
Part I

Apache Web server - Complete
Guide

1

Foreword

Since I cannot be sure you have read my introductory article on my website
(http://www.dedoimedo.com/), here’s an abstract of what you should expect
from this document.

The Web server - Apache - Complete Guide is one of the many topics
covered in the series of books that I’m writing on Linux, the goal of which is
to help any enthusiastic Windows user or a Linux newbie become a powerful,
confident Linux professional. As a preview of what you should expect when
these books become published, I have decided to post a single Part on my
website.

I am truly convinced that you will thoroughly enjoy this document, for it
has been written with care and attention to tiniest details. Every procedure is
explained step by step, accompanied by numerous examples and screenshots.

I hope this will be the best guide on the Apache Web server you will have
ever read.

The only thing that you will miss is the fact that links to other Parts, cov-
ering other material, are not available in this stand-alone release. However,
every procedure required to setup the Web server is fully self-contained. You
will be able to fully configure the Apache server by just using this document
as your guide.

2

http://www.dedoimedo.com/

www.dedoimedo.com all rights reserved

Lastly, let’s get one thing straight: you will not become Apache gurus
by reading this document. For that matter, I’m not an Apache guru, either.
There are so many aspects to the usability and security of the Apache Web
server, it is practically impossible to put them all in a single book.

However, by reading this document, you WILL learn how to use the
Apache Web server on the basic and intermediate level. And there’s no guide
that will explain things as simply and as beautifully as mine, I guarantee that.

From here on, the sky’s your limit.

3

Copyright

This document can be used under the following conditions:
If you want to modify or extend any part of this document, please contact

me by email for permission. In any case, you must publicly credit me for the
original work, including a link to my website.

If you wish to mirror either the original article on my website or just this
document, please contact me by email for permission. If you want to hotlink,
please do so with a complimentary explanation, necessary credits and a link
to my website.

If you want to use this document for commercial or business purposes,
please contact me by email with the details of your endeavor so we can discuss
it.

You may not publish a book containing parts or all of this document.
If and when my books (and this Part) get published, I retain the whole

of intellectual and financial rights to them.

4

Disclaimer

I am not very fond of disclaimers, but they are a necessary part of our world.
So here we go:

I must emphasize the purpose of this document is for educational pur-
poses. It is not an official document and should not be treated as such.
Furthermore, I cannot take any responsibilities for errors, inaccuracies or
damages resulting from the use of this book (and its contents).

All of the material in this document has been carefully worded and pre-
pared by me. However, if for some reason you may feel this document in-
fringes on copyright or intellectual property of another work, please contact
me with a detailed explanation pointing to a troublesome part and I will try
to sort the problem in the best way possible.

5

If you like this document...

If you like this document, then please do one of the following:

• Advertise it as much as possible.

• Consider hiring me as a writer, a trainer or an IT manager.

Contact information:

For all issues regarding this document - comments, suggestions, corrections,
complaints, and others - please contact me at the below email address with
Subject: Apache Web server - Complete Guide. Use plain text only without
images or attachments, otherwise your email will be discarded.

Email address: webmaster@dedoimedo.com

6

About the Author

I am a physicist by education and vocation, working in the medical hi-tech
industry. My work expertise focuses on problem solving and algorithm devel-
opment. To this end, I use Matlab extensively, mainly for signal and image
processing. Furthermore, I’m certified in several major engineering method-
ologies, including MEDIC Six Sigma Green Belt, Design of Experiment, and
Statistical Engineering.

I have been using Linux since 2004, having tested at least 30-40 distri-
butions. My favorite distributions are Ubuntu and RedHat. I am also a
certified Linux System Administator and I hold the international LPIC-1
certification. Currently, I’m preparing for the second exam of the LPIC-2
certification.

My cross-OS skills are interoperability between different systems, with
emphasis on network-resources transparency, automation of tasks, scripting,
virtualization, and LAN security.

I have also maintained a website, mostly dedicated to computer-related
topics since mid-2006; the website is often listed and referenced through the
book. On my site, you will find a wealth of guides and tutorials on many
subjects, including many popular Linux distributions.

For more details, please visit my website: http://www.dedoimedo.com/.

7

http://www.dedoimedo.com/

Contents

I Apache Web server - Complete Guide 1

1 Introduction 13

2 Basic Setup 15
2.1 Verify installation . 15
2.2 Package files . 15
2.3 Main configuration file(s) . 17
2.4 Backup . 17
2.5 Edit the httpd.conf configuration file 17

2.5.1 ServerRoot . 19
2.5.2 PidFile . 19
2.5.3 ServerName . 20
2.5.4 /etc/hosts file . 21
2.5.5 DocumentRoot . 24
2.5.6 ErrorLog . 25
2.5.7 Listen . 26

2.6 Create your HTML documents 27
2.7 Start the Web Server . 28
2.8 Access the web site . 31

2.8.1 Local access . 31
2.8.2 External access . 33

2.9 Summary of basic setup . 36

8

www.dedoimedo.com all rights reserved

3 Advanced setup 38
3.1 Directory tags . 39

3.1.1 Order (allow, deny) . 41
3.1.2 Indexes . 44
3.1.3 DirectoryMatch . 47

3.2 Files tags . 47
3.3 Location tags . 49
3.4 Directory, Files and Location 50
3.5 Redirect . 51
3.6 Virtual Hosts . 53

3.6.1 Single IP, two websites 55
3.6.2 Two IPs, two websites 60
3.6.3 Other scenarios . 65

3.6.3.1 Different content for intranet and Internet . . 66
3.6.3.2 Different websites on different ports 68

3.7 Modules . 69
3.7.1 Module types . 70

3.8 View installed modules . 70
3.8.1 LoadModule . 72
3.8.2 mod_access . 74
3.8.3 mod_dir . 74
3.8.4 mod_perl . 75
3.8.5 mod_python . 75
3.8.6 mod_ssl . 75

4 .htaccess 76
4.1 Create .htaccess file . 79
4.2 Create .htpasswd file . 79
4.3 Copy .htaccess to restricted directory 81
4.4 Configure httpd.conf to allow authentication via .htaccess . . . 81
4.5 Restart server . 82

9

www.dedoimedo.com all rights reserved

4.6 Test setup . 82
4.7 Other configurations . 86

4.7.1 Inheritance & performance loss 86
4.7.2 Disable web access to .htaccess 87

5 Secure Web server 89
5.1 Encrypted session . 90
5.2 Requirements . 91
5.3 Limitations . 92
5.4 Setup . 93

5.4.1 Main configuration file(s) 93
5.4.2 Backup . 94
5.4.3 Edit the ssl.conf configuration file - part 1 94

5.4.3.1 LoadModule 94
5.4.3.2 Listen . 95
5.4.3.3 VirtualHost 96

5.4.4 Create SSL certificate 97
5.4.4.1 Create Certificate Authority (CA) 98
5.4.4.2 Create server key 102
5.4.4.3 Create Certificate Signing Request (CSR) . . 103
5.4.4.4 Sign Certificate Signing Request (CSR) with

Certificate Authority (CA) 105
5.4.4.5 Verify certificates 107

5.4.5 Edit ssl.conf configuration file - part 2 110
5.4.5.1 Server Certificate 110
5.4.5.2 Server Private Key 111
5.4.5.3 Certificate Authority 111

5.4.6 Test setup . 112
5.4.7 Mini-summary . 116

5.4.7.1 Names . 117
5.4.7.2 Commands 117

10

www.dedoimedo.com all rights reserved

5.4.7.3 Difference between self-signed and CA-signed
certificates 118

5.4.7.4 Verification 119
5.4.7.5 File names and locations 119

5.5 Extras . 119
5.5.1 Do not use password-protected server keys 119

5.5.1.1 Create server key without password 120
5.5.2 Submission of CSR to CA 121

5.5.2.1 Create CSR 121
5.5.2.2 Send CSR to CA 122
5.5.2.3 Verify certificate 122

5.6 General considerations . 123
5.6.1 Use secure server only 123
5.6.2 Use only IP-based virtual hosts 123
5.6.3 Use server.key as file name for the server key 123

6 Other configurations 124
6.1 Firewall rules . 124

6.1.1 Advanced firewall rules 125
6.1.1.1 Port forwarding 126
6.1.1.2 Destination NAT 127
6.1.1.3 Static NAT 128

6.2 Enable Web server on startup 129

7 Security 130
7.1 Updates . 131
7.2 Hide your server version . 131
7.3 Logs . 133
7.4 Permissions . 133
7.5 Access to root (/) . 135
7.6 AllowOverride . 135

11

www.dedoimedo.com all rights reserved

7.7 Disable public access to .ht files 136
7.8 Dynamic content . 136

7.8.1 Disable CGI . 136
7.8.2 Disable Server Side Includes (SSI) 136

7.9 Disable unnecessary modules 137
7.10 Use ModSecurity (mod_security) module 137
7.11 Chroot Jail . 138
7.12 Secure web server only . 138

7.12.1 Different DocumentRoot 138
7.12.2 Permissions . 139
7.12.3 Duration of certificates 139

7.13 Word of caution . 139

8 Additional resources 140

9 Exercises 141
9.1 Questions . 142

9.1.1 Secure Web server & VirtualHost 142
9.1.2 Directory, Files and Locations 143
9.1.3 Server functionality, 1 143
9.1.4 Server functionality, 2 144
9.1.5 .htaccess . 144

9.2 Answers . 145
9.2.1 Secure Web server & VirtualHost 145
9.2.2 Directory, Files and Locations 145
9.2.3 Server functionality, 1 145
9.2.4 Server functionality, 2 146
9.2.5 .htaccess . 147

12

Chapter 1

Introduction

A Web server is a server that is responsible for accepting HTTP requests
from web clients and serving them HTTP responses, usually in the form of
web pages containing static (text, images etc) and dynamic (scripts) content.

The Apache Web server has been the most popular and widely used Web
server for the last decade. It is used by approximately 50% of all websites.
Apache is cross-platform, lightweight, robust, and used in small companies
as well as large corporations. Apache is also free and open-source.

The Apache Web server has almost endless possibilities, due to its great
modularity, which allows it to be integrated with numerous other applica-
tions. One of the most popular bundles is the LAMP Web server application
stack, which includes the Apache Web server alongside MySQL, PHP, Perl,
and Python.

The Apache Web server is developed by the Apache Software Foundation.
You can read more about Apache on Wikipedia.

Being able to configure and secure the Apache Web server is one of the
most important tasks for a (Linux) system administrator. Almost every
company has some sort of a website that advertises it, including intranet
pages that are used by the company’s workers. The Web interface is used for
many tasks beside pure browsing, including tasks as simple as meal orders

13

http://www.apache.org/
http://en.wikipedia.org/wiki/Apache_HTTP_Server

www.dedoimedo.com all rights reserved

and shift rosters, but also important tasks like administration of databases.
In most cases, a local web server is setup to accommodate these needs.

If you are working for a company that hosts public websites, the task
becomes even more complicated. Web sites are used to serve content to
billions of users daily. Whoever controls this content - controls the World
Wide Web, from news and blogs to financial transactions. Web servers are
hubs of information and power. Misconfigured or compromised servers can
expose a large number of people to undesired content and potentially incur
huge damages to involved parties.

Running a Web site is much more than opening a port and serving a
few HTML pages. There are tremendous network usability and security
considerations that must continuously be met, evaluated and improved in
order to maintain a safe and effective Web server.

In this Part of the Book, we will learn how to properly setup and run the
Apache Web server, including the secure (HTTPS) server.

14

Chapter 2

Basic Setup

In this chapter, we will setup a Web server that will serve pages on our
internal network. In this chapter, we will perform the most basic setup with
the minimum number of steps required to get the server running. Later, we
will slowly expand, introducing new features and options.

2.1 Verify installation

First, we’ll verify that Apache is indeed installed:

rpm -q httpd

If you get an empty prompt or a message saying the package is not in-
stalled, you will need to download and install it. If the shell displays the
package name and version, you’re good to go.

2.2 Package files

Rule no. 1: don’t panic! The list before you might seem intimidating at the
moment, but that is simply because you are not yet familiar with Apache.

15

www.dedoimedo.com all rights reserved

But don’t worry. For now, treat the list as a reference only. At this stage, you
don’t need to know anything or remember anything. We will slowly cover
everything, step by step.

Now, let us overview the location and purpose of the files used by the
Apache server. Please note that the list is partial and includes only the most
important entries. We will slowly expand this list as we go through the Part.

File name Description

/usr/sbin/httpd server binary
/etc/httpd directory containing server

configuration files
/etc/httpd/conf directory containing main

configuration files
/etc/httpd/conf.d directory containing

configuration files for
individually packaged
modules, like ssl, php, perl etc

/etc/httpd/logs symbolic link to
/var/log/httpd

/etc/httpd/modules symbolic link to
/usr/lib/httpd/modules

/etc/httpd/run symbolic link to /var/run
/usr/lib/httpd/modules server modules
/var/log/httpd server log
/var/run runtime variables
/var/run/httpd.pid server process ID
/var/www/html public html files

We will discuss the main configuration file shortly.

16

www.dedoimedo.com all rights reserved

2.3 Main configuration file(s)

The main configuration file for the Apache Web server is:

/etc/httpd/conf/httpd.conf

This file is well commented and self explanatory. It contains quite a large
number of settings, but we’ll concentrate on just the few necessary to setup
the server.

2.4 Backup

This is one of the most important things to remember. Always retain the
copy of the original file so you can easily revert to the default. At the very
least, do NOT delete default lines; instead, just comment them out so you’ll
be able to see what the original settings read and refer to them.

cp /etc/httpd/conf/httpd.conf→
/etc/httpd/conf/httpd.conf-default

2.5 Edit the httpd.conf configuration file

Let’s open this file in vi text editor and review the most important entries.
The file has many options - but we need only a few. In fact, you will need to
change just a single line to create your server and get it running. However,
you should be familiar with some other settings before launching the server.

vi /etc/httpd/conf/httpd.conf

This is what the file looks like - at least the beginning of it:

17

www.dedoimedo.com all rights reserved

Let’s go over the most important entries you should remember for now.

18

www.dedoimedo.com all rights reserved

2.5.1 ServerRoot

ServerRoot is the path to the server’s configuration, error and log files.
It is possible to change this path, provided all the necessary files are copied
to the new location accordingly. We will later review this concept as a part
of the security measure known as the Chroot Jail, but more about that later
(). The default location is /etc/httpd.

As you can see, the file is rich with easy-to-understand comments. Apro-
pos the comments, please note that you should not place a trailing slash at
the end of the specified path.

2.5.2 PidFile

PidFile is the process identification number for the httpd. This process num-
ber is important, because Apache spawns numerous child processes when

19

www.dedoimedo.com all rights reserved

running to accommodate the web traffic. It allows you to monitor and ma-
nipulate your server processes. See image above.

2.5.3 ServerName

This is the one setting you will have to change to get your server running.
This is where you declare the name of your website.

I will use www.ninja.com - just a random name with no association what-
soever to the real site bearing this name.

The generous comments in the file remind us that if we do not have a
registered DNS name, we should use an IP address. One, we’ll discuss regis-
tered DNS names later. Two, we’re going to use the hosts file to demonstrate
the address-to-name translation.

20

www.dedoimedo.com all rights reserved

2.5.4 /etc/hosts file

As you already know, the hosts file allows easy matching of names to IP
addresses, . In general, using the hosts file is a good way of testing your
IP-to-name (or vice versa) configurations before committing these changes
into a production environment.

First, with no new entries added to the hosts file, typing www.ninja.com
in the address bar of a web browser takes us to the site itself (on the Internet).

Now, we shall edit the file and add an entry, pointing www.ninja.com to
a local IP address.

vi /etc/hosts

21

www.dedoimedo.com all rights reserved

After saving the hosts file, we can no longer see the Internet site. Fur-
thermore, we don’t get any fancy results from our own Web server, because
it is not running yet.

22

www.dedoimedo.com all rights reserved

23

www.dedoimedo.com all rights reserved

2.5.5 DocumentRoot

DocumentRoot tells you where your web documents (html files, images
etc) should be located. It is possible to reference files in other directories
using aliases and symbolic links. The default directory is /var/www/html.

24

www.dedoimedo.com all rights reserved

2.5.6 ErrorLog

ErrorLog tells you where the log containing all server errors is located.
This file is critical for debugging and solving server misconfiguration problems
and for proper traffic shaping. By default, all messages with the value of
warning (warn) and higher will be logged. This is described in the LogLevel
directive just below.

The default location is logs/error_log. Please note that this is relative to
the ServerRoot. Therefore, our log file is /etc/httpd/logs/error_log. However,
let us not forget that /etc/httpd/logs is a symbolic link to /var/log/httpd.
Thus, finally, the actual error log is /var/log/httpd/error_log.

25

www.dedoimedo.com all rights reserved

2.5.7 Listen

The Listen command tells the Web server what ports to use for incoming
connections. By default, port 80 is used, although any one or several can be
used. The accepted conventions calls for using port 80 for non-secure web
communications (without any encryption of traffic). Secure web communi-
cations are normally handled on port 443. We’ll talk about the Secure Web
server later.

That’s it. These are all the settings you need to know for now and tamper
with in order to successfully launch the Web server. Save the configuration
file (Esc then :x in vi text editor).

26

www.dedoimedo.com all rights reserved

2.6 Create your HTML documents

Now, just to make things more interesting, we shall create a number of files
and place them in the DocumentRoot directory (/var/www/html), including
a simple index.html file.

Here’s the source of our index.html file (the two echoes are used to make
the output easier to read):

And here is the preview of files we have in the html directory:

27

www.dedoimedo.com all rights reserved

Now that we know what we have, it’s time to power up the server.

2.7 Start the Web Server

Start the httpd service:

service httpd start

If everything worked out fine, the web server should start without any
errors and you should see the following image:

28

www.dedoimedo.com all rights reserved

Still, it does not hurt to check the status of the service or verify its process
ID:

29

www.dedoimedo.com all rights reserved

There are 9 processes running for Apache. This may be confusing, but
there’s a very simple explanation for this. In the httpd.conf file, you will
find a directive called StartServers. This directive tells the Web server how
many server processes to launch on startup. The default setting is 8 server
processes.

Once started, the Web server dynamically kills and creates processes
based on the traffic load, with the number of server processes fluctuating
between MinSpareServers and MaxSpareServers. So far, everything figures
out just nicely. Now, let’s make another check.

The Apache Web server, if configured to listen on port 80 (or any “secure”
port below 1024) must be started as root. Otherwise, it can also be started
by regular (non-root) users. As a security precaution, the server processes
spawned by Apache run as user apache, which belongs to the group apache.
Indeed, we can easily verify that:

30

www.dedoimedo.com all rights reserved

You can change these settings in the httpd.conf file, as well.

2.8 Access the web site

2.8.1 Local access

Now, let’s access our homepage.
Open a web browser and type www.ninja.com in the address bar. Earlier,

we were unable to access it, even though we have specified the entry for our
website in the hosts file. This was because the server was not running. But
now, www.ninja.com resolves to our custom webpage.

31

www.dedoimedo.com all rights reserved

Our server works.

Alternatively, we could have simply accessed it by typing localhost in the
web browser address bar.

32

www.dedoimedo.com all rights reserved

2.8.2 External access

Accessing the web server locally is not the most challenging thing to do. Let’s
access it from other machines.

Here’s our webpage, seen in another CentOS machine, belonging to the
same subnet:

33

www.dedoimedo.com all rights reserved

34

www.dedoimedo.com all rights reserved

Here’s our webpage, seen in the Opera browser running on a Windows
machine:

As you might expect, using www.ninja.com on the other machines does
not yield the desired result. This is because there is nothing telling these
machines to match the name to the IP address of our server (192.168.1.128).
On the server itself, we overcame the problem using the hosts file.

Theoretically, we could do the same thing on every host on our network,
but this is slightly impractical and cumbersome. However, this will not solve
the problem of accessibility from hosts that we have no control of, outside
our local network. To overcome this monumental problem, we’ll use name
resolution by configuring and running a Domain Name System (DNS) server.
This material is covered in great detail in the next Part.

35

www.dedoimedo.com all rights reserved

Meanwhile, everything works as we’ve expected. Soon, we will go over
some advanced configurations.

2.9 Summary of basic setup

To make things simple and clear, here’s an overview of the steps you will
have to take to setup and launch Apache:

• Verify installation of the Apache RPM.

• Backup the /etc/httpd/conf/httpd.conf main configuration file.

• Open it in the vi text editor and review the options listed therein.

• Setup the DocumentRoot directive (default /var/www/html).

• Setup the ServerName directive (for example, www.ninja.com).

36

www.dedoimedo.com all rights reserved

• Optionally setup other directives (like ServerRoot, ErrorLog, Listen
etc).

• Configure the /etc/hosts file so that you can access the website by
name.

• Create a sample HTML file and place it in the DocumentRoot directory.

• Start the httpd server.

• Test the setup by accessing the web site.

37

Chapter 3

Advanced setup

The httpd.conf file can be extensively customized using a range of directives.
We have studied a few and will now review several more. Please note that it
is impossible to list every single directive here. Nevertheless, we will go over
some of the more useful and practical directives, which will greatly enhance
the usability (and also the security) of your web server.

38

www.dedoimedo.com all rights reserved

3.1 Directory tags

Directory tags allow you to specify the configurations separately for each
directory serving the web pages. If you are familiar with HTML and CSS,
then using <div> containers might be the simplest analogy. This allows you
to serve content to specific IP ranges while denying other ranges, limit access
to certain files, set the behavior of pages contained in these directories, and
more.

Just about any directory can be listed, although it is not necessary. The
most sensible solution is to setup very restrictive parameters to the root (/)
directory and custom, desired parameters to directories insideDocumentRoot.

Directory tags take the following form (again this is very analogous to
HTML <div> tags):

39

www.dedoimedo.com all rights reserved

• <Directory directory_path> tag begins a block.

• Next, follows a series of options defining what users accessing web pages
located in this directory can do.

• </Directory> tag closes the block.

Here’s a sample block, showing the default settings applied to the root (/)
directory:

<Directory />
Options FollowSymLinks
AllowOverride none

</Directory>

Let’s try to understand what we have here:

<Directory />
This declares the block for the root (/) directory and all sub-directories.

Options FollowSymLinks
The Options directive declares which server features are valid for the

specified directory; FollowSymLinks is one of the possible options - it allows
webpages to use symbolic links to point to files located anywhere on the root
(/) directory. Please note this is not the best configuration from the security
point of view; however, it does demonstrate the functionality of the Directory
tags. We will discuss the server security measures later in the Part.

AllowOverride none
The AllowOverride directive governs the behavior of .htaccess files (more

about them later). It tells whether the restrictions imposed by the Options
can be overridden by specific settings inside the .htaccess files. The default

40

www.dedoimedo.com all rights reserved

behavior is set to none and should remain that way. This will prevent security
breaches or nuisances due to misconfiguration.

</Directory>
This tag closes the block.

3.1.1 Order (allow, deny)

Allow and Deny directives govern the access to the directory declared (via
the Directory tags). The Order directive specifies how the allow and deny
directives are treated. The Order of allow, deny can be looked upon as
default-allow or blacklist; only “bad” hosts or IPs are disallowed. The Order
of deny, allow can be looked upon as default-deny or whitelist; only “good”
hosts or IPs are allowed.

Possible declaration of allowed or denied clients can be via host name,
domain name, IP address, partial IP address, and more.

Here, we’ll restrict access to the directory (or rather, the server) by deny-
ing access from all - and only permitting access from a single IP address,
that of another machine on the LAN (in this case, 192.168.1.129).

41

www.dedoimedo.com all rights reserved

Let’s review the changes to the httpd.conf file:

• I have commented out the original parameters, which allowed access
from all hosts (or IPs).

• I have changed the order of allow, deny directives. Again, this is im-
portant, because the order defines the precedence of the rules. Thus,
first, we’ll deny everyone (this can be called default deny policy, so to
speak) and then permit only specific hosts (or IPs). If the Order were
reversed (allow, deny rather than deny, allow), no one would be able
to access the server. This is critically important to remember when
implementing allow, deny policies.

The changes will only take effect after the Web server is restarted or the
configuration file reloaded. This can be achieved by running either:

service httpd restart

42

www.dedoimedo.com all rights reserved

Or:

service httpd reload

After httpd reads the new configuration file, the changes will take effect.
Now, let’s try to access the server from the Windows machine.

As you can see, we are denied access. But accessing from the CentOS
client with the IP of 192.168.1.129 works fine.

43

www.dedoimedo.com all rights reserved

3.1.2 Indexes

The Indexes directive tells the server whether to display the directory listing
when asked. The behavior of this directive depends on another directive -
the DirectoryIndex. The DirectoryIndex directive tells the server the name
of the default page that it should serve when a user requests the listing of a
directory.

This is the typical everyday scenario. Users are trying to access web-
pages by simply typing their names, without typing the exact homepage
(like index.html, index.php etc). Various file names specified under the Di-
rectoryIndex are looked for and the first one found is presented to the user.
If no file is found, the listing of the directory is then generated by the server.

This is something you may want to avoid, especially if there are files you
do not wish your users to see. However, if the Options Indexes directives are

44

www.dedoimedo.com all rights reserved

used, then directory listings will be generated.
One solution is to place a dummy index.html file in every directory, but

this is cumbersome. The more elegant approach is to disable the listing
globally (remove Indexes from the Options directive under DocumentRoot)
and then allow per-directory listing when you see fit.

The default configuration in the httpd.conf file specifies Options Indexes
for the Directory tags of the default DocumentRoot (/var/www/html). We
will change that.

First, we will remove Indexes from the Options line for our DocumentRoot.
Then, we will create two directories, called index_allow and index_deny,
where only the first will have the Options Indexes specified. Both of these
directories will contain some random files.

45

www.dedoimedo.com all rights reserved

This is the new configuration file. Save it, then restart httpd. Now, if
we request the directory listing for each one from our clients, we’ll get the
following results:

index_allow

46

www.dedoimedo.com all rights reserved

index_deny

3.1.3 DirectoryMatch

The directives enclosed in the Directory tags will be indiscriminately applied
to all sub-directories. If you require a more fine-tuned approach for several
similar sub-directories, you will have to use the DirectoryMatch tags. The
main difference is that the DirectoryMatch tags allow the use of regular
expressions, allowing you to match several sub-directories inside a single rule.

Again, for those familiar with HTML / CSS and the use of classes and
ids, the idea is very much similar.

3.2 Files tags

The Files tags are very similar to the Directory tags. The major difference is
that while the Directory tags govern the scope of permissions (or restrictions)

47

www.dedoimedo.com all rights reserved

of the enclosed directives by directory name, the Files tags do the same on
the file name level. In other words, the Files tags can be used to configure
the behavior of a single file - or a set of files that match a regular expression.

Here’s an example, showing the restrictions applied to .htaccess and .ht-
passwd files, the files usually used in restricting access to certain directories
(and/or files) by requiring users to authenticate before viewing the content:

We will review this particular example later in this Part.

In the above example, we’ve seen the use of regular expressions to allow
multiple files to be covered by a single rule. However, a comparable directive,
more suitable for handling multiple files and complex regular expressions is
the FilesMatch directive.

48

www.dedoimedo.com all rights reserved

3.3 Location tags

Again, the Location tags are quite similar to the two mentioned above. The
major difference is that the Location tags are used to limit the scope of
enclosed directives by URLs.

In other words, the Directory and Files tags should be used to control
content that resides on the system (like various files and images, within their
sub-directories), while the Location tags should be used to control content
that is located outside the system, like databases, for instance.

Below, we can see a commented example included in the httpd.conf file.
If enabled, this block would allow you to access your server statistics, but
only if you connected from the server itself.

49

www.dedoimedo.com all rights reserved

Here’s an example (please disregard the actual URL):

Again, for complex regular expressions, you should use the LocationMatch
directive.

3.4 Directory, Files and Location

The Directory, Files and Location tags all perform a similar function: they
categorize what restrictions are placed on content enclosed by each one. At
first glance, there seems to be very little difference between them. However,
just like the order of allow and deny directives is critical, so is the correct
use of these tags.

The configuration sections must be placed in a very particular order to
make sure they behave as intended. The order of precedence of their exe-
cution by the server means that a misplaced section could compromise the
security of the server - or not get executed at all.

50

www.dedoimedo.com all rights reserved

For more details, please refer to the following Apache documentation
page: Configuration Sections - Apache HTTP Server.

3.5 Redirect

The Redirect setting allows you to map an old webpage to a new URL. This
could be the case if you changed domain, for example, or moved around a
lot of files, renaming and deleting them. To demonstrate the directive, we’ll
map our server to point to my own site.

51

http://httpd.apache.org/docs/2.0/sections.html

www.dedoimedo.com all rights reserved

Save the file, restart the server.

52

www.dedoimedo.com all rights reserved

3.6 Virtual Hosts

Virtual Hosts is an important, powerful feature that allows you to run several
websites from a single computer. Virtual Hosts can be IP-based or named-
based, offering a high level of customization (and flexibility).

Virtual Hosts can use almost any option normally used in the httpd.conf
file. To make you better understand this, you can treat Virtual Hosts as
individual customized httpd.conf files nested inside the main httpd.conf file.

53

www.dedoimedo.com all rights reserved

Let’s review a sample Virtual Host:

<VirtualHost *:80>
DocumentRoot /var/www/html/ninja-father
ServerName www.ninja-father.com
other directives

</VirtualHost>

What do we have here?

<VirtualHost *:80>
This declares the name or the IP address of the site (server) that should

be served using the directives inside the VirtualHost block on port 80. If
no port number is used, the default one specified under the Listen option
is used. The default port is 80 (standard convention). Asterisk (*) can be
replaced with any name (for example, www.ninja.com) or IP address (for
example, 192.168.1.128), depending on your needs and requirements. Let see
several simple examples:

• <VirtualHost 192.168.1.128:80> will apply the directives listed in the
block below to all incoming connections aimed at 192.168.1.128 on port
80.

• <VirtualHost 192.168.1.128> will apply the directives listed in the
block below to all incoming connections aimed at 192.168.1.128 on the
default port (as specified in the Listen directive). If this port is 80,
then this option is identical to the one above.

• <VirtualHost planck.matter.com> will apply the directives listed in the
block below to all incoming connections aimed at planck.matter.com on
the default port (which can be 80, 8080 or any other).

54

www.dedoimedo.com all rights reserved

• <VirtualHost ninja.com:8777> will apply the directives listed in the
block below to all incoming connections aimed at our site ninja.com on
port 8777. This port must be specified under the Listen directive.

DocumentRoot /var/www/html/ninja-father
This declares the directory where you should place all files that you wish

served when the VirtualHost is invoked (matching names or IPs and the
port).

ServerName www.ninja-father.com
This is the name of the server. In other words, this is the address people

will type in the web browser address name in order to get to your site. In
order to successfully resolve this name to the IP address of the Web Server,
we will need to use /etc/hosts file like before or setup a DNS Server (later).

other directives
This is just a comment specifying many other options can be used, in-

cluding those we have not yet reviewed here.

OK, now that we know what we’re dealing with, let’s create and test
several scenarios.

3.6.1 Single IP, two websites

This is one of the most common setups. We will create two websites -
www.ninja-father.com and www.ninja-son.com. Both will reside on our server,
which has the IP address 192.168.1.128. In order to make them both acces-
sible to the world, we will create two VirtualHost blocks and declare their
DocumentRoot and ServerName separately.

Here’s what we need to do:

55

www.dedoimedo.com all rights reserved

• Create directories inside /var/www/html called ninja-father and ninja-
son.

• Create simple index.html files for each.

• Edit httpd.conf and create our two VirtualHost blocks.

Here’s what the httpd.conf looks like:

Now, for the sake of convenience, we will also use the /etc/hosts file to
allow name resolution to work. It is also imperative in our case, because
using the IP address would always point to the first VirtualHost listed in the
httpd.conf file.

56

www.dedoimedo.com all rights reserved

Please note that specifying an IP address in two different lines is wrong.
The hosts file will always use only the first entry. You should list all

names for a specific IP in a single line.

For example, this is incorrect (although it would work in our case):

57

www.dedoimedo.com all rights reserved

Don’t mind the commented lines, they are used for other configurations:
the first, our standard website; the second, for yet another VirtualHost sce-
nario, which we will discuss soon.

Now, we shall save the files (both httpd.conf and /etc/hosts) and restart
httpd. Then, using Firefox, we will try to access each one.

58

www.dedoimedo.com all rights reserved

www.ninja-father.com

59

www.dedoimedo.com all rights reserved

www.ninja-son.com

It works like magic. Best of all, the user has no idea that these two sites
reside on the same machine.

3.6.2 Two IPs, two websites

This is another common scenario. You can assign a different IP to each web-
site, avoid possible resolution mixups and simplifying your setup. However,
this requires that you either use more than a single network adapter or create
virtual adapters. If you have, let’s say 14 websites, having 14 physical net-
work devices plugged into your machines is not the best idea. Using virtual
adapters is the most sensible choice here.

We already have our two websites ready. We just need to create a virtual
network card and then change the httpd.conf file to reflect the changes.

First, we will create a virtual adapter (eth0:1) with the IP address of
192.168.1.200.

60

www.dedoimedo.com all rights reserved

61

www.dedoimedo.com all rights reserved

Then, we’ll edit the httpd.conf file.

62

www.dedoimedo.com all rights reserved

Lastly, we’ll edit the /etc/hosts file.

After restarting the server, we’ll be able to get to our two sites easily.
Again, the change is completely transparent to the user.

www.ninja-father.com

63

www.dedoimedo.com all rights reserved

64

www.dedoimedo.com all rights reserved

www.ninja-son.com

Excellent.

Please note that the configuration of the virtual network adapter is tem-
porary. You will have to create a network script to preserve the change
between reboots. This setup has covered extensively in Part ?: Networking
- sub-part 2: Basic and intermediate configurations ().

3.6.3 Other scenarios

Basically, the above two scenarios cover pretty much everything. Once you
get the hang of VirtualHost setting, creating any which setup becomes a
simple matter. Nevertheless, for the sake of clarity, I will demonstrate several
more typical scenarios in the examples below, including some features not
mentioned yet in this Part of the Book.

65

www.dedoimedo.com all rights reserved

3.6.3.1 Different content for intranet and Internet

In practice, this scenario is very similar to having 2 different IPs serving two
different websites, except that you will use one website but serve different
parts of it to different customers.

Let’s assume you wish to achieve the following:

• Allow users on the local network access to all content, but deny some
to users on the Internet.

• Allow users on the local network to list directory index, but deny this
feature to the Internet users.

• Display a different home page to local users and external customers.

• Allow certain custom scripts to be available only to external customers.

Here’s what a sample configuration in httpd.conf file would look like:

AddHandler cgi-script .cgi

NameVirtualHost 172.16.1.1:80
<VirtualHost 172.16.1.1:80>

DocumentRoot /www/intranet
ServerName www.our-company.com
<Directory /www/intranet>

Option Indexes FollowSymLinks
</Directory>

</VirtualHost>

NameVirtualHost 211.211.211.211:80
<VirtualHost 211.211.211.211:80>

DocumentRoot /www/web

66

www.dedoimedo.com all rights reserved

ServerName www.our-company.com
<Directory /www/web>

Options +ExecCGI FollowSymLinks
</Directory>

</VirtualHost>

This examples introduces a number of concepts we have not yet seen, so
let’s briefly review them:

NameVirtualHost
This directory allows you to map named-based incoming connections to

specific IP addresses. You might ask yourselves why you need this, when
we have seen perfectly good examples before, without this feature. Well,
the answer is: if somehow a named-based request gets “lost” (due to DNS
configuration, firewall rules or similar), it might not match any of the Vir-
tualHost blocks. In that case, the default settings configured in httpd.conf
will be applied to this request, which could be contrary to your needs. Using
NameVirtualHost forces all incoming connections to a certain IP address to
point to a certain VirtualHost block. This request will also never fall back to
the main configuration, allowing you a complete modularity in your setup.

Thus, in our example, all requests to the internal IP address will go the
VirtualHost with this IP address declared. We can also see that the users
will be able to view directory listings and follow symbolic links.

+ExecCGI
We see this directive listed under Options in the second block, which

refers to the Internet customers. All incoming connections on the external
IP will go to the VirtualHost with this IP declared. We can see the users
won’t be able to demand directory listings, but they will be able to follow
symbolic links - and execute .cgi scripts located in this directory.

67

www.dedoimedo.com all rights reserved

The ExecCGI directive tells the server to allow server-side scripting in the
specified directory. The plus (+) signs signifies this Option is used in addition
to all those Options already specified for the root directory. Similarly, the
minus (-) sign can remove some of the privileges, compared to the Options
already specified for the root directory.

However, alone, this directive is insufficient to allow scripting in this
directory.

AddHandler cgi-script.cgi
In order to enable .cgi scripts to work outside the default script directory,

a directive must be added to the httpd.conf configuration file. Indeed, this is
the first line of our sample code - AddHandler cgi-script .cgi - it allows scripts
in non-default directories to be executed, by using the +ExecCGI option, as
we’ve done before.

The Apache Web server has many other options and features. You are
welcome to try them all, using this Part of the Book as the foundation for
expanding your knowledge. For more information, please refer to:

• Apache HTTP Server Version 2.o Documentation

• RedHat Enterprise Linux 4: Reference Guide, Chapter 10: Apache
HTTP Server

3.6.3.2 Different websites on different ports

We’ve already discussed this before. Let’s say you have a single IP address
with multiple websites served. Using the hosts file or DNS resolution is a
possibility, but this might not always work. Configuring the Web server to
listen on several ports for incoming connections and then using NameVir-
tualHost feature to force the connections to specific VirtualHost blocks will
force the server to behave as you desire.

68

http://httpd.apache.org/docs/2.0/
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/ref-guide/ch-httpd.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/ref-guide/ch-httpd.html

www.dedoimedo.com all rights reserved

Here’s an example:

Listen 192.168.1.128:80
Listen 192.168.1.128:9021

NameVirtualHost 192.168.1.128:80
<VirtualHost 192.168.1.128:80>

DocumentRoot /www/white-socks
ServerName www.white-socks.com

</VirtualHost>

NameVirtualHost 192.168.1.128:9021
<VirtualHost 192.168.1.128:9021>

DocumentRoot /www/black-socks
ServerName www.black-socks.com

</VirtualHost>

For more examples, please refer to: VirtualHost Examples - Apache
HTTP Server.

3.7 Modules

Modules are extensions that enhance the basic functionality of the Web
server. The modules reflect the growth of the Web and the inclusion of
dynamic content into the web pages. The static HTML can provide only
so much functionality. In fact, many of the options we have seen and used
above are provided by different modules. For example, the Order directive
is provided by the mod_access module.

69

http://httpd.apache.org/docs/2.0/vhosts/examples.html
http://httpd.apache.org/docs/2.0/vhosts/examples.html

www.dedoimedo.com all rights reserved

3.7.1 Module types

There are two types of modules:

• Built-in modules, which are compiled into Apache and will load with
the server any time it is started. Their functionality cannot be removed
without recompiling the package. These modules are also known as
static.

• Loadable modules, which can be loaded on and off as required. These
are the shared modules.

3.8 View installed modules

You can always list the modules currently used by the server. The command
below will display only the modules compiled into Apache.

70

www.dedoimedo.com all rights reserved

httpd -l

71

www.dedoimedo.com all rights reserved

This command will list all modules, both static and shared:

httpd -M

There is a wide range of modules available. We will review a number of
more common ones. Please note that the list below is only partial and just
briefly introduces the range of available modules.

3.8.1 LoadModule

Shared modules are called by the Web server using the LoadModule directive
in the httpd.conf file. If you do not wish to use a certain module, simply com-
ment its line. However, you must remember this will remove the functionality
that the module provides.

72

www.dedoimedo.com all rights reserved

73

www.dedoimedo.com all rights reserved

These modules are referenced by a symbolic link in the /etc/httpd/ di-
rectory, pointing to /usr/lib/httpd/modules.

Let us go over some of the more interesting modules, just a sampling.

3.8.2 mod_access

This module provides access control based on client host name, IP address,
or other characteristics of the client request.

3.8.3 mod_dir

This modules provides interface for redirects and serving directory indexes.
We have reviewed quite a bit of its functionality in the previous sections.

74

www.dedoimedo.com all rights reserved

3.8.4 mod_perl

This module allows dynamic content produced by Perl scripts to be served
to incoming requests without using the Perl interpreter every time, reducing
overhead and system load. This is done by embedding a Perl interpreter
into the Apache server. The module can also emulate a CGI environment,
allowing the reuse of Common Gateway Interface (CGI) scripts without any
changes to the setup.

3.8.5 mod_python

mod_python allows integration of the Python programming language into
the Apache server. It is intended to replace CGI as a method of executing
Python scripts on a web server. It offers much faster execution and allows
data to be maintained over multiple sessions.

3.8.6 mod_ssl

This module provides an interface to the OpenSSL library, allowing the use
of Secure Socket Layer (SSL) and Transport Layer Security (TSL) secure
communication protocols. This allows you to run a Web server that will
run encrypted sessions with clients, allowing a safe exchange of potentially
sensitive data. We will discuss this module again when we setup a secure
Web server (7.12).

For a detailed list of available modules and their functionality, please refer
to: Apache HTTP Server Module Index.

75

http://httpd.apache.org/docs/2.2/mod/

Chapter 4

.htaccess

.htaccess stands for hypertext access. This is the default name of the Apache
directory-level configuration file. This file can be used to create security
restrictions for particular directories. One of the most common uses is to
require user authentication in order to serve certain web pages.

Before we setup .htaccess, there are some things you should remember:

• .htaccess is not a replacement for a carefully laid out security plan. You
should use the httpd.conf file to place restrictions on your server. Only
then should you use .htaccess, to further restrict the already allowed
users.

• Do not ever use .htaccess to handle secure or privileged content, like
user data.

• .htaccess file is loaded every time a webpage is requested, incurring a
performance loss.

• Using this file grants individual users an ability to make security modi-
fications to your site, creating possible risks if not properly configured.

On the other hand, using .htaccess is useful if you run a multi-user hosting
plan. These users do not have root access to the main configuration file and

76

www.dedoimedo.com all rights reserved

their only way of “shaping” traffic is by using the .htaccess file. In general,
the use of the .htaccess file should be limited to non-root users only.

Before we can setup access-protected pages, we need to briefly overview
the layout and syntax of the .htaccess files. Let’s examine what a typical
.htaccess file looks like. Then, we will combine it with our web content.

AuthType Basic
AuthName “Restricted web page”
AuthUserFile “/etc/httpd/conf/.htpasswd
require valid-user

AuthType Basic
This line defines the type of authentication. Basic means there is no en-

cryption and the password hash is sent as clear text. This is one of the major
reasons why .htaccess cannot be considered for protection of confidential user
data.

AuthName "Restricted web page"
When someone tries to access an .htaccess-protected page, a username &

password window will pop in the web browser. This window will bear a title
- this is the AuthName. It can be anything you like.

AuthUserFile /etc/httpd/conf/.htpasswd
This line defines the path to a file where user credentials are stored. This

file does not exist, but we will create it soon.

require valid-user
This line indicates only successful authentication attempts will result in

the loading of the page.

77

www.dedoimedo.com all rights reserved

Now that we know what we’re about, we will:

• Create an .htaccess file similar to the one above.

• Create the .htpasswd file containing usernames & password necessary
for the authentication.

• Place .htaccess in the directory we wish users to validate before access-
ing the content.

• Tell httpd to allow user authentication via .htaccess files.

• Restart the server.

• Test the results.

78

www.dedoimedo.com all rights reserved

4.1 Create .htaccess file

4.2 Create .htpasswd file

First, we will access the directory where we intend to place the file - /etc/httpd/conf.
It can be any directory, but it must be outside the DocumentRoot, so it so
not viewable by your clients. Furthermore, only the root should be able to
modify this file.

Make sure only root can modify the .htpasswd file! It should have
permissions set to 0644.

79

www.dedoimedo.com all rights reserved

Users and passwords are added to the file by running the htpasswd com-
mand.

htpasswd -c .htpasswd username

The name of the authentication file can be anything. You may consider
changing it to something else.

After you have finished adding the usernames (there can be one or more),
you can see the contents of the .htpasswd file. The passwords are encrypted.

80

www.dedoimedo.com all rights reserved

4.3 Copy .htaccess to restricted directory

We will place the .htaccess file in our DocumentRoot. To make things inter-
esting, we will also change the site and the homepage somewhat. Instead
of ninja.com, we will serve ourserver.com. This is the site we will use to
configure a DNS server in the next Part ().

4.4 Configure httpd.conf to allow authentica-
tion via .htaccess

By default, .htaccess files are given no control whatsoever. This is accom-
plished by the AllowOverride directive. This directive specifies what the
.htaccess files can do - in addition and contrary to main configuration set-

81

www.dedoimedo.com all rights reserved

tings. Please note that this could pose a security risk. Badly configured
.htaccess files can compromise the security of your system.

We will allow .htaccess to authenticate users. We will replace the original
AllowOverride none to AllowOverride AuthConfig.

4.5 Restart server

service httpd restart

4.6 Test setup

This is the webpage, seen without any restrictions.

82

www.dedoimedo.com all rights reserved

83

www.dedoimedo.com all rights reserved

Now, after restarting the server, we will be asked for authentication cre-
dentials.

84

www.dedoimedo.com all rights reserved

If we succeed, we will reach the webpage, like before.

85

www.dedoimedo.com all rights reserved

If we enter the wrong username & password - or none, we will be rejected.
You can customize the “reject” page, if you like.

4.7 Other configurations

While this pretty much covers the basic setup of .htaccess files, there are
several more things you should remember.

4.7.1 Inheritance & performance loss

Please remember that the .htaccess restrictions are inherited by all sub-
directories that exist in the directory you have placed the file. This means
that whenever one of your clients tries to access a page in one of the sub-
directories, the server will have to make a recursive search up the directory
tree until it finds the file. Furthermore, even if it does find the file, the server

86

www.dedoimedo.com all rights reserved

will have to check up every directory up the tree to create a complete set of
restrictions.

4.7.2 Disable web access to .htaccess

By default, Apache prevents any file beginning with letters .ht to be visible
through the web browser. This is a minor security consideration, which
allows you to keep your .htaccess files safe from prying eyes, even though
they are located in world-readable location (DocumentRoot directories and
sub-directories).

This behavior is governed by the combination of the AccessFileName and
Files directives. We have seen this example earlier when we review the Files
tag; now, we can see them in practical use.

You can also setup other types of files - or just specific files - from being
accessible - or accessible only to certain hosts.

87

www.dedoimedo.com all rights reserved

Indeed, if we try to reach .htaccess through the web browser, we will be
denied access.

88

Chapter 5

Secure Web server

Running a secure Web server is something you should consider if the daily use
of your websites will include an exchange of confidential, private information
from your users. Regular Web servers send and receive traffic in unencrypted
form. Unfortunately, this makes them vulnerable to man-in-the-middle at-
tacks, where a potential attacker could use sniffer tools to log packets en
route from clients to the server and derive sensitive information from them.
This mode of security is completely unacceptable for websites that must deal
in personal data, like bank accounts, medical or financial records, or others.

The secure Web server eliminates this threat by offering two key advan-
tages:

• It allows users to verify the identity of the server.

• It allows users to conduct safe transactions with your server by en-
crypting the authentication and the session.

To achieve this, the Apache Web server uses secure communication protocols
like the Secure Socket Layer (SSL) or the Transport Layer Security (TLS) to
protect the flow of data.

89

www.dedoimedo.com all rights reserved

5.1 Encrypted session

Before we setup a secure server, we should first understand how encrypted
communication between the server and the client is conducted. Let us outline
the details of a typical secure session:

• A client tries to connect to port 443 on the secure Web server.

• The client sends a list of available encryption methods it supports; if
the client cannot support encryption, for instance very old browsers,
the connection attempt will be unsuccessful. Modern browsers support
both SSL and TLS without any problems.

• The server will choose the strongest available encryption method that
both sides can support.

• The server will then send back to the client its certificate and the pub-
lic encryption key. The certificate is a sort of an ID, telling the client
important information about the server. To make this information
credible, the certificate must be signed by a reputable Certificate Au-
thority (CA), like EquiFax, Thawte or others. The public key will be
used by the client to generate its own encryption hash should it choose
to accept the server’s certificate.

• The client receives the certificate. In most browsers, the certificate is
first compared to an existing list of authorities. If the digital signature
matches, the certificate will be accepted. If no match is found for the
certificate, the browser might use the Online Certificate Status Protocol
(OCSP) to connect to CAs in real time in an attempt to verify the
certificate. Generally, the use of OCSP is not enabled by default in
most browsers, in order to speed up the authentication process. If no
match is found still, the client will be issued a warning by the browser,
informing it that the certificate could not be verified. The user now

90

www.dedoimedo.com all rights reserved

must decide whether he/she can take the risk and accept the certificate.
In addition to being self-signed (i.e. no CA signature), the typical
issues arising with certificate prompts include a mismatch between the
site you are trying to access and the one registered in the certificate,
dubious credentials or an expired certificate.

• Regardless of what may occur, if the client accepts the connection, it
will send back a hash encrypted with the server’s public key. This hash
will be used to encrypt all communication between the server and the
client throughout the session. Only the client will be able to decrypt
the communications - or rather, anyone who possesses the private key.
But if the client side is fairly secure and the server’s certificate is valid,
the communication is safe.

5.2 Requirements

We have already mentioned that the client must support some sort of en-
cryption to able to establish secure connections to a server. On the server
end, the server must also support the secure communication protocols. The
Apache Web server uses the mod_ssl module, which provides an interface to
the OpenSSL library, allowing the use of SSL and TLS.

By default, most distributions today ship with the OpenSSL library in-
stalled and the Apache server compiled against the mod_ssl module. If your
distro does not include either one or both, you will have to obtain them
before you can use a secure Web server.

You can check if you have the OpenSSL library installed:

rpm -q openssl

And to certify if Apache uses mod_ssl, you should look for it in the
/etc/httpd/modules directory.

91

www.dedoimedo.com all rights reserved

5.3 Limitations

On one hand, the secure Web server offers verification of the server’s identity
and safe transactions. On the other hand, it is slower than the regular
server. Therefore, you should take into consideration the performance loss
stemming from the use of encryption. You should not use the secure Web
server for regular daily content that does not include any exchange of personal
information.

92

www.dedoimedo.com all rights reserved

5.4 Setup

5.4.1 Main configuration file(s)

The main configuration file for the secure Apache Web server is:

/etc/httpd/conf.d/ssl.conf

This file is very similar to httpd.conf, except that it includes a number
of special directives. But the principle remains the same. Basically, the
configuration file contains a VirtualHost block, where all secure Web server
directives should be listed. We will edit this block to suit our needs.

93

www.dedoimedo.com all rights reserved

5.4.2 Backup

We will first backup the file before making any changes.

cp /etc/httpd/conf.d/ssl.conf →
/etc/httpd/conf.d/ssl.conf-backup

5.4.3 Edit the ssl.conf configuration file - part 1

Again, we need to make a number of changes to get our server to work.
However, before we can fully edit all of the necessary options, we will have
to digitally sign our server. This includes creating the public key and signing
it with a certificate from a known, reputable CA. However, since we do not
have a certificate, it costs money and the process takes time, for the purpose
of this exercise, we will create our own CA and use it to sign our server.

But first, let us review the most important directives that we need to get
our server started. The procedure is identical to what we have done earlier.

5.4.3.1 LoadModule

94

www.dedoimedo.com all rights reserved

This directive instructs the server to use themod_ssl module. The path is
relative to the ServerRoot directive specified in the httpd.conf configuration
file. Without loading the module, our encryption will not work.

5.4.3.2 Listen

This directive instructs the server to listen for incoming connections on port
443. This is the accepted convention for secure Web communications (https).
It is critical that this port be different from the port used by the regular
server. See the image above.

95

www.dedoimedo.com all rights reserved

5.4.3.3 VirtualHost

Here, we define our secure Web server. Using the VirtualHost block is
the most elegant way of doing it. This allows you to create additional blocks
and serve additional secure sites to your clients, allowing you an extra degree
of flexibility and security.

Like we did before, we need to setup the DocumentRoot, the ServerName
and other directives. Let us review the most important elements:

<VirtualHost *:443>
This tells our server to listen on all interfaces for incoming connections

on port 443. You may consider narrowing down the range to specific IP
addresses. Nevertheless, it is important to remember that you can only use IP
addresses! The secure Web server does not permit named-based connections

96

www.dedoimedo.com all rights reserved

in its VirtualHost block. This is because the SSL handshake occurs before
the HTTP request can identify the named-based virtual host.

Use only IP-based VirtualHost directives in the ssl.conf configuration
file! Name-based virtual hosts will fail.

DocumentRoot "/var/www/html"
This directive specifies the directory where all your web pages should be

stored. It is recommended that you use a different root for non-secure and
secure pages. However, in our example, we will use the default selection.
Just remember that this is NOT the optimal setting.

ServerName www.ourserver.com:443
This entry defines the server name. If you do not use the hosts file or

DNS server for name resolution, you will have to specify an IP address. We
have solved this limitation earlier, so we can use the server name here. In a
production setup, where your server is used by clients on the Internet, you
will have to use DNS for name resolution. For study and testing and in small,
private networks, the hosts file is an adequate solution.

This covers the first part of our setup. Now we must create the certificate.

5.4.4 Create SSL certificate

Like we said before, we will create a CA, create a server key and then sign
the key with our self-created CA. In a production setup, this will not work. If
you intend to run any semi-serious business, you will have to use a reputable,
world-acknowledged CA to sign your certificates.

97

www.dedoimedo.com all rights reserved

Please note that the comparison between our setup and the real scenario
can be slightly confusing. If you get lost, there’s a table summary (5.4.7) at
the end of this section, emphasizing the important differences between the
two setups.

5.4.4.1 Create Certificate Authority (CA)

The first step is to create an encryption key, which we will use to sign our
CA. Please note that you should use a meaningful name for the key. The
best way to avoid confusion is to use the letters ca in the name of the CA
key. Likewise, use the word server when creating the server key.

I have chosen the name myca.key, so that we do not confuse this self-
generated key (and the CA) with real keys.

98

www.dedoimedo.com all rights reserved

Let us review the command:

openssl genrsa -des3 -out myca.key 4096

This OpenSSL command line tool will generate an RSA key, using the
Triple-DES cypher. The -out flag signifies the output name. The number
at the end of the command tells us how long the key will be; generally, the
longer the better. A 4096-bit encryption is quite sufficient.

Please refer to openssl man page for more details.
After the key is created, you will be asked to use a password. This means

you won’t be able to use this key without providing the password. While in
theory, this is an interesting security measure, it offers little actual benefit.
We’ll discuss this soon.

Now that we have the key, we will create a CA.

openssl req -new -x509 -days 365 →
-key myca.key -out myca.crt

99

http://linux.die.net/man/1/openssl

www.dedoimedo.com all rights reserved

What do we have here? Well, basically, we are creating a certificate, using
the key we have created earlier. Let us go over the details:

req -new -x509
This part of the command tells us we want to issue a new X.509 Certificate

Signing Request (CSR), where X.509 is an international standard for public
key and privilege management infrastructures. In simple words, we want to
create a certificate that will identify our CA.

-days 365
This tells us how long the certificate will be valid. Security aspects of

this parameter are examined in greater depth in the Security chapter (7.12).

100

www.dedoimedo.com all rights reserved

-key myca.key -out myca.crt
We will use the key we have created earlier to sign the certificate for the

CA.

The command will invoke a guided text-interface wizard. We will have
to provide the password for the certificate key before we can continue. Af-
ter that, we will have to fill out an interactive form, including the basic
credentials that will identify us as the CA.

Please note that you should be careful when entering the Common Name.
You should use meaningful entries that will allow you to easily distinguish
your records, especially if you have several CAs. Most people will never have
to bother with this setting, but should a need arise, here’s a pair of simple
rules that you should adhere to when creating CAs:

101

www.dedoimedo.com all rights reserved

• For each CA, use the name of the site it will certify; in our case, ours-
erver.com (or www.ourserver.com).

• Append the letters CA to the end of the Common Name, so you will
know this is the CA entry.

In a real life situation, your credentials would be replaced with those of an
existing, reputable CA.

5.4.4.2 Create server key

We now have a certificate. It’s time to create the server key. The principle
is similar to what we’ve done before. The one thing you should remember
is that the server key should be named server.key, in order to conform with
Apache conventions.

102

www.dedoimedo.com all rights reserved

After the encryption key is created, we will be asked to provide a password
to make the use of our key impossible without knowing it. While this method
is somewhat effective, it is not considered a serious security measure. In
fact, you are advised not to use it, since the benefits do not outweigh the
shortcomings.

Since you must provide the password any time the server is restarted or
reloaded, this means the secure server will not be able to start after unat-
tended reboot and will require a presence of an administrator to activate.
This is cumbersome and can even be impractical. On the other hand, should
your system be compromised, the password will most likely present little chal-
lenge to the attacker. Furthermore, compromised systems cannot be trusted,
whether passwords or other security methods are used.

Nevertheless, we will demonstrate both methods, so you can learn and
use both, should a need arise. We will begin with the password-protected
key and then later, create another one, which uses no password.

5.4.4.3 Create Certificate Signing Request (CSR)

Now, we must “ask” our CA to sign our certificate. In a real life situation,
you would receive the server.csr from an existing, established CA. Or you
might even receive the signed key, with the information you have provided
in an application form, for instance.

Again, we must provide a password before we can continue. Then again,
we must go through an interactive form, providing details for our site. In
a real life situation, a real CA would ask you for these details, whether
via email, phone, an application form etc. For more details, please refer to
Submission of CSR to CA sub-section below (5.5.2).

103

www.dedoimedo.com all rights reserved

Since our CA and our website are one and the same, the form will differ
little from what we have done when creating the CA. This can be confusing.
Therefore, you should remember that the Common Name for your CA should
include the letters CA (or similar), to distinguish it from the server record.

Lastly, you can provide an additional password for the server key, to make
misuse more difficult.

104

www.dedoimedo.com all rights reserved

5.4.4.4 Sign Certificate Signing Request (CSR) with Certificate
Authority (CA)

What remains to be done is to sign the CSR with the CA we have created.
Once we do that, our certificate will be valid for the coming year. After that,
we will have to renew it.

105

www.dedoimedo.com all rights reserved

You should be familiar with the syntax by now:

-CA myca.crt
This option instructs openssl to use our CA certificate.

-CAkey myca.key
This option instructs openssl to sign the certificate with the CA key.

-set_serial 01
The set_serial option is used to create a serial number when outputting

a self-signed certificate. This allows you to track the changes done to the
certificate.

This covers the creation and signing of the SSL certificates.

106

www.dedoimedo.com all rights reserved

5.4.4.5 Verify certificates

Let’s examine the certificates we have just created. This can help you see if
there are any problems with your files.

openssl rsa -noout -text -in myca.key

107

www.dedoimedo.com all rights reserved

openssl x509 -noout -text -in myca.crt

108

www.dedoimedo.com all rights reserved

openssl rsa -noout -text -in server.key

109

www.dedoimedo.com all rights reserved

openssl x509 -noout -text -in server.crt

Everything looks good. Now, we can finish editing the ssl.conf file.

5.4.5 Edit ssl.conf configuration file - part 2

We now need to specify the location of our certificates and the keys in the
ssl.conf file so the server can find and use them. We will comment out the
sample entries in the file and use our own. Necessarily, we will have to copy
the relevant files to their right location.

5.4.5.1 Server Certificate

This directive specifies the location of the server certificate (server.crt). On
CentOS 5, the default location is /etc/pki/tls/certs. We will use the same

110

www.dedoimedo.com all rights reserved

directory. Your choice may vary. The important thing to remember is to
make the files unavailable to anyone but root.

5.4.5.2 Server Private Key

This directive points to the location of the server key (server.key). Again,
your choice should reflect your needs. See image above.

5.4.5.3 Certificate Authority

This directive specifies the location of the CA certificate.

111

www.dedoimedo.com all rights reserved

Now, let us copy the files to their relevant locations:

cp server.key /etc/pki/tls/private/server.key
cp server.crt /etc/pki/tls/certs/server.crt
cp myca.crt /etc/pki/tls/certs/myca.crt

We are ready. Let’s test our setup.

5.4.6 Test setup

After saving the ssl.conf file, we need to restart our server.

service httpd restart

112

www.dedoimedo.com all rights reserved

As you can see, we must provide a password before we can continue.
Now, we will try to access our server by typing https://www.ourserver.com
in the address line of a web browser. You will most likely receive a warning
message.

113

www.dedoimedo.com all rights reserved

Let us examine the certificate before we accept it.

114

www.dedoimedo.com all rights reserved

Indeed, everything looks fine. On the Web, though, very few people
would be convinced by this certificate. But in our setup, it serves well. After
accepting the certificate (either permanently or temporarily for this session
only), you will hit yet another warning.

115

www.dedoimedo.com all rights reserved

This time, there’s a mismatch between the domain name (www.ourserver.com)
and the certificate (ourserver.com). This should not be an issue if you are
using the DNS server, but we will discuss this separately in the next Part.
For now, we will accept the certificate.

After that, we should reach our site safely. Our setup works.

5.4.7 Mini-summary

Setting up the secure Web server might seem a little confusing. Therefore,
here’s a mini summary that should clarify the setup process.

116

www.dedoimedo.com all rights reserved

5.4.7.1 Names

This is a short list of file names used in this section:

File name Description

myca.key CA key
myca.crt CA certificate
server.key server key
server.csr server CSR
server.crt server certificate, signed by CA

5.4.7.2 Commands

Below, you can find a summarized list of commands you will need to run to
create your certificate. Please note that the names I have used are generic
and might not suit your needs. However, it is important that you use the
name server.key for the server key file, to conform with Apache standards.

Command Description

openssl genrsa -des3 -out myca.key 4096 Create CA
key

openssl req -new -x509 -days 365 -key
myca.key -out myca.crt

Create CA
certificate

openssl genrsa -des3 -out server.key 4096 Create server
key

openssl req -new -key server.key -out
server.csr

Create CSR

openssl x509 -req -days 365 -in server.csr
-CA myca.crt -CAkey myca.key -set_serial
01 -out server.crt

Sign CSR

117

www.dedoimedo.com all rights reserved

5.4.7.3 Difference between self-signed and CA-signed certificates

This will help you better understand the differences between our exercise and
a real, production setup.

Step Self-signed CA Real CA

Create CA
key

Yes No need

Create CA Yes No need
Create CSR Yes As instructed by CA
Create server
key

Yes Maybe:
1. CA creates key,
signs it and sends to
customer
2. CA creates CSR
only and sends to
customer, who then
creates server key and
signs with CA

Sign server
key

Yes Maybe:
1. CA sends signed
key to customer
2. CA sends CSR;
customer signs the
key by himself/herself

118

www.dedoimedo.com all rights reserved

5.4.7.4 Verification

You will have to run these commands to check your certificates and keys:

openssl rsa -noout -text -in server.key
openssl x509 -noout -text -in server.crt
openssl rsa -noout -text -in myca.key
openssl x509 -noout -text -in myca.crt

5.4.7.5 File names and locations

These are the locations of relevant files:

Full path and name Description

/etc/httpd/conf.d/ssl.conf Main configuration file
/etc/httpd/modules Location of all modules
/etc/httpd/modules/mod_ssl.so Location of mod_ssl

module
/etc/pki/tls/certs Location of server and CA

certificates
/etc/pki/tls/private Location of server keys

5.5 Extras

Now that we have our secure Web server running, let us review a number of
other options.

5.5.1 Do not use password-protected server keys

As said before, the password protection for server keys is rather impractical,
without significantly contributing to the server security. Therefore, you are

119

www.dedoimedo.com all rights reserved

encouraged not to use them. Of course, you must make sure that your server
security is ensured by other means.

5.5.1.1 Create server key without password

We will “filter” the old key (server.key) into a new one (server.key.nopass),
which will not include a password. Then, we will swap between the old and
the new one. You are advised to keep a backup copy of the original key, just
in case.

Next time we restart the server, we won’t be prompted for a password.
All other settings remain unchanged.

120

www.dedoimedo.com all rights reserved

5.5.2 Submission of CSR to CA

It is difficult to say what method the CA will use to certify your site. They
might ask you for your credentials over a form or through an online form.
Or they might ask you to submit a CSR, which they will sign, returning the
key to you. Here, we will review a typical option. Again, this may not be
the case you’ll encounter.

5.5.2.1 Create CSR

Assuming the CA wants all records in the purely digital form, you will have
to create a CSR. We have already done that. Optionally, they might ask you
to convert the file into a Privacy Enhanced Mail (PEM) format. Please note
that this format is not widely used and this will probably not be necessary.

openssl x509 -inform crt -in server.crt -out server.pem

121

www.dedoimedo.com all rights reserved

Please note that you should consult your CA for detailed instructions
regarding the conversions, if at all required.

5.5.2.2 Send CSR to CA

You will now have to submit the CSR file (or PEM) to the CA. Once the CA
processes your application, you will receive the certificate back. The file will
most likely be sent in the PEM format, so you will have to convert it back
to CSR format. It will also most likely bear a different name from what you
are used to, so you should rename it to server.crt, to conform with Apache
conventions.

5.5.2.3 Verify certificate

Now, you should verify the certificate, against the relevant CA’s file. You
should receive this file from your CA. Alternatively, if your distro includes a
list of CAs, you might try that one. On CentOS 5, a bundle containing a list
of known CAs is located under /etc/pki/tls/certs.

openssl verify -CAfile ca-bundle.crt →
-purpose sslserver server.crt

Next, you should verify that the certificate corresponds to the private key.
Please make sure the names match.

openssl x509 -noout -modulus -in server.pem | openssl md5
openssl rsa -noout -modulus -in server.crt | openssl md5

Once you have completed the above steps, you will have to edit the ssl.conf
file, restart the server and test your setup. We’re back on familiar grounds.

122

www.dedoimedo.com all rights reserved

For more details regarding the different commands and verification, please
consult:

• verify man page

• OpenSSL: Documents, req

5.6 General considerations

Here’s a number of settings that you should remember.

5.6.1 Use secure server only

If you want your server to serve only secure pages, simply comment the Listen
80 directive from the httpd.conf file. Sites dedicated to clients privacy and
security should not run any other, non-secure content.

5.6.2 Use only IP-based virtual hosts

It is impossible to use named-based virtual hosts with the secure Web server.
This is because the SSL handshake occurs before the HTTP request can
identify the named-based virtual host. Using names will result in errors. You
may only use IP addresses in the VirtualHost directives inside the ssl.conf
configuration file.

5.6.3 Use server.key as file name for the server key

It is not strictly necessary, but it is good practice and in line with Apache
conventions to use the server.key name for the server key file. If for some
reason you require paranoid security, then you might change this name to
something less obvious.

123

http://linux.die.net/man/1/verify
http://www.openssl.org/docs/apps/req.html

Chapter 6

Other configurations

6.1 Firewall rules

Here’s the most basic pair of rules to allow HTTP traffic (including both
secure and non-secure):

iptables -A INPUT -p tcp –dport 80 -j ACCEPT
iptables -A INPUT -p tdp –dport 443 -j ACCEPT

However, you can restrict the traffic even more. For example, you can
allow incoming connections only to a certain interface:

iptables -A INPUT -p tcp –dport 80 -i eth0 -j ACCEPT
iptables -A INPUT -p tdp –dport 443 -i eht0 -j ACCEPT

Finally, you can restrict the traffic to a specific subnet, allowing only
certain machines to connect:

iptables -A INPUT -p tcp –dport 80 -i eth0 →
-s 192.168.1.0/24 -j ACCEPT

124

www.dedoimedo.com all rights reserved

iptables -A INPUT -p tcp –dport 443 -i eth0 →
-s 192.168.1.0/24 -j ACCEPT

You can further sharpen the rules by specifying source ports and packet
states. We’ll see this in the next section.

6.1.1 Advanced firewall rules

Sometimes, your Web server might not be an external client; it will connect
to the Internet through a dedicated, firewalled gateway. This brings about
several issues, which include the Network Address Translation (NAT) and
port forwarding.

We have discussed the forwarding and masquerading in Part ?: Dynamic
Host Configuration Protocol (DHCP) server - ISC DHCPD (). Now, we will
look at a more complex setup.

Let’s assume that your Web server is a local machine, with a local IP
address. It serves both internal and external clients. The internal setup is
rather simple. We need to make sure external clients can connect, too.

We will need to allow traffic destined to ports 80 and 443 of our external
IP address (let’s assume 1.1.1.1) to be forwarded to ports 80 and 443 of our
Web server, which resides on a local address (192.168.1.128). Furthermore,
interfaces are eth0 for the Internet and eth1 for the intranet.

Our setup will include several steps:

• We will have to “forward” our web ports, so that clients behind the
gateway will be able to accept incoming communications.

• We will have to setup some sort of masquerading, only this time we
will use methods slightly different from those we have adopted when
setting up the DHCP server.

125

www.dedoimedo.com all rights reserved

6.1.1.1 Port forwarding

Our gateway is configured to forward communications between internal and
external hosts, with new, established and related connections permitted out-
bound and established and related connections permitted inbound. This is
a great setup for a server-less network, but it won’t do for Apache.

Here are the original rules, which we have setup for the DHCP server
acting as a gateway:

iptables -A FORWARD -t filter -i eth1 -m state →
–state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -t filter -o eth1 -m state →
–state NEW,ESTABLISHED,RELATED -j ACCEPT

Now, we need these rules to make it work:

iptables -I FORWARD -p tcp -i eth1 -o eth0 →
-d 192.168.1.128 –dport 80 →
-m state –state NEW -j ACCEPT

iptables -I FORWARD -p tcp -i eth1 -o eth0 →
-d 192.168.1.128 –dport 443 →
-m state –state NEW -j ACCEPT

If you want to tighten the rules some more, you can also specify the source
ports:

iptables -I FORWARD -p tcp -i eth1 -o eth0 →
-d 192.168.1.128 –dport 80 -sport 1024:65535 →
-m state –state NEW -j ACCEPT

126

www.dedoimedo.com all rights reserved

We have placed the rules on the top of the chain, so they would be pro-
cessed before the existing rules, which only allow new outbound connections.
Basically, these rules are sufficient if your gateway is servicing a number of
local networks, all of which can fully resolve one another’s IP addresses. They
are not good enough for the Internet, though.

6.1.1.2 Destination NAT

Using masquerading the way we did when we configured the DHCP server
might not be good enough for us, because it will point all traffic to the default
network interface. We have to use a more sophisticated method, which is the
DNAT. Now, we need to allow new incoming connections to our Web server
to properly resolve to the right client, on the right ports.

iptables -t nat -A PREROUTING -p tcp -i eth1 -d 1.1.1.1 →
–dport 80 –to-destination 192.168.1.128:80 -j DNAT

iptables -t nat -A PREROUTING -p tcp -i eth1 -d 1.1.1.1 →
–dport 443 –to-destination 192.168.1.128:443 -j DNAT

Of course, you can use non-default ports on the Web server, like 8080 or
anything alike, which makes the idea of port forwarding even more meaning-
ful.

To reiterate, IP masquerading is good enough for “normal” browsing,
but servers behind the firewall also require port forwarding. Casual peer-to-
peer (P2P) home users behind routers often have to do this to make their
programs work.

127

www.dedoimedo.com all rights reserved

6.1.1.3 Static NAT

If you have more than one publicly visible IP address, you won’t be able
to use IP masquerading. This is because masquerading forces all traffic to
the default network interface on the firewalled gateway, resulting in a single
usable external IP address.

However, it is quite likely that you will want to run your servers on sepa-
rate hosts, with different both internal and external addresses, both to shape
your traffic in a more orderly fashion and reduce the workload on specific
hosts. To this end, you will have to use SNAT rather than IP forwarding.

The basic principle remains the same, except that you use separate ex-
ternal IP addresses for individual hosts, groups of hosts or the entire local
network, as you see fit. In our example, we will demonstrate SNAT by creat-
ing a private rule for the Web server and a general rule for all other clients.

Let’s assume the Web server will use a public IP address of 1.1.1.1, while
all other clients will use 1.1.1.2.

Web server rules

These two rules are required to allow DNAT and SNAT for the client running
the Web server. Please note that these two rules do not specify what kind of
servers are running on the particular client. This grants you extra flexibility,
if you need to run more than one server on a particular machine.

iptables -t nat -A PREROUTING -d 1.1.1.1 -i eth1 →
–to-destination 192.168.1.128 -j DNAT

iptables -t nat -A POSTROUTING -s 192.168.1.128 -o eth1 →
–to-source 1.1.1.1 -j SNAT

As said, the forwarding rules from before remain valid, both the specific

128

www.dedoimedo.com all rights reserved

rules for the Web server, which permit new inbound connections, and the
general rules, which permit only new outbound connections.

General rules

This rule applies to all local network clients, trying to communicate with the
external network.

iptables -t nat -A POSTROUTING -s! 192.168.1.128 -o eth1 →
–to-source 1.1.1.2 -j SNAT

6.2 Enable Web server on startup

You will most likely want your Apache server to run on startup. The simplest
way to enable this is to use the chkconfig utility.

chkconfig –levels 5 httpd on

129

Chapter 7

Security

Web server security is one of the most important things in your setup. If
your server becomes compromised, you run the risk of serving malicious,
fraudulent or simply tasteless pages to hundreds and thousands of your vis-
itors. Furthermore, you risk exposing the privacy of your clients and users.
Forum names and passwords, email addresses, sensitive records, credit card
numbers, and other information could all be leaked out, creating an identity
theft nightmare.

It is paramount that you keep your Web server in tiptop shape at all
times. This requires lots of work, attention and responsibility and is not a
trivial task. Running a good server takes time and patience.

It is also important that you be constantly aware of what goes about on
your server. If you have several users uploading material to their individual
directories, you are advised to make sure that they do not post potentially
dangerous content. Most Linux users are oblivious to the web threats, but
a large percentage of Windows users have a hard time with sites loaded
with malicious payload. As the server owner and administrator, it is your
responsibility to make sure that your visitors are not at risk.

Let us review some of the most crucial settings that you should pay
attention to make sure both your server and your clients are secure.

130

www.dedoimedo.com all rights reserved

7.1 Updates

Keep your server up to date at all times. Make sure you patch new vulnera-
bilities instantly. You are advised to subscribe to the Apache HTTP Server
Mailing Lists for information about new bugs, updates, features, and more.

7.2 Hide your server version

This is a “security through obscurity” measure. Nevertheless, it does not hurt
to use it. At the very least, this will annoy and delay a potential attacker,
by making his attempts to harvest server information more difficult.

To remove server information, you will need to use these two directives:

ServerSignature Off
ServerTokens Prod

The first directive, ServerSignature, will remove the server version infor-
mation from the pages generated by the server, like error pages (403 For-
bidden, 404 Not found), directory listings and others. The second directive,
ServerTokens, will change the server’s HTTP Response Header. By default,
with the directive set to OS, the header will disclose both the version and
the operating system. Set to Prod, the header will merely report Apache.

131

http://httpd.apache.org/lists.html
http://httpd.apache.org/lists.html

www.dedoimedo.com all rights reserved

Here’s an example without these directives.

132

www.dedoimedo.com all rights reserved

And here’s with the directives in place. The version is disguised.

7.3 Logs

You should check your logs at least daily. This may be tedious and boring,
but it is vital that you discover any potential breaches as quickly as possible.
Keep an eye on things and look for suspicious directories and files.

7.4 Permissions

Badly implemented permissions can ruin your entire security. It is critical
that you make sure the executables, configuration files, logs, access files and
private keys are located outside the public HTML directories and writable
only by root. The web pages should be readable and possibly executable by
your visitors but only writable by their respective owners.

133

www.dedoimedo.com all rights reserved

Let us review the necessary permissions:

Location Permissions

/usr/sbin/httpd F: 511
/etc/httpd D: 751
/etc/httpd/conf D: 751, F: 644 / 600
/etc/httpd/conf.d D: 751, F: 644 / 600
/etc/httpd/logs symbolic link, 755 / 711
/etc/httpd/modules symbolic link, 755 / 711
/etc/httpd/run symbolic link, 755 / 711
/usr/lib/httpd/modules D: 751, F: 644 / 600
/var/log/httpd D: 751, F: 644 / 600
/var/run D: 751, F: 644 / 600
/var/www/html D: 755, F: 755

If you are really paranoid, then you should ONLY allow root access to the
binaries and configuration files. It really depends on your setup and needs.
Last but not the least, let’s not forget that system files MUST be owned by
root.

134

www.dedoimedo.com all rights reserved

7.5 Access to root (/)

You must not allow anyone to access the root directory. Therefore, you should
implement a default deny policy for the root and all sub-directories and then
partially allow access to specific locations, like the public HTML directories
of your users.

<Directory />
Order Deny, Allow
Deny from all

</Directory>

7.6 AllowOverride

This directive specifies if options used in the .htaccess files can conflict (and
thus override) the settings configured for the particular directory. In general,
you should set this directive to none and only permit specific tasks to a small
number of trusted users. If you lease your server to numerous clients who
must have some sort of protection for their content, then you can allow them
to use the .htaccess file for authentication, as we have shown before (4).

AllowOverride none

135

www.dedoimedo.com all rights reserved

7.7 Disable public access to .ht files

You must not allow any public user to be able to load the .htaccess file
through the browser window. Furthermore, the .htpasswd file, which contains
the user names and passwords, must also be protected from public access.
Again, we have discussed this before, but it doesn’t hurt to repeat it.

<Files ~ “^\.ht”>
Order allow, deny
Deny from all

</Files>

7.8 Dynamic content

You need to be very careful with dynamic pages and scripts, since they
allow server to perform a variety of operations that static HTML files cannot
do. You should think twice before you allow any user to run scripts from
his/her own public directory. In general, scripts are only allowed in special
directories, as defined by the ScriptAlias directive.

7.8.1 Disable CGI

You should disable scripts in user directories. If you really must permit them,
use the Options +ExecCGI directive.

Options -ExecCGI

7.8.2 Disable Server Side Includes (SSI)

SSI is a simple scripting language that allows web servers to display variables
or execute other programs from within web pages. This introduces a signifi-

136

www.dedoimedo.com all rights reserved

cant load on the server and poses a security risk. You should not allow SSI
to function on your server unless absolutely necessary.

Options -Includes

For more about SSI, please refer to Server Side Includes on Wikipedia.

7.9 Disable unnecessary modules

By default, Apache is very permissive when it comes to the functionality it
offers. You should comment out any modules you do not need or wish to use
from the /etc/httpd/conf/httpd.conf file.

7.10 Use ModSecurity (mod_security) mod-
ule

ModSecurity is a powerful Web Application Filter (WAF), which allows you
to greatly enhance the security of your server by to detecting and prevent-
ing attacks before they reach web applications. ModSecurity can perform a
variety of tasks, including detection of HTTP protocols violation, detection
against common web attacks, detection of bots and crawlers, detection of
Trojan horses, filtering based on existing rulesets, policies or regular expres-
sions, and more. The application relies on generic rules to detect and prevent
exploits and does not rely on blacklists or signatures.

Furthermore, it will not throttle the traffic throughput. And best of all,
ModSecurity is very easy add to an existing and running Apache server.

Setting up and configuring ModSecurity is outside the scope of this Part.
However, it will be reviewed separately, in the context of Network Security.
If you are interested, you can read Part ?, Chapter ?: ModSecurity ().

137

http://en.wikipedia.org/wiki/Server_Side_Includes

www.dedoimedo.com all rights reserved

Meanwhile, for more details, you should refer to ModSecurity: Open
Source Web Application Firewall.

7.11 Chroot Jail

Like with many other services, it is possible to “sandbox” httpd to run in
a virtual prison. The service will think its files are located in the default
directories. In reality, they will reside inside a Chroot Jail, which will mimic
the layout of the real directories, except that many of the files normally found
under the real root won’t be there, preventing possible privilege escalation
risks.

This is an extremely important security feature and should be used when-
ever possible. For more details about Chroot Jail, please refer to Part ?:
Chroot Jail, Chapter ?: Apache in Chroot Jail () for details how to create
this setup.

For more information, you are also welcome to read: Apache in a chroot
jail.

7.12 Secure web server only

The secure Web servers will offer their certificates to any client that asks for
them. This means that you do not care about who your clients are. However,
if your setup also requires that only a limited number of clients be allowed to
access the secure content, you might consider using any one or several of the
following methods: Kerberos, firewall rules, TCP wrappers, allow & deny
directives, .htaccess files, client certificates, and more.

7.12.1 Different DocumentRoot

You are advised to use a separate directory for the secure pages. This allows
you to fully separate normal content from secure, privileged data and might

138

http://www.modsecurity.org/
http://www.modsecurity.org/
http://tldp.org/LDP/solrhe/Securing-Optimizing-Linux-RH-Edition-v1.3/chap29sec254.html
http://tldp.org/LDP/solrhe/Securing-Optimizing-Linux-RH-Edition-v1.3/chap29sec254.html

www.dedoimedo.com all rights reserved

even mitigate potential exposure in case of an attack.

7.12.2 Permissions

The server.crt and the server.key file must only be readable by root. You
should even disallow the root user from making any changes to the files. Set
the permissions for these two files to 0400.

The permissions for the ssl.conf should be in line with your policy, which
should be either 640 or 600.

7.12.3 Duration of certificates

Normally, certificates are issued for a year. However, if you are running
an ultra-paranoid setup, you may want to make the certificates expire after
only a few weeks. This means that potential attackers will always have only
a limited access to data for a short period of time, in case they succeed in
decrypting your ciphers. You will force them to work all over again, trying
to decode your data. Needless to say, you will most likely use self-signed
certificates for this type of work.

7.13 Word of caution

This Part of the book cannot possibly encompass all the security aspects
of running Apache. Do not presume you know everything about running a
Web server just by reading a few pages here and there - I sure do not. Keep
in mind that you are responsible for every bit of traffic flowing to and from
your server - and then branch from there. Updates and logs are your best
friends. Then, there’s the matter of ethics. Your websites could be servings
hundreds, thousands or even millions of people every day. The choices you
make regarding your content and security policies may affect all of them.

Needless to say, nothing can replace years of hard work and experience.

139

Chapter 8

Additional resources

Here, you will find a number of additional links to useful resources that
can help you better learn and understand the Apache Web server. You are
warmly encouraged to visit them.

• The Apache Software Foundation

• The Apache HTTP Server Project

• The Apache Interface to OpenSSL

• Security Tips - Apache HTTP Server

140

http://www.apache.org/
http://httpd.apache.org/
http://www.modssl.org/
http://httpd.apache.org/docs/2.0/misc/security_tips.html

Chapter 9

Exercises

This section is meant to help you estimate your knowledge of the Apache
Web server, now that you have read the Part and worked through every step
(you have, haven’t you?). If you can successfully answer all of the questions
below with ease, this probably means you possess a decent knowledge of
the Apache Web server and you can most likely create a setup of your own
without too much difficulty.

Please note that this short questionnaire is by no means an exhaustive
or any sort of format test to Apache expertise. It should be a good starting
point for broadening your knowledge and experience.

When trying to solve the questions, please do not look into the answers
right away. Try to think and figure out the problem on your own. The
questions might also help you identify the stronger and weaker points in
your freshly earned Apache skills.

Furthermore, you are encouraged to simulate the problems by powering
up Linux and practicing for real.

141

www.dedoimedo.com all rights reserved

9.1 Questions

9.1.1 Secure Web server & VirtualHost

You want to configure a secure Web server that you will use for online trans-
actions with your customers. You have completed all the steps successfully,
but your server does not work, for some reason. Looking at the VirtualHost
block in the ssl.conf file, you are unable to find the source of the problem.
Can you tell what’s wrong?

Please note that there is an error only within the displayed directives in
the screenshot. The VirtualHost container is properly closed and all direc-
tives have the correct syntax.

142

www.dedoimedo.com all rights reserved

9.1.2 Directory, Files and Locations

You have used the AllowOverride directive inside a Location block to setup
the behavior of the .htaccess file. However, your server ignores the change.
What might be the reason?

<Location /dir/>
Order allow, deny
Allow from all
Deny from plush-mush.info
AllowOverride AuthConfig

</Location>

1. AllowOverride must be placed first inside any block.

2. AllowOverride can only be used inside Directory tags.

3. You have not restarted the server.

4. You need to specify the location of the .htaccess file in the opening
Location tag.

9.1.3 Server functionality, 1

You want to use CGI scripts on your pages, but the server simply refuses to
comply. You are absolutely convinced your syntax is correct. What could be
the likely reason for your woes?

143

www.dedoimedo.com all rights reserved

9.1.4 Server functionality, 2

Something is horribly wrong with your httpd.conf file. Nothing works. What’s
the matter?

9.1.5 .htaccess

What security precautions must you take to make sure authentication via
.htaccess is not compromised easily?

1. Place the .htpasswd in a restricted directory inaccessible from the web.

2. Place the .htaccess file in a restricted directory and chmod it to 755.

3. Use a Files or FilesMatch directive to restrict access to .ht files.

4. Use a reasonably strong password for user authentication.

5. Change the Listen 80 directive to a random number.

144

www.dedoimedo.com all rights reserved

9.2 Answers

9.2.1 Secure Web server & VirtualHost

It is impossible to use named-based virtual hosts with the secure Web server.
This is because the SSL handshake occurs before the HTTP request can
identify the named-based virtual host. Using names will result in errors. You
may only use IP addresses in the VirtualHost directives inside the ssl.conf
configuration file.

9.2.2 Directory, Files and Locations

The right answer is 2. If you have read the Apache documentation, as sug-
gested in the links provided, you would have realized this critical detail. The
AllowOverride directive can only used inside Directory tags. However, the
right answer might also be derived by running a few simple tests.

Answer 3 is the trickiest, because it implies one of the classic mistakes.
However, running a simple test will verify this is not the case. Answer 1
is misleading, especially since the Order directive was used - for which, the
precedence does matter. Again, a quick test will prove this false. The last
answer is pure nonsense.

9.2.3 Server functionality, 1

The CGI functionality is provided by the mod_actions module. You need
to check that the httpd.conf file contains a LoadModule directive for this
module.

145

www.dedoimedo.com all rights reserved

Furthermore, you need to check that the module can indeed be found
under: /usr/lib/httpd/modules.

9.2.4 Server functionality, 2

You have placed a trailing slash at the end of the ServerRoot directive. This
will cause all your symbolic links to fail. In the file comments that have
been removed (a BAD idea!), there was a notice warning against placing the
trailing slash at the end of the directive.

You should never add a slash at the end of the directory path - and ever
delete comments.

146

www.dedoimedo.com all rights reserved

9.2.5 .htaccess

The right answers are 1, 3 and 4. The .htaccess file must be placed in public
directories, thus placing them in non-web directories would invalidate their
purpose. This makes answer no. 2 wrong. Furthermore, the executable bit
in the permissions is completely unnecessary for the functionality of the file.

The connection to the Web server (and the relevant port) is established
before any authentication takes place. Moreover, the choice of the port num-
ber has no bearing whatsoever on the functionality of the .htaccess files.
Thus, answer no. 5 is wrong.

147

	I Apache Web server - Complete Guide
	1 Introduction
	2 Basic Setup
	2.1 Verify installation
	2.2 Package files
	2.3 Main configuration file(s)
	2.4 Backup
	2.5 Edit the httpd.conf configuration file
	2.5.1 ServerRoot
	2.5.2 PidFile
	2.5.3 ServerName
	2.5.4 /etc/hosts file
	2.5.5 DocumentRoot
	2.5.6 ErrorLog
	2.5.7 Listen

	2.6 Create your HTML documents
	2.7 Start the Web Server
	2.8 Access the web site
	2.8.1 Local access
	2.8.2 External access

	2.9 Summary of basic setup

	3 Advanced setup
	3.1 Directory tags
	3.1.1 Order (allow, deny)
	3.1.2 Indexes
	3.1.3 DirectoryMatch

	3.2 Files tags
	3.3 Location tags
	3.4 Directory, Files and Location
	3.5 Redirect
	3.6 Virtual Hosts
	3.6.1 Single IP, two websites
	3.6.2 Two IPs, two websites
	3.6.3 Other scenarios
	3.6.3.1 Different content for intranet and Internet
	3.6.3.2 Different websites on different ports

	3.7 Modules
	3.7.1 Module types

	3.8 View installed modules
	3.8.1 LoadModule
	3.8.2 mod_access
	3.8.3 mod_dir
	3.8.4 mod_perl
	3.8.5 mod_python
	3.8.6 mod_ssl

	4 .htaccess
	4.1 Create .htaccess file
	4.2 Create .htpasswd file
	4.3 Copy .htaccess to restricted directory
	4.4 Configure httpd.conf to allow authentication via .htaccess
	4.5 Restart server
	4.6 Test setup
	4.7 Other configurations
	4.7.1 Inheritance & performance loss
	4.7.2 Disable web access to .htaccess

	5 Secure Web server
	5.1 Encrypted session
	5.2 Requirements
	5.3 Limitations
	5.4 Setup
	5.4.1 Main configuration file(s)
	5.4.2 Backup
	5.4.3 Edit the ssl.conf configuration file - part 1
	5.4.3.1 LoadModule
	5.4.3.2 Listen
	5.4.3.3 VirtualHost

	5.4.4 Create SSL certificate
	5.4.4.1 Create Certificate Authority (CA)
	5.4.4.2 Create server key
	5.4.4.3 Create Certificate Signing Request (CSR)
	5.4.4.4 Sign Certificate Signing Request (CSR) with Certificate Authority (CA)
	5.4.4.5 Verify certificates

	5.4.5 Edit ssl.conf configuration file - part 2
	5.4.5.1 Server Certificate
	5.4.5.2 Server Private Key
	5.4.5.3 Certificate Authority

	5.4.6 Test setup
	5.4.7 Mini-summary
	5.4.7.1 Names
	5.4.7.2 Commands
	5.4.7.3 Difference between self-signed and CA-signed certificates
	5.4.7.4 Verification
	5.4.7.5 File names and locations

	5.5 Extras
	5.5.1 Do not use password-protected server keys
	5.5.1.1 Create server key without password

	5.5.2 Submission of CSR to CA
	5.5.2.1 Create CSR
	5.5.2.2 Send CSR to CA
	5.5.2.3 Verify certificate

	5.6 General considerations
	5.6.1 Use secure server only
	5.6.2 Use only IP-based virtual hosts
	5.6.3 Use server.key as file name for the server key

	6 Other configurations
	6.1 Firewall rules
	6.1.1 Advanced firewall rules
	6.1.1.1 Port forwarding
	6.1.1.2 Destination NAT
	6.1.1.3 Static NAT

	6.2 Enable Web server on startup

	7 Security
	7.1 Updates
	7.2 Hide your server version
	7.3 Logs
	7.4 Permissions
	7.5 Access to root (/)
	7.6 AllowOverride
	7.7 Disable public access to .ht files
	7.8 Dynamic content
	7.8.1 Disable CGI
	7.8.2 Disable Server Side Includes (SSI)

	7.9 Disable unnecessary modules
	7.10 Use ModSecurity (mod_security) module
	7.11 Chroot Jail
	7.12 Secure web server only
	7.12.1 Different DocumentRoot
	7.12.2 Permissions
	7.12.3 Duration of certificates

	7.13 Word of caution

	8 Additional resources
	9 Exercises
	9.1 Questions
	9.1.1 Secure Web server & VirtualHost
	9.1.2 Directory, Files and Locations
	9.1.3 Server functionality, 1
	9.1.4 Server functionality, 2
	9.1.5 .htaccess

	9.2 Answers
	9.2.1 Secure Web server & VirtualHost
	9.2.2 Directory, Files and Locations
	9.2.3 Server functionality, 1
	9.2.4 Server functionality, 2
	9.2.5 .htaccess

