
        </table> 
    </center> 
 
<script language="javascript"> 
<!- 
    var Page_Validators =  
      new Array(document.all["_ctl1"],  
      document.all["_ctl2"]); 
        // -> 
</script> 
 
 
<script language="javascript"> 
<!- 
var Page_ValidationActive = false; 
if (typeof(clientInformation) != "undefined" &&  
  clientInformation.appName.indexOf("Explorer") != -1) 
{ 
    if (typeof(Page_ValidationVer) == "undefined") 
        alert("Unable to find script library " + 
          "‘/aspnet_client/system_web/1_0_3217_0" + 
          "/WebUIValidation.js'. " +  



          "Try placing this file manually, " +  
          "or reinstall by running ‘aspnet_regiis -c'."); 
    else if (Page_ValidationVer != "125") 
        alert("This page uses an incorrect " +  
          "version of WebUIValidation.js. The page expects " +  
          "version 125. The script library is " +  
          Page_ValidationVer + "."); 
    else 
        ValidatorOnLoad(); 
} 
 
function ValidatorOnSubmit() { 
    if (Page_ValidationActive) { 
        ValidatorCommonOnSubmit(); 
    } 
} 
// -> 
</script> 
 
        </form> 
    </body> 
</html> 

 
 
 Note Listing 5-2 contains one unusual field: a hidden field named __VIEWSTATE. This field 

is used to maintain the state of controls from submission to submission. You should 
leave this field alone. It's designed so that it can't be modified, to prevent you from, for 
example, hijacking another user's state information. For more information about this 
topic, see the sidebar 'ASP.NET Forms vs. Visual Basic 6.0 Forms,' earlier in this 
chapter. 

Wow. That's a lot of code! Not surprisingly, the C# script block at the top of Listing 5-1 isn't 
present in Listing 5-2, since it is identified as a runat=server script block. However, there is a 
new <SCRIPT> block, as follows: 

<script language="javascript"  
    src="/aspnet_client/system_web/1_0_3217_0/WebUIValidation.js"> 
</script> 

This code, of course, doesn't look even a little familiar! Looking at the Internet Information 
Services console, we can see that, sure enough, a directory is logically located where the src 
attribute on the <SCRIPT> tag points to, as shown in Figure 5-5. 



 
Figure 5-5 : The Internet Information Services console, showing the ASP.NET client code 
directory  

I won't show the entire WebUIValidation.js file because the version you'll be using will 
probably differ slightly from the version I'm using. The significant point here is that a script 
library designed for the client side is used in your pages when you're doing client-side 
validation. 

 Note You can also set the location of the client-side scripts in the webControls tag in the 
Machine.config file. Generally, it's best to leave this location setting alone, but the 
ability to have the location of these client-side JavaScript files might be useful. 

The next major change in the resulting HTML is the <SPAN> tag that seems to replace the 
first RequiredFieldValidator element, as follows:  

<span id="_ctl1"  
controltovalidate="UserEmail"  
errormessage="*"  
evaluationfunction= 
  "RequiredFieldValidatorEvaluateIsValid"  
initialvalue=""  
style="color:Red;visibility:hidden;">*</span> 

An HTML <SPAN> tag is used to provide a container for a section of text that might require 
special rendering. In this case, the special rendering is that the text shouldn't be visible. This is 
accomplished using a standard style attribute. The validator control associated with the 
Password text box is similarly changed to a <SPAN> tag. The <ASP:Button> element from 
Listing 5-1 is transformed into a traditional HTML submit button, as shown here: 

<input type="submit"  
name="_ctl3" value="Login"  
onclick="if (typeof(Page_ClientValidate) == ‘function')  
  Page_ClientValidate(); " 
language="javascript" /> 

As you can see, the page validation we requested is now handled by client-side JavaScript. 
But how exactly? A script tag below the form actually sets a variable named Page_Validators 
that contains an element for each of the validator controls. The onclick event of the submit 



button calls Page_ClientValidate. The version of Page_ClientValidate present in my version 
of WebUIValidation.js looks like this: 

function Page_ClientValidate() { 
    var i; 
    for (i = 0; i < Page_Validators.length; i++) { 
        ValidatorValidate(Page_Validators[i]); 
    } 
    ValidatorUpdateIsValid(); 
    ValidationSummaryOnSubmit(); 
    Page_BlockSubmit = !Page_IsValid; 
    return Page_IsValid; 
} 

Each element of the Page_Validators array is individually validated by calling 
ValidatorValidate, another function in WebUIValidation.js. This function calls the function 
specified in the evaluationFunction attribute of the <SPAN> tag for each of the validator 
controls. The details of how this all works aren't critical, but you should be aware of where 
the processing is taking place.  

The CompareValidator Control 

Referring back to Login.aspx, in Listing 5-1, you'll see that logic is used to compare the e-
mail address and password entered to hard-coded values. If the e-mail and password don't 
match what's expected, another label on the form will be set to a message requesting the user 
to try again. We haven't seen that message yet, because when we clicked the Login button, the 
client-side validators fired and displayed those red asterisks before the form was submitted. 
Because the client-side validators didn't indicate that the page was valid, a round-trip to the 
server wasn't necessary. 

ASP.NET includes a CompareValidator control to compare two values. Using a 
CompareValidator control could be useful for creating, for example, a password change page, 
on which the new password must be entered correctly twice to ensure that the password is set 
to the value the user intended. Suppose that we wanted to use the CompareValidator control 
rather than the Login_Click server-side logic. For the password, we could change the 
RequiredFieldValidator control to a CompareValidator control, as follows: 

<asp:CompareValidator id="comp1"  
    ControlToValidate="UserPass"  
    ValueToCompare = "password"  
    Type="String" runat="server"/> 

The ValueToCompare attribute is one way to specify what is to be compared in a 
CompareValidator control, but another possible way is to use the CompareToControl 
attribute. Set this attribute to the ID of another control on the form, and the CompareValidator 
control will instead compare the value of the ControlToValidate attribute to the value of the 
control pointed to by CompareToControl. If you use the ValueToCompare attribute, an 
unfortunate side effect can occur. For example, if you use the previous CompareValidator 
code, the following code would replace the CompareValidator code and be returned to the 
client: 

<span id="comp1"  
    controltovalidate="UserPass"  



    evaluationfunction="CompareValidatorEvaluateIsValid"  
    valuetocompare="password"  
    style="color:Red;visibility:hidden;"></span> 

This is almost certainly not what you would want to do. In the generated HTML returned to 
the client browser, the <SPAN> tag contains, in clear text, the ValueToCompare attribute. 
This example is obviously contrived, but in the real world, you'll certainly encounter 
situations in which you'd prefer not to expose so much to the client. 

One solution is to change the clienttarget attribute of the Page directive. Listing 5-1 didn't 
have a Page directive, but you could add the following line: 

<%@ Page Language="c#" clienttarget=downlevel %> 

When this directive is added to the Login.aspx code shown in Listing 5-1, rather than the 
HTML code shown in Listing 5-2, the browser sees the code shown in Listing 5-3.  

Listing 5-3 The HTML sent to the browser when Login.aspx in Listing 5-1 has the 
clienttarget=downlevel attribute added to the Page directive  
 
<html> 
 
    <body> 
        <form name="_ctl0" method="post"  
        action="login.aspx" id="_ctl0"> 
        <input type="hidden"  
        name="__VIEWSTATE"  
        value="dDwxMDgxMzYzOTAxOzs+" /> 
 
        <center> 
        <h3> 
        <font face="Verdana" color=blue>Login Page</font> 
        </h3> 
        <table> 
            <tr> 
                <td> 
                    Email: 
                </td> 
                <td> 
                    <input name="UserEmail"  
                    id="UserEmail"  
                    type="text" size="30" /> 
                </td> 
                <td> 
                    &nbsp; 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    Password: 
                </td> 
                <td> 
                    <input name="UserPass"  
                    id="UserPass"  
                    type="password"  
                    size="30" /> 
                </td> 
                <td> 



                    &nbsp; 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <input type="submit"  
                    name="_ctl3"  
                    value="Login"  
                    onclick="if (typeof(Page_ClientValidate) == ‘function')
  
                      Page_ClientValidate(); " 
                    language="javascript" /> 
                    <p> 
                    <span id="Msg"> 
                    <font face="Verdana"  
                    color="Red"  
                    size="2"> 
                    </font> 
                    </span> 
                </td> 
            </tr> 
        </table> 
        </center> 
        </form> 
    </body> 
</html> 

 
 
 Note With the current build of ASP.NET, using the clienttarget=downlevel attribute/value 

pair in the Page directive also causes the emitted HTML code to drop to HTML 3.2 
compatible level, with potentially undesired results. Hopefully, future versions of 
ASP.NET will offer a finer grain of control over the level of HTML sent to the client. 

Using clienttarget=downlevel certainly results in much cleaner HTML code! If I were using 
an older browser, or possibly any browser other than Microsoft Internet Explorer 4.0 or later, 
the code sent to the browser would look more like that in Listing 5-3, even if 
clienttarget=downlevel wasn't set. One of the most noticeable differences in the code is that 
the table cell that previously held the <SPAN> tags for the validators now holds just a 
nonbreaking space (&nbsp). 

One other consequence of changing the client target to a downlevel browser is what happens 
when you actually submit the form. For instance, clicking the Login button with both fields 
not filled in results in the page shown in Figure 5-6.  



 
Figure 5-6 : The page that appears after clicking Login with both fields blank, and the page 
targeted at downlevel browsers  

Figure 5-6 looks a little different from the page that appeared when we clicked Login without 
targeting downlevel browsers (shown in Figure 5-4). This page contains a message that reads 
'Invalid Credentials: Please try again'. What's significant is that this message comes from the 
server-side Login_Click function. Because this code has fired, we know that this page was 
generated after a round-trip to the server. Using a downlevel browser, or targeting your page 
for a downlevel browser, will result in more round-trips to the server, but in some cases it's 
worth the cost. 

Several additional attributes are available for the CompareValidator control. MSDN has the 
complete documentation, but the Type and Operator attributes can be quite useful so we'll 
look at these in more detail here. 

The Type attribute allows you to specify the data type when performing the comparison. The 
following values are allowed for the Type attribute: 

• String  Specifies a string comparison 
• Integer  Specifies a whole number numeric comparison 
• Double  Specifies a floating-point number comparison 
• Date  Specifies a date comparison 
• Currency  Specifies a comparison of currency values 

The Operator attribute can be used to control the type of comparison that takes place. The 
examples in this chapter use the default value for Operator, Equal. In this case, we're 
checking for equality between the control being validated and either some other control 
specified by ControlToCompare or a constant value specified as ValueToCompare. The other 
relational operators are listed here and perform the expected comparison:  

• GreaterThan  
• GreaterThanEqual  
• LessThan  
• LessThanEqual  
• NotEqual  

There's another allowed value for Operator: DataTypeCheck. By using DataTypeCheck, the 
control indicates whether the input is the same or can be converted to the type specified by the 
Type attribute. 



Using DataTypeCheck might not seem useful until you think about the checking you must do 
to ensure that users enter, for example, a valid date where a date value is expected. The 
following code shows an example of how to ensure that a valid date is entered in a text box: 

<asp: TextBox id=txtDate runat="server"/> 
<asp:CompareValidator ControlToValidate="txtDate" 
Operator="DataTypeCheck" Type="Date" runat="server"> 
Must input a date 
</asp:CompareValidator> 

This data type checking is much simpler than what you might need to do on a classic ASP 
page, and the validator properly handles generation of client-side code, where appropriate 
(unless you explicitly set clienttarget to downlevel). 

Other Validators 

Listed here are the three other types of validator controls available in addition to 
RequiredFieldValidator and CompareValidator: 

• RangeValidator  Verifies that a user's entry is between specified upper and lower 
boundaries. The upper and lower boundaries can be numbers, strings, or dates. These 
boundaries can be specified directly or calculated from the values of other controls. 

• RegularExpressionValidator  Verifies that a user's entry matches a pattern defined by 
a regular expression. Using a RegularExpressionValidator control, you could ensure 
that an entry was, for example, a valid social security number, including numeric 
entries and dashes where appropriate.  

• CustomValidator  Allows you to create custom validation logic. Using this validator 
control, you could, for example, validate an entry against a database table or use some 
other complex criteria, such as an XML Web service that would validate a credit card 
number. 

Listing 5-4 shows a validation page with each of these three types of validators. 

Listing 5-4 ValidatorTest.aspx, which uses the RangeValidator, RegularExpressionValidator, 
and CustomValidator controls  
 
<%@ Import Namespace="System.Web.Security " %> 
 
<html> 
 
    <script language="C#" runat=server> 
    void Validate_Click(Object sender, EventArgs E)  
    { 
        if ( Page.IsValid ) 
        { 
            Msg.Text="Page Valid"; 
        } 
    } 
 
    void CustomServerVal (object source, ServerValidateEventArgs args) 
    { 
        try 
        {   
            if ( args.Value.Equals("Hello") ) 



            { 
                Msg.Text="ServerValidation called and TRUE returned."; 
                args.IsValid=true; 
            } 
            else 
            { 
                Msg.Text="ServerValidation called and FALSE returned."; 
                args.IsValid=false; 
            } 
        } 
        catch 
        { 
            Msg.Text="ServerValidation called and FALSE returned."; 
            args.IsValid=false; 
        } 
    } 
    </script> 
    <body> 
        <form runat=server> 
            <center> 
            <h3> 
            <font face="Verdana" color=blue>Validator Test Page</font> 
            </h3> 
            <table> 
                <tr> 
                    <td> 
                    Range Validation (1-12): 
                    </td> 
                    <td> 
                        <input id="Range"  
                        type="text"  
                        runat=server size=10 /> 
                    </td> 
                    <td> 
                        <ASP:RangeValidator ID="ValRange"  
                            ControlToValidate="Range"  
                            Display="Static"  
                            Type="Integer" 
                            MinimumValue="1" 
                            MaximumValue="12" 
                            ErrorMessage="Out of Range"  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        Regular Expression Validation (nnn-nn-nnnn): 
                    </td> 
                    <td> 
                        <input id="RegEx"  
                        type="text"  
                        runat=server size=11 /> 
                    </td> 
                    <td> 
                        <ASP:RegularExpressionValidator ID="ValRegEx"  
                            ControlToValidate="RegEx" 
                            runat="SERVER"  
                            ErrorMessage= 
                              "Enter a valid U.S. SSN (nnn-nn-nnnn)." 
                            ValidationExpression= 
                              "[0-9]{3}-[0-9]{2}-[0-9]{4}" /> 



                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        Custom Validation  
                        (It wants you to enter  
                        "Hello" WITHOUT THE QUOTES): 
                    </td> 
                    <td> 
                        <input type="text"  
                        id="txtCustom"  
                        runat=server size=11 /> 
                    </td> 
                    <td> 
                        <ASP:CustomValidator ID="ValCustom"  
                            runat="server"  
                            ControlToValidate="txtCustom" 
                            OnServerValidate="CustomServerVal" 
                            Display="Static" 
                            > 
                            Enter "Hello".  Case-Sensitive. 
                        </ASP:CustomValidator> 
                    </td> 
                </tr> 
                <tr> 
                    <td colspan=3 align="center"> 
                        <asp:button  
                            text="Validate"  
                            OnClick="Validate_Click"  
                            runat=server> 
                        </asp:button> 
                        <p> 
                        <asp:Label id="Msg"  
                            ForeColor="red"  
                            Font-Name="Verdana"  
                            Font-Size="10" runat=server /> 
                    </td> 
                </tr> 
            </table> 
            </center> 
        </form> 
    </body> 
</html> 

 
 

Figure 5-7 shows ValidatorTest.aspx when displayed in a browser. 



 
Figure 5-7 : ValidatorTest.aspx, which uses the RangeValidator, 
RegularExpressionValidator, and CustomValidator controls  

The RangeValidator control has several attributes that are unique to this type of validator. In 
Listing 5-4, the code that declares RangeValidator is as follows: 

<ASP:RangeValidator ID="ValRange"  
    ControlToValidate="Range"  
    Display="Static"  
    Type="Integer" 
    MinimumValue="1" 
    MaximumValue="12" 
    ErrorMessage="Out of Range"  
    runat=server /> 

Three of the attributes used here are already familiar (ControlToValidate, Type, and RunAt), 
one has been shown previously but not explained (Display, to be described in the next 
section), and a couple are new (MinimumValue and MaximumValue). Type is the type of 
comparison that should be done. For example, consider whether 1234 is greater than 13. If 
these are string values, 1234 is alphabetically smaller, but if these are numeric values, 1234 is 
numerically greater. The values allowed for Type in RangeValidator are the same as are 
allowed for a CompareValidator control's Type attribute. 

MinimumValue and MaximumValue are compared to the value of ControlToValidate, using 
the type conversion specified by the Type attribute. In this example, we're looking for an 
integer from 1 through 12.  

RegularExpressionValidator is useful because of its flexibility. The code used to specify 
RegularExpressionValidator in Listing 5-4 is shown here: 

<ASP:RegularExpressionValidator ID="ValRegEx"  
    ControlToValidate="RegEx" 
    runat="SERVER"  
    ErrorMessage="Enter a valid U.S. SSN (nnn-nn-nnnn)." 
    ValidationExpression="[0-9]{3}-[0-9]{2}-[0-9]{4}" /> 

The unique attribute in the code to create this validator is ValidationExpression. The value of 
this attribute is a regular expression pattern to match against the value of the control specified 
in ControlToValidate. 



If you're unfamiliar with regular expressions in general, refer to the following 'Regular 
Expressions' sidebar. 

 
Regular Expressions 

Regular expressions are strings used to match patterns of text. Why is matching patterns of 
text so much more useful than just comparing against a string or against another control (as 
the CompareValidator control does)? Think about the kind of things you validate. Often 
you're validating input such as telephone numbers, ZIP Codes, and social security numbers. 
The CompareValidator control is of no value in these situations. 

The simplest kind of regular expression that virtually all computer users were familiar with 
when the command line was king was a file name with a wildcard. Want to see all the .doc 
files in a folder? From the command prompt, you would type the following: 

Dir *.doc 

This command would result in a list of all files with the .doc extension. Or you might want to 
look for a file named either TEST0501.DOC or TEST0601.DOC. To do so, you would type 
the following: 

Dir TEST0?01.DOC 

SQL programmers are also used to a form of regular expressions that can be used with the 
LIKE keyword, as shown here: 

SELECT * FROM Users WHERE LastName LIKE ‘R__lly' 

This statement would show a list of users with the last name Reilly, or even Rielly, a common 
misspelling. It would not show a name like Rilly because in this case, the underscore (_) is 
used as a single-character placeholder, and so two underscores could take the place of exactly 
two characters. 

Regular expressions in .NET are much more powerful, and a complete description is beyond 
the scope of this book, so here we'll look only at the regular expression I'm using in the 
RegularExpressionValidator example in ValidatorTest.aspx, shown in Listing 5-4. 

The regular expression '[0-9]{3}-[0-9]{2}-[0-9]{4}' is one of many ways you can validate for 
a plausible U.S. social security number, which must be in the form nnn-nn-nnnn, where the ns 
each represent a single digit. Characters within square brackets ([ and ]) can be either a list of 
characters or a range of characters. In each of the instances of square brackets in this example, 
the characters allowed are represented by a range of characters from 0 through 9. Following 
each of the sets of characters in square brackets is a number in curly braces ({ and }). The 
value within the curly braces specifies the number of characters matching the previous 
expression that must be present. The hyphens (-) outside the brackets and braces represent 
literal characters that must be present. 

This example could have been satisfied just as easily in several different ways, as in the 
following examples: 



[0123456789]{3}-[0123456789]{2}-[0123456789]{4} 
\d{3}-\d{2}=\d{4} 

In the first alternative, I've simply listed the digits individually within the square brackets. In 
the second alternative, I've used a shortcut to specify digits, \d, and followed it with the count 
in curly braces. There are lots of other shortcuts. In addition to specifying the characters 
allowed, you can precede the character set within the square brackets with a caret (^) to 
indicate characters not allowed. Thus, the following string would match seven non-numeric 
characters. 

[^0-9]{7} 

This brief introduction is by no means complete. You can refer to the MSDN documentation 
for more information.  

 
 

With the RequiredFieldValidator, CompareValidator, RangeValidator, and 
RegularExpressionValidator controls, most of your validation needs are met. These validators 
can handle many different types of fields. But suppose you needed something a little 
different? That's where CustomValidator comes in. 

The CustomValidator control can be used whenever the other stock validators don't do the 
job. For example, if instead of just comparing a value against a fixed value or a regular 
expression you want to validate the value entered against a database, CustomValidator is one 
way to go. The code used to specify CustomValidator in ValidatorTest.aspx in Listing 5-4 is 
shown here: 

<ASP:CustomValidator ID="ValCustom"  
    runat="server"  
    ControlToValidate="txtCustom" 
    OnServerValidate="CustomServerVal" 
    Display="Static" 
    > 
    Enter "Hello".  Case-Sensitive. 
</ASP:CustomValidator> 

One thing that stands out in this example in comparison with previous example validators is 
that rather than using a single tag to open and close the validator and specifying the error 
message as an attribute (the ErrorMessage attribute), here I enter the error message I want 
associated with the validator between the start and end tags. There's no practical difference 
between the two methods of specifying the error message. 

A new attribute is included with CustomValidator in this example, OnServerValidate. This 
attribute points to a server-side function that takes two parameters-in this example, the 
function CustomServerVal, shown here: 

void CustomServerVal (object source, ServerValidateEventArgs args) 
{ 
    try 
    {   
        if ( args.Value.Equals("Hello") ) 



        { 
            Msg.Text="ServerValidation called and TRUE returned."; 
            args.IsValid=true; 
        } 
        else 
        { 
            Msg.Text="ServerValidation called and FALSE returned."; 
            args.IsValid=false; 
        } 
    } 
    catch 
    { 
        Msg.Text="ServerValidation called and FALSE returned."; 
        args.IsValid=false; 
    } 
} 

ServerValidateEventArgs has two properties that are important for this example: Value and 
IsValid. Value is used to get the value of the control, useful for performing the custom 
validation that's the goal of CustomServerVal. Value is a read-only property. 

The CustomServerVal function does nothing more than perform a simple comparison between 
the value and the literal string 'Hello'. If Value equals 'Hello' and no exception is thrown 
during the check, the function sets the IsValid property of the ServerValidateEventArgs 
instance to true. If IsValid is set to false, the CustomValidator control will fire, displaying the 
error message specified either in the ErrorMessage attribute or between the start and end tags 
of the CustomValidator control. 

As with the other validators, CustomValidator can also perform some of its checking on the 
client side. The ClientValidationFunction attribute allows you to specify which function on 
the client side should be used to validate the control pointed to by the ControlToValidate 
attribute. This example contains no client-side validation, but a reasonable implementation 
would be as follows: 

<script language="javascript"> 
    function ClientValidate(source, value) 
    { 
        if (value == "Hello") 
            return true; 
        else 
            return false; 
    } 
</script> 

The important thing to recognize about the client-side validation is that you'll almost certainly 
be using a different language than you use to code the server-side validator function. This can 
lead to interesting problems. For instance, in this simple example, is the comparison of the 
string 'Hello' case sensitive on both the client side and the server side? Ensuring the same case 
sensitivity would require knowledge of each of the languages involved.  

Multiple Validators on a Single Field 

Loading the ValidatorTest.aspx page from Listing 5-4 and clicking Validate displays the page 
shown in Figure 5-8. 



 
Figure 5-8 : The page that results from clicking the Validate button with no values filled in  

Notice that it displays the message 'Page Valid'. This is almost certainly not what you wanted! 
You specified that the first field should be a number between 1 and 12, that the second field 
should be some string that looks like a social security number, and that the last field should be 
'Hello'. But it turns out that, by design, all validators except RequiredFieldValidator don't 
validate against an empty control. There must be a solution. 

One solution is to use the RequiredFieldValidator control. Listing 5-5 shows a modified 
version of ValidatorTest.aspx, named ValidatorTestRequired.aspx. The difference between 
ValidatorTest.aspx (which is shown in Listing 5-4) and ValidatorTestRequired.aspx is the 
addition of a RequiredFieldValidator control for each of the fields covered by another 
validator.  

Listing 5-5 ValidatorTestRequired.aspx, a page that requires all fields to be filled, with valid 
data  
 
<html> 
    <script language="C#" runat=server> 
    void Validate_Click(Object sender, EventArgs E)  
    { 
        if ( Page.IsValid ) 
        { 
            Msg.Text="Page Valid"; 
        } 
    } 
    void CustomServerVal (object source, ServerValidateEventArgs args) 
    { 
        try 
        {   
            if ( args.Value.Equals("Hello") ) 
            { 
                Msg.Text="ServerValidation called and TRUE returned."; 
                args.IsValid=true; 
            } 
            else 
            { 
                Msg.Text="ServerValidation called and FALSE returned."; 
                args.IsValid=false; 
            } 
        } 
        catch 
        { 



            Msg.Text="ServerValidation called and FALSE returned."; 
            args.IsValid=false; 
        } 
    } 
    </script> 
 
    <body> 
        <form runat=server> 
            <center> 
            <h3> 
            <font face="Verdana"  
            color=blue> 
            Validator Test Page - Required Entry 
            </font> 
            </h3> 
            <table> 
                <tr> 
                    <td> 
                        Range Validation (1-12): 
                    </td> 
                    <td> 
                        <input id="Range"  
                        type="text"  
                        runat=server size=10 /> 
                    </td> 
                    <td> 
                        <ASP:RangeValidator ID="ValRange"  
                            ControlToValidate="Range"  
                            Display="Dynamic"  
                            Type="Integer" 
                            MinimumValue="1" 
                            MaximumValue="12" 
                            ErrorMessage="Out of Range"  
                            runat=server /> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="Range"  
                            Display="Dynamic"  
                            ErrorMessage="Must enter a value."  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        Regular Expression Validation (nnn-nn-nnnn): 
                    </td> 
                    <td> 
                        <input id="RegEx"  
                        type="text"  
                        runat=server size=11 /> 
                    </td> 
                    <td> 
                        <ASP:RegularExpressionValidator ID="ValRegEx"  
                            ControlToValidate="RegEx" 
                            runat="SERVER"  
                            Display="Dynamic" 
                            ErrorMessage= 
                              "Enter a valid U.S. SSN (nnn-nn-nnnn)." 
                            ValidationExpression= 
                              "[0-9]{3}-[0-9]{2}-[0-9]{4}" /> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="RegEx"  



                            Display="Dynamic"  
                            ErrorMessage="Must enter a value."  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        Custom Validation  
                        (It wants you to enter  
                        "Hello" WITHOUT THE QUOTES): 
                    </td> 
                    <td> 
                        <input type="text"  
                        id="txtCustom"  
                        runat=server  
                        size=11 /> 
                    </td> 
                    <td> 
                        <ASP:CustomValidator ID="ValCustom"  
                            runat="server"  
                            ControlToValidate="txtCustom" 
                            OnServerValidate="CustomServerVal" 
                            Display="Dynamic" 
                            > 
                            Enter "Hello".  Case-Sensitive. 
                        </ASP:CustomValidator> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="txtCustom"  
                            Display="Dynamic"  
                            ErrorMessage="Must enter a value."  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td colspan=3 align="center"> 
                        <asp:button  
                        text="Validate"  
                        OnClick="Validate_Click"  
                        runat=server> 
                        </asp:button> 
                        <p> 
                        <asp:Label id="Msg"  
                        ForeColor="red"  
                        Font-Name="Verdana"  
                        Font-Size="10"  
                        runat=server /> 
                    </td> 
                </tr> 
            </table> 
            </center> 
        </form> 
    </body> 
</html> 

 
 

One attribute of all validators we haven't yet looked at is the Display attribute. The Display 
attribute expects one of three values: None, Static, or Dynamic. When the Display attribute is 
set to None, the validation error message isn't displayed. When the Display attribute is set to 
Static, the layout of the page won't change when the validator control displays an error 



message. In this case, the validator contents are physically part of the page, and space will be 
allocated for them in the layout. When Display is set to Dynamic, the validator output is not 
part of the page until it's displayed. In Listing 5-5, I set each validator's Display attribute to 
Dynamic. Using Dynamic has the unfortunate effect of possibly causing the layout of the page 
to change when validators are fired, but the result is generally better than setting Display to 
Static. For example, when I changed RangeValidator to Static and then submitted the form 
with no value in the Range field, the page shown in Figure 5-9 was displayed. 

 
Figure 5-9 : The result when the first validator on a given field is set to Static display  

The ErrorMessage associated with the first validator (which hasn't been fired) is 'Out of 
Range'. Looking at Figure 5-9, you can see that the space between the text box and the 
beginning of the first 'Must enter a value' string is about what might be required to fit 'Out of 
Range'. Because we have the actual source that generated this page, we can see what the 
browser uses to render the page. The following HTML code is the table row returned to the 
browser in which the range validator is located. (The code has been reformatted for 
readability.) 

<tr> 
    <td> 
        Range Validation (1-12): 
    </td> 
    <td> 
        <input name="Range" 
        id="Range" type="text"  
        size="10" /> 
    </td> 
    <td> 
        <span id="ValRange" 
            controltovalidate="Range"  
            errormessage="Out of Range" 
            type="Integer"  
            evaluationfunction="RangeValidatorEvaluateIsValid" 
            maximumvalue="12" minimumvalue="1"  
            style="color:Red;visibility:hidden;"> 
            Out of Range 
        </span> 
        <span id="_ctl1"  
            controltovalidate="Range" 
            errormessage="Must enter a value."  
            display="Dynamic" 
            evaluationfunction="RequiredFieldValidatorEvaluateIsValid"  
            initialvalue="" 



            style="color:Red;display:none;"> 
            Must enter a value. 
        </span> 
    </td> 
</tr> 

From this HTML output, you can verify that the space for the 'Out of Range' text is present in 
the rendered HTML. Thus, in general, when two validators are present, you'll want to set 
Display to Dynamic. 

The ValidationSummary Control 

Sometimes, you might want to simply summarize the errors on a page, perhaps because the 
errors might involve multiple fields, and so signaling an error on a single field might be 
misleading. For example, if we were to use a CompareValidator control to compare two new 
password entries, placing an error message next to one or the other of the fields could be 
misleading. On the other hand, it could just be a part of the user interface standards at your 
organization that you display a single error message, either at the top or the bottom of the 
page. How do you do that with ASP.NET? 

ASP.NET offers another kind of validation control, ValidationSummary. This control handles 
all the error messages from all validators and displays them in a single place. Listing 5-6 
demonstrates how this control is used in ValidatorTestSummary.aspx.  

Listing 5-6 ValidatorTestSummary.aspx, showing how the ValidationSummary control is 
used  
 
<html> 
 
    <script language="C#" runat=server> 
    void Validate_Click(Object sender, EventArgs E)  
    { 
        if ( Page.IsValid ) 
        { 
            Msg.Text="Page Valid"; 
        } 
    } 
    void CustomServerVal (object source, ServerValidateEventArgs args) 
    { 
        try 
        {   
            if ( args.Value.Equals("Hello") ) 
            { 
                Msg.Text="ServerValidation called and TRUE returned."; 
                args.IsValid=true; 
            } 
            else 
            { 
                Msg.Text="ServerValidation called and FALSE returned."; 
                args.IsValid=false; 
            } 
        } 
        catch 
        { 
            Msg.Text="ServerValidation called and FALSE returned."; 
            args.IsValid=false; 



        } 
    } 
    </script> 
 
    <body> 
        <form runat=server> 
            <center> 
            <h3> 
            <font face="Verdana" color=blue> 
            Validator Test Page - Summary 
            </font> 
            </h3> 
            <table> 
                <tr> 
                    <td> 
                        Range Validation (1-12): 
                    </td> 
                    <td> 
                        <input id="Range"  
                        type="text"  
                        runat=server  
                        size=10 /> 
                    </td> 
                    <td> 
                        <ASP:RangeValidator ID="ValRange"  
                            ControlToValidate="Range"  
                            Display="None"  
                            Type="Integer" 
                            MinimumValue="1" 
                            MaximumValue="12" 
                            ErrorMessage="Range"  
                            runat=server /> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="Range"  
                            Display="None"  
                            ErrorMessage="Range"  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        Regular Expression Validation (nnn-nn-nnnn): 
                    </td> 
                    <td> 
                        <input id="RegEx"  
                        type="text"  
                        runat=server  
                        size=11 /> 
                    </td> 
                    <td> 
                        <ASP:RegularExpressionValidator ID="ValRegEx"  
                            ControlToValidate="RegEx" 
                            runat="SERVER"  
                            Display="None" 
                            ErrorMessage="Regular Expression" 
                            ValidationExpression= 
                              "[0-9]{3}-[0-9]{2}-[0-9]{4}" /> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="RegEx"  
                            Display="None"  
                            ErrorMessage="Regular Expression"  



                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        Custom Validation  
                        (It wants you to enter "Hello"  
                        WITHOUT THE QUOTES): 
                    </td> 
                    <td> 
                        <input type="text"  
                        id="txtCustom"  
                        runat=server  
                        size=11 /> 
                    </td> 
                    <td> 
                        <ASP:CustomValidator ID="ValCustom"  
                            runat="server"  
                            ControlToValidate="txtCustom" 
                            OnServerValidate="CustomServerVal" 
                            Display="None" 
                            > 
                            Custom 
                        </ASP:CustomValidator> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="txtCustom"  
                            Display="None"  
                            ErrorMessage="Custom"  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td colspan=3 align="center"> 
                        <asp:button  
                            text="Validate"  
                            OnClick="Validate_Click"  
                            runat=server> 
                        </asp:button> 
                        <p> 
                        <asp:Label id="Msg"  
                            ForeColor="red"  
                            Font-Name="Verdana"  
                            Font-Size="10"  
                            runat=server /> 
                        <asp:ValidationSummary  
                            id="valSum"  
                            DisplayMode="BulletList"  
                            ShowSummary="true" 
                            runat="server" 
                            HeaderText= 
                            "You must enter a value in the following fields
:" 
                            Font-Name="Verdana"  
                            Font-Size="12"/> 
                    </td> 
                </tr> 
            </table> 
            </center> 
        </form> 
    </body> 
</html> 



 
 

Figure 5-10 shows the page that is returned when all fields are left empty and the Validate 
button is clicked. 

 
Figure 5-10 : The validation summary displayed when ValidatorTestSummary.aspx is 
submitted with no values entered  

The most important change in Listing 5-6 is the addition of a ValidationSummary control at 
the bottom of the page, below the button and label, as follows: 

<asp:ValidationSummary  
    id="valSum"  
    DisplayMode="BulletList"  
    ShowSummary="true" 
    runat="server" 
    HeaderText="You must enter a value in the following fields:" 
    Font-Name="Verdana"  
    Font-Size="12"/> 

Let's quickly review the attributes of the ValidationSummary control that aren't obvious by 
their names. DisplayMode is the attribute that tells ASP.NET how to display errors. The 
values allowed are part of the ValidationSummaryDisplayMode enumeration in the 
System.Web.UI.WebControls namespace. The allowed values are shown here: 

• BulletList  Displays a bulleted list of the error messages 
• List  Displays a list of the error messages 
• SingleParagraph  Displays all error messages in a single paragraph  

The ShowSummary attribute accepts a true or false value and indicates whether the validation 
summary is shown in line within the HTML. Not shown in this example is the 
ShowMessageBox attribute, which controls whether the validation summary is displayed in a 
message box on the client. ShowMessageBox also expects a true or false value. The 
HeaderText attribute sets the text used as the header of the validation summary. 

Other changes made to ValidatorTestSummary.aspx (shown in Listing 5-6) from 
ValidatorTestRequired.aspx (shown in Listing 5-5) are the settings for the Display attribute 
(all set to None) and the error text, set to a user-friendly version of the control being validated 
so that the message makes sense in combination with HeaderText. 



Maintaining the State of Controls in ASP.NET 
In classic ASP form handling code, a large amount of code is typically required for validation 
of entered data. The next largest bit of code often is maintaining the state of controls between 
times the form is submitted. HTTP is a stateless protocol-it doesn't provide a static, long-term 
connection. Each trip to the server is treated as a new request, and even if there's the 
appearance of a session, it is just that, an appearance that the .NET Framework provides. No 
connection exists and, by default, the server remembers nothing about the client between page 
submissions. 

When using classic ASP to create standard forms, I typically use the following steps to 
maintain state information while allowing the user to view and edit information from a 
database: 

1. Determine whether this is a postback. If it isn't, skip to read from database, step 4. 
2. If this is a postback, validate the input. If the input is all valid, save the information 

and redirect the user to another page. If the input is not valid, continue to step 3. 
3. Save the entered values into local variables. 
4. If this is not a postback, read the values from database into local variables. 
5. Display the form. On all appropriate controls, set the value attribute to the appropriate 

local variable from step 3 or 4.  

There's a lot of processing going on here, and while it's not rocket science, it definitely leaves 
a lot of room for error. The cost in terms of confusion to the user and grief to the developer 
trying to track down inconsistencies in such code is not trivial. For instance, in a recent 
project, I inadvertently used two different naming conventions for controls, one using a prefix 
describing the type of control (for example, txtFirstName) and another that used just a 
descriptive name for the control (for example, FirstName). Tracking down the inconsistencies 
in exactly how I had named the various controls was no fun. I had to check the postback logic, 
the validation logic, and the values used as the default values for the HTML widgets. As we'll 
see, ASP.NET makes it easier to maintain state information. 

When an ASP.NET form is submitted, maintaining the state of controls on the form is handled 
by the .NET Framework. This isn't something you need to specially code or ask for. When a 
form is submitted and redisplayed, the previous entries are automatically the default entries on 
the form. For example, Listing 5-7 shows a simple form named StateTest.aspx.  

Listing 5-7 StateTest.aspx page used to show how form entries are maintained from 
submission to submission  
 
<%@ Import Namespace="System.Web.Security " %> 
<%@ Page ClientTarget="Downlevel" %> 
<html> 
    <script language="VB" runat=server> 
    Sub ValidateBtn_OnClick(sender As Object, e As EventArgs) 
       If (Page.IsValid) Then 
          Msg.Text = "Page is Valid!" 
       Else 
          Msg.Text = "Page is InValid!" 
       End If 
    End Sub 
    </script> 



 
    <body> 
        <form runat=server> 
            <center> 
            <h3> 
            <font face="Verdana"  
            color=blue>Control Test Page - State 
            </font> 
            </h3> 
            <table> 
                <tr> 
                    <td> 
                        Name: 
                    </td> 
                    <td> 
                        <input id="Name"  
                        type="text"  
                        runat=server  
                        size=30 /> 
                    </td> 
                    <td> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="Name"  
                            Display="Static"  
                            ErrorMessage="Please enter name."  
                            runat=server /> 
                    </td> 
                </tr> 
                <tr> 
                    <td> 
                        SSN: 
                    </td> 
                    <td> 
                        <input id="SSN"  
                        type="text"  
                        runat=server size=11 /> 
                    </td> 
                    <td> 
                        <ASP:RequiredFieldValidator  
                            ControlToValidate="SSN"  
                            Display="Dynamic"  
                            ErrorMessage= 
                            "Enter a valid U.S. SSN (nnn-nn-nnnn)."  
                            runat=server /> 
                        <ASP:RegularExpressionValidator ID="ValRegEx"  
                            ControlToValidate="SSN" 
                            runat="SERVER"  
                            Display="Dynamic" 
                            ErrorMessage= 
                              "Enter a valid U.S. SSN (nnn-nn-nnnn)." 
                            ValidationExpression= 
                              "[0-9]{3}-[0-9]{2}-[0-9]{4}" /> 
                    </td> 
                </tr> 
                <tr> 
                    <td colspan=3 align="center"> 
                        <asp:button text="Validate"  
                            OnClick="ValidateBtn_OnClick"  
                            runat=server> 
                        </asp:button> 
                        <p> 



                        <asp:Label id="Msg"  
                            ForeColor="red"  
                            Font-Name="Verdana"  
                            Font-Size="10"  
                            runat=server /> 
                    </td> 
                </tr> 
            </table> 
            </center> 
        </form> 
    </body> 
</html> 

 
 
 Note Listing 5-7 uses Visual Basic .NET rather than C#. The general structure is the same, 

and although the function called when the Validate button is clicked is named 
ValidateBtn_OnClick, there's no reason other than convention for my using this naming 
format. Visual Studio .NET will commonly generate event handlers in this format, but 
the format is not required by the .NET Framework. 

This form has validators on both the Name field and the SSN field. Entering a name (the form 
isn't fussy about names) and an invalid social security number (in this case, 111-111-111 
rather than 111-11-1111) displays the page shown in Figure 5-11, with the entries appearing 
as the default entries when the page is redisplayed. 

 
Figure 5-11 : The result of submitting StateTest.aspx with a name and an invalid social 
security number  
 Note The StateTest.aspx sample doesn't use client-side validation because I specifically used 

the Page directive's ClientTarget=Downlevel attribute/value pair to ensure that the page 
was in fact submitted to the server. The fact that the message at the bottom of the page 
displays 'Page is InValid!' proves it, because this message is generated from a server-
side method. 

Manipulating Server Controls Programmatically 
In addition to the controls you've already seen, all the other standard HTML widgets have 
both HTML server controls and ASP server controls, including the following: 

• HyperLink (<A> tag) 
• Label  
• DropDownList  



• ListBox  
• Checkbox  
• RadioButton  

Using the HTML server controls is simply a matter of using the same syntax as you've used 
with standard HTML controls, with a couple qualifications: 

• The ID attribute must be set if you want to manipulate the controls and their values 
programmatically. 

• The RunAt attribute must be set to Server.  

In general, you'll define the ASP server controls in exactly the same way you defined HTML 
controls, but again with a couple exceptions. First, all ASP server controls use a tag name of 
<ASP:controltypename>. In addition, some of the properties of the ASP controls are more 
similar to traditional Visual Basic controls than HTML controls. One striking example of how 
the ASP controls are very similar to the Visual Basic controls is the ASP:TextBox control. The 
first thing you'll notice is that it is named TextBox. In the HTML world, it would be an INPUT 
of type Text. When you begin to investigate properties, the parallel to Visual Basic becomes 
even clearer. What would be Value in HTML is named Text in the ASP server controls.  

 Note You could argue, and many have, that the properties of ASP server controls and HTML 
server controls should, where they exist in both models, use the same name. Microsoft 
apparently quite consciously made a decision to keep the HTML server controls true to 
their heritage, and at the same time create an ASP control hierarchy that would be 
comfortable for Visual Basic programmers moving to ASP.NET. I think it's a reasonable 
compromise. 

Beyond the list of server controls that mirror the HTML controls, there are a number of ASP 
server controls that don't have exact analogs in HTML. We've seen one family of these 
controls, the validator controls. Another large family of controls is designed to make 
developing database-driven applications easier. We'll postpone looking at these data controls 
until Chapter 9. 

Several other controls enable ASP.NET developers to provide a richer user interface. A 
simple example is the LinkButton control, a hyperlink-style button control. 

A much more complicated control is the Calendar control. Until now, one of the benefits that 
developers have had to leave behind when moving to Web applications is the DateTimePicker 
common control provided in Windows. Although it's certainly possible to use client-side 
ActiveX controls to get a similar effect, using a client-side ActiveX control isn't practical for 
most developers of Internet applications. 

The Calendar ASP.NET server control is a pure HTML solution to the problem of date 
selection in a Web page. The Calendar control has attributes that are too numerous to list 
here; again, they're well documented in the MSDN documentation. To insert a Calendar 
ASP.NET server control in your page, you need to add a set of tags something like the 
following: 

<asp:Calendar id="Calendar1"  
    runat="server"  
    Width="277px"  



    Height="188px"  
    OnSelectionChanged="Selection_Change"> 
    <TodayDayStyle  
        ForeColor="#0000C0"  
        BorderStyle="Solid"  
        BorderColor="Red"> 
    </TodayDayStyle> 
</asp:Calendar> 

Most attributes of the Calendar control are self-explanatory, such as Width, Height, and ID. 
This example also uses a subtag inside the <ASP:Calendar> start and end tags. The 
TodayDayStyle subtag is used to set the appearance of the current date in the Calendar 
control. TodayDayStyle alone has over 10 individual elements that can be set, including 
attributes such as BorderStyle and BorderColor and details about the font. Setting multiple 
elements using attributes can be tedious. Fortunately, when you're using the Visual Studio 
.NET development environment, you can set these attributes in the Properties window, similar 
to the Properties window that Visual Basic programmers have come to expect. You can also 
set the individual attributes programmatically. 

 
Using Code-Behind Files 

All the examples I've shown so far have been created primarily using Notepad-a tool that 
knows nothing of the .NET Framework. The next example, named WebForm1.aspx, as well 
as most future examples, will be created using Visual Studio .NET. One of the important 
differences between classic ASP and ASP.NET is the location of code. With ASP, all code 
had to be located in the ASP file, or included in the ASP file. ASP.NET encourages a 
different model. In WebForm1.aspx, all the code is located in a separate file, by convention 
named WebForm1.aspx.vb (because the code is Visual Basic .NET code). The code-behind 
file, as it is called, would be named WebForm1.aspx.cs if the example used C# rather than 
Visual Basic .NET. The ability to conveniently separate content from the code is critical for 
development groups that place page designers and page developers in two different groups. 

 
 

The rest of this section describes an example named ControlShowAndTell. The example uses 
four ASP.NET server controls (Label, Calendar, LinkButton, and TextBox), which will be 
manipulated programmatically. Listing 5-8 shows WebForm1.aspx, which contains the 
content for the page. Later we'll see the code behind this page, which is in a separate file.  

Listing 5-8 WebForm1.aspx, a Visual Studio .NET-generated content file  
 
<%@ Page Language="vb"  
AutoEventWireup="false"  
Codebehind="WebForm1.aspx.vb"  
Inherits="ControlShowAndTell.WebForm1"%> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML> 
    <HEAD> 
        <title></title> 
        <meta content="Microsoft Visual Studio.NET 7.0" name="GENERATOR"> 
        <meta content="Visual Basic 7.0" name="CODE_LANGUAGE"> 
        <meta content="JavaScript" name="vs_defaultClientScript"> 



        <meta content="Internet Explorer 5.0" name="vs_targetSchema"> 
    </HEAD> 
    <body> 
        <CENTER> 
            <form id="Form1" onsubmit="FormSubmit"  
            method="post" runat="server"> 
                <p> 
                <asp:label  
                    id="Label2"  
                    runat="server"  
                    Width="175px"  
                    Height="35px"  
                    BackColor="#FFC0C0"  
                    BorderStyle="Dotted"  
                    Font-Size="18pt"  
                    Font-Bold="True"> 
                    Other Controls 
                </asp:label> 
                </p> 
                <p> 
                <asp:calendar id="Calendar1"  
                    runat="server"  
                    Width="277px"  
                    Height="188px"  
                    OnSelectionChanged="Selection_Change"> 
                    <TodayDayStyle ForeColor="#0000C0"  
                        BorderStyle="Solid"  
                        BorderColor="Red"> 
                    </TodayDayStyle> 
                </asp:calendar> 
                </p> 
                <p> 
                <asp:linkbutton id="LinkButton1"  
                    runat="server"  
                    Width="81px"  
                    Height="19px"> 
                    LinkButton 
                </asp:linkbutton> 
                </p> 
                <asp:textbox id="TextBox1"  
                    runat="server"> 
                </asp:textbox> 
            </form> 
        </CENTER> 
    </body> 
</HTML> 

 
 

Listing 5-9 shows WebForm1.aspx.vb, which is the Visual Basic .NET code behind the 
content page WebForm1.aspx. 

Listing 5-9 WebForm1.aspx.vb, a Visual Basic .NET-generated code-behind file for 
WebForm1.aspx, showing how to manipulate a calendar control programmatically  
 
Public Class WebForm1 
    Inherits System.Web.UI.Page 
    Protected WithEvents Calendar1 As System.Web.UI.WebControls.Calendar 



    Protected WithEvents LinkButton1 As System.Web.UI.WebControls.LinkButto
n 
    Protected WithEvents Label2 As System.Web.UI.WebControls.Label 
    Protected WithEvents Form1 As System.Web.UI.HtmlControls.HtmlForm 
    Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox 
 
#Region " Web Form Designer Generated Code " 
 
    ‘This call is required by the Web Form Designer. 
    <System.Diagnostics.DebuggerStepThrough()> _ 
    Private Sub InitializeComponent() 
 
    End Sub 
 
    Private Sub Page_Init(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) _  
      Handles MyBase.Init 
        ‘CODEGEN: This method call is required by the Web Form Designer 
        ‘Do not modify it using the code editor. 
        InitializeComponent() 
    End Sub 
 
#End Region 
 
    Private Sub Page_Load(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) _  
      Handles MyBase.Load 
        ‘Put user code to initialize the page here 
        If Page.IsPostBack() = False Then 
            Calendar1.BackColor = System.Drawing.Color.BlanchedAlmond 
            Calendar1.ForeColor = System.Drawing.Color.Red 
            Calendar1.TodaysDate = "7/24/2001" 
            LinkButton1.Enabled = False 
            TextBox1.Text = "Hello" 
        End If 
    End Sub 
    Sub Selection_Change(ByVal sender As Object, _  
      ByVal e As EventArgs) 
        Dim s As String 
        s = Calendar1.SelectedDate.ToString() 
        TextBox1.Text = s.Substring(0, s.IndexOf(" ")) 
    End Sub ‘Selection_Change 
 
End Class 

 
 

The first difference from previous examples you'll notice in Listing 5-8 is the Page directive, 
shown here: 

<%@ Page Language="vb"  
AutoEventWireup="false"  
Codebehind="WebForm1.aspx.vb"  
Inherits="ControlShowAndTell.WebForm1"%> 

AutoEventWireup and Codebehind are attributes specific to Visual Studio .NET. 
AutoEventWireup is almost always set to false. Setting this attribute to true or omitting it 
causes an event handler named Page_Init to automatically be wired up to the Init event of the 
page. Using AutoEventWireup seemed like a good idea at the time but can cause some 



confusion in practice. There were many reports during early ASP.NET betas of developers 
accidentally using AutoEventWireup and manually wiring up the events as well, resulting in 
two calls to the event rather than the desired single call. Visual Studio .NET uses Codebehind 
at design time, and the .NET Framework ignores it. Projects that don't use Visual Studio .NET 
commonly use the Src attribute of the Page directive to point to the code to run for the page. 

WebForm1.aspx next has a number of Meta tags placed by Visual Studio .NET. Meta HTML 
elements convey hidden information about the document to both the server and the client. 
Search engines commonly read Meta tags to index pages. The remainder of Listing 5-8 is 
similar to previous examples, defining ASP.NET server controls for the page. Some bells and 
whistles are used for the title label (a dotted border and a background color), but the rest of 
the controls are declared with the minimum number of attributes. 

WebForm1.aspx.vb, in Listing 5-9, begins with the opening of a class declaration, as follows: 

Public Class WebForm1 
    Inherits System.Web.UI.Page 
    Protected WithEvents Calendar1 As System.Web.UI.WebControls.Calendar 
    Protected WithEvents LinkButton1 As System.Web.UI.WebControls.LinkButto
n 
    Protected WithEvents Label2 As System.Web.UI.WebControls.Label 
    Protected WithEvents Form1 As System.Web.UI.HtmlControls.HtmlForm 
    Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox 

The public class WebForm1 is declared and described as inheriting from 
System.Web.UI.Page. Complete documentation on this class is available in MSDN. Next, four 
controls are declared, one each for Label2, Calendar1, LinkButton1, and TextBox1. Each of 
these controls is declared as an ASP server control in WebForm1.aspx (Listing 5-8), and they 
are declared here so that they can be manipulated programmatically. These controls are 
declared using the WithEvents Visual Basic .NET keyword to specify that these objects will 
respond to events raised by the instance assigned to the variable. All the ASP server controls 
are located in the System.Web.UI.WebControls namespace. 

Immediately after the instance variables are declared in WebForm1.aspx.vb in Listing 5-9, 
you'll see the following curious line: 

#Region " Web Form Designer Generated Code " 

The code between this line and the #End Region line below it in Listing 5-9 is hidden, by 
default, when the code is edited within Visual Studio .NET. Visual C++ MFC and ATL 
programmers might be familiar with this generated code, but Visual Basic programmers might 
not be. 

 Note In Microsoft Visual C++, programmers have long been familiar with sections of code 
that were maintained by the development environment. In time, some even learned to 
manipulate these lines of code manually, although doing so is certainly not 
recommended. Visual Basic programmers are not used to having this same sort of code 
exposed to the programmer but really designed for the development environment's use. 
In Visual Basic, some 'secret sauce' ingredients were magically added but were not 
represented by code that the developer could see. The .NET model moves all the Visual 
Studio .NET-supported languages away from any secret ingredients. If the code is doing 
something, even if that something isn't intended for end user modification, it's in there! 



For now, just overlook the regions declared as 'Web Form Designer Generated Code'. In 
Listing 5-9, this generated code is quite straightforward, but other examples will be 
more complex.  

Because Visual Studio .NET has taken over the Page_Init event for its own purposes, we need 
to find another place where we can place code to be executed at the start of processing. There 
is such a place, of course: the Page_Load event. The IsPostBack property of the Page class 
will help us handle the two situations that we'll encounter on the Page_Load event.  

 
ASP.NET Web Form Stages 

The life cycle of an ASP.NET Web Form has five basic stages: 

• Page_Init  The ASP.NET page framework uses this event to restore control properties 
and postback data (data entered in controls by the user before the form was submitted). 

• Page_Load  The developer uses this event either to perform some initial processing (if 
this is the first visit to the page) or to restore control values (if this is a postback). 

• Validation  The Validate method of ASP.NET server controls is called to perform 
validation for the controls. 

• Other event handling  Various controls expose many events. For example, the 
Calendar control exposes a SelectionChanged event, as we'll see later in this section. 
There's no assurance that events will be raised in any particular order, except that 
cached control events (as specified in the control's AutoPostBack property) are always 
processed before the posting event. If the page contains validation controls, you 
should check the IsValid property of the page and individual validation controls to 
determine whether validation has been passed. 

• Page_Unload  This event is called as the page has finished rendering. This would be 
the place to clean up any resources allocated, especially expensive resources like file 
handles and database connections. Simply allowing these resources to pass out of 
scope might not be enough, especially on a busy site, where waiting for garbage 
collection to occur might hinder performance. 

 
 

When a page is loaded, two scenarios are possible: this could be the first time this page is 
loaded, or this could be a postback. In the Page_Load event handler, the following code 
handles the two possible page-loading scenarios: 

Private Sub Page_Load(ByVal sender As System.Object, _  
  ByVal e As System.EventArgs) _  
  Handles MyBase.Load 
    ‘Put user code to initialize the page here 
    If Page.IsPostBack = False Then 
        Calendar1.BackColor = System.Drawing.Color.BlanchedAlmond 
        Calendar1.ForeColor = System.Drawing.Color.Red 
        Calendar1.TodaysDate = "7/24/2001" 
        LinkButton1.Enabled = False 
        TextBox1.Text = "Hello" 
    End If 
End Sub 



In this example, processing is done only when Page.IsPostBack is false-that is, the first time 
the page is processed, not when a form is filled in. When Page.IsPostBack is false, the page 
programmatically sets several properties of the Calendar control as well as the Enabled 
property of the link button and the Text property of the text box. For the Calendar control, the 
BackColor and ForeColor properties are set, along with the TodaysDate property. The 
TodaysDate property is used to set the control's view of what today's date is, which can be 
different from the system date on the server or the client. These simple examples of setting 
properties are just the tip of the iceberg as far as the level of programmatic control you can 
have over components. 

Figure 5-12 shows the ControlShowAndTell example when WebForm1.aspx is requested. 

 
Figure 5-12 : WebForm1.aspx, showing TodaysDate as set in code, with July 4 as the selected 
date  

In WebForm1.aspx.vb (Listing 5-9), the link button control was disabled in code, and indeed 
it is disabled in Figure 5-12. However, the Text property of the text box just below that was 
set to 'Hello' in the Page_Load method. In Figure 5-12, the text box is set to '7/4/2001', which 
happens to be the selected date as well. How did that happen? 

The answer is the code in the Selection_Change method in Listing 5-9: 

Sub Selection_Change(ByVal sender As Object, _  
  ByVal e As EventArgs) 
    Dim s As String 
    s = Calendar1.SelectedDate.ToString() 
    TextBox1.Text = s.Substring(0, s.IndexOf(" ")) 
End Sub ‘Selection_Change 

The OnSelectionChanged attribute of the Calendar control is set to Selection_Change. 
Whenever the selection is changed, this method is called on the server. This simple method 
changes the Text property of the text box to the date that the Calendar control is set to. 

 
Strings, Dates, and a Rich Framework 

The ControlShowAndTell example demonstrates the richness of the object model in the .NET 
environment. Notice that I actually set an intermediate string s to the result of the ToString 
method on the SelectedDate property. When I first did this, there was a problem. Rather than 



displaying '7/4/2001' when I selected July 4, 2001, the text box showed '7/4/2001 12:00:00 
AM'. To get just the date, I used the Substring method. To display the date, I could have also 
used another approach. Rather than having the Selection_Change method hard-coded to work 
on Calendar1, I really could have used the Sender parameter passed into the event handler. 
Here's another approach that would also work: 

Sub Selection_Change(ByVal sender As Object, ByVal e As EventArgs) 
    Dim c As Calendar 
    Try 
        c = CType(sender, Calendar) 
        c.SelectedDate.ToShortDateString() 
        TextBox1.Text = c.SelectedDate.ToShortDateString() 
    Catch 
    End Try 
End Sub ‘Selection_Change 

First, I converted the sender parameter to a Calendar object. I placed the code in a Try/Catch 
block, because it could fail if I used the same event handler for some other, non-calendar-
related event. Once I had the Calendar object, I simply used the ToShortDateString method 
on the date so that I got the date only, without the time. The Catch block does nothing, 
because this event handler is designed only for Calendar objects, and so if this is not a 
Calendar object or a class that can be converted to a Calendar object, I do nothing. 

 
 

When you create an ASP.NET Web Application project in Visual Studio .NET, multiple 
supporting files are created. Figure 5-13 shows the files created for the ControlShowAndTell 
example.  

 
Figure 5-13 : The files created by Visual Studio .NET for the ControlShowAndTell example  

Listing 5-10 shows the Global.asax.vb file for the ControlShowAndTell example, a file that 
contains the code elements somewhat analogous to the event handlers in Global.asa in classic 
ASP. 

Listing 5-10 Global.asax.vb, generated by Visual Studio .NET  
 
Imports System.Web 
Imports System.Web.SessionState 
 



Public Class Global 
    Inherits System.Web.HttpApplication 
 
#Region " Component Designer Generated Code " 
 
    Public Sub New() 
        MyBase.New() 
 
        ‘This call is required by the Component Designer. 
        InitializeComponent() 
 
        ‘Add any initialization after the InitializeComponent() call 
 
    End Sub 
 
    ‘Required by the Component Designer 
    Private components As System.ComponentModel.Container 
    ‘NOTE: The following procedure is required by the Component Designer 
    ‘It can be modified using the Component Designer. 
    ‘Do not modify it using the code editor. 
    <System.Diagnostics.DebuggerStepThrough()> _  
      Private Sub InitializeComponent() 
        components = New System.ComponentModel.Container() 
    End Sub 
 
#End Region 
 
    Sub Application_BeginRequest(ByVal sender As Object, _  
      ByVal e As EventArgs) 
        ‘ Fires at the beginning of each request 
    End Sub 
 
    Sub Application_AuthenticateRequest(ByVal sender As Object, _  
      ByVal e As EventArgs) 
        ‘ Fires upon attempting to authenticate the use 
    End Sub 
 
    Sub Application_Error(ByVal sender As Object, _  
      ByVal e As EventArgs) 
        ‘ Fires when an error occurs 
    End Sub 
 
End Class 

 
 

Global.asax.vb also has a region of code that is generated by the development environment, 
and this code is hidden by default when viewed in Visual Studio .NET. 

When you compile or run a Visual Studio .NET project, a bin folder is created. The bin folder 
contains the DLL (named ControlShowAndTell.dll) with the compiled functionality from 
WebPage1.aspx.vb as well as a file used for debugging. 

 Note If you use the Depends.exetool included with Visual Studio 6.0, you'll see that the only 
DLL that the ControlShowAndTell.dll file relies on is Mscoree.dll. This DLL contains 
the majority of the .NET Framework functionality. 



Chapter 6: Creating ASP.NET Components 
One of the features that drove the unprecedented (and somewhat unexpected) success of 
Microsoft Visual Basic when it was introduced was that it could be extended with 
components. Even though the benefits possible with object-oriented development wouldn't be 
fully realized until the arrival of Visual Basic .NET, Visual Basic succeeded initially in no 
small part because it allowed Microsoft as well as third parties to develop and use components 
within it. 

In the first section of this chapter, I'll talk about the mixed blessing components have been 
until now. In the rest of the chapter, I'll explain how ASP.NET has come to the rescue, 
solving many of the problems that developers have had to endure when using COM 
components in Active Server Pages (ASP). I'll go over the control classes in ASP.NET and 
then walk you through the life cycle of an ASP.NET control. In the final two sections of the 
chapter, you'll learn the ins and outs of creating and using both user controls and custom 
controls within ASP.NET. 

The Trouble with Components 
According to object-oriented purists, an object should support polymorphism, inheritance, and 
encapsulation. Software components or controls aren't always a perfect match for what 
objects should be, although they're often 'good enough.' Certainly the initial VBX controls, 
and even the more current COM controls, weren't designed to enable easy inheritance. In 
addition, problems with version compatibility persist. The idea of an immutable interface that 
will endure and be compatible with all future versions of a component that implements it is a 
good one, but in the real world, it's often difficult to create a new component that perfectly 
mimics the behavior of the previous version.  

For example, I once used a third-party text control to create encrypted rich text format (RTF) 
files. The initial two versions of the text control interacted perfectly with my encryption 
routine, which was a simple routine designed (because of the memory limitations inherent in 
16-bit Microsoft Windows programming) to operate on chunks of text no larger than 2048 
characters. This limitation wasn't a problem because the text control always gave me the text 
with real newline characters at every line break (denoted by a {para} RTF tag). All went well 
until I moved to the third version of the text control, and then suddenly, everything broke! 

The reason for the problem, in retrospect, was simple. The interface contract between the 
developer of the control and the end user of the control did specify exactly how to get the text 
in and out of the control, how to calculate the length of the text in the control, how to select 
certain characters, and many other details. However, the interface contract for the control said 
nothing about how physical line breaks would be handled. Nonetheless, I relied on the 
behavior of the first version. There was no need for physical line breaks in the RTF text, and 
in fact, the third version of the text control never inserted a line break. That meant that, 
including control characters and the like, I could receive between 4000 and 8000 characters 
without any physical line break. Such large text chunks broke the encryption routine, which 
was designed specifically to work with small blocks of text. 



The new text control properly implemented the same interface that had previously existed, but 
nonetheless it broke my code. Reverting to a previous version of the control until I could 
address the encryption routine's buffer limit was a nightmare. 

Deploying COM components is also a bit more difficult than it should be and can include the 
following problems: 

• Version dependencies can cause a newer version of a COM component to break an 
older application. 

• COM components must have the proper entries in the registry. 
o There's no easy way to deploy a new COM component while the existing 

component is running. 
o Developing and debugging COM components is difficult. 

The .NET Framework addresses the first problem of version dependency by allowing 
different versions of components to live side by side on the same machine. Therefore, 
applications can request a particular version, so older applications can use an older version of 
a component and won't break if another application residing on the same computer requires 
the newer version.  

The second problem made deployment and configuration of COM components more difficult. 
The components created for the .NET Framework are self-describing and don't rely on the 
registry. Removing this dependency on the registry makes it easier to deploy components 
because the components can just be copied to the proper location. 

The third problem wasn't much of an issue initially, when COM components were used 
primarily for desktop applications. Frankly, shutting down and restarting a desktop 
application, or even rebooting the machine, wasn't a catastrophe. There was still the hassle of 
having someone walk from machine to machine to perform the upgrade, but at least that was 
possible. As more and more COM components were used for server-based applications, and 
especially Web servers, however, the need to shut down an application to install a new 
version of the component became a serious liability. Many Web sites must be up and running 
24 hours a day, 7 days a week. There's no convenient time for a shutdown. Fortunately, some 
alternatives are available, though they're not without problems of their own. 

For example, I work on a four-machine Web server cluster. If I need to update a COM 
component, I have to understand the difference in behavior between the old and the new 
versions and then make my plans accordingly. If the new component is designed to be 
compatible with the existing COM component and the change is merely a bug fix, all I need 
to do is drop the servers out of the cluster, stop required services (often the World Wide Web 
Publishing service and Component Services), and install the new component. I can then bring 
the machine with the updated component on line and move to the next server. 

What happens if the upgrade isn't just a bug fix but is instead adding new functionality? This 
scenario gets a bit tricky. If the Active Server Pages (ASP) code that calls the component will 
be changed to use the new functionality, I need to move through all the servers to change the 
component and then move through the servers again to add the changed ASP code on each 
server. Even this plan presents potential problems. If one request to the Web server goes to a 
machine that knows about the added functionality of the control and the next request based on 
new information goes to a different server that doesn't yet have the ASP code to understand 



the new functionality, a problem could arise. This window of opportunity for bad things to 
happen isn't terribly large on a four-server cluster, but if you're working with a larger cluster, 
you might have real trouble. 

ASP.NET, in conjunction with some other services available as part of the .NET Framework, 
allows this transition to take place much more cleanly. (See MSDN for information about the 
Microsoft Application Center, one service that can help with this kind of upgrading.) As for 
the components themselves, new ASP.NET components are designed to be copied on top of 
the older versions, and users connected to an old version are allowed to cleanly spin down, 
while new requests will receive the new component. Of course, potential problems still lurk, 
but the ability to copy in a new component without shutting down services like IIS and 
Component Services is a huge advance.  

Finally, the fourth problem is developing and debugging COM components, which is a 
difficult process. Developing COM components using Visual Basic is definitely easier than 
using C++, but it's still more difficult than it should be. Debugging COM components that are 
called from an ASP page isn't impossible, but it involves a very different process than 
standard ASP script debugging. 

ASP.NET components address all these issues and more, as you'll see in this chapter. But 
first, let's take a look at exactly what makes up a component in ASP.NET. 

ASP.NET Control Classes 
Everything in the .NET Framework is an object. OK, that's an oversimplification, since value 
types, like integers and structures, aren't actually objects by default. But it shouldn't surprise 
you that the components you build will, ultimately, derive from the Object class. Figure 6-1 
shows the hierarchy of classes that will be the basis for any component you build. 

 
Figure 6-1 : The class hierarchy for server control classes  

The System.Web.UI namespace contains the System.Web.UI.Control class, from which all 
server controls derive. The two most important namespaces under System.Web.UI are 
System.Web.UI.WebControls and System.Web.UI.HtmlControls. The HtmlControls 
namespace contains the controls that directly map to standard HTML server controls (created 
by using the standard HTML syntax, with the addition of a RunAt=Server attribute/value 
pair). The WebControls namespace contains all the ASP.NET server controls whose tags in 
the .aspx files are preceded by ASP:, such as ASP:TextBox. 

 Note If you're thinking that the world would be a perfect place if the Windows Forms control 



classes were also in the same control hierarchy, this note is a reminder that, alas, the 
developer's world is still far from perfect. In fact, if you look at the 
System.Windows.Forms.Control class, you'll quickly be reminded of just how different 
the two control environments-the Web and Windows-really are. For example, Web 
controls have no concept of things like z-order or window handles, while Windows 
controls have no concept of rendering or view state. The classes do have similarities, 
and certainly Visual Basic programmers will be comfortable with many of the properties 
now exposed on the Web controls, such as Text. But these similarities shouldn't lead you 
to overlook the very great differences in both implementation and purpose of Web 
controls and Windows controls. 

Although the WebControls and HtmlControls namespaces contain most of the controls you'll 
normally be deriving from, they're not the only namespaces that have classes you might 
derive from. As you can see in Figure 6-1, the two most important classes in this hierarchy are 
Page and UserControl. Page is the base class used for all ASP.NET Web pages. Keep in 
mind that although the Page class is used in a very different way than the other control 
classes, at its heart, it's similar to any other control. (Learning about controls is important, 
even if, as a Visual Basic programmer, you shied away from creating controls and 
concentrated on consuming them.) Related to the Page class is the UserControl class. The 
UserControl class can be derived and used much like the Page class, except that rather than 
defining an entire page, it defines a fragment of a page. Multiple UserControl-derived objects 
can be used on a single page, and they can also be nested. 

 Note In early beta releases of ASP.NET, user controls were called pagelets. I prefer the 
earlier names to UserControl, but UserControl is the final name.  

The Life Cycle of a Control 
One key to understanding all controls is to understand the execution life cycle of a control. 
For example, when is the view state restored? What happens first, the Load event or the 
postback event notifications? 

Table 6-1, which is based on the table included in the MSDN documentation, shows the life 
cycle of an ASP.NET control. One critical point to remember as you look at this table is that 
HTTP is a stateless protocol. The control life cycle is designed to create the illusion of state 
maintenance. Because you can modify the life cycle via exposed events, you can effect the 
illusion of state, for good or for ill.  

Table 6-1 : Execution Life Cycle of an ASP.NET Control  
Phase Control Duties Method or Event to Override 
Initialize Initializes settings needed during the 

lifetime of the incoming Web request 
Init event (OnInit method) 

Load view 
state 

Customizes how view state is restored 
by overriding the 

LoadViewState method 
LoadViewState method. 

Process 
postback 
data 

Processes incoming form data and 
updates properties. (Only controls that 
process postback data participate in this 
phase. The control must implement the 

LoadPostData method 



Table 6-1 : Execution Life Cycle of an ASP.NET Control  
Phase Control Duties Method or Event to Override 

IPostBackDataHandler interface to 
handle this event.) 

Load Performs tasks common to all requests, 
such as opening database connections. 
When the Load event takes place, server 
controls are created and initialized, state 
has been restored, and form controls 
reflect client-side changes. 

Load event (OnLoad method) 

Send 
postback 
change 
notifications 

Raises change events in response to 
state changes between the current and 
previous postbacks. As with the 'process 
postback data' phase, this phase occurs 
only for controls that implement the 
IPostBackDataHandler event. 

RaisePostDataChangedEvent method

Handle 
postback 
events 

Handles the client-side event that caused 
the postback and raises appropriate 
events on the server. As with the 
'process postback data' phase, this phase 
occurs only for controls that implement 
the IPostBackDataHandler event. 

RaisePostBackEvent method 

Prerender Performs any changes required before 
the control is rendered. Rendering a 
control means writing out the HTML 
that will create the control on the client's 
browser. Changes to state made here 
will be saved, whereas changes made in 
the rendering phase are not. 

PreRender event (OnPreRender 
method) 

Save state Saves the current state of the control. 
The ViewState property of a control is 
automatically persisted to a string object 
after this phase. The string object is sent 
to the client as a hidden field in the 
HTML that goes to the client's browser. 
A control can override the 
SaveViewState method to change the 
contents of the ViewState property, 
possibly to create a more efficient view 
state. 

SaveViewState method 

Render Generates the output to be rendered to 
the client. 

Render method 

Dispose Performs any final cleanup. Although 
garbage collection will eventually 
recover any unreferenced objects, 
objects that require deterministic freeing 
of expensive resources, such as database 

Dispose method 



Table 6-1 : Execution Life Cycle of an ASP.NET Control  
Phase Control Duties Method or Event to Override 

connections, can be freed here. 
Unload Performs any final cleanup before the 

control is torn down. Control authors 
generally perform cleanup in Dispose 
and don't handle this event. 

Unload event (OnUnload method) 

When you're creating components, you might find yourself referring to Table 6-1 often. If you 
discover that an action doesn't have the desired effect, look carefully at where in the life cycle 
of the component you're taking an action that doesn't seem to work. In most cases, moving the 
action to a more appropriate event will eliminate the problem. 

Creating User Controls 
Creating Web Forms should be fresh in your mind (recall that we created several forms in 
Chapter 5), so it seems worthwhile to start a discussion of creating controls with a very 
similar process of creating a UserControl-derived object and including it on a test page. A 
user control can be created in two ways. The first, and perhaps the simplest, technique is to 
create a page with the attributes and controls you want on the user control and then convert 
the page to a user control. The second technique is to create the user control programmatically 
and then test it on another page. In general, I prefer to create the user control as a regular Web 
page and then modify it for use as a user control. In any event, the result will be a file with an 
.ascx extension that contains the code on the page or that contains an Src attribute pointing to 
a code-behind file containing a class derived from UserControl. The .ascx file will contain an 
@ Control directive rather than an @ Page directive. 

Preparing a Web Page to Be Converted to a User Control 

Converting a Web page to a user control is often the easiest way to test the user control, 
especially if the user control will have some nontrivial functionality. For instance, the logic to 
allow a login might need to be repeated on multiple pages. A task like this is a perfect 
candidate for a user control. For this example, we'll start with the simple login page from 
Chapter 5, modified somewhat in Listing 6-1.  

Listing 6-1 Login.aspx form from Listing 5-1, modified to be converted to a user control  
 
<%@ Import Namespace="System.Web.Security " %> 
 
<html> 
 
    <script language="C#" runat=server> 
    void Login_Click(Object sender, EventArgs E)  
    { 
        // Authenticate user: This sample accepts only one user with 
        // a name of doug@programmingasp.net and a password of  
        // ‘password'. 
        if ((UserEmail.Value == "doug@programmingasp.net") &&  
          (UserPass.Value == "password")) 
        { 
            // FormsAuthentication.RedirectFromLoginPage( 



            // UserEmail.Value, false); 
            FormsAuthentication.GetRedirectUrl(UserEmail.Value, false); 
        } 
        else  
        { 
            Msg.Text = "Invalid Credentials: Please try again"; 
        } 
    } 
    </script> 
 
    <body> 
    <table width=120 bgColor="0000ff"> 
    <tr> 
        <td> 
        <form runat=server> 
        <center> 
        <h3> 
        <font face="Verdana" color=Yellow>Login<font> 
        </h3> 
        <table width=100%> 
            <tr> 
                <td> 
                <font color=yellow>Email:</font> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <input id="UserEmail"  
                    type="text"  
                    runat=server  
                    size=20 maxlen=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                        ControlToValidate="UserEmail"  
                        Display="Static"  
                        ErrorMessage="*"  
                        runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <font color=yellow>Password:</font> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <input id="UserPass" type=password  
                    runat=server  
                    size=20  
                    maxlen=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                        ControlToValidate="UserPass"  
                        Display="Static" ErrorMessage="*"  
                        runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 



                    <asp:button text="Login"  
                        OnClick="Login_Click"  
                        runat=server> 
                    </asp:button> 
                    <p> 
                    <asp:Label id="Msg" ForeColor="red"  
                        Font-Name="Verdana"  
                        Font-Size="10" runat=server /> 
                </td> 
            </tr> 
        </table> 
        </center> 
        </form> 
        </td> 
    </tr> 
    </table> 
    </body> 
</html> 

 
 

The changes between this listing and Listing 5-1 are primarily cosmetic. I've added tables to 
constrain the width and set a background color that will be appropriate for the page I'm adding 
the user control to. I've also made minor changes to the text boxes on the form. I used the size 
attribute to set the width of the text boxes, and I used the maxlen attribute to set the maximum 
number of characters that can be entered into the text boxes.  

The one substantive change is in the Login_Click function, as shown here: 

if ((UserEmail.Value == "doug@programmingasp.net") &&  
  (UserPass.Value == "password"))  
{ 
    // FormsAuthentication.RedirectFromLoginPage( 
    // UserEmail.Value,false); 
    FormsAuthentication.GetRedirectUrl(UserEmail.Value,false); 
} 

Here I'm using a different method of the FormsAuthentication class so that rather than being 
redirected to the originally requested page, I'm getting the redirection URL and ignoring it. 
I've done this because calling RedirectFromLoginPage is designed to redirect the user from 
the login page specified in the Web.config file back to the originally requested page, or if 
there is no originally requested page, back to default.aspx in the same application. This user 
control is designed to just sit on a page as a component and to allow the user to log in and 
likely remain on the same page, rather than be a complete page that the user will be redirected 
to when calling a page that requires authentication. GetRedirectUrl accepts the user name and 
a Boolean parameter specifying whether a persistent cookie should be issued with the 
authentication ticket. 

 Note There has long been a great deal of fuss over cookies and the possible invasion of 
privacy they can cause. As you know, a cookie is a bit of information that's held on the 
client's machine. There are two types of cookies: session cookies, which are held in 
memory and survive only as long as the browser is open on the client machine, and 
persistent cookies, which are written to the hard disk of the client machine. In general, 
it's good practice to ask the user's permission before trying to write persistent cookies to 
a user's machine. 



When run, the .aspx page in Listing 6-1 produces the page shown in Figure 6-2. 

 
Figure 6-2 : An .aspx page reformatted to be ready for conversion to a user control  

Converting a Web Page to a User Control 

Our goal for the user control we're creating is to use it in part of a side navigation panel. The 
page shown in Figure 6-2 is in the format we want-a relatively narrow, compact table that's 
120 pixels wide. Once the Web page has the appearance you want, follow these steps to 
convert it to a user control: 

1. Remove all <HTML>, <BODY>, and <FORM> tags from the page. 
2. If the page includes an @ Page directive, change it to an @ Control directive. (There 

is no @ Page directive in Listing 6-1.) 
3. Add a className attribute to the @ Control directive. (If necessary, add an @ Control 

directive.) The className attribute allows you to specify a class name for the user 
control. Specifying a class name allows strong typing of the control when it's added to 
a page or other server controls programmatically. 

4. Change the extension of the file from .aspx to .ascx, to reflect its intended use. 

Listing 6-2 shows the completed Login.ascx page.  

Listing 6-2 Login.ascx, a user control that was converted from Login.aspx  
 
<%@ Control className="login" %> 
<%@ Import Namespace="System.Web.Security " %> 
 
    <script language="C#" runat=server> 
    void Login_Click(Object sender, EventArgs E)  
    { 
        // Authenticate user: This sample accepts only one user with 
        // a name of doug@programmingasp.net and a password of  
        // ‘password'. 
        if ((UserEmail.Value == "doug@programmingasp.net") &&  
          (UserPass.Value == "password"))  
        { 
            // FormsAuthentication.RedirectFromLoginPage( 
            // UserEmail.Value, false); 
            FormsAuthentication.GetRedirectUrl(UserEmail.Value, false); 
            Msg.Text = "Logged In!"; 



        } 
        else  
        { 
            Msg.Text = "Invalid Credentials: Please try again"; 
        } 
    } 
    </script> 
    <table width=120 bgColor="0000ff"> 
    <tr> 
        <td> 
        <center> 
        <h3> 
        <font face="Verdana" color=Yellow>Login<font> 
        </h3> 
        <table width=100%> 
            <tr> 
                <td> 
                <font color=yellow>Email:</font> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <input id="UserEmail"  
                        type="text"  
                        runat=server  
                        size=20  
                        maxlen=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                        ControlToValidate="UserEmail"  
                        Display="Static"  
                        ErrorMessage="*"  
                        runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <font color=yellow>Password:</font> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <input id="UserPass"  
                        type=password  
                        runat=server  
                        size=20  
                        maxlen=30 /> 
                </td> 
                <td> 
                    <ASP:RequiredFieldValidator  
                        ControlToValidate="UserPass"  
                        Display="Static"  
                        ErrorMessage="*"  
                        runat=server /> 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <asp:button text="Login"  
                        OnClick="Login_Click"  



                        runat=server> 
                    </asp:button> 
                    <p> 
                    <asp:Label id="Msg" ForeColor="Yellow"  
                        Font-Name="Verdana"  
                        Font-Size="10"  
                        runat=server /> 
                </td> 
            </tr> 
        </table> 
        </center> 
        </td> 
    </tr> 
    </table> 

 
 

As with the original Login.aspx, the script code is located within this file rather than in a 
code-behind file. Some minor complications arise when you don't use a separate code-behind 
file. First, if others will be using your user control, you'll have to distribute the .ascx file, 
source and all. If the script code were in a code-behind file, you could instead distribute just 
the source for the .ascx file (which would contain only user interface elements) along with the 
compiled dynamic-link library (DLL) created from the code-behind file. Second, there are 
differences in how you register the component on the page using the user control. 

To test the Login.ascx user control, I've created a page named UseLogin.aspx, shown in 
Listing 6-3. 

Listing 6-3 UseLogin.aspx, a page that uses the Login.ascx user control  
 
<%@ Page %> 
<%@ Register TagPrefix="Chapter06" TagName="login" Src="Login.ascx" %> 
<html> 
<head> 
<title>Use Login User Control</title> 
</head> 
<body leftmargin="0" topmargin="0"> 
 
<form runat=server> 
<table width=600 height=600 border=0  
cellpadding=0 cellspacing=0> 
    <tr> 
        <td width=120 bgcolor="blue" valign=top> 
            <font face="verdana"  
            color="yellow" size=2><b> 
            Just before the user control is included... 
            </b></font> 
            <Chapter06:login  
                ID="LoginControl"  
                RunAt=Server /> 
            <font face="verdana"  
            color="yellow" size=2><b> 
            Just after the user control was included... 
            </b></font> 
        </td> 
        <td valign=top> 
            <center> 
            <br> 



            <b><font face="verdana" size=4> 
            This is the rest of the page! 
            </font></b> 
            </center> 
        </td> 
    </tr> 
</table> 
</form> 
</body> 
</html> 

 
 

The first step in using any custom control in ASP.NET is the @ Register directive, as shown 
here: 

<%@ Register TagPrefix="Chapter06"  
    TagName="login"  
    Src="Login.ascx" %> 

In this example, the TagPrefix attribute specifies the prefix to be used within the tag that will 
place the control on the page. The TagName attribute specifies the name of the control. Taken 
together, these attributes mean that to create an instance of the control in the .aspx file, we 
need to use the tag <Chapter06:login />. 

 Note Although you might presume that ASP.NET would know that <Chapter06:login> is a 
user control and thus a server control that should be run on the server, you'd be 
incorrect. If you don't include a RunAt=Server attribute/value pair inside the 
<Chapter06:login> tag, the tag will be sent back to the client browser unaltered.  

The Src attribute points to the location of the .ascx file. This location is relative to the current 
directory, so in this example, we don't precede the name with any path qualifier. 

 Note One magical character can be used when declaring source paths in ASP.NET. The tilde 
(~) character starts the path at the root of the application, similar to the way the slash (/) 
character starts the path at the root of the site. This shortcut seems less useful than it 
really is, and you might think you don't need it, but wait until you work with Web 
applications that have many directories. 

An alternative form of the @ Register directive allows you to register a component when all 
you have is the DLL created from the source. This alternative is commonly used for controls 
created entirely in code. The format of the directive is shown here: 

<%@ Register tagprefix="tagprefix"  
    Namespace="namespace"  
    Assembly="assembly" %> 

 
What Is an Assembly? 

I referred to assemblies in Chapter 2, and I just mentioned them in reference to the @ Register 
directive This seems like a good place to offer a more complete explanation of exactly what 
an assembly is. 



In the world of COM, immutable interfaces were supposed to be the solution to the problem 
of DLL conflicts. Unfortunately, this solution didn't completely resolve this problem. As 
mentioned, creating new versions of a COM component that didn't break existing 
applications, even if the actual interface exposed remained the same, was more difficult than 
anticipated.  

The .NET solution is the assembly. An assembly is one or more files that can be logically 
grouped and deployed. An assembly is most often a single file, but it can also represent 
resources in several files. Assemblies can contain executable code, images, resource files, and 
so on. Assemblies are the basic unit of deployment, versioning, security, and reuse. 

An assembly contains an assembly manifest, which is similar to a type library in COM. 
Listing 2-1 contained the Microsoft intermediate language (MSIL) code from a simple 
HelloDotNet application. One of the sections of that code is repeated here: 

Assembly 
--------------------------- 
    Token: 0x20000001 
    Name : HelloDotNet 
    Public Key    : 
    Hash Algorithm : 0x00008004 
    Major Version: 0x00000000 
    Minor Version: 0x00000000 
    Build Number: 0x00000000 
    Revision Number: 0x00000000 
    Locale: <null> 
    Flags : [SideBySideCompatible]  (00000000) 

This portion of the MSIL code describes the single assembly that makes up the HelloDotNet 
application. 

So how does this approach differ from COM components? First, COM components 
envisioned a world in which each machine could hold only a single version of a component 
that implemented a particular interface. The .NET Framework embraces the idea of side-by-
side execution. Multiple versions of an assembly can coexist, and both the developer and the 
system administrator have some control over which assembly is used when multiple 
assemblies exist. The system administrator can make the final decision as to which assembly 
is used. 

In most cases, the examples in this book will use the local assembly directory. The registry 
isn't used, and nothing more is required than copying files when you use assemblies in the 
local assembly directory. Assemblies can also be placed in the global assembly cache. When 
you use the global assembly cache, you're required to install the assembly, using a tool such 
as the global assembly cache utility (Gacutil.exe). See the MSDN documentation for details 
on using Gacutil.exe. 

 
 

The tagprefix attribute is the same as the other variant of the @ Register directive. The 
Namespace attribute is used to specify the namespace within the code in which the control 
exists. Finally, the Assembly attribute specifies the name of the compiled .NET DLL that 



contains the namespace specified by the Namespace attribute. The assembly name is specified 
without the extension. The .NET Framework will search for the assembly first in the 
application's private bin directory and then in the system assembly cache.  

When you load UseLogin.aspx (Listing 6-3), you'll see the page shown in Figure 6-3. 

 
Figure 6-3 : The page created by running UseLogin.aspx as shown in Listing 6-3  

The user control appears to integrate seamlessly within the page. The login section can be 
included in many pages. Although this was possible using server-side include files in ASP, 
user controls offer the advantage of compiled code. Listing 6-4 shows the HTML sent to the 
browser when UserLogin.aspx is requested.  

Listing 6-4 The HTML sent to the browser when UseLogin.aspx as shown in Listing 6-3 is 
requested  
 
<html> 
<head> 
<title>Use Login User Control</title> 
</head> 
<body leftmargin="0" topmargin="0"> 
 
<form name="_ctl0"  
    method="post"  
    action="uselogin.aspx"  
    language="javascript"  
    onsubmit="ValidatorOnSubmit();"  
    id="_ctl0"> 
<input type="hidden" name="__VIEWSTATE"  
    value="dDwtMzg3OTgxNDYyOzs+" /> 
<script language="javascript"  
    src="/aspnet_client/system_web/1_0_3125_0/WebUIValidation.js"> 
</script> 
 
<table width=600 border=0 height=600  
cellpadding=0 cellspacing=0> 
    <tr> 
        <td width=120 bgcolor="blue" valign=top> 
            <font face="verdana"  
            color="yellow" size=2><b> 



            Just before the user control is included... 
            </b></font> 
 
    <table width=120 bgColor="0000ff"> 
    <tr> 
        <td> 
        <center> 
        <h3> 
        <font face="Verdana" color=Yellow>Login<font> 
        </h3> 
        <table width=100%> 
            <tr> 
                <td> 
                <font color=yellow>Email:</font> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <input name="LoginControl:UserEmail"  
                    id="LoginControl_UserEmail"  
                    type="text"  
                    size="20"  
                    maxlen="30" /> 
                </td> 
                <td> 
                    <span id="LoginControl__ctl0"  
                    controltovalidate="LoginControl_UserEmail"  
                    errormessage="*" 
                    evaluationfunction= 
                      "RequiredFieldValidatorEvaluateIsValid" 
                    initialvalue=""  
                      style="color:Red;visibility:hidden;">*</span> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <font color=yellow>Password:</font> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <input name="LoginControl:UserPass"  
                    id="LoginControl_UserPass"  
                    type="password"  
                    size="20"  
                    maxlen="30" /> 
                </td> 
                <td> 
                    <span id="LoginControl__ctl1"  
                    controltovalidate= 
                      "LoginControl_UserPass"  
                    errormessage="*"  
                    evaluationfunction= 
                      "RequiredFieldValidatorEvaluateIsValid"  
                    initialvalue=""  
                      style="color:Red;visibility:hidden;">*</span> 
                </td> 
            </tr> 
            <tr> 
                <td colspan=3 align="center"> 
                    <input type="submit"  



                    name="LoginControl:_ctl2" value="Login"  
                    onclick="if (typeof(Page_ClientValidate) ==  
                      ‘function')  
                    Page_ClientValidate(); "  
                    language="javascript" /> 
                    <p> 
                    <span id="LoginControl_Msg"  
                    style="color:Yellow;font-family:Verdana; 
                    font-size:10pt;"> 
                    </span> 
                </td> 
            </tr> 
        </table> 
        </center> 
        </td> 
    </tr> 
    </table> 
 
            <font face="verdana"  
            color="yellow" size=2><b> 
            Just after the user control was included... 
            </b></font> 
        </td> 
        <td valign=top> 
            <center> 
            <br> 
            <b><font face="verdana" size=4> 
            This is the rest of the page! 
            </font></b> 
            </center> 
        </td> 
    </tr> 
</table> 
 
<script language="javascript"> 
<!- 
    var Page_Validators = 
      new Array(document.all["LoginControl__ctl0"],  
      document.all["LoginControl__ctl1"]); 
        // -> 
</script> 
 
<script language="javascript"> 
<!- 
var Page_ValidationActive = false; 
if (typeof(clientInformation) != "undefined" &&  
clientInformation.appName.indexOf("Explorer") != -1) { 
    if (typeof(Page_ValidationVer) == "undefined") 
        alert("Unable to find script library " +  
        "‘/aspnet_client/system_web/1_0_3125_0/WebUIValidation.js'." + 
        " Try placing this file manually, "+  
        "or reinstall by running ‘aspnet_regiis -c'."); 
    else if (Page_ValidationVer != "124") 
        alert("This page uses an incorrect version of " +  
        "WebUIValidation.js. The page expects version 124. " +  
        "The script library is " + Page_ValidationVer + "."); 
    else 
        ValidatorOnLoad(); 
} 
 
function ValidatorOnSubmit() { 



    if (Page_ValidationActive) { 
        ValidatorCommonOnSubmit(); 
    } 
} 
// -> 
</script> 
        </form> 
</body> 
</html> 

 
 

The important thing to notice in Listing 6-4 is that code that was contained in Login.ascx in 
Listing 6-2 replaces the <Chapter06:login> tag in UseLogin.aspx in Listing 6-3.  

User controls are easy to create and relatively easy to use. They support nested controls as 
well as multiple controls on a single user control, as in UserLogin.aspx. User controls can 
exist in a separate namespace, and they can even be created in a different language than the 
page that consumes them. One concern early on about ASP.NET was the fact that, unlike 
ASP, you could use only a single server-side language on an ASP.NET page. User controls 
make this limitation much less onerous. 

What are the problems with user controls? The major problem is illustrated in Figure 6-4. In 
the Visual Studio .NET designer, instead of a representation of what the user control looks 
like, you see just a gray box with the name of the user control. 

 
Figure 6-4 : The user control in Visual Studio .NET  

The lack of designer support is not a total showstopper, and for many elements, especially 
elements that expose a great deal of user interface, user controls are a good choice. One 
example of when user controls are a good choice is a situation in which a team is split 
between user interface designers and back-end developers. In this case, using code-behind 
files, the user interface designer can work on the .ascx file, and the back-end developer can 
work somewhat independently on the code-behind file. Another situation in which user 
controls come in handy is when the content is syndicated and must present a completely 
different user interface appearance in multiple application directories. 



Creating Custom Controls 
For most ASP developers, user controls might be enough to boost their productivity. 
However, Visual Basic programmers moving to ASP.NET might be a little disappointed by 
the lack of designer support. More important, user controls aren't the ideal type of control for 
third-party developers to distribute. Third-party developers have been essential to the growth 
of Visual Basic throughout its history, and it's safe to assume that they will be essential to the 
next phase of Visual Basic .NET and C# development within ASP.NET. 

The solution to the limitations of user controls is custom controls. Custom controls are server 
controls that derive from a base control class and are compiled into a DLL. Custom controls 
have great design-time support within Visual Studio .NET. The trade-off is that they're harder 
to build, and if a control needs to have a different appearance in different circumstances (for 
example, in multiple syndications that each have a different look), the change in appearance 
must be made by changing the values of parameters. 

A Simple Custom Control 

Let's start with a simple custom control. This control will display a line of text like a label but 
will center the text and make it boldface. I named this custom control CenteredLabel. 

You must make a couple of design decisions when you decide to create a custom control. The 
first, and probably most important, is the decision of what class to use as your base class. 
Your new custom control will inherit the base behaviors and attributes of whatever base class 
you use. In this example, the choice is simple: System.Web.UI.WebControls.Label. 

 Note MSDN documentation lists multiple pages of properties, methods, and events for 
System.Web.UI.WebControls.Label. All but one of these properties, methods, and events 
are inherited from the WebControl or Control classes. The single exception is the Text 
property. Inheriting from Label means that all of its properties, methods, and events are 
available in our new class.  

The next decision is what additional properties, methods, and events need to be exposed. In 
this example, there's no need to add any properties, methods, or events. The only property 
we'll use is the Text property inherited from Label. The CenteredLabel source (written in 
Visual Basic .NET) is shown in Listing 6-5. 

Listing 6-5 The CenteredLabel custom control  
 
Imports System.ComponentModel 
Imports System.Web.UI 
 
Public Class CenteredLabel 
    Inherits System.Web.UI.WebControls.Label 
 
    Protected Overrides Sub Render( _ 
    ByVal output As System.Web.UI.HtmlTextWriter) 
        output.Write("<CENTER><B>" + Me.Text + "</B></CENTER><br>") 
    End Sub 
 
End Class 

 



 

This code is mostly self-explanatory (although not exactly as you'd write it for production 
purposes). After a couple of imports, I declare the class, named CenteredLabel. Visual Studio 
.NET automatically adds a namespace with the same name as the project name for Visual 
Basic .NET projects. C# projects have the namespace explicitly declared. Explicitly declaring 
a namespace in a Visual Basic .NET custom control will result in a nested namespace. 

The heart of the CenteredLabel custom control is the Render method override, shown here: 

Protected Overrides Sub Render( _ 
ByVal output As System.Web.UI.HtmlTextWriter) 
    output.Write("<CENTER><B>" + Me.Text + "</B></CENTER><br>") 
End Sub 

Recall from Table 6-1 that the render phase of the execution life cycle of a control is where 
the content is actually written. The output parameter of the Render method is an instance of 
the System.Web.UI.HtmlTextWriter class. This is a utility class with a large number of 
methods for outputting HTML content. In this case, the content is straightforward, consisting 
of the Text property with a literal string prepended and appended.  

Although using the Write method of the HtmlTextWriter class seems convenient, it's not the 
preferred way to render HTML to the browser. HtmlTextWriter provides a number of utility 
methods for generating HTML. These utility methods are the preferred way to output HTML 
in the Render method for the following reasons: 

• They make the code more readable and reusable, and they don't require great HTML 
proficiency. 

• They provide automatic conversions between different versions of HTML for uplevel 
and downlevel rendering. 

• Multiple calls to these utility methods are more efficient than concatenating multiple 
strings and then calling Write with the resulting string. 

Using these utility methods, the Render method override in Listing 6-5 becomes the 
following: 

Protected Overrides Sub Render( _ 
ByVal output As System.Web.UI.HtmlTextWriter) 
    output.RenderBeginTag(HtmlTextWriterTag.Center) 
    output.RenderBeginTag(HtmlTextWriterTag.B) 
    output.Write(Me.Text) 
    output.RenderEndTag() 
    output.RenderEndTag() 
    output.RenderBeginTag(HtmlTextWriterTag.Br) 
    output.RenderEndTag() 
End Sub 

Although the result is a bit more verbose, for more complex examples, this code will not only 
be more efficient but the result will also be properly rendered for both uplevel and downlevel 
browsers.  

The RenderBeginTag method has two versions. The first takes a string representing the tag. 
Thus, the first call to RenderBeginTag would be as follows: 



output.RenderBeginTag("Center") 

The second version uses the HtmlTextWriterTag enumeration (part of the System.Web.UI 
namespace), for example: 

output.RenderBeginTag(HtmlTextWriterTag.Center) 

I use the enumeration because I expect that doing so will result in consistent casing for HTML 
tags. Strictly speaking, consistent casing isn't required for most browsers, but it's certainly a 
good idea. 

The RenderEndTag method requires no parameters, and it will write the appropriate end tag, 
properly nesting the end tags. Most modern browsers are tremendously forgiving of 
improperly nested-and even missing-end tags. Still, it's a good idea to supply properly nested 
end tags, for those cases in which the browser might not handle errors. Counting 
RenderBeginTag and RenderEndTag calls is a reasonable way to ensure correctly terminated 
tags. 

 Note The <BR> tag normally doesn't include an end tag, but there's no harm in including it. I 
do so here for completeness, as well as to make it possible to count calls to 
RenderBeginTag and RenderEndTag. 

To compile this custom control, you need to use the following command line (all entered on 
the same line): 

Vbc.exe CenteredLabel.vb /reference:System.dll  
    /reference:System.Web.dll 
    /target:library 

Once compiled, you can place the resulting DLL (CenteredLabel.dll) in the bin folder of an 
ASP.NET Web application, add a reference to the control, and generate a page, which will 
look like the one shown in Figure 6-5. 

 
Figure 6-5 : The CenteredLabel control on a test form  

We'll look at adding custom controls to Web application projects more completely in the next 
section.  

Creating Custom Controls in Visual Studio .NET 

Most developers creating custom controls and other .NET projects won't use Windows 
Notepad to create their projects. It's certainly possible to do so , but given the size of the 



common language runtime, features like IntelliSense and statement completion make using 
the Visual Studio .NET development environment very handy. 

The only downside of using Visual Studio .NET is that it contains some generated code that 
the developers of the project skeletons thought was important that might not be important to 
you. For example, if you create a new Web Control Library project in Visual Studio .NET, the 
generated code will look like the following (reformatted for clarity): 

Imports System.ComponentModel 
Imports System.Web.UI 
 
<DefaultProperty("Text"),  
ToolboxData("<{0}:WebCustomControl1 runat=server> 
</{0}:WebCustomControl1>")>  
Public Class WebCustomControl1 
    Inherits System.Web.UI.WebControls.WebControl 
 
    Dim _text As String 
 
    <Bindable(True), Category("Appearance"), DefaultValue("")>  
      Property [Text]() As String 
        Get 
            Return _text 
        End Get 
 
        Set(ByVal Value As String) 
            _text = Value 
        End Set 
    End Property 
 
    Protected Overrides Sub Render( _  
      ByVal output As System.Web.UI.HtmlTextWriter) 
        output.Write([Text]) 
    End Sub 
 
End Class 

In addition to some default names that obviously should be changed (such as the default class 
name, WebCustomControl1), you'll likely need to make other changes as well. First, Visual 
Studio generates a class that inherits from System.Web.UI.WebControls.WebControl. In many 
cases, this will be what you want to do, but in others, you'll want to inherit from a different 
class, as we did earlier with the CenteredLabel control. Next, there's the Text property and the 
_text data element within the class. In many cases, you might want to retain this property and 
the supporting data element, but just as often you won't. One thing to note here is the 
relationship between the name of the property and the name of the data element. The property 
is Pascal cased, and in the case of Visual Basic .NET (a case-insensitive language), the actual 
class data element is preceded by an underscore. In a C# Web Control Library project, the 
property name would remain the same, but the class data member would simply be text, 
because C# is case-sensitive. 

There are attributes for both classes and namespaces. The first, in this case not created by 
default when you create a custom control using Visual Studio .NET, is the TagPrefix attribute. 
If you don't specify a TagPrefix attribute, Visual Studio .NET will generate a tag prefix for 
you, so your custom controls, when dragged onto the form, will begin with cc1, continuing 
with cc2 for the next control, and so on. Using a TagPrefix attribute allows Visual Studio 



.NET to use a more convenient name for the tag prefix. For example, the following code 
specifies that the tag prefix for the RequiredTextBox class is MyControls: 

[ assembly:TagPrefix("MyControls","RequiredTextBox") ] 

This is the C# syntax. The Visual Basic .NET syntax is similar, but with angle brackets (<>) 
enclosing the attribute. 

At the class level, there's another important attribute: ToolboxData, which is provided by 
Visual Studio .NET. An example of this attribute using the Visual Basic .NET syntax is 
shown here: 

<ToolboxData("<{0}:WebCustomControl1 runat=server> 
</{0}:WebCustomControl1>")>  

Visual Studio .NET will provide a default tag when a control is dropped on a form; however, 
the ToolboxData attribute allows you to specify additional attributes that will be set whenever 
you drag a control on a form. In this example, the runat=server attribute/value pair appears 
by default whenever the control defined by the class is dropped on the form. After you've 
experienced the failure of your custom control, only to discover that you forgot to add the 
runat=server attribute/value pair, you'll really appreciate having all custom server controls 
dropped on the form complete with runat=server.  

The attributes used for properties by the Visual Studio .NET design-time environment are 
shown in Table 6-2. 

Table 6-2 : Attributes Available for Controlling the Design-Time Environment for a Custom 
Control Property  

Attribute Description 
Bindable  Specifies whether a property should be 

displayed in the DataBindings dialog box 
Category  If the property grid is sorted by category, 

specifies the category the property should be 
in 

DefaultValue  Specifies the default value in the designer 
PersistenceMode  Specifies how (or whether) changes made to 

the property should be persisted 
Browsable  Specifies whether a property is displayed in 

the designer 
TypeConverter  Specifies the type converter to use for 

converting the property type to another type 
Editor  Hooks up the extended user interface for 

setting the property 

A More Complicated Custom Control 



Our simple CenteredLabel custom control example was a good starting place for learning 
about custom controls. However, it doesn't even begin to touch on what you can achieve using 
custom controls. In the next example, we'll create a more complicated custom control to 
handle a more common scenario. 

Whenever you're laying out a Web Form, you'll almost certainly want to lay out text boxes 
with labels that describe the required entry. A great number of variables are inherent within 
this situation. Should the text box be to the right of the label or below the label on the next 
line? Does the text box have default text? What about the style of the label and the text box? 

Just as with the CenteredLabel custom control, the first and most important decision here is to 
determine what class to inherit from. Because C# and Visual Basic .NET offer only single 
inheritance, you'll have to select a single class. In this example, we have two possible 
alternatives: the label or the text box. Presented with such a choice, we should look at exactly 
what it is we're trying to create. Is it a label with a text box, or a text box with a label? Pretty 
clearly, what we want is a text box with a label. Looking at it another way, this control is a 
text box, and it has a label. This example is greatly oversimplified, but you'll still have to 
decide which single class to inherit from, no matter how complicated your control.  

 Note You do have another alternative for creating a custom control such as this label/text box 
example: composite controls. We'll discuss composite controls in the next section. 

This more complicated custom control is named LabelTextBox. Listing 6-6 shows 
LabelTextBox.vb, which declares and implements the LabelTextBox class. 

Listing 6-6 LabelTextBox custom control in Visual Basic .NET used to create a label and a 
text box  
 
Imports System.ComponentModel 
Imports System.Web.UI 
 
Public Enum LabelLocation As Long 
    LabelLeft 
    LabelAbove 
End Enum 
 
Public Class LabelTextBox 
    Inherits System.Web.UI.WebControls.TextBox 
 
    Dim _labelText As String 
    Dim _labelStyle As String 
    Dim _labelLocation As LabelLocation 
 
    Property [LabelText]() As String 
        Get 
            Return _labelText 
        End Get 
 
        Set(ByVal Value As String) 
            _labelText = Value 
        End Set 
    End Property 
 
    Property [LabelStyle]() As String 
        Get 



            Return _labelStyle 
        End Get 
 
        Set(ByVal Value As String) 
            _labelStyle = Value 
        End Set 
    End Property 
    Property [LabelLocation]() As LabelLocation 
        Get 
            Return _labelLocation 
        End Get 
 
        Set(ByVal Value As LabelLocation) 
            _labelLocation = Value 
        End Set 
    End Property 
 
    Protected Overrides Sub Render(ByVal output As _ 
      System.Web.UI.HtmlTextWriter) 
        If _labelStyle Is DBNull.Value Then 
            output.Write("<Span Style=""") 
            output.Write(_labelStyle) 
            output.Write(""">") 
            output.Write([_labelText]) 
            output.Write("</Span>") 
        Else 
            output.Write([_labelText]) 
        End If 
        If _labelLocation = LabelLocation.LabelAbove Then 
            output.RenderBeginTag(HtmlTextWriterTag.Br) 
            output.RenderEndTag() 
        End If 
        MyBase.Render(output) 
    End Sub 
 
End Class 

 
 

As you can see in Listing 6-6, after the Imports are listed, an enumeration is declared. This 
enumeration is used to allow the user of the class or component it creates to describe the label 
position. The enumeration is declared so that the default will be LabelLeft, meaning that the 
label will be on the same line as the text box, to its left. 

After the class declaration, the class declares that it inherits from 
System.Web.UIWebControls.TextBox. The three data elements that act as the storage data 
items for the three properties of the class are declared next. Following this, the LabelText 
property is declared, as follows: 

Property [LabelText]() As String 
    Get 
        Return _labelText 
    End Get 
 
    Set(ByVal Value As String) 
        _labelText = Value 
    End Set 
End Property 



The pattern for each property is the same, no matter what the type. In each case, the property 
is declared. The Get section returns the underlying data element. The property doesn't have a 
direct data element that it cleanly maps to. In such situations, the property is synthesized, or 
created from some other information stored in the class. For example, if your class contains a 
StartDate property and an EndDate property and you need a Duration property, you probably 
wouldn't want to declare an additional internal data element named _duration but would 
instead calculate the duration whenever the Duration property was requested. 

The Set section allows the property to be set. By tradition, the parameter passed in is named 
Value, and the type is that of the property itself. In this example, the Set section just assigns 
the value to the underlying data element, but the Set section can also do something more 
complex. 

The meat of the LabelTextBox class is in the Render method: 

Protected Overrides Sub Render(ByVal output As _ 
  System.Web.UI.HtmlTextWriter) 
    If _labelStyle Is DBNull.Value Then 
        output.Write("<Span Style=""") 
        output.Write(_labelStyle) 
        output.Write(""">") 
        output.Write([_labelText]) 
        output.Write("</Span>") 
    Else 
        output.Write([_labelText]) 
    End If 
    If _labelLocation = LabelLocation.LabelAbove Then 
        output.RenderBeginTag(HtmlTextWriterTag.Br) 
        output.RenderEndTag() 
    End If 
    MyBase.Render(output) 
End Sub 

The Render method first checks to see whether _labelStyle has been set. If _labelStyle has 
been set, a span tag with a Style attribute is written, followed by the _labelText string, 
followed by the end tag for the span. If the style hasn't been set, _labelText is written directly. 

The _labelLocation value is next compared to one of the members of the LabelLocation 
enumeration, LabelLocation.LabelAbove. If the label location is set so that the label should be 
above the text box, a <BR> tag is written. Finally, the text box itself is rendered, by calling 
the Render method of MyBase, a keyword that allows you to access members of the 
immediate base class. I use MyBase to make it clear that I'm calling the base implementation 
of Render. 

Listing 6-7 shows the same class from Listing 6-6 written using C#.  

Listing 6-7 C# version of LabelTextBox, named LabelTextBoxCS  
 
using System; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.ComponentModel; 
 
namespace LabelTextBoxCS 



{ 
    /// <summary> 
    /// Summary description for WebCustomControl1. 
    /// </summary> 
    public enum LabelLocationCS 
    { 
        LabelLeft, 
        LabelAbove 
    } 
    public class LabelTextBox : System.Web.UI.WebControls.TextBox 
    { 
        private string labelText; 
        private string labelStyle; 
        private LabelLocationCS labelLocation; 
 
        public string LabelText 
        { 
            get 
            { 
                return labelText; 
            } 
            set 
            { 
                labelText = value; 
            } 
        } 
 
        public string LabelStyle 
        { 
            get 
            { 
                return labelStyle; 
            } 
            set 
            { 
                labelStyle = value; 
            } 
        } 
 
        public LabelLocationCS LabelLocation 
        { 
            get 
            { 
                return labelLocation; 
            } 
            set 
            { 
                labelLocation = value; 
            } 
        } 
 
        /// <summary> 
        /// Render control to output parameter specified. 
        /// </summary> 
        /// <param name="output"> The HTML writer  
        /// to write out to </param> 
        protected override void Render(HtmlTextWriter output) 
        { 
            if ( labelStyle != null ) 
            { 
                output.Write("<Span Style=\""); 



                output.Write(labelStyle); 
                output.Write("\">"); 
                output.Write(labelText); 
                output.Write("</Span>"); 
            } 
            else 
            { 
                output.Write(labelText); 
            } 
            if ( labelLocation == LabelLocationCS.LabelAbove ) 
            { 
                output.RenderBeginTag(HtmlTextWriterTag.Br); 
                output.RenderEndTag(); 
            } 
            base.Render(output); 
        } 
    } 
} 

 
 

You'll notice some minor differences between the two classes. The first difference is the 
three-slash (///) comment marker used for XML documentation. Using the XML 
documentation provided by Visual Studio as a starting point, you can add documentation on 
classes and class members that can be parsed out to create an XML file.  

The C# property syntax is also a little different from the Visual Basic .NET syntax, but it's 
similar enough that you shouldn't have any difficulty following the intent of the code. One 
characteristic of properties in both Visual Basic .NET and C# is that the access modifier (in 
Listings 6-6 and 6-7, Public) applies to both the Get and Set methods. This is an unfortunate 
limitation, but you can overcome it by providing a property with a Get method with one level 
of protection and then a separate nonproperty setter method with another level of protection, 
although this solution isn't ideal. For example, this fragment of a class allows all classes to 
read ReadOnlyText, but it provides a nonproperty setter method to allow the class to update 
the internal buffer that is returned as the ReadOnlyText property: 

private string _readOnlyText; 
public string ReadOnlyText 
{ 
    get 
    { 
        return _readOnlyText; 
    } 
} 
private setReadOnlyText(string Value) 
{ 
    _readOnlyText=Value; 
} 

A more realistic example would be one in which the property isn't simply getting and setting 
an underlying field but is synthesizing the value in a more complex way. 

 Note One difference between Visual Basic .NET properties and C# properties is that in Visual 
Basic .NET properties, the type of the property is present twice in the declaration of the 
property: once as the property is declared and once as the type of the Value parameters 
to the Set method. The C# syntax mentions the type only once, which is somewhat more 



convenient if during development you're changing the type of the parameter. 

The Render method in Listing 6-7 is similar to the Visual Basic .NET version in Listing 6-6, 
discounting obvious syntax differences between the two languages. One more significant 
difference between the two Render methods is the use of a different keyword to access the 
base implementation of the class. C# uses base, whereas Visual Basic .NET uses MyBase.  

A Composite Custom Control 

A composite custom control shares many of the benefits of user controls, and at the same time 
offers the benefits of normal custom controls. If you're a developer for an internal Internet or 
intranet site, the functional difference between a user control and a composite custom control 
isn't that great. However, if you need to distribute a component to other groups within your 
organization or if you're a third-party vendor planning to sell a component, the composite 
custom control offers tremendous advantages. First, it's completely compiled, with no .ascx 
file that must be exposed to the end user. Second, as a custom control, your component offers 
certain advantages within a design-time environment such as Visual Studio .NET. 

 Caution One problem you might discover when you use a tool like Visual Studio .NET 
instead of something like Notepad is that the tool can sometimes add its own tool-
specific restrictions or bugs. For example, in preparing this composite control 
example, I foolishly used the same name for the namespace and the class. In initial 
testing of a page generated using just Notepad, the control worked as expected. 
However, one of the points of this example is to show the support for custom 
controls within Visual Studio .NET. I followed all instructions and was able to get 
the control installed, yet try as I might, I kept getting this strange error: 'CS0103: The 
name ‘__ctrl' does not exist in the class or namespace ‘ASP.WebForm1_aspx''. I had 
no control named __ctrl, so I was puzzled. In the end, I discovered that the error was 
in the code Visual Studio .NET generated to create the control. Renaming the 
namespace solved the problem, but not before it cost me several hours I would rather 
have spent doing something else. 

One of the good things about ASP.NET is that it allows you to automate some of the more 
common and boring tasks, such as providing validation for text boxes. The problem is that 
even with automation it's still more work than most Visual Basic developers are used to. 
Rather than associating a 'Required' Boolean with the text box control, you need to drop two 
controls on the form-a text box and a validator-and wire them up. An alternative technique is 
to create a composite custom control, combining both a required field validator and a text box 
in a single control, and then wire them up automatically. 

Listing 6-8 shows the code for a composite custom control named RequiredTextBox written in 
C#. This control requires that the user enter text into a text box. The control uses a text box 
control and a required field validator.  

Listing 6-8 RequiredTextBoxCs.cs, an example composite custom control  
 
using System; 
using System.IO; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.ComponentModel; 



using System.Collections; 
using System.Collections.Specialized; 
using System.Web.UI.Design; 
 
[ assembly:TagPrefix("MyControls","RequiredTextBox") ] 
 
namespace MyControls 
{ 
    /// <summary> 
    /// Summary description for WebCustomControl1. 
    /// </summary> 
    ///  
 
    [DefaultProperty("Text"), 
        ToolboxData( 
        "<{0}:RequiredTextBox runat=server></{0}:RequiredTextBox>"), 
        Designer("MyControls.RequiredTextBoxDesigner, RequiredTextBox")  ] 
    public class RequiredTextBox : System.Web.UI.Control,  
      INamingContainer 
    { 
 
        [Bindable(true), 
        Category("Appearance"), 
        DefaultValue("Text")] 
        public string Text 
        { 
            get {return (string)ViewState["text"]; } 
            set {ViewState["text"] = value; } 
        } 
        [Bindable(false), 
        Category("Validator")] 
        public string ErrorMessage 
        { 
            get {return (string)ViewState["errorMessage"]; } 
            set {ViewState["errorMessage"]= value; } 
        } 
        [Bindable(false), 
        Category("Validator"), 
        DefaultValue("")] 
        public string ValidatorText 
        { 
            get {return (string)ViewState["validatorText"]; } 
            set {ViewState["validatorText"]= value; } 
        } 
        [Bindable(false), 
        Category("Validator")] 
        public System.Drawing.Color ValidatorColor 
        { 
            get { 
                // This will throw an exception the first time. 
                // An alternative would be to initialize this in 
                // a constructor.  
                try  
                { 
                    return (System.Drawing.Color) 
                      ViewState["validatorColor"]; 
                }  
                catch (Exception e) 
                { 
                    return System.Drawing.Color.Red; 
                } 



            } 
            set {ViewState["validatorColor"]= value; } 
        } 
        protected override void CreateChildControls() 
        { 
            System.Web.UI.WebControls.TextBox textBox; 
            System.Web.UI.WebControls.RequiredFieldValidator  
              requiredValidator; 
             
            textBox=new TextBox(); 
            textBox.ID=UniqueID; 
            textBox.Text=this.Text; 
 
            requiredValidator=new RequiredFieldValidator(); 
            requiredValidator.ErrorMessage=this.ErrorMessage; 
            requiredValidator.ForeColor=this.ValidatorColor; 
            requiredValidator.Text=this.ValidatorText; 
            requiredValidator.ID=UniqueID + "Validator"; 
            requiredValidator.ControlToValidate=textBox.ID; 
 
            Controls.Add(textBox); 
            Controls.Add(new LiteralControl(" ")); 
            Controls.Add(requiredValidator); 
 
        } 
    } 
 
    public class RequiredTextBoxDesigner : ControlDesigner  
    { 
        public RequiredTextBoxDesigner() 
        { 
        } 
        public override string GetDesignTimeHtml() 
        { 
            RequiredTextBox rtb = (RequiredTextBox) Component; 
 
            StringWriter sw = new StringWriter(); 
            HtmlTextWriter tw = new HtmlTextWriter(sw); 
 
            HyperLink placeholderLink = new HyperLink(); 
 
            placeholderLink.Text="RequiredTextBox Designer"; 
            placeholderLink.RenderControl(tw); 
 
            return sw.ToString(); 
        } 
    } 
} 

 
 

The first thing to notice in Listing 6-8 is the inclusion of several namespaces I haven't 
previously used. System.IO and System.Web.UI.Design are both used to add designer support 
to the component. System.Web.UI.Design requires adding a reference to System.Design.dll to 
the project. This and all other system-supplied DLLs are located in the 
<windir>/Microsoft.NET/Framework/<version> directory. 

The attributes for the RequiredTextBox class are the defaults provided by Visual Studio .NET, 
with the addition of the Designer attribute, which will be described when we look at the 



designer in the section 'Enhancing Design-Time Support' later in this chapter. The class 
implements INamingContainer, a marker interface that has no methods that need to be 
implemented. Implementing INamingContainer tells the framework that a new namespace 
should be created to ensure unique names within the application.  

Several properties are declared, and all are persisted in the ViewState rather than in class 
members. In the following get and set methods, notice that when the value is retrieved, it must 
be cast to the type expected: 

public string Text 
{ 
    get {return (string)ViewState["text"]; } 
    set {ViewState["text"] = value; } 
} 

Several of the properties are related to the required field validator, and so I use the Category 
attribute to create a new category named Validator that will allow all the validator-related 
properties to be displayed together when properties are displayed in categories. 

The bulk of the work in the class is done within the CreateChildControls method. This 
method is called by the .NET Framework in preparation for posting back or rendering. This 
method actually creates the instances of the text box and required field validator controls. An 
additional method not used here can be handy when creating composite controls: 
EnsureChildControls. This method will check to see whether the child controls have been 
created, and if they haven't, it creates them. 

Within CreateChildControls, I first create the TextBox control, assign it a unique ID, and then 
set the Text property to the Text property of the composite control. To get the ID, I use the 
UniqueID property of Control, which gives me an ID I can use. The ID is required because I 
need to assign the ControlToValidate property of the RequiredFieldValidator control I create 
next. Once the RequiredFieldValidator instance is created, I assign appropriate properties 
from the main control. To set the RequiredFieldValidator ID, I use the UniqueID property 
with the literal 'Validator' appended. C/C++ programmers will notice that a function call such 
as strcat isn't required. I simply use the + operator to combine the strings. 

After I've created both major controls, I add them to the composite control, using the Add 
method of Controls. I also add a literal control between the text box and the validator, simply 
to provide some white space between the text box and the validator. LiteralControl is a class 
that represents HTML elements and text that doesn't need to be processed on the server. Once 
these controls are added, I can reference them using the Controls array, which is 1-based. In 
this example, the text box would be Controls[1], the literal control would be Controls[2], and 
the validator control would be Controls[3]. To use the Controls array, you generally need to 
cast the element of the array to the correct type. For example, to get a usable reference to the 
text box control, you would use ((TextBox)Controls[1]).  

 
Composition vs. Rendering 

When presented with the need to create a composite control, you have two options: 
composition or rendering. Composition allows you to create the individual objects, 
manipulate properties, and insert each of the objects into the final control. Rendering allows 



you just to emit arbitrary HTML code, formatted in whatever way is convenient. This 
example uses composition, a method that creates multiple server side controls that the 
ASP.NET framework will render for you. This is done in the CreateChildControls method. 

Another alternative is to use the Render method. Recall that I used the Render method earlier 
in this chapter with the CenteredLabel custom control. This same Render event can also be 
used for composite controls, though it becomes awkward with large numbers of controls, and 
there are additional tasks you must perform. 

When using the rendering option, rather than creating server controls where you can set 
properties, you need to create the code to render the HTML controls. This is similar to the 
way you created the noncomposite CenteredLabel control earlier in this chapter, but likely 
somewhat more complex because you might need to also have code to set up the relationship 
between the two controls. Next, there are two additional interfaces that you may need to 
implement, IPostBackEventHandler and IPostBackDataHandler. Finally, you need to 
override the Render method. 

The RequiredTextBox example isn't a good candidate for rendering because you'd end up 
writing server-side code that would be quite a bit more complex than the code I'm using for 
composition. You'd have to manually handle the validation part of the control since all you 
could render would be HTML. 

 
 

Installing a Control in Visual Studio .NET 

To install a control for use within a project in Visual Studio .NET, you have two options. 
First, you can manually copy the control to the bin folder for the project and manually add the 
@ Register tag to the form. This method isn't terribly onerous; however, if you're committed 
to using Visual Studio .NET, there's an easier way.  

To begin, open the project in which you'll be using the control. While in design mode on one 
of the Web Forms in the project, select the Toolbox tab where you want to add the control. 
Right-click the Toolbox, and choose Customize Toolbox on the shortcut menu. Select the 
.NET Framework Components tab in the Customize Toolbox dialog box, and click the 
Browse button. Navigate to the folder containing the assembly with the control you want to 
add, often in the bin folder under the project, or in the bin\Release folder for a C# project. 
Select the assembly, which is a file with a .dll extension. The control should show up in the 
list of controls on the .NET Framework Components tab. Make sure there's a check mark next 
to the control, as shown in Figure 6-6, and click OK in the Customize Toolbox dialog box. 



 
Figure 6-6 : Adding the RequiredTextBox control to the Toolbox  

When you add the control to the Web Form for the first time, the following results will occur: 

• The control's TagPrefix and Namespace attributes are added to the @ Register 
directive for the page. 

• A tag for the control is added to the page. 
• A reference to the control is added to the project. This has the effect of copying the 

assembly to the bin folder of the application. 
• If applicable, the control's designer is loaded. 
• The control is displayed in the designer.  

Of course, none of these tasks are particularly difficult, but anything that can be properly 
automated by the development environment is one less thing for the developer to worry about. 
In general, in the rest of this book, the components used in the examples will be added to the 
Toolbox. 

Figure 6-7 shows a simple form with a RequiredTextBox control dropped on it. 

 
Figure 6-7 : The RequiredTextBox control in Visual Studio .NET designer  

Listing 6-9 shows the code for WebForm1.aspx, which uses the RequiredTextBox control.  



Listing 6-9 WebForm1.aspx, used to test the RequiredTextBox control  
 
<%@ Register TagPrefix="requiredtextbox"  
    Namespace="MyControls"  
    Assembly="RequiredTextBox" %> 
<%@ Page language="c#"  
    Codebehind="WebForm1.aspx.cs"  
    AutoEventWireup="false"  
    Inherits="Chapter06_TestRequiredTextBox.WebForm1" %> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML> 
    <HEAD> 
        <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0"> 
        <meta name="CODE_LANGUAGE" Content="C#"> 
        <meta name="vs_defaultClientScript"  
          content="JavaScript (ECMAScript)"> 
        <meta name="vs_targetSchema"  
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form id="Form1" method="post" runat="server"> 
            <TABLE  
            cellSpacing="1"  
            cellPadding="1" 
            width="600" 
            border="0"> 
                <TR height="100"> 
                    <TD width="50%" align="right">  
                        <asp:Label id="Label1"  
                            runat="server"> 
                            Must Enter: 
                        </asp:Label> 
                    </TD> 
                    <TD> 
                        <RequiredTextBox:RequiredTextBox  
                            id="RequiredTextBox1"  
                            runat="server"  
                            ErrorMessage="*"> 
                        </RequiredTextBox:RequiredTextBox> 
                    </TD> 
                </TR> 
                <TR> 
                    <TD colspan="2" align="middle"> 
                        <asp:Button  
                            Runat="server"  
                            Text="Submit" 
                            id="Button1"> 
                        </asp:Button> 
                    </TD> 
                </TR> 
            </TABLE> 
        </form> 
    </body> 
</HTML> 

 
 

Listing 6-10 shows the code-behind file located in WebForm1.aspx.cs.  



Listing 6-10 WebForm1.aspx.cs C# code-behind file for the page to test the RequiredTextBox 
composite control  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace Chapter06_TestRequiredTextBox 
{ 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected MyControls.RequiredTextBox RequiredTextBox1; 
        protected System.Web.UI.WebControls.Button Button1; 
        protected System.Web.UI.WebControls.Label Label1; 
     
        public WebForm1() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here. 
        } 
 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by  
            // the ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
        } 
 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {   
            this.Load +=  
              new System.EventHandler(this.Page_Load); 
 
        } 
        #endregion 
    } 
} 

 
 



Figure 6-8 shows the test page for the RequiredTextBox control before any text has been 
entered. 

 
Figure 6-8 : The test page for the RequiredTextBox custom control  

Figure 6-9 shows the test page after it has been submitted, with the validator fired, displaying 
an asterisk (*). 

 
Figure 6-9 : The test page for RequiredTextBox after the page is submitted with a blank field  

The validation that has taken place in Figure 6-9 is on the client. Add a 
ClientTarget=Downlevel attribute/value pair to the @ Page directive and each click of the 
submit button will require a round-trip to the server. 

 Note There are a couple of other ways to disable client-side validation (without dumbing 
down the rendering of the entire page). First, you can set the Click event of a submit 
button to Page_ValidationActive=false;. This technique is useful if, for example, you 
provide a cancel button on a form and want to allow the form to be cancelled without 
firing the client-side validation. Another, perhaps better, alternative is to set the 
CausesValidation attribute of an <asp:Button> to false. This will disable both client-
side and server-side validation, something that you'd likely want to do on a cancel 
button. 

Enhancing Design-Time Support 

Referring back to Figure 6-7, notice the selected control, which reads 'RequiredTextBox 
Designer'. By default, a control in design mode will show just what would be displayed by a 
call to RenderControl. If this call would result in nothing being displayed, Visual Studio 



.NET will instead display the type and ID of the control, something like 
'RequiredTextBox:RequiredTextBox1'. If you want to create your own display in the 
designer, you do have a few alternatives. 

The usual way to display the text is to use the Designer attribute for the class. In Listing 6-8, 
the Designer attribute is specified as follows: 

Designer("MyControls.RequiredTextBoxDesigner, RequiredTextBox") 

The Designer attribute tells the design-time environment that MyControls. 
RequiredTextBoxDesigner is the class that will serve as the designer and that it's in the 
RequiredTextBox assembly. In some examples, I've seen the .dll extension explicitly specified 
to identify the assembly, but this extension isn't required, and for consistency with other parts 
of ASP.NET such as the @ Register directive, I've omitted it here. 

The designer class is often in a subsidiary namespace-for example, something like 
MyControls.Design. The designer class can be in any namespace and in any assembly. 
Placing the designer in the same assembly as the component is more convenient and imposes 
additional size in the assembly, even if the control will never be used in design mode. No 
runtime performance penalty is incurred, however, for having the designer in the same 
assembly.  

The RequiredTextBoxDesigner class, at the bottom of Listing 6-8, derives from the 
ControlDesigner class. A designer must derive from one of the following three classes: 

• System.Web.UI.Design.ControlDesigner  A general-purpose designer that derives 
from Control and WebControl. 

• System.Web.UI.Design.WebControls.TemplatedControlDesigner Adds support for 
template editing. I'll provide more information about templated controls in Chapter 9. 

• System.Web.UI.Design.WebControls.ReadWriteControlDesigner Adds support for 
in-place editing, as in the Panel control. This support allows you to place other 
controls on top of a control in design time. 

The RequiredTextBoxDesigner parameterless constructor is provided so that the class can be 
created without requiring any parameters. 

The bulk of the work of the designer is done in the GetDesignTimeHtml method. The method 
first gets an instance of the control. This instance can be used for retrieving or setting 
parameters. In this case, it's just there to show how you would obtain the current instance of 
the class. A StringWriter and an HtmlTextWriter are created (from the System.IO namespace). 
A new HyperLink object is created, and the placeholder link is rendered. The text of the 
hyperlink object is set to 'RequiredTextBox Designer', but it could be any arbitrary HTML 
code. 

Another option, which will result in the design-time appearance of a gray raised box similar to 
a button, is to use the CreatePlaceHolderDesignTimeHtml method, passing in a string 
parameter that will then be rendered on the gray box. 

Looking back again at Figure 6-7, two things about the Properties window are worth noting. 
First, the items in the Properties window are displayed in categories, and so the parameters I 



declared through the use of attributes as part of the Validator category are displayed together. 
Just as important, the ValidatorColor property is not just a text box in which you would enter 
names or numbers for colors but is instead a complete color picker, as shown in Figure 6-10. 

 
Figure 6-10 : The color picker, made available to our RequiredTextBox custom control  

The same behavior will occur with any type that has a complex property picker. Declare a 
property of the correct type, and the enhanced property picker becomes available with no 
additional programming required. 

Conclusion 
User controls and custom controls will be critical in the acceptance of ASP.NET by the bulk 
of Visual Basic programmers. These programmers have long relied on the wide range of 
components available to allow them to focus on the business-specific code. Between user 
controls, most often produced within the enterprise, and custom controls, often created by 
centralized component librarians or third parties, components will be present on the vast 
majority of ASP.NET pages. 

I hope this introduction to controls will open your mind to what can be done with controls. 
Although VBX controls were popular in Visual Basic, ActiveX controls, especially after it 
was possible to build them using Visual Basic, continue to be huge. ASP.NET, in a version 
1.0 product, provides what I think you'll agree is an easy control-creation tool. 

In future chapters, I'll cover several other aspects of user controls and custom controls. In 
Chapter 7, you'll find out how to decide when to use the client for processing and when the 
server is best, as well as the many times when using both is appropriate. In Chapters 8 and 9, 



we'll examine database and XML access. There are many built-in controls that use data, and 
many custom controls that can be built to use data more efficiently. 

Chapter 7: Balancing Server and Client 
Functionality 
Overview 
Monitor the ASP.NET newsgroups for any time at all, and you'll likely see a frustrated 
message from a programmer new to ASP.NET in particular and probably new to Web 
development in general. The message will be something like this: 

If C# [or Visual Basic .NET-your pick] is so powerful, how come I can't get my ASP.NET 
application to put up a simple message box?!  

Experienced classic ASP developers will perhaps chuckle a bit at this question, but it's a real 
issue for many developers new to Web development. Why can't you display a simple message 
box like you're used to doing in Visual Basic? Much like in the Wizard of Oz, when Dorothy 
discovered that she wasn't in Kansas anymore, the answer here is that you're not a client-side 
programmer anymore. 

ASP.NET is a server-based technology. Using ASP.NET gives you access to the newest and 
greatest in many areas of server programming, but if you want to use ASP.NET to display a 
message box, you're out of luck. However, there is a way to present message boxes and other 
similar close user interactions. The answer is client-side scripting. 

 Note By the way, the JavaScript command to present the user with a message box is the alert 
function. This chapter introduces client-side scripting, but it is not a tutorial or a 
reference on JavaScript. Many good books on JavaScript are available, including 
JavaScript: The Definitive Guide by David Flanagan (O'Reilly, 1996). 

Client-Side Scripting 
One important thing to remember about Web applications is that there is at best a very 
tenuous connection between the client browser and the server while the user is interacting 
within a single page. The lack of a constant connection is actually a feature of the HTTP 
protocol. Because the client and server are not coupled during most of the time a Web 
application is in use, a single server can support hundreds of users at a time. A model of a 
Web application is shown in Figure 7-1. 



 
Figure 7-1 : An illustration of the interactions between a Web client browser and a Web 
server  

After the browser gets all the information it needs to display and format the page, the user can 
interact with the page, filling in fields, selecting items from list boxes, and so on. All this 
work is done without any interaction between the client and the server. When the user clicks 
the submit button, the form data is submitted to the server. 

One result of this lack of connection is the frustrated new ASP.NET user wanting to pop up a 
message box on the client machine. Fortunately, virtually all browsers these days do support 
client-side scripting.  

 Note Although it's possible in some circumstances to use Visual Basic Scripting Edition 
(VBScript) on the client side, none of the ASP.NET components do so, and I won't do 
so in any of the examples in this chapter. Instead, I'll use JScript, Microsoft's 
implementation of JavaScript. 

 Tip JavaScript and JScript have been rechristened, at least in the ASP.NET documentation, as 
ECMAScript. This name doesn't have quite the same ring as JavaScript or JScript, but it 
does reflect the variant that is designed to be cross-browser compatible. You'll find more 
details on the ECMAScript scripting language at 
http://www.ecma.ch/ecma1/STAND/ECMA262.HTM. Browsers continue to use 
JavaScript or JScript as the value for the Language attribute in <SCRIPT> tags. 

Only a couple of standard HTML controls will initiate a return trip to the server-the submit 
button and a hyperlink are two such controls that come to mind. It's not an accident that only a 
limited number of controls initiate interactions with the server. 

As you'll see in this chapter, it's possible to create a control other than a submit button or a 
hyperlink that will initiate a round-trip to the server. To create such a control, you need to use 
client-side JavaScript. For example, using client-side JavaScript, you could initiate a round-
trip to the server when the user exits a drop-down list. Generally this isn't a good idea, 
because it will be a greater burden on the server. However, sometimes causing a postback is 
appropriate; knowing when to cause one is something you can learn with experience. On 
lightly used intranet applications, the increased server burden might be worth the richer user 
interface that the greater server interactions can provide. On a busy Internet site, the burden is 



most often not worth it, because the round-trip to the server would make the application less 
responsive for the user. 

One of the problems with using client-side JavaScript is that rather than executing in the 
warm cocoon of the server, the code executes out in the cold cruel world of the client's 
browser. One of the reasons server-based computing has become so popular is that it's easier 
to ensure that a server environment is set up correctly than it is to ensure that the client has the 
proper environment.  

 Warning Because you have no control over client-side scripting, you should use it only as a 
way to reduce round-trips to the server. It is not a replacement for server-side 
validation. Your server-side code should always presume that the data coming in 
from a form, even a form with client-side validation, is invalid until proven 
otherwise. Additionally, if the browser in use is considered a downlevel browser, the 
client-side scripting won't occur for the standard controls that use client-side 
scripting, such as the validator controls.  

How ASP.NET Uses Client-Side Scripting 

One common control used on many forms is a drop-down list with several options. Based on 
the user's selection in the drop-down list, options in the form are customized to reflect the 
current selection. Selecting an item in a drop-down list doesn't cause a round-trip to the 
server, but client-side scripting can be used to cause a round-trip to the server. 

Listing 7-1 shows PostTest.aspx, an .aspx file created in Visual Studio .NET.  

Listing 7-1 PostTest.aspx, a page that generates a postback when the drop-down list selection 
is changed  
 
<%@ Page Language="vb" AutoEventWireup="false"  
Codebehind="PostTest.aspx.vb"  
Inherits="Chapter07_DropDownPost.PostTest"%> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML> 
    <HEAD> 
        <title></title> 
        <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0"> 
        <meta name="CODE_LANGUAGE" content="Visual Basic 7.0"> 
        <meta name="vs_defaultClientScript" content="JavaScript"> 
        <meta name="vs_targetSchema" 
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form id="Form1" method="post" runat="server"> 
        <table width="600" border="0"> 
            <tr> 
                <td align="middle"> 
                <asp:dropdownlist  
                    id="DropDownList1"  
                    runat="server"  
                    AutoPostBack="True"> 
                    <asp:ListItem Value="Black"> 
                    -Select Color-</asp:ListItem> 
                    <asp:ListItem Value="Red">Red</asp:ListItem> 
                    <asp:ListItem Value="Green">Green</asp:ListItem> 



                    <asp:ListItem Value="Blue">Blue</asp:ListItem> 
                </asp:dropdownlist> 
                <br> 
                <br> 
                <asp:Label id="Label1"  
                   runat="server"></asp:Label> 
                <br> 
                <br> 
                <br> 
                </td> 
            </tr> 
        </table> 
        </form> 
    </body> 
</HTML> 

 
 

The code (reformatted slightly for presentation here) creates a simple form, with a drop-down 
list and a label. The label is initially blank. The drop-down list has an initial value, '-Select 
Color-', as well as list items for Red, Green, and Blue. In addition to the normal attributes in 
the asp:dropdownlist tag, AutoPostBack is set to True. The AutoPostBack attribute is 
available for various controls, including drop-down lists, list boxes, check boxes, and text 
boxes. When AutoPostBack is set to True in one of these controls and when the control is 
changed (by selecting an item in a list, changing the value of a check box, and changing the 
text in a text box), a round-trip is made to the server so that the server can react to changes in 
the control. 

Listing 7-2 shows the code-behind file for PostTest.aspx, named PostText.aspx.vb.  

Listing 7-2 PostText.aspx.vb, the code-behind file for PostTest.aspx from Listing 7-1  
 
Public Class WebForm1 
    Inherits System.Web.UI.Page 
    Protected WithEvents DropDownList1 _  
      As System.Web.UI.WebControls.DropDownList 
    Protected WithEvents Label1 As _  
      System.Web.UI.WebControls.Label     
 
#Region " Web Form Designer Generated Code " 
 
    ‘This call is required by the Web Form Designer. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
 
    End Sub 
 
    Private Sub Page_Init(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) _  
      Handles MyBase.Init 
        ‘CODEGEN: This method call is required by the Web Form Designer 
        ‘Do not modify it using the code editor. 
        InitializeComponent() 
    End Sub 
 
#End Region 
 
    Private Sub Page_Load(ByVal sender As System.Object, _  



      ByVal e As System.EventArgs) _  
      Handles MyBase.Load 
        ‘Put user code to initialize the page here. 
        If IsPostBack Then 
            If DropDownList1.SelectedIndex <> 0 Then 
                Label1.Text = "You selected " + _  
                  DropDownList1.SelectedItem.Text 
                Label1.ForeColor = Label1.ForeColor.FromName( _  
                  DropDownList1.SelectedItem.Value) 
            Else 
                Label1.Text = "Please select a color" 
                Label1.ForeColor = Label1.ForeColor.FromName("Black") 
            End If 
        End If 
    End Sub 
 
End Class 

 
 

The most significant aspect of the code in Listing 7-2 is the use of the Page_Load method to 
test for a postback. If this is a postback, meaning that the user has selected an item from the 
drop-down list, the label displays the name of the color selected, and the label becomes that 
color. 

Setting the label color is a little different from setting the label text, as you can see here: 

Label1.ForeColor = Label1.ForeColor.FromName( _  
  DropDownList1.SelectedItem.Value) 

Unlike in earlier versions of Visual Basic, here the ForeColor property isn't a simple number 
made up of the red, green, and blue values. Instead, ForeColor is a specific type, 
System.Drawing.Color. You can't, for example, set ForeColor to 255 to get red. A couple of 
helper functions are available that allow you to set a color using a color name (as in this 
example) or from a system color, such as ActiveBorder. You can also use one of the 
predefined colors in the System.Drawing.Color class, which includes everything from 
SaddleBrown to BlanchedAlmond. Because we've set the Value attribute of each of the 
asp:ListItem tags to a color name, we can pass the Value attribute from the selected item to 
the FromName method and set the ForeColor property to the returned System.Drawing.Color. 

Figure 7-2 shows the page that appears after you select Green from the drop-down list. 
(Notice that there is no submit button on this page.) 

 
Figure 7-2 : PostTest.aspx after Green has been selected from the drop-down list  



As you can see, the page recognizes that you've selected Green. (You'll have to take my word 
for it that the text is also displayed in green.) 

So, given that there's no submit button on this page and pure HTML drop-down lists don't 
cause a postback, how does the AutoPostBack attribute cause a postback to occur? The answer 
is shown in Listing 7-3, the HTML actually received by the browser.  

Listing 7-3 The HTML output from the page shown in Listings 7-1 and 7-2  
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML> 
    <HEAD> 
        <title></title> 
        <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0"> 
        <meta name="CODE_LANGUAGE" content="Visual Basic 7.0"> 
        <meta name="vs_defaultClientScript" content="JavaScript"> 
        <meta name="vs_targetSchema" 
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form name="Form1" method="post" action="PostTest.aspx" id="Form1"> 
        <input type="hidden" name="__VIEWSTATE"  
          value="dDw4MzQ2Mzg4MzY7dDw7bDxpPDE+Oz47bDx0PDtsPGk8Mz47Pjts 
          PHQ8cDxwPGw8VGV4dDtGb3JlQ29sb3I7XyFTQjs+O2w8WW91IHNlbGVjdGV 
          kIEdyZWVuOzI8R3JlZW4+O2k8NT47Pj47Pjs7Pjs+Pjs+Pjs+" /> 
 
        <table width="600" border="0"> 
            <tr> 
                <td align="middle"> 
                <select name="DropDownList1" id="DropDownList1"  
                  onchange="__doPostBack(‘DropDownList1','')"  
                  language="javascript"> 
                    <option value="Black">-Select Color-</option> 
                    <option value="Red">Red</option> 
                    <option selected="selected"  
                      value="Green">Green</option> 
                    <option value="Blue">Blue</option> 
                </select> 
                <br> 
                <br> 
                <span id="Label1"  
                  style="color:Green;">You selected Green 
                </span> 
                <br> 
                <br> 
                <br> 
                </td> 
            </tr> 
        </table> 
 
<input type="hidden" name="__EVENTTARGET" value="" /> 
<input type="hidden" name="__EVENTARGUMENT" value="" /> 
<script language="javascript"> 
<!- 
    function __doPostBack(eventTarget, eventArgument) { 
        var theform = document.Form1; 
        theform.__EVENTTARGET.value = eventTarget; 
        theform.__EVENTARGUMENT.value = eventArgument; 
        theform.submit(); 



    } 
// -> 
</script> 
</form> 
    </body> 
</HTML> 

 
 

The significant additions in the HTML output shown in Listing 7-3 are the __doPostBack 
JavaScript function within the <SCRIPT> tags and the onchange attribute in DropDownList1. 
There was no onchange event specified in the code in Listing 7-1, and neither Listing 7-1 nor 
7-2 had any JavaScript. But here it is in the output to the browser. 

The addition of this JavaScript by ASP.NET is what allows the drop-down list to force a 
postback when an item in the drop-down list is selected. The JavaScript function in Listing 7-
3 works in conjunction with two hidden fields in the form, __EVENTTARGET and 
__EVENTARGUMENT. These two hidden fields are sent out empty and are filled in by the 
__doPostBack JavaScript function just before the theform.submit is called. When a postback 
occurs, the page can use these hidden fields to determine which control was modified to cause 
the postback. 

Firing Postbacks from a Custom Control 

Some controls support the AutoPostBack attribute and so can cause a postback to occur after a 
change in the data. Unfortunately, the custom controls you design might not descend from a 
control that supports AutoPostBack. Fortunately, there is a solution. 

The Page class exposes a method named GetPostBackEventReference that emits client-side 
script that allows a control to cause a postback. The resulting JavaScript is nearly identical to 
the JavaScript in Listing 7-3. Listing 7-4 shows a Visual Basic .NET hyperlink control that 
reacts to a click by causing a postback rather than directly calling another page, as a 
traditional hyperlink would do.  

Listing 7-4 PostLink.vb, a postback link control  
 
Imports System.ComponentModel 
Imports System.Web.UI 
<Assembly: TagPrefix("PostLink", "PostLinkStuff")>  
 
<DefaultProperty("Text"), ToolboxData( _ 
"<{0}:PostLinkControl runat=server></{0}:PostLinkControl>")> _ 
Public Class PostLinkControl 
    Inherits System.Web.UI.WebControls.WebControl 
 
    Dim _text As String 
 
    <Bindable(True), Category("Appearance"), DefaultValue("")> _  
      Property [Text]() As String 
        Get 
            Return _text 
        End Get 
 
        Set(ByVal Value As String) 
            _text = Value 



        End Set 
    End Property 
 
    Protected Overrides Sub Render( _  
      ByVal output As System.Web.UI.HtmlTextWriter) 
        output.Write("<a id=""" + Me.UniqueID + _ 
          """ href=""javascript:" + _ 
          Page.GetPostBackClientEvent(Me, _text) + """>") 
        output.Write(_text + "</a>") 
    End Sub 
 
End Class 

 
 
 Note ASP.NET includes a LinkButton control that does much of what this example control 

does. In general, the technique shown here would be used on more complex controls, 
but adding this functionality to a hyperlink control makes the process easier to 
understand.  

PostLink.vb, shown in Listing 7-4, began as a Visual Basic Web Control Library project 
created in Visual Studio .NET. I added the following line: 

<Assembly: TagPrefix("PostLink", "PostLinkStuff")>  

This code tells Visual Studio .NET to use the tag prefix PostLinkStuff for any control in the 
PostLink namespace that is dragged onto the design surface. Recall from Chapter 6 that if you 
don't specify a TagPrefix, Visual Studio .NET will use cc1, cc2, and so on. 

The other section of code modified from the Web Control Library project is the Render 
method, shown here: 

Protected Overrides Sub Render( _  
  ByVal output As System.Web.UI.HtmlTextWriter) 
    output.Write("<a id=""" + Me.UniqueID + _ 
      """ href=""javascript:" + _ 
      Page.GetPostBackClientEvent(Me, _text) + """>") 
    output.Write(_text + "</a>") 
End Sub 

One confusing part of this Render code is the use of multiple quotation marks in the 
output.Write call. To include quotation marks within a string, each quotation mark must be 
preceded by a quotation mark so that the quotation mark isn't interpreted as the end of the 
string. 

In C#, the same method would be written as follows: 

protected override void Render(HtmlTextWriter output)  
{ 
    output.Write("<a id=\"" + this.UniqueID +  
      "\" href=\"javascript:" +  
      Page.GetPostBackClientEvent(this, text) + "\">") 
    output.Write(text + "</a>") 
} 



C# follows the C/C++ convention of using the backslash character to prefix a quotation mark 
within a quoted literal string. In addition, C# uses the this keyword to identify the current 
instance, whereas Visual Basic .NET uses Me. 

The Render method creates an anchor tag that includes JavaScript code in the href attribute. 
The JavaScript includes a call to Page.GetPostBackClientEvent, which is passed a reference 
to the current instance (using Me in Visual Basic .NET, or this in C#) and the value of _text. 
Both of these values are available on the server in the __EVENTTARGET and 
__EVENTARGUMENT variables, as shown in the Page_Load method of the code-behind file 
TestPostLink.aspx.vb in Listing 7 5.  

Listing 7-5 TestPostLink.aspx.vb, the code-behind file to test the PostLink control  
 
Public Class WebForm1 
    Inherits System.Web.UI.Page 
    Protected WithEvents PostLinkControl1 _  
      As PostLink.PostLinkControl 
    Protected WithEvents Label1 _  
      As System.Web.UI.WebControls.Label 
 
#Region " Web Form Designer Generated Code " 
 
    ‘This call is required by the Web Form Designer. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
 
    End Sub 
 
    Private Sub Page_Init(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) _  
      Handles MyBase.Init 
        ‘CODEGEN: This method call is required by  
        ‘the Web Form Designer 
        ‘Do not modify it using the code editor. 
        InitializeComponent() 
    End Sub 
 
#End Region 
 
    Private Sub Page_Load(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) _  
      Handles MyBase.Load 
        If Me.IsPostBack = True Then 
            Label1.Text = "Postback from " + _ 
            Request("__EVENTTARGET") + " - " + _ 
            Request("__EVENTARGUMENT") 
        End If 
    End Sub 
 
End Class 

 
 

Listing 7-6 shows the TestPostLink.aspx file, which is used to test the PostLink control.  

Listing 7-6 TestPostLink.aspx,the file used to test the PostLink control  
 



<%@ Register TagPrefix="PostLink"  
    Namespace="PostLink"  
    Assembly="PostLink" %> 
<%@ Page Language="vb"  
    AutoEventWireup="false"  
    Codebehind="WebForm1.aspx.vb"  
    Inherits="Chapter07_PostControl.WebForm1"%> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML> 
    <HEAD> 
        <title></title> 
        <meta name="GENERATOR"  
          content="Microsoft Visual Studio.NET 7.0"> 
        <meta name="CODE_LANGUAGE" content="Visual Basic 7.0"> 
        <meta name="vs_defaultClientScript"  
          content="JavaScript"> 
        <meta name="vs_targetSchema"  
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form id="Form1" method="post" runat="server"> 
            <PostLink:PostLinkControl  
                id="PostLinkControl1"  
                runat="server"  
                Text="This is a test"> 
            </PostLink:PostLinkControl> 
            <p> 
            </p> 
            <asp:Label id="Label1"  
            runat="server"></asp:Label> 
        </form> 
    </body> 
</HTML> 

 
 

As you can see in Listing 7-5, when the page is loaded, the Page_Load event handler is 
called. If IsPostback returns True, the label text is changed to report the value of 
__EVENTTARGET and _EVENTARGUMENT. When the PostLink control is clicked, the page 
shown in Figure 7-3 is returned to the browser.  

 
Figure 7-3 : TestPostBack.aspx after the link has been clicked and the label modified by the 
server code  

The PostLink control is rendered in the browser as follows: 

<a id="PostLinkControl1"  



    href="javascript:__doPostBack(‘PostLinkControl1', 
    ‘This is a test')"> 
    This is a test 
</a> 

Using Page.GetPostBackClientEvent ensures that the __doPostBack JavaScript function is 
written to the browser and that only a single copy of the script is written to the resulting 
HTML file. 

Several other methods of the Page class are involved with using client-side code. The next 
section describes the most significant of these methods, named RegisterClientScriptBlock. 

Creating an Extensive Client-Side Web Control 
In the previous examples in this chapter, the client-side script wasn't central to the operation 
of the control. In this section, we'll look at a control that uses client-side script not as a minor 
part of its existence but as its primary reason for being. 

One common problem that developers encounter is the need to duplicate the behavior of an 
existing system. For example, I recently needed to create a downtime patient registration 
system to be used while the main system was disabled for scheduled maintenance or due to a 
system failure. The users of this system were willing to be a little flexible, but certain things 
were non-negotiable. The main patient registration system allowed users to enter dates in 
mmddyy or mmddyyyy format. As they left the date field, the date would be changed to 
mm/dd/yyyy format, or a message would appear saying that the date was invalid.  

It's certainly possible to format the date on the server side, with every change in the text box 
for the date causing a round-trip to the server, but processing all of this information on the 
server side could require a great deal of interaction between the client and the server. 
JavaScript on the client side is capable of handling this kind of problem. 

With ASP, using client-side code requires a great deal of coordination between the designer of 
the page and the JavaScript developer. A better solution in the ASP.NET world is a 
component that encapsulates all of the required logic in a convenient package that can be 
dragged from the Toolbox onto the Web Form design surface. 

Figure 7-4 shows an ASP.NET control named ReformatDate that properly formats a date 
when the control is exited. 



 
Figure 7-4 : The ReformatDate control, before and after tabbing out of it  

Listing 7-7 shows the code for the completed ReformatDate control.  

Listing 7-7 WebCustomControl1.cs, the source for the ReformatDate control  
 
using System; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.ComponentModel; 
using System.Collections.Specialized; 
 
[assembly: TagPrefix("Chapter07_ReformatDate","Chapter07")] 
namespace FormatDateControl 
{ 
    /// <summary> 
    /// Summary description for WebCustomControl1. 
    /// </summary> 
    [DefaultProperty("Text"), 
    ToolboxData("<{0}:ReformatDate runat=server></{0}:ReformatDate>")] 
    public class ReformatDate : System.Web.UI.WebControls.BaseValidator, 
        IPostBackDataHandler,IPostBackEventHandler 
    { 
        private bool bIsValid; 
 
        protected override bool EvaluateIsValid() 
        { 
            this.ServerFormatDate(); 
            return bIsValid; 
        } 
 
        public ReformatDate() 
        { 
            bIsValid=true; 
            this.ErrorMessage="*"; 
        } 
 
        [Bindable(true), 
        Category("Appearance"), 
        DefaultValue("")] 
        override public String Text  
        { 
            get  
            { 
                return (String) ViewState["Text"]; 



            } 
            set  
            {  
                ViewState["Text"] = value; 
            } 
        } 
 
        protected override void OnLoad(EventArgs e) 
        { 
            base.OnLoad(e); 
            if ( Page.IsPostBack ) 
            { 
                ServerFormatDate(); 
                IsValid=bIsValid; 
            } 
            if ( Page.ClientTarget.ToLower()!="downlevel" ) 
            { 
                Page.RegisterClientScriptBlock("FormatDateClientScript", 
                    "<" + "SCRIPT Language=JavaScript " +  
                    "SRC=\"FormatDate.js\"></" + "SCRIPT>"); 
            } 
        } 
 
        protected override void OnInit(EventArgs e) 
        { 
 
        } 
 
        /// <summary> 
        /// Render this control to the output parameter specified. 
        /// </summary> 
        /// <param name="output"> The HTML writer to write out to </param> 
        protected override void Render(HtmlTextWriter output) 
        { 
            if ( Page.ClientTarget.ToLower()!="downlevel" ) 
            { 
                output.Write("<INPUT TYPE=\"TEXT\" ID=" +  
                    this.UniqueID + " Name= " + 
                    this.UniqueID + " Value=\"" +  
                    Text + "\" OnChange=\"FormatDate(‘" +  
                    this.UniqueID + "‘);\" Size=10 maxlen=10>"); 
            } 
            else 
            { 
                output.Write("<INPUT TYPE=\"TEXT\" ID=" +  
                    this.UniqueID + " Name= " + 
                    this.UniqueID + " Value=\"" +  
                    Text + "\" Size=10 maxlen=10>"); 
            } 
 
//          this.ControlToValidate=this.UniqueID; 
            output.Write("<span id=val" + this.UniqueID + ">"); 
            if ( IsValid==false ) 
            { 
                output.Write("<font color=" + this.ForeColor + ">" +  
                    this.ErrorMessage + "</font>"); 
            } 
            output.Write("</span>"); 
        } 
        protected void ServerFormatDate() 
        { 



            string tstr; 
            System.DateTime dt; 
            bIsValid=false; 
            tstr=Text; 
            try 
            { 
                dt=System.DateTime.Parse(tstr); 
                Text=dt.ToShortDateString(); 
                bIsValid=true; 
            } 
            catch(FormatException fe) 
            { 
                if ( tstr.Length==6 || tstr.Length==8 ) 
                { 
                    int mo,da,yr; 
                    string dtPart; 
                    try 
                    { 
                        dtPart=tstr.Substring(0,2); 
                        mo=System.Int32.Parse(dtPart); 
 
                        dtPart=tstr.Substring(2,2); 
                        da=System.Int32.Parse(dtPart); 
 
                        dtPart=tstr.Substring(4,tstr.Length-4); 
                        yr=System.Int32.Parse(dtPart); 
                        if ( yr<30 )  
                        { 
                            yr+=2000; 
                        } 
                        else 
                        { 
                            if ( yr<100 ) 
                            { 
                                yr+=1900; 
                            } 
                        } 
                        Text=mo.ToString() +  
                            "/" + da.ToString() +  
                            "/" + yr.ToString(); 
                        bIsValid=true; 
                    } 
                    catch (Exception e) 
                    { 
                        bIsValid=false; 
                    } 
                } 
            } 
        } 
 
        // IPostBackDataHandler related items follow. 
        public event EventHandler TextChanged; 
 
        public virtual bool LoadPostData(string postDataKey,  
            NameValueCollection values)  
        { 
            String presentValue = Text; 
            String postedValue = values[postDataKey]; 
            try 
            { 
                if (!presentValue.Equals(postedValue)) 



                { 
                    Text = postedValue; 
                    return true; 
                } 
            } 
            catch ( Exception e ) 
            { 
                Text=postedValue; 
            } 
            return false; 
        } 
 
        public virtual void RaisePostDataChangedEvent()  
        { 
            ServerFormatDate(); 
            IsValid=bIsValid; 
            OnTextChanged(EventArgs.Empty);      
        } 
 
        public void RaisePostBackEvent(string EventArgument) 
        { 
            return; 
        } 
 
        protected virtual void OnTextChanged(EventArgs e) 
        { 
            if (TextChanged != null) 
                TextChanged(this,e); 
        } 
    } 
} 

 
 

For this example, I won't need to add designer support for Visual Studio .NET because the 
default rendering of the control is reasonable, showing a text box that displays the Text 
property in the designer. (Chapter 6 explained how to add designer support to display a 
custom control in design mode.) 

The vast majority of the server-side work in the ReformatDate control is done in the Render 
method. Within Render, I simply output the HTML required to render an HTML text input 
control. I set the ID on the text control using this.UniqueID. (In Visual Basic .NET, this 
would be Me.UniqueID.) I also set the Size, Maxlen, and Value attributes in the HTML input 
control. In addition, I set the OnChange event to the FormatDate JavaScript function, passing 
in the ID of the control as the single parameter to the function. The OnChange event handler 
is called whenever the control is exited and the value is different from the value when the 
control was entered. 

 Caution One thing that caused me no end of confusion while creating the ReformatDate 
control was how it should be rendered. I've become used to setting the ID of the 
ASP.NET server controls and really forgot about the Name attribute. For the data to 
post back properly, a rendered control must have both the ID and Name attributes 
specified. In this example (and in virtually any case I can think of), I use the same 
value for ID and Name: the UniqueID of the control. 

 Tip A point of confusion is the difference between server-side and client-side events. In the 
ReformatDate control, it's clear that the OnChange event is a client-fired event, but in 



some cases, this distinction can be confusing. If you're in doubt as to whether you're 
properly setting the client-side events from a server-side control, you can always view the 
control in a Web browser and view the source. This technique is a powerful tool in 
resolving problems with how the control is rendered. 

In the OnLoad server-side method of ReformatDate, I first call the ancestor OnLoad method, 
by calling base.OnLoad. Remember that in Visual Basic .NET, this would be 
MyBase.OnLoad. Since this class is derived from BaseValidator, the ancestor class OnLoad 
must be called because it allows the component to emit the required JavaScript that any 
validator needs.  

 Caution Using BaseValidator as the class that ReformatDate derives from is not an obvious 
choice. You might want to create a composite control that contains two server-side 
controls: a TextBox control and a CustomValidator control. This option would be 
reasonable, but in the end, not as good a solution as deriving from BaseValidator 
(especially in light of what the ReformatDate control example is trying to show-
client-side code integrated into a control). The BaseValidator class allows the 
ReformatDate control to participate in deciding whether or not the page is valid. 

Next, I call Page.RegisterClientScriptBlock to send the client script to the browser. Why use 
this method rather than just sending out the script directly? The reason is to ensure that if 
there is more than one ReformatDate control on a page, only a single copy of the script is 
written per page. Page.RegisterClientScriptBlock expects two parameters: a key, used to 
uniquely identify the script block, and the actual script. Notice that I use the Src attribute of 
the <SCRIPT> tag to include a file, rather than trying to embed the entire script in a string. 
This technique allows you to centralize scripts and also to correct the client-side script 
without requiring a recompile of the control using it. 

Listing 7-8 shows the JavaScript file FormatDate.js.  

Listing 7-8 FormatDate.js, the JavaScript used by the ReformatDate control  
 
// JScript source code 
 
function isLeapYear(year) 
{ 
    var bIsLeapYear; 
     
    bIsLeapYear=false; 
    if ( year%4 ) 
    { 
        bIsLeapYear=true; 
        if ( (year%100) && !(year%400) ) 
        { 
            bIsLeapYear=false; 
        } 
         
    } 
    return(bIsLeapYear); 
} 
function FormatDate(ControlName) 
{ 
    var ctrl; 
    var text; 



    var dt; 
    var slash1; 
    var slash2; 
    var loop; 
    var mo; 
    var da; 
    var yr; 
    var bIsDate; 
    var arrMonthLen=new Array(-1,31,28,31,30,31,30,31,31,30,31,30,31); 
 
    bIsDate=false; 
 
    slash1=-1; 
    slash2=-1; 
    ctrl=window.event.srcElement; 
    text=ctrl.value; 
    dt=Date(text); 
    slash1=text.indexOf(‘/'); 
    if ( slash1>=0 ) 
    { 
        slash2=text.indexOf(‘/',slash1+1); 
    } 
    if ( slash2<0 ) 
    { 
        if ( text.length==6 || text.length==8 ) 
        { 
            tstr=text.substring(0,2); 
            mo=parseInt(tstr,10); 
 
            tstr=text.substring(2,4); 
            da=parseInt(tstr,10); 
 
            tstr=text.substring(4,text.length); 
            yr=parseInt(tstr,10); 
            if ( yr<30 )  
            { 
                yr+=2000; 
            } 
            else 
            { 
                yr+=1900; 
            } 
            if ( isNaN(yr) || isNaN(mo) || isNaN(da) ||  
                    mo<1 || mo>12 || da<1 || da>31 ) 
            { 
                // not a date... 
            } 
            else 
            { 
                if ( mo==2 && isLeapYear(yr) ) 
                { 
                    arrMonthLen[2]=29; 
                } 
                if ( da<=arrMonthLen[mo] ) 
                { 
                    text=mo.toString() + "/" +  
                      da.toString() + "/" + yr.toString(); 
                    window.event.srcElement.value=text; 
                    bIsDate=true; 
                } 
            } 



        } 
    } 
    else 
    { 
        bIsDate=true; 
    } 
 
    if ( bIsDate==false ) 
    { 
        alert(‘Invalid Date'); 
    } 
    return (bIsDate); 
} 

 
 

The purpose of the JavaScript function FormatDate shown in Listing 7-8 is to perform a 
cursory test for a valid date, regardless of whether the date has been entered using slashes. To 
gain access to the contents of the control, I use window.event.srcElement, which will be 
available because this function is called as an event handler.  

If two slashes aren't found in the entered value, I try to interpret the entry as a date without 
slashes. If the string is six or eight characters, I split it into month, day, and year. To get a 
numeric value (for easier formatting later), I use the JavaScript function parseInt. One 
interesting feature of this function is that it interprets strings with leading zeros as octal by 
default. Thus, parseInt(‘09') would not be considered a number because there's no 9 in the 
octal number system. Thankfully, there's a second parameter, which accepts the base of the 
number. Calling parseInt(‘09',10) returns a correct value. If I've determined that the string 
entered without slashes is likely to be a date, I reformat it with slashes and update the value 
property of window.event.srcElement. If the date isn't valid, I use the alert function to display 
a message box on the client. All of this activity occurs without any intervention on the part of 
the client. 

 Note How important is it to be able to change JavaScript files? In Beta 2 of ASP.NET, there 
was a bug in the JavaScript files. Fortunately, because the code wasn't baked into the 
controls, Microsoft was able to provide instructions that allowed developers to fix the 
problem themselves. In this example, the behavior of the date formatting could be 
changed independently of the control, allowing, for example, a date entered in ddmmyy 
format. 

Let's look back at Listing 7-7. Because ReformatDate is derived from BaseValidator, the 
ReformatDate control needs to implement a single function, EvaluateIsValid. My 
implementation is brief: 

protected override bool EvaluateIsValid() 
{ 
    this.ServerFormatDate(); 
    return bIsValid; 
} 

EvaluateIsValid is a method that returns true if the form is valid or false if the form is not 
valid. ServerFormatDate, a method of ReformatDate, does much the same kind of checking 
that the FormatDate JavaScript function does. In general, if the browser is capable of using 



JavaScript, no invalid dates will get to the server, and so this function is used as a second line 
of defense. 

 Caution In addition to acting as a validator of last resort, if the client browser doesn't support 
JavaScript, ServerFormatDate can also prevent users trying to enter or send invalid 
data. Remember, you have no control over exactly how the data gets to your server. 
All data posted from a client should be treated as suspect, unless proven otherwise!  

The ReformatDate control also implements two interfaces; IPostBackDataHandler and 
IPostBackEventHandler. If you need to have a control notified when data is posted back by 
the client, you must implement IPostBackEventHandler. Two methods must be implemented 
on this interface: LoadPostData and RaisePostDataChangedEvent. The implementation of 
these methods is shown here: 

public virtual bool LoadPostData(string postDataKey,  
    NameValueCollection values)  
{ 
    String presentValue = Text; 
    String postedValue = values[postDataKey]; 
    try 
    { 
        if (!presentValue.Equals(postedValue)) 
        { 
            Text = postedValue; 
            return true; 
        } 
    } 
    catch ( Exception e ) 
    { 
        Text=postedValue; 
    } 
    return false; 
} 
 
public virtual void RaisePostDataChangedEvent()  
{ 
    ServerFormatDate(); 
    IsValid=bIsValid; 
    OnTextChanged(EventArgs.Empty); 
} 

LoadPostData is passed in a postDataKey parameter as a string. postDataKey is used as a key 
into the second parameter, named values in this example-a NameValueCollection object. 
Using postDataKey, you can find the value for the current control and access it. In this 
example, I'm setting the Text property to the string retrieved from the NameValueCollection, 
if the value differs from the present value. The RaisePostDataChanged event is used in this 
example to call ServerFormatDate. ServerFormatDate sets the class variable bIsValid; doing 
so allows the control to signal that it isn't valid if the field returned can't be interpreted as a 
date. 

The IPostBackEventHandler has a single method that must be implemented, 
RaisePostBackEvent. This event can be used to trigger an event whenever a postback occurs. 

The OnTextChanged method calls the event handler TextChanged, if TextChanged is not set 
to null. TextChanged is an event handler that I've declared in this class. A client program 



could use this event to perform some action in the event that the text is changed. In many 
instances, declaring event handlers and calling them will allow consumers of your control to 
customize the control's behavior. 

Conclusion 
Decisions about how an application is to be partitioned are never easy, and the Web doesn't 
change that. On the server side, ASP.NET makes language choice irrelevant. You can use 
Visual Basic .NET, C#, or any of the third-party languages that are becoming available for the 
.NET Framework. Of course, even here you do have to be aware of certain language 
differences, but for the most part, you can just work with the language you prefer. 

The client side is quite a bit more constrained. On the client, your only cross-browser-
compatible language choice is JavaScript. There's nothing wrong with JavaScript, but this 
remains the one area in which you don't have a real choice. Add to this the lack of control you 
have over the state of the client's JavaScript execution environment, and you can see that 
moving too much data processing to the client isn't a good idea. 

Still, there's a place for client-side scripting. Especially on a busy Internet site, performing 
initial validation and some minor processing on the client side can make the user's experience 
with the application more immediate, while reducing the load on the server. This can't be a 
bad thing. 

Most compelling Internet and intranet applications have, at their heart, access to dynamic 
content derived from various databases. In Chapter 8, we'll begin to gather the information 
you'll need to build such applications. ADO.NET is used to get the data within an ASP.NET 
application. Don't let the name confuse you: ADO.NET is really more like a distant cousin to 
ActiveX Data Objects (ADO) than a chip off the old block. Knowing how to take advantage 
of the changes in ADO.NET can mean the difference between designing a good application 
and designing a good application that performs and scales well. 

Chapter 8: Time to Get the Data 
Overview 
One of the most important tasks of any Web application is getting and displaying data. The 
ability to create data-driven, dynamic content is at the heart of what made Active Server 
Pages (ASP) such a hit. ASP.NET continues the tradition of easy data access. More than just 
providing for simple access to data, however, ASP.NET adds integrated, pervasive support for 
XML. XML is the data language of the Internet, and so it's not surprising that ASP.NET, 
through the .NET Framework, offers tremendous support for it. 

What is a bit surprising about database access in the .NET Framework is that it's so different 
from the database access that ASP and Microsoft Visual Basic 6.0 programmers are used to. 
The .NET technology for database access is ADO.NET. ASP programmers accustomed to 
ActiveX Data Objects (ADO) shouldn't assume that ADO.NET is a minor update to the 
classic ADO they know and love. ADO.NET isn't just a version upgrade to ADO but rather a 
completely new way to access data. 



In this chapter, I'll introduce XML and explain how you might be able to use it in your 
solutions. I'll also discuss some of the differences between ADO and ADO.NET and show 
how you can use ADO.NET in your ASP.NET applications. 

XML as the Universal Data Language 
In Chapter 4, I introduced XML in the context of the ASP.NET configuration files, 
Web.config and Machine.config. Briefly, XML is a plain-text data description language, in 
many ways paralleling HTML, a plain-text data presentation description language. 

There's a lot to recommend XML as a universal data language. Think about what you need to 
do when you're partitioning an application. If you need to send data from application tier to 
application tier, the decision about how to transport the data is dependent on whether the tiers 
are on the same machine or different machines. If the tiers are on different machines with 
different operating systems, your choices are even more limited.  

Using XML to transport data solves most of these problems. Imagine that you need to send 
customer information across machine boundaries. To send information from machine to 
machine, you need some sort of wire format that both machines can readily understand. Two 
possible solutions are shown here-the first uses fixed-length buffers and the second uses 
delimited buffers: 

REILLY         DOUGLAS        1422345819560724DOUG@PROGRAMMINGASP.NET 
REILLY,DOUGLAS,14223458,19560724,DOUG@PROGRAMMINGASP.NET 

A casual observer could figure out some of the data from the fixed-length representation. In 
this example, it's easy to see that 'Douglas Reilly' is the name and that the last part of the 
record is likely an e-mail address. In the delimited example, the name and e-mail address are 
still clear, and now that the fields are split, you might notice that one of the two string fields 
appears to be a date. Of course, you don't know what this date represents, but given that this is 
a customer record and the date is 45 years ago, perhaps it's a birth date. 

Let's consider another delimited example, in which the problem of identifying the data 
becomes even harder: 

LEE,FRANK,22321234,19920403,YELLOWFISH@PROGRAMMINGASP.NET 

Is the person named in this example Frank Lee or Lee Frank? Both are plausible. And is the 
date (19920403) a birth date for a very young customer or the first purchase date for an older 
long-time customer? It's impossible to tell. 

Current Solutions to Formatting Data vs. the XML Approach 

Dozens of notable attempts have been made by individual companies and industry 
consortiums to create a standard data transport language. One that I'm familiar with is Health 
Level 7 (HL7). HL7 is used as a format for data about patient transactions, most often as the 
wire format in a point-to-point TCP/IP transmission. A simple example of HL7 is shown in 
this transaction, which admits a patient: 

MSH|^~\&|ADT1|MMC|DTS|MMC|20010828131127||ADT^A01|P|2.3|<cr> 



EVN|A01|20010828131127||<cr> 
PID|||0000984249||JONES^BEVERLY^L^||19560214|M||W| 
    100 PROSPECT ST^^LAKEWOOD^NJ^08701|OCEA||||M||0400233919||||9 
    <cr> 
NK1|1|JONES^AMY^|B||||||<cr> 
PV1|1|I|B5^551^A||||001218^TEST^DOCTOR^^^MD|||MED||NOF||||<cr> 

There's no need to understand the full details of this transaction. Briefly, the first line is a 
message header (MSH). The first line also declares the delimiters that will be used for the 
various levels within the message. The next line is an event submessage (EVN). In both the 
MSH and EVN lines, the message is declared to be an inpatient admittance (signified by the 
A01 code in both lines). The third line is the patient identifying information (PID). (Here the 
PID is shown on several lines for clarity, but it's really a single line of text ending with a 
carriage return.) This line includes the text |JONES^BEVERLY^L^|. The vertical bars (|) are 
the outermost delimiters, and the carat (^) is used for delimiting the next level within 
individual segments. Because we know that this is a patient information line within the 
admittance message, we can probably assume that this is the name of the patient. The fourth 
line declares Amy as her next of kin (NK1). The final line has patient visit information 
specific to this visit (PV1). Every single segment within the hundreds of lines is 
comprehensively documented, and hospitals all over the country use this HL7 standard to 
convey information from system to system. 

Compare this HL7 example with an example of a possible XML solution to just the patient 
visit information: 

123456789 123456789 123456789 123456789 12345 
<patientVisit> 
<admissionType>I</admissionType> 
<patientLocation> 
<unit>B5</unit> 
<room>551</room> 
<bed>A</bed> 
</patientLocation> 
<doctor> 
<doctorID>001218</doctorID> 
<lastName>TEST</lastName> 
<firstName>DOCTOR</firstName> 
<mi></mi> 
</doctor> 
<service>MED</service> 
<ambulatoryStatus>NOF</ambulatoryStatus> 
</patientVisit> 

The HL7 example makes it fairly clear what the purpose of the data is, but the XML 
representation of the same information makes it crystal clear what the data means. XML is 
said to be self-describing, and although you might have to do a little work to parse out the 
data programmatically, looking at a file with this information, even 20 years from now, you'll 
be able to determine exactly what data is where.  

Is XML Perfect? 

Of course, there's no such thing as a free lunch. The cost of the convenience offered by XML 
is a larger payload. The example patient-visit information rendered using HL7 takes up about 
64 bytes (assuming 1 byte per character). The XML alternative uses about 308 bytes. In real-



world applications, the size difference is generally not that great, and while it's not 
insignificant, it probably doesn't matter all that much, for a couple of reasons. The first is the 
increased bandwidth available to many users these days. The difference between sending 64 
bytes and 308 bytes, in terms of time perceived by the user, is inconsequential. Second, the 
XML data is highly compressible. Given current technologies, compressing the XML for 
transport over a limited bandwidth line, or for storage, is a reasonable option. 

As you'll see in Chapter 10, XML is also at the heart of XML Web services. By using XML 
as a way to communicate information, XML-enabled applications written in any language on 
any platform can work with other XML-enabled applications written in any language and on 
any platform. Given that XML is so critical to .NET data handling in general and to XML 
Web services in particular, you'd expect to find generous support for XML within the .NET 
Framework, and you'd be correct. 

Using the IEnumerator Interface 
As we examine the support within the .NET Framework for various types of data handling, 
it's important to understand some of the details of implementation. As you'll see, using the 
.NET Framework, you'll be able to use a great variety of objects to access data. All of this 
access, whether the underlying data is in an array, in a SQL Server database, or in an XML 
document, will have one thing in common: it will take place through the IEnumerator 
interface. 

Recall that interfaces are the definition of a set of behaviors that a class can agree to support. 
Although .NET doesn't allow multiple inheritance, it does allow a class to implement multiple 
interfaces. The IEnumerator interface is a simple interface, containing one property and two 
methods, as listed in Table 8-1. 

Table 8-1 : Members of the IEnumerator Interface  
Interface Member Description 
Current property Gets the current element from the collection 
MoveNext method Advances the enumerator to the next element 

of the collection 
Reset method Sets the enumerator to its initial position, 

logically before the first element of the 
collection 

By implementing this relatively simple interface, an object can enable itself to be bound to 
another object that expects to get an IEnumerator object. In the Visual Basic 6.0 world, you 
might bind a combo box or a list box to a recordset from a database. In the .NET world, you 
can bind anything from an array to an XML stream to a combo box or a list box. 

To expose an enumerator and add support for the For Each construct, the IEnumerable 
interface must be implemented. IEnumerable has a single method, which is listed in Table 8-
2. 

Table 8-2 : Members of the IEnumerable Interface  



Interface Member Description 
GetEnumerable method Returns an instance of the IEnumerator 

interface 

Listing 8-1 shows the code-behind file for a simple page. In addition to the normal page-
derived class, you'll see another class, named MyEnumerator. This class implements both the 
IEnumerator and the IEnumerable interfaces.  

Listing 8-1 The code-behind file for a page that demonstrates the use of the IEnumerator 
interface  
 
Using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace Chapter08_IEnumerator 
{ 
    public class MyEnumerator : IEnumerator,IEnumerable 
    { 
        private int what; 
        private int whatMax; 
        public MyEnumerator() 
        { 
            what=0; 
            whatMax=10; 
        } 
        // IEnumeratable method… 
        public IEnumerator GetEnumerator() 
        { 
            return this; 
        } 
        // IEnumerator properties and methods 
        public object Current 
        { 
            get 
            { 
                return what.ToString(); 
            } 
        } 
        public bool MoveNext() 
        { 
            if ( what<whatMax) 
            { 
                what++; 
                return true; 
            } 
            else 
            { 
                return false; 
            } 
        } 



        public void Reset() 
        { 
            what=0; 
        } 
    } 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected System.Web.UI.WebControls.ListBox ListBox1; 
     
        public WebForm1() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Set the data source to a new instance 
            // of MyEnumerator 
            ListBox1.DataSource=new MyEnumerator(); 
            ListBox1.DataBind(); 
        } 
 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
        } 
 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        { 
            this.Load += new System.EventHandler(this.Page_Load); 
        } 
        #endregion 
    } 
} 

 
 

The MyEnumerator class in Listing 8-1 is a simple enumerator that provides the strings with 
values between 1 and 10. Two private variables control how the class works. The variable 
what controls the current value, and the variable whatMax controls the maximum value. 

The Current property, part of the IEnumerator interface, makes use of the fact that all types 
can be boxed and calls the ToString method on what. The MoveNext method of the 
IEnumerator interface increments the value of what unless it is greater than or equal to 
whatMax. The return value from MoveNext is a bool indicating whether there is a next value. 
The final element of the IEnumerator interface is the Reset method. In this example, the Reset 



method sets what to 0. Implementing IEnumerable is easy. The GetEnumerator method 
simply returns this (in Visual Basic .NET, the value would be Me) because the same object 
that implements IEnumerable implements IEnumerator.  

The code-behind class for the page itself is similar to examples in earlier chapters; the 
difference is in the Page_Load method. The page itself has a list box, named ListBox1. On 
page load, I make the following two method calls: 

private void Page_Load(object sender, System.EventArgs e) 
{ 
    // Set the data source to a new instance 
    // of MyEnumerator 
    ListBox1.DataSource=new MyEnumerator(); 
    ListBox1.DataBind(); 
) 

First I set the DataSource property to a new instance of MyEnumerator. This works because 
MyEnumerator implements IEnumerable. It's also possible to pass an object that implements 
ICollection. Calling DataBind actually populates the list box control with the values from the 
data source. 

Figure 8-1 shows the page with the data-bound values displayed in the list box. 

 
Figure 8-1 : A list box populated with the MyEnumerator class as its data source  

This is a trivial use of the power of the IEnumerator and IEnumerable interfaces. In the real 
world, such a simple requirement could be easily met using a loop to add items to the list box. 
You could also populate an array and bind to that within the Page_Load method like this: 

private void Page_Load(object sender, System.EventArgs e) 
{ 
    System.Collections.ArrayList al; 
    al=new System.Collections.ArrayList(); 
    al.Add("One"); 
    al.Add("Two"); 
    al.Add("Three"); 
    ListBox1.DataSource=al; 
    ListBox1.DataBind(); 
} 



But there certainly are real-world scenarios in which you need to bind to something other than 
a simple array or a traditional database. These interfaces mean that your data source is limited 
only by your imagination. 

Introducing ADO.NET 
Moving from ASP to ASP.NET can be done in a way that will allow the ASP programmer to 
continue to feel comfortable. You can ignore code-behind files and continue operating in an 
ASP way, if you want. You'll give up many of the advantages of ASP.NET, but if you want to 
adopt the new technology with little pain, you can do so, as long as you're willing to learn a 
little about the Visual Basic .NET changes. 

Moving from ADO to ADO.NET is different than moving from ASP to ASP.NET. Although 
ADO.NET has much of the same functionality as ADO, it's really a different technology. 
Using ADO.NET requires learning several new namespaces, and there are a few things (very 
few things) that you just can't do with ADO.NET that you could do quite well using ADO. 
Fortunately, most developers-and virtually all ASP.NET developers-don't need the ADO 
functionality that isn't easy to duplicate in ADO.NET. First, let's take a look at ADO. 

ADO Overview 

ADO is made up of three primary objects: Connection, Command, and Recordset. The 
Connection object is used to open a channel between the program and a data source. 
Connection allows you to set the connection string as well as handle transactions and set the 
type of cursor. ADO supports server-side and client-side servers as well as many other cursor 
properties designed to control the visibility of modified records and so on. 

The Command object is used to execute queries. These queries can be arbitrary SQL strings, 
or possibly stored procedures. The Command object supports parameters, and this support 
helps with passing values that might be troublesome if they were passed as part of an arbitrary 
SQL string. For example, consider the following SQL string: 

SELECT * FROM Titles WHERE Title=‘What's Up Doc?' 

This string will fail because the apostrophe in the title will be seen as the end of the string, 
and the rest of the title will be rejected as invalid syntax. Using parameters on the Command 
object allows such a string to be handled. 

The Recordset object is used to get data from the data source and to navigate through the 
recordset. Depending on the type of cursor, the recordset can be navigated both forward and 
backward and can provide properties such as the record count. 

One core weakness of ADO is the level of complexity that's involved with selecting the 
correct cursor location, cursor type, and other similar details. For example, how do you know 
whether to use a client-side or a server-side cursor? What type of locking do you want? 
Should other users see changes you make to the recordset before you commit the changes? 
Although ADO offers flexibility, for the majority of users, especially ASP users, ADO is 
tough to master and use correctly. 

Differences Between ADO and ADO.NET 



After seeing what ADO.NET has to offer, programmers accustomed to using ADO invariably 
respond, 'But there are so many classes!' It's true. If you browse the .NET Framework, the 
System.Data namespace and all the namespaces under it are chock-full of classes and 
enumerations. Part of the problem is that the classes are divided into three distinct groups. 
One group of classes is designed for ODBC data sources, one group is designed for OLE DB 
data sources, and the other is designed specifically to take advantage of Microsoft SQL 
Server. These groups of classes are similar, but not identical. Figure 8-2 shows the class 
structure in ADO.NET. 

 
Figure 8-2 : The class hierarchy of ADO.NET  
 Note At the time of this writing, the ODBC classes are expected to be available as an add-on 

component to the .NET Framework. It's not clear whether it will continue to be an add-
on or will become part of the .NET Framework itself. If you want to download the 
ODBC .NET data provider, check out http://www.microsoft.com/downloads/. 

One problem that ADO programmers might notice is the lack of server-side cursor support. 
This lack of support isn't a mistake; rather, it's a design decision. Two primary objects will 
allow you to navigate records. The first is the DataSet object, an in-memory cache of records 
that you can visit in any direction, similar to an ADO static cursor. The second object you can 
use to get at data in ADO.NET is DataReader. The DataReader object is a highly optimized, 
read-only, forward-only firehose that allows you to read through records sequentially, from 
front to back.  

For example, one of the most common Web application tasks is displaying the results of a 
query. In the vast majority of Web applications, none of the records returned will be updated. 
The read-only, forward-only DataReader object is perfect for this type of application. 

The DataAdapter object acts as a bridge between a DataSet object and a data source for 
retrieving and saving data. The Fill method of DataAdapter (or SqlDataAdapter for SQL 
Server data sources) fills the DataSet object with the requested data from a data source. The 
Update method changes the data in the data source to match that in DataSet. The nature of 
ASP.NET applications doesn't lend itself to using this model. For example, data is often 
displayed when a page is initially visited, and changes are applied when the page is posted 
back. In such situations, allowing a single data object to handle transport to and from the data 
source is of little benefit.  

The biggest constraint that ADO has to work with is the limitations imposed by ADO's use of 
COM. The most significant of these limitations is the limited number of data types supported. 



If an ADO recordset needed to contain an object, it had to be somehow marshaled as one of 
the COM data types. ADO.NET uses XML as its data transport, and so ADO.NET can take 
advantage of the way XML data can be self-describing. In addition, and important for 
corporate developers, transporting ADO recordsets through firewalls is problematic since 
most firewalls are configured to prevent COM marshaling. ADO.NET can pass results though 
firewalls because it's a text protocol that can take advantage of commonly open ports. 

Speaking of the ADO recordset object, where is the ADO.NET recordset equivalent? In ADO, 
the recordset is the 'Swiss army knife' of the database developer. Need to get records? Use a 
recordset. Need to delete records? Use a recordset. Need to add records? You get the idea. 
The recordset is used in all these situations. 

The closest ADO.NET equivalent to an ADO recordset is the DataSet object. Using DataSet, 
you can add and update records. The DataSet object keeps track of the state of each record. Is 
the record inserted? Has the record been modified? Has the record been deleted? Unlike 
ADO, where navigating within the recordset commits changes to the record you navigate 
away from, the ADO.NET DataSet object is designed to allow you to make all the changes 
you want to (all the time, with no connection to the data source) and then commit them when 
you're finished. 

The new model of disconnected data access works very well in the ASP.NET world. Forget 
about all you could do with an ADO recordset for a while, and take a look at the ADO.NET 
way of getting data. It's a little different, but it can greatly enhance the performance and 
scalability of your application. 

Using ADO.NET from ASP.NET 

Many of the most exciting advances in using data inside ASP.NET involve the additional 
server-side controls that can be used in Web Forms. I'll introduce these controls in Chapter 9. 
For now, I'll show you how to connect to a data source, how to select data, how to insert data, 
and how to update data using both SQL statements and stored procedures. 

Selecting Data 

Listing 8-2 shows the code-behind file for a sample that selects data from the Northwind 
database in SQL Server. The select query is shown here: 

SELECT CustomerID,CompanyName,ContactName 
FROM Customers WHERE ContactTitle=‘Owner' 

When the data is retrieved, it's displayed on a page in an HTML table.  

Listing 8-2 SimpleSelect.aspx.vb, the code-behind file used to display the results of a simple 
query  
 
Imports System.Data 
Imports System.Data.OleDb 
 
Public Class WebForm1 
    Inherits System.Web.UI.Page 
    Public dr As System.Data.OleDb.OleDbDataReader 
 



#Region " Web Form Designer Generated Code " 
 
    ‘This call is required by the Web Form Designer. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
 
    End Sub 
 
    Private Sub Page_Init(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles MyBase.Init 
        ‘CODEGEN: This method call is required by the Web Form Designer 
        ‘Do not modify it using the code editor. 
        InitializeComponent() 
    End Sub 
 
#End Region 
 
    Private Sub Page_Load(ByVal sender As System.Object, _ 
      ByVal e As System.EventArgs) Handles MyBase.Load 
        ‘Put user code to initialize the page here 
        Dim cn As System.Data.OleDb.OleDbConnection 
        Dim cmd As System.Data.OleDb.OleDbCommand 
         
        cn = New OleDbConnection( _  
          "Provider=SQLOLEDB;Data Source=localhost;" + _ 
          "Integrated Security=SSPI;Initial Catalog=Northwind") 
        cn.Open() 
        cmd = New OleDbCommand( _  
          "SELECT CustomerID,CompanyName,ContactName " + _ 
          "FROM Customers WHERE ContactTitle=‘Owner'") 
        cmd.Connection = cn 
        dr = cmd.ExecuteReader(CommandBehavior.CloseConnection) 
    End Sub 
 
    Private Sub Page_Unload(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles MyBase.Unload 
        dr.Close() 
    End Sub 
End Class 

 
 
 Note This example and additional examples in this chapter have the connection string 

embedded within the code-behind file. The connection strings use Integrated 
Security=SSPI rather than sending a user name and password. You will need to give the 
user whose context the page will be running under rights to the database. That user 
could be the end user if you're using impersonation or the Internet Information Services 
(IIS) user (IUSR_<machinename>). Another alternative is to use the appSettings 
section of Web.config, which was discussed in Chapter 4. 

Listing 8-3 shows the page that displays the results of the select query. The CustomerID, 
CompanyName, and ContactName are displayed in a simple HTML table.  

Listing 8-3 SimpleSelect.aspx, displaying data using an OleDbDataReader created in Listing 
8-2, SimpleSelect.aspx.vb  
 
<%@ Page Language="vb" AutoEventWireup="false"  
Codebehind="SimpleSelect.aspx.vb"  
Inherits="Chapter08_SimpleData.WebForm1"  



debug="true"%> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML> 
    <HEAD> 
        <title></title> 
        <meta name="GENERATOR"  
          content="Microsoft Visual Studio.NET 7.0"> 
        <meta name="CODE_LANGUAGE"  
          content="Visual Basic 7.0"> 
        <meta name="vs_defaultClientScript" content="JavaScript"> 
        <meta name="vs_targetSchema"  
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form id="Form1" method="post" runat="server"> 
            <P> 
                <FONT face="Verdana" size="4"> 
                <STRONG>Select Data Example 
                </STRONG></FONT> 
            </P> 
            <P> 
                <table width="600"> 
                    <tr bgcolor="#ffff66"> 
                        <td> 
                            CustomerID 
                        </td> 
                        <td> 
                            Company Name 
                        </td> 
                        <td> 
                            Contact/Owner 
                        </td> 
                    </tr> 
                <% 
                while dr.Read() 
                %> 
                    <tr bgcolor="#ffffd7"> 
                        <td> 
                            <%=dr.GetString(0)%> 
                        </td> 
                        <td> 
                            <%=dr.GetString(1)%> 
                        </td> 
                        <td> 
                            <%=dr.GetString(2)%> 
                        </td> 
                    </tr> 
                <% 
                end while 
                %> 
                </table> 
            </P> 
        </form> 
    </body> 
</HTML> 

 
 
 Note Within Listing 8-3, the individual records are written in separate table rows. This is not 

the way to display data in ASP.NET. We'll examine the more advanced ways to display 
data in ASP.NET in Chapter 9. 



Figure 8-3 shows the page generated by running the code shown in Listing 8-3 and the code-
behind file shown in Listing 8-2.  

 
Figure 8-3 : Results returned from running the code in Listings 8-2 and 8-3  

The bulk of the work of getting the data is performed in the Page_Load method shown in 
Listing 8-2. Using locally created OleDbConnection and OleDbCommand objects and a 
public OleDbDataReader object, I execute a simple query against the SQL Server Northwind 
database. This example is in Visual Basic .NET, but the same .NET Framework objects would 
be used in other .NET languages. 

 Tip Early versions of the .NET Framework used a different namespace for the non-SQL 
Server data access classes. Examples in other books or on Web sites that use System.ado 
won't work with the released version of the .NET Framework. 

The process of accessing data using ADO.NET isn't terribly different from what you're used 
to in ADO. First an OleDbConnection object is created. (Note that unlike ADO used in Visual 
Basic Scripting Edition (VBScript), Set is not used when assigning a new instance to your 
variable.) When the OleDbCommand object is created, I pass a SQL string to the constructor. 
This SQL string will be executed later. I set the Connection property of the OleDbCommand 
object to the OleDbConnection object created a few lines above, and finally get an 
OleDbDataReader object by calling the ExecuteReader method of the OleDbCommand 
object, as follows: 

dr = cmd.ExecuteReader(CommandBehavior.CloseConnection) 

The parameter passed to ExecuteReader is one of five CommandBehavior values that can be 
combined as bitwise values. The values in the CommandBehavior enumeration are listed in 
Table 8-3.  

Table 8-3 : The CommandBehavior Enumeration  
Value Description 
CloseConnection  When the command is executed, the 

associated connection object is closed when 
the DataReader object is closed. 

KeyInfo  The query returns column and primary key 
information. The query is executed without 
locking any of the selected rows. When used, 



Table 8-3 : The CommandBehavior Enumeration  
Value Description 

the .NET provider for SQL Server appends a 
FOR BROWSE clause to the statement. 

SchemaOnly  The query returns only schema information. 
SequentialAccess  Results are read sequentially to the column 

level, allowing the application to read large 
binary values using GetChars or GetBytes. 

SingleResult  The query returns a single result. 
SingleRow  The query is expected to return a single row. 

Some .NET data providers might use this 
information to optimize the operation of the 
query. Note that in many cases, using a stored 
procedure with output parameters will result 
in better performance for singleton queries. 

CommandBehavior.CloseConnection is the perfect parameter to pass in this situation because 
the OleDbConnection object is created using a local parameter. When Page_Unload is called, 
closing dr will close the connection it was using. There are other convenient ways of working 
around closing the connection-for example, making the OleDbConnection object a public 
class variable. In other situations-for example, when a class method returns a data reader-it 
might not be as easy to get the connection closed without sending 
CommandBehavior.CloseConnection to ExecuteReader. To give a concrete example, say you 
have an Customer object that exposes a method GetCustomer that returns a data reader. 
Having that method call ExecuteReader with CommandBehavior.CloseConnection means that 
the connection, allocated and opened in GetCustomer, will be closed when the data reader is 
closed, even though you have no access to the connection object that GetCustomer created. 

Creating Action Queries 

Insert, update, and delete operations in SQL are sometimes called action queries, meaning 
that they perform some action rather than returning data. Within the ADO.NET world, they're 
also known as nonqueries. The code to execute these nonqueries is similar to the code 
required to execute the select query shown in Listing 8-2. Listing 8-4 shows the code-behind 
file SimpleExecuteNonQuery.aspx.vb, used to create a simple ASP.NET form containing 
three buttons: Insert, Update, and Delete.  

Listing 8-4 SimpleExecuteNonQuery.aspx.vb, executing insert, update, and delete commands  
 
Imports System.Data 
Imports System.Data.OleDb 
 
Public Class SimpleExecuteNonQuery 
    Inherits System.Web.UI.Page 
    Protected WithEvents Insert As System.Web.UI.WebControls.Button 
    Protected WithEvents Update As System.Web.UI.WebControls.Button 
    Protected WithEvents Delete As System.Web.UI.WebControls.Button 
    Protected WithEvents Label1 As System.Web.UI.WebControls.Label 
 
#Region " Web Form Designer Generated Code " 



 
    ‘This call is required by the Web Form Designer. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
 
    End Sub 
 
    Private Sub Page_Init(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles MyBase.Init 
        ‘CODEGEN: This method call is required by the Web Form Designer 
        ‘Do not modify it using the code editor. 
        InitializeComponent() 
    End Sub 
 
#End Region 
 
    Private Sub Page_Load(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles MyBase.Load 
        ‘Put user code to initialize the page here 
    End Sub 
 
    Private Sub Insert_Click(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles Insert.Click 
        Dim cn As OleDb.OleDbConnection 
        Dim cmd As OleDb.OleDbCommand 
        cn = New OleDbConnection("Provider=SQLOLEDB;" + _  
          "Data Source=localhost;Integrated Security=SSPI;" + _ 
          "Initial Catalog=Northwind") 
        cn.Open() 
        cmd = New OleDbCommand("INSERT INTO " + _ 
            "Territories(TerritoryID,TerritoryDescription,RegionID) " + _ 
            " VALUES(‘08724', ‘Brick', 3)") 
        cmd.Connection = cn 
        Try 
            cmd.ExecuteNonQuery() 
        Catch dbe As System.Data.OleDb.OleDbException 
            Label1.Text = "Exception while Inserting Record!  " + _ 
                dbe.ToString() 
        End Try 
 
    End Sub 
 
    Private Sub Update_Click(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles Update.Click 
        Dim cn As OleDb.OleDbConnection 
        Dim cmd As OleDb.OleDbCommand 
        cn = New OleDbConnection("Provider=SQLOLEDB;" + _  
          "Data Source=localhost;Integrated Security=SSPI;" + _ 
          "Initial Catalog=Northwind") 
        cn.Open() 
        cmd = New OleDbCommand("UPDATE Territories " + _ 
            "SET TerritoryDescription=‘Brick Township' " + _ 
            " WHERE TerritoryID=‘08724'") 
        cmd.Connection = cn 
        Try 
            cmd.ExecuteNonQuery() 
        Catch dbe As System.Data.OleDb.OleDbException 
            Label1.Text = "Exception while Updating Record!  " + _ 
                dbe.ToString() 
        End Try 
 



    End Sub 
 
    Private Sub Delete_Click(ByVal sender As System.Object, _  
      ByVal e As System.EventArgs) Handles Delete.Click 
        Dim cn As OleDb.OleDbConnection 
        Dim cmd As OleDb.OleDbCommand 
        cn = New OleDbConnection("Provider=SQLOLEDB;" + _  
          "Data Source=localhost;Integrated Security=SSPI;" + _ 
          "Initial Catalog=Northwind") 
        cn.Open() 
        cmd = New OleDbCommand("DELETE FROM Territories " + _ 
            " WHERE TerritoryID=‘08724'") 
        cmd.Connection = cn 
        Try 
            cmd.ExecuteNonQuery() 
        Catch dbe As System.Data.OleDb.OleDbException 
            Label1.Text = "Exception while Deleting Record!  " + _ 
                dbe.ToString() 
        End Try 
 
    End Sub 
End Class 

 
 

The event handlers for all three buttons-Insert, Update, and Delete-are virtually identical, 
except for the SQL code passed to the constructor of the OleDbCommand object. One thing 
that was added over and above the select query example is exception handling, as shown here: 

Try 
    cmd.ExecuteNonQuery() 
Catch dbe As System.Data.OleDb.OleDbException 
    Label1.Text = "Exception while Inserting Record!  " + _ 
        dbe.ToString() 
End Try 

One fairly common mishap that can occur when you're inserting data is duplicate data. In this 
example, if you click the Insert button and then click it again before you have deleted the 
record by clicking the Delete button, you'll get an error. Rather than returning the standard 
unhandled exception error, clicking Insert when the record already exists in the database will 
instead give you the result seen in Figure 8-4. 

 
Figure 8-4:  The exception information displayed by SimpleExecuteNonQuery.aspx when you 
insert a record that already exists  



For most applications, you'd want to display only some of this information, and the 
OleDbException object has many different properties to allow you to get at individual 
elements of the error information.  

 Tip One way to slightly improve the layout of the displayed error information is to replace the 
carriage return characters (which are interpreted as white space within an HTML 
document) with <BR> tags. Changing this line 
dbe.ToString() 

to this 

dbe.ToString().Replace(Chr(13), "<BR>") 

will result in a somewhat cleaner display. 

Using Stored Procedures 

Most relational database systems allow you to run stored procedures. Stored procedures are 
blocks of SQL code that are called much like functions are called in normal procedural 
languages. Stored procedures are parsed and validated when they're saved, and the query plan 
for a stored procedure is also calculated only once. These two features alone are enough to 
justify using stored procedures. 

In addition, stored procedures can be created to return results in an efficient format. For 
example, if you're retrieving a single record, you could write a query that returns the single 
record as a recordset, or you could write a stored procedure that returns the required fields 
using output parameters. Retrieving even a recordset with only a single record can involve 
significant overhead. When a recordset is returned, not only is the data returned, but also data 
about the data (also called metadata) is returned. Using output parameters can be significantly 
more efficient. 

There are other reasons to use stored procedures-for example, performing some complex data-
related function as close to the data as possible. For data manipulation that would require 
multiple SQL statements, a stored procedure will likely be much more efficient. If you're 
bringing a lot of data to the client machine and filtering out data locally, you have a perfect 
candidate for using stored procedures. I'm most familiar with the version of Transact SQL 
included with Microsoft SQL Server, which isn't designed as a procedural language. 
However, it does offer many of the constructs, such as IF and WHILE, that will make a 
procedural programmer happy. Still, the power of stored procedures comes from their use of 
the set-oriented, nonprocedural SQL language.  

In another scenario, you might want to grant rights to only some columns in a particular table. 
One way to do this is to give no rights to the table but execute rights to a stored procedure that 
will access the data in a safe way. 

 Tip Another alternative (beyond the scope of this book) is to create a SQL Server view with 
just the table columns you want to give users access to. Then you can give the users no 
rights to the underlying table but whatever rights are required to the view.  



Executing stored procedures using ADO.NET is similar to executing normal SQL statements. 
In almost all cases, you'll be passing parameters to your stored procedures. Few stored 
procedures are useful without any parameters, although the first example we'll look at next 
doesn't accept any parameters. 

The following SimpleSPSelect example calls a simple stored procedure named 'Ten Most 
Expensive Products' that requires no parameters and returns a set of records. The records are 
read into a DataReader object and then displayed exactly as with the select query executed in 
SimpleSelect.aspx.vb shown in Listing 8-3. SimpleSPSelect.aspx is shown in Listing 8-5, and 
the code-behind file, SimpleSPSelect.aspx.cs, is shown in Listing 8-6.  

Listing 8-5 SimpleSPSelect.aspx, showing how to display the results from the 'Ten Most 
Expensive Products' stored procedure from the Northwind database  
 
<%@ Page language="c#"  
Codebehind="SimpleSPSelect.aspx.cs"  
AutoEventWireup="false"  
Inherits="Chapter08_SimpleSPSelect.WebForm1" %> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML> 
    <HEAD> 
        <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0"> 
        <meta name="CODE_LANGUAGE" Content="C#"> 
        <meta name="vs_defaultClientScript"  
          content="JavaScript (ECMAScript)"> 
        <meta name="vs_targetSchema"  
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form id="Form1" method="post" runat="server"> 
            <TABLE WIDTH="300" BORDER="0" CELLSPACING="1" CELLPADDING="1"> 
                <TR bgcolor="#ffff66"> 
                    <TD> 
                        Product 
                    </TD> 
                    <TD> 
                        Unit Price 
                    </TD> 
                </TR> 
                <% 
                while ( dr.Read() ) 
                { 
                %> 
                <TR bgcolor="#ffffc3"> 
                    <TD> 
                        <%=dr.GetString(0)%> 
                    </TD> 
                    <TD align="right"> 
                        <%=dr.GetDecimal(1).ToString("C")%> 
                    </TD> 
                </TR> 
                <% 
                } 
                %> 
                <TR> 
                    <TD colspan="2" align="middle"> 
                        <asp:Label  
                            id="Label1"  



                            runat="server"> 
                        </asp:Label> 
                    </TD> 
                </TR> 
            </TABLE> 
        </form> 
    </body> 
</HTML> 

 
 
Listing 8-6 SimpleSPSelect.aspx.cs, showing how to call a stored procedure from ASP.NET  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Data.SqlClient; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
namespace Chapter08_SimpleSPSelect 
{ 
    /// <summary> 
    /// Summary description for WebForm1 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected System.Web.UI.WebControls.Label Label1; 
        protected System.Data.SqlClient.SqlDataReader dr; 
        public WebForm1() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlCommand cmd; 
            cn=new SqlConnection("server=localhost;" + 
                "Integrated Security=SSPI;Initial Catalog=Northwind"); 
            cmd=new SqlCommand("Ten Most Expensive Products",cn); 
            cmd.CommandType=CommandType.StoredProcedure; 
            try 
            { 
                cn.Open(); 
                dr=cmd.ExecuteReader(CommandBehavior.CloseConnection); 
            } 
            catch (System.Data.SqlClient.SqlException sqle) 
            { 
                Label1.Text=sqle.ToString().Replace("\n","<BR>"); 
            } 
 
        } 
        private void Page_Unload(object sender, EventArgs e) 
        { 
            dr.Close();  // Which will also close the connection 



        } 
 
 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
        } 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {   
            this.Load += new System.EventHandler(this.Page_Load); 
            this.Unload += new System.EventHandler(this.Page_Unload); 
        } 
        #endregion 
    } 
} 

 
 

Figure 8-5 shows the page returned when SimpleSPSelect is executed. 

 
Figure 8-5 : Results from SimpleSPSelect.aspx, showing the most expensive products, 
returned from a stored procedure  

The following two lines in the code-behind file, SimpleSPSelect.aspx.cs in Listing 8-6, set up 
the stored procedure call: 

cmd=new SqlCommand("Ten Most Expensive Products",cn); 
cmd.CommandType=CommandType.StoredProcedure; 

Rather than a SQL statement, I pass in the name of the stored procedure to the constructor for 
SqlCommand. I next set the CommandType property for the command to 
CommandType.StoredProcedure. Recall from examples earlier in the chapter that when 
executing SQL commands, I didn't set CommandType, because the default CommandType 



was correct. From this point, calling the ExecuteReader method on the SqlCommand object 
and storing the returned SqlDataReader object is similar to what you've seen in previous 
examples.  

 Note Careful observers will notice that the examples earlier in the chapter use 
OleDbConnection and similarly OleDb-prefixed classes to access data. The stored 
procedure examples use SqlConnection and similarly Sql-prefixed classes. We'll look 
more closely at the differences between these classes and where each should be used in 
the next section 'SqlClient vs. OleDb Classes.' 

In Listing 8-5, I once again used some ASP-like methods to display data in a table: 

<TD> 
    <%=dr.GetString(0)%> 
</TD> 
<TD align="right"> 
    <%=dr.GetDecimal(1).ToString("C")%> 
</TD> 

Using GetString with an ordinal (a 0-based number representing the relative column number 
in the result set) is something you've seen before. The second table cell contains 
dr.GetDecimal(1).ToString('C'). What this does is to first get the 1's column data (the second 
column) as a decimal and convert it to a string, using ToString. The ToString method is 
passed a format string, in this case, 'C', which means that the value is formatted as currency. 

One more bit of code might require some explanation, although it's totally unrelated to calling 
stored procedures. The InitializeComponent method has one line that I've added, shown here: 

private void InitializeComponent() 
{   
    this.Load += new System.EventHandler(this.Page_Load); 
    // I added this 
    this.Unload += new System.EventHandler(this.Page_Unload); 
} 

The added line uses the += operator to add the Page_Unload method as an event handler for 
the Unload event on this form. Visual Basic .NET uses a Handles MyBase.Unload syntax 
appended to the method declaration to allow a method to handle one of the events in the 
page's life cycle. This is just one of the many areas in which C# and Visual Basic .NET differ.  

The examples of stored procedures in the Northwind database don't adequately demonstrate 
inserting, updating, and deleting rows, so I created a couple of stored procedures of my own. 
The first is named spSaveTerritory, and the second is named spDeleteTerritory. A script to 
create both is shown in Listing 8-7. 

Listing 8-7 Stored procedures to save or delete a territory in the Northwind database  
 
USE Northwind 
SET QUOTED_IDENTIFIER OFF  
GO 
SET ANSI_NULLS OFF  
GO 
 
CREATE PROCEDURE spDeleteTerritory  



    @TerritoryID nvarchar(20) 
AS 
SET NOCOUNT ON 
    DELETE FROM Territories WHERE TerritoryID=@TerritoryID 
GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET ANSI_NULLS ON  
GO 
 
SET QUOTED_IDENTIFIER OFF  
GO 
SET ANSI_NULLS OFF  
GO 
 
CREATE PROCEDURE spSaveTerritory 
    @TerritoryID nvarchar(20), 
    @TerritoryDescription nvarchar(128), 
    @RegionID int 
AS 
SET NOCOUNT ON 
    DECLARE @Existing nvarchar(20) 
 
SELECT @Existing=TerritoryID  
FROM Territories  
WHERE TerritoryID=@TerritoryID 
 
    IF IsNull(@Existing,'')<>@TerritoryID - Then, INSERT 
    BEGIN 
        INSERT INTO  
            Territories(TerritoryID, 
            TerritoryDescription,RegionID) 
            VALUES(@TerritoryID, @TerritoryDescription,@RegionID) 
        return(1) 
    END 
    ELSE 
    BEGIN 
        UPDATE Territories SET 
            TerritoryDescription=@TerritoryDescription, 
            RegionID=@RegionID 
        WHERE TerritoryID=@TerritoryID 
        return(0) 
    END 
GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET ANSI_NULLS ON  
GO 

 
 

Neither of these stored procedures is terribly difficult to understand, so I won't describe them 
in detail here. The spSaveTerritory stored procedure will either insert or update a territory, 
using the TerritoryID as the key to determine whether the territory is already present. 

Calling either of these stored procedures requires setting up parameters. Parameter objects 
have a number of properties, the most important of which are listed in Table 8-4. 



Table 8-4 : Parameter Object Properties  
Property Description 
DbType  The type of the parameter, specific to the 

.NET data provider. 
Direction  One of an enumerated type, can be Input (the 

default), Output, InputOutput, or 
ReturnValue. There can be a single 
ReturnValue for any stored procedure, and for 
SQL Server, the ReturnValue is always an int.

ParameterName  The name of the parameter. Note that unlike 
in ADO, the default (and as far as I can tell, 
the only behavior) is the requirement that 
parameter names exactly match the name of 
the parameter within the SQL code or stored 
procedure. 

Size  The size, in bytes, of the data within the 
parameter. If this property is omitted, oversize 
strings are truncated at the maximum value. If 
Size is specified and the size exceeds the 
allowed size for the parameter, an exception 
occurs. 

SqlDbType  The SQL type, linked to DbType. If one 
changes, the other will change appropriately. 
Generally, you should set only one property 
or the other. 

Value  Gets or sets the value of the parameter. For 
Input or InputOutput parameters, it's 
important to set the Value property before 
executing the command. 

Listing 8-8 shows the code-behind file SimpleSPActionQueries.aspx.cs. This code creates the 
appropriate parameters to call the spSaveTerritory and spDeleteTerritory stored procedures. 

Listing 8-8 SimpleSPActionQueries.aspx.cs code-behind file demonstrating how to call a 
stored procedure with parameters  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Data.SqlClient; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace SimpleSPActionQueries 
{ 



    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected System.Web.UI.WebControls.Button Save; 
        protected System.Web.UI.WebControls.Button Delete; 
        protected System.Web.UI.WebControls.Label Label1; 
     
        public WebForm1() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here 
        } 
 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
        } 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {   
            this.Save.Click += new System.EventHandler(this.Save_Click); 
            this.Delete.Click += new System.EventHandler(this.Delete_Click)
; 
            this.Load += new System.EventHandler(this.Page_Load); 
 
        } 
        #endregion 
 
        private void Save_Click(object sender, System.EventArgs e) 
        { 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlCommand cmd; 
            System.Data.SqlClient.SqlParameter prm; 
 
            cn=new SqlConnection("server=localhost;" + 
                "Integrated Security=SSPI;Initial Catalog=Northwind"); 
            cmd=new SqlCommand("spSaveTerritory",cn); 
            cmd.CommandType=CommandType.StoredProcedure; 
 
            prm=new System.Data.SqlClient.SqlParameter("@ReturnValue",3); 
            prm.Direction=ParameterDirection.ReturnValue; 
            cmd.Parameters.Add(prm); 
 
            cmd.Parameters.Add("@TerritoryID","08724"); 
            cmd.Parameters.Add("@TerritoryDescription","Brick"); 
            cmd.Parameters.Add("@RegionID",3); 
            try 



            { 
                cn.Open(); 
                cmd.ExecuteNonQuery(); 
                Label1.Text="Returned " + 
                    cmd.Parameters["@ReturnValue"].Value.ToString(); 
            } 
            catch ( System.Data.SqlClient.SqlException sqle ) 
            { 
                Label1.Text=sqle.ToString().Replace("\n","<BR>"); 
            } 
            finally 
            { 
                cn.Close(); 
            } 
        } 
        private void Delete_Click(object sender, System.EventArgs e) 
        { 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlCommand cmd; 
 
            cn=new SqlConnection("server=localhost;" + 
                "Integrated Security=SSPI;Initial Catalog=Northwind"); 
            cmd=new SqlCommand("spDeleteTerritory",cn); 
            cmd.CommandType=CommandType.StoredProcedure; 
 
            cmd.Parameters.Add("@TerritoryID","08724"); 
            try 
            { 
                cn.Open(); 
                cmd.ExecuteNonQuery(); 
                Label1.Text="Delete Successful"; 
            } 
            catch ( System.Data.SqlClient.SqlException sqle ) 
            { 
                Label1.Text=sqle.ToString().Replace("\n","<BR>"); 
            } 
            finally 
            { 
                cn.Close(); 
            } 
        } 
    } 
} 

 
 

The Save_Click method calls the spSaveTerritory stored procedure, and the Delete_Click 
method calls the spDeleteTerritory stored procedure. Both stored procedures use parameters, 
so I'll discuss only the Save_Click method. 

Save_Click first creates a SqlConnection object and a SqlCommand object, as in previous 
examples. Next it creates the parameters. 

Parameters can be created in a number of ways. There are six overloads of the constructor for 
SqlParameter. The IntelliSense within Visual Studio .NET and the .NET Framework 
documentation explain all the variations in some detail. Each of the constructor overloads 
contains some combination of arguments to allow you to create a parameter in a convenient 
way. Just as important, if you create a parameter and you need to set additional properties on 



it, you can do so. For example, to create the parameter to handle the return value from the 
stored procedure, I use the following code: 

prm=new System.Data.SqlClient.SqlParameter("@ReturnValue",3); 
prm.Direction=ParameterDirection.ReturnValue; 
cmd.Parameters.Add(prm); 

As it happens, no convenient constructor would cleanly allow me to specify the name of the 
parameter, @ReturnValue in this example; the actual value, 3; and the direction of the 
parameter, ParameterDirection.ReturnValue. I selected the next most convenient constructor, 
and from there set the Direction property, since the default was not correct in this case. Notice 
that I don't set a data type in this example, nor in any other examples in this chapter. Because 
the .NET Framework can identify the type of the value passed in, it's not required that the 
type be explicitly declared. Once the parameter is constructed, I call Add on the Parameters 
collection of the SqlCommand object. 

The remaining parameters are added using the follow code: 

cmd.Parameters.Add("@TerritoryID","08724"); 
cmd.Parameters.Add("@TerritoryDescription","Brick"); 
cmd.Parameters.Add("@RegionID",3); 

The SqlParameter constructor shown earlier added the @ReturnValue parameter to the 
Parameters collection. In this code, I call the Add method of the Parameters collection with 
the parameter name and parameter value for the remaining three parameters. 

 Note Remember that unlike in ADO, in ADO.NET the name of the parameter must match 
exactly the name in the stored procedure. In the case of SQL Server stored procedures, 
this includes the leading at symbol (@) required for variables. In ADO, the names of the 
parameters didn't matter, by default. The order in which parameters were added to the 
Parameters collection determined which parameter object referred to which parameter, 
and the parameter name was used only to retrieve output parameters. 

Once all the parameters are set, I call ExecuteNonQuery on the SqlCommand object. After 
successful execution, I retrieve the return code, as shown here: 

Label1.Text="Returned " + 
    cmd.Parameters["@ReturnValue"].Value.ToString(); 

I access the correct parameter by indexing into the Parameters collection using the name of 
the parameter I want to retrieve. Note that the following syntax is incorrect: 

Label1.Text="Returned " + 
    cmd.Parameters["@ReturnValue"].ToString(); 

This code would return the literal '@ReturnValue' rather than the value-a 1 if the record is 
inserted, and a 0 if the record is updated. In many areas of the .NET Framework, qualifying an 
object with .Value will probably return the value you're after, rather than some representation 
of the name of the object. 

I use the finally section of the exception handling structure to ensure that the connection is 
closed. In a try/catch/finally block, the code in the try block is executed in its entirety, or up to 



the point where the exception occurs. The catch block is executed if the exception is the 
correct type (as specified in the predicate of the catch block), and the finally block is always 
executed, making it an ideal place to clean up expensive resources, such as database 
connections. 

SqlClient vs. OleDb Classes 

The examples at the beginning of this chapter used a set of classes in the OleDb namespace to 
access data, and the stored procedure examples used classes in the SqlClient namespace. 
What's the difference? Plenty. 

The OleDb classes are the more generic of the classes. You can hit any OLE DB data source, 
including Microsoft SQL Server, using these classes. They offer acceptable performance. It's 
difficult to split out database-only performance from the overall performance gains in 
ASP.NET over ASP. 

The SqlClient classes parallel, for the most part, the OleDb classes, but are for use exclusively 
with Microsoft SQL Server. The SqlDataReader class uses SQL Server's native data-transfer 
format to read data directly from the database connection. I haven't done speed testing 
comparing the OleDb classes with the SqlClient classes, but in general, the SqlClient classes 
seem to perform better. 

So how do you decide which family of classes to use? First, if you always use Microsoft SQL 
Server 7.0 or later as a back-end database, your choice is easy: use the SqlClient classes. The 
SqlClient classes, because they go through fewer layers, will virtually always outperform the 
OleDb classes. 

If, on the other hand, you sometimes use Oracle or Jet (Microsoft Access) databases, you 
must use the OleDb classes, at least for any non-Microsoft SQL Server data sources. 
Although you might expect that any database access using any OLE DB data source would be 
possible, that's not the case. Specifically, the OleDb classes do not support access to the OLE 
DB provider for Open Database Connectivity (ODBC). However, there is a separate ODBC 
.NET data provider (mentioned earlier in this chapter) in early beta testing as I'm writing this 
chapter.  

 
What About a Wrapper Class? 

My natural inclination when presented with a situation like the choice between OleDb and 
SqlClient classes is to write a wrapper class to allow my program to decide at runtime which 
of the sets of classes to use. There are several problems to be overcome if you want to do this. 
First, the .NET Framework doesn't support multiple inheritance. Just as important, both the 
OleDb and SqlClient classes are sealed, meaning that you can't inherit from them. 

An alternative would be to use composition, creating a class that will potentially contain an 
instance of either of the appropriate classes, and then decide at runtime which class to use. 
One problem with this solution is that the data types supported by each class are not exactly 
the same. In virtually all cases, it's possible to map the types to a standard set of types. 



A second problem is that there are lots of classes to wrap up in a standard set of classes. The 
sets of classes are mostly identical, but not exactly. For example, OleDbCommand has a 
Dispose method, and SqlCommand does not. While the differences are small, wrapping them 
all up would take some time. 

 
 

Generating XML from Data 

One feature of the .NET Framework that expands the collection of data sources is the XML 
classes. Listing 8-9 shows the code required to create an XML file based on the results of 
query to a database. This code queries the Northwind database for all the information in the 
Territories table and then outputs the information as XML to a file named Territories.xml.  

Listing 8-9 SimpleXML.FileSave.aspx.cs, used to write an XML file from the Territories 
table in the Northwind database  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.IO; 
using System.Data; 
using System.Data.SqlClient; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
namespace SimpleXML 
{ 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        public string xmlStr; 
        public WebForm1() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlDataAdapter da; 
            System.Data.DataSet ds; 
            System.IO.StreamWriter sr; 
 
            cn=new SqlConnection("server=localhost;" + 
                "Integrated Security=SSPI;Initial Catalog=Northwind"); 
            da=new SqlDataAdapter("SELECT * FROM Territories",cn); 
            try 
            { 
                cn.Open(); 



                ds = new System.Data.DataSet(); 
                da.Fill(ds,"Territories"); 
                xmlStr=ds.GetXml(); 
 
                FileStream fs = new FileStream( 
                    "territories.xml", FileMode.OpenOrCreate); 
                fs.SetLength(0); 
 
                sr=new StreamWriter(fs); 
                sr.Write(xmlStr); 
                sr.Close(); 
            } 
            catch (  System.Exception sqle ) 
            { 
                sqle.ToString().Replace("\n","<BR>"); 
            } 
            finally 
            { 
                cn.Close(); 
            } 
        } 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
        } 
 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {     
            this.Load += new System.EventHandler(this.Page_Load); 
 
        } 
        #endregion 
    } 
} 

 
 

All the work of this page is done in the Page_Load method. The SqlDataSet object provides a 
GetXml method that returns a string containing the XML for the data in the data set. To create 
a SqlDataSet object, I use the SqlDataAdapter class that acts as a bridge between the 
underlying SQL Server database and a SqlDataSet. The Fill method of the SqlDataAdapter 
actually fills the SqlDataSet. 

Once I have a SqlDataSet, I call GetXml and save the returned value in a string variable 
named xmlStr. Notice that I've added the System.IO namespace to the using clauses. 
ASP.NET applications don't normally use this namespace; however, it's required to write 
files. The FileStream class provides access to files. After the FileStream object is created for 
the XML file, I create a new StreamWriter object, passing in the FileStream object. If you're 
looking through the class hierarchy, you might be tempted to use the TextWriter class, but you 



can't, because TextWriter is an abstract class that can't be directly instantiated. I call the Write 
method on the StreamWriter object and pass in the XML string. Once the Write method 
completes, I close the StreamWriter object. The finally clause closes the database connection. 

The XML file will be written relative to the System32 directory if the path passed in isn't an 
absolute path. This is a bit of a surprise, but when you think about it, it makes sense that the 
current working directory of the ASP.NET process is the System32 directory.  

Figure 8-6 shows the Territories XML file displayed in Internet Explorer. 

 
Figure 8-6 : The Territories table from Northwind saved in an XML file by 
SimpleXML.FileSave.aspx.cs  

The ability to read and write XML data using the .NET Framework classes opens up a whole 
new world of data access. The .NET Framework has some limitations to the databases it can 
support, in part because of the more limited support for ODBC and the fact that very few 
ODBC data sources have been tested with the ODBC .NET data provider. Because XML is 
quickly becoming the data language of choice, even if you can't directly access a given data 
source through .NET, it's likely that data transfers into and out of the .NET Framework using 
XML can allow your .NET application to interoperate with virtually any database. 

Conclusion 
Data access within ASP.NET is a big step up from data access in ASP. The ADO.NET model 
is more completely thought out, and although it's more complex, it provides an ideal 
environment for the Web developer. The DataReader classes provide fast, scalable access to 
data and are appropriate for virtually all Web data access. Richer, somewhat less scalable 
classes are also available for times when you need them. The lack of a cursor library will be a 
difficult transition for some developers. However, most developers never really understood 
the implications of cursor location, and often made less than perfect choices anyway. This is 
just a brief introduction to using ADO.NET within ASP.NET. ADO.NET is a large topic, and 
certainly several books will be written about it. 

In Chapter 9, we'll look at making use of all that ASP.NET has to offer for data access within 
Web Forms. ASP.NET offers a number of server controls that make displaying data easier 
than you've ever dreamed. 



Chapter 9: Data and ASP.NET Forms 
Overview 
If the only changes to the way ASP.NET developers handled data were the changes to 
ADO.NET, most ASP developers wouldn't be tremendously impressed. Fortunately, 
ASP.NET brings compelling changes to data handling that are visible in the context of 
ASP.NET forms. ASP.NET forms provide developers with additional assistance with one-
way, read-only data binding.  

As with much of the magic offered by ASP.NET, server-side controls are at the heart of the 
data handling improvements. The 'Swiss army knife' of Microsoft Visual Basic 6.0 developers 
is the data grid. A data grid is a component that displays data in a tabular form, with rows and 
columns of data, and looks somewhat like a spreadsheet. For better or worse, a data grid 
drives many Visual Basic 6.0 user interfaces. ASP.NET doesn't disappoint in maintaining this 
approach, providing a data grid that takes full advantage of the data binding in ASP.NET. 
While providing much of the functionality of a traditional data-bound grid, the ASP.NET data 
grid acts much like a Web interface, making it somewhat less convenient for the user but 
consistent with the relatively efficient use of bandwidth that Web applications are known for. 

In addition, there are other server controls that are somewhat less convenient to use but much 
more flexible. These controls allow the developer to create a template for the user interface 
and let the framework handle navigating the recordset. To fully understand the improvements 
involved with ASP.NET, let's first review how ASP handled access to data. 

Accessing Data Using ASP Forms 
You might have noticed a certain fairly consistent pattern when accessing data in Active 
Server Pages (ASP). This pattern is similar to the examples in Chapter 8. First a recordset is 
created, and then code something like the following is written within the ASP file: 

<% 
    while rs.EOF <> True 
%> 
        <TR bgcolor="#ffffc3"> 
            <TD> 
                <%=rs("Name")%> 
            </TD> 
            <TD align="right"> 
                <%=rs("Cost")%> 
            </TD> 
        </TR> 
<% 
    rs.MoveNext 
    Wend 
%> 

This kind of code poses a couple of possible problems. First and foremost, the HTML code 
developed by the user interface designer is all mixed up with the code developed by the 
database designer. If the same person is doing both jobs, as is common on smaller sites, this 
overlap isn't a great handicap. However, when the application design task is divided between 



interface designers using HTML and database designers using Microsoft Visual Basic 
Scripting Edition (VBScript), difficulties often result. For example, during the development of 
a large application, it's possible that the user interface and the database design can be in flux 
at the same time. A source code tracking tool can help minimize this conflict, but such a tool 
could delay one developer while the other is doing work on a single file with both types of 
code inside. 

A second problem is just plain silly, but I've caused it myself more times than I care to count. 
During the initial development of a large project, perhaps once a week, rather than following 
the pattern shown earlier, I write code something like this: 

<% 
    while rs.EOF <> True 
%> 
        <TR bgcolor="#ffffc3"> 
            <TD> 
                <%=rs("Name")%> 
            </TD> 
            <TD align="right"> 
                <%=rs("Cost")%> 
            </TD> 
        </TR> 
<% 
    Wend 
%> 

The difference between this snippet of code and the previous one is subtle and will be obvious 
only when you run the page: it is, of course, the lack of code to move to the next record. This 
one missing line means that the page will never actually be displayed, because the predicate 
of the while statement (rs.EOF <> True) will always be True and so the program will loop-at 
least until you stop Internet Information Services (IIS) or until the page times out. 

ADO.NET eliminates the problem of forgetting the record navigation statement by having the 
Read method of a DataReader object also navigate to the next record and then return a code 
indicating whether the navigation was successful. Thus, the ASP.NET example from Chapter 
8 (using C#) is as follows: 

<% 
while ( dr.Read() ) 
{ 
%> 
    <TR bgcolor="#ffffc3"> 
        <TD> 
            <%=dr.GetString(0)%> 
        </TD> 
        <TD align="right"> 
            <%=dr.GetDecimal(1).ToString("C")%> 
        </TD> 
    </TR> 
<% 
} 
%> 

In this ASP.NET example, dr.Read actually reads the next record and navigates through the 
DataReader at the same time. This change alone would save me one or two reboots a week. 



 Tip In the preceding code snippet, I use the efficient GetString method of the DataReader. 
There are many different Get methods to obtain the variable types supported. An 
alternative is to use syntax such as dr['FieldName'] or 
dr.GetBoolean(dr.GetOrdinal('BoolFieldName')). The problem with the dr['FieldName'] 
syntax is that the returned value is an object and so must be cast to the correct type. In 
this example, I know the field ordinals already, and so by calling GetString, I save a field 
name lookup. 

Accessing Data Using ASP.NET Forms 
In this chapter and in Chapter 10, we'll work through an example involving a system to 
distribute golfing articles. I do a great deal of work for the Golf Society of the U.S. and its 
publication, Player magazine. One of the things that we have long wanted to do is find 
additional ways to provide content to our syndication partners. Currently, if our partners want 
our articles, they link to a virtual directory on our Web site. The virtual directories look like 
the syndication partner's Web site, but if the partner changes the look and feel of their site, we 
need to change our site as well. 

One solution to this problem is to use an XML Web service. (XML Web services are 
discussed in more detail in Chapter 10.) This way, syndication partners can use any Simple 
Object Access Protocol (SOAP)-compliant client to connect to the XML Web service and 
then request articles at their convenience. Once the XML Web service is in place, several 
other types of services could be provided. For example, many syndication partners might want 
to report on the latest golf tournament scores. An XML Web service is the perfect way to 
provide that content in a way that can be massaged by the syndication partners. 

To support such an XML Web service, in this chapter we'll use a small database named 
GolfArticles. In addition to the articles, the GolfArticles database will contain customer 
information that will indicate whether the user has access to the article in question. The 
database can be found on the companion CD. 

The DataGrid Server Control 
The ASP.NET DataGrid server control is a reasonably flexible control that allows you to 
create grids to display, edit, and delete rows of data. Figure 9-1 shows a simple grid for 
displaying some of the Customer table data. 

In addition to the data columns (CustomerID, CompanyName, UserName, Password, and 
DateEntered), there are two additional columns. The first column contains an Edit link for 
each row, and the second column contains a Delete link for each row. In a traditional Visual 
Basic 6.0 data-bound grid, you'd generally just navigate to the row in question and type away. 
The Edit and Delete links are used to place a single row in edit mode and delete a single row. 
When you click on the Edit link in one of the rows, the data grid changes the row to edit 
mode, as shown in Figure 9-2.  



 
Figure 9-1 : The page produced by GridTest.aspx, showing a simple ASP.NET data grid  

 
Figure 9-2 : GridTest.aspx, showing a row in edit mode  

You can now make changes to all the bound column entries in this row, except the 
CustomerID and DateEntered columns, which I've declared as read-only. 

Still less than satisfying, visually, in this example are the Edit, Delete, Update, and Cancel 
links. Let's look at this page in design mode in Visual Studio .NET, and see what we can do to 
improve it it. Figure 9-3 shows GridTest.aspx in Visual Studio .NET.  

 
Figure 9-3 : GridTest.aspx in design mode in Visual Studio .NET  

Modifying a Data Grid Using the Visual Studio .NET Designer 



The DataGrid server control has literally hundreds of properties, some of which are visible in 
the Properties window in the lower right in Figure 9-3. You can certainly adjust these 
properties using just the Properties window. However, several tools are available that can help 
you modify the look and feel of the data grid. If you right-click on the data grid in the 
designer, you'll see a shortcut menu containing a number of options; the two most interesting 
options are Auto Format and Property Builder. 

Figure 9-4 shows the Auto Format dialog box. The Auto Format dialog box allows the 
developer to change literally dozens of options by selecting one of the predefined color 
schemes. The ItemStyle, AlternatingItemStyle, and EditItemStyle properties each include many 
settings to control color, fonts, borders and cascading style sheets. Selecting a scheme 
changes all these styles at once. 

 
Figure 9-4 : The Visual Studio .NET Auto Format dialog box  

The other significant tool to assist the developer in creating a data grid is the Property Builder, 
shown in Figure 9-5. The Property Builder dialog box can be used to create individual 
columns, customizing the header text, the data field that will be used to fill the column, and 
the format of the header or items columns. I used this dialog box to center the text in all 
headers and in the Customer ID data column.  

 
Figure 9-5 : The Visual Studio .NET Property Builder for data grid components  

It's not obvious from this dialog box how to replace the Edit, Update, and Cancel links with 
images. The less than obvious solution is to include an image link in the Edit Text box of the 
Property Builder dialog box. For example, changing the Edit link to <IMG SRC=Edit.jpg> 
replaces the text in the Edit column with an image named Edit.jpg. The resulting page is 



shown in Figure 9-6. The images could be displayed without borders by setting Border=0 in 
the <IMG> tag. Any other enhancements allowed by HTML images can also be added by 
modifying the <IMG> tag.  

 
Figure 9-6 : GridText.aspx, with images replacing the text links  
 Tip An advantage of using the Property Builder to add the <IMG> tags to the EditText 

attribute and the rest of the text attributes is that the Property Builder will properly escape 
the characters not allowed in attributes. For instance, <IMG SRC=Edit.jpg> will be 
replaced by &lt;IMG SRC=Edit..JPG&gt;. 

 Note The small images added to Figure 9-6 are intended simply as working examples to 
demonstrate that you can add images to data grids. If you're no better than me at 
creating artistic images, do what I do: hire a skilled graphic designer to create the 
images you use in your production applications. 

The bar on the left side of the Property Builder dialog box includes a Paging option. Figure 9-
7 shows that section of the dialog box with the paging options that can be set for the data grid. 

On this page, you can specify how and whether paging will function. You can allow paging or 
allow custom paging, and you can specify whether page numbers should be used to allow 
page selection or whether you want to show previous and next links to allow users to navigate 
one page at a time. You can also set the number of records allowed. If you elect to allow 
paging and don't request custom paging, the DataGrid control takes care of most of the dirty 
work of paging.  

 
Figure 9-7 : The Paging section of the Visual Studio .NET Property Builder dialog box  

The final GridText.aspx file is shown in Listing 9-1.  



Listing 9-1 GridTest.aspx, the source file describing the data grid shown in Figure 9-6  
 
<%@ Page Language="vb" AutoEventWireup="false"  
Codebehind="GridTest.aspx.vb"  
Inherits="Chapter09_Grid.WebForm1"%> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML> 
    <HEAD> 
        <title></title> 
        <meta content="Microsoft Visual Studio.NET 7.0" name="GENERATOR"> 
        <meta content="Visual Basic 7.0" name="CODE_LANGUAGE"> 
        <meta content="JavaScript" name="vs_defaultClientScript"> 
        <meta content="http://schemas.microsoft.com/intellisense/ie5"  
            name="vs_targetSchema"> 
    </HEAD> 
    <body> 
        <form id="Form1" method="post" runat="server"> 
            <asp:datagrid id="DataGrid1"  
                runat="server"  
                Font-Names="Verdana,Arial"  
                AllowPaging="True"  
                BorderStyle="None"  
                BorderWidth="1px"  
                BorderColor="#3366CC"  
                BackColor="White"  
                CellPadding="4"  
                AllowSorting="True"  
                OnDeleteCommand="OnDelete" 
                DataKeyField="CustomerID"  
                OnUpdateCommand="OnUpdate"  
                OnEditCommand="OnEdit"  
                AutoGenerateColumns="False"  
                OnCancelCommand="OnCancel"> 
                <FooterStyle  
                    ForeColor="#003399"  
                    BackColor="#99CCCC"> 
                </FooterStyle> 
                <HeaderStyle Font-Bold="True"  
                    ForeColor="#CCCCFF" 
                    BackColor="#003399"> 
                </HeaderStyle> 
                <PagerStyle NextPageText="Next"  
                    PrevPageText="Previous"  
                    HorizontalAlign="Left"  
                    ForeColor="#003399"  
                    BackColor="#99CCCC"  
                    Mode="NumericPages"> 
                </PagerStyle> 
                <SelectedItemStyle Font-Bold="True"  
                    ForeColor="#CCFF99"  
                    BackColor="#009999"> 
                </SelectedItemStyle> 
                <EditItemStyle ForeColor="Yellow"  
                    BackColor="#99CCCC"> 
                </EditItemStyle> 
                <ItemStyle ForeColor="#003399"  
                    BackColor="White"> 
                </ItemStyle> 
                <Columns> 
                    <asp:EditCommandColumn  
                        ButtonType="LinkButton"  



                        UpdateText="&lt;img src=Update.jpg&gt;"  
                        CancelText="&lt;img src=Cancel.jpg&gt;"  
                        EditText="&lt;IMG src=Edit.jpg&gt;"> 
                    </asp:EditCommandColumn> 
                    <asp:ButtonColumn  
                        Text="&lt;IMG SRC=Delete.JPG&gt;"  
                        CommandName="Delete"> 
                        <HeaderStyle HorizontalAlign="Center"> 
                        </HeaderStyle> 
                    </asp:ButtonColumn> 
                    <asp:BoundColumn  
                        DataField="CustomerID"  
                        ReadOnly="True"  
                        HeaderText="Customer ID"> 
                        <HeaderStyle HorizontalAlign="Center"> 
                        </HeaderStyle> 
                        <ItemStyle HorizontalAlign="Center"> 
                        </ItemStyle> 
                    </asp:BoundColumn> 
                    <asp:BoundColumn  
                        DataField="CompanyName"  
                        HeaderText="Company Name"> 
                        <HeaderStyle HorizontalAlign="Center"> 
                        </HeaderStyle> 
                    </asp:BoundColumn> 
                    <asp:BoundColumn  
                        DataField="UserName"  
                        HeaderText="User Name"> 
                        <HeaderStyle HorizontalAlign="Center"> 
                        </HeaderStyle> 
                        <ItemStyle Width="60px"> 
                        </ItemStyle> 
                    </asp:BoundColumn> 
                    <asp:BoundColumn  
                        DataField="Password"  
                        HeaderText="Password"> 
                        <HeaderStyle HorizontalAlign="Center"> 
                        </HeaderStyle> 
                    </asp:BoundColumn> 
                </Columns> 
            </asp:datagrid> 
        </form> 
    </body> 
</HTML> 

Every element configured in the Auto Format and Property Builder dialog boxes is present in 
the resulting .aspx code. For example, the following lines create the Customer ID column in 
the data grid: 

<asp:BoundColumn  
    DataField="CustomerID"  
    ReadOnly="True"  
    HeaderText="Customer ID"> 
    <HeaderStyle HorizontalAlign="Center"> 
    </HeaderStyle> 
    <ItemStyle HorizontalAlign="Center"> 
    </ItemStyle> 
</asp:BoundColumn> 



Attributes of the <asp:BoundColumn> tag control the appearance of the column. The 
DataField attribute, which is the name of the data field in the data source of the grid, controls 
which field is in the column. The HeaderText attribute allows me to label the column in a 
more user-friendly way. The Customer ID column is read-only, as indicated by the 
ReadOnly='True' attribute/value pair. HeaderStyle and ItemStyle tags control the appearance 
of the header and the individual items. Dozens of attributes can be configured for each of 
these styles; see the MSDN documentation for details. 

There's no easy, point-and-click way within Visual Studio .NET to set the event handlers used 
to control the behavior when the Edit, Update, Delete, and Cancel links or images are clicked. 
The required code is located in the <asp:datagrid> tag, as shown in the last three attributes in 
the following code snippet: 

<asp:datagrid id="DataGrid1"  
    Runat="server"  
    Font-Names="Verdana,Arial"  
    AllowPaging="True"  
    BorderStyle="None"  
    BorderWidth="1px"  
    BorderColor="#3366CC"  
    BackColor="White"  
    CellPadding="4"  
    AllowSorting="True"  
    AutoGenerateColumns="False"  
    DataKeyField="CustomerID"  
    OnDeleteCommand="OnDelete"  
    OnUpdateCommand="OnUpdate"  
    OnEditCommand="OnEdit"  
    OnCancelCommand="OnCancel"> 

This tag contains two other important attributes: AutoGenerateColumns and DataKeyField. If 
AutoGenerateColumns is True, the grid will automatically create columns based on the 
DataSource property of the DataGrid control. This is almost never a good idea, since the 
default value for the HeaderText property will be the column name. For example, although 
Microsoft SQL Server 6.5 and later allow you to use column names with spaces, such as 
'Company Name', using field names with spaces causes all sorts of minor problems when 
you're working with such tables. Using a column name of 'CompanyName' is better for 
internal SQL Server work. The DataKeyField attribute is used to control the unique column in 
the table being displayed by the DataGrid control. When this attribute is set, it's more 
convenient to refer to the record being edited or deleted in the event handlers.  

 
 

Modifying a Data Grid Using Visual Basic .NET 

Listing 9-2 shows the code-behind file for GridTest.aspx, named GridTest.aspx.vb. This code 
handles binding to the GolfArticles database as well as updating and deleting records.  

Listing 9-2 GridText.aspx.vb, the code-behind file for GridTest.aspx  
 
Imports System.Data 
Imports System.Data.SqlClient 



 
Public Class WebForm1 
    Inherits System.Web.UI.Page 
    Protected WithEvents DataGrid1 _  
      As System.Web.UI.WebControls.DataGrid 
    Protected cn As System.Data.SqlClient.SqlConnection 
    Protected da As System.Data.SqlClient.SqlDataAdapter 
 
#Region " Web Form Designer Generated Code " 
 
    ‘This call is required by the Web Form Designer. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
 
    End Sub 
 
    Private Sub Page_Init(ByVal sender As System.Object, _  
    ByVal e As System.EventArgs) Handles MyBase.Init 
        ‘CODEGEN: This method call is required  
        ‘by the Web Form Designer 
        ‘Do not modify it using the code editor. 
        InitializeComponent() 
    End Sub 
 
#End Region 
 
    Private Sub Page_Load(ByVal sender As System.Object, _  
    ByVal e As System.EventArgs) Handles MyBase.Load 
        ‘Put user code to initialize the page here 
        If Me.IsPostBack <> True Then 
            doDataBind() 
        End If 
    End Sub 
 
    Protected Overridable Sub OnDelete( _ 
    ByVal Sender As Object, ByVal e As DataGridCommandEventArgs) 
        Dim dr As DataRow 
        Dim item As String 
        Dim cmd As SqlCommand 
        Me.cn = New SqlConnection("server=localhost;" + _ 
          "Integrated Security=SSPI;Initial Catalog=GolfArticles") 
        Try 
            Me.cn.Open() 
            item = e.Item.Cells(2).Text 
            cmd = New SqlCommand( _  
              "Delete FROM Customer WHERE CustomerID=" + item, cn) 
            cmd.ExecuteNonQuery() 
        Catch eDelete As Exception 
            ‘ Should handle error 
        Finally 
            cn.Close() 
        End Try 
        doDataBind() 
    End Sub 
 
    Protected Overridable Sub OnEdit(ByVal sender As Object, _  
    ByVal e As DataGridCommandEventArgs) 
        DataGrid1.EditItemIndex = e.Item.ItemIndex 
        doDataBind() 
    End Sub  
 



    Protected Overridable Sub OnUpdate( _  
    ByVal sender As Object, _  
    ByVal e As DataGridCommandEventArgs) 
        Dim UserName As String 
        Dim password As String 
        Dim companyName As String 
        Dim CustomerID As String 
 
        companyName = Request.Form.Item(1).ToString() 
        UserName = Request.Form.Item(2).ToString() 
        password = Request.Form.Item(3).ToString() 
 
        Dim cmd As SqlCommand 
        Me.cn = New SqlConnection("server=localhost;" + _ 
          "Integrated Security=SSPI;Initial Catalog=GolfArticles") 
        Try 
            Me.cn.Open() 
            CustomerID = e.Item.Cells(2).Text 
 
            cmd = New SqlCommand( _  
              "UPDATE Customer SET CompanyName=‘" + _  
              companyName + _ 
              "‘, UserName=‘" + UserName + _  
              "‘, Password=‘" + password + _ 
              "‘ WHERE CustomerID=" + CustomerID, cn) 
            cmd.ExecuteNonQuery() 
        Catch eUpdate As Exception 
            ‘ Should handle error 
        Finally 
            cn.Close() 
        End Try 
        DataGrid1.EditItemIndex = -1 
 
        doDataBind() 
    End Sub 
 
    Protected Overridable Sub OnCancel( _  
    ByVal sender As Object, _  
    ByVal e As DataGridCommandEventArgs) 
        DataGrid1.EditItemIndex = -1 
        doDataBind() 
    End Sub 
 
    ‘ Centralized method to do data binding, when required. 
    Protected Sub doDataBind() 
        Dim ds As DataSet 
        Dim bc As BoundColumn 
        Me.cn = New SqlConnection("server=localhost;" + _ 
            "Integrated Security=SSPI;Initial Catalog=GolfArticles") 
        Me.cn.Open() 
        Me.da = New SqlDataAdapter( _ 
        "Select * from Customer ORDER BY CompanyName", cn) 
        ds = New DataSet("Customers") 
        da.Fill(ds, "Customers") 
        Me.DataGrid1.DataSource = _  
            ds.Tables("Customers").DefaultView 
        bc = New BoundColumn() 
        bc.DataField = "DateEntered" 
        bc.HeaderText = "Date Entered" 
        bc.ReadOnly = True 
        bc.ItemStyle.HorizontalAlign = HorizontalAlign.Center 



        bc.DataFormatString = "{0:d}" 
        Me.DataGrid1.Columns.Add(bc) 
        Me.DataGrid1.DataBind() 
 
    End Sub 
End Class 

 
 

The Page_Load event handler is a simple method. When the page is loaded, if this is the first 
time the page is being loaded (meaning that this is not a postback), the page calls the 
doDataBind method of the class, located toward the end of Listing 9-2. Much of the code in 
doDataBind is involved in the creating of a data source and setting the data source of the 
DataGrid control. The careful observer will notice in Figure 9-7 and Listing 9-1 that the Date 
Entered column is not created in GridTest.aspx. The doDataBind method shows how the 
additional column appears, as follows:  

bc = New BoundColumn() 
bc.DataField = "DateEntered" 
bc.HeaderText = "Date Entered" 
bc.ReadOnly = True 
bc.ItemStyle.HorizontalAlign = HorizontalAlign.Center 
bc.DataFormatString = "{0:d}" 
Me.DataGrid1.Columns.Add(bc) 
Me.DataGrid1.DataBind() 

In this code section, I first create a new instance of a BoundColumn object. I set several 
properties, the most interesting of which is DataFormatString. By default, date fields will be 
displayed in the form mm/dd/yyyy hh:mm:ss XM. In many cases, display of the date with the 
time down to the second is overkill. In this example, I use a format string of {0:d}. The 0 
refers to the first and only value passed into the format string-the date. The d after the colon 
tells the .NET Framework that the date should be displayed in short date format: mm/dd/yyyy. 
The BoundColumn object is one of several different column types that can be added to a 
DataGrid control. When programmatically adding the new column, I also set the ReadOnly 
property to True because the DateEntered field isn't designed to be modified. The complete 
list of column types is shown in Table 9-1. 

Table 9-1 : Data Grid Column Types  
Column Type Description 
BoundColumn  Displays a column bound to a field in the 

DataSource property of the DataGrid control.
ButtonColumn  Displays a command button for each item in 

the column. This column type allows you to 
add a column of custom buttons, such as an 
Add button. 

EditCommandColumn  Displays a column that contains a column like 
the Edit or Delete column in the previous 
examples in this chapter. 

HyperLinkColumn  Displays the contents of each item in the 
column as a hyperlink. This column type 
could be used to link to more information 



Table 9-1 : Data Grid Column Types  
Column Type Description 

about a particular row, for example. 
TemplateColumn  Displays each item in a column following a 

specified template. This column type allows a 
great deal of customization of grid 
appearance. 

Once the column object is created and the required properties are set, the next step is to add 
the column to the Columns collection of the DataGrid object, using the Add method.  

The final step in doDataBind is actually calling the DataBind method of the DataGrid object. 
There's also a DataBind method on the page itself, and if there were more than a single data-
bound control, that method would be called rather than the method on the DataGrid object. 
It's critical that when the page is first loaded (and when IsPostBack is false within the 
Page_Load event) and whenever the data source changes, the data-bound controls are re-
bound. This binding is not a task that the . NET Framework or Visual Studio .NET will do for 
you automatically. You must explicitly bind the data. 

 Note I'm not using the Visual Studio .NET tools to visually generate the data sources and 
connections. There are several advantages to using Visual Studio .NET, including the 
creation of fully type-safe datasets. The disadvantage is that some of the code generated 
is quite bizarre. For example, you might see dozens of lines of SQL code created by 
Visual Studio .NET that are cut off arbitrarily at the right margin, with the rest of the 
SQL code concatenated on subsequent lines, meaning that you can see lines with 
column names or SQL keywords split in half. The resulting string that Visual Studio. 
NET creates contains valid SQL statements when concatenated together, but they're 
impossible to understand or maintain. The examples in the balance of this book won't 
use the visual tools to create data sources and connections. I find the amount of extra 
effort minimal compared with the need to subsequently continue updating the code 
using the visual designer. 

The code-behind page contains event handlers for each of the action buttons. OnDelete, the 
event handler for the Delete button, is shown here: 

Protected Overridable Sub OnDelete( _ 
ByVal Sender As Object, ByVal e As DataGridCommandEventArgs) 
    Dim dr As DataRow 
 
    Dim item As String 
    Dim cmd As SqlCommand 
    Me.cn = New SqlConnection("server=localhost;" + _ 
      "Integrated Security=SSPI;Initial Catalog=GolfArticles") 
    Try 
        Me.cn.Open() 
        item = e.Item.Cells(2).Text 
        cmd = New SqlCommand( _  
          "Delete FROM Customer WHERE CustomerID=" + item, cn) 
        cmd.ExecuteNonQuery() 
    Catch eDelete As Exception 
        ‘ Should handle error 
    Finally 



        cn.Close() 
    End Try 
    doDataBind() 
 
End Sub 

Note that ASP.NET data binding is read-only data binding. To make changes to data will 
require that you write a reasonable amount of code in the code-behind file. 

The first order of business is to get a connection established, just as we did in the Chapter 8 
examples. Next a SqlCommand object is created, passing in a SQL statement. In this case, I 
need to delete the currently selected row in the data grid. A DataGridCommandEventArgs 
object is passed in to OnDelete in the e parameter, that object has a property named Item, and 
Item has a collection named Cells. Cells is a zero-based collection of TableCell objects that 
contains an element for each cell in the selected row. Using this information, I can get the 
CustomerID field for the selected row, which is in the third column, and thus referenced as 
e.Item.Cells(2). I use this value to create the SQL delete statement passed to the SqlCommand 
object. 

 Tip In real-world examples, it might be better to design objects to create connections for 
classes like this that have several different methods that each need to obtain connections. 
Thus, a class might have a GetConnection method that returns a SqlConnection or 
OleDbConnection object, as appropriate. Taking this concept a step further, it's certainly 
reasonable in a larger system to isolate all data access classes into a data access layer 
(DAL). In the COM world, the DAL was often located on a different machine from IIS. 
In ASP.NET, there's less reason to do this, and in general, although I would move toward 
creating a separate DAL in a larger system, I would be reluctant to partition it off onto a 
separate machine or set of machines. Learning how to handle the ASP.NET DAL is an 
evolving art, and no clear 'best practices' have emerged. 

Once the SqlCommand object is set up, I call the ExecuteNonQuery method (indicating that 
the command won't return any records). Finally, I call doDataBind because I want the page to 
get the latest view of the data. This is important because if, for example, I was doing an 
update, I might change the field that the grid is sorted on, thus changing the location in the 
grid. The OnUpdate event procedure follows a pattern similar to OnDelete, passing a SQL 
update command into the SqlCommand constructor rather than the SQL delete command in 
OnDelete.  

 Note I could have just as easily used the OleDbConnection and OleDbCommand objects and 
their related objects. Because I'm working with SQL Server data, using the objects in the 
SqlClient namespace is more appropriate. 

The remaining two event handlers, OnEdit and OnCancel, are quite different from the 
OnDelete and OnUpdate handlers. OnEdit is a short event handler, as shown here: 

Protected Overridable Sub OnEdit(ByVal sender As Object, _  
ByVal e As DataGridCommandEventArgs) 
    DataGrid1.EditItemIndex = e.Item.ItemIndex 
    doDataBind() 
End Sub  



Here I set the EditItemIndex property of the DataGrid object to the ItemIndex property of the 
Item property of the DataGridCommandEventArgs object passed into the event handler. 
Finally, I call doDataBind. OnCancel is designed to cancel edit mode, and the event handler 
is identical, except that EditItemIndex is set to -1, to indicate that no item is currently selected. 
OnUpdate also sets EditItemIndex to -1 when it has finished the update so that no row will be 
displayed in edit mode after an update. 

 Note There's one problem with the code in OnUpdate. Can you see it? When I create the SQL 
string for the update command, I properly enclose strings passed into the UPDATE 
statement in single quotation marks. But what happens if one of the strings has a single 
quotation mark embedded in it-for example, as in a company name such as 'O'Reilly's 
Golf'? These internal single quotation marks will cause an error because SQL Server 
will think that the company name ends after the first 'O' and won't be able to parse the 
rest. One solution would be to replace each single quotation mark character with two 
single quotation marks, which SQL Server interprets as a single quote character 
embedded within the string. A better solution is to use parameters; the next example will 
use a stored procedure and parameters. 

The Repeater Server Control 
The DataGrid control is certainly a convenient control to use for displaying the results of a 
search or displaying simple records. However, DataGrid has some deficiencies as an editing 
tool. First and foremost, notice the difference in the overall width of the data grids shown in 
Figure 9-1 and Figure 9-2. This difference is a bit of a problem when you're working with the 
number of fields in the example DataGrid, but it would be a far worse problem if there were 
many more fields.  

The second deficiency is the lack of easy control over how the editing takes place. One 
solution to this problem is to use TemplateColumn objects to describe what the column should 
look like when it's being viewed and when it's being edited. Using a TemplateColumn object 
and setting the EditItemTemplate property is a reasonable approach when perhaps only one or 
two columns in a record are to be edited.  

The Customer table that we've been working with contains both of these deficiencies. First, 
the Customer table includes date columns and an e-mail column. These columns require 
special validation-in the case of the ContractEnds field, a check for a valid date, and in the 
case of the ContactEMail field, a check for a plausible e-mail address. Next, the Customer 
table has quite a few more columns than could be conveniently displayed one per column 
across the page. Listing 9-3 shows the SQL statement to create the full Customer table. 

Listing 9-3 SQL statement to create the Customer table  
 
CREATE TABLE [dbo].[Customer] ( 
    [CustomerID] [int] IDENTITY (1, 1) NOT NULL , 
    [CompanyName] [nvarchar] (50) NOT NULL , 
    [Address] [nvarchar] (50) NULL , 
    [City] [nvarchar] (50) NULL , 
    [State] [nvarchar] (10) NULL , 
    [PostalCode] [nvarchar] (20) NULL , 
    [ContactFirstName] [nvarchar] (50) NULL , 
    [ContactLastName] [nvarchar] (50) NULL , 



    [ContactEMail] [nvarchar] (128) NULL , 
    [ContractEnds] [datetime] NOT NULL , 
    [ContractLevel] [int] NOT NULL , 
    [UserName] [nvarchar] (50) NULL , 
    [Password] [nvarchar] (50) NULL , 
    [DateEntered] [datetime] NOT NULL , 
    [DateModified] [datetime] NULL  
) ON [PRIMARY] 

 
 

Even if I let the database maintain the DateEntered and DateModified fields, there are still a 
lot of fields to maintain. Just viewing the fields from a grid would be problematic. 
Fortunately, other alternatives are available. Figure 9-8 shows a different representation 
created using a different server control, the Repeater control. 

 
Figure 9-8 : A different way to look at the Customer table data, using a Repeater control  

There's clearly a great deal more information available on this listing page than in the 
example shown in Figure 9-1. Every bit of maintainable information (all the columns in the 
table, except the automatically maintained date fields) is visible in this view. I've modified the 
font of the e-mail addresses, since the example addresses tended to be much longer than the 
actual contact names displayed just above in the same column. The first and second columns 
contain many different fields, displayed in a convenient way. For example, the 
CompanyName and its associated address information is formatted exactly as you would 
normally want to see it. While this flexibility comes at the expense of a little more work than 
the DataGrid control, the advantage is that you have total control over the appearance. Just as 
important, if you work with HTML interface designers, they might be a bit more comfortable 
with the Repeater control than the DataGrid control.  

Repeater Control Basics 

The Repeater control acts in many ways like the DataGrid control, but it gives you greater 
flexibility at the individual column level. There are no restrictions on how many or how few 
columns you display, and technically, you don't have to use a tabular view at all. The 
information displayed for each record bound to the Repeater control could be presented 



without any formatting or could be formatted using only <BR> and <P> tags. Most examples 
of the Repeater control, including the example shown here, do in fact use HTML tables to 
display their data. The Repeater control doesn't offer some of the conveniences of the 
DataGrid control, such as paging. Repeater does offer some assistance with events raised 
within the control; however, I won't make use of that support in this example. 

 Tip The DataList control is similar to the Repeater control. The DataList control adds a neat 
feature: the ability to render multicolumn representations of data. You can set the 
RepeatColumns, RepeatDirection, and RepeatLayout properties to control how multiple 
columns are displayed. The RepeatLayout property controls whether the control renders 
the data in tables or by using a flow layout without tables. 

The Repeater control supports five templates. Each of the templates specifies how a certain 
portion of the data fed to the Repeater control should be formatted. The templates are 
described in Table 9-2. 

Table 9-2 : Templates Supported by the Repeater Control  
Template Description 
ItemTemplate  Elements that are rendered once for each 

element in the data source. Both Web server 
controls and HTML server controls can be 
added to this template. 

AlternatingItemTemplate  If specified, every other item is rendered 
using this template rather than ItemTemplate. 
This template can be used, for example, to 
obtain a gray bar effect, with every other item 
using one of two color schemes. (Figure 9-8 
uses AlternatingItemTemplate to render one 
row on a white background, the next on a 
light blue background.) 

HeaderTemplate  Rendered once, this template often contains 
code to render the start of a table and the 
header of a table. Note that because the 
closing element of the table will not be part of 
this tag, designing a Repeater control requires 
using the HTML view in Visual Studio .NET. 

FooterTemplate  The bookend for the other side of the 
Repeater control. Tags opened but not closed 
in HeaderTemplate should be closed here. 

SeparatorTemplate  This template is used to render some text 
between items. If, for example, the Repeater 
control will be used to render some complex 
HTML between each row, placing that 
complex code in SeparatorTemplate means 
that it will appear only once. 



Like DataGrid, the Repeater control also has a DataSource property. It's important to set this 
property and ensure that it can be read, because without data, the Repeater code won't be 
rendered. 

 Tip Although doing so is not required, it's often helpful to create the Repeater control initially 
with only the HeaderTemplate, ItemTemplate, and FooterTemplate templates defined. 
Once you're satisfied with the display, especially ItemTemplate, you can copy the 
ItemTemplate rendering code into the AlternatingItemTemplate. Otherwise, you'll have to 
debug both ItemTemplate and AlternateItemTemplate at the same time, making changes 
in both simultaneously, which can be prone to errors.  

The code for RepeaterTest.aspx is shown in Listing 9-4.  

Listing 9-4 RepeaterTest.aspx, showing a more complicated view of the Customer table  
 
<%@ Page language="c#"  
Codebehind="RepeaterTest.aspx.cs"  
AutoEventWireup="false"  
Inherits="Chapter09_Template.WebForm1" %> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML> 
    <HEAD> 
        <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0"> 
        <meta name="CODE_LANGUAGE" Content="C#"> 
        <meta name="vs_defaultClientScript"  
          content="JavaScript (ECMAScript)"> 
        <meta name="vs_targetSchema"  
          content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD>\ 
    <body> 
    <form id="Form1" method="post" runat="server"> 
        <asp:Repeater id="Repeater1" runat="server"> 
            <HeaderTemplate> 
                <table width="640" bgcolor="#0033ff"> 
                    <tr bgcolor="#0033ff"> 
                        <td align="center"> 
                            <font  
                                face="Verdana,Arial"  
                                color="#ffff99"> 
                                <b>Customer</b> 
                            </font> 
                        </td> 
                        <td align="center"> 
                            <font  
                                face="Verdana,Arial"  
                                color="#ffff99"> 
                                <b>Contact Name 
                                <br> 
                                EMail</b></font> 
                        </td> 
                        <td align="center"> 
                            <font  
                                face="Verdana,Arial"  
                                color="#ffff99"> 
                                <b>User 
                                <BR> 
                                Name</b></font> 
                        </td> 



                        <td align="center"> 
                            <font  
                                face="Verdana,Arial"  
                                color="#ffff99"> 
                                <b>Password</b> 
                            </font> 
                        </td> 
                        <td align="center"> 
                            <font  
                                face="Verdana,Arial"  
                                color="#ffff99"> 
                                <b>Contract 
                                <br> 
                                Ends</b></font> 
                        </td> 
                    </tr> 
            </HeaderTemplate> 
            <ItemTemplate> 
                <tr bgcolor="#ffffff" width="200"> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <a href=‘EditCustomer.aspx?CustomerID= 
                                <%# DataBinder.Eval(Container.DataItem,  
                                "CustomerID") %>‘> 
                                <%# DataBinder.Eval(Container.DataItem,  
                                "CompanyName") %> 
                            </a> 
                            <br> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "Address") %> 
                            <br> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "City") %>, 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "State") %> 
                            &nbsp;&nbsp; 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "PostalCode") %> 
                        </font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "ContactFirstName") %> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "ContactLastName") %> 
                            <br> 
                            <font size="1"> 
                                <%# DataBinder.Eval(Container.DataItem,  
                                "ContactEMail") %> 
                            </font></font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "UserName") %> 
                        </font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  



                            "Password") %> 
                        </font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "ContractEnds","{0:d}") %> 
                        </font> 
                    </td> 
                </tr> 
            </ItemTemplate> 
            <AlternatingItemTemplate> 
                <tr bgcolor="#66ccff"> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <a href=‘EditCustomer.aspx?CustomerID= 
                                <%# DataBinder.Eval(Container.DataItem, 
                                "CustomerID") %>‘> 
                                <%# DataBinder.Eval(Container.DataItem,  
                                "CompanyName") %> 
                            </a> 
                            <br> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "Address") %> 
                            <br> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "City") %>, 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "State") %> 
                            &nbsp;&nbsp; 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "PostalCode") %> 
                        </font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "ContactFirstName") %> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "ContactLastName") %> 
                            <br> 
                            <font size="1"> 
                                <%# DataBinder.Eval(Container.DataItem,  
                                "ContactEMail") %> 
                            </font></font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "UserName") %> 
                        </font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  
                            "Password") %> 
                        </font> 
                    </td> 
                    <td> 
                        <font face="Verdana,Arial"> 
                            <%# DataBinder.Eval(Container.DataItem,  



                            "ContractEnds","{0:d}") %> 
                        </font> 
                    </td> 
                </tr> 
            </AlternatingItemTemplate> 
            <FooterTemplate> 
                <tr> 
                    <td colspan=5 align=center> 
                        <a href="EditCustomer.aspx?CustomerID=0"> 
                        <img src="AddNew.jpg"  
                        Alt="Add New"></a> 
                    </td> 
                </tr> 
                </table> 
            </FooterTemplate> 
        </asp:Repeater> 
        <p> 
        </p> 
        <asp:Label id="Label1" runat="server"></asp:Label> 
    </form> 
    </body> 
</HTML> 

 
 
 Caution Because the Repeater control allows you to specify incomplete HTML within 

individual elements such as a <TABLE> start tag without a nearby, properly nested 
end tag, you may not be able to display a page with a Repeater control in the Visual 
Studio .NET Design view. Because of the way that the Repeater control renders 
when run, the resulting HTML will be correct. You can edit pages with a Repeater 
control in HTML view. The error messages that appear when you try to switch to 
Design view will not always make it obvious what the problem is.  

The code in RepeaterTest.aspx is fairly simple HTML interspersed with ASP.NET tags. 
Different in this example is the method used to bind data to the Repeater control. All data is 
bound using the Eval method of the DataBinder class. All data binding is done within the 
<%# %> delimiters. 

 Note The <%# %> delimiters are used only for data binding. The expression inside these 
delimiters is evaluated whenever DataBind is called. This syntax is different from the 
ASP syntax for displaying the contents of a variable-for example, <%=foo%>. The 
<%= %> delimiters are still supported, but they're not used in data binding. 

The Eval method has two overloads, both of which are used in this example. The syntax for 
the first overload is shown here: 

[Visual Basic.NET] 
Overloads Public Shared Function Eval( _ 
    ByVal container As Object, _ 
    ByVal expression As String _ 
) As Object 
[C#] 
public static object Eval( 
    object container, 
    string expression 
); 



The container parameter is the object reference that the expression is evaluated against. In all 
the uses of Eval in Listing 9-4, container is Container.DataItem. This refers back to the 
DataSource property of the Repeater control. The second parameter, expression, is the field 
name, as it appears in the data source. Spelling does count, and the syntax for the expression 
can be more complex if instead of a DataReader object you're using a DataSet object. For 
example, the syntax could be Tables[0].DefaultView.[0].CompanyName rather than simply 
CompanyName, as DataSet objects can refer to multiple tables. 

The second overload to the Eval method is as follows, with an additional string: 

[Visual Basic.NET] 
Overloads Public Shared Function Eval( _ 
    ByVal container As Object, _ 
    ByVal expression As String, _ 
    ByVal format As String _ 
) As String 
[C#] 
public static string Eval( 
    object container, 
    string expression, 
    string format 
); 

The additional parameter, format, is a standard .NET Framework format string. For example, 
the following code snippet, from Listing 9-4, will use the DataSource property of the 
containing Repeater control, get the ContractEnds field, and format it as a date: 

<%# DataBinder.Eval(Container.DataItem,  
"ContractEnds","{0:d}") %> 

The MSDN documentation contains complete documentation on format strings. 

Listing 9-4 uses all of the templates described in Table 9-2 except SeparatorTemplate. 
ItemTemplate and AlternatingItemTemplate are identical, except for the background color on 
the <tr> tags. HeaderTemplate contains the start tag of the HTML table element as well as a 
row of headers. FooterTemplate contains the row that holds the image to allow you to add a 
new record, as well as the HTML table end tag. RepeaterTest.aspx includes several HTML 
anchor tags to link to another form, named EditCustomer.aspx. More on that form later in this 
chapter, in the section 'Creating Data Entry Pages.' 

 Tip One problem I noticed initially in RepeaterTest.aspx was that Visual Studio .NET was 
reformatting my code in a way that caused problems. For example, an extra space was 
appearing between the first name and the last name. The culprit was the addition of an 
unwanted line break between the binding code for the first name and the last name that 
was somehow causing an additional space in the output. The solution is to choose 
Options on the Tools menu, and in the Options dialog box, navigate to Text Editor and 
then HTML/XML and Format. Then clear the Apply Automatic Formatting: When 
Saving Document and When Switching From Design To HTML/XML View check 
boxes. This is the first project I've worked on in which the automatic formatting caused 
me any pain, but I'll leave it off for now, just to be safe. There are a number of settings 
that can make the text editor easier to use that you should investigate in the Options 
dialog box.  



RepeaterTest.aspx also has a code-behind file, named RepeaterTest.aspx.cs, shown in Listing 
9-5. 

Listing 9-5 RepeaterTest.aspx.cs, the code-behind file for the Repeater class test page  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Data.SqlClient; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace Chapter09_Template 
{ 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected System.Web.UI.WebControls.Repeater Repeater1; 
        protected System.Web.UI.WebControls.Label Label1; 
        protected System.Data.SqlClient.SqlCommand cmd; 
     
        public WebForm1() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            SqlConnection cn = new SqlConnection("server=localhost;" +  
                "Integrated Security=SSPI;Initial Catalog=GolfArticles"); 
            SqlCommand cmd; 
            cmd=new SqlCommand( 
                "Select * from Customer Order By CompanyName",cn); 
            try 
            { 
                cn.Open(); 
                Repeater1.DataSource= 
                    cmd.ExecuteReader( 
                    CommandBehavior.CloseConnection); 
 
                this.DataBind(); 
            } 
            catch (System.Exception eLoad) 
            { 
                Label1.Text=eLoad.Message; 
            } 
        } 
 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 



            // 
            InitializeComponent(); 
        } 
 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {   
            this.Load += new System.EventHandler(this.Page_Load); 
 
        } 
        #endregion 
    } 
} 

 
 

RepeaterTest.aspx.cs has a single method that contains code critical to the operation of the 
Repeater control. In the Page_Load method, the following lines are most important: 

cn.Open(); 
Repeater1.DataSource= 
    cmd.ExecuteReader( 
    CommandBehavior.CloseConnection); 
 
this.DataBind(); 

First I open the previously created connection object. Next I set the DataSource property of 
the Repeater object to the return value from the ExecuteReader method of the SqlCommand 
object. ExecuteReader returns a DataReader object, and because I specify 
CommandBehavior.CloseConnection, the connection will be closed when the data reader is 
closed. Finally, I call DataBind. Once again, without this call, the data won't be bound, and 
nothing will be displayed in the Repeater control. And again, this code won't be added by the 
.NET Framework, nor by Visual Studio .NET. Whenever bound data doesn't appear, checking 
to see that DataBind is actually called (and called at the correct level) is critical.  

 
Using Caching to Improve Performance and Scalability 

One feature of ASP.NET that can improve the performance and scalability of applications 
displaying dynamic data is output caching. Say that you add the following line to an aspx 
page: 

<%@ OutputCache Duration="20" VaryByParam="None" %> 

When the page is requested, rather than actually running the underlying code, the page is 
served up directly from the ASP.NET cache. For pages that are expensive to generate but that 
don't change frequently, output caching can provide a huge performance benefit. 

In the example OutputCache directive above, when the page is requested for the first time, the 
.NET Framework will run whatever code is required to generate the page. Anyone rerunning 



the page within the next 20 seconds (as specified by the Duration attribute) will get the 
cached copy rather than a copy created by rerunning the underlying code. The first client to 
request the page after the 20 seconds have expired will get a newly created copy of the page. 

Often, a page will be called with one or more parameters, and the parameters might change 
the content that is displayed. For that common scenario, the VaryByParam attribute allows 
you to specify a semicolon-delimited list of parameters, or '*' for all parameters. When 
parameters or '*' is specified for VaryByParam, a separate copy of the page is cached for each 
set of parameters specified-or for each set of all parameters, if '*' is specified. 

The same logic can be used to cache a fragment of a page. The OutputCache directive is also 
available for user controls.  

ASP.NET caching works only with ASP.NET Premium edition installed on the server. 

Creating Data Entry Pages 
Although RepeaterTest.aspx provides a more convenient listing of the customers in the 
Customer table, it does nothing to allow editing of that data. I did, however, make the 
customer name and the Add New button in RepeaterTest.aspx hyperlinks. Remember the 
links to EditCustomer.aspx I mentioned in the previous section? Clicking on these links will 
take you to the page shown in Figure 9 9.  

 
Figure 9-9 : The Customer Maintenance page, EditCustomer.aspx, which allows you to edit 
customer records selected from RepeaterTest.aspx  

The page shown in Figure 9-9 will allow you to edit or delete the current customer. It’s not 
designed to enable you to navigate from customer record to customer record, as you might do 
in a traditional Microsoft Access or Visual Basic 6.0 application. However, using a limited 
amount of code, it does offer quite a bit of functionality. For example, let’s say I changed the 
ContractEnds date to 1/32/2003, and removed the at sign (@) from the ContactEmail address. 
Figure 9-10 shows the result. 



 
Figure 9-10 : The Customer Maintenance page, showing invalid input for ContractEnds and 
ContactEmail  

As you can see, the page displays asterisks next to the two fields that contain validation 
errors. The date is clearly invalid, and the e-mail address isn’t valid, since there isn’t an @. 
One thing that is important to note is that this validation took place on the client, and even if 
the client didn’t have JavaScript working on their machine, the server-side part of the 
validation would have caught the errors. Also significant is that fact that each of the fields on 
the page is linked to at least one validation control. The State drop-down list is connected to a 
database table of states, located in the same GolfArticles database as the Customer table. 

Creating the User Interface 

Listing 9-6 shows EditCustomer.aspx, the file that created the pages shown in Figures 9-9 and 
9-10.  

Listing 9-6 EditCustomer.aspx, the file used to create the Customer Maintenance page shown 
in Figures 9-9 and 9-10  
 
<%@ Page Debug="true"  
language="c#"  
Codebehind="EditCustomer.aspx.cs"  
AutoEventWireup="false"  
Inherits="Chapter09_Template.EditCustomer" %> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML> 
    <HEAD> 
        <META http-equiv=Content-Type  
            content="text/html; charset=windows-1252"> 
        <meta content="Microsoft Visual Studio 7.0" name=GENERATOR> 
        <meta content=C# name=CODE_LANGUAGE> 
        <meta content="JavaScript (ECMAScript)"  
            name=vs_defaultClientScript> 
        <meta content=http://schemas.microsoft.com/intellisense/ie5  
            name=vs_targetSchema> 
    </HEAD> 
<body> 
<form id=EditCustomer method=post runat="server"> 
<table width=640> 
    <tr> 
        <td colspan=2 align=middle> 
        <p><font face=Verdana,Arial  
        color=#3300ff size=4> 



        Customer Maintenance 
        </font></p> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        Company Name: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id=CompanyName  
            runat="server"  
            MaxLength="50"  
            Width="250px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id=RequiredFieldValidator2  
            runat="server"  
            ControlToValidate="CompanyName"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        Contact Name (Last, First): 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="ContactLastName"  
            runat="server"  
            MaxLength="50"  
            Width="200px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id="Requiredfieldvalidator7"  
            runat="server"  
            ControlToValidate="ContactLastName"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator>,&nbsp; 
        <asp:TextBox  
            id="ContactFirstName"  
            runat="server"  
            MaxLength="50"  
            Width="200px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id="Requiredfieldvalidator8"  
            runat="server"  
            ControlToValidate="ContactFirstName"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 



        Address: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="Address"  
            runat="server"  
            MaxLength="50"  
            Width="250px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id=RequiredFieldValidator3  
            runat="server"  
            ControlToValidate="Address"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        City, State and Zip: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="City"  
            runat="server"  
            MaxLength="50"  
            Width="200px" 
            ></asp:TextBox> 
        <asp:DropDownList  
            id=ddlState  
            runat="server"> 
        </asp:DropDownList> 
        <asp:TextBox  
            id="PostalCode"  
            runat="server"  
            MaxLength="10"  
            Width="70px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id=RequiredFieldValidator4  
            runat="server" 
            Display="Dynamic"  
            ControlToValidate="City"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        <asp:RequiredFieldValidator  
            id=RequiredFieldValidator5  
            runat="server"  
            Display="Dynamic"  
            ControlToValidate="PostalCode"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        <asp:RegularExpressionValidator  
            id=RegularExpressionValidator1  
            runat="server"  
            ControlToValidate="PostalCode"  
            ErrorMessage="*"  
            ValidationExpression="\d{5}(-\d{4})?"> 



        </asp:RegularExpressionValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        Contract Ends: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="ContractEnds"  
            runat="server"  
            MaxLength="10"  
            Width="70px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id=RequiredFieldValidator1  
            runat="server"  
            ErrorMessage="*"  
            ControlToValidate="ContractEnds"  
            Display="Dynamic"> 
        </asp:RequiredFieldValidator> 
        <asp:CompareValidator  
            ID=CompareValidator1  
            Runat=server  
            ErrorMessage="*"  
            Type=Date  
            Display=Dynamic  
            ControlToValidate="ContractEnds"  
            Operator="DataTypeCheck"> 
        </asp:CompareValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        Contact EMail: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="ContactEmail"  
            runat="server"  
            MaxLength="50"  
            Width="250px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id="Requiredfieldvalidator6"  
            runat="server"  
            ControlToValidate="ContactEMail"  
            ErrorMessage="*"  
            Display="Dynamic"> 
        </asp:RequiredFieldValidator> 
        <asp:RegularExpressionValidator  
            id=RegularExpressionValidator2  
            runat="server"  
            Display="Dynamic"  
            ControlToValidate="ContactEmail"  
            ErrorMessage="*"  
            ValidationExpression= 



            "\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"> 
        </asp:RegularExpressionValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        User Name: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="UserName"  
            runat="server"  
            MaxLength="50"  
            Width="250px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id="Requiredfieldvalidator9"  
            runat="server"  
            ControlToValidate="UserName"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        </td> 
    </tr> 
    <tr> 
        <td width="30%" align=right> 
        <font face="Verdana,Arial" size=2 color="#3300ff"> 
        Password: 
        </font> 
        </td> 
        <td> 
        <asp:TextBox  
            id="Password"  
            runat="server"  
            MaxLength="50"  
            Width="250px" 
            ></asp:TextBox> 
        <asp:RequiredFieldValidator  
            id="Requiredfieldvalidator10"  
            runat="server"  
            ControlToValidate="Password"  
            ErrorMessage="*"> 
        </asp:RequiredFieldValidator> 
        </td> 
    </tr> 
    <tr> 
        <td colspan=2 align=middle> 
        <asp:Button id=BtnSave  
            runat="server"  
            Text="Save"> 
        </asp:Button>&nbsp; 
        <asp:Button id=BtnCancel  
            runat="server"  
            Text="Cancel"  
            CausesValidation="False" > 
        </asp:Button>&nbsp; 
        <asp:Button id=btnDelete  
            runat="server"  
            Text="Delete"  
            Visible="False"  



            CausesValidation="False"> 
        </asp:Button> 
        </td> 
    </tr> 
</table> 
<asp:Label id=Label1 runat="server"  
    ForeColor="Red"  
    Font-Names="Verdana,Arial"> 
</asp:Label></form> 
 
</body> 
</HTML> 

 
 

The general structure of EditCustomers.aspx is an HTML table, with two columns. The left 
column contains the field names, and the right column contains the controls that allow the 
fields to be entered and edited.  

Each of the fields, except the State drop-down list, is hooked up to a RequiredFieldValidator 
control. RequiredFieldValidator, as you recall, is one of the simpler validator controls. The 
only attributes set for most of the RequiredFieldValidator controls are ControlToValidate, 
each set to a different control, and ErrorMessage, in this case, an asterisk. Some of the 
RequiredFieldValidator controls—for example the control associated with the ContractEnds 
text box—also have the Display attribute set to Dynamic. Recall from Chapter 5 that 
validators not set to Display=Dynamic take up space even when they’re not being fired. 
When you have multiple validators on a single control, having those validators set to 
Display=Dynamic indicates that validators that aren’t signaled won’t take up space, meaning 
that when you have two validators on a field, no matter which one is signaled, the error 
message will begin at the same location. 

Several of the controls have RegularExpressionValidator controls associated with them. For 
example, the PostalCode text box uses the following RegularExpressionValidator 
declaration: 

<asp:RegularExpressionValidator  
    id=RegularExpressionValidator1  
    runat="server"  
    ControlToValidate="PostalCode"  
    ErrorMessage="*"  
    ValidationExpression="\d{5}(-\d{4})?"> 
</asp:RegularExpressionValidator> 

The ValidationExpression attribute indicates that there must be five digits, optionally 
followed by a hyphen and four other digits. There’s also a RegularExpressionValidator 
control associated with the ContactEmail field, and that ValidationExpression attribute is 
even more complex. Again, the MSDN documentation covers the regular expression syntax 
fairly completely.  

 
Why Doesn’t EditCustomers.aspx Use Data Binding? 

In Listing 9-6, you’ll see a number of text box controls, including the CompanyName text box 
control, shown here: 



<asp:TextBox  
    id=CompanyName  
    runat="server"  
    MaxLength="50"  
    Width="250px" 
    ></asp:TextBox> 

What seems to be missing is any code to bind data to the controls. This isn’t an accident, and 
ends up being an interesting design decision. When I first began this page, I did use data 
binding to set the text value for the control. This approach worked, but it left me with a couple 
of problems, some obvious, some less so. 

First, having the binding taking place declaratively places details of how the data is bound in 
the .aspx file. This isn’t a showstopper, and in fact RepeaterTest.aspx does have the binding 
code intermixed within the user interface code. The DataGrid object shown in the 
GridTest.aspx example provides some middle ground, in that you actually declare the name of 
the field to be bound in each column, but you don’t have the <%# %> tags that bind code in 
the .aspx file. 

The more compelling problem is what happens when you try to bind to the DataReader object 
and find that there’s no data. How might that happen? Several ways. First, the CustomerID 
property is passed in as a parameter in the URL. A user could bookmark the page, capturing 
the CustomerID value as well. If the user visits the page again and the CustomerID value is no 
longer valid, the error will occur. I might also get to this page without a valid CustomerID 
when I try to add a customer. The +New link at the bottom of the page in Figure 9-8 links to 
EditCustomer.aspx with a CustomerID of 0, indicating that I want to add a new record. 
Manually setting the text box controls within the code-behind file works well, and because 
data binding is read-only anyway, there already needs to be code to handle saving updates that 
deals with each text box in any event.  

 
 

The final type of validator is the CompareValidator control. The ContractEnds field is a date. 
Although I can’t be sure exactly when the date will be—in the past or in the future—I do 
know that it must be a valid date. The CompareValidator control is the answer to this 
problem, with a particular set of attributes specified, as follows: 

<asp:CompareValidator  
    ID=CompareValidator1  
    Runat=server  
    ErrorMessage="*"  
    Type=Date  
    Display=Dynamic  
    ControlToValidate="ContractEnds"  
    Operator="DataTypeCheck"> 
</asp:CompareValidator> 

The significant attributes here are Type=Date, which indicates that the field should contain a 
date; ControlToValidate=“ContractEnds”, which points to the control that should contain the 
date; and Operator=“DataTypeCheck”, which tells the .NET Framework that I’m just 
checking that the correct data type has been entered. 



Finally, several button controls appear toward the bottom of the page. One problem with 
validator controls is what to do when you just want to get out of the page. For example, when 
you click the Cancel button, you certainly don’t want to force the user to enter valid 
information in each of the fields containing validators. The answer is to set the 
CausesValidation attribute of the Cancel button to False. This will disable client and server 
validation, allowing your server-side button click handler to do what it needs to do. In this 
example, the server-side button handler for the Cancel button will simply redirect the user 
back to the RepeaterTest.aspx page. 

Processing Data Entry 

The code-behind file for EditCustomer.aspx, EditCustomer.aspx.cs, is shown in Listing 9-7.  

Listing 9-7 EditCustomer.aspx.cs, the code-behind file for the Customer Maintenance page  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
namespace Chapter09_Template 
{ 
    /// <summary> 
    /// Summary description for EditCustomer. 
    /// </summary> 
    public class EditCustomer : System.Web.UI.Page 
    { 
        protected DropDownList ddlState; 
        protected TextBox CompanyName; 
        protected TextBox Address; 
        protected TextBox City; 
        protected TextBox PostalCode; 
        protected Label Label1; 
        protected TextBox ContractEnds; 
        protected RequiredFieldValidator RequiredFieldValidator1; 
        protected CompareValidator CompareValidator1; 
        protected RequiredFieldValidator RequiredFieldValidator2; 
        protected RequiredFieldValidator RequiredFieldValidator3; 
        protected RequiredFieldValidator RequiredFieldValidator4; 
        protected RequiredFieldValidator RequiredFieldValidator5; 
        protected RegularExpressionValidator RegularExpressionValidator1; 
        protected TextBox ContactEmail; 
        protected RequiredFieldValidator Requiredfieldvalidator6; 
        protected RegularExpressionValidator RegularExpressionValidator2; 
        protected TextBox ContactLastName; 
        protected RequiredFieldValidator Requiredfieldvalidator7; 
        protected TextBox ContactFirstName; 
        protected TextBox UserName; 
        protected TextBox Password; 
        protected RequiredFieldValidator Requiredfieldvalidator8; 
        protected RequiredFieldValidator Requiredfieldvalidator9; 
        protected RequiredFieldValidator Requiredfieldvalidator10; 
        protected Button BtnSave; 



        protected Button BtnCancel; 
        protected Button btnDelete; 
        protected SqlDataReader dr; 
     
        public int CustomerID 
        { 
            get { return (int)ViewState["CustomerID"]; } 
            set { ViewState["CustomerID"]=value; } 
        } 
        public EditCustomer() 
        { 
            Page.Init += new System.EventHandler(Page_Init); 
        } 
        private void doDataBind() 
        { 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlConnection cnState; 
            System.Data.SqlClient.SqlCommand cmd; 
            System.Data.SqlClient.SqlCommand cmdState; 
            cn=new System.Data.SqlClient.SqlConnection( 
                "server=localhost;" +  
                "Integrated Security=SSPI;Initial Catalog=GolfArticles"); 
            cnState=new System.Data.SqlClient.SqlConnection( 
                "server=localhost;" +  
                "Integrated Security=SSPI;Initial Catalog=GolfArticles"); 
            cmd=new System.Data.SqlClient.SqlCommand( 
                "spSelectCustomer",cn); 
            cmd.CommandType=CommandType.StoredProcedure; 
            cmd.Parameters.Add("@CustomerID", 
                Request.QueryString["CustomerID"]); 
            cmdState=new System.Data.SqlClient.SqlCommand( 
                "SELECT StateAbbreviation FROM " +  
                "States ORDER BY StateAbbreviation", 
                cnState); 
            try 
            { 
                cn.Open(); 
                dr=cmd.ExecuteReader( 
                    CommandBehavior.CloseConnection); 
                cnState.Open(); 
                ddlState.DataTextField="StateAbbreviation"; 
                ddlState.DataSource=cmdState.ExecuteReader( 
                    CommandBehavior.CloseConnection); 
                if ( dr.Read() ) 
                { 
                    this.DataBind(); 
                    ddlState.SelectedIndex=ddlState.Items.IndexOf( 
                        ddlState.Items.FindByText(dr.GetString(4))); 
                    CompanyName.Text=(string)dr["CompanyName"]; 
                    Address.Text=(string)dr["Address"]; 
                    City.Text=(string)dr["City"]; 
                    PostalCode.Text=(string)dr["PostalCode"]; 
                    ContractEnds.Text= 
                        ((DateTime)dr["ContractEnds"]).ToShortDateString(); 
                    ContactEmail.Text=(string)dr["ContactEmail"]; 
                    ContactFirstName.Text=(string)dr["ContactFirstName"]; 
                    ContactLastName.Text=(string)dr["ContactLastName"]; 
                    UserName.Text=(string)dr["UserName"]; 
                    Password.Text=(string)dr["Password"]; 
                    // Close data reader, and thus connection. 
                    dr.Close(); 



                } 
                else 
                { 
                    this.DataBind(); 
                } 
            } 
            catch ( System.Exception eLoad) 
            { 
                // Handle it... 
                Label1.Text=eLoad.Message; 
                btnDelete.Visible=false; 
            } 
         
        } 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here 
 
            if ( !(this.IsPostBack) ) 
            { 
                CustomerID=System.Convert.ToInt32( 
                    (string)Request["CustomerID"]); 
                doDataBind(); 
            } 
            if ( CustomerID!=0 ) 
            { 
                btnDelete.Visible=true; 
            } 
            else 
            { 
                btnDelete.Visible=false; 
            } 
 
        } 
        private void Page_Init(object sender, EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
        } 
        #region Web Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {   
            this.BtnSave.Click +=  
                new System.EventHandler(this.BtnSave_Click); 
            this.BtnCancel.Click +=  
                new System.EventHandler(this.BtnCancel_Click); 
            this.btnDelete.Click +=  
                new System.EventHandler(this.btnDelete_Click); 
            this.Load +=  
                new System.EventHandler(this.Page_Load); 
 
        } 
        #endregion 



 
        private void BtnCancel_Click(object sender, System.EventArgs e) 
        { 
            Response.Redirect("RepeaterTest.aspx"); 
        } 
 
        private void BtnSave_Click(object sender, System.EventArgs e) 
        { 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlCommand cmd; 
            System.Data.SqlClient.SqlParameter prm; 
            if ( this.IsValid ) 
            { 
                cn=new System.Data.SqlClient.SqlConnection( 
                    "server=localhost;" +  
                    "Integrated Security=SSPI;Initial Catalog=GolfArticles"
); 
                cmd=new System.Data.SqlClient.SqlCommand( 
                    "spSaveCustomer",cn); 
                cmd.CommandType=CommandType.StoredProcedure; 
 
                try 
                { 
                    prm=new System.Data.SqlClient.SqlParameter( 
                        "@ReturnValue",0); 
                    prm.Direction=ParameterDirection.ReturnValue; 
                    cmd.Parameters.Add(prm); 
                    cmd.Parameters.Add("@CustomerID",CustomerID); 
                    cmd.Parameters.Add("@CompanyName",CompanyName.Text); 
                    cmd.Parameters.Add("@Address",Address.Text); 
                    cmd.Parameters.Add("@City",City.Text); 
                    cmd.Parameters.Add("@State", 
                        ddlState.SelectedItem.Text); 
                    cmd.Parameters.Add("@PostalCode",PostalCode.Text); 
                    cmd.Parameters.Add("@ContractEnds", 
                        System.DateTime.Parse( 
                        ContractEnds.Text)); 
                    cmd.Parameters.Add("@ContactFirstName", 
                        ContactFirstName.Text); 
                    cmd.Parameters.Add("@ContactLastName", 
                        ContactLastName.Text); 
                    cmd.Parameters.Add("@ContactEMail", 
                        ContactEmail.Text); 
                    cmd.Parameters.Add("@UserName",UserName.Text); 
                    cmd.Parameters.Add("@Password",Password.Text); 
 
                    cn.Open(); 
 
                    cmd.ExecuteNonQuery(); 
                    int prmNum; 
                    prmNum=cmd.Parameters.IndexOf("@ReturnValue"); 
                    if ( Convert.ToInt64( 
                        cmd.Parameters[prmNum].Value)!=0 ) 
                    { 
                        Label1.Text="Customer " +  
                            cmd.Parameters["@ReturnValue"].Value.ToString()
+ 
                            " Saved!"; 
                        CustomerID=Convert.ToInt32( 
                            cmd.Parameters["@ReturnValue"].Value); 
                        // Put a friendlier name on button 



                        this.BtnCancel.Text="Close"; 
                    } 
                } 
                catch ( System.Exception eSave ) 
                { 
                    Label1.Text=eSave.Message; 
                } 
                finally 
                { 
                    cn.Close(); 
                } 
            } 
 
 
        } 
        private void btnDelete_Click(object sender, System.EventArgs e) 
        { 
            System.Data.SqlClient.SqlConnection cn; 
            System.Data.SqlClient.SqlCommand cmd; 
            if ( CustomerID!=0 ) 
            { 
                cn=new System.Data.SqlClient.SqlConnection( 
                  "server=localhost;" +  
                  "Integrated Security=SSPI;Initial Catalog=GolfArticles"); 
                cmd=new SqlCommand("spDeleteCustomer",cn); 
                cmd.CommandType=CommandType.StoredProcedure; 
 
                try 
                { 
                    cmd.Parameters.Add("@CustomerID",CustomerID); 
                    cn.Open(); 
                    cmd.ExecuteNonQuery(); 
                    // Put a friendlier name on button. 
                    this.BtnCancel.Text="Close"; 
                    // Display confirmation... 
                    Label1.Text="Customer " + 
                        CustomerID + " Deleted!"; 
                    // No customer anymore... 
                    CustomerID=0; 
                    doDataBind(); 
                    btnDelete.Visible=true; 
                } 
                catch ( System.Exception eDelete ) 
                { 
                    Label1.Text=eDelete.Message; 
                } 
                finally 
                { 
                    cn.Close(); 
                } 
 
            } 
        } 
    } 
} 

 
 



Toward the top of Listing 9-7, I declare a property named CustomerID that is persisted as part 
of the ViewState. I could have used a hidden field on the form, as I would have done in ASP, 
but using ViewState here is more convenient.  

The next interesting part of EditCustomer.aspx.cs is the doDataBind method. First I create 
two connection objects and two command objects. I actually use results from both command 
objects at the same time, and so I need two separate connection objects. Note once again that 
I’m using SqlConnection objects because I’m connecting to Microsoft SQL Server. 

Once the connections are set up, I create the command objects. For the main connection to the 
Customer table, I set up the command to call a stored procedure, spSelectCustomer, and for 
the connection to the State table, I set up the command to call a standard SQL select 
statement. After opening both connection objects and calling ExecuteReader on the main 
command object used for the Customer table (named cmd in the code), I do the following: 

ddlState.DataTextField="StateAbbreviation"; 
ddlState.DataSource=cmdState.ExecuteReader( 
    CommandBehavior.CloseConnection); 

The DataTextField property tells the State drop-down list, ddlState, that the field to use as the 
displayable text is the StateAbbreviation field. The States table has a StateID field, a 
StateAbbreviation field, and a StateName field. The drop-down list component also has a 
DataValueField property, so I could have set these properties to different values. If I did, the 
rendered <OPTION> tags would have the DataValueField property as the Value attribute of 
the <OPTION> tag for each item, and the DataTextField property between the start 
<OPTION> tag and the end </OPTION> tag. Because screen real estate is limited in this 
example, I’m only displaying the state abbreviation, using it for both the text and the value. 

The following code sets the selected index on the State drop-down list. 

if ( dr.Read() ) 
{ 
    this.DataBind(); 
    ddlState.SelectedIndex=ddlState.Items.IndexOf( 
        ddlState.Items.FindByText(dr.GetString(4))); 

If dr.Read returns true, I call DataBind and then set the selected index on the ddlState drop-
down list. The selected index should be set so that the value in the drop-down list is the value 
already in the Customer table for this customer. This looks a bit tortured, and certainly does 
seem to be more code than should be required, but it does work.  

 Tip None of the code following the call to dr.Read would work without that call. Unlike an 
ActiveX Data Objects (ADO) recordset, which points to the first record in the dataset 
upon being opened, the DataReader object in ADO.NET points just before the first 
record, and the Read method must be called to make the first record, if any, available. 
I’ve spent an hour once or twice trying to get data when the DataReader object hasn’t 
been read. It didn’t fail, it simply didn’t have anything to display.  

After setting the selected index for the State drop-down list, the code sets the Text property of 
the CompanyName text box to the CompanyName field of dr, the DataReader object that 
contains the customer record I’m trying to display. I must cast the value to a string, since the 
returned value is an object. 



CompanyName.Text=(string)dr["CompanyName"]; 
 Note The casting syntax used here will look familiar to C and C++ programmers, but it might 

look a little strange to Visual Basic programmers. In Visual Basic .NET, the same task 
can be accomplished by calling the CType function—for example, CompanyName.Text 
= CType(dr(“CompanyName”), String). 

After setting the CompanyName text box, the code continues with a number of similar lines of 
code, each setting one of the text boxes displayed on the EditCustomer.aspx page. The line to 
set the ContractEnds text box is a little different, since the underlying type is a DateTime 
object rather than a string, as follows: 

ContractEnds.Text= 
    ((DateTime)dr["ContractEnds"]).ToShortDateString(); 

In this case, I’m casting the returned object to a DateTime object, and then calling the 
ToShortDateString method on the resulting DateTime object.  

If I can’t read the record I’m looking for (dr.Read returns false), I still call DataBind—in this 
case, to ensure that the State drop-down list is populated. If an exception occurs, I set Label1 
to the Message property of the resulting exception, and make the Delete button invisible. 
There’s no sense in deleting what might not be there. The Save button is still active because, 
in theory, the user can still enter all the required information and attempt the save. 

Because all the code involved with filling in the text boxes is located in doDataBind, the 
Page_Load method is fairly straightforward, as shown here: 

if ( !(this.IsPostBack) ) 
{ 
    CustomerID=System.Convert.ToInt32( 
        (string)Request["CustomerID"]); 
    doDataBind(); 
} 
if ( CustomerID!=0 ) 
{ 
    btnDelete.Visible=true; 
} 
else 
{ 
    btnDelete.Visible=false; 
} 

If this is not a postback, meaning this is the first time the user is visiting the page, I set the 
CustomerID property from the value in the Request object, and call doDataBind to actually 
fill in the drop-down list and the text boxes. If the CustomerID property is nonzero, I make 
the Delete button visible; otherwise, I make it invisible. That’s all there is to Page_Load. 

The BtnCancel_Click event handler is a single line, redirecting the user to the 
RepeaterTest.aspx page—the page that in the normal course of events is the one that got me to 
EditCustomer.aspx. The event handlers for the Save and Delete buttons are more complicated. 
We’ll examine the details of the more complicated event handler, BtnSave_Click, here. You 
can then explore btnDelete_Click on your own. 



Once I establish the connection, I set up the command object to execute a stored procedure, 
spSaveCustomer. I next add a return value parameter by creating a SqlParameter object and 
setting the required properties. Additional parameters are appended to the Parameters 
collection, with the most interesting parameter addition being for ContractEnds, a date field, 
as follows: 

cmd.Parameters.Add("@ContractEnds", 
    System.DateTime.Parse(ContractEnds.Text)); 

Because I know that ContractEnds is a DateTime object, I parse the date using the 
System.DateTime.Parse method. In most cases, I’d put this specific code in an exception 
handler, since an exception could be thrown. I’m reasonably comfortable that an exception 
won’t be thrown here, since I wouldn’t get here unless the validator accepted the date entered. 
After all the parameters are set, I open the connection and call ExecuteNonQuery on the 
command object. After the command is executed, I check the return value, which is set to the 
CustomerID, either the one passed in, in the case of a saved record, or the new CustomerID, if 
this is a new record.  

 Note As with ADO, any command that executes a query that returns records—for example, a 
record returning stored procedure called using the ExecuteReader method of the 
SqlCommand object—will not allow you to retrieve return codes or output parameters 
until the object getting the records—for example, the DataReader object—is closed.  

I let the stored procedure tell me whether it’s a new record, as indicated by the code for 
spSaveCustomer shown in Listing 9-8. 

Listing 9-8 The spSaveCustomer stored procedure used to save a row in the Customer table  
 
CREATE PROCEDURE spSaveCustomer 
    @CustomerID int, 
    @CompanyName nvarchar(50), 
    @Address nvarchar(50), 
    @City nvarchar(50), 
    @State nvarchar(10), 
    @PostalCode nvarchar(20), 
    @ContractEnds datetime, 
    @ContactFirstName nvarchar(50), 
    @ContactLastName nvarchar(50), 
    @ContactEMail nvarchar(128), 
    @UserName nvarchar(50), 
    @Password nvarchar(50) 
AS 
SET NOCOUNT ON 
DECLARE @Ret int 
    SELECT @Ret=CustomerID FROM Customer WHERE CustomerID=@CustomerID 
    IF IsNull(@Ret,0)=0 
    BEGIN 
        INSERT INTO Customer( 
            CompanyName , 
            Address , 
            City , 
            State , 
            PostalCode , 
            ContractEnds , 
            ContactFirstName , 
            ContactLastName , 



            ContactEMail , 
            UserName , 
            [Password] ) 
        VALUES( 
            @CompanyName , 
            @Address , 
            @City , 
            @State , 
            @PostalCode , 
            @ContractEnds , 
            @ContactFirstName , 
            @ContactLastName , 
            @ContactEMail , 
            @UserName , 
            @Password ) 
        — Be careful about triggers and @@Identity 
        SET @Ret=@@Identity 
    END 
    ELSE 
    BEGIN 
        UPDATE Customer SET 
            CompanyName=@CompanyName , 
            Address=@Address , 
            City=@City , 
            State=@State , 
            PostalCode=@PostalCode , 
            ContractEnds=@ContractEnds , 
            ContactFirstName=@ContactFirstName , 
            ContactLastName=@ContactLastName , 
            ContactEMail=@ContactEMail , 
            UserName=@UserName , 
            [Password]=@Password , 
            — Set modified date conveniently 
            DateModified=GetDate() 
        WHERE 
            CustomerID=@Ret 
    END 
    IF @@Error=0 
    BEGIN 
        Return(@Ret) 
    END 
    ELSE 
    BEGIN 
        Return(0) 
    END 

 
 

The stored procedure shown in Listing 9-8 is reasonably straightforward. Rather than having 
two separate stored procedures, one for an insert and one for an update, spSaveCustomer 
decides at runtime whether an INSERT or an UPDATE is appropriate. If this is a new 
customer, I insert the new record and return the @@IDENTITY value, which will be the last 
value inserted. 

 Tip If you’re using SQL Server 2000, you can use IDENT_CURRENT or SCOPE_IDENTITY, 
which might be better under some circumstances. The @@IDENTITY value can be 
misleading if the table in which you’ve just inserted a record has a trigger that inserts a 
record in another table with an identity column.  



If the save succeeds, I change the Label1 Text property to reflect that, and change the caption 
of the Cancel button to Close, reflecting that the change has already taken place and that 
exiting the page now won’t discard any changes.  

Within the InitializeComponent method, Visual Studio .NET writes the code to add event 
handlers for the buttons. When you’re in the designer, double-clicking the button will add the 
code to add a Click handler and display the newly created method in the code editor. 

A couple of minor enhancements would be appropriate for this application if it were being 
developed in a production environment. A ValidationSummary control would allow you to 
more clearly state what the problem is with each of the fields. You could also use client-side 
code to display a confirming message box when the user clicks the Delete button. Of course, 
additional error handling and even error and event logging would also be helpful in a 
production system.  

Conclusion 
Of all the areas of ASP.NET, data access is the area that provides perhaps the most ways to 
perform a given task. The examples presented in this chapter have used many of the objects 
within ADO.NET, but by virtue of the breadth of ADO.NET, I haven’t explored every nook 
and cranny. ADO.NET could be the topic of a book all by itself, and extensive documentation 
for it is available on MSDN. 

The choice of objects is also shaped by what works for me. I’ve used a DataSet object when I 
needed to retrieve the XML representing a set of data, because that object supports the 
GetXml method. Normally, the DataReader object has what I need for the kind of applications 
I write, and so many examples use that object. The DataReader object is fast and efficient, 
and since virtually all Web data access is designed to display data that can arrive in a one-
direction, firehose manner, I think use of DataReader objects will become standard practice. 
Time will tell. 

In Chapter 10, I’ll expand on the example introduced here. The next step toward realizing the 
dream of distributing content to syndication partners (customers) is to create an XML Web 
service. This is the other major kind of ASP.NET application. Creating and consuming XML 
Web services will become a large part of working on the expanding Internet and will also 
allow applications within the enterprise to work and play well together. 

Chapter 10: XML Web Services 
Overview 
ASP.NET applications will change the way Web developers create Web applications. XML 
Web services, on the other hand, will change the way Web applications share information and 
disperse functionality. Distributed COM (DCOM) was one of many different attempts at 
allowing program functionality to be distributed throughout a network and yet remain 
available to all interested systems. DCOM was built on top of the remote procedure call 
(RPC) architecture. DCOM was far easier to use than RPC, but it retained several of the 
shortcomings of RPC. 



The first of these shortcomings was that both RPC and DCOM were much better suited for 
intranet use than Internet use. It’s uncommon for the ports required by RPC and DCOM to be 
opened in a corporate firewall. Before the Internet boom, the inability to use resources 
distributed across the public Internet wasn’t a significant problem, but this limitation has 
become a significant burden in recent years. 

The second shortcoming was the impact that using RPC or DCOM had on the application. 
With DCOM, the impact was much less than with raw RPC, but nonetheless, serious program 
and architectural changes needed to be made to exploit either technology. DCOM also had the 
burden of being a superset of COM, and although using COM in Microsoft Visual Basic is 
much easier than using COM in some other languages (notably, C++), it’s still not easy to 
use. Add to that the extra plumbing required to keep components properly registered, and you 
can see that DCOM isn’t the ideal solution. 

An additional burden that DCOM had to carry was the fact that it wasn’t platform neutral. 
DCOM was basically a Microsoft Windows–only option, and so, the dizzying array of 
Windows versions makes maintaining a significant DCOM system quite a task.  

 Note COM Internet Services (CIS) is one option that allows DCOM users to use the HTTP 
port and establish an HTTP-based handshake. Although using CIS eliminates the 
firewall problem, it does nothing to change the fact that DCOM is still platform specific.

Fortunately for ASP.NET developers, there is a new solution to this old problem of spreading 
around the functionality an application might require. As you’ll see in this chapter, XML Web 
services provide a standard way of exposing parts of an application to be shared across 
process boundaries and, more important, across machine boundaries. Using standard protocols 
and data formats, XML Web services allow machines across the Internet or intranets to 
communicate. 

Standards for XML Web Services 
There aren’t many technologies that developers on all platforms and using all languages can 
agree on. Two technologies that have gained virtually universal acceptance are XML and 
HTTP. Both protocols take a “simple is better” approach to what they do. 

XML is rapidly becoming the lingua franca of data. Although not all standards bodies have 
caught up, and certainly quite a few non-XML formats are widely used, most of those 
standards (such as HL7, mentioned in Chapter 8) had arrived before XML caught on. New 
standards for virtually any industry will almost certainly use XML, with a specialized 
grammar. 

HTTP is ubiquitous. It’s present on any computer of any sort that uses a Web browser—
which by now includes just about any device of any consequence, even some cell phones. 
Significantly, because browsers need to have the ports used by HTTP open, most corporate 
firewalls have the ports open required for regular HTTP as well as secured HTTP using the 
Secure Sockets Layer (SSL) protocol (HTTPS). 

Putting XML and HTTP together seems like a natural. A new protocol based on XML and 
HTTP named the Simple Object Access Protocol (SOAP) was first proposed to the World 
Wide Web Consortium (W3C) in 1999. SOAP uses XML over HTTP to conveniently send a 



request and get back a response. Because XML and HTTP are standards, the applications that 
supply or consume XML Web services can be created in any language and can run on 
whatever platform is most convenient.  

In addition to XML and HTTP, several other protocols can be used in conjunction with 
SOAP: Web Services Description Language (WSDL); Universal Description, Discovery, and 
Integration (UDDI); and Discovery. WSDL was developed by Microsoft, IBM, and others. 
WSDL is an XML schema that describes the methods and parameters of a Web service. An 
XML schema is grammar that describes a set of tags to be used within an XML document. 
Given an XML schema, it’s possible to determine exactly what data is contained in a 
conforming XML document—and of course, you can also validate an XML document. 

UDDI is a platform-independent, open framework for describing services, discovering 
businesses, and integrating services on the Web. UDDI was proposed by IBM and Microsoft. 
You can learn more about UDDI at http://www.uddi.org. 

Discovery is a Microsoft-sponsored proprietary protocol for XML Web services discovery. 
Discovery uses a .disco file to locate and interrogate XML Web services. A .disco file is a 
simple XML document that contains links to other resources that describe the XML Web 
service, as shown here: 

<?xml version="1.0" encoding="utf-8"?> 
<discovery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
    xmlns="http://schemas.xmlsoap.org/disco/"> 
    <contractRef  
        ref="http://localhost/Chapter10_SimpleService/Simple.asmx?wsdl" 
        docRef="http://localhost/Chapter10_SimpleService/Simple.asmx"  
        xmlns="http://schemas.xmlsoap.org/disco/scl/" /> 
    <soap address="http://localhost/Chapter10_SimpleService/Simple.asmx" 
        xmlns:q1="http://tempuri.org/" binding="q1:SimpleSoap"  
        xmlns="http://schemas.xmlsoap.org/disco/soap/" /> 
</discovery> 

This example specifies that the service description can be obtained at 
http://localhost/Chapter10_SimpleService/Simple.asmx?wsdl. 

SOAP has been around since 1999, but there haven’t been huge numbers of developers using 
it to create SOAP applications. For the most part, this lack of popularity is because creating 
SOAP-compliant applications isn’t easy. Creating a SOAP application is simpler than creating 
a DCOM application, but it’s still not simple. Part of the problem for Windows developers is 
that there was a lengthy calm before the .NET storm in terms of development tools for 
developers on the Windows platform. For example, Microsoft Visual InterDev 6.0 gives a 
copyright date of 1997–98—before SOAP was even proposed. Microsoft has released a 
number of SOAP toolkits; however, these toolkits haven’t met with the same level of 
acceptance. 

Creating a Simple XML Web Service 
You probably won’t be surprised to discover that Microsoft Visual Studio .NET provides 
powerful tools to help you create XML Web services. The ease of creating XML Web 
services is nothing short of amazing, as you’ll see. 



XML Web services reside in a folder that’s also a virtual directory in Internet Information 
Services (IIS). XML Web services can have the same security settings as traditional Web 
folders, although you must be careful to ensure that XML Web services that are accessed by 
other programs have some way to allow an application to pass in credentials rather than being 
routed to a login screen. 

XML Web services are exposed in the .NET Framework as files with an .asmx extension. 
This extension, like the .aspx and .ascx extensions, is registered with IIS and handled 
specially rather than being dumped directly to the browser, as an HTML file might be. An 
.asmx file might contain actual code, but it will more likely contain just a pointer to the code, 
as in this example: 

<%@ WebService Language="vb"  
Codebehind="Simple.asmx.vb"  
Class="Chapter10_SimpleService.Simple" %> 

This WebService directive is similar to the Page directive used for .aspx files. Language 
refers to the language used in the code. Codebehind is once again used only by Visual Studio 
.NET and similar designers. The Class attribute specifies the name of the class. In addition to 
the class name—in this example, Chapter10_SimpleService.Simple—I could specify the 
assembly name in the Class attribute. Because the assembly name is 
Chapter10_SimpleService, I’d use a WebService directive like this to specify the assembly: 

<%@ WebService Language="vb"  
Codebehind="Simple.asmx.vb"  
Class="Chapter10_SimpleService.Simple,Chapter10_SimpleService"  
%> 

Without explicitly specifying the assembly, ASP.NET will search through the assemblies in 
the bin folder below where the .asmx file resides until it finds the correct assembly the first 
time the XML Web service is accessed. This search can be a performance hit, and if you have 
a bin folder with lots of assemblies, the time to search them all can be nontrivial. 

In Visual Studio .NET, you’ll likely never see the code in the .asmx file. Visual Studio .NET 
by default has you create the code required in a code-behind file. In this example, the code 
would be located in Simple.asmx.vb. 

As with all Visual Studio projects, the first step in creating a new XML Web service is to 
create a new project. Figure 10-1 shows the dialog box that appears, with a Visual Basic .NET 
XML Web service application selected.  



 
Figure 10-1 : The New Project dialog box in Visual Studio .NET, showing how to create a 
new XML Web service in Visual Basic .NET  

Expanding and Testing the XML Web Service 

After you create the new project, you’ll have a base XML Web service. Visual Studio .NET 
places comments in a file that, when uncommented, will provide a simple “Hello World” 
XML Web service. I modified that service slightly; the resulting code-behind file is shown in 
Listing 10-1.  

Listing 10-1 Simple.asmx.vb, a simple, multilanguage “Hello World” XML Web service  
 
Imports System.Web.Services 
 
Public Class Simple 
    Inherits System.Web.Services.WebService 
 
#Region " Web Services Designer Generated Code " 
 
    Public Sub New() 
        MyBase.New() 
 
        ‘This call is required by the Web Services Designer. 
        InitializeComponent() 
 
        ‘Add your own initialization code after the  
        ‘InitializeComponent() call 
 
    End Sub 
 
    ‘Required by the Web Services Designer 
    Private components As System.ComponentModel.Container 
    ‘NOTE: The following procedure is required by the  
    ‘Web Services Designer 
    ‘It can be modified using the Web Services Designer.   
    ‘Do not modify it using the code editor. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
        components = New System.ComponentModel.Container() 
    End Sub 
 
    Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean) 
        ‘CODEGEN: This procedure is required by the Web Services Designer 
        ‘Do not modify it using the code editor. 



        If disposing Then 
            If Not (components Is Nothing) Then 
                components.Dispose() 
            End If 
        End If 
        MyBase.Dispose(disposing) 
    End Sub 
 
#End Region 
 
    <WebMethod()> _  
    Public Function HelloWorld( _  
    ByVal Language As String) As String 
        Select Case Language 
            Case "Norwegian" 
                HelloWorld = "God dag Verden" 
            Case "Spanish" 
                HelloWorld = "Hola Mundo" 
            Case "German" 
                HelloWorld = "Hallo Welt" 
            Case Else 
                HelloWorld = "Hello World" 
        End Select 
    End Function 
 
End Class 

 
 

The Simple class inherits System.Web.Services.WebService. The WebService class provides 
many members; most are inherited from ancestor objects. Among the most important is an 
HttpContext object named Current. Using the Current object, it’s possible to determine 
whether tracing is enabled, for example, by using code such as this: 

HttpContext.Current.Trace.IsEnabled; 

The WebService class also exposes a property that returns a Session object. The Session object 
can store and retrieve values that are specific to the single user session. Session state must 
also be enabled, as described in Table 10-1 on page 342.  

 Tip Although ASP.NET session state can be accessed across multiple Web servers in a 
cluster, using session state will limit the scalability of the application. Once you scale out 
to multiple Web servers, any access to the session state will require a call across machine 
boundaries. This is a very expensive operation, and something that can often be avoided 
with other ASP.NET features. Using session state in an XML Web service is almost 
always a bad idea. 

Another interesting property of the WebService class is User. The User property is most 
useful in the case of XML Web services used within an organization that has Windows 2000 
Active Directory in place and uses Windows authentication. There are more common ways to 
handle authentication, and I’ll introduce these in the section “Security Options” later in this 
chapter 

The Server property of the WebService class returns an HttpServerUtility object that can be 
used to get the machine name and get or set the script time-out, as well as provide various 



path mappings. The Execute and Transfer methods familiar to IIS 5.0 users are also exposed 
on the Server property. 

The XML Web service in Listing 10-1 has the following HelloWorld function: 

<WebMethod()> _  
Public Function HelloWorld( _  
ByVal Language As String) As String 
    Select Case Language 
        Case "Norwegian" 
            HelloWorld = "God dag Verden" 
        Case "Spanish" 
            HelloWorld = "Hola Mundo" 
        Case "German" 
            HelloWorld = "Hallo Welt" 
        Case Else 
            HelloWorld = "Hello World" 
    End Select 
End Function 

The most interesting part of this function is just how simple it is. Using a Select/Case 
statement, I select the correct translation and return that value from the function. The only hint 
that this function is something out of the ordinary is the <WebMethod()> attribute. (The same 
attribute in a C# module would be declared as [WebMethod()].) This version of HelloWorld is 
somewhat international, requesting a string parameter, named Language, and returning “Hello 
World” in the language selected (if the language selected is Norwegian, Spanish, German; 
failing that, the string is returned in English).[*]  

One of the historical difficulties with testing an XML Web service—or any similar service, 
for that matter—is the need to create a client framework to actually exercise the service. 
Fortunately, XML Web services provide an easy way to test themselves. Run the XML Web 
service shown in Listing 10-1, and a page like the one shown in Figure 10-2 will appear. 

 
Figure 10-2 : The page returned when the Simple XML Web service is run in Visual Studio 
.NET  



This page contains a link to the one-and-only exposed method offered in this class: 
HelloWorld. Clicking this link displays a page such as the one shown in Figure 10-3. 

 
Figure 10-3 : The page that lets you test the HelloWorld method for the Simple XML Web 
service  

The single parameter, Language, can be entered in the text box above the Invoke button. If 
you didn’t remember that Language was a string, you could refer to the SOAP request 
detailed on the same page, and you’d know that it’s expecting a string. If you enter “Spanish” 
in the Language text box and click Invoke, a page such as the one shown in Figure 10-4 will 
appear.  

 
Figure 10-4 : The results returned by a call to the HelloWorld method with “Spanish”  

In Figure 10-4, notice that the URL in the Address bar is nothing more than a path to the 
.asmx file, along with the parameter, passed exactly as it would be to an ASP.NET Web 
Forms page. 

Notice in Figure 10-2 the warning that the XML Web service is using http:// 
tempuri.org as its namespace. This is the default namespace Visual Studio .NET uses for 
XML Web services. This namespace is fine for testing XML Web services, but a real XML 
Web service should point to a different namespace. To change the namespace used by the 
XML Web service, you need to add a line such as this immediately before the class 
declaration: 

<WebService(Namespace:="http://ProgrammingASP.NET/webservices/")> 

The URL doesn’t have to be anything specific, nor does it actually need to exist. 

Using WebMethod Attribute Properties 



The WebMethod attribute accepts six properties to control how the XML Web service 
operates. These properties are described in Table 10-1.  

Table 10-1 : Properties of the WebMethod Attribute  
Property Description 
BufferResponse  Enables buffering of responses from the XML Web service. The default 

value is true, and this is almost always the best setting. If set to false, the 
response from the XML Web service will be sent to the requesting client 
in 16-KB blocks. The syntax for setting this parameter is shown here:  
   [Visual Basic.NET] 
   <WebMethod(BufferResponse:=False)> 
   [C#] 
   [WebMethod(BufferResponse=false)]  

CacheDuration  Enables caching of the results for an XML Web service method. 
ASP.NET will cache the results for each unique parameter set. The value 
of this property specifies how long, in seconds, ASP.NET will cache the 
results. The default value is 0, meaning that nothing is cached. This 
property often should be set, especially if the number of unique sets of 
parameters is limited and the underlying response will likely not change 
frequently. The syntax for setting this property is shown here: 
   [Visual Basic.NET] 
   <WebMethod(CacheDuration:=60)> 
   [C#] 
   [WebMethod(CacheDuration=60)]  

Description  Supplies a description for an XML Web service method that will appear 
on the Service help page. The syntax for setting this property is shown 
here: 
   [Visual Basic.NET] 
   <WebMethod(Description:="Text")> 
   [C#] 
   [WebMethod(Description="Text")]  

EnableSession  Enables session state for an XML Web service method. Once enabled, the 
XML Web service can access the session state directly from 
HttpContext.Current.Session or with WebService.Session. The syntax for 
setting this property is shown here: 
   [Visual Basic.NET] 
   <WebMethod(EnableSession:=True)> 
   [C#] 
   [WebMethod(EnableSession=true)]  

MessageName  Enables the XML Web service to uniquely identify overloaded methods 
using an alias. The default value for MessageName is the method name. 
The most obvious use for this property is with overloaded methods. The 
syntax for setting this property is shown here: 
   [Visual Basic.NET] 
   <WebMethod(MessageName:="AddDouble")> 
   [C#] 
   [WebMethod(MessageName="AddDouble")]  

TransactionOption Enables the XML Web services method to participate as the root object of 



Table 10-1 : Properties of the WebMethod Attribute  
Property Description 

a transaction. You can set the value to any of the TransactionOption 
enumerations, but in fact, only two behaviors are possible for XML Web 
services: either the XML Web service can’t participate in a transaction 
(Disabled, NotSupported, or Supported), or it creates a new transaction 
(Required, RequiresNew). The default value is 
TransactionOption.Disabled. To enable transaction support, you must 
add a reference to System.EnterpriseServices.dll. The syntax for setting 
this property is shown here:  
   [Visual Studio.NET] 
   <WebMethod(TransactionOption:= 
     TransactionOption.RequiresNew)> 
   [C#] 
   [WebMethod(TransactionOption= 
     TransactionOption.RequiresNew)]  

As an example of using the WebMethod attribute properties, I could modify HelloWorld as 
follows: 

<WebMethod(CacheDuration:=600)> _  
Public Function HelloWorld( _  
ByVal Language As String) As String 
‘ And so on... 

Because the response to the HelloWorld request is unlikely to change, caching the response 
for 600 seconds (10 minutes) isn’t at all unreasonable. When HelloWorld is called with 
“Spanish” as the parameter for the first time, the value will be cached. For all other requests 
within the next 10 minutes, HelloWorld won’t actually be run; instead, the caching system in 
ASP.NET will supply the same response as the first request. 

[*]I’d like to thank Bente and Jorge Mindyk for providing the Norwegian and Spanish 
translations, and Kathy Cox for the German translation. The Norwegian translation is literally 
“Good Day World,” which Bente assures me is more likely what a Norwegian would say. 

Consuming a Simple XML Web Service 
Writing an XML Web service is a wonderful accomplishment, but using it is even better. 
There are several ways to consume an XML Web service. The easiest way is to use Visual 
Studio and add a Web reference to the service. (Command-line purists should refer to the next 
section, “XML Web Services and Command-Line Tools.”) 

The first step in this process is to create a new Web application, with a new Web Forms page. 
In the Solution Explorer window, right-click the project name, and choose Add Web 
Reference from the shortcut menu. The Add Web Reference dialog box will appear. In the 
Add Web Reference dialog box, you can manually enter the address of the XML Web service 
or use UDDI to search for an XML Web service. This dialog box also has a link to display the 
XML Web services on the local Web server. Figure 10-5 shows the Add Web Reference 



dialog box with the Simple XML Web service selected. The documentation for Simple is 
shown in the left pane. 

 
Figure 10-5 : The Add Web Reference dialog box in Visual Studio .NET, pointing to the 
Simple XML Web service  

Once you click the Add Reference button in the Add Web Reference dialog box, Solution 
Explorer will contain an additional node, named Web References. Figure 10-6 shows the Web 
References node expanded.  

 
Figure 10-6 : Solution Explorer, showing the newly added Web reference to the Simple 
service  

One bit of confusion exists with the default behavior of the Add Web Reference dialog box. 
Notice that the name of the Web reference in the Solution Explorer is localhost. I happened to 
refer to the XML Web service using a URL that contained localhost. I can almost guarantee 
that’s not what you’d expect the Web reference to be named. If you’re like me, you’ll initially 
presume that localhost refers to the server the service resides on and that Simple is the object 
you want to create. In reality, localhost refers to the namespace, and Simple is in fact the 
object you want to create. Most times, you will rename localhost something more meaningful. 



Therefore, I’ve renamed the namespace from localhost to HelloWorld, which I’ll use for the 
rest of this example. 

 Tip My initial thought after I added the Web reference using the URL http:// 
localhost/Chapter10_SimpleService/Simple.asmx was, “Darn, I should’ve used the 
machine’s full name in the URL, not localhost.” My concern was that I wouldn’t be able 
to test the page using the XML Web service from my workstation, Dual, because the 
XML Web service was on my test machine, Test933. Referring to localhost from Dual 
wouldn’t work, however, because Dual doesn’t have the XML Web service installed, nor 
does it have the .NET Framework. Of course, testing from Dual worked just fine. The 
reason, obvious in retrospect, is that the XML Web service was being resolved on the 
Web server, not on the client workstation. Thus, localhost was resolved properly on the 
server, because relative to the Web server, the XML Web service was located on the 
localhost. In the real world, an XML Web service is used to expose functionality over the 
Internet. If you want to expose functionality that will be used on the same machine, using 
an XML Web service would not be very efficient, because the overhead incurred in 
calling an XML Web service.  

Now that the Web reference has been added, I can reference the XML Web service as if it 
were any other class. How does this magic work? When you look at the directory on the Web 
server where the test page with the added Web reference is located, you’ll see a new 
directory, named Web References. Within that directory is another directory, named 
HelloWorld, the name of the namespace for the Web reference. In that directory, you’ll find a 
C# file with code similar to the code in Listing 10-2. On my system, this file is named 
Reference.cs. 

Listing 10-2 Reference.cs, the proxy code to allow consumption of the Simple XML Web 
service  
 
//———————————————————————————————————— 
// <autogenerated> 
//     This code was generated by a tool. 
//     Runtime Version: 1.0.3307.0 
// 
//     Changes to this file may cause incorrect  
//     behavior and will be lost if  
//     the code is regenerated. 
// </autogenerated> 
//———————————————————————————————————— 
 
//  
// This source code was auto-generated by Microsoft.VSDesigner,  
// Version 1.0.3307.0. 
//  
namespace Chapter10_TestSimpleService.HelloWorld { 
    using System.Diagnostics; 
    using System.Xml.Serialization; 
    using System; 
    using System.Web.Services.Protocols; 
    using System.Web.Services; 
     
     
    /// <remarks/> 
    [System.Diagnostics.DebuggerStepThroughAttribute()] 
    [System.ComponentModel.DesignerCategoryAttribute("code")] 



    [System.Web.Services.WebServiceBindingAttribute( 
      Name="SimpleSoap", Namespace="http://tempuri.org/")] 
    public class Simple :  
      System.Web.Services.Protocols.SoapHttpClientProtocol { 
 
        /// <remarks/> 
        public Simple() { 
            this.Url =  
              "http://localhost/Chapter10_SimpleService/Simple.asmx"; 
        } 
        /// <remarks/> 
        [System.Web.Services.Protocols.SoapDocumentMethodAttribute( 
          "http://tempuri.org/HelloWorld",  
          RequestNamespace="http://tempuri.org/",  
          ResponseNamespace="http://tempuri.org/",  
          Use=System.Web.Services.Description.SoapBindingUse.Literal,  
          ParameterStyle= 
          System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 
        public string HelloWorld(string Language) { 
            object[] results = this.Invoke("HelloWorld", new object[] { 
                        Language}); 
            return ((string)(results[0])); 
        } 
 
        /// <remarks/> 
        public System.IAsyncResult BeginHelloWorld( 
          string Language, System.AsyncCallback callback,  
          object asyncState) { 
            return this.BeginInvoke("HelloWorld", new object[] { 
                        Language}, callback, asyncState); 
        } 
 
        /// <remarks/> 
        public string EndHelloWorld(System.IAsyncResult asyncResult) { 
            object[] results = this.EndInvoke(asyncResult); 
            return ((string)(results[0])); 
        } 
    } 
} 

 
 

Listing 10-2 is a C# file that represents a proxy class. (A proxy class acts like the real class 
but is really just a stand-in.) This proxy file happens to be a C# file because the test project I 
used to generate it is a C# project. Fortunately, there’s no problem with using an XML Web 
service created with Visual Basic .NET inside a Web Forms page created using C#. As you 
can see, the code in this Simple class doesn’t do any of the work of interpreting the string sent 
as a parameter and returning the strings based on the parameter passed in. Ignoring the 
complex attributes preceding the proxy class’s HelloWorld function, the function itself is 
quite simple, as shown here: 

public string HelloWorld(string Language) { 
    object[] results = this.Invoke("HelloWorld", new object[] { 
        Language}); 
    return ((string)(results[0])); 
} 



The Invoke method is called, and the return value is an array of objects. In this example, the 
first element of the array of objects is returned, cast as a string.  

You might think the code in Listing 10-2 is a little complex (with things like BeginInvoke, 
asynchronous callbacks, and so on). Programmers familiar with RPC will recognize just how 
compact and relatively simple the code is. There’s no need to understand this code fully; 
however if you’re interested in learning more, you can look at the 
System.Web.Services.Protocols.SoapHttpClientProtocol class in the MSDN documentation. 
This proxy class descends from SoapHttpClientProtocol. The code in Listing 10-2 is 
automatically generated, and as such it should not be directly modified. If the XML Web 
service changes, the proxy code must be regenerated. 

To use the Simple XML Web service, I’ve created apage, shown in Figure 10-7. This page 
initially displays “—Pick Language—” in the drop-down list box. You can select a language 
from the drop-down list, and the SelectedIndexChanged event handler will change the text of 
the label to “Hello World” in that language. What’s actually happening here is that the page is 
posted back to the Web ser-ver and I then call the Simple XML Web service from the page. If 
I set the CacheDuration property of the WebMethod attribute to 600, the XML Web service 
might run or the requested value might be returned from the cache. It’s transparent to the 
consumer of the XML Web service. 

 
Figure 10-7 : A simple test form showing the XML Web service being accessed from a Web 
Forms page  

The TestWebService.aspx file that created the page in Figure 10-7 is shown in Listing 10-3. 
To make the drop-down list post back to the server, the AutoPostBack attribute is set to True. 
I’ve added <asp:ListItem> tags for the language selections, but I could just as easily have 
used the Add method of the DropDownList1 object in the code-behind file.  

Listing 10-3 TestWebService.aspx, a Web Forms page used to test the Simple XML Web 
service  
 
<%@ Page language="c#"  
Codebehind="TestWebService.aspx.cs"  
AutoEventWireup="false"  
Inherits="Chapter10_TestSimpleService.TestWebService" %> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML> 
    <HEAD> 
        <meta name="GENERATOR" content="Microsoft Visual Studio 7.0"> 
        <meta name="CODE_LANGUAGE" content="C#" > 
        <meta name="vs_defaultClientScript" content="JavaScript">  
        <meta name="vs_targetSchema" 



            content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body> 
        <form id="TestWebService" method="post" runat="server"> 
            <p align="center"> 
                <asp:DropDownList  
                id="DropDownList1"  
                runat="server"  
                AutoPostBack="True"> 
                    <asp:ListItem Value="— Pick Language —"> 
                    —Pick Language —</asp:ListItem> 
                    <asp:ListItem Value="Spanish"> 
                    Spanish</asp:ListItem> 
                    <asp:ListItem Value="Norwegian"> 
                    Norwegian</asp:ListItem> 
                    <asp:ListItem Value="German"> 
                    German</asp:ListItem> 
                    <asp:ListItem Value="English"> 
                    English</asp:ListItem> 
                </asp:DropDownList></p> 
            <p align="center"> 
                <asp:Label id="Label1" runat="server"  
                Font-Size="Medium"  
                Font-Bold="True"  
                ForeColor="Red"> 
                </asp:Label></p> 
        </form> 
    </body> 
</HTML> 

 
 

The code-behind file for TestWebService.aspx is shown in Listing 10-4. 

Listing 10-4 The code-behind file TestWebService.aspx.cs, used to consume the Simple XML 
Web service  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace Chapter10_TestSimpleService 
{ 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class TestWebService : System.Web.UI.Page 
    { 
        protected System.Web.UI.WebControls.DropDownList DropDownList1; 
 
        protected System.Web.UI.WebControls.Label Label1; 
 
        private void Page_Load(object sender, System.EventArgs e) 



        { 
            // Put user code to initialize the page here. 
        } 
 
        #region Web Form Designer generated code 
        override protected void OnInit(EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the ASP.NET 
            // Web Form Designer. 
            // 
            InitalizeComponent(); 
            base.OnInit(e); 
        } 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {   
            this.DropDownList1.SelectedIndexChanged +=  
                new System.EventHandler( 
                this.DropDownList1_SelectedIndexChanged); 
            this.Load += new System.EventHandler(this.Page_Load); 
 
        } 
        #endregion 
 
        private void DropDownList1_SelectedIndexChanged 
        (object sender, System.EventArgs e) 
        { 
            HelloWorld.Simple Hello; 
            Hello=new HelloWorld.Simple(); 
 
            Label1.Text=Hello.HelloWorld(DropDownList1.SelectedItem.Text); 
        } 
    } 
} 

 
 

The three lines of the DropDownList1_SelectedIndexChanged handler are deceptively simple. 
First, I declare an object of type Simple. Next, I create the Simple object. Because I added the 
Web reference to this project, it will not try to instantiate the real Simple class, but rather, the 
proxy class shown in Listing 10-2. Finally, I set the Label1.Text property to the string 
returned from a call to the HelloWorld method. 

What’s really happening behind the scenes is quite a bit more interesting. The proxy class is 
calling to the XML Web service (which could be anywhere, on any accessible server). On 
getting a response, the string is retrieved from the object array that is returned, and the page is 
then refreshed with the label set to the text from the HelloWorld method. 

XML Web Services and Command-Line Tools  

As mentioned, many users will prefer adding a Web reference within Visual Studio. For those 
interested in the details of what’s actually going on, however, the WSDL command-line tool 



(Wsdl.exe) will generate the proxy code for you explicitly. The command-line options for 
WSDL are described in Table 10-2.  

Table 10-2:  WSDL Command-Line Help  
Command or Option Description 
wsdl.exe Utility to generate code for XML Web service 

clients and XML Web services using ASP.NET 
from WSDL contract files, XSD schemas, and 
.discomap discovery documents. This tool can 
be used in conjunction with disco.exe.  
wsdl.exe <options> <url or path> <url or path> 
... 

<url or path> A URL or path to a WSDL contract, an XSD 
schema or .discomap document. 

/nologo Suppresses the banner. 
/language:<language> The language to use for the generated proxy 

class. Choose from ‘CS’, ‘VB’, or ‘JS’ or 
provide a fully qualified name for a class 
implementing 
System.CodeDom.Compiler.CodeDomProvider. 
The default is ‘CS’ (CSharp). The short form is 
‘/l:’. 

/server Generate an abstract class for an XML Web 
service implementation using ASP.NET based 
on the contracts. The default is to generate 
client proxy classes. 

/namespace:<namespace> The namespace for the generated proxy or 
template. The default namespace is the global 
namespace. The short form is ‘/n:’. 

/out:<fileName> The filename for the generated proxy code. The 
default name is derived from the service name. 
The short form is ‘/o:’. 

/protocol:<protocol> Override the default protocol to implement. 
Choose from ‘SOAP’, ‘HttpGet’, or ‘HttpPost’ 
or a custom protocol as specified in the 
configuration file. 

/username:<username> 
/password:<password> 
/domain:<domain> 

The credentials to use when the connecting to a 
server that requires authentication. The short 
forms are ‘/u:’, ‘/p:’, and ‘/d:’. 

/proxy:<url> The URL of the proxy server to use for HTTP 
requests. The default is to use the system proxy 
setting. 

/proxyusername:<username> 
/proxypassword:<password> 
/proxydomain:<domain> 

The credentials to use when the connecting to a 
proxy server that requires authentication. The 
short forms are ‘/pu:’, ‘/pp:’, and ‘/pd:’. 

/appsettingurlkey:<key> The configuration key to use in the code 



Table 10-2:  WSDL Command-Line Help  
Command or Option Description 

generation to read the default value for the Url 
property. The default is to not read from the 
config file. The short form is ‘/urlkey:’. 

/appsettingbaseurl:<baseurl> The base URL to use when calculating the url 
fragment. The appsettingurlkey option must 
also be specified. The url fragment is the result 
of calculating the relative URL from the 
appsettingbaseurl to the URL in the WSDL 
document. The short form is ‘baseurl:’. 

Many of these options aren’t required for normal use, but you’ll generally specify at least the 
language and the URL of the service. For example, to generate a proxy class for the Simple 
XML Web service, I’d use the WSDL command-line tool to create a proxy class. The 
command is shown here: 

C:\>wsdl.exe 
    /l:VB 
    http://localhost/Chapter10_SimpleService/Simple.asmx 
    /n:HelloWorld.Simple 

After this command is run, you’ll need to compile the resulting Visual Basic .NET source into 
a DLL. The minimum command to perform this operation is shown here: 

C:\>vbc.exe simple.vb  
    /target:library  
    /reference:System.dll  
    /reference:System.Web.Services.dll 
    /reference:System.Xml.dll 
    /out:Simple.dll 

Once the DLL is built, you can place it in the bin folder of the project you want to reference 
the XML Web service from and add the DLL to the Imports or using statements at the 
beginning of the code file. 

Once Simple.dll is compiled, I created a virtual directory named TestCommandLineTools to 
test it. In the TestCommandLineTools folder, I created a bin folder and moved the Simple.dll 
created using the vbc command above into that folder. Finally, I created a simple page to 
ensure that I could access the XML Web service through the manually created DLL. That 
TestCommandLineTools.aspx file is shown in Listing 10-5.  

Listing 10-5 TestCommandLineTools.aspx, a page to test using the Simple XML Web 
service.code-behind file  
 
<%@ Page language="C#" %> 
<%@ Import Namespace="HelloWorld.Simple" %> 
 
<html> 
    <script language="C#" runat=server> 
    public void Page_Load(object sender,EventArgs e) 
    { 



        Simple Hello=new Simple(); 
        Response.Write(Hello.HelloWorld("Spanish")); 
    } 
    </script> 
 
<body> 
 
</body> 
</html> 

 
 

This page, when run, displays the Spanish version of “Hello World”, “Hola Mundo”. 

This approach is markedly less convenient than using Visual Studio. On the other hand, it will 
work on a machine with nothing more than the .NET Framework and Notepad installed. In 
addition, the process must be repeated whenever a change takes place that affects the interface 
exposed by the XML Web service. Visual Studio .NET provides a more convenient Update 
Web Reference option. 

 Tip As of the build of the .NET Framework used to test this example, many of the command-
line utilities seem to be spread around in a variety of directories, none of which appear in 
the path by default. If you’re planning to use these command-line utilities, you should 
find the most commonly used utilities and add the directories they reside in to your path. 
Note that some utilities are in directories that include the build number, so you should be 
sure to change your path when you change versions. 

A Real-World XML Web Service: Article Distribution 
The Simple XML Web service example is certainly interesting technically, but perhaps less 
satisfying in other respects. What might you want to do in the real world with an XML Web 
service? One possibility is to allow the sharing of content between content providers and 
syndication partners. As I’ve mentioned, I do some work for the Golf Society of the U.S. In 
addition to the Internet content that’s displayed on their own Web page, they also have a 
syndication arm that allows syndication partners to link their sites to the Golf Society site. 
This means that the Golf Society site includes dozens of virtual directories, each with the look 
and feel of a different syndication partner. Until now, there’s been no other good way to share 
content. Fortunately, XML Web services offer an alternative. 

Imagine an XML Web service that has access to a database of articles, indexed by author and 
initial publication date. The XML Web service could then dole out the appropriate content to 
the syndication partners, with only minimal HTML markup. The syndication partners could 
access the XML Web service and place the content on their pages, ideally with style sheets or 
font tags that would make the Golf Society content fit right in. 

The following steps are required to develop such an XML Web service: 

• Review security options. 
• Create and test the XML Web service. 
• Create a Web Application project to consume the XML Web service. 



Security Options 

Creating an XML Web service to distribute articles is similar to our earlier XML Web service 
example, but with a couple of important differences. First, if we’re creating an XML Web 
service as part of a business, we might want to validate the user. Two sets of options are 
available for securing an XML Web service. The first set consists of built-in IIS security 
options. These options have the advantage of not requiring an additional user database, but for 
Internet applications, creating a domain user record for each customer probably isn’t ideal. 
The second set of options allows for custom authentication, including the following 
possibilities: 

• Accept user name and password as a parameter to your method calls. 
• Provide a Login method that must be called before any other methods. You can then 

use cookies to verify that the requester has been authenticated.  
• Use SOAP headers or the SOAP body to store credentials. 
• Create a custom HTTP header to hold credentials. 

Of these custom authentication options, the first is the most straightforward, and the least 
likely to fail based on client configuration problems. One subtle problem with passing 
credentials to the method call is that caching based on passed parameters will likely be less 
effective. This example will accept user name and password information as parameters to 
method calls. This information will then be checked against user name and password 
information stored in a database. 

The Customer table in the GolfArticles database has UserName and Password fields that 
would work for this XML Web service example. The simple stored procedure shown in 
Listing 10-6 can be used to validate the user by selecting all the fields based on the UserName 
and Password parameters. Obvious extensions to this stored procedure would include setting 
some logging information and perhaps verifying that the article requested is dated within the 
contract period. 

Listing 10-6 Stored procedure to retrieve customer information based on the UserName and 
Password parameters  
 
CREATE PROCEDURE spSelectCustomerByUsername  
    @UserName nvarchar(128), 
    @Password nvarchar(128) 
AS 
SET NOCOUNT ON 
SELECT CustomerID, CompanyName, Address, City, State, PostalCode,  
        ContactFirstName, ContactLastName, ContactEMail,  
        ContractEnds, ContractLevel,  
        UserName, [Password], DateEntered, DateModified 
FROM dbo.Customer 
WHERE UserName=@UserName AND [Password]=@Password 

 
 

Creating and Testing the XML Web Service 



The XML Web service that will retrieve the articles from the GolfArticles database is named 
GetGolfArticle. The code for this XML Web service is contained in GetGolfArticle.asmx.vb, 
shown in Listing 10-7.  

Listing 10-7 GetGolfArticle.asmx.vb, the source for an XML Web service to distribute golf 
articles  
 
Option Strict On 
Option Explicit On 
 
Imports System.Web.Services 
Imports System.Data.SqlClient 
 
 
Public Class GetGolfArticle 
    Inherits System.Web.Services.WebService 
 
#Region " Web Services Designer Generated Code " 
 
    Public Sub New() 
        MyBase.New() 
 
        ‘This call is required by the Web Services Designer. 
        InitializeComponent() 
 
        ‘Add your own initialization code after the  
        ‘InitializeComponent() call 
 
    End Sub 
 
    ‘Required by the Web Services Designer 
    Private components As System.ComponentModel.Container 
 
    ‘NOTE: The following procedure is required by the  
    ‘Web Services Designer 
    ‘It can be modified using the Web Services Designer.   
    ‘Do not modify it using the code editor. 
    <System.Diagnostics.DebuggerStepThrough()> _  
    Private Sub InitializeComponent() 
        components = New System.ComponentModel.Container() 
    End Sub 
 
    Protected Overloads Overrides Sub Dispose( _  
    ByVal disposing As Boolean) 
        ‘CODEGEN: This procedure is required by the Web Services Designer 
        ‘Do not modify it using the code editor. 
        If disposing Then 
            If Not (components Is Nothing) Then 
                components.Dispose() 
            End If 
        End If 
        MyBase.Dispose(disposing) 
    End Sub 
 
#End Region 
    <WebMethod(CacheDuration:=3600)> _ 
    Public Function GetArticle(ByRef ArticleDate As String, _ 
    ByVal Author As String, ByVal UserName As String, _ 
    ByVal Password As String) As String 
        Dim cn As SqlConnection 



        Dim cmd As SqlCommand 
        Dim dr As SqlDataReader 
        Dim userDr As SqlDataReader 
        Dim dt As Date 
 
        If Me.ValidateUser(UserName, Password, userDr) = False Then 
            GetArticle = "Sorry, User Information passed is invalid." 
            Exit Function 
        End If 
        ‘ If the user IS valid, we might want to record  
        ‘   that they were here...Left as an exercize for the 
        ‘   reader 
        Try 
            cn = Me.GetConnection() 
            cmd = New SqlCommand("spSelectArticle", cn) 
            cmd.CommandType = CommandType.StoredProcedure 
            cmd.Parameters.Add("@Author", Author) 
            Try 
                dt = Date.Parse(ArticleDate) 
                cmd.Parameters.Add("@ArticleDate", dt) 
            Catch edt As Exception 
                ‘ Ignore...This is an "expected" exception. 
            Finally 
                dr = cmd.ExecuteReader() 
                dr.Read() 
                GetArticle = CType(dr("ArticleText"), String) 
                ArticleDate = _  
                    CType(dr("ArticleDate"), Date).ToShortDateString() 
            End Try 
        Catch e As Exception 
            GetArticle = "An exception occured " + _ 
            "retrieving the requested article: " + _ 
            e.Message 
        Finally 
            If cn.State = ConnectionState.Open Then 
                cn.Close() 
            End If 
        End Try 
    End Function 
    Protected Function GetConnection() As SqlConnection 
        GetConnection = New SqlConnection("server=localhost;" + _ 
            "Integrated Security=SSPI;Initial Catalog=GolfArticles") 
        GetConnection.Open() 
    End Function 
 
    Protected Function ValidateUser(ByVal UserName As String, _ 
    ByVal Password As String, ByRef dr As SqlDataReader) _ 
    As Boolean 
        Dim cn As SqlConnection 
        Dim cmd As SqlCommand 
        cn = GetConnection() 
        Try 
            cmd = New SqlCommand("spSelectCustomerByUsername", cn) 
            cmd.CommandType = CommandType.StoredProcedure 
            cmd.Parameters.Add("@UserName", UserName) 
            cmd.Parameters.Add("@Password", Password) 
            dr = cmd.ExecuteReader(CommandBehavior.CloseConnection) 
            ‘ dr.Read will return true if data exists. 
            ValidateUser = dr.Read() 
        Catch e As Exception 
            ValidateUser = False 



        End Try 
    End Function 
End Class 

 
 

The single exposed method of the GetGolfArticle XML Web service is GetArticle. This 
method accepts four parameters, ArticleDate, Author, UserName, and Password. The first, 
ArticleDate, is declared as a String rather than a Date. Declaring the date as a String allows 
the service to accept invalid dates as input and behave in some reasonable way. The 
ArticleDate parameter is a ByRef parameter because I might want to modify the date. 

The stored procedure called to actually retrieve the article from the database can accept either 
a valid date or a null; the default value is null. When the date passed to the stored procedure is 
null, the stored procedure gets the most recent article by the specified author. The stored 
procedure, spSelectArticle, is shown in Listing 10-8. 

Listing 10-8 Stored procedure to select article by date or the most recent article  
 
CREATE PROCEDURE spSelectArticle 
    @Author nvarchar(50), 
    @ArticleDate datetime = null 
AS 
SET NOCOUNT ON 
 
    — If NULL passed in, then  
    IF IsNull(@ArticleDate,’19000101’)=‘19000101’ 
    BEGIN 
        SET @ArticleDate=GetDate() 
    END 
 
    SELECT TOP 1 ArticleDate, Author, ArticleText FROM Article  
        WHERE Author=@Author AND ArticleDate<=@ArticleDate 
        ORDER BY ArticleDate DESC 

 
 
 Note The CacheDuration property for the GetArticle method is set to 60 minutes. Articles 

aren’t frequently updated, so they could be cached for up to an hour. Setting 
CacheDuration has the side effect of not recognizing username or password changes to 
disallow access to the service for up to an hour. If the username or password for a 
customer is changed, both the old and the new username and password will be 
recognized for the period of the CacheDuration. If the username and password change 
frequently, set CacheDuration to a smaller number or don’t use it at all.  

Inside the GetArticle method, the first thing I do is call the ValidateUser method. 
ValidateUser calls the stored procedure shown in Listing 10-5, and returns a Boolean. One of 
the parameters passed to ValidateUser is a ByRef parameter of type SqlDataReader. In a more 
realistic example, it’s possible that some additional action would take place for a specific 
customer, and so returning the SqlDataReader as a ByRef parameter could be useful. 

Once the user is validated, I create the required SqlConnection and SqlCommand objects. The 
connection is returned from a protected method named GetConnection. As soon as the 



connection and command are set up, I add parameters to the command object, as shown in 
this code fragment: 

cmd.Parameters.Add("@Author", Author) 
Try 
    dt = Date.Parse(ArticleDate) 
    cmd.Parameters.Add("@ArticleDate", dt) 
Catch edt As Exception 
    ‘ Ignore. This is an "expected" exception. 
Finally 
    dr = cmd.ExecuteReader() 
    dr.Read() 
    GetArticle = CType(dr("ArticleText"), String) 
    ArticleDate = _  
        CType(dr("ArticleDate"), Date).ToShortDateString() 
End Try 

The first parameter, @Author, is a required stored procedure parameter. The @ArticleDate 
stored procedure parameter is added within a Try/Catch/Finally block, because it’s possible 
that the ArticleDate parameter passed to the GetArticle method could be invalid. If the 
parameter is invalid, I simply ignore it, and continue in the Finally block to call 
ExecuteReader on the SqlDataReader object. Read is called on the returned SqlDataReader 
object, the return value is set to the ArticleText parameter returned in SqlDataReader, and the 
ArticleDate parameter of GetArticle is set to the ArticleDate parameter returned in 
SqlDataReader, cast as a Date and then formatted as a short string. A Try/Catch block 
surrounds the code fragment shown here, and so if the SqlDataReader object doesn’t contain 
any results, the return string will be set to a default value. 

Testing this XML Web service as presented isn’t as easy as testing the earlier Simple 
example. The ByRef parameter passed to GetArticle means that you can’t use an HTTP Get 
method, and so you can’t test the XML Web service by executing the page, as was shown in 
Figure 10-3. I was able to test the code by changing the ByRef parameter to a ByVal parameter 
temporarily. 

Consuming the XML Web Service 

The next step is to create a new project to test the GetArticle XML Web Service—again, a C# 
Web application. And again, calling the Visual Basic .NET XML Web service from a C# 
program is no problem. I added a Web reference to the GetGolfArticle service, exactly as 
shown in Figure 10-5. I renamed the namespace that appeared in Solution Explorer from 
localhost to GolfArticle.  

To simulate a real page, I created a Web Forms page with a navigation area on the left and a 
main content area on the right, using a standard HTML table. I added some static content on 
the navigation menu, and placed a label in the main content area, and I applied some colors 
and fonts in both areas of the Web Forms page. The code for GetArticleTest.aspx is shown in 
Listing 10-9.  

Listing 10-9 GetArticleTest.aspx, the user interface part of a form that uses the 
GetGolfArticle XML Web service  
 
<%@ Page language="c#"  
Codebehind="GetArticleTest.aspx.cs"  



AutoEventWireup="false"  
Inherits="Chapter10_TestArticleService.GetArticleTest" %> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML> 
    <HEAD> 
        <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0"> 
        <meta name="CODE_LANGUAGE" Content="C#"> 
        <meta name="vs_defaultClientScript" content="JavaScript"> 
        <meta name="vs_targetSchema"  
            content="http://schemas.microsoft.com/intellisense/ie5"> 
    </HEAD> 
    <body > 
    <form id="GetArticleTest" method="post" runat="server"> 
        <table width="640"> 
            <tr>                <td width=30%  bgcolor="#333399" valign=top
> 
                <font face="Verdana, Arial" color="#ffff33"><b> 
                This is the normal side navigation text. The  
                article text to the right is retrieved from the  
                Web Service.</b><br> 
                This is the article for  
                <asp:Label id=Label2 runat="server"></asp:Label> 
                </font> 
                </td> 
                <td> 
                <asp:Label id="Label1"  
                    runat="server"  
                    Font-Names="Verdana,Arial"  
                    ForeColor="Blue"></asp:Label> 
                </td> 
            </tr> 
        </table> 
    </form> 
    </body> 
</HTML> 

 
 

All the real work of this page (a modest amount of work) is done in the code-behind file, 
GetArticleTest.aspx.cs, shown in Listing 10-10.  

Listing 10-10 GetArticleTest.aspx.cs, the code-behind file used to display text from the 
GetGolfArticle XML Web service  
 
using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 
using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
 
namespace Chapter10_TestArticleService 
{ 
    /// <summary> 
    /// Summary description for WebForm1 



    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected System.Web.UI.WebControls.Label Label2; 
 
        protected System.Web.UI.WebControls.Label Label1; 
 
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here. 
            string strDate; 
            string strRet; 
            strDate=""; 
            GolfArticle.GetGolfArticle Article; 
            Article=new GolfArticle.GetGolfArticle(); 
            strRet=Article.GetArticle( 
                ref strDate,"Ragone, Nick", 
                "Doug","Testonly"); 
            Label1.Text=strRet; 
            Label2.Text=strDate; 
        } 
 
        #region Web Form Designer generated code 
        override protected void OnInit(EventArgs e) 
        { 
            // 
            // CODEGEN: This call is required by the  
            // ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
            base.OnInit(e); 
        } 
 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        { 
            this.Load += new System.EventHandler(this.Page_Load); 
        } 
        #endregion 
    } 
} 

 
 

By now, most of this code should look familiar, but one part of the listing, shown here, might 
not be obvious: 

strRet=Article.GetArticle( 
    ref strDate,"Ragone, Nick", 
    "Doug","Testonly"); 

When calling a method in C# that expects what Visual Basic .NET calls a ByRef parameter, 
the parameter must be prefixed by the keyword ref. C# methods can also use out modifiers. 
The out modifier indicates that the parameter can be modified but will not be used in any way 
before being set by the method the out parameter is passed to. Specifying ref means that the 



parameter will be modified and that the parameter passed in to the method will be used in the 
method, and thus must be initialized in the calling routine. 

Note that the call to GetArticle hard-codes the UserName and Password parameters. In this 
case the user name is “Doug”, with a password of “Testonly”. If you pass an incorrect user 
name and password, GetArticle returns a message saying that the user information is invalid. 
When you run this test, GetArticleTest.aspx displays the page shown in Figure 10-8. 

 
Figure 10-8 : The content returned by the GetGolfArticle XML Web service  

The actual article text stored in the database has little in the way of HTML directives beyond 
simple paragraph breaks and an <H1> tag for the title. The GetArticleTest.aspx page controls 
the color and face of the font. In the real world, this type of design moves us closer to 
separating content from presentation, the holy grail of Web site designers everywhere. 

Possible Enhancements 

Returning more than a single value from an XML Web Service can cause some difficulty, as 
our experience with a ByRef parameter demonstrates. In other scenarios, a larger number of 
values need to be returned.  

Publishing articles by means of an XML Web service is useful, but there are certainly some 
additional methods that could be exposed to make using the GetGolfArticle XML Web service 
easier. With a method to publish a catalog of authors as well as a method to retrieve the dates 
of all articles, a user of this syndicated content could dynamically create pages that show all 
the authors, with a drill-down list that would allow users to view the existing dates and 
possibly titles. This XML Web service wouldn’t need to be protected by a user name and 
password—allowing noncustomers to discover what articles are present might even be 
desirable. For example, a simple XML Web service method to return all articles, ordered by 
ArticleDate, is shown here: 

<WebMethod(CacheDuration:=3600)> _ 
Public Function GetArticleList() As DataSet 
    Dim cn As SqlConnection 
    Dim da As SqlDataAdapter 
    Dim ds As DataSet 
    cn = GetConnection() 
 
    Try 
        da = New SqlDataAdapter( _  



            "SELECT * FROM Article ORDER BY ArticleDate", cn) 
        ds = New DataSet() 
        da.Fill(ds, "Article") 
        GetArticleList = ds 
    Catch e As Exception 
 
    Finally 
        cn.Close() 
    End Try 
End Function 

In this example, the GetArticleList method returns a DataSet object rather than a DataReader 
object or any of the other objects that can contain multiple records. Why a DataSet? When 
data moves across a machine or process boundary, it’s said to be marshaled. The data must 
somehow be converted from the internal type to a format that can be sent across a wire. In the 
case of XML Web services, the wire format is XML, and so the object must in some way be 
convertible to text. 

The GetArticleList method returns a DataSet object, because DataSet can be marshaled by 
ASP.NET. All of the other alternatives (such as SqlDataReader) can’t be marshaled by an 
XML Web service. All the standard types, such as int and double, Enum types, classes and 
structs, XmlNode objects, and DataSet objects can be marshaled by ASP.NET. Arrays of the 
supported types can also be marshaled. Although not every object can be marshaled by an 
XML Web service, the types that can be marshaled are much richer than those available to 
DCOM objects, without using custom marshaling. 

Conclusion 
HTML changed how we work in ways the originators of the format couldn’t have imagined. 
In a similar way, it’s almost inevitable that XML Web services will change how we work in 
unimagined ways. No longer will each corporate intranet be an island, isolated from all the 
data and processes that exist beyond its walls. With XML Web services, work can be 
partitioned in almost any way that makes sense, without regard to the operating system or 
tools used to create the XML Web service. 

Most important to those of us who develop applications for the Microsoft .NET Framework, 
Visual Studio .NET makes creating and using XML Web services easier than we could have 
imagined. When I was developing the outline for this book, I predicted that this chapter 
especially would be a challenge. My expectations were framed by my experience using some 
of the predecessor technologies, such as RPC and DCOM. But surprisingly, all the examples 
presented in this chapter were relatively easy to produce. 

This book has laid the foundation for your explorations with the .NET Framework in general, 
and with ASP.NET in particular. ASP.NET is the way for Web developers to create scalable, 
dynamic Web applications. From Web Forms through XML Web services, ASP.NET presents 
tremendous opportunities for developers in the know. I hope I’ve helped you become such a 
developer. 



Appendix A: Configuring ASP.NET 
Applications in IIS 
One of the most confusing aspects of working with ASP.NET is properly configuring the 
security of your Web application. Security configuration can be critical to the life of the 
application and even to the life of a business. Unfortunately, a large part of how an ASP.NET 
Web application is configured might have nothing to do with ASP.NET and everything to do 
with Internet Information Services (IIS). 

In this appendix, I’m going to walk you through setting up your ASP.NET applications in IIS. 
The most important point to remember is that ASP.NET doesn’t operate in total isolation from 
IIS. As you’ll see, in some cases—most notably, authentication—ASP.NET and IIS must be 
configured in tandem to allow you to get the most out of both ASP.NET and IIS. 

ASP.NET User Authentication 
ASP.NET allows you to configure one of three types of user authentication: forms 
authentication, Passport authentication, and Windows authentication. Forms authentication is 
the type of security used by virtually all Internet applications. Using forms authentication, you 
can do pretty much whatever you want in terms of determining who is and isn’t an authorized 
user. You can also determine which pages require security. In addition, whenever a user gets 
to a page that requires authentication, the user is transparently redirected to a specified login 
page. The login page can use whatever source of information it wants to authenticate the user. 
Once authenticated, the user can be redirected to the page originally requested. The process of 
authenticating a user via a custom form is much cleaner using ASP.NET forms authentication 
than it has traditionally been in ASP.  

With Passport authentication, a Passport server determines who is an authorized user. The 
Passport software development kit (SDK) will allow you to begin development using 
Passport, but there’s also specific Passport authentication support within the .NET Framework 
to support this type of authentication. The Passport SDK is available for download from 
http://msdn.microsoft.com/downloads/. 

Windows authentication piggybacks on top of the authentication capabilities in IIS. Although 
the implementation of authentication in IIS hasn’t changed significantly with the most recent 
releases of IIS, ASP.NET actually uses this authentication in a slightly different way, which 
has resulted in some confusion. In the next section, we’ll step through the creation of a new 
Web application in IIS to help clarify this process. 

While you’re developing Web applications using Visual Studio .NET, you don’t have to 
worry, for the most part, about configuring your applications in IIS. Visual Studio .NET 
makes most of the decisions for you, and it does most of the configuration the way you’d 
want to. Configuring ASP.NET to use Windows authentication is one notable exception. 
However, when you’re moving to a production server, you might be on your own, faced with 
the IIS configuration dialog boxes for the first time. Never fear! 

Creating a New Virtual Directory in IIS  



When you need to create a new Web application on a Windows 2000 Web server, the first 
thing to do is to create the folder in which the application will be located. This sounds obvious 
and simple, but the location of the folder you create can have implications for the ease of 
maintaining your application later. 

Whenever possible, the physical layout of your application should mimic the logical layout. If 
you have an application named AppB that should inherit most of its settings from AppA, 
creating AppB logically under AppA makes a lot of sense. To make that relationship clear, it 
also makes sense for the folder in which AppB resides to be a subdirectory of AppA. IIS 
doesn’t require this arrangement, however! When searching through the logical folders that 
exist at a higher level than a given application for configuration settings, IIS uses the logical 
hierarchy, not the physical hierarchy. Using a set of applications in which the logical and 
physical hierarchies match is much easier. 

For this example, we’ll create a folder named AppendixA in C:\Inetpub\wwwroot. After the 
folder is created, open the Internet Information Services console by double-clicking Internet 
Services Manager in Administrative Tools. Internet Information Services is shown in Figure 
A-1.  

 
Figure A-1 : Internet Information Services in Windows 2000  

As you can see in the left pane of Internet Information Services, the folder we added, 
AppendixA, is displayed as a normal folder under Default Web Site. Above AppendixA you 
can see folders with various icons. The icon next to IISHelp and others indicates that these 
folders are set up as virtual directories. 

If you right-click on AppendixA and choose Properties from the shortcut menu, the Properties 
dialog box will appear, as shown in Figure A-2. 



 
Figure A-2 : The Properties dialog box in Internet Information Services for the AppendixA 
folder that isn’t a virtual directory  

Figure A-2 shows the Properties dialog box as it appears for a directory that isn’t set up as a 
virtual directory. To make this folder a virtual directory for IIS, click the Create button on the 
Directory tab. The settings on the tab will be modified as shown in Figure A-3. 

 
Figure A-3 : The Properties dialog box in Internet Information Services for the AppendixA 
folder after it has been made a virtual directory  

Several of these settings can be configured to customize the behavior of your Web 
application. You might want to clear the Read check box because in general, users shouldn’t 
have to actually read files in the folder in the traditional sense. The exception, when Read 
must be set, is when you’re allowing a default document—that is, a document that will be 
called if only the virtual folder is specified. (More on default documents later in this 
appendix.) The Execute Permissions drop-down list enables you to specify the type of 
operations that can occur. You’d set Execute Permissions to None only when you’re running 
applications that have just HTML content, without any ASP.NET pages. Setting Execute 
Permissions to Scripts Only allows the application to execute scripts—files with extensions 
such as .asp and .aspx. This is commonly the setting for your ASP.NET application 
directories. The last setting in the Execute Permissions drop-down list is Scripts And 
Executables, which allows the application to execute scripts and executable files.  



 Note Visual Studio stores executable files in a subfolder named bin. You might think that the 
bin folder should have Execute Permissions set to Scripts And Executables because the 
DLLs used by ASP.NET pages are located there, but that’s not the correct setting. In 
practice, when you call an .aspx page, you’re not really directly calling any of the DLLs, 
so it makes sense, from the standpoint of IIS, that you don’t need to have Execute 
permission in the bin folder. 

The Documents tab of the Properties dialog box is shown in Figure A-4. 

 
Figure A-4 : The Documents tab of the Properties dialog box  

If you have a default document set on the Documents tab and one of the default documents 
exists, when a user goes to a folder and specifies only the folder name (for example, 
http://localhost/AppendixA/), that document will be shown. In practice, you often need to set 
the default document only in the root of the Web site. Remember, if you want to use a default 
document, the folder must have Read selected on the Directory tab of the Properties dialog 
box. Selecting the Enable Document Footer check box on the Documents tab allows you to 
specify the name of a file containing an HTML fragment (not an entire document) that will be 
included as a footer for documents displayed in this folder.  

The Directory Security tab of the Properties dialog box is shown in Figure A-5. 



 
Figure A-5 : The Directory Security tab of the Properties dialog box  

The Anonymous Access And Authentication Control section of this tab allows you to control 
how users are authenticated in your virtual directory. Clicking this Edit button displays the 
Authentication Methods dialog box, shown in Figure A-6. 

 
Figure A-6 : The Authentication Methods dialog box  

There are a few options available here, but basically, this dialog box allows you to do two 
things: you can either allow anonymous access to the virtual directory or require users to be 
Windows users. 

All Windows operations are in fact controlled by security, and all actions must take place in 
the context of some user. So when we specify that anonymous users are allowed by selecting 
the Anonymous Access checkbox, what user account is used? Clicking Edit in the 
Anonymous Access section of the Authentication Methods dialog box will display the 
Anonymous User Account dialog box that will allow you to select the account under whose 
context anonymous users will work. By default, this account is named IUSR_<machine 
name>. This account needs to have permissions for the folders containing documents that 
anonymous users will have access to. 

If your ASP.NET application plans to use Windows authentication, you must clear the 
Anonymous Access check box. If you don’t do this, all users will be allowed access to your 
application without authentication taking place. One reason you might use Windows 
authentication is to enable the application to get the identity of the user. When Windows 



authentication is set correctly in IIS (that is, Anonymous Access is disabled) and in ASP.NET, 
you’ll be able to get the domain name of the user in Context.User.Identity.Name. 

 Caution If you don’t properly set Windows authentication in both IIS and ASP.NET, 
Context.User.Identity.Name won’t return the value you expect. You might get the 
name of the anonymous user or even no user if both IIS and the Web.config file for a 
virtual directory don’t agree. This is a very common problem seen on the newsgroups 
throughout the Betas for ASP.NET. Similar problems existed in ASP; however, 
ASP.NET has some configuration settings that might lull you into thinking that 
ASP.NET is controlling authentication all by itself. That’s not the case. ASP.NET 
provides more support for the existing IIS authentication methods, but it doesn’t 
override them. 

The Authenticated Access section of the Authentication Methods dialog box contains three 
check boxes: Basic Authentication, Digest Authentication For Windows Domain Servers, and 
Integrated Windows Authentication. Selecting Basic Authentication sends the user name and 
password in essentially clear text from the client to the server. (The credentials are encoded 
but not encrypted.)  

The Digest Authentication For Windows Domain Servers option addresses many of the 
weaknesses of Basic Authentication, with a couple of restrictions. The Windows 2000 server 
must be in a domain, and all user accounts must be configured to have the Save Password As 
Encrypted Clear Text option enabled. Strictly speaking, Internet Explorer 5.0 or later isn’t 
required, but browser support for Digest authentication isn’t universal. 

If the Integrated Windows Authentication option, formerly known as NT LAN Manager or 
NTLM and Windows NT Challenge/Response authentication, is selected, the browser 
attempts to use the current user’s credentials from a domain login. If that fails, a login prompt 
appears. This isn’t a very attractive login prompt, and the developer has no control over it. 

Remember, as long as you disable Anonymous Access, any of these authenticated access 
methods will allow your application to determine the user name for any page requested. 

The IP Address And Domain Name Restrictions section of the Directory Security tab of the 
Properties dialog box (Figure A-5) contains an Edit button that allows you to control IP 
address and domain name restrictions. These sorts of restrictions are seldom used, but they 
can be effective in some intranet applications by allowing you to specify a subnet mask to 
control IP addresses allowed or disallowed into the application. The Server Certificate, View 
Certificate, and Edit buttons in the Secure Communications section of the Directory Security 
tab can be used to set up a security certificate to allow Secure Sockets Layer (SSL) 
communications. The MSDN documentation (especially the IIS Resource Kit) contains much 
more information on these options. 

The last two tabs in the Properties dialog box, HTTP Headers and Custom Errors, aren’t 
terribly interesting. As their names suggest, they allow you to control HTTP headers and 
custom errors. By configuring the Custom Errors tab, you can set up error handling pages for 
any of the standard HTTP errors—such as a 400 error, “resource not found.” 

The Configuration button on the Directory tab of the AppendixA Properties dialog box 
(Figure A-3) allows you to control certain aspects of the application as well as troubleshoot 



problems with an ASP.NET installation. When you click Configuration, the Application 
Configuration dialog box appears, as shown in Figure A-7.  

 
Figure A-7 : The Application Configuration dialog box  

I’ve scrolled down in the list of application mappings so that you can see the extensions used 
by ASP.NET. In this dialog box, you can add or edit the executable path associated with each 
file extension. 

Topics such as application mappings and verbs might seem somewhat obscure, but the 
Application Configuration dialog box can help you track down some odd problems. In several 
instances, people using ASP or ASP.NET applications have reported that when they execute 
an .asp or .aspx page, they get the source code in their browser rather than the HTML that 
should be rendered by the page. The root of this problem is often found in the Application 
Configuration dialog box. If the mapping between extensions and executable paths breaks, 
either through a botched installation or some gremlin, you can correct that problem using this 
dialog box. 

The other two tabs in the Application Configuration dialog box, App Options and App 
Debugging, contain settings used mostly by ASP applications. 

Appendix B: What You Need to Know 
About HTML to Use This Book  
Overview 
ASP.NET applications are similar to traditional applications in many ways. If you’re creating 
a simple form that will add a patient to a database, for example, the application will have three 
parts: 

• The database logic saves the record. 
• The validation logic ensures that the record being added is valid. 



• The user interface layer allows the user to interact with the database and the validation 
logic. 

To a large extent, the database logic in an ASP.NET application is exactly the same as that in 
a traditional application. The validation logic is similar as well, although there’s the 
complication of client-side JavaScript working together with server-side validation written in 
Visual Basic .NET or C#. (I discuss this topic in Chapter 7.) The user interface layer, 
however, is really quite different. Traditional applications provide a mechanism for creating 
widgets on screen. Often the widgets are designed in advance using a screen designer, and the 
metalanguage that describes the exact layout is a mystery to most programmers. ASP.NET 
applications are different. Hypertext Markup Language (HTML) is used as the metalanguage. 
HTML is a language that describes how various text and widgets should be displayed on the 
browser screen. 

 Note Keep in mind that this appendix is only the briefest introduction to HTML. Check your 
favorite bookstore to find more information about this topic.  

HTML Tags 
HTML consists of tags—special directives that let the browser know how you want elements 
on the page to display. HTML tags are enclosed within angle brackets (< >). For example, at 
the very beginning and the very end of an HTML page, you would have the <HTML> and 
</HTML> tags, respectively. By convention, tags that require a start tag and an end tag (as 
the <HTML> tag does) are identical except for the leading slash (/) in the end tag. Within the 
<HTML></HTML> tags, every HTML page should have <HEAD></HEAD> tags and 
<BODY></BODY> tags. The <HEAD></HEAD> tags can contain <META> tags, which 
can offer hints of what the page will be displaying. (<META> tags are useful for automated 
tools that roam the Web looking for pages to include in search engine results.) The 
<TITLE></TITLE> tags mark the beginning and end of the title of the page. This title will 
appear in the browser’s title bar. 

 Note Although most people capitalize the text in HTML tags, HTML isn’t case sensitive. This
is one of many contrasts between HTML and the newer, but related by heritage, 
Extensible Markup Language (XML), which is case sensitive. 

With the exception of the <META> tag, all the tags mentioned so far are always used in pairs, 
with a start and an end tag. Some tags don’t require an end tag. The most common is the line 
break tag, <BR>. With some tags, the end tag is optional. For example, some folks don’t use 
the end tag for the paragraph tags, <P></P>. 

HTML Links 
HTML allows you to create links, also known as hyperlinks, within your pages. A link enables 
you to jump from one page to another. These links are marked by <A></A> tags. For 
example, to create a link on a page that will enable you to jump to a page named test.aspx, 
you would use code like this: 

To get to test.aspx, <A HREF="test.aspx">Click Here</A> 



The Click Here link would appear on most browsers as underlined text, although you can 
control and modify exactly what links look like. Generally, changing what a link looks like 
isn’t a good idea. Users have grown to expect that underlined words and phrases allow them 
to jump to another page, so working against that expectation can lead to frustration and 
confusion. The <A> tag is unusual in that it can be used as a link, as in the example here, or as 
an anchor that defines a named section of a document. If the name of an anchor is appended to 
a URL, the browser will jump to the anchor of that name. If the <A> tag has an HREF 
attribute, it is a link. If the <A> tag has a NAME attribute but not an HREF, it is an anchor. If 
both NAME and HREF attributes are present, the tag is both an anchor and a link. 

If you wanted to jump to another page but also pass in an argument that could be used inside 
the page, you could use the following code: 

To get to test.aspx, <A HREF="test.aspx?arg=1">Click Here</A> 

To pass multiple arguments to a page, the same syntax is used, but with an ampersand 
between arguments, like this: 

To get to test.aspx,  
<A HREF="test.aspx?arg1=1&arg2=2">Click Here</A> 

HTML Widgets 
HTML provides text boxes, drop-down lists, list boxes, check boxes, and radio buttons. 
Although ASP.NET uses slight variations on these widgets, understanding how the base 
HTML widgets are used is helpful. To get an idea, take a look at Listing B-1.  

Listing B-1 HTML listing showing the use of common HTML widgets  
 
<HTML> 
<HEAD> 
<TITLE>Example HTML Widget Page</TITLE> 
</HEAD> 
<BODY> 
What follows is a form.  <B><I>This text is outside the form.</I></B> 
 
<FORM action="appendixb.htm"> 
 
This is a text box.  The <I>value</I> attribute means that there is a  
default value for this text box:  
<INPUT type="text" id=text1 name=text1 value="Hello HTML"><BR> 
 
This is a text box that displays "*" for each character,  
commonly used as a password entry box: 
<INPUT type="password" id=password1 name=password1><BR> 
This is a text area.  I have set the rows to 2, and the columns to 20: 
<TEXTAREA rows=2 cols=20 id=textarea1 name=textarea1> 
</TEXTAREA><BR> 
 
This is a check box:<INPUT type="checkbox" id=checkbox1 name=checkbox1><BR> 
 
This is a group of radio buttons:<BR> 
<INPUT type="radio" id=radio1 name=radiotest>Yes?<BR> 
<INPUT type="radio" id=radio2 name=radiotest>No?<BR> 
 



This is a drop-down list:<SELECT id=select1 name=select1> 
<OPTION>Option 1</OPTION> 
<OPTION>Option 2</OPTION> 
<OPTION>Option 3</OPTION> 
<OPTION>Option 4</OPTION> 
</SELECT><BR> 
 
This is a list box.  This is a multi-
select list box, because the "multiple"  
directive is inside the &lt;SELECT&gt; tag. 
<SELECT size=3 id=select2 name=select2 multiple> 
<OPTION>Option 1</OPTION> 
<OPTION>Option 2</OPTION> 
<OPTION>Option 3</OPTION> 
<OPTION>Option 4</OPTION> 
 
<INPUT type="submit" value="This is a Submit button" id=submit1 name=submit
1> 
 
</FORM> 
</BODY> 
</HTML> 

 
 

Notice first the general structure of this simple HTML page. Surrounding everything are the 
start and end <HTML></HTML> tags. Inside the <HTML></HTML> tags are 
<HEAD></HEAD> tags, which contain <TITLE></TITLE> tags. Next are the 
<BODY></BODY> tags, which contain the HTML code that will drive the browser’s 
display. 

In the text at the top of the <BODY> section, I’ve used <I></I> and <B> </B> tags to 
create italic and boldface text. Notice that the end tags for the italic and boldface text are 
properly nested. Although current browsers generally will accept HTML code in which the 
start and end tags of such blocks aren’t nested, it’s a good idea to properly nest your tags.  

All the widgets are contained within <FORM></FORM> tags. HTML widgets outside a 
form are of no value and generally won’t do what you want them to do. A <FORM> tag can 
also contain an attribute describing what action to take when the form is submitted as well as 
a method attribute to specify how the information from the form is transmitted to the server. 
The method attribute can be one of two values, Post or Get. The Get method is the default; 
however, Get is deprecated in HTML 4 because of internationalization problems. The Post 
method is a two-step method (transparent to you, as the developer of the page) that sends all 
the information entered in a form to a standard location, where the server reads it. The Get 
method appends the form contents to the URL as arguments. For example, if a form has a 
single text box, name, that contains the value “Doug”, and if the form is using the Get method 
and the action is a page named test.aspx, this is the resulting URL that will next appear in the 
browser’s location window (barring any processing error): 

http://<host>/<directory>/test.aspx?name=Doug 

So which method is best to use—Post or Get? As is often the case, there’s no simple answer. 
For small forms with little data being passed back and forth, Get can be more efficient. For 
larger forms, some servers will break if the URL is too long, and so it’s often best to use Post. 



In addition, if you’re sending a password back from the form, you should use Post so that the 
password won’t appear in the URL as plain text. 

Each widget is fairly self-explanatory once you’ve seen the code in Listing B-1 and then the 
resulting browser screen, shown in Figure B-1. For the text box, I’ve provided a default value 
for the control. In virtually all cases, the value attribute in an HTML control determines either 
what is initially displayed or what is returned when the widget is selected and the form is 
submitted. The ASP.NET controls use a more Visual Basic–like structure, so the Text 
property of a control maps to the HTML value attribute. Some users may not like the fact that 
the ASP.NET objects have properties with different names than the HTML attributes they are 
mapped to, but Visual Basic programmers should feel comfortable with the ASP.NET objects. 

Also, in the description of the list box, I wanted to display the text “<SELECT>”. Rather than 
using that literal, I used &lt;SELECT&gt;. If I’d used less than and greater than symbols (< or 
>), <SELECT> would have been interpreted as the beginning of a list box, which isn’t what I 
wanted.  

 
Figure B-1 : The results of displaying the HTML from Listing B-1 in Microsoft Internet 
Explorer  

Many more character entity references that enable you to display special characters within the 
HTML stream are available. One of the more common character entity references is &nbsp;, 
which creates a nonbreaking space. This reference can be useful if you want to force some 
text to be displayed on a single line without a line break—for example, the first and last name 
in a proper name such as “George Washington”. You can test for where line breaks might 
occur, but for a variety of reasons, the breaks might not occur on one browser in exactly the 
same place as on other browsers. For example, the fonts selected by one browser on one 
machine might not exactly match what another browser on another machine selects. 

HTML Tables 
One of the maddening things about HTML is just how flexible it can be and how forgiving 
many browsers are about sloppy HTML. The flip side of that flexibility is that other browsers 
are not so flexible, and so code that’s not exactly correct might perform well in one browser 
yet produce nothing in another. One area in which it’s easy to misuse HTML is with HTML 
tables. 



If you use Microsoft Word, you might be familiar with the powerful table features. I’ve never 
done any serious work in the financial areas most often associated with tables, but I’ve used 
tables extensively to properly format many different types of documents, including some of 
the text for this book. Tables can be useful when you’re using variable-pitch fonts and trying 
to get more than a single column to align. “But wait,” you say, “I don’t need to do that in my 
ASP.NET application.” Well, I think you might.  

As you’ve seen, the underlying metalanguage used to describe the user interface in an 
ASP.NET application is different from what you’d expect in a standard Visual Basic 
application. In addition, the underlying assumptions about what you can do and what the 
metalanguage was designed to convey are also quite different. In a Visual Basic application, 
you might drop a widget in a particular location and expect that it will always appear exactly 
there on any machine that runs the application. HTML is different. Remember, HTML was 
designed as a markup language that basically gave hints to the browser as to the location of 
various text and widgets. The browser was free to render these components as best it could, 
using widgets native to the underlying operating system to render an approximation of what 
you laid out. Unlike in Visual Basic, there’s no convenient way in HTML to use absolute 
positioning to exactly locate a text box at, say, 1 inch below and 2 inches to the right of the 
upper left of the screen. Dynamic HTML (DHTML) and style sheets offer greater control over 
positioning, but not all browsers in use today support all the same DHTML syntax; even 
where the syntax is compatible, the results are often not identical across different browsers. 

Look again at Figure B-1. Even though the underlying HTML text might be formatted in a 
particular way, with indentation and line breaks to allow the listing to appear correctly in this 
book, the browser simply ignores all formatting I implicitly add with indenting and line 
breaks, and uses only those directives it understands—in this example, <BR> tags. 

What if I wanted the form to line up more like what appears in Figure B-2? In this case, all the 
text is conveniently aligned on the left, and all the widgets are lined up on the right. 

 
Figure B-2 : The results of displaying the HTML from Listing B-2 in Internet Explorer, using 
a table to format the form  

Listing B-2 shows how this alignment was accomplished, but in short, the answer is HTML 
tables. The <TABLE> tag marks the beginning of an HTML table. In Figure B-2, it’s not 
obvious that a table was used because no table border is showing. (Many attributes can 



control the display of tables, and I encourage you to look at a book dedicated to HTML for 
more information on this subject.) 

Listing B-2 HTML listing showing the use of common HTML widgets and HTML tables  
 
<HTML> 
  
<HEAD>  
<TITLE>Example HTML Widget Page with Tables</TITLE>  
</HEAD>  
<BODY>  
  
What follows is a form. <B><I>This text is outside the form.</I></B>  
  
<FORM action="appendixb.htm">  
<TABLE width=100%>  
<TR>  
    <TD width=50%>  
    This is a text box.  The <I>value</I> attribute means that there is a   
    default value for this text box:   
    </TD>  
    <TD>  
    <INPUT type="text" id=text1 name=text1 value="Hello HTML"><BR>  
    </TD>  
</TR>  
<TR>  
    <TD>  
    This is a text box that displays "*" for each character,   
    commonly used as a password entry box:  
    </TD>  
    <TD>  
    <INPUT type="password" id=password1 name=password1><BR>  
    </TD>  
</TR>  
<TR>  
    <TD>  
    This is a text area.  I have set the rows to 2, and the columns to 20:  
    </TD>  
    <TD>  
    <TEXTAREA rows=2 cols=20 id=textarea1 name=textarea1>  
    </TEXTAREA><BR>  
    </TD>  
</TR>  
<TR>  
    <TD>  
    This is a check box:  
    </TD> 
    <TD>  
    <INPUT type="checkbox" id=checkbox1 name=checkbox1><BR>  
    </TD>  
</TR>  
<TR>  
    <TD>  
    This is a group of radio buttons:  
    </TD>  
    <TD>  
    <INPUT type="radio" id=radio1 name=radiotest>Yes?<BR>  
    <INPUT type="radio" id=radio2 name=radiotest>No?<BR>  
    </TD>  
</TR>  



<TR>  
    <TD>  
    This is a drop-down list:  
    </TD>  
    <TD>    <SELECT id=select1 name=select1>  
    <OPTION>Option 1</OPTION>  
    <OPTION>Option 2</OPTION>  
    <OPTION>Option 3</OPTION>  
    <OPTION>Option 4</OPTION>  
    </SELECT><BR>  
    </TD>  
</TR>  
<TR>  
    <TD>  
    This is a list box.   
    This is a multi-select list box, because the "multiple"   
    directive is inside the &lt;SELECT&gt; tag.  
    </TD>  
    <TD>    <SELECT size=3 id=select2 name=select2 multiple>  
    <OPTION>Option 1</OPTION>  
    <OPTION>Option 2</OPTION>  
    <OPTION>Option 3</OPTION>      
    <OPTION>Option 4</OPTION>      
    </TD>  
</TR>  
<TR align=center>  
    <TD colspan=2>      
    <INPUT type="submit" value="This is a Submit button"   
        id=submit1 name=submit1>      
    </TD>  
</TR>  
</TABLE>  
</FORM>  
</BODY>  
</HTML> 

 
 

Each row of the table is enclosed within <TR></TR> tags. These table row tags have 
additional attributes to control the background color, alignment, and other properties. Within 
each row, <TD></TD> tags control the individual columns of the row. To align the widgets 
in the second column starting in the middle of the page, I set the width attribute of the <TD> 
tag to 50%, meaning that the first column will take up 50 percent of the table, and because the 
table has only two columns, the second column will take up 50 percent of the table as well. 

The last row of the table is different: it will contain only the single Submit button. To center 
this button in the table, I use another special attribute of the <TD> tag, the colspan attribute. 
In this case, I specify that the first column of this row will span two columns, meaning that it 
will take up the entire row. Using colspan and the related <TR> attribute rowspan, complex 
formatting can be accomplished in a way that retains the browser independence that’s the 
hallmark of a good Web application. In addition, the align attribute of the <TR> tag is set to 
center, meaning that the contents of the row will appear centered. The 
<CENTER></CENTER>tags also enable centering, but the align attribute of the table row or 
column can be more convenient. 



One problem with HTML tables is that if you omit an end tag or perhaps nest the tags 
improperly, the results vary depending on the browser in use. Internet Explorer will generally 
render the table correctly, albeit more slowly than a correctly formed HTML table. Netscape 
Navigator 4 and earlier might not display the table. Thus, while tables are almost essential to 
properly laying out the user interface for your ASP.NET application, they can be a source of 
some difficulties. 

 Note Other techniques are available for tricking HTML into laying out a document or form 
exactly as you want. One common way is to use invisible images sized to force text, 
graphics, and widgets to appear exactly where you want them to be. This approach isn’t 
something I’ve found especially useful. In addition, in some examples in this book, I 
don’t use tables to pretty up the display if the result is to obscure the underlying 
program logic. That said, in the real world, virtually every page I create has a specific 
structure that involves the extensive use of tables. 

 


