
Solter, Jelinek,
Miner

The book you need to succeed!

Master one of the most innovative
new open source operating systems
The latest version of OpenSolaris is here—and this
comprehensive guide is your one-stop gateway to it all.
You’ll start with a basic crash course in OpenSolaris,
including command lines and shells, the GNOME
Desktop, systems administration, and other essential
topics. Later chapters focus on application development,
networking, virtualization, DTrace, and other topics
that will transform you into a power user. Find practical
tips, step-by-step tutorials, and exact command lines
and screenshots you can use right away.

Nicholas A. Solter
is an engineer at Sun Microsystems
and core contributor to the OpenSolaris
HA Clusters community group. He
is lead author of Professional C++.

Gerald Jelinek
is an engineer on the Zones team at
Sun and a core contributor to the
OpenSolaris Zones community group.

David Miner
is an engineer at Sun, a co-lead for
the OpenSolaris distribution, and
architect of the Caiman installer.

Shelving Category:
COMPUTERS / Operating Systems /
UNIX

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada

www.wiley.com/compbooks

Nicholas A. Solter, Gerald Jelinek, and David Miner

OpenSolaris™

O
p

en
S

o
laris

™

• Explore the OpenSolaris operating environment—from GNOME® to
the bash shell, vim text editor, and more

• Connect printers, USB devices, and other peripherals to your desktop

• Master systems administration, including ZFS and NFS file systems,
networking, directory services, and security

• Observe and debug the system with the innovative Dynamic Tracing
(DTrace) facility and other monitoring tools

• Share a single physical machine among multiple users and processes
with xVM, VirtualBox™, and other virtualization tools

• Deploy web services using Apache, Apache Tomcat, MySQL®, and other
open source web stack applications

• Write and debug applications in C, C++, Java®, Ruby, Python®, and
other languages

Explore the OpenSolaris
operating environment

Master networking and
systems administration

Deploy web services using
open source applications

OpenSolaris™ Bible

Nicholas A. Solter
Gerald Jelinek
David Miner

Wiley Publishing, Inc.

OpenSolaris™ Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-38548-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Solter, Nicholas, 1977-
OpenSolaris bible / Nicholas Solter, Gerald Jelinek, David Miner.

p. cm.
Includes index.
ISBN 978-0-470-38548-7 (paper/website)
1. OpenSolaris (Electronic resource) 2. Operating systems

(Computers) 3. Open source software. I. Jelinek, Gerald. II. Miner,
David. III. Title.

QA76.76.O63S6526 2009
005.3 — dc22

2008049814

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written per-
mission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copy-
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically dis-
claim all warranties, including without limitation warranties of fitness for a particular purpose. No war-
ranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher
is not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to
in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or Website may provide or recommendations it
may make. Further, readers should be aware that Internet Websites listed in this work may have changed
or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

www.wiley.com

To my children, Kai and Katja. — Nicholas Solter

To my wife, Sarah, who had no idea we would be moving when I
was in the middle of this book, but who was always encouraging

and supportive. — Jerry Jelinek

I dedicate this book to my wife, Kris. I hope she doesn’t regret
telling me, while I was considering participating, that I won’t

regret having written it! — Dave Miner

About the Authors
Nicholas Solter has worked at Sun Microsystems for more than eight years in the areas of high
availability and distributed systems. In his work on the Solaris Cluster product, he has imple-
mented clustering support for core Solaris features such as Zones and SMF. He was the techni-
cal lead in open sourcing the Solaris Cluster product and is currently leading the effort to run
Solaris Cluster on the OpenSolaris distribution.

In addition to his work at Sun, Nicholas has experience in the computer game industry at
Digital Media International and Electronic Arts. He is also the lead author of Professional C++
(Wrox) and has taught C++ at the college level.

Nicholas studied computer science at Stanford University, where he earned bachelor of science
(with distinction) and master of science degrees, with a concentration in systems. When not
working, he enjoys spending time with his family, playing basketball, reading, and playing in the
Colorado snow (having been deprived of winters growing up in Southern California).

Gerald Jelinek has been an engineer at Sun Microsystems for a total of almost 20 years,
although not contiguously. He currently works on the Zones virtualization subsystem in Open-
Solaris. In the past, he has worked on a wide variety of projects, including system installation,
JumpStart, printing, a variety of system administration tools, and the Solaris Volume Manager. A
little-known fact is that he personally assembled the various project bits and burned the Solaris
2.0 golden CD. In addition to Sun, Gerald has worked at several other companies.

Gerald graduated from Washington University in St. Louis with a B.S. in computer science,
and from the University of Colorado with an M.S. in computer science. He and his wife, Sarah,
spend most of their free time fixing up the 85-year-old house they recently moved into.

David Miner has been an engineer at Sun Microsystems for nearly two decades. He is presently
the lead for the Caiman installer project and co-lead for the OpenSolaris distribution. During
his time at Sun he has worked primarily in the areas of system administration and networking
and has been a significant contributor to a variety of projects in both fields, including the Solaris
admintool and sysidtool, PC-NFS, the Solaris DHCP server and DHCP Manager management
tool, and the Service Management Facility (SMF). Prior to Sun, Dave worked at Prime Computer
on TCP/IP networking.

David graduated from Michigan State University with a B.S. (with honors) in computer science.
In his spare time, Dave is an avid golfer and hoopster. He and his wife, Kris Corwin, are the
adoptive parents of a small pack of retired racing greyhounds.

Credits
Executive Editor
Bob Elliott

Development Editor
Maryann Steinhart

Technical Editor
Peter Baer Galvin

Production Editor
Dassi Zeidel

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Josh Chase, Word One

Indexer
Ted Laux

Cover Illustration
Joyce Haughey

Cover Designer
Michael E. Trent

Acknowledgments
Many people contributed directly and indirectly to this book. We would first like to thank Bob
Elliot, executive editor at Wiley, for letting us write this book, and our agent, David Fugate of
LaunchBooks Literary Agency, for helping to make the project possible. Our editors, Maryann
Steinhart, Dassi Zeidel, and Luann Rouff, excellently guided us through the writing and revision
process, while Peter Baer Galvin provided invaluable technical feedback and corrections.

Additionally, we would like to thank the following people, who reviewed one or more chapters:
Alexandre Chartre, Bonnie Corwin, Thorsten Früauf, Moinak Ghosh, Susan Kamm-Worrell, and
John Levon. Thank you, also, to Steve McKinty for providing the content on Open HA Cluster
Geographic Edition. Any remaining errors are, of course, our own.

A special thanks goes to Sanjay Nadkarni, who provided the camera Dave used in completing
the examples in Chapter 5 during a trip to Sun’s Broomfield campus.

We also want to acknowledge the thousands of engineers over the past 40 years who have
contributed to the code that is now OpenSolaris. Additionally, we would like to recognize
Sun Microsystems’ courageous step of open sourcing the Solaris operating system to create
OpenSolaris, and the combined wisdom and numerous contributions of the OpenSolaris
community. Although we are employees of Sun and members of the OpenSolaris community,
the contents of this book are our own, and do not necessarily reflect the views of these entities.

Finally, we would like to thank our respective spouses, Sonja Solter, Sarah Jelinek, and Kris Cor-
win, for bearing with us through this process and tolerating our long nights and weekends spent
on this book.

Introduction ..xxix

Part I
Chapter 1: What Is OpenSolaris? ..3
Chapter 2: Installing OpenSolaris ...19
Chapter 3: OpenSolaris Crash Course ..47

Part II
Chapter 4: The Desktop ..103
Chapter 5: Printers and Peripherals ..135
Chapter 6: Software Management ...167

Part III
Chapter 7: Disks, Local File Systems, and the Volume Manager ..191
Chapter 8: ZFS ..223
Chapter 9: Networking ...263
Chapter 10: Network File Systems and Directory Services ...331
Chapter 11: Security ... 369

Part IV
Chapter 12: Fault Management ..451
Chapter 13: Service Management ...465
Chapter 14: Monitoring and Observability ..503
Chapter 15: DTrace ...529
Chapter 16: Clustering OpenSolaris for High Availability ...575

Part V
Chapter 17: Virtualization Overview ..649
Chapter 18: Resource Management ..659
Chapter 19: Zones ...693
Chapter 20: xVM Hypervisor ..741
Chapter 21: Logical Domains (LDoms) ..787
Chapter 22: VirtualBox ...823

xi

Contents at a Glance

Part VI
Chapter 23: Deploying a Web Stack on OpenSolaris ..845
Chapter 24: Developing on OpenSolaris ..869

Index ..937

xii

Introduction . xxix

Part I

Chapter 1: What Is OpenSolaris? . 3
Introduction to OpenSolaris ...3

OpenSolaris code ...3
OpenSolaris distributions ..4
OpenSolaris community ..4

OpenSolaris Features ...5
The ‘‘Open’’ in OpenSolaris ..6

Open source software basics ...6
Open source licenses ...7
OpenSolaris licenses ..8
Open development ..9
What open source OpenSolaris means to you ...9

The History of OpenSolaris ...9
Comparing OpenSolaris to Other Operating Systems ...11

OpenSolaris and Solaris ..11
OpenSolaris and Linux ..11
OpenSolaris and BSD ..13

Getting Involved in OpenSolaris ...13
Running OpenSolaris ..13
Participating in discussion lists ...14
Finding OpenSolaris user groups ...14
Contributing to OpenSolaris ...15

OpenSolaris Development Process ..15
Resources ...16
Summary ..17

Chapter 2: Installing OpenSolaris . 19
Solaris Express Community Edition ...20
Schillix ...21
BeleniX ...22
NexentaCore ..23
MartUX ..24
MilaX ..25

xiii

Contents

OpenSolaris ..26
History of the OpenSolaris distribution ...26
What OpenSolaris includes ...27
Will OpenSolaris run on my hardware? ...28
Downloading OpenSolaris ...29
Booting the OpenSolaris CD ...30
Installing OpenSolaris ...33
Booting OpenSolaris ..41
Installing OpenSolaris in a virtual machine ...43

Resources ...45
Summary ..46

Chapter 3: OpenSolaris Crash Course 47
Discovering the Desktop ...47

Overview ..48
Managing windows ..49
Navigating files and directories ...49
Using the Internet ...51
Office suite ...52
Multimedia ...52
Printers and peripherals ..53
Customizing GNOME ...53
Logging out and shutting down ...53

Using the Command Line ...54
Shells ..54
Executing commands ..55
Shell History ..57
Environment variables ...58
Command paths ..59
Managing files ..61
Redirection ...64
Job control ...64
Customizing Bash ..65
Text editors ..66
Running privileged commands ...68

Switching Languages and Locales ...71
Changing locale in GNOME ...71
Changing locale in a terminal session ..73
Changing the default system locale ..74
Changing keyboard layout and input languages ..74
Installing additional languages ..75

Getting Online ...75
Network AutoMagic ..75
Manual network configuration ..75
Troubleshooting network connections ...77

xiv

Contents

Adding Software ..78
Finding and installing software ...78
Alternative repositories ..80

Developing on OpenSolaris ...82
Connecting Remotely ..82
System Administration ..83

System information ...83
Processes and services ...85
Users, groups, and roles ..89
Storage and file systems ..92
Log files ...95
Booting and shutting down ..95
Managing boot environments ...97
Managing GRUB and the OpenSolaris boot archive ..97

Resources ...99
Summary ..99

Part II

Chapter 4: The Desktop . 103

Desktop Customization ...103
Desktop session ...103
Locking the session ...104
Customizing the panel ..105
Customizing your desktop’s appearance ..106
Other preferences ..107

Desktop Sharing ..108
Internet Applications ...110

Web browsing with Firefox ..110
E-mail and calendar ..112
Instant messaging ..116

Media Applications ..119
Audio ...119
Video ..122

Graphics Applications ...122
Screenshots ..122
Viewing images ..122
Organizing and editing images ...123

System Administration ..125
Users and groups .. 125
Keyring Manager ...127
Disk Usage Analyzer ..127
Log File Viewer ...128

xv

Contents

Performance Monitor ..129
Power management and statistics ...129

Other Applications ..130
Troubleshooting ...131

X server startup ...131
GNOME session startup ..132

Resources ...132
Summary ..133

Chapter 5: Printers and Peripherals . 135
Printing ..135

Automatic printer configuration with Presto ..136
Manual printer configuration ..138
PPD management ..147

Scanners ...148
USB Devices ...149

Keyboards and mice ..149
MP3 players ...150
Webcams ...150
Digital cameras ..153

Audio ...156
Serial Devices and Modems ..156

Serial ports ...156
USB-to-serial converters ..157
Modems ...159

Network Interfaces ..159
Power Management and UPSs ..161

Configuring power management ..161
Uninterruptible power supply (UPS) ..162

Device Drivers ...163
Resources ...164
Summary ..165

Chapter 6: Software Management . 167
Package Management ..167

IPS concepts ..168
Package names and versions ...169
Installing packages with Package Manager ...171
Removing packages ...172
Viewing, verifying, and searching packages ...173

Updating Your Software ..177
Boot Environment Management ...180

Viewing boot environments ..180
Activating and renaming boot environments ...182
Creating and destroying boot environments ..183

xvi

Contents

Mounting boot environments ...185
Managing a Package Repository ..185
Building Your Own Distribution .. 187
Resources ...188
Summary ..188

Part III

Chapter 7: Disks, Local File Systems, and the Volume Manager 191
Disks ..192

Disk device names ...192
Formatting and labeling ..193
Removable media ..196
RAM disk ...198
lofi ..198
SANs ..198
iSCSI ..199
I/O Multipathing ...202
Remote replication ..203
Other Disk Utilities ...203

File System Management ...205
Mounting and unmounting file systems ...205
Monitoring file systems ...206
File systems and shutting down ...207

devfs ...207
UFS ..207

Creating a UFS File System ..208
Logging ..209
UFS Mount Options ..209
Checking and Repairing a UFS File System ...209
Quotas ...211
Backup, Snapshots, and Restore ...212

Swap Space ..214
Other Local File Systems .. 216

pcfs .. 216
hsfs ...216
tmpfs ..216
lofs ...217
SAM-QFS ...217
FUSE ..217

The Volume Manager ..217
Creating the metadb ..218
Creating a metadevice ...218
Other commands and features ..220

xvii

Contents

Resources ...221
Summary ..222

Chapter 8: ZFS . 223
ZFS Basics ..224
Managing ZFS Pools ..226

Mirrors ...227
RAID Z ...231
Spare devices ...232
Data scrubbing ..234
Migration ...235
Pool properties ..237
Pool history ...239
Monitoring ZFS performance ..240

ZFS Datasets ..241
ZFS file systems ...241
ZFS volumes ..243
ZFS snapshots ..245
ZFS clones ...248
Dataset replication and backups ...249
Dataset properties ..251
ZFS encryption ..257

ZFS Delegated Administration ..258
ZFS Versioning ..259
Resources ...261
Summary ..262

Chapter 9: Networking . 263
Network Interfaces ..263

Displaying IP interfaces ...265
Configuring interfaces automatically with NWAM ..267
Configuring interfaces manually ...271
Logical interfaces ...276
IP multipathing ...278
Link aggregation ..285
Configuring virtual LAN interfaces ...287
Configuring a virtual NIC ...288
Configuring IP tunnels ..288
PPP and PPP over Ethernet ...290

Network Services ...290
Domain Name System ...290
Multicast DNS ...299
Dynamic Host Configuration Protocol ...300
File Transfer Protocol ..305
Network Time Protocol ...306

xviii

Contents

Mail service ..308
HTTP ...309
inetd ...309

OpenSolaris As a Router or Firewall ..313
Routing ..313
Configuring a firewall with IP filter ..318
TCP Wrappers ...322

Troubleshooting ...324
netstat .. 324
ping and traceroute ...325
Snoop ...326
SNMP ...328

Resources ...328
Summary ..329

Chapter 10: Network File Systems and Directory Services 331

Introduction to NFS ..332
Introduction to CIFS ...332
Managing File Sharing ...333

Installing sharing packages ...334
Share groups and sharemgr ..334
Configuring sharing services with sharectl ...338
Configuring the CIFS service in workgroup mode ..340
Automatic sharing of user home directories with CIFS ...341
Advanced CIFS server topics ..341

Accessing Files with NFS ..342
Manual NFS mounts ...343
Mounting NFS shares with the automounter ...344
NFS security ..346
NFS monitoring and troubleshooting ...349

Accessing Files with CIFS ...349
OpenSolaris Naming Services ...353

The name service switch ...353
Name service caching with nscd ..354
Troubleshooting name service lookups ..355

NIS ...355
Configuring a NIS client ...356
Configuring a NIS master server ..360
Configuring a NIS slave server ...362
Managing NIS maps ..364
Leaving a NIS domain ...365

LDAP ..365
OpenSolaris as an LDAP server ..366
OpenSolaris as an LDAP client ...366

xix

Contents

Resources ...367
Summary ..368

Chapter 11: Security . 369
Security Overview ... 369

Being a global security citizen ..370
Organization of this chapter ...371

Preventing Unauthorized Access ...371
User education and physical security ...372
Pluggable Authentication Modules (PAM) ..372
Password management ..375
Firewalls ...379
Secure by Default (SBD) ...380

Limiting the Damage ...384
Role-based access control ..384
Privileges ..394
Restricted shell ..398
Access control lists ..399
Encrypted files ...404
Message digests ..405
Preventing user stack execution ...406
Zones and resource management ...406

Ensuring Secure Communication ...406
Secure Shell ...408
IP security ..413

Detecting Attacks ...420
Logs ..420
Basic Audit Reporting Tool ...422
Solaris Auditing ...425
Virus scanning ...430

Kerberos ...431
Clock synchronization ...431
Setting up the key distribution center ..433
Setting up the Kerberos clients ...434
Starting Kerberized services ..435
Creating Kerberos accounts ..436
Managing tickets ..437
Using Kerberized services ...438
Kerberized NFS ...439
Configuring PAM for Kerberos ...441
Kerberos logs ...444
Enhancing Kerberos availability ..445

Trusted Extensions ..445
Resources ...446
Summary ..448

xx

Contents

Part IV

Chapter 12: Fault Management . 451
Predictive Self-Healing ..451

Fault managed resource identifiers ...452
Fault management versus service management ..453

Fault Management Overview ..453
FMD pluggable modules ...454
Knowledge articles ..454
Fault management hardware support ...455

Fault Management Commands ...455
fmadm ..455
fmstat ...456
fmdump ...457
Other fault management commands ..459

Using Fault Management ..461
Resources ...464
Summary ..464

Chapter 13: Service Management . 465
Processes and Services ...465
SMF By Example ...468

The service manifest ..472
Service method script ..479
Service management commands ...481

SMF Machinery ... 490
Restarters ...490
SMF repository ..493
The manifest-import service ...495
Milestones and init compatibility ...496
Profiles ...499

Customizing SMF Services ..500
Resources ...501
Summary ..501

Chapter 14: Monitoring and Observability 503
Getting System Configuration Information ..504
Primary Utilities ...509

uptime ..509
ps ...509
prstat ..510
vmstat ..512
mpstat ..514
iostat ..515

/proc ...516

xxi

Contents

Kstats ...518
Other Utilities ..519

cpustat ...519
truss ...520
intrstat ..521
lockstat ...522
sar ..523

Logs ..524
syslog ...524
Log management ...525
User activity ...525

SNMP ...526
Resources ...527
Summary ..527

Chapter 15: DTrace . 529
Getting Started ...530
Tracing Syntax ...535

Program structure ..535
Probes ..536
Predicates ...539
Actions ...541

The dtrace Command ...559
Advanced Tracing ..560

Tracing during boot ..560
Buffering ..560
Speculative tracing ..562
Postmortem tracing ...563
Standalone programs ...564

User-Level and High-Level Language Tracing ..564
The pid provider ...564
The sdt provider ..565
User-level data ...568
Tracing Java programs ..569
Tracing programs in other languages ...572

Resources ...573
Summary ..574

Chapter 16: Clustering OpenSolaris for High Availability 575
Introduction to High-Availability Clusters ...575
Overview of Open High Availability Cluster ..576

Cluster infrastructure ..577
Cluster agents ..578

Setting Up a Cluster ..579
Hardware requirements and configuration ...579

xxii

Contents

Installing the cluster software ...583
Configuring the cluster ...584

Using the Cluster ...589
Managing services ..589
Making Apache highly available ...590
Making Apache scalable ..600

Advanced Cluster Administration ...606
Shutting down the cluster ...606
Service management ..606
Volume management ...622
Zones As Logical Nodes ..622
Network load balancing ..627
Other cluster commands ...628

Making Custom Services Highly Available ...631
SMF Proxy ...631
Generic data service ..633

Disaster Recovery with Open High Availability Cluster ..634
Terminology ..635
Open HA Cluster Geographic Edition ..635
Setting up a Geographic Edition configuration ..636
Topology and architecture ..637
Installing and configuring Geographic Edition ..638
Geographic Edition operations ...642

Resources ...643
Summary ..645

Part V

Chapter 17: Virtualization Overview 649
Benefits of Virtualization ...650
Types of Virtualization ..651

Resource management ...651
Operating-system-level virtualization ...651
Full virtualization ..652
Comparison of virtualization layers ..654
Other virtualization solutions ...655

Comparing Virtualization Solutions ..655
Virtualization and a Graphical Display ...657
Virtualization Administration ..658
Summary ..658

Chapter 18: Resource Management . 659
Introduction to Resource Management ...659
Projects and Tasks ...660

xxiii

Contents

The project database ...661
Determining the default project ..662
Changing tasks ..663
Configuring projects ..663
Managing by project and task ..665

Resource Controls ... 665
Using rctls ..666
rctl Syntax ..667
rctl list ..668
Project rctls ..668

Resource Caps ...671
Resource Pools ...672

Configuring a pool ..672
Binding a pool to a project ...675
Dynamically binding to a pool ...675
Monitoring pools ...676
Advanced pool configuration ..676
The dynamic pool daemon ...680

Processor Sets ..682
Scheduling ...682

The Fair Share Scheduler ..684
Managing scheduling classes ...686
CPU caps ...687

Accounting ...687
Legacy accounting ...687
Extended accounting ...688

Resources ...691
Summary ..692

Chapter 19: Zones . 693
Introduction to Zones ...693
Uses of Zones ..694
Getting Started with Zones ...694

Configuring a zone ..694
Installing a zone ..696
Booting a zone ...697
Logging in to a zone ...698
Halting a zone ...699

Advanced Zone Configuration ..699
Resource management ...699
Networking ..705
Sparse root versus whole root ..708
Other zonecfg features ..710

Advanced zoneadm Features ...719
Moving a zone on the same machine ...719

xxiv

Contents

Moving a zone from one machine to another ..719
Cloning a zone ..723
Uninstalling a zone ..724

Ongoing Zones Administration ...724
Preconfiguring system identity ..724
Zones-related processes ...725
Accessing a zone ..725
Monitoring ...726
Dynamically reconfiguring a zone ..729
SMF ..731
Backup and restore ..731
Software management ...732
Other tools ...733

Limitations to Zones ..733
Branded Zones ...734

The ipkg brand ..735
The lx brand ..735
Experimental Linux 2.6 support ...738
Other brands ...738
Implementation ...739

Resources ...739
Summary ..740

Chapter 20: xVM Hypervisor . 741
xVM Concepts ...742
Getting Started with xVM ...744

Installing the xVM software and booting under the hypervisor744
Configuring and installing a guest domain ..746
Logging in to a guest domain ...748
Basic management of a guest domain ..748

Advanced xVM Administration ...751
Command line interfaces ..751
Installation ...751
Monitoring ...757
Ongoing management ...761
Domain console ...767
SMF services ..768

Live Migration ...769
Enabling live migration ...770
Migrating a domain ...771

Virtual Devices ...772
CPUs ..772
Memory ..776
Virtual disks ..778
Networking ..780

xxv

Contents

Other devices ...782
Devices in HVM domains ...782

Troubleshooting ...782
Logs ..782
DomU core dumps ..783
Dom0 core dump ..784
DTrace ...784

Resources ...785
Summary ..785

Chapter 21: Logical Domains (LDoms) 787
Introduction to LDoms ...787
LDom Concepts ...788

Types of domains ..788
Types of services and devices ...789

Getting Started with LDoms ...791
Checking the firmware ..791
Installing the management software ...792
Administrative privileges ...792
Configuring the control domain ...792
Configuring a guest domain ...795
Logging in to a guest domain ...798
Booting and installing a guest domain ...798

Advanced LDom Administration ..800
Monitoring ...800
ldmd daemon ..803
Delayed reconfiguration ..803
Virtual I/O services ..804
Physical I/O ...808
Creating services in a different domain ..810
CPU, memory, and MAU ..810
Virtual Disks ..812
Networking ..813
Console ..814
Variables ..816
Other administrative subcommands ...817
Managing configurations on the system controller ..818
Migrating a domain from one machine to another ..818
Hardening the control domain ...820

Resources ...820
Summary ..821

Chapter 22: VirtualBox . 823
Getting Started ...824

Configuring and installing a virtual machine ...824

xxvi

Contents

Booting and installing the guest OS ...826
Managing VirtualBox ...828

The running VM window ...829
The VirtualBox management GUI ...830

Advanced Features ..833
Guest additions ... 833
The management CLI ..835
Networking ..836
Storage ...837
Remote access ..840
Programmatic interfaces ..841
Running within a zone ..841

Resources ...842
Summary ..842

Part VI

Chapter 23: Deploying a Web Stack on OpenSolaris 845
The Web Stack on OpenSolaris ..845
The AMP Stack ..847

Installing the AMP stack ...847
Configuring Apache ..848
Configuring PHP ...850
Configuring MySQL ..851
Web applications ...853
Alternatives to Apache, MySQL, and PHP ...854

Java-based Web Services ...859
Apache Tomcat ..859
GlassFish Application Server .. 864

Resources ...866
Summary ..866

Chapter 24: Developing on OpenSolaris 869
Java Development ..869

Compilers and tools ..870
Debugging with JDB ..871

C and C++ Development ..875
Compilers and tools ..875
OpenSolaris C APIs ...878
Debugging ..879

Other Languages ..891
Perl ...891
Python ..891
Ruby on Rails ..892

xxvii

Contents

PHP ..893
Shell scripting ..893

Build Automation ..894
NetBeans ..894

NetBeans overview ..895
NetBeans for Java ..897
NetBeans C and C++ development ...903
NetBeans plug-ins ...906
NetBeans web application development ...907

Source Code Management ...912
CVS ..913
Subversion ...918
Mercurial ..922

Building IPS Packages ...926
IPS actions ...927
IPS package example ...927

Crash Dumps and Kernel Debugging ...929
Core files and crash dumps ..929
Kernel debugging ..931

Resources ...934
Summary ..936

Index . 937

xxviii

Welcome to OpenSolaris Bible! This book provides an introduction and tutorial on one of
the newest open source operating systems: OpenSolaris. Based on the enterprise-class
Solaris operating system from Sun Microsystems with roots in UNIX dating back to

1969, and chock-full of exciting new features such as ZFS, Zones, SMF, and DTrace, OpenSo-
laris was released to the open source community in 2005. Since then, Sun and the OpenSolaris
community have added significant virtualization features, such as xVM Hypervisor and Virtual-
Box; created a new network packaging model called IPS; rewritten the installer; and created a
brand-new Live CD distribution. Whether you’re looking for a new laptop, workstation, devel-
opment platform, or server, it’s worth your while to read this book and take OpenSolaris for
a spin.

This book is a comprehensive resource on using OpenSolaris. By the time you have completed the
book, you’ll know how to install, use, administer, develop on, and deploy OpenSolaris. In fact,
you’ll become a power user, conversant in advanced troubleshooting with FMA, SMF, DTrace,
and more. In addition, you’ll understand how to use virtualization technologies with OpenSolaris
to optimize your physical hardware.

Additionally, OpenSolaris Bible contains the following features:

■ Practical, hands-on advice. As active software developers who use OpenSolaris every
day, the authors have included hands-on usable information. Unlike some books that
address only theory, this book contains practical tips and tricks that you can immediately
put into practice.

■ Concrete examples. The book is full of specific examples — including exact command
lines and screenshots — that walk you through the tasks you need to accomplish. These
examples are all well tested.

■ Cutting-edge information. As active contributors to OpenSolaris, the authors provide
cutting-edge details about rapidly evolving features such as IPS, xVM Hypervisor, Virtual-
Box, and more.

■ Candid insider tips. As both Sun Microsystems employees and OpenSolaris community
leaders, the authors are in an ideal position to explain OpenSolaris to you.

xxix

Introduction

Who Should Read This Book
Perhaps you’ve heard about the ZFS file system, DTrace, or one of the other novel features in
OpenSolaris and are eager to try out the operating system to see what all the fuss is about; or
maybe you’re an experienced UNIX or Linux user who wants to explore one of the newest open
source operating systems on the block. You might be a disgruntled Windows user interested in
moving into the wonderful world of open source software; or perhaps you’re already an expe-
rienced OpenSolaris user who would like to move to the next level or learn about a feature
that you haven’t had the chance to try yet. This book has something for you, regardless of your
background or familiarity with OpenSolaris.

The only prerequisite for reading this book is that you have some experience with UNIX or
Linux. That could be with any UNIX/Linux variant, such as Solaris, HP-UX, NetBSD, MacOS X,
Ubuntu, Red Hat Linux, and so on. The key point is that you should be familiar with the basic
UNIX/Linux model: You should know what a shell is, and be familiar with the concepts of users,
processes, file systems, network interfaces, and the like. If you’ve used only Microsoft Windows,
the UNIX model represents a paradigm shift; and you will find it easier to approach once you’ve
read an introductory book on UNIX or Linux, such as UNIX for Dummies by John R. Levine
and Margaret Levine Young. However, Chapter 3 of this book provides a whirlwind introduction
to basic OpenSolaris user and administrator concepts, so if you’re in doubt, skim through that
chapter to decide whether this book is appropriate for you.

Programming experience is not a prerequisite for this book. You can read the book even if you’ve
never written a C program or shell script in your life.

How This Book Is Organized
OpenSolaris Bible contains 24 chapters, divided into six parts. Although the book is organized
so that you can start with Chapter 1 and read straight through to Chapter 24, if you’re like the
authors of this book you are unlikely to tackle a technical book that way. Instead, you may want
to jump straight to the sections that most interest you, or use the book as a reference for whatever
task you currently have at hand. For example, if virtualization is the hot topic for you right now,
you might want to jump straight to Part V. To that end, this book has been carefully designed
such that each chapter more or less stands on its own. Chapters that reference material in other
parts of the book contain cross-references where appropriate, so you’ll always know where to
look for more information.

Part I: Introduction to OpenSolaris
Part I provides a crash course in OpenSolaris. Chapter 1 introduces the OpenSolaris operating
system and open source community, and contrasts it with other popular operating systems such
as Linux. Chapter 2 describes the various distributions available and shows you how to obtain
and install the OpenSolaris distribution from Sun. Chapter 3 concludes Part I with a tour of the

xxx

Introduction

OpenSolaris operating environment, from the GNOME desktop to the bash shell, from using
vim, to system administration. If you’re new to OpenSolaris, Part I is the place to start. This part
assumes no prior experience with OpenSolaris. Even if you’re experienced with Linux or Solaris
and are tempted to jump straight to a more advanced topic, you should skim this section to
ensure that you’re up to speed on the latest developments in OpenSolaris and how it differs from
other popular operating systems.

Part II: Using OpenSolaris
Part II provides the details of using OpenSolaris as a desktop or workstation system. Chapter 4
begins Part II by covering the GNOME desktop and the various applications available to you for
accessing the Internet, listening to music, and so on. Chapter 5 continues to describe how to use
your OpenSolaris box as a desktop machine by connecting printers and other peripherals, such
as USB devices. Chapter 6 concludes Part II by describing how to obtain additional software and
how to upgrade your OpenSolaris system. Even if you’re planning to use OpenSolaris only as a
server, you should familiarize yourself with the software management discussion in Chapter 6.

Part III: OpenSolaris File Systems, Networking,
and Security
Part III delves into the details of OpenSolaris administration. Any OpenSolaris user or adminis-
trator needs to understand how to use disk storage, how to network OpenSolaris machines, and
how to take advantage of the OpenSolaris security features. Chapter 7 starts Part III with an intro-
duction to using disks with OpenSolaris, including disk naming, formatting, and partitioning; the
UFS file system; and the Solaris Volume Manager. Chapters 8 and 10 present details on the ZFS
file system and Network File System (NFS), respectively. Chapter 9 provides a detailed look
at OpenSolaris networking, while Chapter 10 also includes information on the NIS and LDAP
directory services. Chapter 11 concludes Part III with a thorough discussion of the OpenSolaris
security features, including Role-Based Access Control, IP Security, and Kerberos.

Part IV: OpenSolaris Reliability, Availability,
and Serviceability
Part IV describes the reliability, availability, and serviceability features of OpenSolaris. Computer
systems can and will fail at both the hardware and software level. How an operating system
handles these failures determines its suitability as a robust platform. OpenSolaris, based on the
enterprise-class Solaris operating system from Sun, provides significant robustness in the form
of what computer scientists sometimes call RAS: reliability, availability, and serviceability. This
part opens with fault management and service management, in Chapters 12 and 13, respec-
tively. These features combine to implement OpenSolaris’ predictive self-healing, which provides
significant robustness in the presence of both hardware and software faults. Chapters 14 and
15 describe the serviceability aspects of OpenSolaris, including the innovative dynamic trac-
ing (DTrace) facility. The part concludes with Chapter 16, on clustering OpenSolaris machines
together for increased availability of the system as a whole.

xxxi

Introduction

Part V: OpenSolaris Virtualization
Part V covers the various technologies available to use with OpenSolaris to share the comput-
ing resources of a single physical machine among multiple users, processes, and even operating
systems. Chapter 17 presents on overview of virtualization terms and concepts. Chapter 18
describes OpenSolaris resource management techniques for virtualizing resources within a sin-
gle operating system instance. Chapter 19 covers the Zones OS-level virtualization feature in
OpenSolaris. Chapters 20 and 21 describe the xVM and Logical Domains hypervisor-based virtu-
alization approaches on x86 and SPARC hardware, respectively, that enable you to run multiple
operating system instances on a single physical machine. Chapter 22 concludes Part V with a
look at VirtualBox, an easy-to-use virtualization software application that can run on a variety of
host operating systems, including OpenSolaris, and can support OpenSolaris as a guest operating
system. VirtualBox is your best bet for trying out OpenSolaris, even if you don’t have a physical
machine available on which to install it. If that’s the case, you might want to jump to Chapter 22
after reading Part I.

Part VI: Developing and Deploying on OpenSolaris
Part VI concludes OpenSolaris Bible with a thorough look at deploying web services and using
OpenSolaris as a development platform. Chapter 23 shows you how to use the web stack appli-
cations available on OpenSolaris, such as the Apache web server, MySQL, PostgreSQL, Apache
Tomcat, and others. Chapter 24 presents the various development and debugging tools avail-
able on OpenSolaris, including the Java Development Kit, the Sun Studio Compiler Collection,
NetBeans, the GNU Compiler Collection, and various source code management systems such as
Mercurial. If you’re a developer considering OpenSolaris as your platform, Chapter 24 has all the
background information you need.

Conventions Used in This Book
There are many different organizational and typographical features throughout this book designed
to help you get the most from the information.

Text styles
This book uses a number of conventions to present the material clearly and consistently:

■ New terms are italicized when they are introduced.

■ Keyboard strokes are shown like this: Ctrl+K.

■ Nested menu options are listed in order of selection, separated with arrows, like this:
Applications→Graphics→Image Editor

■ Code, commands, URLs, filenames, and file listings are all printed in a monospace font
like this: www.opensolaris.com.

xxxii

Introduction

■ When an example includes both input and output, the same monospace typography is
used, but input is presented in bold type to distinguish the two. Here’s an example of a
command with both input and output:

$ echo "Hello, world"
Hello, world

Command prompts
The book shows two different prompts for shell commands. A root shell is shown with the pound
sign (#), whereas a non-root shell is shown with the dollar sign ($). Here’s an example of a root
shell command:

svcadm enable network/physical:default

Here’s an example of a user shell command:

$ date
Tue Jul 29 13:11:10 MDT 2008

Note that OpenSolaris allows certain non-root users to execute privileged commands. This capa-
bility is discussed further in Chapters 3 and 11.

Icons
The following items are used to call your attention to points that are particularly important:

Notes provide additional, ancillary information that is helpful, but somewhat outside
of the current presentation of information.

Tips generally are used to provide information that can make your work
easier — special shortcuts or methods for doing something easier than the norm.

This information is important and is set off in a separate paragraph with a special
icon. Cautions provide information about things to watch out for, whether simply

inconvenient or potentially hazardous to your data or systems.

Cross-references point you to other places in the book where you can find related or
additional material.

Hardware Architecture
Throughout the text the term x86 is used to refer generally to both 32-bit and 64-bit AMD or
Intel hardware architectures. SPARC refers to 64-bit systems with either sun4u or sun4v pro-
cessor class CPUs unless specifically noted. This is primarily only an issue in Chapter 21 on
LDoms.

xxxiii

Introduction

Manual Page References
System commands are sometimes written in the body of the text such that they refer to the
appropriate manual page for that command. For example, svcs(1) means the svcs command,
which is documented in section 1 of the manual pages. OpenSolaris includes the traditional
UNIX man(1) command, which can be used to display the manual page for a command. Thus,
the following example displays the manual page for the svcs(1) command:

$ man svcs

Resources
Most of the chapters include a ‘‘Resources’’ section at the end that provides suggestions for more
information — for example, URLs to project pages, other reference books, or pointers to the
source code.

What’s on the Companion Website
The companion website for OpenSolaris Bible, at www.wiley.com/go/opensolaris contains
the source code for the programming examples in Chapters 15 and 24, as well as an up-to-date
errata list.

Minimum Requirements
To install and try out OpenSolaris on bare metal, you need a desktop or laptop machine with the
following minimum requirements:

■ Intel or AMD 32-bit or 64-bit Pentium III or faster processor

■ 512MB RAM

■ 10GB free hard disk space

■ CD or DVD drive

If you intend to download OpenSolaris from the Internet, you need a reasonably high-speed
Internet connection and a CD burner to burn the image to a CD. Alternately, you can order a
free CD from http://opensolaris.com.

OpenSolaris does not work perfectly with every off-the-shelf laptop or desktop machine. Use the
device detection tool described in Chapter 2 to determine whether your hardware will work.

OpenSolaris in a virtual machine
If, instead of running on bare metal, you want to run OpenSolaris in VirtualBox, VMware, or
on other virtualization software, you need at least 1GB of RAM, but you won’t need a CD/DVD

xxxiv

Introduction

drive or a CD burner. You also won’t need to worry about hardware compatibility and the device
detection tool.

Other requirements
A few of the topics in this book require hardware other than the minimum listed here. Logical
Domains, described in Chapter 21, require a sun4v SPARC processor. Running virtual machines
under xVM, VirtualBox, or Logical Domains generally requires more than 512MB of RAM; and
Solaris Cluster Express, described in Chapter 16, requires additional disk space and RAM.

Where to Go from Here
While reading this book, the authors strongly suggest that you ‘‘play along at home’’ by down-
loading and installing the free OpenSolaris distribution from http://opensolaris.com.

After reading the book, you should be a confident user and administrator of OpenSolaris. If you
have clarifying questions or queries about topics not covered in this book, please feel free to ask
the OpenSolaris community at http://opensolaris.org. Chapter 1 contains a list of helpful
mailing lists and forums.

Despite our best efforts to ensure the correctness of all the material in this book, you
might uncover a mistake as you’re reading. If you do find a bug, please report it at
www.wiley.com/go/opensolaris.

We hope you find this book useful, and that you enjoy using OpenSolaris as much as we do!

xxxv

Introduction to
OpenSolaris

IN THIS PART

Chapter 1
What Is OpenSolaris?

Chapter 2
Installing OpenSolaris

Chapter 3
OpenSolaris Crash Course

What Is OpenSolaris?

IN THIS CHAPTER
Introduction to OpenSolaris

OpenSolaris features

OpenSolaris licensing

History of OpenSolaris

Comparing OpenSolaris to
other operating systems

Getting involved in
OpenSolaris

OpenSolaris development
process

You probably wouldn’t have picked up this book if you hadn’t at
least heard of OpenSolaris or Solaris, but even if you’ve poked
around OpenSolaris or used Solaris for years, you might be

confused about what, exactly, OpenSolaris is. Is it an operating system, an
open source code base, an open source community, or a distribution? How
is it different from Solaris? How is it different from Linux? Is it really open
source?

This chapter answers those questions and more. Even if you’re an experi-
enced Solaris user, this chapter may be useful in helping you understand
OpenSolaris and its differences from Solaris. On the other hand, if you’re
already involved in OpenSolaris, you might still want to skim this chapter
to learn a bit about the history of OpenSolaris and Solaris with which you
might not be familiar.

Introduction to OpenSolaris
OpenSolaris is an open source operating system, similar in scope to
GNU/Linux and BSD, but descended from the proprietary Solaris operating
system from Sun Microsystems. The authors of this book find it helpful to
think of OpenSolaris as divided into three distinct but related aspects: the
code, the distributions, and the community.

OpenSolaris code
OpenSolaris is the open source version of Sun Microsystems’ Solaris oper-
ating system, but OpenSolaris consists of code for much more than

3

Part I Introduction to OpenSolaris

just the core operating system — it includes source for installers, desktops, layered software
such as Open High Availability Cluster, documentation, test frameworks and test suites, and
much more. OpenSolaris is millions of lines of source code in tens of thousands of source files.

You can browse the source code online at http://src.opensolaris.org.

If you’re familiar with the Linux world, you can think of this aspect of OpenSolaris as similar to
kernel.org, but with source code for much more than just the operating system kernel.

Some parts of Solaris are legally encumbered, such that they cannot be open sourced.
Thus, OpenSolaris does not contain the source code for the complete Solaris operat-

ing system.

OpenSolaris distributions
Unless you’re an operating systems developer, source code doesn’t do you much good. Most
people want a running operating system, not a bunch of code. While you can theoretically
build a running system from the source, if all you want to do is run OpenSolaris, it’s much
easier to install one of the OpenSolaris binary distributions. Luckily, there are several of them,
including Solaris Express, Shillix, BeleniX, NexentaCore, and MartUX. This book focuses on the
OpenSolaris distribution from Sun Microsystems, confusingly also named OpenSolaris.
(The OpenSolaris distribution from Sun is available from http://opensolaris.com.)

Sun Microsystems owns the trademark for the term OpenSolaris. Thus, distributions
from outside Sun are allowed to use the term only by following the OpenSolaris

Trademark Policy. See http://opensolaris.org/os/trademark.

The various OpenSolaris distributions are comparable to the various Linux distributions such as
Ubuntu, Red Hat, and SUSE Linux.

Chapter 2 describes OpenSolaris distributions in more detail.

OpenSolaris community
The OpenSolaris community consists of the activity around the OpenSolaris source code and
distributions, including design and development of new features, bug fixes, advocacy and evan-
gelism, distribution building, discussions, and much more. The development community, cen-
tered at http://opensolaris.org, hosts the source code and provides resources for projects
such as web space, mailing lists, and source code repositories. This community supports active
development, similar to the Apache community.

A more user-centered community built around the OpenSolaris binary distribution from Sun can
be found at http://opensolaris.com.

Both of these OpenSolaris communities are sponsored by Sun Microsystems. However, non-Sun
employees are encouraged to participate at all levels, from using the distributions to writing ker-
nel code.

4

What Is OpenSolaris? 1

The section ‘‘Getting Involved in OpenSolaris’’ near the end of this chapter provides more infor-
mation about the OpenSolaris communities.

OpenSolaris Features
OpenSolaris contains a rich feature-set that makes it suitable for a wide variety of uses, from
running a personal desktop or laptop to providing web services to hosting enterprise-class
databases with stringent availability requirements. OpenSolaris contains far too many features to
list here, but an overview of the key differentiators can help you start to evaluate its usefulness.
For more details on these features and many others, read the rest of this book! Here are some of
the OpenSolaris highlights:

■ Support for multiple hardware architectures, including both SPARC and 32-bit and 64-bit
x86-based systems. OpenSolaris also performs well in many industry benchmarks.

■ High scalability. OpenSolaris runs on both single processor machines and multiprocessor
systems with hundreds of CPUs and terabytes of RAM.

■ Innovative file system and volume manager support. Solaris uses a Virtual File System
(VFS) layer so that different file systems can be plugged in on top of it relatively easily. In
addition to the standard Unix File System (UFS), OpenSolaris includes the Solaris Volume
Manager (SVM) and the new ZFS.

■ Networking features, including a kernel-level, high-performance TCP/IP stack, IPv6
support, IPsec, Network Auto-Magic (NWAM) for automatic detection and configuration
of network interfaces, and IP Network Multipathing (IPMP) for fault tolerance and load
balancing.

■ Complex resource management, including processor pools, physical memory controls,
and a fair share scheduler.

■ Sophisticated security, including role-based access control (RBAC), configurable privi-
leges, and trusted extensions.

■ Rich observability and debugging support, including myriad system monitoring tools, the
Modular Debugger (MDB), and the dynamic tracing facility (DTrace).

■ Predictive self-healing features in the form of the Fault Management Architecture (FMA)
and Service Management Facility (SMF). They work together to detect hardware and soft-
ware faults and take appropriate action.

■ Multiple forms of virtualization. In addition to the operating-system-level virtualization of
Solaris Zones, OpenSolaris offers support for xVM Hypervisor, Logical Domains (LDoms),
and VirtualBox, and runs in VMware and other virtualization frameworks.

■ Sophisticated 64-bit fully preemptable kernel. The OpenSolaris kernel is also
modular — device drivers can be installed without requiring a system reboot, and features
can be configured without recompiling the kernel. The virtual memory subsystem uses
demand paging for greater performance and less memory usage. The process scheduling

5

Part I Introduction to OpenSolaris

system supports multiple scheduling classes, including timeshare, real time, interactive,
fair share, and fixed priority.

■ Full POSIX compliance with a rich application programming API, including support for
64-bit applications.

■ Integrated AMP stack (Apache, MySQL, PHP) for running web services.

With all of these features in mind, let’s take a look at open source software.

The ‘‘Open’’ in OpenSolaris
As implied by the ‘‘open’’ in the name, OpenSolaris is open source software. The general
meaning of open source is that the source code is available for anyone to look at. However,
the details vary, and in fact OpenSolaris is not open source in exactly the same way as Linux,
Apache, MySQL, BSD, Perl, Java, or most other open source software with which you might be
familiar. To understand the details of the OpenSolaris open source model, it’s helpful to first
review and define some open source software basics.

Open source software basics
In the traditional closed source model of software development, companies or developers
distribute only running programs in the form of binaries. Users cannot look at the source code
from which those binaries were compiled. In the open source model, as its name implies,
anyone can view, modify, compile, and even redistribute the source code for the programs.
More specifically, the Open Source Initiative, a respected authority and advocate for open source
software, specifies 10 criteria that software must fulfill in order to be open source, including the
following:

■ Free redistribution — Anyone can sell or give away the software by itself or as part of an
aggregate distribution.

■ Source code — Source must be available for all distributions.

■ Derived works — Anyone can modify the code and redistribute it.

■ No discrimination — The code must be available to anyone for any ‘‘field of endeavor.’’

The complete list is available at http://opensource.org/docs/osd. It’s important to
remember that open source software, despite sometimes being called free software, is not
required to be free of charge. Think of the ‘‘free’’ in free software as referring to free speech,
rather than free beer. Thus, companies or individuals can sell programs built from open source
code.

Other terms for open source software include free software and free and open source
software (FOSS).

This book uses the term open source software not to emphasize any particular software philoso-
phy but because the authors think it’s the clearest term.

6

What Is OpenSolaris? 1

Open source licenses
All open source code is available under an open source license, which defines the terms of use.
Different open source projects choose different licenses. Some licenses with which you might be
familiar are the GNU General Public License version 2 (GPLv2), under which Linux is available,
and the BSD license, under which OpenBSD, NetBSD, and other BSD variants are available.

The major difference between the licenses is their requirements regarding derivative works, or
modifications to the source code. Specifically, if someone who is not the original author takes
some open source code and changes it by adding newly written code, removing code, or com-
bining it with other code, is she required to release the new code under the original license, or
can she use a different license? Based on this criterion, there are three categories of open source
licenses:

■ Strong copyleft licenses require that any derived code stay under the original license.
Therefore, if a developer adds some code to a file under a copyleft license, then that
new file must also be released under the original license. A strong copyleft license is
project-based, rather than file-based. That is, all source files in a project must be under the
same license. This requirement generally means that code under a strong copyleft license
cannot link (either statically or dynamically) with code under a non-strong copyleft
license. Another way of looking at it is that every piece of code that strong copyleft
licensed code touches must also be under that license. For this reason, strong copyleft
licenses are sometimes called viral licenses. Thus, you cannot generally combine code
under a strong copyleft license with code under other licenses. The best-known strong
copyleft license is the GNU General Public License (GPL), both versions 2 and 3. The
Linux kernel, the GNU tools, Java, and a multitude of other software projects use the GPL.

■ Weak copyleft licenses are nearly identical to strong copyleft licenses except that they’re
file-based instead of project-based. That is, modifications to a file must be released under
the original license, but that file can be combined in a project with code under a different
license. As a result, weak copyleft licenses are not viral in the same way as strong copyleft
licenses. The Mozilla Public License (MPL), under which the Mozilla Firefox browser is
licensed, is a weak copyleft license.

■ Non-copyleft licenses do not require derived works to stay under the original license.
They do not even require derived code to be released under any open source license.
Thus, someone could take an open source project under a non-copyleft license and use
it as a basis for a proprietary product. The BSD license is the best-known example of a
non-copyleft license.

While these differences can seem esoteric, a quick glance at the discussions in various open
source communities shows that the debate can become quite passionate. Some people, par-
ticularly in the Linux and GNU communities, feel strongly that only strong copyleft licenses
are ‘‘true’’ open source licenses because they best protect the original author. Others feel that
non-copyleft licenses, such as the BSD license, are preferable because they give the most freedom
to developers creating derived works. Still others find weak copyleft licenses to be a reasonable
compromise.

7

Part I Introduction to OpenSolaris

Open source licenses generally include provisions to distribute binary executables built from the
source. The licenses usually require that the source code be made available with the binary exe-
cutables, or be made available upon request. For example, both the Linux source and the Linux
distributions are available under the GPLv2.

OpenSolaris licenses
The OpenSolaris source code is heterogeneous in its open source licenses and the predominant
license may be unfamiliar to you.

Common Development and Distribution License
The majority of the OpenSolaris source code is available under the Common Development and
Distribution License (CDDL), pronounced ‘‘cuddle.’’ Written by Sun explicitly for OpenSolaris,
this license has been officially approved by the Open Source Initiative (OSI) as a legitimate open
source license. It’s a weak copyleft license like the MPL (which it resembles) in that it requires
derivative works to maintain the same license on a per-file basis, but does not require all the
files in a project to be under the CDDL.

Because the CDDL is copyleft, changes to the source code itself must be released under the
CDDL as well. It is hoped that any such changes are contributed back to the OpenSolaris
community itself, but that is not a requirement. However, because the CDDL is weak copyleft,
instead of strong copyleft, whole pieces of it may be incorporated into projects under different
licenses, including proprietary projects. This aspect of the license has allowed OpenSolaris
features such as DTrace and ZFS to be ported to other operating systems such as Mac OS X
10.5. (DTrace and ZFS are covered in Chapters 15 and 8, respectively.)

The GPLv2 is incompatible with the CDDL because the GPLv2 requires all code in
the project to be under the GPL. Thus, porting OpenSolaris features to Linux is signif-

icantly more complicated than porting to other systems.

Because the Solaris code base contained some open source and third-party code even before
it was open sourced by Sun, not all the OpenSolaris code is under the CDDL. Parts of it are
licensed under the BSD license and other open source licenses. Each source file contains a
header comment specifying the license for that file.

Binary distributions under the CDDL
It’s sometimes perplexing that some binary distributions of OpenSolaris are available under the
CDDL. Isn’t the CDDL a source code license? Yes, it is. However, like many other open source
licenses, the CDDL permits binary executables built from source code under the license to be
distributed under the CDDL. Thus, distributions of OpenSolaris may be distributed under the
CDDL.

As if things weren’t confusing enough with the source code licenses, OpenSolaris also uses
another binary license called the OpenSolaris Binary License (OBL). Binaries under this license
are freely redistributable, and can be used for running and developing OpenSolaris. Binaries

8

What Is OpenSolaris? 1

released under the OBL include build tools, parts of Solaris that cannot be open sourced (and so
aren’t under the CDDL), and binaries built from proprietary code.

Open development
Open source software is generally, but not always, developed as part of a community in an open
development process. In open development, developers can collaborate in public forums, par-
ticipants need not all work for the same company, and there is freedom to pursue projects that
might not fit within the scope of a single company’s business needs.

The opposite of an open development process is a proprietary development process, in which
a company or individuals write the code on their own, with their particular business needs in
mind, and without interacting with people outside their group.

Eric S. Raymond’s seminal article, ‘‘The Cathedral and the Bazaar,’’
compares these two software development models. You can read the article at

www.catb.org/∼esr/writings/cathedral-bazaar/cathedral-bazaar.

Although the Solaris operating system was originally developed in a proprietary development
model, the OpenSolaris community is intended to support an open development model.
Consequently, you will find many active developers, discussions, and ongoing projects at
www.opensolaris.org.

What open source OpenSolaris means to you
At this point you might be wondering what the open source and open development aspects of
OpenSolaris mean for you. On the open source side, while the specific terms of the licenses
and the legal requirements can be complicated, the important thing to remember is that you
can always look at the OpenSolaris source code. That may not be too useful if you only want
to run an OpenSolaris distribution, but if you’re a developer or advanced system administrator,
studying the OpenSolaris code can be a valuable proposition.

On the other hand, the open development aspects of OpenSolaris should interest everyone. The
OpenSolaris community is a great place to ask for help, contribute suggestions, participate in
discussions, and in general influence the direction of OpenSolaris!

The History of OpenSolaris
The history of OpenSolaris, and even some of the source code, dates back to 1969. In that year,
Ken Thompson at AT&T Bell Laboratories wrote the first version of the UNIX operating system.
UNIX was designed from the beginning to be multi-user and multi-tasking, with an interactive
shell that would still look familiar to any UNIX or Linux user today. Over the next few years,
Thompson and Dennis Ritchie continued refining UNIX, which was used mostly inside Bell
Labs. However, in the mid to late 1970s, UNIX versions 6 and 7 were distributed fairly

9

Part I Introduction to OpenSolaris

widely, and used by various academic and government institutions, including the University of
California at Berkeley.

Because of the lenient license terms in early versions of AT&T’s UNIX, other organizations
began significantly customizing and enhancing it. This work led to several major branches of
UNIX, the most relevant of which to OpenSolaris was the Berkeley Software Distribution (BSD).
In 1978, Bill Joy and others at Berkeley added virtual memory, demand paging, and other
embellishments to UNIX Version 7 to create a version of UNIX called 3BSD. Joy and others
continued enhancing BSD UNIX over the next few years, adding the familiar TCP/IP networking
stack, the C shell, the VI editor, and other key features.

In 1982, Bill Joy co-founded Sun Microsystems and by 1984 had used BSD UNIX as the
basis for the SunOS operating system that ran Sun’s workstations. In the meantime, AT&T
continued developing its line of UNIX, calling it System V, and other companies created their
own branches, such as Microsoft’s Xenix (which later became SCO UNIX).

In the late 1980s, Sun and AT&T began work on a joint project to remerge several popular vari-
ants of UNIX to create System V Release 4. The result, completed in 1990, contained the best
features from AT&T’s earlier System V Release 3, Sun’s SunOS, 4.3BSD, and Xenix 5, includ-
ing TCP/IP support, the Network File System (NFS), the Unix File System (UFS), and the Vir-
tual File System (VFS) interface. Additionally, System V Release 4 (SVR4) fully complied with
the Portable Operating System Interface (POSIX) standard, which defines an application pro-
gramming interface, utilities, and other aspects of an operating system. Theoretically, a program
written to POSIX interfaces can run on any POSIX-compliant operating system. In 1992, SVR4
became the basis of Sun’s new operating system, Solaris 2.0.

‘‘Solaris’’ technically refers to the entire operating environment, including the graph-
ical user interface. The kernel itself is still called SunOS. However, this book uses

Solaris in the colloquial sense to refer to both the entire operating environment and the kernel.

In the years since, Sun has continually enhanced Solaris with features such as the kernel slab
memory allocator, multithreaded kernel and multithreaded process support, 64-bit kernel and
process support, Solaris doors inter-process communication, and many others. The most recent
release of Solaris, Solaris 10, introduced several exciting new features such as a dynamic tracing
facility (DTrace), the Service Management Facility (SMF), Zones, and the ZFS file system.

In 2005, Solaris became the first mature proprietary operating system to go open source when
Sun released the source code as OpenSolaris. The open sourced code was basically the source
for Solaris 10, which had been first released approximately five months earlier. Since then,
some of the active development in OpenSolaris has been backported and released in Solaris 10
updates, but much of it is currently unique to OpenSolaris. It’s important to note that backports
of OpenSolaris features to Solaris 10 can only be done by Sun because the Solaris 10 source
code is not open source.

In summary, OpenSolaris’s development path has not been exactly straightforward. As an open
source operating system based on a closed-source operating system that in turn is related to sev-
eral other open source and closed source operating systems, OpenSolaris can be confusing. If

10

What Is OpenSolaris? 1

nothing else, this history should help you understand why there are so many AT&T and Uni-
versity of California Berkeley copyrights in the OpenSolaris source code.

Comparing OpenSolaris to Other
Operating Systems
So how does OpenSolaris compare to other open source and proprietary operating systems? Let’s
take a look.

OpenSolaris and Solaris
OpenSolaris is an open source code base, community, and distribution. Solaris is a proprietary
product from Sun Microsystems. The two are not synonymous, but they are intertwined. First of
all, OpenSolaris was seeded from the Solaris code base around the time of Solaris 10. However,
the OpenSolaris code base has subsequently diverged from the Solaris 10 code base, so the latest
update of Solaris 10 is significantly different from OpenSolaris.

Solaris is a product from Sun, whereas OpenSolaris is an open source code base,
community, and distribution.

Confusingly, Sun does release a distribution of OpenSolaris called OpenSolaris. This distribution
is not the same as the Solaris 10 product. For one thing, unlike Solaris 10, the OpenSolaris dis-
tribution is available free of charge and is fully redistributable. This book focuses primarily on
the OpenSolaris distribution.

The OpenSolaris distribution and other distributions are described in Chapter 2.

In the future, Sun will likely release a version of the Solaris product with long-term support that
is based on a more recent OpenSolaris snapshot. This model will be similar to the way Red Hat
Enterprise Linux is based on the open source Fedora code base.

OpenSolaris and Linux
Linux and OpenSolaris are both open source UNIX-like operating systems. They can support
identical user interfaces, such as GNOME, run many identical applications, such as Apache,
MySQL, Mozilla Firefox, and OpenOffice, and support identical tools such as the GNU compiler
tools, Java, Perl, Python, Ruby, and others. But the two operating systems have significant
differences in their histories, licensing, distribution models, and underlying implementations.

History
Although UNIX-like, the Linux source code is not descended from the original AT&T or BSD
UNIX code. Linus Torvalds and others created it independently in the early 1990s. Because

11

Part I Introduction to OpenSolaris

Linux is not based on the original AT&T UNIX, BSD, SVR4, or any other form of UNIX, it
does not have any kernel code in common with OpenSolaris. Linux was open source from the
beginning, and was developed following a community development model.

Conversely, OpenSolaris was open sourced in whole based on the mature Solaris operating sys-
tem, which was developed in large part in a proprietary development model. Partly because of
this history, Linux has a much larger development community than does OpenSolaris. Linux
also has many more distributions, from several different vendors.

Licensing
The Linux kernel uses the GNU General Public License version 2 (GPLv2), which is incompati-
ble with the CDDL used by OpenSolaris because of the GPL’s viral nature, as described earlier in
this chapter. Thus, code cannot be ported between the OpenSolaris kernel and the Linux kernel.
However, both OpenSolaris and Linux can run userland programs distributed under the GPL
and other licenses, which is why they can appear to be quite similar.

Distributions
The Linux kernel, user applications, tools, and libraries are developed separately and then
packaged together into distributions, which some in the free software community refer to as
GNU/Linux because of the combination of the GNU tools and the Linux kernel. Some of the
well-known distributions include Ubuntu, Red Hat Enterprise Linux, SUSE Linux, and Debian
GNU/Linux.

OpenSolaris is more of a monolithic model, in which many of the userland tools, libraries, and
applications are part of OpenSolaris itself. However, OpenSolaris distributions also use a signif-
icant amount of third-party open source software such as GNOME, Firefox, OpenOffice, and
more.

Technical differences
Some of the most apparent differences between Linux and OpenSolaris derive from the fact
that OpenSolaris is a variant of UNIX System V Release 4, while Linux is not. One of the most
noticeable results of Linux not being based on SVR4 is that it doesn’t use SVR4 packaging. Linux
packaging varies between distributions, but lately it has tended toward a model whereby pack-
ages can be easily downloaded and installed dynamically from a network package repository.
Interestingly, OpenSolaris has recently introduced a more Linux-like packaging approach called
the Image Packaging System (IPS).

OpenSolaris contains many of the same GNU tools found on Linux. Historically,
these were in /usr/gnu/bin/ and /usr/sfw/bin/, but are moving to /usr/bin/ when

possible. Because of conflicts, some commands are still in /usr/gnu/bin/ and /usr/sfw/bin/.

Additionally, the Linux and OpenSolaris kernels differ significantly in the areas of scheduling,
virtual memory, file systems, and others. For more details, consult one of the references listed in
the ‘‘Resources’’ section at the end of this chapter.

12

What Is OpenSolaris? 1

OpenSolaris and BSD
Because OpenSolaris is based on Solaris, which is based in part on BSD, OpenSolaris and BSD
have significant similarities in their code. The main differences are threefold. First, BSD has been
developed in the open, like Linux, and so has diverged substantially from Solaris. Interestingly,
the BSD community has split into three main camps such that there are now three different
BSD-based operating systems: OpenBSD, NetBSD, and FreeBSD.

Second, BSD is not based on SVR4. In fact, OpenSolaris is the only open source UNIX System V
Release 4–based operating system.

Historically, Solaris contains the SVR4-style tools in /usr/bin, while its BSD-style
tools are in /usr/ucb/. However, in OpenSolaris the BSD-style tools are moving to

/usr/bin when possible. Because of conflicts, a few tools remain in /usr/ucb/.

Finally, unlike the CDDL used for OpenSolaris and the GPL used for Linux, the BSD license is
a non-copyleft license. This lenient license does not force modifications and enhancements to be
contributed back to the ‘‘commons.’’

Interestingly, Mac OS X is a variant of UNIX based on the Mach operating system, which itself
is based on BSD. However, Mac OS contains a distinctive Macintosh user interface, hiding the
details of the underlying UNIX operating system from most of its users. Apple has ported some
OpenSolaris features, such as DTrace and ZFS to Mac OS X, and has released the source code of
the core operating system as the Darwin Open Source Project.

Getting Involved in OpenSolaris
As you read this book and use OpenSolaris, we encourage you to become involved in the Open-
Solaris community. There are a number of ways to do so, from trying out a distribution to con-
tributing code. A good starting point is http://opensolaris.org/os/participate.

Running OpenSolaris
The best way to get started with the OpenSolaris community is to actually try out OpenSolaris.
In fact, playing with OpenSolaris simultaneously with reading this book will significantly
enhance your learning experience.

The OpenSolaris distribution from Sun, related documentation, and user help forums
are available from http://opensolaris.com. Chapter 2 contains more information

about the OpenSolaris distribution from Sun as well as other distributions available.

While using OpenSolaris, you can enhance your community involvement in two ways. First, if
you encounter a problem, ask questions on the community discussion lists and forums. Several
relevant discussion lists are introduced in the next section. Second, if you find a bug, report it
at http://defect.opensolaris.org (for problems with the OpenSolaris distribution from
Sun) or http://bugs.opensolaris.org (for other issues) so that it can be tracked and fixed.
You can also request enhancements.

13

Part I Introduction to OpenSolaris

Participating in discussion lists
The OpenSolaris communities feature a plethora of forums and mailing lists on a variety of
topics. www.opensolaris.com contains user-oriented forums on the OpenSolaris distribution
from Sun, while www.opensolaris.org contains developer-oriented mailing lists. If you’re just
searching for a particular piece of information, you can read the list archives online. However,
to begin to get a feel for the OpenSolaris communities and the day-to-day issues and questions,
consider subscribing to the mailing lists to receive e-mails directly. Some useful lists include the
following:

■ opensolaris-help@opensolaris.org — This list is a great resource for general
questions about ‘‘getting, building, and installing OpenSolaris.’’

■ opensolaris-announce@opensolaris.org— This is a moderated list for general
community announcements. It’s useful for keeping track of the major OpenSolaris hap-
penings.

■ ogb-discuss@opensolaris.org — The public mailing list for the OpenSolaris
Governing Board. Although theoretically for ‘‘governance’’ issues, the list seems to be a
catch-all for any sort of controversy in the community, and is therefore a good way to
track current ‘‘hot’’ issues.

■ advocacy-discuss@opensolaris.org — The mailing list for the Advocacy commu-
nity. This is useful to understand what sort of outreach and marketing efforts are going on
for OpenSolaris.

Many new community members are tempted to subscribe to
opensolaris–discuss@opensolaris.org. We do not recommend that

list because it’s high-traffic without much useful content.

Additionally, you can subscribe to more focused lists in your areas of interest. For
example, if you are interested in Sun’s OpenSolaris distribution, subscribe to indiana-
discuss@opensolaris.org. If you are interested in high-availability clusters, subscribe to
ha-clusters-discuss@opensolaris.org. If you are interested in DTrace, subscribe to
dtrace-discuss@opensolaris.org.

You may have heard the phrase, ‘‘There are no stupid questions.’’ That’s not entirely
true in the OpenSolaris community. As in many online technical communities, some

people have little patience for redundant, off-topic, or trivial questions. To avoid possible embar-
rassment, search this book, the mailing list archives, relevant FAQs, and other resources before
asking anything on the discussion lists.

Finding OpenSolaris user groups
OpenSolaris user groups connect people in similar geographic areas for face-to-face meetings,
from Adelaide, Australia, to New York City to Warangal, India. They are a good way to meet
other OpenSolaris users and enthusiasts, and to learn more about cutting-edge topics. If you live

14

What Is OpenSolaris? 1

in a large metropolitan area, chances are good that you can find an OpenSolaris user group in
your area.

Each user group is independently run, so check out the individual group for mail-
ing lists, upcoming meetings, and other resources. The complete list can be found at
http://opensolaris.org/os/community/advocacy/usergroups/ug-leaders.

If there is no OpenSolaris user group in your area, consider starting one! You can find instruc-
tions for doing so at http://opensolaris.org/os/community/advocacy/usergroups.

Contributing to OpenSolaris
The best way to increase your involvement in the OpenSolaris community is to start
participating in relevant development discussions. These usually occur on mailing lists at open-
solaris.org. You can find a complete list of mailing lists at http://opensolaris.org/os/
discussions.

If you’re interested in contributing code or other tangibles to the OpenSolaris community effort,
consult the instructions at http://opensolaris.org/os/communities/participation for
the current process.

OpenSolaris Development Process
Although you may not be interested in contributing code to OpenSolaris, it can be interesting
and useful to understand how the operating system is developed. Before delving into the pro-
cess, it helps to understand the OpenSolaris source-code layout. The OpenSolaris code base is
divided into major areas, called consolidations, each of which has its own source-code repository.
The core OpenSolaris consolidation is Operating System/Networking (ON), which contains the
operating system kernel, userland libraries, and tools. Other consolidations include Developer
Product Tools (Dev Pro), Documentation (Docs), and Globalization Support (G11N). You’ll find
a list of consolidations at http://opensolaris.org/os/downloads.

Unlike some open source projects, OpenSolaris does not have a notion of ‘‘com-
mitters’’ or a select group of people who are permitted to integrate code. Anyone

can integrate code into OpenSolaris as long as they follow the process and have submitted a
signed Sun Contributor Agreement. See http://sun.com/software/opensource/contributor
agreement.jsp for details.

OpenSolaris allows two different paths for source code development, depending on whether the
code is destined for an official consolidation such as ON.

If the code is not destined for an official consolidation, then no standard development process
must be followed. Anyone can start an OpenSolaris project and create a code repository or post
code as a tarball on the project page.

15

Part I Introduction to OpenSolaris

However, code developed in that way will not become part of the OpenSolaris code base. If
you want your code to become part of the OpenSolaris code base, you must follow a rigorous
development process to integrate it into a consolidation. This process evolved from the internal
process that Sun Microsystems required for integration into Solaris. Although it varies by
repository, the process generally includes the following:

■ Initiation — Propose a project.

■ Architecture review — The architecture is generally reviewed by an Architecture Review
Committee (ARC). Projects destined for ON are mostly reviewed by the Platform Soft-
ware Architecture Review Committee (PSARC), projects destined for Open HA Cluster
are reviewed by the Cluster Architecture Review Committee (CLARC), and projects des-
tined for the desktop area are generally reviewed by the Layered Software Architecture
Review Committee (LSARC). See the Architecture Processes and Tools Community Group
at http://opensolaris.org/os/community/arc for more information.

■ Design — Prepare written documentation about the code design of your project.

■ Development — Write, test, and debug the code.

■ Code reviews — Each area has different requirements regarding the number of code
reviewers, but a good rule of thumb is to obtain reviews from at least two people, at least
one of whom is a known expert in that area.

■ Integration approval — Every project must be approved for integration by the C-Team.
Currently, the C-Team is Sun-internal only, but it is moving to become more open.

■ File request to integrate (RTI) — This is the formal mechanism for obtaining the final
integration approval.

■ Integrate

As you can see, this process is not for the fainthearted; but it’s the price to pay to keep Open-
Solaris at the same level of quality as the Solaris product on which it was based, and it’s not too
extreme compared with the process in other open source projects. For example, the Linux ker-
nel contribution process, although different in style, is similarly rigorous.

Various parts of the development process moved from Sun internal to OpenSolaris
at different times. To allow external contributions before the source code repository

offered direct-commit access from outside Sun, OpenSolaris used a request/sponsor model in
which a Sun employee sponsored an external contributor.

For more information on the OpenSolaris development process, see the complete process in the
ON Community Group: http://opensolaris.org/os/community/on.

Resources
The user-oriented site on the OpenSolaris distribution from Sun is http://opensolaris.com.
It provides binary downloads and contains documentation and help forums. The documentation
is located at http://opensolaris.com/learn.

16

What Is OpenSolaris? 1

The developer site for the OpenSolaris community is at http://opensolaris.org. It con-
tains useful mailing lists, user group details, and a plethora of information about past and cur-
rent development projects. You can start with http://opensolaris.org/os/participate.

The Trademark Policy can be found at http://opensolaris.org/os/trademark.

The OpenSolaris source code can be browsed at http://src.opensolaris.org.

You can file bugs at http://defect.opensolaris.org and http://bugs.open
solaris.org.

The Open Source Initiative web page (http://opensource.org) contains much useful infor-
mation on open source code, including the text of all the licenses mentioned in this chapter.

For general information on operating systems, consult Operating System Concepts by Abraham
Silberschatz, Peter Baer Galvin, and Greg Gagne (Wiley, 2005).

For details on the Solaris and OpenSolaris implementation, see Solaris Internals: Solaris 10 and
OpenSolaris Kernel Architecture by Richard McDougall and Jim Mauro (Prentice Hall, 2006).

For more information on using and administering Linux, see the Linux Bible by Christopher
Negus (Wiley, 2005).

For details on the Linux implementation, see Understanding the Linux Kernel (Third Edition) by
Daniel Bovet and Marco Cesati (O’Reilly, 2006).

You can find the Sun Contributor Agreement at http://sun.com/software/opensource/
contributor agreement.jsp.

The Architecture Review Process and development process are documented at http://open
solaris.org/os/community/arc/ and http://opensolaris.org/os/community/on.

Summary
This chapter introduced OpenSolaris, described its three main aspects, enumerated some of the
salient OpenSolaris features, explained its licensing, related some of its history, contrasted Open-
Solaris with several familiar operating systems, explained the OpenSolaris development process,
and described how to get involved in the community. Now you’re ready to learn more about
the OpenSolaris distributions in Chapter 2 and to jump into a crash course on OpenSolaris in
Chapter 3.

17

Installing OpenSolaris

IN THIS CHAPTER
Overview of OpenSolaris
distributions

Determining hardware
compatibility with OpenSolaris

Downloading OpenSolaris and
burning a CD

Booting the OpenSolaris live
CD

Installing OpenSolaris on
hardware

Installing OpenSolaris in a
VMware virtual machine

Asurprisingly large number of distributions are derived from the
OpenSolaris source base, given the relative youth of the Open-
Solaris community. This chapter covers the basics of the

distributions created through mid-2008:

■ Solaris Express Community Edition (SXCE)

■ Schillix

■ BeleniX

■ NexentaCore

■ MartUX

■ MilaX

■ OpenSolaris

The OpenSolaris distribution is specifically created for users new to the
OpenSolaris community and technology, and is a special focus of this
book. After getting a feel for what the other OpenSolaris-based distribu-
tions are about and the reasons why you might be interested in them,
you’ll walk through the process of downloading, installing, and updating
OpenSolaris. By the end of this chapter you should have a clear idea about
which OpenSolaris-based distribution is likely to be right for you; and
if you’ve chosen OpenSolaris itself, you’ll have a working installation to
use to explore further. (If you find the multiple meanings of OpenSolaris
confusing, you may find it helpful to review Chapter 1.)

In addition to the download site for each distribution, a
community-run mirror of all of the redistributable distribution

downloads is provided at http://genunix.org.

19

Part I Using OpenSolaris

Solaris Express Community Edition

Solaris Express Community Edition (commonly abbreviated SXCE) is the ‘‘original’’ OpenSolaris
distribution. Releases of SXCE began with the establishment of the OpenSolaris community in
2005. It is available for both x86 and SPARC processor platforms. SXCE is targeted specifically
at developers who want to participate in the development of OpenSolaris, giving them access
to the same development platform used by Sun’s own engineering staff. SXCE is distributed
as a free download from Sun’s website. Its license is limited: while the software is free to use,
it may not be put into production. Additionally, the images may not be mirrored or otherwise
redistributed outside of the organization to which the license is granted. Within the images,
the individual software components in the SXCE distribution are provided in the form of SVR4
packages. SXCE is not a pure open source distribution in that it includes components that are
closed source and proprietary to it; most of the examples of these components are drivers for
which Sun does not have licensing permission to offer for redistribution. In short, it is a hybrid
of open and closed source components.

How SXCE Is Developed

SXCE offers the clearest view into how Solaris has historically been developed by making Sun’s
development snapshots of the Solaris release under development, which is code-named Nevada,

directly available to the OpenSolaris community.

For many years, Solaris releases have been developed on a two-week build cycle. This means that
every two weeks, each consolidation contributing software to the distribution provides its current
binary packages to the release management, or Product, team. The Solaris Release Engineering
organization then uses a set of custom-built tools to assemble the packages into the media formats
used to release the software. These include CDs, DVDs, and pre-built network installation images
(only the CD and DVD images are released outside of Sun).

Once the images have been built, they are passed along to various test organizations for validation;
after the build passes a basic set of tests, it is released within Sun. Releases to the community
generally follow within a few days, after any necessary legal and regulatory approvals are obtained.
These biweekly releases are not a supported product, but instead are considered test builds for the
next release of Solaris, so each version of SXCE is referred to by a build number starting from 1.
Nevada has had by far the longest development cycle of any Solaris release since Solaris 2.0, well
past three years at this writing.

For a time, Sun offered a stabilized version of SXCE known as Solaris Express Developer Edition
(SXDE). It provided a simplified installer, additional software such as an AMP (Apache/MySQL/PHP)
stack, and developer tools such as NetBeans and Sun Studio. You may still see references to SXDE,
but it has been replaced by the OpenSolaris distribution described later in this chapter.

20

Installing OpenSolaris 2

Users obtain SXCE by downloading media images from the Sun download center. This dis-
tribution is available to the community as a DVD ISO image. Installing the release requires
downloading the ISO image, burning it to media, and then booting from the DVD and installing
the distribution to disk. The installation media is a bootable version of Solaris, but it’s designed
strictly for installation and some limited disaster recovery, not for a general evaluation of the
distribution.

To upgrade from one build of SXCE to another, it is necessary to download the entire media
image. Then you have two options: burn the image to optical media and boot from the media
to upgrade, or mount the media image as an ISO file system and then use a technology known
as Live Upgrade to copy the already installed version of Solaris and then upgrade that copy, all
while the original installed version of Solaris remains running and usable for normal operation.
Live Upgrade is generally the preferred option if the system has sufficient free disk space to use
it because system downtime is minimized and the impact of a failed upgrade or any other seri-
ous problem with the new build is minimized, as the system can always be booted back into the
original image should it be necessary. SXCE also supports both forms of upgrade from older ver-
sions of Solaris, not just older releases of SXCE.

Downloads of Solaris Express Community Edition are available from http://
opensolaris.org/os/downloads.

Schillix
Schillix holds a special claim to fame as the first OpenSolaris distribution created from the
OpenSolaris source code. As its creators, Jörg Schilling and Fabian Otto, proudly note on the
project home page (http://schillix.berlios.de), the first version of Schillix was released
just a week after the public opening of the OpenSolaris community in June 2005. Truth be told,
they didn’t do all of the work in a week; a closed pilot of the OpenSolaris community enabled
them to get a head start on building this new distribution. Nonetheless, Schillix rightfully
deserves respect for blazing the trail for other non-Sun distributions.

Schillix is a pure open source operating system, consisting entirely of open source components.
It is distributed under a license that allows free redistribution, and is available only for the x86
platform.

Schillix is distributed as a downloadable DVD ISO image, which boots into a text-based live
DVD environment, enabling users to test drive the distribution without any more commitment
than burning a DVD; even less than that is possible by booting the ISO image under some other
operating system using any one of a number of virtualization tools.

A live CD or live DVD is a CD or DVD that’s designed to boot into an operating
system and run directly from the CD or DVD without altering the computer’s hard

drive. A live CD is often used to demonstrate an operating system to new users, usually with

21

Part I Using OpenSolaris

an installation option, but a live CD is also very useful as a toolkit for recovery and repair of sys-
tems that have been damaged in some way that makes them unable or unsafe to boot.

Schillix uses the SVR4 packaging system, just as Solaris Express does, but it adds the pkg-get
utility developed by the Blastwave project. This utility allows for easy, automatic download and
installation of software from an extensive repository of pre-built open source software packaged
by the Blastwave project maintainers for Solaris and OpenSolaris. Thus, while the system
provided on the Schillix media is fairly basic, it is easily extended to include a full desktop such
as GNOME and myriad other utilities. The other unique attribute of Schillix is that it includes
Jörg’s own set of utilities, which have been developed over the last 20 years; these include the
popular CD authoring tools mkisofs and cdrecord, also provided in the other OpenSolaris
distributions and many Linux distributions, as well as improved versions of utilities such as
make, tar, and cpio.

Schillix has been updated irregularly, as its developers find the time to make improvements. It
remains a very basic distribution, lacking an integrated desktop environment and requiring a
complex, manual installation process. It’s probably best suited to users who like to get under
the hood and build a distribution from the ground up, understanding how the pieces are put
together.

In addition to being the first non-Sun distribution, Schillix was also the first OpenSolaris distri-
bution to provide a live CD, a feature that is now common across distributions.

BeleniX
BeleniX is another pure open source distribution based on the OpenSolaris source code. Led by
Moinak Ghosh, BeleniX was created primarily by a group of engineers in India, many of whom
are Sun employees. Because it is substantially a product of India, this distribution has achieved
quite a bit of local notoriety, made minor celebrities of its developers, and created a lot of inter-
est in OpenSolaris among that country’s technology community. As with Schillix, BeleniX has a
license that allows for free redistribution, and it is available only for x86 platforms.

From a technical standpoint, BeleniX has made a substantial contribution to advancing the
OpenSolaris technology. While Schillix created the first OpenSolaris live CD, BeleniX took the
basic concepts and developed them to the point where its performance and functionality rival
the well-known Linux live CD distributions. BeleniX developed the techniques used to compress
the CD’s contents and optimize its layout to achieve acceptable boot performance. The team also
adapted the live CD to run from a USB flash drive and developed session persistence for it. With
this capability, you have the option of carrying around a fully usable OpenSolaris computing
environment without carrying a computer.

Additionally, BeleniX was the first to offer the KDE and Xfce desktops as part of an Open-
Solaris distribution. The BeleniX team has also been a substantial contributor in porting
additional desktop technologies from the GNOME and X.Org projects to OpenSolaris, helping

22

Installing OpenSolaris 2

OpenSolaris to take advantage of developments in those communities in as timely a fashion as
Linux distributions. Finally, they’ve pioneered the porting and development of disk partition
management tools from Linux and BSD distributions, enabling a simpler experience in installing
OpenSolaris alongside other operating systems on a single system.

BeleniX continues to be under active development, releasing updates periodically. Because many
of the technologies developed in BeleniX are being incorporated into the OpenSolaris code base
as part of the development of the OpenSolaris distribution, the focus of BeleniX has shifted
somewhat to being a KDE-oriented derivative of the OpenSolaris distribution. The collaboration
across these distributions is only natural given the strong shared Sun engineering influence, and
should help accelerate the evolution of OpenSolaris technologies. If your preferred desktop on
other operating systems is not GNOME, you may well find that BeleniX will be your favorite
OpenSolaris distribution.

More information on BeleniX, including downloads, can be found at http://
belenix.org.

NexentaCore
NexentaCore is an OpenSolaris distribution with a substantial twist: It fuses the OpenSolaris
kernel and utilities with the GNU Project’s utilities (these are available in the Solaris and
OpenSolaris distributions, but not as complete a set or as the default environment) and the
Debian Linux-developed packaging technology APT (Advanced Packaging Tool). The result is a
rich operating system that feels in many ways like a version of Ubuntu Linux (the best-known of
the Debian-based Linux distributions and the direct source for many of the packages available
for NexentaCore), but with the underlying core of OpenSolaris. NexentaCore is available only
for x86 platforms, and is provided with a license that allows for free redistribution.

The Nexenta team initially produced a desktop-oriented distribution known as NexentaOS,
but has subsequently focused on the NexentaCore distribution, which is designed to be a
stable foundation platform on which specialized distributions can be built. The team put this
foundation to use in building a storage appliance (called NexentaStor) that leverages ZFS and the
attributes of NexentaCore to provide a very simple yet powerful NAS (network-attached storage)
appliance.

Although NexentaCore is itself a small distribution (a single CD) with low memory requirements
(256MB is the stated requirement), the distribution’s decision to leverage the Ubuntu software
repository makes a large selection of software available. The system installed from the CD boots
to a text console, from which adding software is a simple matter of using the aptitude com-
mand to select and install packages from the Nexenta repository. The APT system automatically
resolves dependencies of packages that are selected for installation and includes them in the
process.

23

Part I Using OpenSolaris

Beyond these standard capabilities of APT, the Nexenta team has integrated the power of the
ZFS file system. NexentaCore uses ZFS as its default file system for the installed operating
system; and by melding it with APT, it has provided something that the Debian family of Linux
distributions lacks: a truly safe software upgrade and rollback paradigm, enabling users to back
out of a failed or unsatisfactory upgrade and return to a known state with a new command
called apt-clone. This is conceptually similar to the Live Upgrade capability described earlier
for Solaris Express, but based on the ZFS file system, simplifying and speeding up many aspects
of the implementation. A substantial benefit of this capability is that it frees users to experiment
with newer versions of software, safe in the knowledge that recovering from failure will be
simple and straightforward. As the Nexenta APT repositories provide stable, testing, and unstable
versions of packages, users have a great deal of opportunity to take advantage of apt-clone.

Another interesting attribute of the NexentaCore distribution is an outgrowth of the hybrid
GNU/OpenSolaris environment it provides. The default installation places the GNU utilities in
the normal executable search path, which means that the command-line environment generally
feels quite Linux-like. However, for those who prefer a more traditional Solaris feel, that’s easily
available by merely setting the SUN_PERSONALITY environment variable to 1, and the view
presented to the user switches seamlessly to one familiar to Solaris users. It’s a clever way to
provide both choice and compatibility.

NexentaCore has an active development community and is updated frequently. Outside of the
Solaris Express and OpenSolaris distributions, it is probably the most polished of the OpenSo-
laris distributions, feeling like a professional product. If you have experience with Debian Linux
distributions, starting with NexentaCore may help you make a very smooth transition to the
OpenSolaris community.

More information on NexentaCore, including downloads, can be found at
http://nexenta.org

MartUX
Created by Martin Bochnig, MartUX is, first and foremost, a distribution designed to appeal to
SPARC devotees because it was the first non-Sun distribution available for SPARC. One capa-
bility it provides that is not available with Solaris Express is that it can run on systems with the
original UltraSPARC 1 64-bit processor, found in systems such as the now-ancient Ultra 1 work-
stations. MartUX runs on these processors in 64-bit mode, which Sun never supported. Note
that 32-bit SPARC support is not available in the OpenSolaris kernel sources.

Providing an open source distribution on SPARC turns out to be a fairly difficult problem
to solve. That’s because the drivers for most SPARC graphics devices are proprietary to Sun
and not available for free use by other distributions. In several cases, the X.Org X server can
support these devices as strictly X Window displays, but the system must be run with a serial
console. Partly because of this issue, MartUX remains a prototype, primarily of interest to

24

Installing OpenSolaris 2

those who would like to hack on a very rough distribution and figure out how it works, or
die-hard owners of old SPARC systems who would like to use them with the latest OpenSolaris
technologies. This prototyping has proven valuable to the broad community, however; the
significant effort Martin Bochnig has invested, for instance, has resulted in much better driver
support for the SPARC graphics chips in the X.Org X Window server. He has also been a major
contributor to the Fully Open X project, doing the majority of the work required to port it to
SPARC hardware. These changes are important because supporting SPARC in the X.Org server
enables SPARC to benefit much more completely from the work done in the X community.

The MartUX DVD image makes use of the compression and I/O scheduling enhancements
developed by the BeleniX team for their live CD, and thus provides reasonable performance. The
DVD image also includes a large collection of software from the Blastwave project repository. In
addition to the SPARC focus discussed here, MartUX is available for x86 systems as well, but
x86 users new to OpenSolaris will likely find the other distributions discussed in this chapter an
easier introduction to the OpenSolaris community. Recently, Martin and others have launched a
derivative of MartUX and the OpenSolaris distribution called Natamar, which appears to be the
project’s focus of development.

More information on MartUX, including downloads, can be found at http://
martux.org.

MilaX
One of the newer OpenSolaris distributions is MilaX. Created by Alexander Eremin, this
distribution fills a previously unexplored niche in the OpenSolaris universe, that of the minimal
distribution. Modeled on small Linux distributions such as Damn Small Linux, MilaX provides
the core OpenSolaris technology in a more lightweight wrapper, eschewing the fully integrated
desktop environments such as GNOME and KDE for a simpler X Window desktop and a more
restricted selection of included software. MilaX supports both x86 and SPARC; the SPARC
edition does not provide a graphical desktop at this writing. All of the MilaX software is freely
redistributable.

MilaX’s approach to constructing a distribution offers two principal benefits:

■ A small initial download

■ Support for lower-cost hardware with limited memory capacity

That makes it a great ‘‘starter’’ distribution for those new to OpenSolaris. It’s also especially well
suited for running in a virtual machine such as VMware or VirtualBox. Finally, it’s a handy
rescue CD for use when you have trouble booting your system’s installed OS, because it boots
quickly with limited resource requirements yet includes a rich set of system tools.

MilaX is freely redistributable, and has been regularly updated since its initial release in early
2008. You can download it from its website at http://milax.org.

25

Part I Using OpenSolaris

OpenSolaris
The last distribution from the OpenSolaris universe to be discussed here is OpenSolaris. Initially
known as Project Indiana, OpenSolaris is an aggregation of the core OpenSolaris code with
several key projects that are under development. OpenSolaris is heavily supported by Sun’s
engineering organization, and it is expected to provide the basis for the successor release to
Solaris 10.

History of the OpenSolaris distribution
The core idea of the OpenSolaris distribution is that, while Solaris is in many ways the most
advanced UNIX operating system, some aspects of it had become quite dated. For example,
the software packaging system, known as SVR4 Packaging, was state-of-the-art 20 years ago
but has become outdated. It not only lacks enhanced features such as network repositories
that are common in newer packaging systems, but also has become increasingly creaky as its
implementation was modified to deal with features such as Zones that extended it in ways that
its original design could not possibly have anticipated. The patching system layered on top of
SVR4 Packaging suffers from similar issues.

Similarly, the installation software was based on a design from the early 1990s; and the user
experience, along with the look and feel, were based on network and GUI technologies, as well
as assumptions about users, that are no longer in touch with current trends. Requiring users
to download an image that was several gigabytes in size, burn it to media, and then install it
to a system before they could even try out the software meant that only the most devotedly
interested users would ever run Solaris. Potential users who had heard about it from the media
or a friend would usually not make it to the point where they’d actually install Solaris and
become users. Having to repeat the experience to obtain newer versions only added to users’
frustration. Simpler ways to obtain, try, and use OpenSolaris were necessary if the technology
was to attract a growing number of users in the increasingly crowded open source operating
systems market.

In addition, because many utilities had only been updated for conformance to standards such
as POSIX, the command-line user environment felt much like a relic of the UNIX of the early
1990s; meanwhile, those same utilities on Linux and BSD platforms had gained additional fea-
tures. All told, users who were new to Solaris would often describe the experience as familiar,
but uncomfortable, in the way that going back to one’s childhood neighborhood may be familiar
yet uncomfortable because none of the people you remember live there anymore.

By mid-2007, OpenSolaris-sponsored projects to address many of these shortcomings in Solaris
were starting to bear fruit in the form of working prototypes that were functional enough to use
within the development community. However, the projects were still far from integrating into
the Solaris Express releases. Additionally, a rising issue within the OpenSolaris community was
user confusion about distributions; many users from Linux backgrounds come to the Open-
Solaris community site expecting to download a distribution called OpenSolaris, but instead
find the list of distributions discussed earlier in this chapter. Because the names are mostly

26

Installing OpenSolaris 2

unfamiliar, and many users have a difficult time understanding the differences between the
distributions, they were left to choose between Solaris Express, with Sun’s name behind it, and a
cast of other distributions they’d likely never heard of before. No matter what choice they made,
they were likely to find a less comfortable and polished system than the most popular Linux
distributions, and were often left decidedly unimpressed with OpenSolaris.

To address these problems, Sun decided to release a new distribution with the installation,
packaging, and modernization technologies that were under development. By using the Open-
Solaris name for the released distribution, new users to the community would find what they
were looking for: a distribution named OpenSolaris that represented the work of the community
with a polished, easy-to-use, and supported product that would make their introduction
to the community as simple as possible. The goal was to establish this distribution as the
reference for the community, and to base the next version of Solaris on it, effectively turning the
relationship between OpenSolaris and Solaris inside out. The use of the OpenSolaris name for
the distribution proved to be a controversial topic within the community, due to the trademark
restrictions that Sun had originally placed on the name. This confusion spawned a project to
develop trademark guidelines that allow the use of the OpenSolaris name by other distributions.

As mentioned earlier, this effort was initially established under Project Indiana to distinguish it
from the Nevada code name already in use for the next version of Solaris. The first preview of
OpenSolaris was released in October 2007, and it was a solid success, with thousands of down-
loads in the first week; a second preview was released in February 2008. The first supported
release arrived in May 2008, and the second in November 2008, with subsequent releases
expected approximately every six months. Sun offers paid support by its support organization
for these OpenSolaris releases; see the opensolaris.com site for information on the support
products. Between each release, development builds are made available, approximately every two
weeks, in synchronization with SXCE builds. The OpenSolaris distribution is provided under
a license that allows for free redistribution. The releases so far support only x86 systems, but
SPARC support is anticipated in 2009.

What OpenSolaris includes
OpenSolaris consists of open source and a few freely redistributable binary components
produced by the various OpenSolaris communities and projects. It includes the following major
components:

■ The OpenSolaris kernel, networking, and command-line utilities from the OS/Net com-
munity. The OpenSolaris distribution’s version of this code is virtually identical to that
included in the other distributions.

■ The X Window System from the Fully Open X (FOX) project. The OpenSolaris version
differs from the version used in Solaris Express, which includes drivers and other legacy
components that are not available under redistributable license terms.

■ The GNOME desktop from the Desktop community. The primary difference between the
OpenSolaris version of GNOME and that used in Solaris Express is the removal of Sun
proprietary branding and trademark elements.

27

Part I Using OpenSolaris

■ The Image Packaging System (IPS) from the project of the same name

■ The installer from the Caiman project

■ The live CD technology from the Live Media project

■ Modifications to the default user environment designed to increase familiarity for users
coming from Linux or BSD distributions

These technologies and projects are discussed in more detail later in this book. The remainder of
this chapter focuses on how to download and install OpenSolaris.

Chapter 3 provides a crash course in using OpenSolaris once you have it installed.

Will OpenSolaris run on my hardware?
Because of the tremendous diversity of x86-based computer systems that are available, one
common question is whether a particular operating system can support your hardware. The
last thing you, as a user, want to do is spend a great deal of time or money downloading or
purchasing an operating system only to find out that it won’t run on your computer.

If you already have the OpenSolaris live CD, perhaps the best answer is to just stick it in
your system and try to boot from it. There really is nothing like just trying out the system to
determine whether it works. In addition, the CD includes the Device Detection Utility; if you
boot the CD and run this utility, it provides a complete report of the OpenSolaris device support
for your system. If you don’t have the media yet, aren’t sure that OpenSolaris is likely to run
on your system, and would like to have an answer before you spend the time downloading
OpenSolaris, then consider the following options to perhaps save some time.

First, if you have virtual machine technology such as VirtualBox or VMware available, you’ll
likely find that OpenSolaris runs satisfactorily with it. In the case of those two virtual machine
technologies, this book walks you through the process of creating an OpenSolaris virtual
machine, booting, and installing within it. Other virtual machine technologies such as Parallels
for Mac OS, Xen, or KVM also generally support OpenSolaris guests.

The next best option is to use the Sun Device Detection Tool, which provides you with a
custom and complete answer for your specific system. This tool does have some limitations,
however, that can prevent it from being an answer for everyone. First, you must be running
Windows (2000, 2003, XP, or Vista), a Linux distribution with a 2.6 kernel, or Solaris. You
must also have a Java Runtime Environment (JRE) installed on your system. If you meet those
two requirements, then running this tool will, in just a couple of minutes, give you a detailed
list of the hardware devices on your system, and an answer as to whether OpenSolaris has the
drivers necessary to support your hardware. It can be time well spent because its device database
is updated frequently and includes pointers to third-party drivers that may not be included in
the OpenSolaris media (for licensing or other reasons).

If you can’t use the Device Detection Tool, then the traditional answer to hardware support
questions has been lists of compatible systems and components that you can search. That can be

28

Installing OpenSolaris 2

a tedious process and requires you to know a great deal about your system’s hardware, including
technologies, manufacturers, speeds, and so on. It’s probably best regarded as your last resort in
terms of determining system compatibility, but it can be a useful resource if you’re in the market
for a peripheral device and the vendor doesn’t necessarily specify support for OpenSolaris.

The Sun Device Detection Tool can be accessed at
http://sun.com/bigadmin/hcl/hcts/device detect.jsp.

Sun’s hardware compatibility list for the Solaris family of operating systems is available on the
BigAdmin website at http://sun.com/bigadmin/hcl/search.jsp.

Downloading OpenSolaris
The first noticeable difference between OpenSolaris and Solaris Express is how you obtain
it. OpenSolaris is distributed as a single live CD image, in the manner of Ubuntu Linux;
the live CD’s design and implementation are based on the work pioneered in the Schillix
and BeleniX distributions. Thus, as with any live CD, you have the possibility of a complete
try-before-you-buy experience, which enables you to evaluate how well the distribution works
on your system before the potential disruption of making any commitment of disk space to it.
In addition to the live CD, OpenSolaris can be installed over a network using an automated
installer. This technology is under development as of this writing, so you should consult the
OpenSolaris documentation for information.

Beyond the image format, the other immediately noticeable difference from Solaris Express is
that OpenSolaris is available from sites other than Sun’s own download center. You’ll find it
mirrored at a number of other sites for traditional HTTP and FTP downloads, and you can also
obtain it through the BitTorrent file-sharing system. These new options are possible because
OpenSolaris contains only software that’s licensed to be freely redistributed. Conversely, Solaris
Express contains a number of components that are under more restrictive licenses that may
require Sun to maintain distribution records for the software, and therefore can’t be made
available other than through Sun’s download center.

Download locations for OpenSolaris are available on the distribution’s website:
http://opensolaris.com.

You can use your web browser or programs such as wget or ftp to retrieve the image from
the URLs provided on the download page. Downloads through BitTorrent are also provided.
Once you have downloaded the CD ISO image for OpenSolaris, you have several options for
trying it out.

If you have a virtual machine technology available that can host OpenSolaris as a guest operating
system, then you often can use the ISO image directly to boot OpenSolaris in a virtual machine;
this generally does not require actually burning the ISO image to media. Later in this chapter
you will walk through the booting and installation process using VMware. Chapter 22 explains
how to install OpenSolaris as a VirtualBox guest.

The traditional approach, which is always possible, is to burn the ISO image to a CD and then
boot your system from it. On most Linux and OpenSolaris distributions, selecting the ISO image

29

Part I Using OpenSolaris

file from the desktop’s file browser program (such as Nautilus in GNOME desktops) presents a
menu option to write the ISO image to a disc; select it and follow the prompts, if any. From a
shell command prompt, most distributions provide the cdrecord command for burning CDs.
For example, assuming the OpenSolaris ISO image is named OpenSolaris.iso, the following
procedure would discover the correct device number for the CD drive and then use that device
number to burn the CD:

$ cdrecord --scanbus
scsibus9:

9,0,0 900) ‘MATSHITA’ ‘DVD-RAM UJ-841S ‘ ‘1.40’ Removable CD-ROM
9,1,0 901) *
9,2,0 902) *
9,3,0 903) *
9,4,0 904) *
9,5,0 905) *
9,6,0 906) *
9,7,0 907) *

$ cdrecord dev=9,0,0 OpenSolaris.iso

On Windows and Mac systems, use your favorite CD burning program to burn the CD
image; if it offers the option to burn a bootable CD, rather than a data CD, be sure to burn a
bootable CD.

Booting the OpenSolaris CD
Now that you’ve burned the OpenSolaris ISO image to CD, the next step is to boot it and try
it out. Shut down your currently running operating system, make sure the OpenSolaris CD is
inserted into your system’s CD drive, and then boot your system. Depending on your system’s
BIOS settings, you may need to press a special key such as Esc or F12 to select the CD, rather
than the hard drive, as the boot device. If you’ve done that successfully, you should be greeted
with a screen that resembles Figure 2-1.

Sharp-eyed Linux users will recognize this screen as a fairly standard GNU GRUB (GRand
Unified Bootloader) menu. OpenSolaris uses GRUB as its primary boot loader, which enables its
boot menu to also directly boot Linux and BSD operating systems and indirectly boot Windows
by invoking the Windows boot loader.

If you plan to install OpenSolaris as a dual-boot system with another operating
system that also uses GRUB, save your existing GRUB menu configuration to a USB

memory stick that has a DOS file system format, or print it out, so that you can merge the menu
entries from the other operating system with the OpenSolaris GRUB menu after you have finished
installing OpenSolaris.

Selecting the first item in the boot menu boots OpenSolaris to a graphical desktop. This is
usually the option you’ll want. If you don’t want a graphical desktop for some reason (this
may be necessary if the graphical desktop is unable to automatically start on your system),
select the second item, which boots OpenSolaris to a text-only mode, where you can log in.

30

Installing OpenSolaris 2

The Boot from Hard Disk item on the menu merely skips attempting to boot from the CD and
instead starts the boot process from your system’s primary hard disk. The final two menu items
enable assistive technology for those with visual impairment; see the OpenSolaris website for
information on their use. The remainder of this walk-through assumes you’ve chosen the first
item and will boot to a graphical desktop.

FIGURE 2-1

Boot screen from the OpenSolaris CD

Using GRUB with OpenSolaris

To boot any operating system on the x86 processor platform, a relatively simple program called
a boot loader is required to enable the transition from the machine’s BIOS to the operating

system kernel. For OpenSolaris, and many Linux distributions, GRUB serves as that boot loader.
The OpenSolaris version of GRUB contains all of the features of the GRUB version used in Linux
distributions, but it also contains several extensions that are not available in the main GRUB
distribution. The extensions that are of the most interest to users of OpenSolaris distributions are
related to automatic selection of 32- or 64-bit kernels, and support for ZFS. You normally do not
need to deal with these extensions directly; selecting the desired entry from the main GRUB menu
is usually all you need to do to boot OpenSolaris.

An example OpenSolaris GRUB menu entry would be as follows:

title OpenSolaris 2008.11 snv_100 X86
kernel$ /platform/i86pc/kernel/$ISADIR/unix -B $ZFS-BOOTFS

continued

31

Part I Using OpenSolaris

continued
module$ /platform/i86pc/$ISADIR/boot_archive

Automatic selection between 32- and 64-bit kernels is enabled by two new commands, kernel$
and module$, that extend the standard kernel and module commands, respectively. The new
commands can expand simple tokens within the parameters supplied to them, whereas the standard
commands do not. The OpenSolaris menu items contain a $ISADIR token that expands to amd64
on 64-bit systems, and to the empty string on 32-bit systems, meaning that the same menu entry
can be used on either type of system and automatically select the correct kernel. If you need to boot
a 64-bit system in 32-bit mode for some reason, use the GRUB command-line editor and remove
the $ISADIR tokens and you’ll boot a 32-bit kernel.

ZFS boot support is flagged by providing the -B $ZFS-BOOTFS option to the kernel or kernel$
commands. In the preceding example, GRUB would locate a ZFS pool on the first disk in the system
and read the pool’s bootfs property to determine the name of the ZFS dataset within which the
kernel (and module) can be found. You can also use another new GRUB command, bootfs, to
specify the ZFS dataset; usually this is necessary only if you need to boot from a different dataset
temporarily for system maintenance or repairs.

Because these extensions are not likely to be present in the version of GRUB supplied with Linux
distributions, always use the version of GRUB supplied with OpenSolaris as your primary system
boot loader if you have multiple operating systems installed on your system. See the installation
walk-through in this chapter for tips on merging Linux and OpenSolaris GRUB menu entries.

For basic documentation on the common features of GRUB, refer to the GRUB project’s website,
http://gnu.org/software/grub/grub-legacy.en.html.

After the OpenSolaris kernel begins running and starts loading the system services, you’ll be
prompted to select the keyboard layout used by your system. Figure 2-2 shows an example of
the display for selecting the keyboard. You need only enter the number corresponding to your
keyboard’s layout. US-English is the default value.

After you select the keyboard layout, OpenSolaris next prompts you to select the language for
the desktop from the list of languages supplied on the CD. Once a language is selected, Open-
Solaris completes booting, auto-configures the X Window graphics system, and starts a GNOME
desktop. At this point, you can try out the desktop, viewing the menu items and starting and
running applications. Chapter 3 presents a crash course in OpenSolaris, and Chapter 4 presents
an overview of the OpenSolaris desktop if you’d like to explore it more deeply. If you have a
network interface connected, either wired or wireless, OpenSolaris will attempt to automatically
configure it, although the success of this depends on OpenSolaris having a device driver avail-
able for your system’s network hardware.

See Chapter 9 for more information about OpenSolaris networking.

32

Installing OpenSolaris 2

FIGURE 2-2

OpenSolaris keyboard layout selection screen

Installing OpenSolaris
Once you’ve booted OpenSolaris to the desktop as described in the previous section, double-
click the Install OpenSolaris icon to start the installer. Figure 2-3 shows the first screen of the
installation.

This welcome screen provides a link to the release notes for the distribution. Clicking the link
launches the Firefox web browser to load the release notes page from the OpenSolaris website,
so you need network access to display the notes. Selecting Next advances the installer to the
disk selection and partitioning screen.

Disk partitioning in an OpenSolaris installation
The Disk screen (see Figure 2-4) displays the disks found on the system, including any remov-
able hard disks or USB disks.

Note that the recommended and minimum sizes for installation are displayed at the very top.
The recommended size is typically several times larger than the minimum size. Its value is
chosen to allow for local storage of your own files, installation of additional software after the
operating system installation, and later updates of OpenSolaris. Updates of OpenSolaris require
additional space because the update process always uses a copy of the OS for its work, enabling
you to roll back to a prior version if the update is a problem for any reason.

See Chapter 6 for more details on updates and OpenSolaris software management.

Selecting a size smaller than what is recommended may leave you with insufficient space for
your work or prevent you from updating OpenSolaris later. Unless you’re fairly experienced

33

Part I Using OpenSolaris

in operating system installations, using the recommended size generally gives you the most
satisfying result.

FIGURE 2-3

Initial screen of the OpenSolaris installation

The disks are displayed across the top to enable you to select the disk that will be used for
installation. Point your mouse at a disk in the display to get a more detailed description of
it, including manufacturer and device names, which sometimes can be necessary to help
differentiate between similar disks. After you choose the disk you want, use the bottom half
of the screen to select the partition to use. Partitioning is a means of parceling out portions of
the disk for different uses; for example, to have multiple operating systems (perhaps Windows,
Linux, and OpenSolaris) installed and available to boot at different times, you would typically
assign a partition to each operating system. On x86 systems, the partitioning standard allows
up to four primary partitions to be created on each disk; Linux can use multiple partitions for
different portions of its installation, but OpenSolaris can use only one partition on each disk.

Linux users may also be accustomed to installing multiple distributions in dif-
ferent partitions. However, the limitation of using only one partition on each

disk means that you must install multiple OpenSolaris distributions into the same partition,
allowing them to either share the same ZFS pool or use different slices within the partition. This
book does not cover this topic, so see the OpenSolaris Installation and Packaging community,
http://opensolaris.org/os/community/install, for information.

If you’re going to use the entire disk for OpenSolaris, select the Use the whole disk radio button.
To use only part of the disk and have an available partition entry and space, select Partition the

34

Installing OpenSolaris 2

disk, and then set up a partition for OpenSolaris to use. Any existing partitions on the disk are
displayed. To assign a partition to OpenSolaris, set that partition’s partition type to Solaris and
select a size at least as large as the minimum size; if you select a partition that is smaller than
the minimum size, you cannot proceed beyond this screen.

FIGURE 2-4

Disk selection and partitioning screen

If you don’t have a partition of at least the minimum size available, you may need to shrink the
size of one or more existing partitions. Two types of repartitioning can be done: destructive and
non-destructive.

The OpenSolaris installation program can do only destructive repartitioning. It warns
you if any changes you make to the partitioning will result in a destructive change to

an existing partition.

Destructive partitioning means that if you change the size of a partition, the existing contents of
that partition (and possibly others that are adjacent to it on the disk) will no longer be readable.
Non-destructive repartitioning requires more advanced software that can understand the format

35

Part I Using OpenSolaris

of the file system contained within the partition and shrink it into a smaller space without losing
any files, allowing the free space to be reallocated to another partition.

If your system only has Windows on it, there will typically be a fairly large amount of empty
space on the Windows partition that can be reclaimed and used for other partitions because
in most installations the entire disk will have been allocated to Windows. Windows Vista
offers a built-in utility to shrink its partitions, whereas older versions of Windows require a
third-party tool. If you have spare space from a Linux distribution installation, your distribution
may well include the GNU parted utility and possibly the graphical interface for it, known as
GParted. Otherwise, you can download it from http://gparted.sourceforge.net. The
latest versions of the GParted live CD can also safely shrink Vista partitions — and usually more
completely than Vista’s own shrinking tool.

For instructions on shrinking Windows Vista partitions, search for ‘‘Can I repartition
my hard disk?’’ at http://windowshelp.microsoft.com.

GParted doesn’t list OpenSolaris or Solaris as a partition type that it will create, so any new parti-
tions you create for OpenSolaris using GParted should be created as unformatted; the OpenSolaris
installer will format the partition correctly once you select it.

You may notice that, unlike many other operating systems, the OpenSolaris installer allows you
to select only a single partition for OpenSolaris, and doesn’t require you to specify the file sys-
tems to associate with partitions. That’s because OpenSolaris uses the ZFS file system for all of
its storage, and ZFS uses a pooled storage model. The partition you create is set up as a pool,
and the OpenSolaris installer creates a number of ZFS file systems in it to install the operating
system. You can easily create additional file systems for your data within that pool at any time
after OpenSolaris is installed and running.

See Chapter 8 for a detailed discussion of ZFS.

Configuring the time, time zone, language, and users
Once you’ve provided the necessary disk space for the OpenSolaris installation, you need to
configure the system’s clock and time zone on the Time Zone, Date and Time screen (see
Figure 2-5). To specify the time zone, either click on the appropriate location on the map that’s
displayed or select by region and location from the menus on this screen. If the date and time
require adjustment, you can either enter them directly into the text fields or use the spin buttons
next to the text fields to adjust their values. Clicking Next immediately sets the system time to
the selected value.

On the installer’s next screen, Locale, you select the default language for the installed system, as
shown in Figure 2-6. Here you have the opportunity to select a language on the installed sys-
tem other than the one used during installation; the default value selected in this screen is the
language you selected during the CD boot process.

The next screen, Users (see Figure 2-7), enables you to set the system’s root password, create a
user account, and provide the name by which the system will be known.

36

Installing OpenSolaris 2

FIGURE 2-5

Set the time and time zone.

The user account that you create during installation is a special account that has administrative
access to the computer, provided by the OpenSolaris security technology known as Role-Based
Access Control. Create a user account here and OpenSolaris also makes the root account a role,
which is a special type of account that is not available for login. This provides an extra layer of
system security by ensuring that only user accounts with administrative access can become root.
You can choose to not create a user account during installation, in which case the root account
is not made into a role and is available for direct login.

See Chapter 3 for a quick introduction to, and Chapter 11 for detailed information
on, Role-Based Access Control and other OpenSolaris security features.

Experienced UNIX and Linux users will note that there’s no option at installation to
set details of the user account, such as the user ID number or group memberships.

If necessary, these values can be modified after installation using the desktop administration tools
included with the system. Chapter 3 discusses this and other basic administration topics.

37

Part I Using OpenSolaris

The computer name set on this screen is the name by which the system knows itself, and the
name it advertises on the local network to other systems that are running discovery protocols
such as multicast DNS (see Chapter 9 for more on OpenSolaris networking). The name selected
is not registered into centralized naming services such as DNS or LDAP; such registrations must
be made by the administrators of those services.

FIGURE 2-6

Select the language support.

Click Next to display the Installation screen. Here you review the selections you’ve made before
starting the actual installation process. The screen looks much like the one shown in Figure 2-8.

When you’re satisfied with your selections, click Install to start the installation process; prior to
this point no changes have been made to your system’s permanent storage. Once you initiate
the installation, a progress screen displays as the installation proceeds. On most systems the
installation process takes roughly twenty minutes. During this time, the installer is copying
the contents of the live CD onto the provided disk partition. When the installation process
completes, the Finish screen is displayed, indicating the success or failure of the installation.
The installer also offers the option to display the installation log, should there be a problem

38

Installing OpenSolaris 2

or you’re just curious about what happened during the installation. The installation log is also
saved on the installed system at /var/sadm/system/logs/install_log, should you need
to reference it later. Clicking the Reboot button causes the system to reboot and start using
OpenSolaris.

FIGURE 2-7

Create root and user accounts.

Troubleshooting installation
There are several points at which you might run into trouble installing OpenSolaris. The first
potential problem can occur when booting the OpenSolaris CD. As mentioned in the instruc-
tions for booting the CD, you need to select the CD as the preferred boot device in your BIOS.
Most BIOSs allow a one-time selection by pressing a key at boot and then selecting from a menu
using the arrow keys on the keyboard, but you may have to go into your BIOS menu to ensure
that booting from CD is enabled, and that it is preferred over the hard disk. Unfortunately, the
method for doing this varies across BIOS implementations, so we can’t offer general instructions,
but your system’s manuals should be helpful in sorting this out.

If you’re trying to boot from the CD but it fails to bring up the GRUB menu shown earlier
in this chapter, you most likely have a bad CD. This happens much more often than you
might think — burning CDs is notoriously prone to failure. First, ensure that the ISO image

39

Part I Using OpenSolaris

you downloaded wasn’t corrupted by comparing its checksum with the one published on the
download site. To help make the CD burning process more reliable, try to leave your computer
alone while it’s burning the CD, as it is necessary to send data to the CD at a constant rate
during the burning process. If you’ve tried both of those suggestions and still have unreliable
results, you might check your computer vendor’s support site for BIOS or firmware updates
(bugs in CD and DVD drives are not at all unheard of).

FIGURE 2-8

Review your choices.

If you do get the GRUB menu and can start booting OpenSolaris but it hangs while booting and
doesn’t present a login prompt, you may have a device driver problem. Consulting the release
notes page for OpenSolaris, which are linked from the download page, should be your first
step in case there’s a known issue and solution that matches your problem. If there isn’t such
a release note, consulting the support forums on opensolaris.com or sending mail to the
OpenSolaris help mailing list, opensolaris-help@opensolaris.org, should connect you
to experts who can assist in diagnosing your problem. To get answers as quickly as possible,
send as much detail as you can about the type of system, the version of OpenSolaris, and any
messages displayed on the screen.

OpenSolaris may manage to partially boot but run into a problem that it prevents it from
completely booting. At that point it displays a message that says ‘‘Requesting System Main-
tenance Mode’’ and then prompts you for the root password. The CD’s root password is

40

Installing OpenSolaris 2

opensolaris, so enter it and you should be logged in as root to a shell prompt. From there
you’re generally troubleshooting why a critical service did not start, which requires you to work
with the Service Management Facility (SMF) to diagnose the problem.

See Chapter 13 for instructions on how to troubleshoot with SMF.

A graphical desktop failing to display usually points to problems with the X Window system
display drivers, which may not support your system’s display hardware, especially if it’s very
new or very old. Because diagnosis is difficult and the supported devices change very frequently,
the best advice in this situation is to contact opensolaris-help@opensolaris.org with the
details of the problem.

Finally, if you have a graphical desktop that looks correct but you are having trouble running
the installation program, you can first consult the installation log, which can be found at the
pathname /tmp/install_log during the live CD session. Consulting the release notes may
also be helpful here, but your best source of help at this point is likely to be the Installation
and Packaging community, http://opensolaris.org/os/community/install, which will
connect you directly with the developers of the installation software.

Booting OpenSolaris
Assuming your installation of OpenSolaris succeeded, a reboot of the system brings up a GRUB
menu with graphics similar to the menu shown on the live CD. If it brings up the live CD’s
menu again, this means the system’s device boot order is choosing the CD first, and you should
either eject it and reboot the system, or select the Boot from Hard Disk menu item, which takes
you to the hard disk’s GRUB menu. Its first, and default, selection is to boot OpenSolaris; if you
select it or allow it to time out, it will boot OpenSolaris for the first time. During this initial
boot, the operating system may take a moment to configure various system services, but before
long you are presented with the login screen (see Figure 2-9).

Enter the username and password that you provided to the installer. You’ll be presented with a
GNOME desktop that is virtually identical to the desktop on the live CD. Once you’ve reached
the desktop, the first thing to do is start a terminal window (select Accessories�Terminal on the
desktop menu) and ensure that your system’s software database is updated. In the terminal, type
the following:

pkg refresh
pkg list -a
FMRI STATE UFIX

NAME (AUTHORITY) VERSION STATE UFIX
BRCMbnx 0.5.11-0.99 installed ----
FSWfontconfig-devel-docs 0.5.11-0.99 known ----
FSWxorg-client-docs 0.5.11-0.99 installed ----
FSWxorg-client-programs 0.5.11-0.99 installed ----
FSWxorg-clientlibs 0.5.11-0.99 installed ----
FSWxorg-data 0.5.11-0.99 installed ----

41

Part I Using OpenSolaris

FSWxorg-devel-docs 0.5.11-0.99 installed ----
FSWxorg-fonts 0.5.11-0.99 installed ----
FSWxorg-headers 0.5.11-0.99 known ----
FSWxwpft 0.5.11-0.99 installed ----
. . .

FIGURE 2-9

OpenSolaris login screen

The pkg refresh command updates the system’s local catalog of software available in the
repository. Always do this immediately after installation to ensure that the system is synchro-
nized with the software listing from the package servers; you’ll likely want to do it periodically
thereafter so that you’re always operating from current information when deciding which
versions of software to install.

See Chapter 6 for more information on OpenSolaris software management.

42

Installing OpenSolaris 2

The pkg list -a command displays the list of all software available from the openso-
laris.org package repository, including whether it’s installed on your system (STATE column
value is installed) or available for download and installation (STATE column value is known).
The listing is very long. One package that many users will want to install for working on
documents is OpenOffice; it can be installed with a simple command:

pkg install openoffice

To locate the package containing a particular program of interest — gcc, for
example — use the command pkg search -lr gcc, which searches both the locally

installed software and the package repositories.

At this point, take a breath and congratulate yourself — you’ve got a running OpenSolaris
system!

If you have previously saved a GRUB menu configuration from other operating
systems that are also installed on the system, this would be a good time to use a

text editor such as gedit to merge those entries with the OpenSolaris GRUB menu. You’ll find
the OpenSolaris GRUB menu at /rpool/boot/grub/menu.lst. If you have placed your saved
menu on a USB stick, inserting the stick into a USB port causes OpenSolaris to mount it and
display a Nautilus file browser window with the contents of the stick. The stick will be mounted
under /media.

Installing OpenSolaris in a virtual machine
If you’re interested in running OpenSolaris but aren’t ready to make it your primary operating
system, one particularly convenient approach is to use a desktop virtualization program. Another
benefit to this approach is that while OpenSolaris might not directly support your system hard-
ware, the virtual machine that the virtualization program provides generally emulates hardware
that’s well-supported by OpenSolaris.

The virtualization options available to you depend on what primary operating system you
run, but two of the more popular are VirtualBox, which is a free, open source virtualization
program from Sun that runs on nearly every popular desktop operating system, and VMware
Workstation, a proprietary product of VMware, Inc., that runs on Windows and Linux; VMware
also offers its similar Fusion product for Mac OS users.

For detailed information on using VirtualBox, including procedures for installing
OpenSolaris as a guest in VirtualBox, see Chapter 22.

This section assumes that you already have VMware Workstation 6 installed on your system; if
not, you can obtain it free from VMware’s website: http://vmware.com.

Installing OpenSolaris as a VMware virtual machine is a simple process. Once you’ve started
VMware Workstation, the main window presents several options. Select Create A New Virtual

43

Part I Using OpenSolaris

Machine. This starts the New Virtual Machine wizard, which walks you through the process of
creating the virtual machine.

The first screen of the wizard offers two options for creating a virtual machine: Typical and
Custom. The Typical virtual machine has a fairly standard set of devices and configuration
options. For the Custom option, you specify the details yourself. OpenSolaris generally works
well without requiring any custom settings, so selecting Typical is a good choice. The main
reason you might choose Custom is if you know that you want to assign a larger amount of
RAM than the default 512MB that will be assigned, although you can always change this later so
don’t feel compelled to choose the Custom path right now. Click Next when you’re done with
this screen.

Now you need to select a type of guest operating system. Choose Sun Solaris; and for the ver-
sion, select either Solaris 10 or Solaris 10 64-bit, depending on whether your host operating sys-
tem is 32-bit or 64-bit (if VMware offered an OpenSolaris option you’d select that, but because
it doesn’t, Solaris 10 is the closest option). Click Next, and then supply a name for the virtual
machine and a location to store its virtual disk image. VMware suggests defaults for these values;
accepting them may be the simplest option.

The next screen requires you to choose the virtual machine’s type of network connection.
Usually either Bridged Networking or Network Address Translation is a good choice; the main
difference is whether you want the virtual machine to obtain its own address from the host
system’s network (bridged networking) or use the host operating system’s network address
(network address translation). If you can easily obtain additional addresses on the host system’s
network, bridged networking may be a more convenient option. If you select ‘‘Use host-only
networking’’ or ‘‘Do not use a network connection,’’ OpenSolaris won’t be able to contact any
package repositories and you’ll likely find it difficult to install additional software into the virtual
machine.

The final screen of the wizard enables you to specify the size of the virtual disk assigned to the
machine. OpenSolaris recommends at least 8GB of disk space, so select at least that much space
here. Allowing VMware to split the disk into 2GB files enables the virtual machine to be created
more quickly, and generally won’t affect its performance, so you may want to select that option.
After you click Finish, VMware pauses briefly while it creates the virtual machine, after which
you are returned to the main window, shown in Figure 2-10.

Your next step depends on whether you are going to boot OpenSolaris from a physical CD or
from a downloaded ISO image file. If you’re using an ISO image file, select the virtual machine
and then select Edit Virtual Machine Settings. In the dialog that is displayed, select the CD-ROM
device in the Hardware listing, select the Use ISO Image radio button, and either enter the path
to the ISO file or use the Browse button to browse the file system to find the ISO image. Make
sure that the Connect at power on box is checked so that the virtual machine can boot from the
virtual CD.

Finally, select the virtual machine in the list and click the Power On button. This should start
the boot process for the virtual machine, and you can now follow the directions from the ‘‘Boot-
ing the OpenSolaris CD’’ section earlier in the chapter.

44

Installing OpenSolaris 2

FIGURE 2-10

VMware Workstation main window

Resources
Most of the distributions discussed in this chapter can be downloaded from http://
genunix.org.

Downloads, documentation, and support forums for the OpenSolaris distribution are available at
http://opensolaris.com.

Solaris Express Community Edition can be downloaded from http://opensolaris.org/
os/downloads.

Schillix information and downloads are available at http://schillix.berlios.de.

BeleniX information and downloads are available at http://belenix.org.

Nexenta downloads and documentation can be found at http://nexenta.org.

Information on MartUX and Natamar, including downloads, can be found at http://
martux.org.

MilaX information is available from http://milax.org.

45

Part I Using OpenSolaris

Summary
This chapter gave you a brief introduction to each of the OpenSolaris-based distributions,
pointing out the unique contributions each has made to the OpenSolaris community and high-
lighting the reasons why you might be interested in each of them. If you chose the OpenSolaris
distribution, you’ve walked through how to verify that OpenSolaris will run on your system,
how to download the distribution, and how to boot and install it both to physical hardware
and VMware Workstation. You should, at this point, have a working installation of OpenSolaris
and be ready to dive in. Chapter 3 provides a crash course on the most common administration
tasks you might be interested in as a new user. Later chapters explore the various technologies
in OpenSolaris in much greater detail.

46

OpenSolaris Crash
Course

IN THIS CHAPTER
Discovering the desktop

Using the command line

Switching languages and
locales

Getting online

Adding software

Developing on OpenSolaris

Connecting remotely

System administration

I t’s time to jump in and start using OpenSolaris. This chapter provides
a whirlwind tour of the OpenSolaris operating environment, includ-
ing an overview of the GNOME desktop and an introduction to the

OpenSolaris command line, focusing on the bash shell. You’ll learn how
to leverage the OpenSolaris internationalization features, how to get online,
and how to use the new Image Packaging System to obtain the software
you need. The chapter concludes with an overview of OpenSolaris system
administration. Although this chapter provides an introduction to many
aspects of OpenSolaris, most of the content in this chapter is discussed in
more detail in subsequent chapters.

This chapter is aimed at the beginning and intermediate user. If you’re
already familiar with OpenSolaris, you can probably skip it and move right
into Part II of the book. If you’re an experienced UNIX or Linux user, you
might still want to skim this chapter to bring yourself up to date on the
differences between those platforms and OpenSolaris.

Note that this chapter, and, with a few exceptions, most of this book,
focuses on the OpenSolaris distribution from Sun. However, much of the
information is applicable to other distributions as well.

Discovering the Desktop
After installing, booting, and logging in to OpenSolaris as described in
Chapter 2, you are presented with a desktop, as shown in Figure 3-1.

This graphical user interface is the GNOME desktop, the default window-
ing environment in OpenSolaris. GNOME should be familiar to

47

Part I Using OpenSolaris

you if you’re coming from Red Hat, Fedora, Ubuntu, or many other Linux distributions. Even if
you’ve never used GNOME before, it’s pretty intuitive, so you should be able to find your way
around relatively quickly.

FIGURE 3-1

The GNOME desktop is the default windowing environment in OpenSolaris.

Overview
As shown in Figure 3-1, the default GNOME interface on OpenSolaris consists of two gray pan-
els lining the top and bottom of your screen, separated by a large blue desktop area.

The panels contain menus, application launcher icons, and other tools. The top panel on the left
contains three menus (Applications, Places, System) and several icons. From left to right, the
icons can be used to launch a file browser, launch the Mozilla Firefox web browser, launch the
Mozilla Thunderbird e-mail client, launch the graphical package manager, open a command-line
terminal, and search for files. Later sections in this chapter cover most of these applications and
tools in more detail. On the right, the top panel contains the battery/AC power indicator, two

48

OpenSolaris Crash Course 3

network status monitors, the volume control, and a clock. Mouse-over or click on the various
tools to access more information or change settings.

The bottom panel lists all the open windows, including minimized windows. On the far right,
you can select from among the four different workspaces. The following section on managing
windows provides more detail on these workspaces. The bottom panel also contains a trash can,
which functions similarly to the Recycle Bin on Windows.

The large desktop area is empty in Figure 3-1 except for a few icons, which are present in the
default configuration. However, the desktop can also show application windows, icons for vol-
umes such as CDs and USB sticks, and any files or folders in your Desktop directory.

Managing windows
GNOME on OpenSolaris uses the Metacity window manager. Each graphical user interface appli-
cation that you run opens one or more windows on the desktop. Figure 3-2 shows Mozilla Fire-
fox and a command-line terminal window open.

FIGURE 3-2

GNOME applications open one or more windows on the desktop.

49

Part I Using OpenSolaris

If you’re familiar with Microsoft Windows XP, you should feel right at home. As in XP, each
window has three buttons on the top right that, from left to right, enable you to minimize,
maximize, or close the window. Each window also generally has its own menu for the specific
application.

Only one window at a time has the focus, which means it accepts keyboard input. There are a
few ways you can switch between windows in the default configuration. First, you can use the
mouse to click on the window that you want to have the focus. Second, you can click on the
name of the window you want on the bottom panel. Finally, you can use the Alt+Tab keyboard
shortcut to cycle through the windows. This shortcut is the same as the default in Windows XP.
The button on the far left of the bottom panel minimizes all windows.

The window focus behavior is configurable. See Chapter 4 for details.

One nice feature of Metacity is the capability to navigate between multiple virtual desktops.
These workspaces give you more desktop space and enable you to run multiple applications
without cluttering up a single desktop with windows. If you’re familiar with Macs, workspaces
in GNOME are quite similar to spaces on the Mac. Each of the four boxes at the far right of the
bottom panel represents a workspace. You can switch between workspaces by clicking on the
box of the workspace you want, or you can cycle through them with the Ctrl+Alt+Right Arrow
and Ctrl+Alt+Left Arrow keyboard shortcuts. You can move applications between workspaces
by clicking and dragging their little icons in the four boxes on the right of the bottom panel.

Navigating files and directories
GNOME uses the Nautilus file browser. To open a file browser, click the File Browser icon on
the top panel or select Places�Home Folder, Places�Desktop, or one of the other locations in
the Places menu. Once you have a Nautilus browser open, you can navigate to any of the direc-
tories on your system. The Nautilus browser is shown in Figure 3-3.

You can drag and drop files between directories (called folders in Nautilus), create new folders,
delete folders and files, and, in short, do pretty much anything you can do in Windows
Explorer.

Media that you’ve inserted, such as a USB stick or a DVD, will show up both in the Places menu
and as icons on the desktop. You can browse that media with Nautilus by double-clicking the
desktop icon or selecting it from the Places menu. Most media also cause GNOME to automati-
cally open a Nautilus File Browser window.

Eject CDs and DVDs from the system by right-clicking on the volume’s icon on the
desktop and selecting Eject. Similarly, always unmount a USB volume by right-clicking

on its icon and selecting Unmount Volume before pulling out the USB stick. (Chapter 5 covers
peripheral devices in detail.)

Select Places�Network to bring up a Nautilus browser showing file systems that are remotely
accessible, automatically detecting available Samba shares, NFS shares, and even Windows work-
groups.

50

OpenSolaris Crash Course 3

FIGURE 3-3

The Nautilus file browser enables you to browse the files and directories on your system.

See Chapter 10 for details on CIFS and NFS.

Using the Internet
OpenSolaris comes with the Mozilla Firefox web browser, which you can use to browse the
World Wide Web. You can launch it by clicking the Firefox icon on the top panel or by
selecting Applications� Internet� Firefox Web Browser.

OpenSolaris does not include the Adobe Flash player, which is neces-
sary for viewing many websites. Install it by navigating your browser to

http://adobe.com/products/flashplayer and clicking the Download Now button.
Select Solaris x86 or Solaris SPARC as appropriate for your platform, and click the yellow ‘‘Agree
and install now’’ button. Select Save to Disk from the window that pops up and save it in your
home directory. Next, open a terminal window, as described later in the section ‘‘The OpenSolaris
Command Line,’’ and execute the following commands:

$ cd ∼
$ mkdir .mozilla/plugins

51

Part I Using OpenSolaris

$ bunzip2 flash_player_9_solaris_x86.tar.bz2
$ tar -xvf flash_player_9_solaris_x86.tar
x flash_player_9_solaris_r125_x86, 0 bytes, 0 tape blocks
x flash_player_9_solaris_r125_x86/flashplayer.xpt, 856 bytes,
2 tape blocks

x flash_player_9_solaris_r125_x86/libflashplayer.so, 6733812
bytes, 13152 tape blocks

$ mv flash_player_9_solaris_r125_x86/* .mozilla/plugins/

Finally, exit Firefox and restart it. Flash should now be working.

OpenSolaris also includes two popular e-mail clients: Thunderbird and Evolution. Both are
found in the Applications� Internet menu. You can also launch Thunderbird from its icon,
directly to the right of the Firefox icon.

For your instant messaging needs, OpenSolaris includes the Pidgin Internet Messenger program,
which you can launch from Applications� Internet� Pidgin Internet Messenger. Pidgin enables
you to talk on any of your favorite chat networks, such as AIM, MSN, Google Talk, IRC, and
others.

Office suite
The primary office suite for OpenSolaris is OpenOffice.org. It’s not installed by default, but
you can add it through the graphical Package Manager or the command line as described a little
later in the section ‘‘Adding Software.’’

Once OpenOffice.org is installed, you can use its Writer, Calc, and Impress components to do
word processing, spreadsheets, and presentations, respectively. These applications all show up
under the Applications�Office menu. The first time you launch one of them, OpenOffice.org
takes you through a configuration and registration process. OpenOffice.org also includes
additional tools for preparing graphics and equations for documents, and for interfacing with
databases.

You can read PDF files with the Evince document viewer, which should launch automatically
if you download a PDF with Firefox. You can launch it manually from Applications�Office
�Evince Document Viewer.

Multimedia
OpenSolaris includes several audio and video multimedia applications — including Rhythmbox
music player and Totem Movie Player — under Applications� Sound & Video.

For image editing, you can use the Gnu Image Manipulation Program (GIMP) which is available
in the package repository in the SUNWgnome-img-editor package. To just view photos, use
the Image Viewer or Image Organizer in the Applications�Graphics menu.

52

OpenSolaris Crash Course 3

Chapter 4 explores the multimedia capabilities of OpenSolaris in more detail.

Printers and peripherals
OpenSolaris supports most USB-based printers and peripherals, such as webcams, mp3 players,
and the like. Generally, OpenSolaris can auto-detect and configure them, but occasionally you
will have to configure them manually. OpenSolaris also supports network printers, and peripher-
als connected via older technology such as serial ports.

See Chapter 5 for details on using printers and peripherals with OpenSolaris.

Customizing GNOME
You can customize many aspects of the GNOME interface. Most of the customization preferences
can be accessed through System� Preferences. For example, to change the screensaver, select
System� Preferences� Screensaver.

One customization of particular interest is the Visual Effects feature. These effects use the Com-
piz composting window manager. To enable them, select System� Preferences�Appearance,
choose the Visual Effects tab, and select one of the options. If you come from a Mac world, the
visual effects should make you feel somewhat at home — they include functionality similar to
Exposé on the Mac.

You can also add menu items, launchers, icons, and other tools to the panels and desktop.

Chapter 4 provides more details on customizing GNOME.

Logging out and shutting down
To log out the current user, select System� Log Out <username> This brings up a confir-
mation dialog to ensure that you really want to log out before actually doing so. Once you log
out, you are presented with the login screen again.

To shut down or reboot the computer, select System� Shut Down A pop-up window
enables you to Restart, Cancel, or Shut Down.

If you’re going to be away from your computer, select System� Lock Screen to start the screen-
saver and require your password before allowing access again.

This section was just an introduction to the GNOME desktop. The remainder of this
chapter focuses on the command line. For more details on the OpenSolaris graphical

user interface, see Chapter 4.

53

Part I Using OpenSolaris

Using the Command Line
If you’re like the authors of this book, the first thing you generally want to do in any window-
ing environment is find your way to a command line. You can open a command line terminal
by clicking the command line terminal icon on the top panel or by right-clicking on the desktop
and selecting Open Terminal from the pop-up menu.

Like many Linux systems with which you might be familiar, OpenSolaris includes
support for Virtual Console (VC), also called Virtual Terminal (VT). This feature

enables you to switch between multiple text consoles without the windowing system, or between
the windowing system and various text consoles. As of this writing, only the former option
(switching between multiple text consoles) is available. Consult the vt(7I) man page for
details.

Shells
The user that you created in the OpenSolaris installer is assigned the GNU Bourne-Again
Shell (BASH) by default. If you’re familiar with Linux, you’ll feel right at home with bash on
OpenSolaris. If you’ve used Solaris Express or Solaris 10 in the past, this may be a change for
you. If you prefer a different shell, OpenSolaris includes several other options, as shown in
Table 3-1.

TABLE 3-1

OpenSolaris Shells

Shell Path Comments

Bourne-Again Shell /usr/bin/bash Default for user created by installer and for
root role

Korn Shell /usr/bin/ksh Korn Shell 93 (not the older Korn Shell 88
that ships with Solaris 10)

C Shell /usr/bin/csh,
/usr/bin/tcsh

Standard C shell and enhanced C shell

POSIX-compliant Shell /usr/xpg4/bin/sh POSIX-compliant shell; quite similar to Korn
Shell 88

Z Shell /usr/bin/zsh Z Shell

The Z Shell (zsh) and the enhanced C Shell (tcsh) are not installed on your system
by default. To use them you must install the SUNWzsh and SUNWtcsh packages from

the network package repository. See the ‘‘Adding Software’’ section later in this chapter for details
on installing packages from the package repository.

54

OpenSolaris Crash Course 3

The system shell, /bin/sh, is now Korn Shell 93, not the old Bourne shell you find on Solaris
Express, Solaris 10, and previous releases. /usr/bin/jsh (the job-control shell) also is a sym-
link to Korn Shell 93.

You can, of course, change your shell. To try one out, simply type the path of the shell you
want to use. To change your default shell, consult the section ‘‘System Administration’’ later in
this chapter.

To exit a shell, use exit or logout.

To get system console output, launch a terminal from your shell using
/usr/X11/bin/xterm -C &.

The remainder of this section assumes you have some familiarity with a command-line environ-
ment, so it doesn’t explain every detail about the shell or about navigating your environment. It
also assumes use of the bash shell, although many of the features discussed apply to the C shell
and Korn shell as well.

Both bash and the UNIX command-line environment are quite prevalent and popular, so you
can find plenty of information about them elsewhere if you’re a beginner. For example, most
introductory Linux books contain a good overview of bash. For details on bash and the other
shells available in OpenSolaris, consult one of the references listed in the ‘‘Resources’’ section.

This section focuses on the user side of things. For administration, consult the section ‘‘System
Administration’’ later in this chapter.

Executing commands
As with all shells, you enter commands to the bash command prompt followed by a carriage
return (the Enter key on your keyboard). The $ in the following examples is the command
prompt. Everything else on that line is what the user types:

$ echo ’’Hello, world’’
Hello, world

You can execute multiple commands on a single line by separating them with a semicolon:

$ touch file1
$ rm file1; ls file1
file1: No such file or directory

If you end a command line with a backslash, bash lets you continue the command on the next
line. This feature is useful for entering lengthy commands:

$ touch \
> file1
$ ls file1
file1

55

Part I Using OpenSolaris

One particularly nice feature of bash is command-line editing. You can edit your com-
mand line in place before executing it. Use the left and right arrows to move the cursor
back and forth on the line, to delete characters with the backspace, and to enter text as
normal. You can also use keystrokes for moving around the line, editing the line, and even
cutting and pasting text within the line. For example, Alt+F and Alt+B move forward
and backward, respectively, on a word-by-word, instead of character-by-character, basis.
The Bash Reference manual at www.faqs.org contains a useful list of editing keystrokes:
http://faqs.org/docs/bashman/bashref 81.html.

The bash command-line editing keystrokes are in many cases identical to the corre-
sponding keystrokes in the emacs text editor, with Alt used instead of the Meta (Esc)

character in emacs. For example, Ctrl+K to cut (‘‘kill’’) to the end of the line and Ctrl+Y to paste
(‘‘yank’’) are the same as in emacs.

Another nifty feature of bash command-line editing is automatic completion. If you press the
Tab key with the cursor at the end of a partially completed word, bash attempts to complete it
as a command, filename, environment variable, or other entity depending on context. If multi-
ple options are available, bash first completes the word up to the divergence, and then a second
Tab presents a list of all the options. For example, to get a list of all the commands in your path
that start with ‘‘fil,’’ type fil and press Tab twice:

$ file<tab><tab>

file file-roller filesync
$ file

bash first completed the word up to file (because there were no commands starting with fil
that didn’t have an e next), and then provided a list of possibilities with the second Tab.

Here’s an example of the context-sensitive nature of the completion:

$ ls
file1 file2 file3 otherfile
$ ls file<tab><tab>

file1 file2 file3
$ ls file

Note that the tab autocomplete for file shows only those files in the directory beginning with
the string file. In this case, bash completed file as a filename in the working directory, not
as a command.

$? holds the exit status of the most recent command executed. Print it with the echo
command:

$ date
Fri Jul 18 15:22:23 MDT 2008
$ echo $?
0
$ ls nothere

56

OpenSolaris Crash Course 3

nothere: No such file or directory
$ echo $?
2

Shell History
bash keeps a history of all the commands you execute. Unlike some other shells, this history
is kept on a per-user basis, not on a per-session basis. This means that the history is persistent
between login sessions, and represents an aggregation of the commands executed from all your
login sessions. Type the history command to see the complete history of commands:

$ history
1 ls
2 ls -a
3 pwd
4 whoami
5 touch testfile
6 which gcc
7 which cc
8 rm testfile
9 history

Give history an integer argument to see only that number of previous commands:

$ history 2
12 date
13 history 2

To execute a command in the history, use !<command number>. To execute the previous com-
mand, use the !! shortcut:

$!4
whoami
test
$ date
Fri Jul 18 15:03:58 MDT 2008
$!!
date
Fri Jul 18 15:03:59 MDT 2008

Rather than use the history command to generate a list of commands, use the up
arrow on your keyboard to iterate backward through the command history. Once

you’ve moved backward into the history, you can use the down arrow to iterate forward. After
you find a command with the arrows, you can edit it and execute it. You can also use Ctrl+R to
search (backward) through the history.

The history is stored in the .bash_history file in your home directory. The number of com-
mands saved in the history is controlled by the HISTSIZE environment variable, with 500 as the
default. See the next section for details on environment variables.

57

Part I Using OpenSolaris

Environment variables
Like most shells, bash stores some information in special variables known to the shell called
environment variables. You can view a complete list of the currently defined environment vari-
ables with declare:

$ declare
BASH=/usr/bin/bash
BASH_ARGC=()
BASH_ARGV=()
BASH_LINENO=()
BASH_SOURCE=()
BASH_VERSINFO=([0]=’’3’’ [1]=’’2’’ [2]=’’25’’ [3]=’’1’’
[4]=’’release’’ [5]=’’i386-pc-solaris2.11’’)
BASH_VERSION=’3.2.25(1)-release’
COLUMNS=80
. . .

You can print the values of the environment variables using the echo or printf commands,
accessing the value of the variable by prefixing it with the usual $ character:

$ echo $SHELL
/bin/bash
$ printf ’’$PATH\n’’
/usr/bin

Set the value of an environment variable with an assignment statement. The following example
sets the shell history size to 1,000:

$ echo $HISTSIZE
500
$ HISTSIZE=1000
$ echo $HISTSIZE
1000

Environment variable values are not persistent between sessions. To set up your envi-
ronment consistently between login sessions, add your changes to the .bashrc file.

See the section on Customizing Bash with .bashrc later in this chapter.

You can create your own environment variables by setting them to a value:

$ MYVAR=test
$ echo $MYVAR
test

Usually when you set an environment variable you also want to export it to make it available to
child shells and processes:

$ export MYVAR

58

OpenSolaris Crash Course 3

You can capture the output from a command in an environment variable using back-
ticks:

$ TIME=`date`
$ echo $TIME
Fri Jul 18 16:24:31 MDT 2008

Command paths
Other than the built-in shell commands such as declare and set, all the commands you exe-
cute are located in various directories on your system. Table 3-2 lists the principal directories
containing commands.

/bin is a symbolic link to /usr/bin, but /sbin is an independent directory from
/usr/sbin.

You can execute commands by providing an absolute path or a relative path. With an absolute
path, the shell looks for the command in the given path. With a relative path, bash tries to
find it in one of the directories specified in your PATH environment variable. The PATH is a
colon-separated list of directories in the order they should be searched. The first match is the
one that is executed.

Use the which command to see which version of a command you are executing
based on your path:

$ which grep
/usr/gnu/bin/grep
$ which xterm
/usr/X11/bin/xterm
$ which which
/usr/bin/which

The user created by the installer is set up with the following path:

$ echo $PATH
/usr/gnu/bin:/usr/bin:/usr/X11/bin:/usr/sbin:/sbin

Note that /usr/gnu/bin is first. If there are two versions of a command, one in
/usr/gnu/bin and one in /usr/bin, the GNU version is executed by default.

The working directory (.) is not in the path for security purposes. If it were,
an attacker could place a malicious program with the same name as a standard

command somewhere in a writable directory such as /tmp. If you happened to be in the /tmp
directory and you tried to execute the command, you would actually execute the malicious
program. To execute something in your working directory, you must specify it explicitly with
./. Therefore, using absolute paths to commands is generally safer because you know exactly
which version of a command you’re executing. Administrators should generally use absolute paths,
although for brevity this book uses mostly relative paths. See Chapter 11 for more security topics.

59

Part I Using OpenSolaris

TABLE 3-2

OpenSolaris Command Directories

Directory Description

/usr/bin The default directory for commands; contains utilities such as grep and
tr, applications such as firefox and thunderbird, shells such as
bash and zsh, and myriad other commands

/usr/ccs/bin Traditionally System V development tools, but these have mostly moved
to /usr/bin

/usr/gnu/bin The GNU versions of commands; slightly different versions of many of
them are also found in /usr/bin

/usr/sbin The system tools, commands, and daemons, such as zfs, dumpadm,
in.routed, and others. These are generally privileged commands.

/usr/sfw/bin Traditionally the Sun Freeware (mostly GNU) tools, but almost all of
these have been moved to /usr/bin, with symlinks left here; or
symlinks have been added to /usr/bin

/usr/ucb Traditionally the BSD tools, but these have been moved to /usr/bin,
with only a few symlinks left here

/usr/X11/bin X11 commands, such as xterm, xhost, and others

/usr/openwin/bin;
/usr/X/bin;
/usr/X11R6/bin

Aliases for /usr/X11/bin

/usr/xpg4/bin Versions of some of the tools that adhere to the POSIX standard, where
the versions in /usr/bin don’t

/bin Alias for /usr/bin

/sbin System tools and utilities required for booting and possibly recovering
the system if /usr is not mounted. These are generally privileged
commands.

To change your path, set the PATH environment variable. If you just want to add a directory to
the path, be sure to include the old version of the PATH on the right-hand side of the assign-
ment. For example, use the following to add the Sun Studio Express directory to the end of your
path:

$ PATH=$PATH:/opt/SunStudioExpress/bin
$ echo $PATH
/usr/gnu/bin:/usr/bin:/usr/X11/bin:/usr/sbin:/sbin:/opt/SunStudioExpress/bin

60

OpenSolaris Crash Course 3

As mentioned earlier, however, setting an environment variable in this manner is not persistent
across sessions. To set your PATH persistently, set it in .bashrc, discussed later in this chapter.

Sun Studio Express and other development tools are covered in detail in Chapter 24.

The MANPATH environment variable works similarly to the PATH, specifying where the man
command should look for manual pages. The MANPATH in the user created by the installer is as
follows:

$ echo $MANPATH
/usr/gnu/share/man:/usr/share/man:/usr/X11/share/man

You can set the MANPATH in .bashrc as well, but OpenSolaris now contains an enhancement
to the man command that enables it to find man pages based on the PATH, without an explicit
MANPATH.

The man pages for many of the common commands are not included in the
OpenSolaris distribution for legal reasons, but you can find them online at

http://docs.sun.com/app/docs/coll/40.17.

Managing files
As on most UNIX-like systems, each user on OpenSolaris has a home directory. Your home
directory path is stored in the HOME environment variable. You can also use the tilde character
(∼) to navigate to your home directory or to another user’s home directory. The tilde alone
implies the current user’s home directory. The following code shows how to navigate to home
directories:

$ cd ∼
$ pwd
/export/home/nsolter
$ cd ∼test
$ pwd
/export/home/test

This example also demonstrates that the pwd command shows your current working directory.

As usual, you can use regular expressions when referring to files on the file system. For example,
to list all the files in the current directory starting with file, use the following:

$ ls file*
file1 file2 file3

Files on OpenSolaris have an owner, a group, and traditional UNIX permissions associated with
them.

The concepts of users and groups are discussed later in the section ‘‘System Adminis-
tration.’’

61

Part I Using OpenSolaris

Each file can be assigned an owner and a group, and read, write, and execute permissions on
the basis of owner, group, and all. Use ls -l to see the permissions:

$ ls -l file1
-rw-r--r-- 1 nsolter staff 0 2008-07-17 14:43 file1

This output shows that the file owner is nsolter and the file group is staff. The 10-character
string on the far left shows the permissions. From left to right, the first character indicates
whether the file is special in any way, such as a directory or link. The - means it’s a regular
file. The next three characters are the read, write, and execute permissions for owner. The three
following characters are the three permissions for group, and the final three are the permissions
for all users. A - means the permission is not granted. In this case, you can see that the owner
is granted read and write access on file1, group and all are granted read access, and no one is
granted execute permissions. Note that execute permissions for a directory actually means list
permissions.

You can change the owner and group of a file with the chown command, although by default
users lack the file_chown_self privilege that allows you to change the ownership. Thus, the
following example is run as the root role (see the section ‘‘Running privileged commands’’ later
in this chapter for details):

chown test:mygroup file1
ls -l file1
-rw-r--r-- 1 test mygroup 0 2008-07-17 14:43 file1

You can change permissions on a file with the chmod command. Although chmod can take a
symbolic permissions argument, it’s typically used with an octal (or base eight) representation
of the permissions. To understand what that means, consider each permission flag as a single
bit, either on or off. The combined read, write, and execute permissions for each of user, group,
or all are thus composed of three bits. Three bits in binary can represent the decimal numbers
0 through 7, which can be represented by a single octal digit. The permissions are always rep-
resented, left to right, as read, write, and execute, in that order. Considering execute the least
significant bit, you can translate any configuration of these three permissions to a single octal
digit according to Table 3-3.

Each octal number represents the permissions for one of user, group, or all. The chmod
command sets the permissions for all three at once, with three octal numbers representing, from
left to right, user, group, and all. For example, to set the permissions of file2 to read, write,
and execute for owner, to read and execute for group, and to just read for all, use the following
command:

$ chmod 754 file2
$ ls -l file2
-rwxr-xr-- 1 nsolter staff 0 2008-07-17 15:10 file2

62

OpenSolaris Crash Course 3

When you create a new file or directory, the permissions are 666 (read and write) for a file
and 777 (all permissions) for a directory, minus the permissions specified in your user file
creation mode mask (‘‘umask’’ for short). You can view your umask value by running the umask
command:

$ umask
0022

TABLE 3-3

OpenSolaris File Permissions

Permissions Binary Octal

--- 000 0

--x 001 1

-w- 010 2

-wx 011 3

r-- 100 4

r-x 101 5

rw- 110 6

rwx 111 7

A umask value of 0022 specifies write permissions for both group and all. Recall that the umask
permissions are subtracted from the full permissions, so with a umask of 0022, when you create
a file it will have read/write permissions for owner, and read-only permissions for group and all.
For example, you can create a file called umasktest and examine its permissions:

$ touch umasktest
$ ls -l umasktest
-rw-r--r-- 1 nsolter staff 0 2008-07-20 13:01 umasktest

You can set the umask value for the current shell with the umask command:

umask 022

To set it persistently, add it to your .bashrc file (described later).

OpenSolaris also supports finer-grained access control lists (ACLs) on files. Consult
Chapter 11 for details.

63

Part I Using OpenSolaris

Redirection
As with most shells, bash supports redirection of command input and output and piping of
command output with the usual symbols:

■ command > file directs the standard output of the command to a file, overwriting the
contents of the file if it exists.

■ command >> file directs the standard output of the command to a file, appending the
contents to the file.

■ file < command gives the contents of file to command as standard input.

■ command1 | command2 gives the standard output of command1 to command2 as its stan-
dard input.

Here are some examples of command redirection and piping:

$ date > test.out
$ cat test.out
Fri Jul 18 16:43:26 MDT 2008
$ date >> test.out
$ cat test.out
Fri Jul 18 16:43:26 MDT 2008
Fri Jul 18 16:43:36 MDT 2008
$ ls -l | wc -l

5

The > symbol redirects only standard output, not standard error. As shown in the fol-
lowing example, you can redirect standard error with 2>, because standard error is

always represented by file descriptor 2.

$ ls notfound > test.out
notfound: No such file or directory
$ ls notfound > test2.out 2> test2.out
$ cat test2.out
notfound: No such file or directory

Job control
The bash shell provides job control functionality similar to the C Shell. To run a job in the
background, add an ampersand (&) to the end of the line:

$./long-running &
[1] 1018

64

OpenSolaris Crash Course 3

The [1] means that this is job number 1 in your shell. If you start another job, it receives a dif-
ferent number:

$./myjob &
[2] 1021

You can list all the current jobs with the jobs command:

$ jobs
[1]- Running ./long-running &
[2]+ Running ./myjob &

To bring a job to the foreground, use fg. To suspend the running foreground job, press Ctrl+Z.
To put a suspended job in the background, use bg:

$ fg %1
./long-running
ˆ Z
[1]+ Stopped ./long-running
$ bg %1
[1]+ ./long-running &

The fg and bg commands without arguments apply to the job most recently acted on, denoted
with a + next to it in the output from jobs.

Customizing Bash
You can customize your bash shell persistently by adding configuration settings to the .bashrc
file in your home directory. The initial user created by the installer has a .bashrc that sets
the PATH, MANPATH, and command prompt, which are the three most typical things to set in a
.bashrc. PATH and MANPATH were discussed earlier in the section ‘‘Command Paths.’’ Here’s
what the settings look like in the .bashrc:

export PATH=/usr/gnu/bin:/usr/bin:/usr/X11/bin:/usr/sbin:/sbin
export MANPATH=/usr/gnu/share/man:/usr/share/man:/usr/X11/share/man

To set the command prompt, set the PS1 environment variable. You can use what-
ever text you want, plus some special character macros that expand to specific values
depending on context. Table 3-4 lists a few of these macros. For a complete list, see
http://faqs.org/docs/bashman/bashref 74.html#SEC81.

For example, to set your prompt to username:working directory $, you could use the fol-
lowing:

PS1=’\u:\W\$ ‘

Now your prompt might look like this if you’re in your home directory:

nsolter:∼$

65

Part I Using OpenSolaris

TABLE 3-4

Bash Command Prompt Macros

Macro Meaning

\d Current date

\h Hostname

\t or \T Time in 24-hour or 12-hour format

\u Username

\w Current working directory

\W Base name of the working directory

\$ $, unless effective ID is 0 (root), in which case #

The .bashrc file is not executed for all login shells, specifically not for remote ses-
sions. If you want to execute it in all cases, create a .bash_profile in your home

directory that looks like this:

if [-f ∼/.bashrc]; then
. ∼/.bashrc
fi

You can, of course, add configurations other than these three to .bashrc, such as setting a
CLASSPATH environment variable for Java programming.

The /etc/profile file is executed for all users for each new shell before the
.bash_profile and .bashrc. Among other things, /etc/profile sets a default umask

for all users.

Text editors
OpenSolaris includes the vim text editor, which is an improved version of the original vi text
editor. You can use vim directly, or run vi, which launches vim in vi-compatibility mode.

In addition to vim, OpenSolaris includes the standard utilities cat, more, and less for quickly
viewing file contents. Consult their man pages, all in section 1, for details.

If you’re an emacs fan, you can install it from the package repository. Install the
SUNWgnu-emacs-gtk package for the graphical version or SUNWgnu-emacs-nox

for the basic tty text-based version. See the section ‘‘Adding Software’’ later in this chapter for
details on installing additional software from the package repository.

66

OpenSolaris Crash Course 3

The remainder of this section focuses on vim.

If you’re a regular UNIX or Linux user, it’s pretty hard to avoid using vi or vim at least once
in a while, so you’re probably already familiar with at least its basic functionality. However,
if you’re coming from a different computing environment or if, like one of the authors, you
stubbornly use emacs whenever possible, you might not be completely comfortable with vi and
vim. Thus, this section provides a basic tutorial on the vim editor. Most of the commands, with
the exception of the visual mode, apply to vi as well.

This tutorial on vim is not comprehensive. A good cheat sheet can be found at
http://fprintf.net/vimCheatSheet.html.

You can launch vim with one or more filenames:

$ vim vimtest

You’ll then see something like this:

∼
∼
∼
∼
∼
∼

The tildes represent lines in the file that do not yet exist.

If vim displays errors about ‘‘terminal entries’’ or ‘‘terminal capabilities,’’ your TERM
environment variable is probably set incorrectly. If you don’t know your terminal

type, setting TERM to vt100 is usually a safe bet. See the terminfo(4) man page for all the
gory details.

The first point to understand about vim is that it is a modal editor. When editing a file, you are
always in one of command, insert, or visual mode. You start in command mode, from which
you can execute various commands such as searching, cutting and pasting, saving, and quitting.
To enter insert mode, use i, a, or another similar command, after which anything you type will
be inserted into the file. To return to command mode press the Esc key. Esc is the only com-
mand that works in insert mode.

Similarly, to enter visual mode, use the v command. In visual mode you can select text to cut or
copy. Return to command mode with the Esc key.

General commands
Table 3-5 lists some of the commands for working with files in vim.

67

Part I Using OpenSolaris

TABLE 3-5

vim General Commands

Command Description

:w Saves file. Use :w! to override read-only settings, if you have appropriate
permissions.

:q Quits the editor. Use :q! to exit without saving changes to the file.

ZZ Saves changes and exits

u Undoes the previous action

Esc Enters command mode

Ctrl+G Displays the filename, modification status, and current line number

Inserting text
As mentioned earlier, you insert text primarily in input mode. There are a few different ways to
enter input mode, as described in Table 3-6. You can also search and replace text.

Navigating and searching
In command mode you can quickly get where you want in a file. vim’s navigation commands
are described in Table 3-7.

Cutting and pasting
vim, of course, provides mechanisms for cutting and pasting text. Table 3-8 describes the
commands.

Repeating commands
The vim editor allows most commands to be preceded with a number. The command is then
repeated that number of times. For example, to delete the next 10 lines, enter 10dd.

Running privileged commands
Traditionally, UNIX has two access control levels: regular users and the privileged user, also
called superuser, with login name root. The root user is always assigned user ID 0, and can do
essentially anything he or she wants. Regular users are restricted from performing system and
administrative actions.

If you’re coming from the Linux world you might be familiar with sudo, which allows regular
users with appropriate privileges to access privileged commands. OpenSolaris has a similar
model, implemented with Role-Based Access Control (RBAC).

68

OpenSolaris Crash Course 3

TABLE 3-6

vim Insertion Commands

Command Description

i Inserts text starting to the left of the cursor. Enters insert mode.

a Inserts text starting to the right of the cursor. Enters insert mode.

o Inserts a newline below the cursor and inserts text starting in
that newline. Enters insert mode.

O Inserts a newline above the cursor and inserts text starting in
that newline. Enters insert mode.

r Replaces the current character with the next character typed

R Enters input mode, but overwrites characters instead of inserting

:g/string/s//newstring/g Replaces every occurrence of string in the file with
newstring. Without the trailing g, substitutes only the first
occurrence on each line. Without the s in the middle, replaces
string only on the current line.

TABLE 3-7

vim Navigation Commands

Command Description

Arrow Keys Moves the cursor around the file one character/line at a time

ˆ Moves the cursor to the beginning of the current line

$ Moves the cursor to the end of the current line

Ctrl+D, Ctrl+U Moves down and up in the file, one-half page at a time

/string Searches forward for the occurrence of the string. Enter to search again. You
may use regular expressions in the string.

?string Searches backward for the string

nG Jumps to line number n in the file. G alone jumps to the last line in the file.

If you prefer sudo, you can install it from the network package repository. See the
‘‘Adding Software’’ section later in this chapter for details on the network package

repository, and Chapter 11 for more information on sudo.

69

Part I Using OpenSolaris

TABLE 3-8

vim Cutting and Pasting Commands

Command Description

x Deletes the current character

dd Deletes the entire line

v Enters visual mode to select text by moving the cursor

y Copies (‘‘yanks’’) text selected in visual mode

d Deletes (cuts) text selected in visual mode

p Pastes text most recently deleted or copied

Esc Exits visual mode (returns to command mode)

If you created a user during OpenSolaris installation, the installer configured your system such
that root is a role instead of a regular user. The implication of that change is that you can no
longer log in as root. Instead, if you really want the power of root, you can assume the root
role by first logging in as a user who has been assigned that role and then su-ing to root. To
check whether your user has been assigned the root role, use the roles command:

$ roles
root
$ su
Password:
#

However, there’s an easier and safer way to administer the system. The user created by the
installer is assigned the Primary Administrator profile, which means that she can perform
most administrative actions. The trick is that she can’t execute them directly. Like on Linux with
sudo, you must explicitly indicate that you want to execute a privileged command by prefixing
the command with pfexec. If you forget the pfexec, you’ll be warned that the operation is
privileged. Here’s an example:

$ usermod -s /usr/bin/bash test
UX: usermod: ERROR: Permission denied.
$ pfexec usermod -s /usr/bin/bash test
$

To check your profiles, use the profiles command.

To avoid showing pfexec repeatedly, the examples in the rest of this book run priv-
ileged commands from a root shell. In those examples, the prompt is shown as the

pound sign (#) instead of the usual dollar sign ($). Generally, however, avoid adopting the root
role if possible because it can lead to accidentally doing something harmful to the system.

70

OpenSolaris Crash Course 3

If you didn’t create a user in the installer, then root is not a role, and no user is assigned the
Primary Administrator profile. Thus, you’ll need to explicitly log in as root, or su to root, to
administer the system.

Chapter 11 covers RBAC, pfexec, and other security features of OpenSolaris in
much more detail.

Switching Languages and Locales
Although most of the examples in this book show OpenSolaris using American English and the
American formats for dates and such, OpenSolaris includes comprehensive internationalization
support. If you live in a region other than the United States or natively speak a language other
than American English, you might be more comfortable working in a different locale. The locale
is more than just the language. It also includes the formats for date and time, monetary conven-
tions, decimal formatting style, and other location-specific items.

There are a few different ways to switch locales in OpenSolaris. First, as shown in Chapter 2,
you select the default language and locale during installation. After installation, you can select
a locale for each GNOME session, set the locale for each terminal session, or change the default
system locale.

Changing locale in GNOME
You can select a different language before logging in to GNOME. On the login screen, click the
Options button on the lower left, and then click Select Language from the pop-up menu. Select
the language you want and click the Change Language button (see Figure 3-4).

The first time you select a different language, you’re asked if you want to restart the login
screen with the chosen language. Subsequent changes automatically restart the login screen.
You then see the login screen in the new language. Figure 3-5 shows the screen in Simplified
Chinese.

When you log in, you’re asked (in the new language) if you want to make this language
setting your default. Select this option if you do indeed want this language to be that user’s
default.

Selecting the language as your default sets it for that user only. Logging in as a differ-
ent user uses the system default language, so the login screen always starts in the sys-

tem default language. Also, setting the per-user default language this way applies only to GNOME.
If that same user logs in via ssh or another text-based mechanism, she will use the system default
language.

You’ll also be asked if you want to change the names of the standard folders in your home
directory to use the new language.

71

Part I Using OpenSolaris

FIGURE 3-4

GNOME lets you select a language from the login screen.

FIGURE 3-5

The GNOME login screen in simplified Chinese.

72

OpenSolaris Crash Course 3

Changing locale in a terminal session
The locale in each terminal session is controlled by several environment variables, which are
listed in Table 3-9.

TABLE 3-9

Locale Environment Variables

Environment Variable Description

LANG General language specification; when in doubt, set this one

LC_ALL Language setting; overrides LANG and other LC_ variables

LC_COLLATE Specifies the character collation sequence

LC_CTYPE Specifies character width and other character settings

LC_MESSAGES Specifies the message database to use

LC_MONETARY Specifies symbols and formats related to money

LC_NUMERIC Specifies the delimiter for decimals and thousands

LC_TIME Specifies date and time formats

Each of these variables can be set to a language specification. For example, the language specifi-
cation for German looks like de_DE.UTF-8. You can see all the locales available on your system
by looking in /usr/lib/locale:

$ ls /usr/lib/locale
C en_GB.UTF-8 es_CR.UTF-8 es_SV.UTF-8 fr.UTF-8 ru_RU.UTF-8
common en_IE.UTF-8 es_EC.UTF-8 es_UY.UTF-8 iso_8859_1 ru.UTF-8
de_AT.UTF-8 en_MT.UTF-8 es_ES.UTF-8 es_VE.UTF-8 it_IT.UTF-8 sk_SK.UTF-8
de_CH.UTF-8 en_NZ.UTF-8 es_GT.UTF-8 es.UTF-8 it.UTF-8 sv_SE.UTF-8
de_DE.UTF-8 en_US.UTF-8 es_MX.UTF-8 fr_BE.UTF-8 ja_JP.UTF-8 sv.UTF-8
de_LU.UTF-8 es_AR.UTF-8 es_NI.UTF-8 fr_CA.UTF-8 ko_KR.UTF-8 zh_CN.UTF-8
de.UTF-8 es_BO.UTF-8 es_PA.UTF-8 fr_CH.UTF-8 ko.UTF-8 zh_HK.UTF-8
en_AU.UTF-8 es_CL.UTF-8 es_PE.UTF-8 fr_FR.UTF-8 POSIX zh_TW.UTF-8
en_CA.UTF-8 es_CO.UTF-8 es_PY.UTF-8 fr_LU.UTF-8 pt_BR.UTF-8 zh.UTF-8

Each directory name listed is a valid setting for the environment variables listed in Table 3-9.

You can use the locale command to check your current locale:

$ locale
LANG=en_US.UTF-8
LC_CTYPE=’’en_US.UTF-8’’
LC_NUMERIC=’’en_US.UTF-8’’

73

Part I Using OpenSolaris

LC_TIME=’’en_US.UTF-8’’
LC_COLLATE=’’en_US.UTF-8’’
LC_MONETARY=’’en_US.UTF-8’’
LC_MESSAGES=’’en_US.UTF-8’’
LC_ALL=

To set the overall locale, change the LANG variable. The following example shows the changed
output of the date command after changing locale:

$ date
Tue Jul 29 13:11:10 MDT 2008
$ LANG=fr_CH.UTF-8
$ date
mardi, 29 juillet 2008 13.12:02h MDT

You can, of course, set any of the LC_ variables individually to different language settings if you
want, but it’s usually best to set just LANG.

Setting LANG or another environment variable at the command line is not persistent
across login sessions. To set your locale persistently, set the environment variable in

your .bashrc file.

Changing the default system locale
You can set the default system locale, which then applies to both GNOME sessions and
terminal sessions, unless the user explicitly sets a different locale. The system locale is set in the
/etc/default/init file. That file sets the LANG environment variable to the locale you speci-
fied in the installer. Simply change the LANG variable to the locale you want as the new default.
For example, to set the default system locale to German, set LANG in /etc/default/init as
follows:

LANG=de_DE.UTF-8

You must reboot the system in order for the LANG setting in /etc/default/init to
take effect.

Changing keyboard layout and input languages
The default keyboard layout is based on the default system locale that you selected during instal-
lation. However, if you write in more than one language, it’s useful to be able to switch between
different input languages. To configure this feature, first select System� Preferences� Input
Methods. On the dialog’s General tab, make sure that Use Input Method Switcher Application is
selected as the Input Method Status and switcher placement. Also, under the Languages/Scripts
tab, add all languages you plan to use from the Available Languages/Scripts to the right-hand
Languages/Scripts to Input.

Once you’ve set up your preferences, you can switch your keyboard layout/input language at any
time by selecting the desired language in the language switcher, which shows up on the right
side of the top panel, directly to the left of the power monitor.

74

OpenSolaris Crash Course 3

Installing additional languages
If your preferred locale isn’t one of the default languages installed, you can install additional
languages from the pkg.opensolaris.org package repository by following the instructions
in ‘‘Adding Software’’ later in this chapter. The easiest way to install a language is to install the
package named SUNWlang-<language>. For example, Polish language support package is
SUNWlang-pl.

Getting Online
Unless you’re planning on traveling back in time a few decades, you probably want to connect
your OpenSolaris box to some sort of network. OpenSolaris includes the Network AutoMagic
(NWAM) service to configure your computer’s network interfaces automatically, but if you want
more control, you can configure your network connections manually.

Network AutoMagic
NWAM starts automatically when your system boots and attempts to connect your computer to
a network using DHCP.

If you’re new to UNIX networking, see Chapter 9 for details about network inter-
faces, DHCP, NWAM, and other networking topics.

NWAM attempts wired connections first, if available. If it connects successfully, it provides a
notification telling you the name of the interface configured and the IP address obtained from
the DHCP server. There’s nothing you need to do to connect to a wired network that supports
DHCP; NWAM takes care of everything automatically.

NWAM often connects to the network before you’ve logged in to the GNOME desk-
top, so you usually won’t see this notification.

If no wired interface is available and your computer has a wireless network interface, it attempts
to connect to a wireless network. In that case, NWAM presents a list of detected wireless
networks and you can select the one to which you want to connect, entering the security key if
required.

Manual network configuration
Although NWAM is quite convenient for getting your system online quickly and without
complicated configuration, the service is somewhat limited in its capabilities. For example,
you can’t easily configure static IP addresses. Thus, for advanced administration, you need to
use manual methods to configure your networking. To switch to manual configuration, select
System�Administration�Network. A pop-up window will inform you that the system is
currently configured to manage the network automatically. Click the Manual button to change
the configuration. A Network Settings dialog similar to the one shown in Figure 3-6 will
appear.

75

Part I Using OpenSolaris

FIGURE 3-6

Use the networking configuration GUI to configure your interfaces manually.

This section covers the OpenSolaris networking GUI. For details on the commands
and configuration files, see Chapter 9.

By default, none of the interfaces are active. To activate an interface, select it in the box and
then click the Properties button on the right. The dialog shown in Figure 3-7 will appear.

Check Enable This Connection; and if you want the connection to be persistent, check Activate
on Boot. Then, in the Connection Settings section, choose either DHCP or Static IP address for
the configuration. If you select Static IP, fill in the IP address and the Gateway address, which is
usually the address of the external-facing router on your LAN. The subnet mask should be filled
in automatically. If this is a wireless interface, fill in the Wireless settings information as well.
Finally, click OK. Your network connection should now be configured.

Depending on the information — if any — that OpenSolaris was able to obtain from the DHCP
server on your network, you may need to fill in other networking information. You specify the
hostname and domain name on the General tab, and Domain Name Servers on the DNS tab. On
the Hosts tab, you fill in hostname/IP address mappings for files-based resolution. Consult your
network administrator or Internet service provider (ISP) for the domain and DNS settings. You
generally shouldn’t need to modify the hostname and files-based host mappings.

Chapter 9 explains DNS and the uses of the other settings mentioned here.

If you ever want to switch back to NWAM, you can select System�Administration�Network
again. The dialog that appears will give you the option to switch back to automatic network
configuration. Alternatively, you can run the following two commands:

svcadm disable network/physical:default
svcadm enable network/physical:nwam

76

OpenSolaris Crash Course 3

FIGURE 3-7

Activate an interface via the Interface Properties dialog.

Troubleshooting network connections
To determine whether your network connection is working, open a Firefox browser and try to
connect to your favorite web page. If it’s not working, and you’re using NWAM, try restarting
the NWAM service:

svcadm restart nwam

This action should force NWAM to try to disconnect from and reconnect to the network. Give it
a few minutes, especially if connecting over a wireless network.

If the network connection still isn’t working, run ifconfig -a to determine whether your
interface has an assigned IP address:

ifconfig -a
. . .

pcn0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS>

mtu 1500 index 4
inet 192.168.1.101 netmask ffffff00 broadcast 192.168.1.255
ether 0:c:29:a2:4:9

. . .

If no IP address is shown for your interface in the inet field, give NWAM a bit more time to
work. If nothing happens after restarting NWAM, switch to manual networking, as previously
described.

77

Part I Using OpenSolaris

If ifconfig shows an IP address but the connection still isn’t working, you’ll need to use some
of the more sophisticated debugging techniques discussed in Chapter 9.

If your network interface isn’t shown, OpenSolaris might not have drivers for it. To check, run
the driver detection tool by selecting Applications� System Tools�Device Driver Utility. This
tool quickly tells you whether you have the drivers for your particular network interface cards.

Chapter 5 explains where you might find missing drivers for your network interfaces.

Adding Software
The OpenSolaris distribution included on the LiveCD provides a comfortable desktop environ-
ment, but because of space limitations necessarily omits a multitude of useful software. However,
the new OpenSolaris Image Packaging System (IPS) enables you to install additional applications
from the OpenSolaris network package repositories quite easily.

As mentioned in Chapter 2, OpenSolaris has replaced the old System V packaging with IPS.
The new packaging system is based on the concept of a network package repository. If you’re
familiar with APT or Yum from the Linux world, you should feel right at home with IPS. As
with other network-based packaging systems, in IPS the packages are served from various
network repositories. Instead of downloading software in gzip format or the like, unpacking it,
and installing it, installing from IPS is a simple one-step process. You interact with IPS by using
the new pkg command.

Finding and installing software
Before searching for or installing software, always refresh your local copy of the software catalog
from the repository first:

pkg refresh

Next, you can search for software you want using pkg search. This command enables you to
search for the names of packages containing specific binaries or files, so you must know the
name of at least one of the files in the package if you want to find it.

By default, pkg search searches only the software installed on your system. To search the net-
work repositories, use pkg search -r.

For example, to find OpenOffice.org, you can search for the file named openoffice:

pkg search -r openoffice
INDEX ACTION VALUE PACKAGE
basename dir opt/openoffice.org/share/registry/res/en-US/org/openoffice
pkg:/openoffice@0.5.11-0.79

basename dir opt/openoffice.org2.4/share/registry/modules/org/openoffice
pkg:/openoffice@2.4.0-0.86

78

OpenSolaris Crash Course 3

basename dir opt/openoffice.org2.4/share/registry/modules/org/openoffice
pkg:/openoffice@2.4.0-0.86
. . .

These results from pkg search are somewhat confusing because there appears to be more
than one package containing OpenOffice.org, such as pkg:/openoffice@0.5.11-0.79 and
pkg:/openoffice@2.4.0-0.86. However, the different packages are actually just different
versions of the same package. Everything after the @ in the package name represents the version.
When you want to install the package, you usually don’t need to worry about the version. IPS
automatically uses the version that matches the rest of your system. Just reference the part of the
package name before the @. You can omit the pkg:/ as well.

IPS package versioning is discussed in Chapter 6.

To ensure that the openoffice package is the one you want, use pkg info. Like pkg search,
pkg info takes a -r option to indicate that you want the information from the repository:

pkg info -r openoffice
Name: openoffice

Summary: OpenOffice.org 2.4
State: Not installed

Authority: opensolaris.org (preferred)
Version: 2.4.0

Build Release: 5.11
Branch: 0.86

Packaging Date: Wed Jul 9 08:35:00 2008
Size: 420.6 MB
FMRI: pkg:/openoffice@2.4.0,5.11-0.86:20080709T083500Z

The Name field in the pkg info output is the package name, not the filename that you searched
for with pkg search. In this example, the package name and the filename are identical, but
that’s not always the case.

When you’re sure you have the package you want, you can install it with pkg install:

pkg install openoffice
DOWNLOAD PKGS FILES XFER (MB)
Completed 1/1 4220/4220 420.64/420.64

PHASE ACTIONS
Install Phase 4798/4798
PHASE ITEMS
Reading Existing Index 9/9
Indexing Packages 1/1

To uninstall software, use pkg uninstall:

pkg uninstall openoffice
PHASE ACTIONS

79

Part I Using OpenSolaris

Removal Phase 5290/5290
PHASE ITEMS
Reading Existing Index 9/9
Indexing Packages 1/1

Alternative repositories
IPS enables you to specify the package authority from which you want to install software.
The default authority is opensolaris.org, which is served by the repository at the URL
http://pkg.opensolaris.org/release. You can list the authorities with pkg authority:

pkg authority
AUTHORITY URL
opensolaris.org (preferred) http://pkg.opensolaris.org/release/

Although pkg.opensolaris.org/release/ contains quite a bit of software, it doesn’t have
everything you might need or want. For example, as of this writing, it doesn’t include the X
Multimedia System (XMMS) media player. A few additional repositories with useful software
include the following:

■ Sunfreeware: http://pkg.sunfreeware.com:9000

■ OpenSolaris development repository: http://pkg.opensolaris.org/dev

■ OpenSolaris Contrib repository: http://pkg.opensolaris.org/contrib

Sun also provides additional repositories that include software that can’t be included
with pkg.opensolaris.org for legal reasons or that is available only to customers

with support contracts. Consult opensolaris.com for current information on these options.

To add an authority, use pkg set-authority, specifying the URL of the repository and the
authority name by which you want to refer to it. In addition, always run pkg refresh after
adding an authority:

pkg set-authority -O http://pkg.sunfreeware.com:9000 sunfreeware.com
pkg refresh
pkg authority
AUTHORITY URL
opensolaris.org (preferred) http://pkg.opensolaris.org/release/
sunfreeware.com http://pkg.sunfreeware.com:9000/

Now pkg search and pkg install will search and install from both repositories. You don’t
need to specify a specific authority to search or install from in each command. Here’s an
example:

pkg search -r xmms
INDEX ACTION VALUE PACKAGE
basename file opt/sfw/bin/xmms pkg:/IPSFWxmms@0.5.11-5.7

80

OpenSolaris Crash Course 3

After confirming with pkg info that IPSFWxmms is the package you want, you can install it:

pkg info -r IPSFWxmms
Name: IPSFWxmms

Summary: xmms - X MultiMedia System
State: Not installed

Authority: sunfreeware.com
Version: 0.5.11

Build Release: 5.11
Branch: 5.7

Packaging Date: Wed May 7 04:13:32 2008
Size: 5.1 MB
FMRI: pkg://sunfreeware.com/IPSFWxmms@0.5.11,5.11-5.7:20080507T041332Z

pkg install IPSFWxmms
PHASE ITEMS
Indexing Packages 579/579
DOWNLOAD PKGS FILES XFER (MB)
Completed 2/2 135/135 6.30/6.30

PHASE ACTIONS
Install Phase 307/307
Reading Existing Index 9/9
Indexing Packages 2/2

As of this writing, the IPSFWxmms package is dependent on the SUNWGtk package
but it doesn’t declare that dependency. In order to use xmms, you also need to install

the SUNWGtk package with the following command:

pkg install SUNWGtk
DOWNLOAD PKGS FILES XFER (MB)
Completed 2/2 50/50 0.63/0.63

PHASE ACTIONS
Install Phase 135/135
PHASE ITEMS
Reading Existing Index 9/9
Indexing Packages 2/2

After installing both packages, xmms can be run from /opt/sfw/bin/xmms.

In the rest of the book, the output from pkg install is generally omitted for brevity.

You can remove an authority with pkg unset-authority:

pkg unset-authority sunfreeware.com
pkg authority

81

Part I Using OpenSolaris

AUTHORITY URL
opensolaris.org (preferred) http://pkg.opensolaris.org/release

The Image Packaging System and OpenSolaris software management are covered in
detail in Chapter 6.

Developing on OpenSolaris
OpenSolaris provides a comprehensive development environment for anything from systems
software to web applications, using languages from Java to Fortran to Python.

To get started with Java development, you need the JDK, available in the SUNWj6dev package:

pkg install SUNWj6dev

To get started with C and C++ development, you want either the Sun Studio compiler collec-
tion or the GNU compiler collection (GCC). Install ss-dev to obtain the Sun Studio compiler
collection:

pkg install ss-dev

The Sun Studio compilers and tools are now available in /opt/SunStudioExpress/bin.

To obtain GCC, install the gcc-dev package:

pkg install gcc-dev

The GNU compilers and tools are now available in /usr/bin.

To code using an integrated development environment (IDE), install NetBeans:

pkg install netbeans

Launch it with /usr/netbeans/bin/netbeans, or select Applications�Developer
Tools�NetBeans IDE.

Chapter 24 describes Sun Studio, NetBeans, and the other development and debug-
ging tools available on OpenSolaris for a variety of languages in much more detail.

Connecting Remotely
OpenSolaris employs a secure-by-default configuration, such that the only way to connect to the
system remotely is with the Secure Shell (ssh).

We recommend that you maintain the secure-by-default configuration and do not
attempt to enable other network services, because they can expose your system to

security threats.

82

OpenSolaris Crash Course 3

From another OpenSolaris, UNIX/Linux-based system, or Mac OS X, you should be able to just
type ssh at the terminal, providing a hostname or IP address. The first time you connect to a
system, you’ll see a warning about host authenticity, which you can safely ignore:

$ ssh 192.168.1.101
The authenticity of host ‘192.168.1.101 (192.168.1.101)’ can’t be established.
RSA key fingerprint is ac:36:67:dd:d0:7d:fe:76:c8:56:42:ff:db:df:ca:34.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘192.168.1.101’ (RSA) to the list of known hosts.
Password:
Last login: Thu Jul 31 13:38:01 2008 from 192.168.1.105
Sun Microsystems Inc. SunOS 5.11 snv_93 January 2008
$

To connect from Windows, you can download and install an open source ssh client, such as
PuTTY, which is available from http://chiark.greenend.org.uk/∼sgtatham/putty.

Chapter 9 covers the various network services available, and Chapter 11 explains the
secure-by-default settings and the ssh service in more detail.

System Administration
The material in this chapter so far has focused on the use, rather than the administration, of
OpenSolaris. A crash course on the system, however, wouldn’t be complete without a look at
the system from an administration perspective. Although you can perform some administrative
tasks using a GUI, to really understand the system, you need to get down-and-dirty with the
command line. Thus, this section focuses on CLI administration.

System information
OpenSolaris provides some useful tools for discovering information about the hardware and soft-
ware of your system. A good starting place is uname –a, which provides, in order, the operating
system name, the hostname, the operating system release level, the operating system version, the
machine hardware class, the processor type, and the platform name. Here is the uname -a out-
put of OpenSolaris build 99 on a 32-bit Intel machine (OS0805 is the hostname):

$ uname –a
SunOS OS0805 5.11 snv_99 i86pc i386 i86pc Solaris

The operating system release and version information that uname provides is listed in the
/etc/release file:

cat /etc/release
OpenSolaris 2008.11 snv_99 X86

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved.

83

Part I Using OpenSolaris

Use is subject to license terms.
Assembled 08 October 2008

For an overview of your system’s hardware and peripherals, run the Device Driver
utility (System�Administration�Device Driver Utility).

For more details on the hardware, use the prtconf command:

prtconf
System Configuration: Sun Microsystems i86pc
Memory size: 512 Megabytes
System Peripherals (Software Nodes):
. . .

The isainfo command prints further details about the instruction set architecture of the
system:

isainfo -v
32-bit i386 applications

ahf sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu

For processor information, run psrinfo:

psrinfo -pv
The physical processor has 1 virtual processor (0)
x86 (GenuineIntel 6E8 family 6 model 14 step 8 clock 1600 MHz)

Intel(r) CPU T2050 @ 1.60GHz

The prtdiag command gives detailed information about hardware, including diagnostic infor-
mation when appropriate.

For more detailed fault information, run fmadm faulty.

For live information about process resource usage, use prstat. This command gives you a con-
tinuously refreshing snapshot of system activity, as this example shows:

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
1213 root 5684K 3104K cpu0 59 0 0:00:00 0.2% prstat/1
690 root 9248K 4444K sleep 59 0 0:00:00 0.1% sshd/1
641 nsolter 135M 24M sleep 59 0 0:00:06 0.0% gnome-panel/1
676 nsolter 79M 18M sleep 59 0 0:00:03 0.0% clock-applet/1
668 nsolter 7708K 4000K sleep 59 0 0:00:03 0.0% gvfsd-trash/1
644 nsolter 153M 39M sleep 49 0 0:00:07 0.0% nautilus/1
692 nsolter 8648K 2348K sleep 59 0 0:00:01 0.0% sshd/1

1036 nsolter 138M 23M sleep 59 0 0:00:06 0.0% users-admin/1
223 root 7804K 3756K sleep 59 0 0:00:02 0.0% nscd/33

1073 root 5532K 2564K sleep 59 0 0:00:00 0.0% bash/1
424 root 5096K 1948K sleep 59 0 0:00:00 0.0% automountd/4
543 root 53M 36M sleep 59 0 0:00:21 0.0% Xorg/1

84

OpenSolaris Crash Course 3

1196 root 9232K 4436K sleep 59 0 0:00:00 0.0% sshd/1
1189 root 9232K 4440K sleep 59 0 0:00:00 0.0% sshd/1
631 nsolter 9404K 5268K sleep 59 0 0:00:01 0.0% xscreensaver/1

1198 newuser 8648K 2332K sleep 59 0 0:00:00 0.0% sshd/1
9 root 12M 11M sleep 59 0 0:00:17 0.0% svc.configd/20
92 root 4788K 1544K sleep 59 0 0:00:00 0.0% dhcpagent/1

110 daemon 8880K 4456K sleep 59 0 0:00:00 0.0% kcfd/3
368 daemon 2908K 1868K sleep 59 0 0:00:00 0.0% avahi-daemon-br/1
570 root 5868K 2008K sleep 59 0 0:00:00 0.0% sendmail/1

Total: 77 processes, 213 lwps, load averages: 0.01, 0.02, 0.02

Chapter 14 describes the tools for obtaining system information in more detail.
Chapter 12 covers OpenSolaris fault management.

Processes and services
As with most operating systems, running programs in OpenSolaris are called processes. Open-
Solaris also adds a higher-level abstraction called a service, which can be a collection of related
processes. You’ll generally manage your system at the service level, but sometimes you’ll need to
deal with the actual processes.

Processes
Each process is assigned a unique numeric ID, called the process ID (PID). You can view the
currently running processes with the ps command. The e option tells ps to list all processes,
not just the processes owned by the user executing ps, while the f option instructs ps to give
the ‘‘full’’ listing, including the owner, parent PID, and start time:

ps -ef
UID PID PPID C STIME TTY TIME CMD

root 0 0 0 10:38:57 ? 0:01 sched
root 1 0 0 10:38:58 ? 0:00 /sbin/init
root 2 0 0 10:38:58 ? 0:00 pageout
root 3 0 0 10:38:58 ? 0:03 fsflush
root 403 1 0 10:39:41 ? 0:00 /usr/lib/inet/inetd start
root 7 1 0 10:39:02 ? 0:04 /lib/svc/bin/svc.startd
root 9 1 0 10:39:03 ? 0:12 /lib/svc/bin/svc.configd
root 134 1 0 10:39:22 ? 0:00 /usr/lib/picl/picld
root 488 1 0 10:39:44 ? 0:02 /usr/lib/fm/fmd/fmd
root 23 1 0 10:39:09 ? 0:00 /lib/inet/nwamd

dladm 14 1 0 10:39:07 ? 0:00 /sbin/dlmgmtd
root 559 1 0 10:39:57 ? 0:00 /usr/lib/sendmail -bl -q15m

daemon 126 1 0 10:39:20 ? 0:01 /usr/lib/crypto/kcfd
root 412 1 0 10:39:42 ? 0:00 /usr/lib/utmpd

smmsp 556 1 0 10:39:52 ? 0:00 /usr/lib/sendmail -Ac -q15m
nsolter 578 569 0 10:45:52 ? 0:01 /usr/bin/gnome-session

root 511 1 0 10:39:45 ? 0:00 /usr/perl5/bin/perl /usr/lib/intrd
. . .

85

Part I Using OpenSolaris

The ps command can provide additional information, such as process priority, process state,
and so on. Consult the man page for details.

Chapter 14 covers tools and utilities related to processes.

Signals
You’ll occasionally need to terminate a process that is stuck or misbehaving. To kill a running
process, use the kill command to send it a signal. Most processes will die with SIGTERM, sig-
nal number 15, which is the default signal sent by kill. Here’s an example:

ps | grep sleep
986 pts/3 0:00 sleep

kill 986
[1]+ Terminated sleep 400
ps | grep sleep

However, occasionally you might need to send SIGKILL, which is signal number 9:

$ ps | grep killtest
755 pts/3 0:00 killtest

$ kill 755
$ ps | grep killtest
755 pts/3 0:00 killtest

$ kill -s SIGKILL 755
$
[1]+ Killed ./killtest
$ ps | grep killtest

Many system processes restart with SIGHUP, signal number 1. To restart a process that accepts
SIGHUP, send it signal number 1.

Run kill –l for a complete list of signals and their numbers:

kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGUSR1
17) SIGUSR2 18) SIGCHLD 19) SIGPWR 20) SIGWINCH
21) SIGURG 22) SIGIO 23) SIGSTOP 24) SIGTSTP
25) SIGCONT 26) SIGTTIN 27) SIGTTOU 28) SIGVTALRM
29) SIGPROF 30) SIGXCPU 31) SIGXFSZ 32) SIGWAITING
33) SIGLWP 34) SIGFREEZE 35) SIGTHAW 36) SIGCANCEL
37) SIGLOST 38) SIGXRES 41) SIGRTMIN 42) SIGRTMIN+1
43) SIGRTMIN+2 44) SIGRTMIN+3 45) SIGRTMAX-3 46) SIGRTMAX-2
47) SIGRTMAX-1 48) SIGRTMAX

To kill a job running in the foreground, press Ctrl+C. That sends the TERM signal to the
process.

86

OpenSolaris Crash Course 3

Don’t kill random processes on your system just because you don’t know what
they’re doing. Many arcane-sounding processes are actually imperative for the

correct functioning of OpenSolaris.

Proc tools
The proc tools, or ptools, are a useful collection of utilities for working with processes. pgrep
returns the process ID of processes matching the search criteria provided. pkill works just like
pgrep but also sends the resultant processes a signal, as shown in the following example:

pgrep init
1
pkill sleep
[1]+ Terminated sleep 100

The pkill command matches every process containing the string supplied, so in this
example all processes with the string ‘‘sleep’’ will be sent the signal.

The remaining proc tools provide information about running processes. For example, pldd
shows the dynamically linked libraries used by the running process:

pldd `pgrep syslog`
469: /usr/sbin/syslogd
/lib/libc.so.1
/lib/libnsl.so.1
/usr/lib/locale/en_US.UTF-8/en_US.UTF-8.so.3
/usr/lib/locale/common/methods_unicode.so.3
/lib/libscf.so.1
/lib/libuutil.so.1

This example also demonstrates how pgrep is often used in conjunction with the other ptools.
Recall that the backticks cause the expression inside to be evaluated and return the standard
output from that expression.

Other useful proc tools include pstack, pflags, and pfiles. Consult the proc(1) man page
for more details.

See Chapter 14 for more discussion about the proc tools.

Resource management and scheduling classes
Like in all modern multiprogramming operating systems, the physical processors, memory, and
other resources are shared among the various processes running on the OpenSolaris system.
OpenSolaris provides many capabilities to customize the way in which these various resources
are shared, including six different scheduling classes, projects, resource caps, resource pools,
processor sets, and others.

Chapter 18 covers OpenSolaris resource management, including scheduling classes.

87

Part I Using OpenSolaris

Services
Most operating systems use the concept of processes, and most have tools similar to those men-
tioned so far in this section. OpenSolaris is unique in the UNIX world, however, in its addition
of the service concept, called the Service Management Facility (SMF). While a service in OpenSo-
laris is generally anything that can be started or stopped, it’s usually a process or a collection of
processes that work together to provide a service. OpenSolaris provides a common mechanism
for defining, starting, and stopping services, replacing the UNIX rc scripts, and for managing the
services, obviating the need to manage them at the process level. The service concept also allows
for unified property management, theoretically replacing ad hoc text-based configuration files.
However, you’ll find that OpenSolaris is still replete with text-based configuration files.

You can view the services on your system with the svcs command:

svcs
STATE STIME FMRI
legacy_run 11:27:41 lrc:/etc/rc2_d/S20sysetup
legacy_run 11:27:41 lrc:/etc/rc2_d/S47pppd
. . .

online 11:27:14 svc:/system/power:default
online 11:27:14 svc:/system/picl:default
online 11:27:15 svc:/network/ipsec/policy:default
online 11:27:15 svc:/milestone/network:default
online 11:27:16 svc:/network/npiv_config:default
online 11:27:17 svc:/system/device/fc-fabric:default
online 11:27:17 svc:/milestone/devices:default
online 11:27:18 svc:/network/initial:default
. . .

The state of legacy_run indicates that the service is started by the old init mechanism. svcs
without arguments lists only online services. To view all services, use svcs -a.

Most of the system daemons you’re accustomed to using on UNIX are now represented by ser-
vices. For example, syslogd is now the system-log service:

svcs system-log
STATE STIME FMRI
online 11:27:39 svc:/system/system-log:default

The -x option to svcs shows services that are degraded in some way:

svcs -x
svc:/network/device-discovery/printers:snmp (Hardware Abstraction
Layer network attached device discovery)
State: maintenance since Thu Jul 31 12:35:45 2008

Reason: Start method failed repeatedly, last exited with status 1.
See: http://sun.com/msg/SMF-8000-KS
See: /var/svc/log/network-device-discovery-printers:snmp.log

Impact: This service is not running.

88

OpenSolaris Crash Course 3

The output from svcs –x gives you a log file in /var/svc/log, where you can look for further
detail.

Services go through a life cycle, starting in the disabled state. You can enable a service with the
svcadm enable command. For example, to enable the ftp daemon, run the following:

svcadm enable network/ftp
svcs ftp
STATE STIME FMRI
online 12:39:14 svc:/network/ftp:default

Similarly, you disable a service with svcadm disable:

svcadm disable network/ftp
svcs ftp
STATE STIME FMRI
disabled 12:40:04 svc:/network/ftp:default

Restart a service with svcadm restart:

pgrep syslogd
965
svcadm restart system-log
pgrep syslogd
986

You can change property values of a service with svccfg. After setting a property, you always
need to refresh the service with svcadm refresh, and sometimes restart it with svcadm
restart, as the following example shows:

svccfg -s system-log setprop config/log_from_remote = true
svcadm refresh system-log
svcprop -p config/log_from_remote system-log
true
svcadm restart system-log

Users, groups, and roles
OpenSolaris, like most UNIX and Linux variants, employs the concept of a user, which is an
account that provides access to the system. Each user has a login name, a password, and other
attributes. A group is basically a collection of users. When you install OpenSolaris, the installer
gives you an option to create an initial user. Using either the GUI or the command line, you can
easily add additional users, delete users, or modify user attributes.

In organizations, user accounts are generally stored in a network naming service such
as NIS or LDAP. See Chapter 10 for details on these options. The examples in this

chapter apply only to local users.

89

Part I Using OpenSolaris

As described in the section ‘‘Running Privileged Commands’’ earlier in this chapter, the root user
is made a role on OpenSolaris if you create a user account in the installer. A role can be thought
of as a special kind of user. The main difference between a user and a role is that you cannot log
in directly as a role. You must first log in as a user who is assigned that role, and then you can
su to that role. (Roles and other security topics are described in greater detail in Chapter 11.)

Configuration files
Each user and role has a username, password, default shell, home directory, rights profiles,
and other properties. The user and role information is divided between /etc/passwd,
/etc/shadow, and /etc/user_attr. The group information is stored in /etc/group.

Chapter 11 describes the user configuration files in more detail.

The users and groups GUI
OpenSolaris provides a GUI tool for managing users and groups. Select System�Administration
�Users and Groups, and you’ll see a dialog similar to the one shown in Figure 3-8.

FIGURE 3-8

You can manage users and groups in this OpenSolaris GUI.

With this utility, you can add users and groups, delete users and groups, and modify properties
of users and groups, including assigning rights profiles (called user privileges in the GUI). You
cannot manage roles with the GUI.

90

OpenSolaris Crash Course 3

Managing users, groups, and roles with the command line
You can add a user with usermod, supplying attributes with various flags. You must explicitly
create the home directory and assign the password in separate commands. For example, to cre-
ate a user newuser with shell /usr/bin/bash and home directory /export/home/newuser,
execute the following commands:

mkdir /export/home/newuser
useradd -s /usr/bin/bash -d /export/home/newuser newuser
chown newuser:staff /export/home/newuser
passwd newuser
New Password:
Re-enter new Password:
passwd: password successfully changed for newuser

Similarly, you create a role with roleadd.

The usermod and rolemod commands modify the properties of users and roles, respectively:

usermod -s /usr/bin/csh newuser

Finally, userdel and roledel delete users and roles.

Similarly, groupadd, groupmod, and groupdel manage groups.

Chapter 11 describes rights profiles, roles, and their interaction with users in more
detail.

Utilities
A few utilities enable you to see who’s currently online on the system, and who has recently
been online. The who command shows you who’s logged in:

who
nsolter console 2008-07-31 11:32 (:0)
nsolter pts/3 2008-07-31 11:39 (192.168.1.105)
test pts/2 2008-07-31 13:38 (192.168.1.105)
newuser pts/4 2008-07-31 13:38 (192.168.1.105)

The w command gives a bit more information:

w
1:38pm up 2:12, 4 users, load average: 0.02, 0.02, 0.02

User tty login@ idle JCPU PCPU what
nsolter console 11:32am 26:53 /usr/bin/ctrun -l child -i none
nsolter pts/3 11:39am 9 w
test pts/2 1:38pm 1 -bash
newuser pts/4 1:38pm 1 -csh

91

Part I Using OpenSolaris

Finally, the last command shows you a history of logins:

last
newuser pts/4 192.168.1.105 Thu Jul 31 13:38 still logged in
newuser sshd 192.168.1.105 Thu Jul 31 13:38 still logged in
test pts/2 192.168.1.105 Thu Jul 31 13:38 still logged in
test sshd 192.168.1.105 Thu Jul 31 13:38 - 13:38 (00:00)
nsolter pts/3 192.168.1.105 Thu Jul 31 11:39 still logged in
nsolter sshd 192.168.1.105 Thu Jul 31 11:39 - 13:38 (01:58)
reboot system boot Thu Jul 31 11:26
reboot system down Wed Jul 30 12:11
. . .

Storage and file systems
The OpenSolaris directory structure is set up much like the standard System V configuration,
which should be somewhat familiar to you if you’ve used other System V, BSD, or even Linux
systems. The main difference between OpenSolaris and these other systems is that OpenSolaris
uses ZFS, the innovative file system first introduced in Solaris 10.

Disks and ZFS
In OpenSolaris, disk device names show up in the file system under /dev/dsk, for block-level
access, and /dev/rdsk, for raw byte-level access. The names are created by the disk device
driver, and usually follow the format c#t#d#s#. As in most operating systems, you rarely need
to modify the disk devices directly. Instead, you use the abstraction of the file systems that are
built on top of the devices.

OpenSolaris is the first operating system to make ZFS available as the root file system. ZFS has
two primary concepts: pools and datasets. A ZFS storage pool, called a zpool, is a collection of
physical storage from which you carve out datasets, which are either file systems or volumes.
ZFS volumes are called zvols. The OpenSolaris installer creates a single pool, called rpool (for
‘‘root pool’’), using the disk space you configure during installation. You can see this pool with
zpool list:

zpool list rpool
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
rpool 7.44G 3.73G 3.71G 50% ONLINE -

The installer also creates several ZFS file systems out of the rpool, including the following:

■ The root file system, mounted at /

■ The home directories, mounted at /export/home

You can view all the ZFS file systems with zfs list.

/var, /usr, and /opt are part of the root file system; they are not separate file
systems.

92

OpenSolaris Crash Course 3

The installer also creates separate swap and dump zvols from the rpool. Both /tmp and
/var/run are mounted on swap. You can view the partitions using the interactive format
command.

See Chapter 7 for general information on disks and file systems, and Chapter 8 for
details on ZFS.

Mirroring the root pool
One unique feature of ZFS is its built-in support for providing data redundancy through mirror-
ing. A data mirror is simply a copy of the data on another device. If any block on either of the
physical devices fails, you can still access the data from the other device. Because the root file
system is so important, consider mirroring it so that you can still use your system even if your
primary physical hard drive fails.

Mirroring in ZFS occurs at the zpool level. In the installer, you specified the disk device on
which OpenSolaris should be installed. In this example, the rpool zpool was created on slice
c3d0s0, which you can see in the output of zpool status:

zpool status rpool
pool: rpool

state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
c3d0s0 ONLINE 0 0 0

errors: No known data errors

A slice in OpenSolaris is another name for a partition. See Chapter 7 for details on
slices and partitions.

Suppose you have another physical disk on which you can access slice 0 with the name c3d1s0.
You can add this disk slice as a mirror on rpool with a single command:

zpool attach -f rpool c3d0s0 c3d1s0

ZFS boot does not work with EFI labeled disks. Before adding the new disk as a mir-
ror, use fdisk -B to create a single fdisk partition and then use format to create

VTOC slices inside the fdisk partition. Here’s what the partitions of the disk used in this example
look like:

format> fdisk
Total disk size is 4095 cylinders

93

Part I Using OpenSolaris

Cylinder size is 4096 (512 byte) blocks

Cylinders
Partition Status Type Start End Length %

========= ====== ============ ===== === ====== ===
1 Active Solaris2 1 4094 4094 100

. . .

partition> print
Current partition table (original):
Total disk cylinders available: 4092 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks
0 root wm 257 - 4091 7.49GB (3835/0/0) 15708160
1 unassigned wm 0 0 (0/0/0) 0
2 backup wu 0 - 4091 7.99GB 4092/0/0) 16760832
3 unassigned wm 0 0 (0/0/0) 0
4 unassigned wm 0 0 (0/0/0) 0
5 unassigned wm 0 0 (0/0/0) 0
6 unassigned wm 0 0 (0/0/0) 0
7 unassigned wm 0 0 (0/0/0) 0
8 boot wu 0 - 0 2.00MB (1/0/0) 4096
9 alternates wm 1 - 2 4.00MB (2/0/0) 8192

If you give ZFS the whole disk it will relabel it with EFI labeling, so give it only a single slice, as
shown here. (Chapter 7 explains disk labels, partitions, slices, and names.)

After adding a mirror, ZFS automatically starts a resilver operation, which is just a sync of the
data from the original disk to the new mirror:

zpool status
pool: rpool
state: ONLINE

status: One or more devices is currently being resilvered. The pool will
continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.
scrub: resilver in progress for 0h0m, 0.03% done, 4h43m to go

config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
mirror ONLINE 0 0 0
c3d0s0 ONLINE 0 0 0
c3d1s0 ONLINE 0 0 0

errors: No known data errors

After the resilver completes, you’ll have a mirror of your root file system:

zpool status
pool: rpool

94

OpenSolaris Crash Course 3

state: ONLINE
scrub: resilver completed after 0h16m with 0 errors on Tue Aug 5

21:48:41 2008
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
mirror ONLINE 0 0 0
c3d0s0 ONLINE 0 0 0
c3d1s0 ONLINE 0 0 0

errors: No known data errors

In order to be able to boot from the new mirror when the primary disk fails, you need to run
installgrub (on x86 systems) or installboot (on SPARC systems) to install the boot infor-
mation. On an x86 system, this would look like the following:

installgrub -mf /boot/grub/stage1 /boot/grub/stage2 \
/dev/rdsk/c3d1s0

stage1 written to partition 0 sector 0 (abs 4096)
stage2 written to partition 0, 265 sectors starting at 50 (abs 4146)
stage1 written to master boot sector

Chapter 8 describes ZFS mirroring and other, more efficient, techniques for increasing
the availability of your ZFS storage system.

File system layout
Table 3-10 shows the important directories on your system.

TABLE 3-10

System Directories

Mountpoint Description

/ The root of the file system

/bin Symbolic link to /usr/bin

/boot Boot files and utilities

/dev Provides file system access to devices. See Chapter 7 for details

/etc Contains system configuration files; discussed in various chapters throughout
the book

/export/home User home directories; on a separate file system from root

/lib Libraries needed for boot, before /usr might be mounted

95

Part I Using OpenSolaris

TABLE 3-10 (continued)

Mountpoint Description

/opt Location for extra or third-party software

/proc procfs; provides file system access to live process information. See Chapter
7 for details.

/rpool/boot/grub Contains the GRUB menu and splash screen. See Chapter 6 for details.

/sbin Administrative commands needed for boot, before /usr might be mounted

/tmp Mounted on swap device; contents not persistent across boots

/usr Contains most commands and shared object libraries. See Table 3-2 earlier
in this chapter for details of command locations within /usr.

/var Typically used for live runtime information such as logs, statistics, and core
files. Both the system and applications use /var.

Log files
As a system administrator, it’s imperative to be able to find the log files that you need.
Table 3-11 lists the locations of some commonly used log files.

TABLE 3-11

Log Files

Name Location

System log /var/adm/messages and /var/log/syslog

SMF logs /var/svc/log/

su log /var/adm/sulog

See Chapters 11 and 14 for more information on OpenSolaris logs.

Booting and shutting down
There are a few different commands to shut down or reboot the computer from the shell,
including shutdown, init, and reboot. These commands are all privileged, so they must be
run by the root role or by a user with the required privileges using pfexec.

The most polite way to shut down or reboot is with the shutdown command because it broad-
casts a shutdown warning message to all users. shutdown takes an init state argument, which

96

OpenSolaris Crash Course 3

is a number from 0 to 6, s, or S. The states 1–4 correspond to the old run levels, while s or S
goes to single-user mode. Use 5 to shut down, and 6 to reboot. Here’s an example:

shutdown -i 5

Shutdown started. Sat Jul 19 17:21:30 MDT 2008

Broadcast Message from root (pts/6) on OS0805 Sat Jul 19 17:21:30
The system OS0805 will be shut down in 1 minute

Alternatively, you can use init, which also takes an init state argument, and immediately tran-
sitions to the requested state:

init 6

Finally, to reboot quickly and without notice to users, you can use the reboot command. This
command is generally not recommended on a multi-user system.

Managing boot environments
The combination of ZFS and the Image Packaging System on OpenSolaris provides a powerful
mechanism for upgrading and rolling back your system. OpenSolaris uses the concept of a boot
environment, which is a complete image of the system. When you upgrade your system, Open-
Solaris automatically creates a new boot environment so that you can roll back to the old image
in case anything goes wrong. You manage the boot environments with the beadm command. For
example, to list your available boot environments, run beadm list:

beadm list

BE Active Mountpoint Space Policy Created
---- ------ --------- ---------- -----
opensolaris NR / 2.36G static 2008-12-01 17:03
opensolaris-1 - - 57.0K static 2008-12-01 17:55

Chapter 6 describes boot environments and beadm in great detail.

Managing GRUB and the OpenSolaris boot archive
OpenSolaris on an x86-based system uses the GNU GRand Unified Bootloader (GRUB) as its
bootloader, as described in Chapter 2. You can use GRUB to manage multiple operating system
installations on the same physical machine.

Instead of setting up bare-metal installations of multiple operating systems on the
same machine, install a single host operating system, such as OpenSolaris, and

97

Part I Using OpenSolaris

use VirtualBox or some other virtualization technology to run the other operating systems as
virtual machines. Part V of this book details the various virtualization technologies available on
OpenSolaris.

Because GRUB is well-documented elsewhere, this book does not cover it in detail. However,
you should know a few things about OpenSolaris and GRUB. First, the OpenSolaris GRUB menu
can be found in /rpool/boot/grub/menu.lst. Second, you must use the version of GRUB
that comes with OpenSolaris to boot OpenSolaris. The Linux GRUBs do not know how to boot
OpenSolaris.

You can use the bootadm command to set the location of the GRUB menu. See the man
page for details. (Chapter 2 discusses some of the new OpenSolaris GRUB enhancements, and
Chapter 6 provides additional information on GRUB.)

When GRUB launches OpenSolaris, it loads into memory a ramdisk image of the key kernel
modules and data called the OpenSolaris boot archive. You won’t usually need to do anything
with the boot archive directly, but if the system is not shut down cleanly, sometimes it can
become corrupted. OpenSolaris provides no failsafe boot mode, but sometimes you can get a
shell in system maintenance mode. You’ll then need to use the bootadm command to update
the boot archive. Generally, to fix a corrupted boot archive from system maintenance mode, run
the following:

svcadm clear system/boot-archive
bootadm update-archive

If you can’t even get a shell in system maintenance mode, you’ll need to boot into a different
boot environment and run the following commands (substituting the name of your corrupted
boot environment for opensolaris in the first and last command):

beadm mount opensolaris /mnt
bootadm update-archive -R /mnt
beadm unmount opensolaris

Then reboot your system.

If that still doesn’t fix the problem, repeat the three commands in the previous
example but remove the files /mnt/platform/i86pc/boot_archive and

/mnt/platform/i86pc/amd64/boot_archive before running bootadm to force it to recreate
the entire boot archive.

Consult the bootadm(1M) man page for more details on the bootadm command.

Booting on SPARC-based systems is somewhat similar to x86 in that it uses a boot
archive that is maintained with bootadm. However, SPARC does not use GRUB or

supply an interactive menu to select the OS to boot. Instead, you can discover the bootable
OpenSolaris instances using boot -L from the Open Boot Prom (OBP). Consult the boot(1M)man
page for more information.

98

OpenSolaris Crash Course 3

Resources
Most of the topics in this chapter are discussed in further detail elsewhere in the book, so this
section provides just a sampling of the resources available.

A great reference for the UNIX command line is UNIX System V: A Practical Guide by Mark G.
Sobell (Addison-Wesley, 1994).

References for Bash abound. Most Linux books contain a section, and there is plenty of informa-
tion online. Here are a few pointers:

■ The Bash Manual is at http://faqs.org/docs/bashman/bashref.html.

■ The Linux Bible, 2008 Edition by Christopher Negus (Wiley, 2005).

■ Learning the Bash Shell by Cameron Newham (O’Reilly, 1998).

For vim, try these:

■ www.fprintf.net/vimCheatSheet.html

■ Learning the vi and vim Editors by Arnold Robbins, et al. (O’Reilly, 2008).

For internationalization, see the article at
http://docs.sun.com/app/docs/coll/767.3?l=en.

The OpenSolaris man pages can be found at http://docs.sun.com/app/docs/coll/40.17.

The SMF Quickstart Guide is located at
http://sun.com/bigadmin/content/selfheal/smf-quickstart.jsp.

The ZFS Administration Guide
(http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf) covers ZFS
boot and mirroring the root zpool.

A good article about Solaris and GRUB can be found at
http://sun.com/bigadmin/features/articles/grub boot solaris.jsp.

The OpenSolaris Virtual Console project details are available at http://opensolaris.org/
os/project/vconsole.

Summary
This chapter provided a crash course in the OpenSolaris distribution. By reading this chapter
you familiarized yourself with the GNOME desktop and the OpenSolaris command line, specifi-
cally the bash shell and the vim text editor. You learned how to use pfexec to run privileged

99

Part I Using OpenSolaris

commands, how to switch languages and locales, how to connect your OpenSolaris machine to
the network, and how to install additional IPS-based packages from the network repositories.
You took a peek at some of the features OpenSolaris offers as a development platform and
learned how to connect to OpenSolaris with the secure shell. The chapter concluded with an
overview of OpenSolaris system administration, including system information, processes and
services, users and groups, storage and file systems, ZFS, GRUB, and other topics related to
booting and shutting down your system.

This chapter concludes Part I of this book, but it is hoped that it has whetted your appetite for
more information about OpenSolaris. Part II dives into the details of using the OpenSolaris desk-
top, attaching printers and peripherals, and adding software.

100

Using OpenSolaris

IN THIS PART

Chapter 4
The Desktop

Chapter 5
Printers and Peripherals

Chapter 6
Software Management

The Desktop

IN THIS CHAPTER
Customizing GNOME

Desktop sharing

Web browsing and e-mail

Viewing videos and listening to
music

Ripping CDs

System administration tools

Desktop troubleshooting

The crash course in Chapter 3 provided a brief introduction to the
OpenSolaris desktop environment, which is based on the GNOME
desktop project. If you’re not already familiar with GNOME, at

least skim through the desktop section of Chapter 3 before reading this
chapter, which explores the desktop further. This chapter describes the
applications included in the desktop on the OpenSolaris distribution’s Live
CD. Additional applications are provided in the pkg.opensolaris.org
package repository, so if you are interested in an application that isn’t
already on your desktop, check the repository to see if it’s available.

While the OpenSolaris distribution includes GNOME,
other desktop environments can be used with

OpenSolaris. The most prominent alternative to GNOME is the KDE desktop.
If you’re interested in KDE, you may want to try the BeleniX distribution
covered in Chapter 2, which is similar to the OpenSolaris distribution but
replaces GNOME with KDE.

Desktop Customization
Chapters 2 and 3 introduced the basics of the GNOME desktop, including
how to log in, log out, shut down the system, switch between workspaces,
and navigate the menus. To make your desktop really work for you,
though, you’ll want to customize it.

Desktop session
The set of desktop programs that you have running at any given time is
known as a session. When you log in, GNOME starts a session (Chapter 3

103

Part II Using OpenSolaris

describes the programs in the default session, which is what you use initially). Use the Sessions
preferences dialog to display and modify the programs that are part of your session. Open the
dialog by selecting System�Preferences�Sessions. You can configure your GNOME session to
operate in one of two modes:

■ Start a specific set of programs every time you log in. This is the default behavior.

■ Restore the set of programs that were running when you logged out of your previous ses-
sion. You can select this behavior from the Session Options tab by checking the box for
Automatically Remember Running Applications When Logging Out.

If you choose to have a specific set of programs started at login, you can customize that set of
programs in two different ways:

■ Start the desktop programs you normally like to use, and then click the Remember Cur-
rently Running Applications button on the Session Options tab of the dialog. This saves
the current state of the desktop as your default session.

■ Use the Startup Programs tab in the Sessions dialog to add to or delete from the session
startup list. This can be useful if you have non-GNOME desktop programs that you’d like
to run when your desktop session starts, as only desktop programs can be recognized and
remembered by the first option.

One common program you may want to add to your session is ssh-add, which
stores your decrypted ssh private key with the ssh-agent daemon. Using

ssh-agent, you can log in via ssh to other systems without re-authenticating yourself directly
to each system. To add this program to your session, click the Add button on the Startup
Programs tab. In the dialog that appears, provide a name such as ssh-add, and specify
/usr/bin/ssh-add as the command to run. Click OK. The next time you log in, a dialog will
prompt you to enter your ssh passphrase to decrypt your ssh private key.

Locking the session
One important security feature of the desktop is its capability to lock your session while you’re
away from the system, which helps prevent a malicious user or prankster from creating havoc in
your name. It’s especially important to lock your desktop if your login has any privileged access
to the system because the potential damage is obviously much greater. Desktop session locking
on OpenSolaris is provided by the xscreensaver(1) command. Normally this starts when you
log in and runs in the background, automatically locking your session after it’s been idle for a
while, but you can also manually lock the session using the desktop menu item System�Lock
Screen. Once the session is locked, you must enter your password to unlock the session and
resume work.

You can also enter the root password to unlock a user’s locked session. This provides
administrators with an emergency override should a locked desktop need to be

accessed.

104

The Desktop 4

In addition to locking your session, xscreensaver also includes functions to manage the
display’s power consumption and can run a variety of screensaver programs. (If you use a CRT
display, a screensaver helps prevent an image of your desktop from being permanently burned
into the display, thus saving your screen. Now that LCDs have largely replaced CRTs, this
function is unnecessary, but many users like their screensavers and use them to personalize their
systems.)

To configure xscreensaver’s behavior, select System�Preferences�Screensaver. Consider
shortening the period of idle time before the screen is automatically locked because the default
is 15 minutes, a rather long time for your system to be idle and unattended.

Customizing the panel
The default desktop session contains two panels. The panel across the top of the screen includes
the Applications, Places, and System menus, launchers for commonly used applications such as
the Firefox web browser, the Thunderbird e-mail client, Package Manager, and Terminal, and a
notification area at the far right with icons for power management, volume control, and so on.
The panel at the bottom provides the workspace selector at the far right, with most of the space
used by a window list that enables you to switch between active windows by clicking buttons
for each window on the panel.

Each panel is configurable; you access its configuration options by right-clicking on the panel
and selecting Properties. The Properties dialog enables you to change the edge of the screen to
which the panel is attached and to increase or reduce its size. You can choose the Autohide
option, which keeps the panel hidden unless you move the mouse pointer to the edge of the
screen, at which time the panel is made fully visible; this is most useful on systems with limited
screen real estate, such as a laptop. You can also configure the panel to display hide buttons,
which enables you to manually hide the panel when it isn’t needed. The Background tab enables
you to customize the panel’s color and opacity, or select a background image for it to display.

More interesting than configuring the panel properties is the capability to customize the items
displayed on it. Right-click on the panel and select Add to Panel to open a dialog offering a
selection of GNOME panel applets, or miniature applications, that can be added to the panel.
Some of these are quite useful, such as displaying a clock, monitoring the system or network,
showing the weather for a chosen location, or providing an electronic version of a Post-It note.
You can also add a custom launcher, which is an icon on the panel that directly launches a
specified application when you click it. The Firefox and Thunderbird icons on the standard
panel are launchers; you may want to add launchers for other applications that you fre-
quently use.

You can add or delete panels by right-clicking on a panel and then selecting New Panel or
Delete This Panel, respectively. You can add as many panels as you want; they are automatically
spread around the edges of the screen. Deleting a panel is allowed unless it is the last panel.
The right-click context menu of any item enables you to remove it from the panel, modify its
properties, or, if it is a menu, edit the menu items.

105

Part II Using OpenSolaris

Customizing your desktop’s appearance
All X Window-based desktops require the use of a window manager to provide basic window
behaviors such as switching focus, resizing, stacking, minimizing, maximizing, and terminating
an application window. As discussed in Chapter 3, the OpenSolaris GNOME desktop uses
Metacity as its default window manager. Metacity is a relatively simple window manager with
limited configuration options; as a result, it performs well on older systems and new GNOME
users find it easy to get started with the desktop.

The configuration options for Metacity can be accessed via System�Preferences�Windows. The
item most commonly configured is the Window Selection behavior; the default configuration
requires you to click the left mouse key in a window to assign focus to that window. By check-
ing the box labeled Select Windows When The Mouse Moves Over Them, you can change this
behavior so that you only need to move the mouse pointer within the boundary of a window to
assign focus to it.

OpenSolaris includes an additional window manager, Compiz, that you may want to use. Com-
piz relies on hardware acceleration of 3D graphics operations to provide a much richer visual
experience than the simple 2D graphics that Metacity uses. However, this means that Compiz
is only usable if your system has a video card that can provide the required hardware accelera-
tion. Fortunately, you don’t need to spend time determining this. If you’re interested in trying
Compiz, select System�Preferences�Appearance. Once the Appearance Preferences dialog is dis-
played, select the Visual Effects tab, shown in Figure 4-1.

You can select from four options. None uses Metacity as the window manager; the other options
use Compiz. The difference between the last three options — Normal, Extra, and Custom — is
the specific Compiz behaviors that are configured. To see if your hardware supports Compiz,
just select one of those options. That will start Compiz immediately, which may take a few sec-
onds. If your hardware can support Compiz, a confirmation dialog asks whether you want to
keep the new settings. Otherwise, an error dialog is displayed stating that desktop visual effects
could not be enabled.

Try the Normal, Extra, and Custom options to find the setting you like best. If you select Cus-
tom and click the Preferences button, the CompizConfig Settings Manager starts (also accessed
directly via System�Preferences). You can modify an extensive set of configuration settings for
Compiz to achieve a highly custom desktop experience. Some of these merely customize the
desktop’s appearance, but you can also customize application windows (e.g., you can specify
windows that can’t be minimized or that have a fixed size, and these can use matching rules
based on window attributes to apply to specific types of windows or applications). See the
Compiz Fusion website, http://compiz-fusion.org, for detailed configuration information.

You can use any X Window manager on OpenSolaris; check the various software
repositories for others that may already be built for OpenSolaris. You can also see

the X Window manager information site, http://xwinman.org, about other managers. (For an
introduction to the basic concepts of the X Window system, see the X(1) man page.)

106

The Desktop 4

FIGURE 4-1

The Visual Effects tab of the Appearance Preferences dialog

Other preferences
This section describes several other aspects of your desktop, such as screen resolution, fonts, and
themes, that you can configure through System�Preferences.

Screen resolution
The display resolution is selectable using System�Preferences�Screen Resolution. By default,
GNOME selects the highest resolution that your display reports it can support. To use a different
resolution, simply adjust the settings in this dialog.

You can also use the xrandr command to adjust screen resolution and other attributes. This
command uses the X server’s Resize and Rotate extension to modify display configuration
on-the-fly. The most likely scenario in which you would use this command is when you plug
an external projector into a laptop, because you normally need to reconfigure the X server to
access the additional display device. Using xrandr, you can reconfigure the X server on-the-fly,
without restarting your X session. You can also use this extension to rotate the display or run
mirror-image displays. See the xrandr(1) man page for details.

If your system has an NVIDIA display adapter, you can use the device-specific tool
provided by NVIDIA to configure the features of the display. To access it, select

Applications�System Tools�NVIDIA X Server Settings. Consult the tool’s online help for assistance
in using it.

107

Part II Using OpenSolaris

Fonts
To adjust the fonts used by your desktop and applications, select System�Preferences�
Appearance. In the dialog that appears, select the Fonts tab and choose your preferred font for
each class of font used in GNOME. You can also use the Rendering selections on this tab to
adjust the specific drawing behavior used in rendering the fonts to the screen. Depending on the
specifics of your system, one of the options is likely to be more aesthetically pleasing than the
others. Experiment with the selections to see what fits you and your system best.

The system’s font configuration is collected into a series of cache files so that
the applications perform well in locating fonts. These caches are updated by the

application/font/fc-cache SMF service; see the fc-cache(1M) man page and the fontconfig
user document at /usr/share/doc/fontconfig/fontconfig-user.html for more information.
Chapter 13 provides more details on SMF.

Themes
The GNOME desktop uses a theme to configure its visual appearance. A theme specifies the
way in which controls and window borders are drawn, the colors used for the desktop and
window elements, the set of icons, and the style of mouse pointer displayed. OpenSolaris
defaults to a theme called Nimbus, which is custom-designed to give OpenSolaris a distinctive
appearance. However, several other themes are available; select System�Preferences�Appearance
and open the Theme tab. Some of the themes are designed for users with specific accessibility
requirements, such as higher contrast or larger print. You can also acquire additional themes
and add them to the system, or even design your own, either by combining elements from the
installed themes or by building your own from scratch. The GNOME Artwork and Themes
website at http://art.gnome.org is a good resource for additional themes.

Desktop Sharing
One useful X Window feature is the capability to direct an application’s display to a remote sys-
tem. The OpenSolaris desktop can remotely display the entire desktop as well, using the VNC
(Virtual Network Computing) protocol. You might use this feature to remotely troubleshoot a
system problem, or to demonstrate a program to colleagues who work in different locations.

To enable and configure desktop sharing, select System�Preferences�Desktop Sharing. The
Remote Desktop Preferences dialog, shown in Figure 4-2, opens.

Check the Allow Other Users To View Your Desktop option to share your desktop display. You
can share it in a view-only mode, or you can allow remote users to control the desktop. You can
also configure the security settings, such as confirming any attempts to access the desktop, and
a password that must be used to access the desktop remotely. The Advanced tab enables you to
configure the network port used to access the display, some additional security settings, and the
notification display when this feature is active.

108

The Desktop 4

FIGURE 4-2

Enable desktop sharing via the Remote Desktop Preferences dialog.

Once desktop sharing is enabled, you can connect to the display using the web browser
on a remote system by entering the URL displayed in the Preferences dialog. This requires
that the remote system have a Java runtime installed because the remote display from a
web browser uses a Java applet. Alternatively, you can connect directly to the desktop with
a VNC client such as vncviewer(1), which is included in OpenSolaris and most other
UNIX and Linux operating systems. A free Windows VNC client can be downloaded at
http://realvnc.com/products/free/4.1/winvncviewer.html. To connect using a VNC
viewer, use the system’s name or IP address and 0 for the display number — for example, the
following connects to a desktop shared by the system krissy:

$ vncviewer krissy:0

In addition to the desktop sharing capability of GNOME, OpenSolaris includes the Xvnc server,
which is a virtual X server that is accessed using the VNC protocol. You might want to use
this if you install OpenSolaris on a system that doesn’t have a graphics display, like many
rack-mounted server systems. You can use the Xvnc server to run a desktop session on such a
system, and access it from your laptop or desktop system’s VNC client.

The default OpenSolaris installation provides the Xvnc server in the package SUNWxvnc. Two
configuration steps are required to enable the Xvnc server and configure GNOME to use it:

Be aware that if you restart gdm while logged into a GNOME session on the system,
your session will be terminated, so it’s usually a better idea to ssh into the system to

perform these steps.

109

Part II Using OpenSolaris

1. Configure the GNOME Display Manager, gdm, to provide login services over
TCP sessions by adding the following four lines to the gdm configuration file,
/etc/X11/gdm/custom.conf:

[xdmcp]
Enable=true
[security]
DisallowTCP=false

2. Enable the xvnc service and restart gdm (re-read the cautionary note preceding these steps
first):

svcadm enable xvnc-inetd
svcadm restart gdm

Now, assuming the system is named krissy, you can use the following vncviewer command
to connect to Xvnc and log in to your GNOME desktop:

$ vncviewer krissy:5900

OpenSolaris also provides the rdesktop(1) client for the Remote Desktop Protocol,
which is used to remotely display a Microsoft Windows desktop. rdesktop can

also be used to remotely access VirtualBox virtual machines when the VM is configured for RDP
access. See Chapter 22 for more information about VirtualBox.

Internet Applications
The most common use for a computer today is to access Internet services. OpenSolaris provides
applications for the most popular Internet services — web browsing, e-mail, and instant
messaging — as well as for Internet telephony and video conferencing.

See Chapter 5 for information on using the Ekiga telephony and video conferencing
application.

Web browsing with Firefox
OpenSolaris provides Firefox as its standard web browser. Figure 4-3 shows the openso-
laris.com home page rendered in Firefox 3.

Firefox is available for all major operating systems and works nearly identically on each one. If
you’ve used it before, you’ll find it quite familiar on OpenSolaris.

Firefox bookmarks are populated initially with content related to OpenSolaris, including the fol-
lowing:

■ The OpenSolaris community site, opensolaris.org

■ A feed of community members’ blog postings

110

The Desktop 4

■ Documentation and screencasts for common tasks on OpenSolaris

■ The OpenSolaris defect tracking website, defect.opensolaris.org

■ The OpenSolaris source code browser, src.opensolaris.org

FIGURE 4-3

Firefox is the standard web browser for OpenSolaris.

Firefox is a tremendously extensible browser, which is one reason for its popularity, and
its addons.mozilla.org website offers a remarkable list of extensions for customizing its
behavior and adding functionality. If you use Firefox on multiple systems, one extension you
may want to try is the Foxmarks bookmark synchronization extension, which can synchronize
your bookmarks across all of your systems.

On OpenSolaris, your Firefox settings are stored in the .mozilla subdirectory of
your user account’s home directory.

A couple of GNOME desktop preferences relate to web browsing: If you need to use a
network proxy for Internet access, configure that in the Network Proxy Preferences dialog

111

Part II Using OpenSolaris

(System�Preferences�Network Proxy). While Firefox has its own configurable network proxy
settings, its default is to read this from the desktop preferences. Configuring proxies in the
desktop preferences makes them available to all desktop applications, which is usually more
desirable.

In addition, if you prefer to install and use a different web browser such as Opera, you can
configure the GNOME desktop to use it anytime you attempt to access a website from a
GNOME application. Select System�Preferences�Preferred Applications, and configure a custom
web browser command to invoke instead of the default use of Firefox.

Because Firefox is so well known and there is little about it that is unique to OpenSolaris, it is
not covered further here. See the ‘‘Resources’’ section at the end of this chapter for additional
materials on Firefox.

E-mail and calendar
Electronic mail (e-mail) has long been one of the most important applications for the Internet,
and many e-mail clients have been developed over the years, including text clients, graphical
clients, and clients embedded in other programs such as the Emacs text editor. OpenSolaris
includes two graphical e-mail clients in the distribution, Evolution and Thunderbird. They
provide similar features:

■ Access to e-mail accounts using POP (Post Office Protocol) or IMAP (Internet Mail Access
Protocol)

■ Sending e-mail using SMTP (Simple Mail Transfer Protocol)

■ Mail filtering, including junk mail filters

■ Local and web-based calendars

■ Local and LDAP address books

■ Encrypted connections using SSL or TLS

■ Display and composition of both plain text and HTML messages

■ Disconnected operation

Choosing one is mostly a matter of personal taste, likely to be influenced by secondary factors
such as availability on other platforms.

Thunderbird development is managed by the same community as Firefox, and its look and feel
is similar to that of Firefox. Many of the add-ons for Firefox can also be used with Thunderbird,
which can be appealing to those who make extensive use of add-ons. Thunderbird is also avail-
able on Linux, Windows, and Mac OS X. To start Thunderbird, either click its icon on the main
panel or select Applications�Internet�Thunderbird Mail and News.

Evolution is the official e-mail client for the GNOME desktop, so you can expect to find it on
other platforms that use GNOME, whereas Thunderbird isn’t necessarily included in the default
installation of those platforms. However, current versions of Evolution are not available for Mac
OS X or Windows. Evolution’s appearance was designed to be quite similar to the Microsoft

112

The Desktop 4

Outlook e-mail client, so if you have a Windows background, you may find it comfortingly
familiar. To start Evolution, select Applications�Internet�Evolution Mail and Calendar.

For what it’s worth, all three of the authors primarily use Thunderbird.

If you aren’t familiar with either mail client, then just try each one for a few days. The setup
process for each client is similar: The first time you start it you are taken through a configu-
ration wizard to set up access to an e-mail account. The example that follows demonstrates
configuring Evolution to access a Google Gmail account using IMAP and SMTP. Many people
use the web interface to Gmail quite happily, but if you have other e-mail accounts, such as for
your workplace, that you’ll be accessing using a desktop client, you may find it more convenient
to use it with a public mail service such as Gmail as well.

You can get help with configuring many mail applications for use with Gmail at the
Gmail Help Center, http://mail.google.com/support.

Evolution’s setup assistant greets you with a welcome screen that doesn’t require entering any
data. Click Forward. The next screen offers to restore a saved configuration if you have one.
Assuming you don’t, click Forward. The next screen, shown in Figure 4-4, enables you to
configure your name and e-mail address. You can make this your default account, or, if you’ll
have multiple accounts and want to use a different account as your default, just uncheck the box
and configure a subsequent account as your default.

FIGURE 4-4

You can choose your default account on Evolution’s Identity configuration screen or later.

113

Part II Using OpenSolaris

FIGURE 4-5

Configure how you receive incoming mail.

Use the next screen to configure how you’ll receive e-mail for the account. Figure 4-5 shows the
settings for using IMAP.

Many servers require the use of encryption to access your e-mail to ensure that the contents are
not subject to interception in transit from the mail server to your mail client. If you can’t access
your e-mail after creating the account and authenticating with your password, the most likely
problem is an incorrect encryption setting, so be sure to select the correct option for your mail
server. Most mail servers support Password authentication, but it’s a good idea to use the Check
for Supported Types button to have Evolution contact your IMAP server and attempt to deter-
mine which types of authentication it allows.

See Chapter 11 for information on TLS and SSL encryption.

The next screen in the setup assistant, shown in Figure 4-6, enables you to configure Evolution’s
behavior regarding e-mail retrieval.

You’ll almost certainly want Evolution to check for new messages periodically; if your mail
server has server-side filtering that places new messages into mailboxes other than your Inbox,
you’ll also want to have it check for new messages in all folders, rather than just the Inbox. The
other settings here are not often changed from their defaults. With junk mail such a common
problem, you might be wondering why the Check New Messages For Junk Contents box isn’t
enabled. That’s recommended by Google, which does server-side junk mail filtering for you.

114

The Desktop 4

FIGURE 4-6

Decide how often you want to get new messages and other receiving options.

The other important piece of configuration for an e-mail account is sending mail, shown in
Figure 4-7.

SMTP is the standard protocol for sending e-mail on the Internet. Many providers require
encryption for sending mail, and you’ll need to authenticate using Password or some other
form of authentication. As with receiving mail, Evolution can contact the server and display
the supported authentication types. The encryption type can differ between receiving mail and
sending mail.

The final two steps of the wizard enable you to configure a name to be used for this account in
Evolution’s account list, and the time zone in which you reside. After completing the wizard,
Evolution displays its main window, where you are prompted for your password to access the
e-mail account and view the contents of your mailbox.

Once you’ve decided on your e-mail client, ensure that it’s selected as your mail reader in the
Preferred Applications settings (System�Preferences�Preferred Applications) so that it’s used
automatically when a mailto link is selected in Firefox or other applications. Each client, when
started, offers to configure itself as the preferred mail client if it’s not already.

115

Part II Using OpenSolaris

FIGURE 4-7

Configure your options for sending e-mail here.

Instant messaging
One of the most popular applications on the Internet is instant messaging (IM), also called text
chat, chat rooms, or IRC (Internet Relay Chat). Instant messaging and chat rooms enable you to
carry on real-time conversations with one or more people, providing a more immediate inter-
action than is possible with e-mail. Instant messaging applications also provide an option that
reflects ‘‘presence,’’ which enables you to set a status that others can see to determine whether
you’re available for a conversation. The OpenSolaris desktop provides the Pidgin client, which
can be used with many instant messaging services, including AOL, Google, MSN, and Yahoo,
among others.

If you’re interested only in IRC, the xchat application is available in the
pkg.opensolaris.org repository as the package SUNWxchat.

To start using Pidgin, select Applications�Internet�Pidgin Instant Messenger. The first time you
run Pidgin, you are prompted to add an account for a messaging service. Figure 4-8 shows cre-
ating an account for the irc.freenode.net public IRC service.

Once you’ve created an account, Pidgin displays the Buddy List window (see Figure 4-9).

116

The Desktop 4

FIGURE 4-8

Create an account on Pidgin’s Add Account dialog.

FIGURE 4-9

Pidgin’s main menu is at the top of the Buddy List.

This window has the main menu for Pidgin across the top, the center section displays your
saved chat rooms and IM buddies, while the bottom section contains a drop-down control for
setting your status, and a display for your buddy icon (see Pidgin help for information on that).
To connect to your IM accounts, click on the status drop-down and select Available. You’ll be
automatically connected to your IM accounts; and if any of them requires a password, you’ll be
prompted for it. You can select other statuses from this drop-down too (e.g., you can let others

117

Part II Using OpenSolaris

know that you’re away from the computer or don’t want to be bothered, or you can add your
own custom status messages).

Once you’ve connected to an IM or IRC service such as irc.freenode.net, you can join a
chat room, such as #opensolaris, which is dedicated to general discussion of OpenSolaris.
To join a chat room, select Buddies�Join a Chat in the Pidgin menu, select your IRC account,
and then enter the room name, if you know it, or click the Room List button to get a list of chat
rooms and select the one you want to join. You’ll then see a conversation window like the one
shown in Figure 4-10.

FIGURE 4-10

The largest pane in Pidgin’s conversation window displays the ‘‘chat.’’

The window is divided into four sections. Below the menu bar, the top area provides the name
of the chat room and the room’s current topic. Below that, the left side of the screen displays
the conversation, while the right side displays a list of people currently in the room. The bottom
portion of the display is a text area where you enter any messages you want to post into the
room’s conversation. Just type your message into this area, press Enter, and your message
appears in the conversation window. You can use the formatting buttons immediately above
the text area to format your text or insert special content such as links or smileys (also called
emoticons).

Private conversations with buddies use a similar conversation window; the main dif-
ference is that it lacks the list of people in the room.

The menus in the Buddy List window provide access to additional features of Pidgin. You can
configure buddies for IM accounts, or chats that you’d like to save in your configuration and

118

The Desktop 4

automatically join, using the Add Buddy and Add Chat items on the Buddies menu. Manage
your IM accounts through the Accounts menu — create additional accounts and enable or
disable existing accounts as needed. Use the Tools menu to configure various aspects of Pidgin,
including your preferences, privacy, and security features, and to enable and configure plug-ins,
which extend the functionality of Pidgin and enable you to customize it to your liking.

This section has provided only a brief introduction to Pidgin. For more information consult its
online help and its project home page, http://pidgin.im.

Media Applications
A popular use for computers these days is to listen to music or watch videos. Like other oper-
ating systems, the OpenSolaris desktop includes applications for accessing and managing digital
audio and video.

Digital Media Codecs

The main problem with using media applications on OpenSolaris and other free operating
systems is obtaining the proper software, known as a codec (short for coder/decoder), to

decode the media files you want to use. The OpenSolaris GNOME desktop includes a framework
called GStreamer for media encoding and decoding, and all codecs are written as plug-ins for this
framework.

OpenSolaris includes plug-ins for raw formats such as WAV and AU, as well as the free compressed
file formats FLAC and Ogg Vorbis; and video decoding for the Theora format. However, most
commercial audio is distributed in MP3 format, and video is usually distributed in the MPEG-2,
MPEG-4, or WMV format. Because each of these formats is controlled by a patent holder that
requires royalties for each decoder distributed, OpenSolaris cannot include those plug-ins in the
freely redistributable base OS. As of this writing, you can either build your own plug-ins from source
code or purchase them from a commercial supplier. The only commercial supplier for OpenSolaris
codecs is Fluendo (www.fluendo.com).

If you’re interested in building your own codecs, the source is available through the spec-files-extra
project at Sourceforge (http://pkgbuild.sourceforge.net/spec-files-extra). Experience
with building software on OpenSolaris should be considered a prerequisite for pursuing this path,
though, because it’s fairly complex.

Audio
The primary audio application for the OpenSolaris desktop is Rhythmbox (select Applications�
Sound and Video�Rhythmbox Music Player). Rhythmbox can manage and play all of your

119

Part II Using OpenSolaris

digital audio — you can think of it as the GNOME version of iTunes. Figure 4-11 shows the
main window of Rhythmbox.

FIGURE 4-11

Rhythmbox is the OpenSolaris desktop’s principal audio application.

The pkg.opensolaris.org software repository also includes the Songbird music player,
in the package SUNWsongbird.

Immediately below the menu and toolbar is a display area showing the currently playing
track, including a slider control showing the track’s progress. Drag this slider to move forward
or backward within the track. Use the controls in the toolbar to pause, move forward and
backward between tracks, or enable the repeat and random play modes.

The left side of the window is called the side pane; you can control its visibility using View�Side
Pane. It provides access to various sections of your music library, organized by sources: Music,
Podcasts, and Radio. The Play Queue shows any items you’ve queued for playing. This pane
also provides access to any playlists, including those that it automatically maintains: tracks that
you’ve rated highly, recently added tracks, and recently played tracks. Below the playlists, any
removable music devices, such as your MP3 player or a CD, are displayed. If your device is
connected but not displayed, select Music�Scan Removable Media to have Rhythmbox rescan
for the device.

120

The Desktop 4

If your MP3 player still isn’t recognized after a rescan by Rhythmbox, you may need
to add a file to the MP3 player’s storage in order for Rhythmbox to recognize it. See

the Rhythmbox FAQ at http://live.gnome.org/Rhythmbox/FAQ for specific instructions.

The right side of the main window is used to browse or search the portion of your music library
that you selected in the left pane. You can select tracks to play immediately, add to your play
queue, and copy to your MP3 player, or you can reorganize your music library.

By default, Rhythmbox is configured to look for your music files in the Music directory under
your home directory. If you stored them in a different path, select Edit�Preferences and in the
Music tab, enter the correct location. You can also specify how the library should be structured
and how tracks are named. Once you close the Preferences dialog, Rhythmbox will scan that
directory and load all of the music files into its browsing display.

Rhythmbox can be used to import (rip) tracks from your music CDs into your library as audio
files. The tracks on commercial CDs are automatically identified using an Internet CD identifica-
tion database known as MusicBrainz (http://musicbrainz.org). Right-click the CD in the
side pane and select Copy To Library to have the CD ripped directly into your music library.
Select the details of the encoding format used in the import process using the Preferred Format
item on the Music tab of the Preferences dialog.

Any of the audio codec formats installed into the GStreamer framework mentioned earlier can
be used with Rhythmbox, which means you can choose a variety of lossy or lossless encoding
formats when ripping CDs. Rhythmbox defaults to the Ogg Vorbis format to provide more com-
pact music files, but because storage capacities have climbed in recent years, many users now
prefer to use lossless formats such as FLAC. You can also create audio CDs using Rhythmbox by
right-clicking on a playlist and selecting Create Audio CD.

OpenSolaris also includes a specialized CD ripping application called Sound Juicer
(accessed via Applications�Sound & Video�CD Ripper). While it offers a few addi-

tional options for ripping specific tracks, the functionality of Rhythmbox is typically all you need
to rip CDs.

To access Internet radio stations, select Music�New Internet Radio Station, enter the URL of the
station, and then select the station in the browsing pane to listen to it.

Rhythmbox can also be used to download and play podcasts. Select Music�New Podcast
Feed, and enter the URL of the podcast’s XML feed. Rhythmbox checks the podcast feeds at
a frequency you specify in the Podcasts tab of its Preferences dialog, and displays any new
episodes. You can select an episode you want to hear, have Rhythmbox download it, and then
listen.

OpenSolaris includes two other audio applications: the sound recorder and the volume control.
Use the sound recorder to record audio using your computer’s built-in microphone (if it has
one) or an external microphone such as on a USB headset. It can record in any of the audio
formats for which you have GStreamer plug-ins. The volume control application provides
functionality to mix multi-track audio if your hardware supports it, as well as control the output
volume. Access both via Applications�Sound & Video.

121

Part II Using OpenSolaris

Video
OpenSolaris includes the Totem Movie Player application as its primary video player. As dis-
cussed earlier, essentially all of the commercial video formats are proprietary and require that
you obtain additional GStreamer plug-ins to display video.

Once you have the necessary plug-ins, Totem is easy to use. Inserting a DVD into your DVD
drive causes Totem to start and attempt to play the DVD. Similarly, video files you download
from the Internet should automatically start Totem for playback.

Graphics Applications
OpenSolaris includes several desktop applications that can be used to create, view, edit, and
organize images.

Screenshots
It’s common to take a snapshot of a window or an entire desktop to illustrate a program or
to provide data for diagnosing a problem. The GNOME desktop provides a tool for capturing
screenshots, which can be accessed via Applications�Graphics�Save Screenshot. In the dialog
that appears, select whether to capture the entire desktop or just a single window. You can
specify a delay before the screenshot is taken, which enables you to select the correct window
or perhaps display a specific menu item or other artifact of the program that can’t be statically
displayed before selecting the screenshot application. Once the screenshot is taken, another
dialog shows a thumbnail image of the screenshot and enables you to save the screenshot to a
file in PNG (Portable Network Graphics) format.

You can bypass hunting through the GNOME menus and take a screenshot directly
using keyboard shortcuts. Pressing the Print Screen or PrtSc key captures the full

desktop, while Alt+PrtSc captures the current window. The exact label for this key varies among
system vendors. If your keyboard doesn’t have this key, you can use the Keyboard Shortcuts
preferences tool (accessed via System�Preferences�Keyboard Shortcuts) to configure a different
shortcut.

The authors made heavy use of this tool to create the figures used throughout the book.

Viewing images
For simple image browsing and viewing, you can use the Eye of GNOME (eog) image viewer.
Select Applications�Graphics�Image Viewer, or type the eog command in a terminal. Once
you’ve opened an image, you can zoom in, flip, or rotate it, and save the resulting image. For
more advanced manipulation of the image, select File�Open With�GIMP Image Editor or
File�Open With�Image Organizer. (There’s more information about these tools a little later in
the chapter.)

When you open an image in eog, it also makes any other images in the same directory available
as an image collection; you can move from image to image within the collection using the

122

The Desktop 4

left and right arrow buttons in the eog toolbar. Eog displays small thumbnail images of each
image in the collection if you select View�Image Collection. That enables you to skim through
the images and find ones you’d like to display. Finally, select View�Slideshow to have eog
display the images as a slideshow. The parameters for the slideshow are configured in the eog
Preferences dialog, accessed via Edit�Preferences.

Organizing and editing images
If you have an interest in digital photography, you’ll rapidly accumulate photos and need a way
to organize them. OpenSolaris includes the gThumb image organizer program, which can be
started by selecting Applications�Graphics�Image Organizer.

Once you’ve started gThumb, it functions as a specialized file browser for image files. The left
pane in the interface displays directories, and the right pane previews images in the current
directory. Figure 4-12 shows gThumb browsing a directory with several images.

Using gThumb, you can do many basic photo editing tasks. For example, double-click on an
image and the display changes to show only that image. Use the items on the Image and Tools
menus to perform tasks such as rotate or scale the image, edit the color map, or convert the
image to a different format. You can also add comments to each image.

FIGURE 4-12

Organize your photos with the gThumb image organizer program.

123

Part II Using OpenSolaris

FIGURE 4-13

A photo album created in gThumb.

You can organize your photos in multiple ways using gThumb. You can assign multiple cate-
gories to each image, and you can create catalogs, which function like playlists on MP3 players.
You can search based on the image filename, comment, date, place, and any categories you’ve
assigned.

Select Create Web Album to create web albums of your photos to publish. Figure 4-13 shows an
example.

gThumb can also import images from your camera, similar to the functionality of the gtkam
digital camera browser; just select the File�Import Photos menu item. You can create copies of
images on a CD as well by selecting File�Write to CD. Finally, gThumb can be used to display
slideshows (select View�Slide Show).

See Chapter 9 for information on using the gtkam digital camera browser program
with your digital camera.

For advanced image editing and drawing, the OpenSolaris package repository includes the
GNU Image Manipulation Program (GIMP). It’s a full-featured image editing application

124

The Desktop 4

developed by the open source community as an open source equivalent to proprietary pro-
grams such as Adobe Photoshop that are usually available only on Windows and Mac OS.
Once you have installed the SUNWgnome-img-editor package, start GIMP by selecting
Applications�Graphics�GIMP Image Editor. You can edit existing graphics files or create
new ones from scratch. It provides a multi-layer model for image manipulation that enables
you to perform virtually any type of transformation to an image and to merge images into
composite images. Graphic manipulation and photo retouching are specialized topics beyond
the scope of this book; for more information, we recommend starting with the resources at
http://gimp.org to develop skills in this area.

System Administration
Currently, most system administration tasks in OpenSolaris are performed using command-line
tools, but a few graphical configuration and monitoring tools are included with the desktop.

Additional graphical management tools are being developed by the Visual Panels
project (http://opensolaris.org/os/project/vpanels).

Users and groups
As mentioned in Chapter 3, the Users and Groups tool is used to manage user accounts and
UNIX group identities (select System�Administration�Users and Groups). To add a user, click
the Add User button. The dialog shown in Figure 4-14 appears.

The Account tab displayed is quite similar to the user account creation step in the OpenSolaris
installer. The main difference is that the program can generate a random user password if
requested. To customize the user, select the Advanced tab, shown in Figure 4-15.

The Advanced settings are based on the profile that’s selected; each profile specifies the user’s
home directory, shell, group, and privileges, as well as the numeric range to use in generating
the user ID. You can modify any of these values as necessary, but the profile provides initial set-
tings that should be appropriate for most users.

See Chapter 11 for details about the user privileges available for assignment in the
tool, which are properly known as execution or rights profiles.

You can create, modify and delete the user profiles used in the Users and Groups tool by click-
ing the Edit User Profiles button. If you frequently create users with similar attributes, such as
default group membership or home directory path, you’ll likely want to create additional user
profiles to consistently define those attributes.

You can manage group memberships by selecting the Groups tab, where you can add, modify,
or delete groups, including the users who are members of each group.

125

Part II Using OpenSolaris

FIGURE 4-14

Add a user account here.

FIGURE 4-15

Advanced settings for user accounts

126

The Desktop 4

Keyring Manager
One problem all computer users face today is how to remember a plethora of passwords, as
many services require entering a password to gain access. Ideally, you want to use separate
passwords for each application or service, but it’s impractical for a person to remember more
than a few unique passwords. For your convenience, the desktop offers the Keyring Manager
application, which other applications can use to store and retrieve passwords. It’s modeled as
keys on a keyring and is secured with a single password that must be provided to read any of
the passwords stored in the keyring. This enables you to use unique passwords per service,
reducing the risk of disclosure of any single service password, but it requires you to choose an
especially strong and secure password to secure the keyring.

Firefox can store website passwords for you, but it uses its own key store, rather than
the GNOME keyring.

Usually, you won’t need to interact directly with the Keyring Manager application; instead,
keyring-enabled applications store and retrieve the passwords on your behalf — you only need
to provide your keyring password to authorize the operation. This is how Pidgin, for example,
saves any passwords for your IM service if you allow it to do so. However, you may occasionally
need to perform maintenance on the keyring, perhaps to change an obsolete password (although
applications using the keyring usually do that on your behalf). If so, run the Keyring Manager
by selecting System�Administration�Keyring Manager.

Surprisingly, the current version of Keyring Manager included in OpenSolaris
doesn’t include an option to change the master password for a keyring, so

don’t forget your master password. If you do, your best option is to remove the keyring file,
∼/.gnome2/keyrings/default.keyring, so that it will be recreated when you store
passwords in it, but be aware that this also deletes all of the passwords stored on the keyring.

Disk Usage Analyzer
The Disk Usage Analyzer tool can be used to provide a graphical display of your disk space
usage. To start it, select Applications�System Tools�Disk Usage Analyzer. Once the main
window appears, use the toolbar icons to select a folder or file system to scan. After the scan,
the window will look similar to the one shown in Figure 4-16.

The left pane in the window displays a table of the folders within the selected folder or file
system (in this case, /usr was selected). You can sort the table by any column in ascending
or descending order by clicking on the column’s heading. The right pane displays a usage
map for the selected folder; as you select different folders within the table, the map changes to
display the usage within that folder. If you hover the mouse pointer over any colored area of
the map, it displays a tooltip identifying the folder corresponding to the map segment, along
with the folder’s size. The map’s center section represents the folder at the top level of the scan,
with folder subtrees extending out radially. This can help you quickly find the major space
consumers within a directory tree.

127

Part II Using OpenSolaris

FIGURE 4-16

The Disk Usage Analyzer has a sortable table in the left pane and a usage map in the right.

Currently, the Disk Usage Analyzer is not aware of ZFS. Because each file system in
ZFS shows free space within the pool as its own free space, the Disk Usage Analyzer

can greatly overestimate the total file system capacity. The ZFS pool containing the /usr file sys-
tem in Figure 4-16 actually had only 6.6GB of free space when this example was generated, but
it contained approximately 40 datasets, so the free space was multiplied many times over its true
capacity. In addition, the dataset containing /usr in this example has compression enabled, which
is not reported by the Disk Usage Analyzer. Be aware of this when estimating space usage if you
move data from a compressed dataset to a noncompressed dataset. See Chapter 8 for more infor-
mation on ZFS.

Log File Viewer
The Log File Viewer application (Applications�System Tools�Log File Viewer) enables you to
browse the various system and service log files, displaying and filtering the messages recorded
in them. The window’s left pane displays a list of the various log files on OpenSolaris; once
you select a file, its contents are displayed in the right pane. You can use the calendar in the
lower-left pane to display messages from a specific date, and select the View�Filter menu item
to filter any log messages to those that are of interest.

128

The Desktop 4

FIGURE 4-17

System Monitor displays system performance information.

See Chapter 14 for information on the system logs, and Chapter 13 for information
on the service logs listed under /var/svc/log.

Performance Monitor
The Applications�System Tools�Performance Monitor menu item starts the System Monitor
application, which provides information about the processes running on your system, usage
of CPU, memory, and networking, and space usage of your file systems. The data available
through this application is essentially the same as you’d obtain using the prstat, vmstat,
mpstat, netstat, and df commands, presented in a more attractive and understandable
format. Figure 4-17 shows a sample display from this application.

See Chapter 14 for more information on system monitoring.

Power management and statistics
Power consumption of computer systems is a hot topic, and the OpenSolaris desktop includes
the GNOME Power Manager to assist you in managing your system’s power consumption. Power
Manager is started as part of the default session, and the notification area on the right side of
the panel includes an icon for power management status; hover the mouse pointer over the icon
to check battery charge status if you’re using a laptop. You can configure Power Manager using

129

Part II Using OpenSolaris

System�Preferences�Power Management, controlling display brightness and CPU performance
when on battery and AC power, as well as the behavior when closing the lid of a laptop. You
can also configure the icon displayed in the notification area and behavior of the system when
the power button is pressed.

If you’re running OpenSolaris on a desktop system that does not have CPU frequency
scaling capability, you may want to remove Power Manager from your session

because it has no function to perform. You can check this using the following command:

$ kstat -m cpu_info -i 0 -s supported_frequencies_Hz

If the output shows only a single value for supported_frequencies_Hz, then CPU frequency
scaling is not available.

Power Manager also provides graphical displays of the system’s power behavior, which can be
accessed by selecting Applications�System Tools�Power Statistics; you may need to enable this
menu item using the menu preferences, accessed by selecting System�Preferences�Main Menu.
See the tool’s online help for explanation of the different graphs available.

See Chapter 5 for more information on OpenSolaris power management.

Other Applications
The OpenSolaris desktop includes several other tools for specific tasks, which can be found on
the Applications�Accessories menu:

■ Archive Manager — Enables you to archive groups of files into a single file, or extract
files from an archived file, including compressed archives

■ Calculator — A desktop calculator with scientific and financial modes

■ Character Map — A graphical interface for entering characters from other scripts into
your documents

■ PDA Synchronization — A tool for synchronizing calendar, contact, and e-mail data
with a personal digital assistant (PDA)

■ Text Editor — A graphical text editor with extensions that can help with viewing and
writing code in a variety of languages

OpenSolaris also includes several accessibility features in the base OS that enable the system to
be used by those with physical or visual impairments. Accessibility is a major area in which Sun
has contributed to the GNOME community, so these features work well on OpenSolaris. The
accessibility features include an onscreen keyboard, predictive text entry, and a screen reader
and magnifier application. An Accessibility community group was recently created in the Open-
Solaris community to provide a forum for advancing this work further.

130

The Desktop 4

Troubleshooting
There are two phases of desktop startup problems you might run into: X server startup prob-
lems, which prevent you from seeing a graphical login screen, leaving you at a text console login
prompt, and GNOME session startup problems, whereby you see the graphical login screen and
your password is authenticated, but the GNOME session doesn’t start and returns you to the
login screen. This section describes some basic troubleshooting steps you can take to determine
what’s wrong.

Unlike Linux and BSD UNIX systems, OpenSolaris does not by default enable multi-
ple virtual consoles. Therefore, after the GNOME login screen has started, you can’t

switch back to a text console login with keystrokes such as Ctrl+Alt+F1. The OpenSolaris Virtual
Console project at http://opensolaris.org/os/project/vconsole is working to add this fea-
ture to OpenSolaris. See the project web site and the vt(7I) man page for information on virtual
console support.

X server startup
Unlike some operating systems that use X, OpenSolaris does not create a configuration file for
the X server, instead relying on the X server’s auto-configuration capability to find and load the
correct display driver and configure it to use your monitor at its optimal resolution. However,
this auto-configuration process can fail, so you may need to resort to examining the X server
logs and creating a configuration file.

The X server log is located at /var/log/Xorg.0.log; the log from the previous startup is
automatically renamed to /var/log/Xorg.0.log.old, so you can compare them to help
identify any problems. One common source of problems is using an older monitor that doesn’t
provide Extended Display Identification Data (EDID) settings for the X server to use. If you’re
not getting the resolution you expect from auto-configuration, this is very likely to be the
problem, and you need to create a configuration file.

The X server configuration file you create must be placed at /etc/X11/xorg.conf. Con-
figuring X is fairly complex, so the best way to start is to use the server’s auto-configuration
capability to generate a configuration file. First, log in to a text console session because X cannot
already be running. If you’re already logged into an X desktop, you can disable the GNOME
Display Manager:

svcadm disable gdm

This immediately terminates your X session and returns you to the console login prompt. From
there, log in and start X using the following:

/usr/X11/bin/Xorg -configure

131

Part II Using OpenSolaris

This command creates the file /xorg.conf.new. You can then edit this file to customize your
configuration and then copy it to /etc/X11/xorg.conf when you’re ready to use it. Finally,
you need to re-enable GDM to start a new X session:

svcadm enable gdm

If your system has an NVIDIA graphics interface, you can use the NVIDIA X Server
Settings tool (Applications�System Tools) to create a configuration file that can

exploit the NVIDIA driver’s unique features.

GNOME session startup
If you see the graphical login screen and your username and password are accepted, but you
can’t log into your desktop, there are a few steps you can try to identify the problem.

First, select a different session from the login screen. Click the Options button and then choose
Select Session. In the dialog that appears, you can choose from several sessions. The default is
your last session, normally the GNOME session, which is also shown in the list, so choosing
either of these options usually provides the same result.

Your last session is stored in the file .dmrc in your home directory.

The other selections on the Sessions dialog enable you to try various troubleshooting options.
The Failsafe GNOME session starts GNOME but does not use any of your session customiza-
tions, so if you suspect that something you’ve configured in your session preferences is the
problem, try this option to help you confirm that. The Failsafe Terminal session doesn’t start
GNOME at all, but instead starts the X server and then starts only an xterm terminal, with no
window manager. This is a good fallback if the failsafe GNOME session fails because it allows
you to work around problems with GNOME components such as the session manager or the
window manager. The final session you can select is one that runs an Xclient script; this is
often useful for those who want to use older X window managers that aren’t integrated into the
GNOME desktop structure.

Once you log in to one of the failsafe sessions, examine the .xsession-errors file in your
home directory to determine what might be causing the error. This file captures the standard
error stream from all of the programs started by the GNOME session manager, so the cause of
a failure to start the GNOME desktop is likely be found here.

Resources
General information on GNOME can be found at its home page, http://gnome.org.

Information on the X.org X server used in OpenSolaris is available at http://x.org.

132

The Desktop 4

Information on the Compiz window manager can be found at two sites, http://compiz.org
and http://compiz-fusion.org.

A comprehensive directory of X window managers is available at http://xwinman.org.

Additional GNOME themes can be downloaded from http://art.gnome.org.

The GIMP image editor documentation is available at http://gimp.org.

The Pidgin instant messaging client project is hosted at http://pidgin.im.

Information on both Firefox and Thunderbird is available through http://mozilla.com.

Summary
In this chapter you learned how to configure the OpenSolaris GNOME desktop, explored many
of the more prominent applications, and learned how to troubleshoot basic X and GNOME
problems. You should now have a comfortable OpenSolaris desktop configuration and be ready
to move on to exploring the rest of OpenSolaris in greater depth.

133

Printers and Peripherals

IN THIS CHAPTER
Printers, scanners, and
webcams

Digital cameras

Audio devices

Serial ports

Power management and UPSs

Device drivers

I f your computer system consisted solely of a CPU, disk drive,
keyboard, and display, it would be useful, of course, but many other
devices can be used to extend the tasks your system is capable of

performing. The generic term used in the computer industry for these
devices is peripherals.

Printers and scanners enable you to convert between electronic and paper
documents. Digital cameras enable you to record and share images of
all types. Webcams and audio headsets enable you to use the Internet
for cheap video conferencing and telephony. When equipped with all of
these devices, your computer system becomes an essential tool for many
parts of your life. In this chapter, you’ll learn how to use these and other
peripherals with OpenSolaris.

Storage devices are discussed in Chapter 7.

Printing

Printers are among the oldest type of peripherals for computer systems.
During the era of mainframes and batch processing, users didn’t directly
interact with computer systems often; instead, programs were submitted
on media such as tape or punch cards, executed, and the results written
to other media or printed on a line printer. Modern computer systems are
interactive, of course, and mostly use printers that are based on laser or
ink-jet technologies that can produce high-resolution graphics and color

135

Part II Using OpenSolaris

not imagined with the old line printers. However, the terminology associated with line printers
persists in UNIX-type systems with commands such as lp, lpr, and lpq. OpenSolaris retains
the legacy printing system designed in the days of line printers, updated to provide improved
ease of use and support for a wide range of printing devices.

Automatic printer configuration with Presto
The most recent work in OpenSolaris printing comes from the Presto project, http://
opensolaris.org/os/project/presto/, which is developing automatic printer configu-
ration capabilities. You may have already encountered it if you’ve booted the OpenSolaris live
CD on a system with an attached printer.

Configuring locally attached printers
Figure 5-1 shows the dialog that is displayed when an attached printer is detected by Presto.

FIGURE 5-1

Presto printer configuration dialog

When OpenSolaris detects that a printer is attached to the system, this dialog enables the user
to configure the printer. In this case, the printer is attached to the system via the USB interface,
and OpenSolaris is able to use USB’s device description properties to determine its manufacturer
and model number. OpenSolaris has a driver for this printer model, so that is supplied as the
suggested configuration for the printer queue, but you can select an alternative manufacturer or
model if necessary. See the section ‘‘PPD (PostScript Printer Description) management’’ later in
this chapter for more details on OpenSolaris printer driver support. You can also specify a dif-
ferent name for the printer and provide a description that will be useful to you and your users
in identifying the printer’s characteristics. Finally, you can specify that this queue should be the

136

Printers and Peripherals 5

default queue for your system, meaning that any print jobs not sent to a specific printer queue
will be directed to this one.

Once you’re satisfied with the configuration of the printer, click the Add button to configure
the queue.

The Add Printer Queue dialog shown in Figure 5-1 is provided by the ospm-applet
application, which is part of the default GNOME desktop session. See Chapter 4 for

more information on the GNOME desktop.

If your printer is attached using the older parallel port technology, Presto will not
automatically detect it. See the section ‘‘Manual printer configuration’’ later in this

chapter.

Configuring network-attached printers
Presto works very well for configuring USB printers, which is now the technology used to attach
virtually all printers directly to computer systems. However, an increasing number of printers
now sold can be attached to wired or wireless networks and accept print jobs directly from any
system on the network. If you have this type of printer on your network, Presto can automati-
cally configure it as well, although the configuration process operates somewhat differently from
that of an attached USB printer.

In the case of USB, Presto receives a notification from the kernel as soon as a printer is plugged
into the system; this triggers a query of the device properties from the printer, the results
of which are then used to populate the Add Printer Queue dialog shown in the previous
section. Most systems have only one or two printers directly attached, so these dialogs are not
distracting. However, a large number of network printers can be detected, so displaying the Add
Printer Queue dialog when each is found would likely be annoying to users. In addition, most
network printers do not announce their presence; to detect them, Presto must use a polling
mechanism to query the network. It is not desirable to have every system on your network
polling the network constantly to detect printers, as this generates some load on the network
and the printers.

To detect network printers, Presto supplies an SMF service, svc:/network/device- discov-
ery/printers:snmp, which implements polling for network-attached printers. This service is
disabled by default on OpenSolaris but can be enabled using the following command:

svcadm enable printers:snmp

Chapter 13 describes SMF service management.

Once enabled, this service sends a broadcast SNMP message to the local network; most
network-attached printers will respond to this message. OpenSolaris print servers do not
normally respond to this message because they are not configured to advertise printers via

137

Part II Using OpenSolaris

SNMP. Presto automatically creates a print queue for each printer that responds, and displays
a notification icon in the GNOME message tray. The SNMP discovery service continues to
broadcast messages periodically and add queues as additional responses are received. The
default interval between messages is 60 seconds, but you can control this by modifying the
config/interval property of the service. For example, to modify the interval to five minutes,
use the following commands:

svccfg -s printers:snmp setprop config/interval=integer: 300
svcadm refresh printers:snmp
svcadm restart printers:snmp

Manual printer configuration
If your printer is one that can’t be configured automatically using Presto, perhaps because your
print server doesn’t advertise its printers using SNMP, or you have more complex printing needs
than the automatic configuration tools support, then you’ll need to configure your printing
manually. OpenSolaris provides two printing subsystems, including graphical and command-line
tools for managing printers in each printing system; this section provides guidance in selecting
and using a printing system on OpenSolaris.

Before you begin, it’s helpful to understand a few basic concepts in the OpenSolaris printing
model. Each printer is attached to a port, which can be USB, a parallel port, a serial port, or
an address on the network. Each printer has one or more queues associated with it; you can
use multiple queues to offer different options, such as single-sided or duplex printing, print
quality, or size of paper. In this chapter, the term ‘‘printer’’ is generally used because most of the
time a printer has only a single queue associated with it, but a queue is in fact the object that is
configured. You can also group related printers into a class, enabling them to behave as a virtual
print service.

Printer classes are not discussed in this book; consult the OpenSolaris documentation
for specific information on configuring printer classes.

To print a document, a user must submit a job to a queue, which may transmit the job to a
remote system if the printer is not directly attached to the local system. In processing the job,
the print server will apply one or more filters, which convert the document into a format that
the printer can understand and apply to paper. Finally, each printer has a driver associated with
it, which is used by the operating system to communicate with the printer.

Selecting a print service
Your first decision in setting up printing is to select the print service your system will use.
OpenSolaris continues to offer the traditional System V UNIX LP subsystem, which has been a
part of Solaris since the early 1990s. More recently, the CUPS (Common UNIX Printing System)
printing system has been added to OpenSolaris. The CUPS system has been ported to most
UNIX-like platforms and is now sponsored by Apple.

138

Printers and Peripherals 5

The two print systems offer similar capabilities; both have graphical or web-based interfaces for
configuration, and share similar, though not identical, command-line interfaces. The principal
difference between them at this writing is that the automatic configuration capabilities of Presto
work only with the LP system, not CUPS, though it’s expected that CUPS will be supported in
the future. Which one should you choose? Most likely, your choice is best based on familiarity:
If you have used CUPS on Linux (and found it acceptable), then using CUPS on OpenSolaris
will offer a similar experience. If your background is primarily with earlier versions of Solaris,
then the LP system may be more to your liking. If you’re not familiar with either one, then we
recommend CUPS, as its web-based administrative interface is more comprehensive than the
graphical utilities included for the LP system, and it provides better support for setting options
such as duplex printing on print queues. In addition, the knowledge that you’ll gain will be
more portable to other systems, such as Linux and Mac OS X.

If you decide to use CUPS, you may need to first install it from the OpenSolaris package reposi-
tory using the following command:

pkg install SUNWcups

You can check, and select, the print service configured for your system using the
print-service command. Use the following to query the currently configured service:

print-service -q
active print service: lp

The preceding means that the traditional SVR4 LP system is configured as the print service.
The -s option is used to select the print service:

print-service -s cups
disabling LP services . . .

enabling CUPS services . . .

print-service -s lp
disabling CUPS services . . .

enabling LP services . . .

The print-service command disables the SMF services associated with the print service that
is no longer being used, and enables those associated with the selected service; you cannot run
both systems simultaneously, as they will attempt to use the same network ports, and the con-
flicts can result in a system that behaves strangely.

If you already have print queues configured in the currently active print system, the -m option
can migrate them when you switch the services:

print-service -s cups -m
disabling LP services . . .

enabling CUPS services . . .

The queue migration performed by print-service is only a basic migration of
printer names and ports. If you have configured special printing options on the

139

Part II Using OpenSolaris

queues in the old service, you will likely need to edit the queue configuration in the new service
to replicate the same options.

The print-service command also offers the -e option to export the printer queue configu-
ration to a file, and the -i option to import an exported configuration file. Again, this is only a
basic migration of printer names and ports, and may require modification.

The following sections provide information on configuring and operating printers for each print
system.

Using the LP system
If you’ve chosen the LP system for printing, the easiest way to begin configuring your printer
is with the Solaris Print Manager, which is run using the command /usr/sbin/printmgr
or by selecting System�Administration� Print Manager from the GNOME desktop menus.
Figure 5-2 displays a screenshot of the initial display for printmgr.

FIGURE 5-2

Print Manager initial display

OpenSolaris can share print queue configuration information across multiple systems using
naming services, but unless you already have a naming service set up, select files, which means
that your actions in printmgr will affect only the local system. The printers you configure with
printmgr will be listed in /etc/printers.conf.

Naming services are discussed in Chapter 10.

Once you’ve selected the naming service, printmgr’s main window is displayed, as shown in
Figure 5-3.

From the printmgr main screen, you can configure options to the program using the Print
Manager menu; add, modify, and remove printers using the Printer menu; and use the Tools
menu to search for printers. The Print Manager default options — Use PPD Files and Use Local-
host For Printer Server — usually should not be modified because they offer the best results.

One useful option that isn’t selected by default is the Show Command-Line Console
option. If you select this option, printmgr will display, in a separate window, the

actual commands it is using to perform printer configuration; this can help you learn how to use

140

Printers and Peripherals 5

the lp commands. All commands are recorded in the console automatically, even if the window is
not being displayed, so you can display it after the operations have completed to see the detailed
record.

FIGURE 5-3

Print Manager main window

Configuring a local printer
To configure a local printer with printmgr, select Printer�New Attached Printer. This will dis-
play the dialog shown in Figure 5-4.

In this example dialog, the printer is attached to the parallel port (/dev/ecpp0), and a generic
PostScript printer is being used. Parallel ports are accessed using the ecpp(7D) driver; if you
have a printer attached to a serial port, select from the serial devices listed, which will have
names such as /dev/term/a or /dev/term/b, because serial printers are accessed using
terminal devices. See the section ‘‘Serial ports’’ later in this chapter for more information on
serial devices.

Select the Printer Make first, and then the Printer Model selections will be filtered to those that
are within that make. Once you select the Printer Model, a driver will automatically be filled
in as recommended; if other drivers correspond to this model, they are offered as additional
selections in the Printer Driver menu. See the section ‘‘PPD management’’ later in this chapter for
more details on how printer drivers are selected.

One selection you may want to customize is the Banner field; this controls whether an identify-
ing banner is printed for each print job. If you are sharing the printer in an office with multiple
users, you’ll probably want to always print a banner so that users can identify their documents,
but for a private printer in your home or office, disabling the printing banners saves paper and
ink or toner.

Usually, leave the Fault Notification selection as Write to Superuser, because that causes printer
faults to be displayed on the system console and in the main system log, /var/adm/messages.
Alternatively, you can have fault notifications e-mailed instead, or disable notification entirely.

The Default Printer selection is important. If you specify this printer as the default, then any
print jobs not specifically directed to another printer will be sent to this printer.

141

Part II Using OpenSolaris

You can also customize the user access list. By default, all users have access to a newly added
printer, but if you want to restrict this printer to specific users, then select the All item in the
User Access List and press Delete. Then type the username of a user who is allowed access and
click Add; repeat this for each user who should have access.

FIGURE 5-4

New Attached Printer dialog

When you’re satisfied with the printer configuration, click OK to add the printer. If you display
the command-line console, it shows the commands that correspond to this operation:

/usr/sbin/lpadmin -p post -s localhost -v /dev/ecpp0 -m standard_foomatic
-A write -n /usr/share/ppd/SUNWfoomatic/Generic/Generic-PostScript_Printer-
Postscript.ppd.gz -o banner=always -I postscript -u allow:all
/usr/sbin/lpadmin -p post -D "A generic postscript printer"
/usr/sbin/lpadmin -d post
/usr/bin/enable post
/usr/sbin/accept post

142

Printers and Peripherals 5

The lpadmin command is the primary command used to configure print queues; it configures
the device or connection type, filters, content types, and access control. You can consult the
man page for details on all of the options available in lpadmin. The enable and accept
commands are discussed in the section ‘‘Managing print queues and jobs’’ later in this
chapter.

If all goes well, you’ll see the printer listed in the printmgr main window. Test that the printer
is configured correctly by printing a test document; for the printer in this example, a command
such as the following sends a brief text file to the printer:

$ lp -d post /etc/motd

If the printer is capable of printing PostScript, it’s a good idea to also test printing a PostScript
file to ensure that the filters are operating correctly.

If you’ve configured a local printer on OpenSolaris and want to configure a Linux
client to print to it, then configure the Linux print queue to use a printer type of

Generic PostScript. In this configuration, the Linux client will convert its content to PostScript
prior to sending to the OpenSolaris server, which can then convert it to the correct format for the
printer.

Configuring a network printer
OpenSolaris can also use network-attached printers. To configure such a printer, select print-
mgr� Printer�New Network Printer. The dialog displayed is very similar to the New Attached
Printer dialog; the only difference is that the Printer Port field is replaced by two fields, Destina-
tion and Protocol.

There are three protocol options, and the protocol selected determines the format of the
destination:

■ BSD — The destination is the hostname or IP address of the printer and the queue name,
separated by a colon. For example, netprinter:default.

■ TCP — The destination is the hostname or IP address of the printers and a port number,
separated by a colon. For example, netprinter:515.

■ URI — The destination is a URI address for the printer. For example, a printer
that understands the Internet Printing Protocol might be addressed with the URI
ipp://netprinter/printers/default. You can use an smb URI to print to
Windows printers if you have smbspool(1M) installed. This is part of Samba, which
is available as the SUNWsmba package; see its man page for information on the smb URI
format. You can also use an lpd URI, but that’s exactly the same as specifying the BSD
protocol.

143

Part II Using OpenSolaris

See Chapter 10 for more information on OpenSolaris interoperability with Windows
networking.

You can consult the printer’s documentation to determine which protocol it supports and the
port number or queue name. As with a local printer, you should print a test job to verify that
the printer is configured correctly.

Submitting print jobs
Most desktop applications on OpenSolaris include printing their output as a standard menu
item, which is usually the easiest way to submit a print job. Otherwise, you can use the lp com-
mand to submit files for printing, as shown in examples throughout this section. OpenSolaris
also includes the lpr command for compatibility with BSD command interfaces; consult its man
page for usage information if you’re not already familiar with it.

Checking printer status
The lpstat command is used to view the status of the print system and queues. When issued
with no options, lpstat displays the status of any print jobs you have submitted. A system sta-
tus summary is provided by lpstat -s:

$ lpstat -s
scheduler is running
system default printer: post
device for post: /dev/ecpp0

You can view the status of a single printer as follows:

$ lpstat -p post
printer post idle. enabled since Tue Jul 15 00:11:53 2008. available.

To view a printer’s complete configuration, add the -l option:

$ lpstat -p post -l
printer post idle. enabled since Tue Jul 15 00:11:53 2008. available.

Form mounted:
Content types: application/postscript
Description: A generic postscript printer
Printer types: unknown
Connection:
Interface: /usr/lib/lp/model/standard_foomatic
PPD: /usr/share/ppd/SUNWfoomatic/Generic/Generic-

PostScript_Printer-Postscript.ppd.gz
After fault: continue
Users allowed:

(all)
Forms allowed:

(none)
Media supported:

144

Printers and Peripherals 5

Letter
A4
11x17
A3
A5
B5
Env10
EnvC5
EnvDL
EnvISOB5
EnvMonarch
Executive
Legal

Banner required
Character sets:

(none)
Default pitch:
Default page size:
Default port setting:
Options:

See the section ‘‘PPD management’’ later in this chapter for information on the Interface, PPD,
and Media supported sections of the lpstat output.

Configuring a print client
If you already have a print server configured to support the BSD or IPP protocol and want to
configure OpenSolaris as a client to submit print jobs, you can do this easily using printmgr.
Select Printer�Add Access to Printer, and a simple dialog box with three fields is displayed.
You must enter the printer name, and the name or IP address of the print server. You can
supply an optional description, as well as select whether this printer will be the system default.
Viewing the command-line console output, you’ll see that this is equivalent to a simple lpadmin
command. For example, to add access to the printer docprint on the server printserv, the
command is as follows:

lpadmin -p docprint -s printserv -D ‘‘test printer’’

You can then print to this printer using the following:

$ lp -d docprint /etc/motd

Managing print queues and jobs
Once you have configured printer queues, several commands are available to manage the queues
and jobs. Table 5-1 summarizes these commands; consult the man page for each for more
information. Note that print queues created by Print Manager or Presto are enabled as part
of the configuration process — you do not need to explicitly enable the queue or accept jobs
unless you disable or reject a queue.

145

Part II Using OpenSolaris

TABLE 5-1

Print Queue Management Commands

Command Description

accept Allow print jobs to be queued

cancel Cancel a print job

disable Disable a printer

enable Enable a printer

lpmove Move print jobs between queues

reject Disallow print jobs from being queued

In addition, you can configure the default printer for the system using lpadmin; use the follow-
ing to designate the printer ‘‘snoopy’’ as your default:

lpadmin -d snoopy

It’s unlikely that you would need to do so, but should you need to restart the LP print service,
its name is application/print/server, and it can be restarted using svcadm:

svcadm restart application/print/server

Two additional SMF services for LP are application/print/rfc1179 and
application/print/ipp-listener. They receive submitted jobs from other systems

using the RFC 1179 (lpd) or IPP printing protocols, respectively. These are automatically restarted
if you restart application/print/server.

Using CUPS
If you’ve enabled CUPS as your printing system, you can manage it using its built-in web
management interface. If you enter the address http://localhost:631 into the location bar of
Firefox, you’ll see a page similar to that shown in Figure 5-5.

Because CUPS on OpenSolaris is essentially identical to CUPS on Linux and other systems,
this book does not cover its use; consult its included documentation and the references in the
‘‘Resources’’ section of this chapter for further information.

The default configuration for CUPS listens only on the loopback interface. Use
the web management interface to enable remote systems to access your CUPS

service.

146

Printers and Peripherals 5

FIGURE 5-5

CUPS administration page

PPD management
Regardless of whether you are using LP or CUPS as your print system, output to your printer
will in most cases be formatted by the foomatic-rip(1) print filter, which is called by the
standard_foomatic interface program shown earlier in the lpstat example output in the
section ‘‘Checking printer status.’’ This filter program converts PostScript and other file formats
into the printer’s native representation. To convert all forms of data into a variety of printer
output languages, foomatic-rip uses a repository of printer descriptions, known as the
PostScript Printer Description (PPD) repository. Each model of printer is represented by a PPD
file in the repository; the PPD file provides all the information required by foomatic-rip to
produce printable output for that specific printer model.

147

Part II Using OpenSolaris

If you acquire a printer for which OpenSolaris does not have a PPD file, you may find one on
the manufacturer’s website, or on the OpenPrinting website, http://openprinting.org/
printer list.cgi. Once you have downloaded the PPD file, you must use the ppdmgr
command to install it into the OpenSolaris PPD repository so that foomatic-rip can use it.
For example, to install the FastPrinter.ppd file into the system, use ppdmgr -a:

ppdmgr -a FastPrinter.ppd

You can then configure the printer — either manually using printmgr or automatically with
Presto. OpenSolaris maintains a cache of the descriptive information from each PPD, stored
in the file /var/lp/ppd/ppdcache, so these user interfaces can efficiently list the available
PPDs. This cache is automatically updated when you add a PPD file with ppdmgr. Additionally,
because PPD files can be installed directly into the PPD repository by packages, OpenSolaris
provides an SMF service, application/print/ppd-cache-update, which automatically
updates the ppdcache table each time the system is booted. You can restart the service to have
it run without rebooting the system:

svcadm restart ppd-cache-update

You may also need to acquire a driver for printers not yet supported by the distribution; you
can contact the manufacturer, check with the OpenSolaris printing community, or check the
OpenPrinting website for information on driver availability.

Scanners
Scanning support for OpenSolaris and many other platforms is provided by the SANE (Scanner
Access Now Easy) project; its main website is http://sane-project.org. SANE supports a
vast number of devices, including parallel, SCSI, and USB scanners, as well as digital still and
video cameras, from a variety of manufacturers. The SANE website provides detailed information
on devices supported by the software.

You can install SANE from the pkg.opensolaris.org software repository using the following
command:

pkg install SUNWsane-frontend SUNWsane-backend

Chapter 6 provides information on installing packages from the OpenSolaris package
repository.

Once SANE is installed, you can use the sane-find-scanner command to verify that your
device is recognized, and then use the scanimage command or xscanimage graphical user
interface to retrieve images from your scanner. SANE can also be used as a plug-in to the GIMP

148

Printers and Peripherals 5

to provide integrated image capture and editing. See the man pages for these commands for
further details.

USB Devices
The Universal Serial Bus (USB) has become the most common means of attaching peripheral
devices to computer systems. Over the past 10 years, USB has made obsolete the separate
serial, parallel, keyboard, and mouse ports that were found on PCs for many years, resulting in
simpler and more flexible PC designs and reducing cable clutter for users. The original USB 1.1
standard provided for fairly slow data transfer speeds suitable for replacing those devices. The
more recent USB 2.0 standard increased the transfer speed sufficiently for use as an interface
for bandwidth-intensive applications such as disk storage, video transfer, and networking.
OpenSolaris supports a wide variety of USB devices, the details of which are discussed in the
following sections.

OpenSolaris also includes support for USB’s principal competitor technology, IEEE
1394 (also commonly known as FireWire). However, FireWire is typically found

only in data storage and digital video devices, and is not covered in this book. See Sun’s System
Administration Guide: Devices and File Systems, http://docs.sun.com/app/docs/doc/819-2723,
for more information.

Keyboards and mice
OpenSolaris supports USB keyboards and mice. You can even have multiple keyboards and mice
connected simultaneously, and OpenSolaris will multiplex the input from all of them, a func-
tion provided by the virtualkm(7D) driver. Note that OpenSolaris also retains support for the
older PS/2 standard for keyboard and mouse devices, and virtualkm will multiplex them with
USB devices. You can view the type of keyboard used on your system using the kbd command:

$ kbd -t
USB keyboard

The kbd command supports several configuration options, including the layout. Persistent set-
tings are stored in /etc/default/kbd, from which they are read during system boot. Some
keyboards support auto-detection of their layout, but the inexpensive keyboards on most sys-
tems do not provide this, so you usually need to manually configure the layout.

See Chapter 3 for more information on configuring keyboard layout.

Mice are usually auto-configured by the X Window System during startup, but can be manually
configured using a /etc/X11/xorg.conf X server configuration file.

149

Part II Using OpenSolaris

See Chapter 4 for information on configuring the X server.

MP3 players
Because MP3 music players support the USB Mass Storage protocol, connecting one to Open-
Solaris will cause it to be automatically mounted under the /media directory, similar to USB disk
drives. After it is mounted, you can access the tracks as files and use the standard file utilities to
transfer tracks to and from the player. This functionality will work with any MP3 player.

If you have an Apple iPod, the gtkpod program provides a more complete interface for
managing its various functions; it is located in the Blastwave package repository, as the package
IPSgtkpod.

See Chapter 6 for information on installing packages from alternative repositories.

Webcams
One of the more interesting types of USB peripherals is the webcam, a video camera that con-
nects to your computer’s USB port and provides video (and often audio, if the device includes a
microphone) input capabilities. Current USB webcams support the USB Video Class 1.1 specifi-
cation, and OpenSolaris provides the usbvc(7D) device driver to interface with devices compli-
ant with that specification. If your system has a built-in webcam, it’s likely connected internally
via USB and thus usable with OpenSolaris.

The primary application for webcams is low-cost video conferencing over the Internet using
the Session Initiation Protocol (SIP). The OpenSolaris GNOME desktop includes the Ekiga
video conferencing and voice-over-IP (VOIP) application. You can use Ekiga to conduct video
conferences with anyone else on the Internet who also has a webcam and software that supports
the SIP protocol, or you can place Internet phone calls. You may need to first install the Ekiga
application from the OpenSolaris package repository. At this writing, it is found in the package
SUNWgnome-meeting.

Connect your webcam to one of your USB ports and verify that the usbvc driver attaches to it.
You should see a message similar to the following in the system log, /var/adm/messages:

Jul 17 20:28:43 dminer-laptop usba: [ID 912658 kern.info] USB 2.0 interface-
association (usbia46d,8cb.config1.0) operating at hi speed (USB 2.x) on
USB 2.0 root hub: video@0, usbvc0 at bus address 2

You can also verify that the device links are created:

$ ls -l /dev/video0
lrwxrwxrwx 1 root root 10 Jul 17 20:28 /dev/video0 -> usb/video0
$ ls -l /dev/usb/video0
lrwxrwxrwx 1 root root 66 Jul 17 20:28 /dev/usb/video0 ->
../../devices/pci@0,0/pci1179,1@1d,7/miscellaneous@7/video@0:usbvc

150

Printers and Peripherals 5

If all appears well with the devices, you can start Ekiga from the GNOME menu: Applica-
tions� Internet�Video Conference. The first time you run Ekiga, it starts a wizard interface to
walk you through the initial configuration process. As part of the configuration process, Ekiga
offers the option to obtain a free ekiga.net SIP account; by creating an account, you can call,
and receive calls from, other ekiga.net users. This is not required, though, because Ekiga can
be used with any SIP conferencing service.

The most well-known Internet telephony and video service is Skype, but unfor-
tunately Skype is not available for OpenSolaris. Because Skype uses proprietary

protocols, you cannot place calls to (or receive calls from) Skype users with Ekiga.

You can also use Ekiga for direct connection between two systems without a SIP service, if the
two systems can be directly connected to each other, as is often the case on an organization’s
internal network. To use direct connection on the Internet, both systems must have public IP
addresses, not private addresses used behind firewalls that provide Network Address Translation
(NAT). If your system is connected via NAT, you need to use a service such as ekiga.net for
video conferencing.

See Chapter 9 for information on NAT and firewalls.

Other portions of Ekiga’s configuration process include detecting whether your network is using
NAT and configuring the audio and video devices. Usually, Ekiga detects these automatically and
you only need to confirm the settings it suggests; you can consult its online help for assistance if
you run into trouble. The last step of the wizard is a confirmation screen that displays all of the
settings you’ll be using (see Figure 5-6).

FIGURE 5-6

Ekiga configuration

151

Part II Using OpenSolaris

FIGURE 5-7

Ekiga’s main window

After you apply the configuration, you’ll see Ekiga’s main window, which should look similar to
Figure 5-7.

The main menu bar includes Call, Edit, View, Tools, and Help menus. The Call menu includes
commands to place a call, as well as options for setting your status for receiving calls:

■ Available — You are available for calls, but are prompted to answer before an incoming
call is connected.

■ Auto Answer — Incoming calls are connected automatically.

■ Do Not Disturb — Incoming calls are blocked.

■ Forward — Incoming calls are forwarded to a different SIP host, which is configured in
your preferences.

The Call menu also includes menu items to control calls that are in progress.

The Edit menu includes items to configure Ekiga, configure your preferences, and manage your
SIP accounts. The View menu items can be used to modify the display settings. The Tools menu
enables you to manage your address book, open the Chat window (Ekiga can be used for text
chats, too), view the call and session diagnostic logs, and configure a PC-to-phone account,
which you can use to call a telephone number using Ekiga.

Below the menu bar is a text field into which you enter the address you’re calling. Next to it is a
button to initiate the connection after you’ve entered an address. After you’re in a call, you click
this button to disconnect. The left side of the window displays a series of icons — from top to
bottom, they perform the following functions:

■ Open the text chat window

■ Toggle the display of the tabbed controls at the bottom of the window

152

Printers and Peripherals 5

■ Open the address book

■ Toggle display of the current image from the local camera. When not in a call, you can
click this button to activate the camera, and its stream will be displayed in the center of
the window.

■ Mute audio toggle

■ Pause video toggle

The center of the main window is used to display the local or remote video, or both, depending
on the settings selected in the View menu; you can also choose to display the local and remote
video in separate windows. The lower part of the main window provides a set of tabs with con-
trols to adjust the audio and video and view statistics for a call in progress, as well as a graphical
dialing pad for dialing phone numbers using the mouse.

Before you attempt to place or receive any calls with Ekiga, select Edit�Preferences,
choose Network Settings from the list on the left of the Preferences window, and

ensure that the Network Interface option is set to listen on your actual network interface and not
on the localhost (127.0.0.1) address (because that address won’t allow you to make or receive
calls with another system).

If you don’t have anyone specific to call, you can perform a simple echo test with Ekiga by
calling the address sip:500@ekiga.net. This mirror service reflects back the audio and video
you are sending, enabling you to verify and adjust your camera settings. It also gives you some
idea of the latency between you and the ekiga.net SIP service. If your network is operating
well, there should be very little delay between the sent and received video images. Once you
have your camera adjusted and working, start calling your friends!

You can obtain much more information about Ekiga from its main project site, http://
ekiga.org.

Digital cameras
OpenSolaris supports most digital cameras available today — thanks, in part, to the flexibility
of the cameras. Digital cameras often offer two options for communication over USB: the
USB Mass Storage protocol or the USB Picture Transfer Protocol (PTP). When a camera is
connected as a mass storage device, you see messages similar to the following in the system log,
/var/adm/messages:

Jul 16 22:04:45 dminer-laptop usba: [ID 912658 kern.info] USB 1.10 device
(usb4b0,304) operating at full speed (USB 1.x) on USB 1.10 root hub:
storage@1, scsa2usb3 at bus address 2
Jul 16 22:04:45 dminer-laptop usba: [ID 349649 kern.info] NIKON DSC
COOLPIX L4
Jul 16 22:04:45 dminer-laptop genunix: [ID 936769 kern.info] scsa2usb3 is
/pci@0,0/pci1179,1@1d,2/storage@1
Jul 16 22:04:45 dminer-laptop genunix: [ID 408114 kern.info]
/pci@0,0/pci1179,1@1d,2/storage@1 (scsa2usb3) online

153

Part II Using OpenSolaris

Jul 16 22:04:45 dminer-laptop scsi: [ID 193665 kern.info] sd7 at
scsa2usb3: target 0 lun 0
Jul 16 22:04:45 dminer-laptop genunix: [ID 936769 kern.info] sd7 is
/pci@0,0/pci1179,1@1d,2/storage@1/disk@0,0
Jul 16 22:04:45 dminer-laptop genunix: [ID 408114 kern.info]
/pci@0,0/pci1179,1@1d,2/storage@1/disk@0,0 (sd7) online

When a camera that supports PTP is attached, you see messages such as the following in
/var/adm/messages:

Jul 16 22:08:24 dminer-laptop usba: [ID 912658 kern.info] USB 1.10 device
(usb4b0,305) operating at full speed (USB 1.x) on USB 1.10 root hub:
image@1, usb_mid3 at bus address 2
Jul 16 22:08:24 dminer-laptop usba: [ID 349649 kern.info] NIKON DSC
COOLPIX L4-PTP
Jul 16 22:08:24 dminer-laptop genunix: [ID 936769 kern.info] usb_mid3 is
/pci@0,0/pci1179,1@1d,2/image@1
Jul 16 22:08:24 dminer-laptop genunix: [ID 408114 kern.info]
/pci@0,0/pci1179,1@1d,2/image@1 (usb_mid3) online
Jul 16 22:08:24 dminer-laptop usba: [ID 349649 kern.info] usba: no
driver found for interface 0 (nodename: ‘image’) of NIKON DSC COOLPIX L4-PTP

These two examples are the same camera; its setup menu offers a choice between Mass Storage
or PTP mode. In Mass Storage mode, the camera appears to be a pluggable disk drive, similar to
a USB memory stick or a hard drive in a USB enclosure. When attached in this mode, the cam-
era presents itself as a PCFS file system and is automatically mounted into the file system under
the /media directory. The pictures stored on the camera are located in one or more directories
under the camera’s mount point; for example:

$ ls /media/NO_NAME/DCIM/118NIKON
DSCN1207.JPG DSCN1240.JPG DSCN1266.JPG DSCN1293.JPG DSCN1319.JPG
DSCN1209.JPG DSCN1241.JPG DSCN1267.JPG DSCN1294.JPG DSCN1320.JPG
DSCN1211.JPG DSCN1242.JPG DSCN1268.JPG DSCN1295.JPG DSCN1321.JPG
DSCN1212.JPG DSCN1243.JPG DSCN1269.JPG DSCN1296.JPG DSCN1322.JPG

You can use image viewing and editing programs to view and edit the files, and copy them from
the camera using standard utilities such as cp and mv.

See Chapter 4 for information on image viewing and editing tools.

To access a camera that uses PTP, you need to use the gtkam graphical interface or the
gphoto2 command. To start gtkam from the GNOME menus, select Applications�Graphics
�Gtkam Digital Camera Browser. Once started, select Camera�Add Camera; and in the dialog
that displays, click the Detect button to have gtkam automatically detect the camera model. If it
fails, then you can manually select the model and port. Then click OK and gtkam will initialize
the camera, which may take some time. Figure 5-8 shows the display during the initialization
process.

154

Printers and Peripherals 5

FIGURE 5-8

Adding a camera in gtkam

FIGURE 5-9

Browsing a camera in gtkam

Once the camera is initialized, you can browse thumbnails of the photos stored on the camera,
view individual photos, and copy or delete the photos. Figure 5-9 shows gtkam’s main
window browsing a camera’s photo storage. See the gtkam man page and online help for more
information.

Once you have transferred photos from your camera to your computer, you will probably want
to create digital photo albums to organize and display them. The gThumb program included
in the OpenSolaris desktop provides a simple photo album capability; see Chapter 4 for more
information on it. For more sophisticated photo albums, we recommend the excellent open

155

Part II Using OpenSolaris

source JAlbum software (http://jalbum.net), which is a powerful tool for organizing and
sharing digital photo albums.

Audio
Audio support in OpenSolaris has historically been weak, but it’s rapidly improving. In part,
this is because of greater standardization by manufacturers on the interfaces for audio devices;
but OpenSolaris is also, as of this writing, in the process of overhauling its audio framework
by integrating the Open Sound System (OSS) framework. The OSS framework includes a
much richer set of sound interfaces and extensive driver support (see the project page at
http://opensolaris.org/os/project/opensound for information on OSS). If you have
USB audio devices, such as speakers or a headset, you should be able to use them successfully
with OpenSolaris because the USB Audio Class specification is supported by the usb_ac(7D)
driver. If you attach a USB headset, for example, you’ll see a series of messages in the system
log, /var/adm/messages, as the USB drivers bind to it. As a result, built-in or USB audio
devices should work automatically.

OpenSolaris provides the simple command-line utilities audioplay(1) and audio-
record(1) for playing and recording uncompressed audio formats such as AU, AIFF, and
WAV. The GNOME desktop also includes a sound recording application. Started by selecting
Applications� Sound and Video� Sound Recorder, it supports additional recording formats,
including FLAC, Ogg, and Speex. You can easily test that your audio devices are working
correctly using these applications.

Chapter 4 covers the playing of MP3 and other audio and video formats.

Serial Devices and Modems
Before high-speed Internet access over DSL and cable technologies became widespread, a great
deal of Internet traffic was transmitted between systems using phone-line modems connected to
serial ports. These technologies are still used for some low-bandwidth applications such as con-
sole access to server systems.

Serial ports
For many years, it was standard for PCs to include two serial ports, which might be used to dial
in or out with a modem, or to connect a terminal server to provide console access to the PC,
once the operating system was configured to use a serial port as its console. OpenSolaris retains
some legacy configuration from this era, such as the port monitor configuration displayed with

156

Printers and Peripherals 5

pmadm(1M), shown here:

pmadm -l
PMTAG PMTYPE SVCTAG FLGS ID <PMSPECIFIC>

zsmon ttymon ttya u root /dev/term/a I -
/usr/bin/login - 9600 ldterm,ttcompat ttya login: - tvi925 y #
zsmon ttymon ttyb u root /dev/term/b I -
/usr/bin/login - 9600 ldterm,ttcompat ttyb login: - tvi925 y #

This configuration shows two ports, ttya and ttyb, attached to the serial devices
/dev/term/a and /dev/term/b. With this default configuration, users can log in via
the serial port if a device such as a terminal or terminal server is connected to the serial port
and configured with a speed of 9,600 bits per second. Consult pmadm(1M) and related man
pages for more details on port monitor configuration.

If your system has serial ports, the first port is accessed at the device /dev/term/a,
the second is /dev/term/b, and so on.

You can also connect out over a serial port using the tip(1) command. The /etc/remote file
defines systems to which you can connect using tip. The most useful entry in the default
/etc/remote is hardwire:

hardwire:\
:dv=/dev/term/b:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:

Typing the command tip hardwire will connect you to whatever device is connected to the sys-
tem’s second serial port, which is the device /dev/term/b. If this port is in turn connected via
a cable to the serial console of another OpenSolaris (or Linux) system, then it’s possible to log in
on that system to perform administrative tasks. For example:

$ tip hardwire
connected

badboy console login: dminer
Password:
Last login: Thu Jul 10 22:28:03 from krissy
{badboy} ∼.
[EOT]

As shown, you can type the character sequence ∼. to terminate the tip session. Other special
tilde sequences are available within tip; type ∼? during a tip session for help with them.

Consult the tip(1) and remote(4) man pages for more information on connecting over serial
ports.

USB-to-serial converters
While serial ports are disappearing from newer systems, you may still need to connect to an
older system over its serial port. Devices known as USB-to-serial converters are sold by several
manufacturers for this application, and OpenSolaris includes drivers for several common ones.

157

Part II Using OpenSolaris

Current information on supported devices is available on the Solaris USB FAQ referenced in the
‘‘Resources’’ section at the end of this chapter. The following example demonstrates connecting
a Keyspan USA-19HS converter, configuring it to connect to the console port of a Sun server,
and starting a console session using tip. First, the system log /var/adm/messages shows the
converter being connected to the system:

Jul 11 19:44:21 dminer-laptop usba: [ID 912658 kern.info] USB 1.10 device
(usb6cd,121) operating at full speed (USB 1.x) on USB 1.10 root hub:
device@1, usbsksp0 at bus address 2
Jul 11 19:44:21 dminer-laptop usba: [ID 349649 kern.info] Keyspan, a
division of InnoSys Inc. USA-19H
Jul 11 19:44:21 dminer-laptop genunix: [ID 936769 kern.info] usbsksp0 is
/pci@0,0/pci1179,1@1d/device@1
Jul 11 19:44:21 dminer-laptop genunix: [ID 408114 kern.info]
/pci@0,0/pci1179,1@1d/device@1 (usbsksp0) online

A device link for the converter is automatically created in devfs, as shown here:

$ ls -l /dev/cua/*
lrwxrwxrwx 1 root root 48 Jul 11 19:44 /dev/cua/1 ->
../../devices/pci@0,0/pci1179,1@1d/device@1:0,cu
lrwxrwxrwx 1 root root 32 Feb 6 18:08 /dev/cua/a ->
../../devices/isa/asy@1,3f8:a,cu

The device path for /dev/cua/1 corresponds to the device path listed in the system log entry.
To use this device with tip, you must add an entry such as the following to /etc/remote:

cua1:dv=/dev/cua/1:br#9600:el= ˆ C ˆ S ˆ Q ˆ U ˆ D:ie=%$:oe= ˆ D:

This is just a copy of the hardwire entry shown in the previous section, with the device name
changed to reference the converter. Now it’s possible to connect to the converter port and access
the server’s console:

$ tip cua1
connected

netra console login: dminer
Password:
Last login: Thu Jul 10 22:28:03 from china
{netra}

If you disconnect the converter, a message similar to the following appears in the system log:

Jul 11 19:51:48 dminer-laptop genunix: [ID 408114 kern.info]
/pci@0,0/pci1179,1@1d/device@1 (usbsksp0) offline

Disconnecting the converter also automatically removes the /dev/cua link for it.

USB-to-serial converters can also be used as login ports, but to do so you need to add a port
monitor using the pmadm command. Consult the System Administration Guide: Advanced Admin-
istration, at http://docs.sun.com/app/docs/doc/819-2380, for information.

158

Printers and Peripherals 5

Modems
Unfortunately, OpenSolaris is unable to support the modems that are included in recent desktop
and laptop systems, which are commonly known as softmodems. These modems are designed to
provide only a simple hardware interface to the telephone network, with most of the signal and
protocol processing functions pushed up to the operating system driver. This means that the
manufacturer of the modem generally must either publish the specifications for the hardware
or provide the driver. Few of the manufacturers write drivers for any operating system other
than Windows, so most modern modems work only with that OS (hence, another term for
these modems is Winmodems). If you need to use a modem with OpenSolaris, you may be able
to locate a PC Card modem for a laptop’s PC Card slot that can be used. Otherwise, you need
to find a modem that can work with a serial interface and then connect it to your computer’s
serial port. However, most recent systems have eliminated the serial ports, so you likely need a
USB-to-serial converter as well, and then connect the modem to the converter.

Once you have a hardware modem that will work with OpenSolaris, you can use the PPP soft-
ware to connect to your ISP. The OpenSolaris PPP implementation is not covered in this book.
For assistance, consult the OpenSolaris documentation, specifically the System Administration
Guide: Network Services (see http://docs.sun.com/app/docs/doc/819-1634).

Network Interfaces
Most modern computer systems come with an Ethernet interface as a standard feature, and
laptops usually include an IEEE 802.11 (WiFi) network interface. OpenSolaris includes
drivers for many of the common network interface cards and is continually adding more,
so your system’s interfaces are likely to be supported automatically; you can use the Device
Driver Utility discussed in Chapter 2 to verify this. If they are not supported, you may be
able to locate a third-party driver by checking the manufacturer’s website. Some community
developers have also written drivers that are not integrated with OpenSolaris. The most notable
of these is the free driver collection written by Masayuki Murayama, which can be found at
http://homepage2.nifty.com/mrym3/taiyodo/eng.

If you can’t find a driver for your built-in network interfaces, you can likely purchase a PCI or
PC Card network interface for which a driver is available, either as part of the OS or from other
sources. These are generally not expensive.

Another networking technology for which some support is available in OpenSolaris is the
wireless broadband, or 3G network, technologies provided by the mobile phone networks. The
OpenSolaris Wireless Wide Area Network project, http://opensolaris.org/os/project/
wwan, has developed drivers for several of the USB and PC Card devices that are used to
connect to these networks. They operate somewhat like modems, in that PPP is used to manage
the connection to the provider. You usually need to perform an initial registration and setup
process for these networks using Windows, after which you can use OpenSolaris to connect at
any time.

159

Part II Using OpenSolaris

One additional characteristic of network interface drivers is that, unlike many other types
of drivers, they often have tunable properties that can be used to alter their behavior to
improve their operation or performance. The Brussels project on OpenSolaris has extended the
dladm(1M) command to provide a standard interface for configuring the interface properties
using the subcommands show-linkprop, set-linkprop, and reset-linkprop. You can
view the tunable properties of your network interfaces using show-linkprop:

dladm show-linkprop
LINK PROPERTY VALUE DEFAULT POSSIBLE
e1000g0 speed 100 -- --
e1000g0 autopush -- -- --
e1000g0 zone -- -- --
e1000g0 duplex full -- half,full
e1000g0 state up up up,down
e1000g0 adv_autoneg_cap 1 1 1,0
e1000g0 mtu 1500 1500 --
e1000g0 flowctrl bi bi no,tx,rx,bi
e1000g0 adv_1000fdx_cap 1 1 1,0
e1000g0 en_1000fdx_cap 1 1 1,0
e1000g0 adv_1000hdx_cap 0 1 1,0
e1000g0 en_1000hdx_cap 0 1 1,0
e1000g0 adv_100fdx_cap 1 1 1,0
e1000g0 en_100fdx_cap 1 1 1,0
e1000g0 adv_100hdx_cap 1 1 1,0
e1000g0 en_100hdx_cap 1 1 1,0
e1000g0 adv_10fdx_cap 1 1 1,0
e1000g0 en_10fdx_cap 1 1 1,0
e1000g0 adv_10hdx_cap 1 1 1,0
e1000g0 en_10hdx_cap 1 1 1,0
wpi0 channel 14 -- --
wpi0 powermode ? off off,fast,max
wpi0 radio ? on on,off
wpi0 speed -- -- 1,2,5.5,6,9,11,12,18,24,

36,48,54
wpi0 autopush -- -- --
wpi0 zone -- -- --
wpi0 state down up up,down
wpi0 mtu 1500 1500 --

The system in this example has both a wired interface, e1000g0 (an Intel Gigabit Ethernet
device) and a wireless interface, wpi0 (an Intel WiFi interface). As shown, each has several
properties that can be configured, and show-linkprop provides a view of the default values, as
well as the possible values, for each one. Configuring these properties is uncommon, however,
so this book doesn’t cover it further, but you can consult the dladm man page for more
information on link property configuration.

Additional information on network interface configuration may be found in
Chapter 9.

160

Printers and Peripherals 5

Power Management and UPSs
Power management is an increasingly important issue in computing today as electricity costs
continue to increase, and it’s an area of active development in OpenSolaris. The Power Manage-
ment community, http://opensolaris.org/os/community/pm, sponsors several projects to
provide a variety of power management capabilities, including CPU power management, system
suspend and resume, and power management policies for servers.

If you are using a laptop with OpenSolaris, you’re probably most interested in OpenSolaris
support for suspend and resume of the system, so that you can shut your system off for
transport from home to office, for example, and pick up right where you left off when you
turn the system back on. As of this writing, OpenSolaris has only limited support for sus-
pend and resume, due to the need to update device drivers to re-initialize correctly when
the system is resumed. All SPARC desktops, and recent Sun x86 desktops, are capable of
suspend and resume, and support for additional systems, including laptops, is in progress.
The Suspend/Resume project is performing this work, and you can track its progress at
http://opensolaris.org/os/project/suspend-resume. If your system is capable of
being suspended, you can select the Suspend option on the GNOME System Shutdown dialog
(select System� Shut Down in the GNOME menus).

A logical question at this point is how to determine whether your system is suspend-capable.
As of this writing, the best answer is to try it. If you attempt to suspend and it fails, look at
/var/adm/messages to determine which driver(s) rejected the suspend request. If the system
fails to resume after a suspend, you may also be able to use /var/adm/messages to determine
which drivers failed to resume. Beyond that, consulting the OpenSolaris community and project
mailing lists is likely necessary to obtain additional help.

Server power management is also an increasingly important topic, and the OpenSolaris commu-
nity would like its operating system to be known as the most power-efficient on the market. The
Tesla project, http://opensolaris.org/os/project/tesla, is the hub for server power
management development activity in the OpenSolaris community.

Configuring power management
Power management on OpenSolaris is configured using the file /etc/power.conf. Its default
entries are as follows:

device-dependency-property removable-media /dev/fb
autopm default
autoS3 default
Auto-Shutdown Idle(min) Start/Finish(hh:mm) Behavior
autoshutdown 30 9:00 9:00 noshutdown
cpupm enable
cpu-threshold 1s

161

Part II Using OpenSolaris

The device-dependency-property entry instructs the system to keep any removable media
devices, such as CD drives or memory card readers, powered on if the system’s display device
and monitor (represented by the device /dev/fb) are powered on.

The autopm entry controls whether device power management is enabled; it can have the value
enabled, disabled, or default. If the value is default, the behavior depends on the type
of system. If the system is a desktop or laptop system, devices are power-managed, but if it’s
a server, they are not. See the power.conf(4) man page for details on how the system deter-
mines whether it uses a server or desktop/laptop policy.

The autoS3 entry controls suspend-to-ram capability on x86 systems. As with autopm, the
default value depends on system type. When enabled, this allows the system to automatically
suspend itself if all power-managed devices have gone into their lowest power state, meaning the
system is completely idle.

You can use the autoshutdown entry to have suspend-capable systems suspend automatically
when the system has been idle for a specified period of time during certain periods of the day.
The noshutdown value in the default configuration disables this feature. It’s most useful for
office desktops, which can suspend overnight while idle.

The cpupm entry controls CPU power management. CPU power management is possible on x86
processors that include Intel’s Enhanced SpeedStep or AMD’s PowerNow! technologies. The
default configuration enables CPU power management whenever the hardware supports it. You
can also control the threshold time for CPU power stepping using a cpu-threshold entry. The
default configuration uses a one-second threshold. This means that if the CPU has performed no
work in the last second, it is slowed one step, repeating until it reaches its lowest power state.
You can use a threshold value of always-on to always run the CPU at full power.

If you make any changes to /etc/power.conf, you must run the pmconfig(1M) command to
update the running system with the configuration specified in the file.

Uninterruptible power supply (UPS)
Another aspect of power management is ensuring that you don’t lose power at an inopportune
time; or that if you have a power interruption, you can perform an orderly shutdown of your
system to avoid data loss or corruption. OpenSolaris’s use of ZFS as its standard file system
greatly reduces your risk of such problems due to its inherent design characteristics, so this
isn’t as critical an issue as it once was, but allowing a system time to shut down before power
vanishes is certainly still a good idea.

You can use any uninterruptible power supply (UPS) with OpenSolaris to provide protection
against a brief power glitch — to ensure the system doesn’t go down due to a momentary inter-
ruption from events such as a lightning strike, for instance. However, to automatically perform
an orderly shutdown before the UPS battery is drained, you need to connect the system to the
UPS using a USB or serial connection, and then install software that can interface with the UPS
to interpret its signals and initiate a system shutdown. Some manufacturers provide support for

162

Printers and Peripherals 5

Solaris and OpenSolaris in their proprietary software; check the Solaris Hardware Compatibility
List (see the link in the ‘‘Resources’’ section at the end of this chapter) and your UPS vendor’s
website for information on vendor support.

The best-known open source project for UPS software is Network UPS Tools (see
http://networkupstools.org). As of this writing, these tools have not been packaged
for OpenSolaris, so download the source and compile them yourself. Consult the project’s
website for further details.

Chapter 24 provides information on developing software on OpenSolaris.

Device Drivers
Like most other operating systems, OpenSolaris uses kernel modules known as device drivers to
communicate with both the internal and the peripheral devices attached to the system. Having
the right device drivers is critical if you’re going to use all of your computer system’s capabilities.
OpenSolaris strives to have device drivers for as many devices as possible, but not all devices
are supported. Chapter 2 presented several options for determining whether your devices are
supported, so your first step is to run one of those tools if you have a question about device
support.

OpenSolaris uses a special type of file system called the device file system, or devfs, to provide
raw access to the devices on the system. You generally don’t need to interact with devfs, nor
do you often need to delve into the details of device support, but you can use the prtdiag(1M)
and prtconf(1M) commands to examine this information when necessary.

See Chapter 7 for information on devfs, and Chapter 14 for more information on
prtdiag and prtconf.

One concept that is useful to understand is the mechanism by which OpenSolaris
associates device drivers with devices. This is controlled by the contents of the file
/etc/driver_aliases. Each device driver on the system registers the identifiers for the
devices it supports into this database when the driver package is installed. This is just an
ordinary text file, so you can view its contents with cat or more. Here’s an excerpt:

npe "pciex_root_complex"
pcie_pci "pciexclass,060400"
pcie_pci "pciexclass,060401"
kb8042 "pnpPNP,303"
mouse8042 "pnpPNP,f03"
vgatext "pnpPNP,900"
vgatext "pciclass,000100"
vgatext "pciclass,030000"
vgatext "pciclass,030001"
bscbus "SVI0101"

163

Part II Using OpenSolaris

pseudo zconsnex
st "scsiclass,01"
sgen "scsa,08.bfcp"
sgen "scsa,08.bvhci"
mpt "pci1000,30"
mpt "pci1000,50"
. . .

Although /etc/driver_aliases is a text file, do not edit it directly because
if it is corrupted in any way, your system may fail to boot. If modifications to

the driver_aliases file are necessary, they must be made using the add_drv(1M) and
rem_drv(1M) commands.

A more detailed discussion of device drivers is beyond the scope of this book. If the topic is of
interest to you, see the OpenSolaris Device Drivers community at http://opensolaris.org/
os/community/device drivers for more information and resources.

Resources
A number of printing resources are available:

■ The Sun documentation is found in the System Administration Guide: Solaris Printing, at
http://docs.sun.com/app/docs/doc/819-7761.

■ The OpenSolaris Printing community has more information on a variety of printing topics
at http://opensolaris.org/os/community/printing.

■ Find full information on CUPS at http://cups.org.

■ A useful note on how to enable duplex printing is available at http://sun.com/
bigadmin/content/submitted/duplex printing.html.

A primary source of information about using USB devices with OpenSolaris is the USB FAQ,
hosted at http://sun.com/io technologies/usb/USB-Faq.html.

The JAlbum software for digital photo albums is available from http://jalbum.net.

The main information page for Ekiga video conferencing is http://ekiga.org.

Details on the Open Sound System (OSS) are available at http://opensound.com.

Sun maintains an OpenSolaris Hardware Compatibility List at http://sun.com/bigadmin/
hcl/search.jsp.

Masayuki Murayama’s collection of open source network interface drivers is hosted at
http://homepage2.nifty.com/mrym3/taiyodo/eng/.

164

Printers and Peripherals 5

Development of drivers for 3G cellular data networking is hosted at the Wireless Wide-Area Net-
working project, http://opensolaris.org/os/project/wwan.

Additional documentation from Sun related to topics from this chapter can be found here:

■ System Administration Guide: Advanced Administration at http://docs.sun.com/app/
docs/doc/819-2380.

■ System Administration Guide: Devices and File Systems at http://docs.sun.com/app/
docs/doc/819-2723.

Device driver development activity in OpenSolaris is hosted by the Device Drivers community,
http://opensolaris.org/os/community/device drivers.

OpenSolaris power management development is managed by the Power Management commu-
nity, http://opensolaris.org/os/community/pm.

Summary
In this chapter, you learned how to set up and manage printers on OpenSolaris, including
switching between the two printing systems offered. You explored the details of device support
for a variety of peripheral devices, including multimedia devices such as webcams, digital
cameras, and MP3 players. You also learned about the OpenSolaris interfaces for manag-
ing traditional serial devices and modems, as well as USB-to-serial converters. Finally, you
were introduced to the power management functions available and under development in
OpenSolaris, and the commands used to explore the system’s device configuration.

165

Software Management

IN THIS CHAPTER
Installing packages

Searching packages

Updating a system

Managing boot environments

Managing a software repository

Building a distribution

Once you’ve installed an operating system, you’ll most likely need
to add software that wasn’t installed initially. It’s also likely that
you’ll soon want to upgrade your installed software to obtain new

functionality or fixes for bugs that are causing problems or that present a
security threat. Software management is one of the most common admin-
istrative tasks that you’ll perform on your system, so it’s critical to under-
stand the tools available.

As mentioned in earlier chapters, one of the key features of OpenSolaris
is a new software management system: the Image Packaging System
(IPS). Chapter 3 presented a basic introduction to the pkg command; in
this chapter, you’ll learn more about IPS and software management on
OpenSolaris.

IPS can be used on operating systems other than
OpenSolaris, but such usage is beyond the scope of

this book. See the IPS project site at http://opensolaris.org/os/project/pkg
for information.

Package Management
Like other operating systems, software for OpenSolaris is distributed in the
form of a package. Oversimplified a bit, a package is a bundle of files that
is installed to provide a specific function, such as word processing. Once
upon a time, software packages were large and standalone, which meant
that installing a package was a simple operation of copying the files from
the bundle onto your system.

167

Part II Using OpenSolaris

However, modern systems contain hundreds or thousands of packages linked together by depen-
dencies, so typically you’ll need to install multiple packages to obtain the functionality you want.
Modern package managers understand and follow the package dependencies for you and auto-
matically install any required packages, so this process usually remains a simple operation from
the user’s point of view, even though the underlying process is often quite complex.

IPS concepts
To use IPS effectively, you must understand several important concepts and terms. In IPS, the
components that make up a package are called actions; each action expresses an operation that
IPS applies to the system when installing or removing a package. The actions making up each
package are collected into a manifest. Each package can evolve through a series of versions.
Table 6-1 summarizes the actions supported by IPS.

TABLE 6-1

IPS Package Actions

Action Description

depend Defines a dependency on another package

directory Creates a directory in the file system

driver Registers a device driver

file Creates a file in the file system

group Defines a group in /etc/group

hardlink Creates a hard link in the file system

legacy Defines package data for the SVR4 legacy packaging system

license Stores a license associated with the package

link Creates a symbolic link in the file system

set Defines a package attribute

user Defines a user in /etc/passwd

Each IPS package is published by an authority, which is a name associated with a specific URL
you configure. The packages published by each authority are listed in a catalog, and each author-
ity distributes its packages using a repository, which is a server that resides either on a local sys-
tem, on some other system on your network, or on the Internet. Multiple mirrored repositories
can be used to optimize package download performance for users in different networks or geo-
graphical locations.

See Chapter 3 for examples of installing packages from multiple authorities.

168

Software Management 6

An IPS package is always installed into an image; each image can contain only a single version of
any one package. An image can obtain packages from multiple authorities, one of which is des-
ignated as the preferred authority, meaning it is the default authority for any pkg commands that
do not specify an authority explicitly. There are several types of images:

■ Full — A standalone image typically containing an installed instance of an operating
system. The OpenSolaris distribution’s Live CD is a full image, as is a system installed
using it.

■ Partial — Linked to a full image. Partial images are used to install and manage OpenSo-
laris zones.

■ User — Dependent on a full image. User images enable users to install their own versions
of packages that differ from the versions installed in a full image.

Zones are discussed in Chapter 19.

Each image contains data about the packages installed in it, including an index of the package
information and actions that can be searched using the Package Manager and pkg command.
For full and partial images, the package data is stored in the directory /var/pkg. For user
images, the package data is stored in the directory .org.opensolaris.pkg in the root of the
image.

Unlike most other package systems, a key aspect of the design of IPS is its emphasis on safe
package installation and updates. In IPS terms, safety means that operations can be rolled
back, enabling you to return your system to a prior state should a package operation have
undesirable effects on its stability, performance, or usability. The safety of IPS is accomplished
by leveraging the capabilities of the ZFS file system to create a snapshot of the file system prior
to package operations. If you are updating the system using the pkg image-update command,
a clone based on that snapshot is created and the package operations are applied to the clone,
ensuring that the prior system state can be easily restored by rolling back to the snapshot. The
clone is called a boot environment. A boot environment is also created if a pkg install or pkg
uninstall operation fails. If this happens, pkg displays instructions for reverting your system
to that boot environment. See the section ‘‘Boot Environment Management’’ later in this chapter
for more details.

Chapter 8 describes the features of the ZFS file system, including snapshots and
clones.

Package names and versions
All packaging systems provide some type of a naming and versioning scheme so that users can
identify their software. The naming and versioning provided by IPS is key to its ability to resolve
dependencies and upgrade packages as new versions are released.

The canonical form of a package name in IPS is in the form of a Fault Managed Resource
Identifier (FMRI), which is a naming scheme for system resources introduced as part of the Fault

169

Part II Using OpenSolaris

Management Architecture in Solaris 10. FMRIs are also used to identify hardware components
and system services in OpenSolaris.

FMRIs and fault management are described in Chapter 12.

The FMRI for an IPS package is of the following form:

pkg://authority/name@version

For example, the full FMRI for a version of the Sun Studio Express package in the openso-
laris.org repository is as follows:

pkg://opensolaris.org/sunstudioexpress@0.2008.5,5.11-0.86:20080430T211032Z

Fortunately, you’ll rarely need to use the entire FMRI in referring to a package. Usually you
can use just the name portion as an argument to the pkg command to install, uninstall, or
view a package, and IPS will use the correct version (which is usually the newest version when
installing, or the installed version when uninstalling) from your preferred authority. Because it’s
sometimes necessary to specify an exact version if you need to install a package that’s not the
newest, it’s useful to understand the meaning of the version portion of the name. It’s defined to
be of the following form:

component_version,build_version-branch_version:timestamp

The version of the sunstudioexpress package just shown is interpreted as follows:

■ Component Version. 0.2008.5. This version is based on the component’s project ver-
sion. Many projects provide packages that are portable across platforms, so the version
string defined by that project is normally used as the component version.

■ Build Version. 5.11. This specifies which version of OpenSolaris the package contents
were built on. Because OpenSolaris provides forward compatibility, this version indicates
the oldest version of OpenSolaris on which this package can be expected to run. As of
this writing, all releases of OpenSolaris are based on version 5.11 of the operating system.
Solaris 10 was version 5.10.

■ Branch Version. 0.86. The branch is normally used to indicate a development build
number, or a maintenance release number in the case of packages updated to provide
specific fixes, such as a security patch.

■ Timestamp. 20080430T211032Z. This specifies the date and time when the package
was published into the repository. Each time the package is published into the repository,
it has a different timestamp, even if other portions of the version are identical.

An IPS package that defines only dependency actions is known as a group package, as it’s used to
provide a shortcut to install a set of otherwise unrelated packages that are needed to provide a
function. An example is the hpc-dev package; its manifest demonstrates what a group package
looks like:

$ pkg contents -rm hpc-dev
set name=fmri value=pkg:/hpc-dev@0.5.11,5.11-0.86:20080504T074641Z

170

Software Management 6

set name=authority value=opensolaris.org
set name=description value="HPC Application Development cluster"
depend fmri=pkg:/SUNWj6dmo@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWsvn@1.4.3-0.86 type=require
depend fmri=pkg:/SUNWj6cfg@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWj6rt@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWcvs@1.12.13-0.86 type=require
depend fmri=pkg:/SUNWj6rtx@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWj6man@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWgmake@3.81-0.86 type=require
depend fmri=pkg:/SUNWj6dvx@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWmercurial@0.9.5-0.86 type=require
depend fmri=pkg:/SUNWsprot@0.5.11-0.86 type=require
depend fmri=pkg:/sunstudioexpress@0.2008.05-0.86 type=require
depend fmri=pkg:/clustertools@7.1-0.86 type=require
depend fmri=pkg:/SUNWj6dev@0.5.11-0.86 type=require
depend fmri=pkg:/SUNWj6dmx@0.5.11-0.86 type=require

IPS defines another type of group package called an incorporation, which is used to tie compat-
ible package versions together, ensuring that the set of all such packages that are installed are
updated in lockstep. As of this writing, an incorporation called entire is used to tie the Open-
Solaris operating system packages together for update purposes. See the pkg(5) man page for
more information on incorporations.

Installing packages with Package Manager
Chapter 3 described the basic procedure for installing a package using the pkg(1) com-
mand, including refreshing the catalog using the pkg refresh command, searching for
a package using pkg search, and installing a package using pkg install. In addition
to the pkg command, OpenSolaris includes a graphical interface for software manage-
ment: the Package Manager. You can start the Package Manager using the GNOME
menu item System � Administration � Package Manager. Its main window is shown in
Figure 6-1.

This window consists of several elements, most of which will be familiar if you’ve used tools
such as Synaptic on Linux distributions. The menu bar and tool bar items enable you to refresh
the catalog, update all packages, install or update a package, or remove a package. To the right
of the toolbar is a drop-down menu for selecting the repository; opensolaris.org is the
default repository for the OpenSolaris distribution, but other distributions might have a different
default. The left pane and the drop-down menu above it enable you to select the categories of
packages that are of interest, while the right pane displays the packages in the selected category,
including name, status, and description. The Show drop-down menu enables you to further
filter the packages displayed in the right pane: only packages that are installed, not installed, or
that have updates available. The Search box enables you to filter the packages by searching the
package index for specific strings. Finally, the bottom pane displays details about the package
selected in the right pane; tabs organize this information into general information about the
package, its contents, and its dependencies.

171

Part II Using OpenSolaris

FIGURE 6-1

The Package Manager is used to manipulate IPS packages.

To install a package, use the searching and filtering capabilities to display the name of the
package, and then click the checkbox to the left of the package name to select it. Then select
Package � Install/Update, or click the Install/Update icon on the toolbar. Package Manager
then downloads the package and any packages that it depends on, and installs them. You can
also select multiple packages (or all packages, using Edit � Select All) and have them installed
simultaneously.

Removing packages
Of course, you may also want to remove packages. This is just as easy as installing. To remove
a package in the Package Manager, select the package by clicking its checkbox and then select
Package � Remove, or click the Remove icon in the toolbar. From the command line, you can
use pkg uninstall:

172

Software Management 6

pkg uninstall SUNWwbsup

Creating Plan \
pkg: Cannot remove ‘pkg:/SUNWwbsup@0.5.11,5.11-0.95:20080807T161553Z’ due to
the following packages that depend on it:
pkg:/SUNWpkgcmds@0.5.11,5.11-0.95:20080807T160715Z
pkg:/SUNWswmt@0.5.11,5.11-0.95:20080807T161311Z
pkg:/slim_install@0.1,5.11-0.95:20080807T163254Z
pkg:/SUNWgui-install@0.5.11,5.11-0.95:20080807T154707Z
pkg:/SUNWinstall-libs@0.5.11,5.11-0.95:20080807T160313Z

Clearly, removing a package won’t always be simple because many packages have dependent
packages, and IPS blocks the removal of a package that has installed dependents. You can, how-
ever, cause a package and all of its dependents to be removed by adding the -r option:

pkg uninstall -r SUNWwbsup

In addition, you can use the -n option to simulate an uninstall, and the -v option to obtain
more verbose output from the pkg command; these options can also be used with pkg
install.

Viewing, verifying, and searching packages
As shown earlier, you can use Package Manager to view and search packages, the same capabili-
ties available using the pkg command.

You can easily check the state of a package using pkg list:

$ pkg list SUNWtoo
NAME (AUTHORITY) VERSION STATE UFIX
SUNWtoo 0.5.11-0.95 installed ----
$ pkg list netbeans
pkg: no matching packages installed

If the package is installed, its version and state are displayed; if it’s not installed, then you see
the preceding error message (you can include packages that are not installed using pkg list
-a). If the package is not associated with the image’s preferred authority, then the package’s
authority is displayed in parentheses next to the package name. The UFIX column provides a
concise display of additional state information for the package. The U column means that the
catalog shows the package is upgradeable to a later version from that authority. F indicates
that the package version has been frozen by the administrator and must remain at the installed
version; this is used to ensure that upgrades that are incompatible with a critical package cannot
be applied to the image. I indicates that the package is part of an incorporation, which means
the package will be upgraded if the incorporation is upgraded. X means that the package has an
exclusion with another package, meaning that the two packages cannot both be installed.

As of this writing, the frozen, incorporate, and exclusion capabilities are not yet
implemented in IPS.

173

Part II Using OpenSolaris

If you enter the pkg list command without a package name, then it displays information
about all installed packages, or all known packages if the -a option is specified.

To view the details about a package, use pkg info:

$ pkg info SUNWtoo
Name: SUNWtoo

Summary: Programming Tools
State: Installed

Authority: opensolaris.org (preferred)
Version: 0.5.11

Build Release: 5.11
Branch: 0.95

Packaging Date: Thu Aug 7 16:14:29 2008
Size: 1.2 MB
FMRI: pkg:/SUNWtoo@0.5.11,5.11-0.95:20080807T161429Z

Note that the information is broken down from the package FMRI to include Version, Build
Release, Branch, and Packaging Date. You can also display this information for packages that are
not installed by using the -r option to pkg info; this causes the information to be retrieved
from the repository. An additional option to pkg info displays the license for a package (the
output is not shown for brevity):

$ pkg info --license SUNWzfs

You can view the contents of a package using pkg contents (some of the output has been
omitted for brevity):

$ pkg contents SUNWtoo
PATH
usr
usr/bin
usr/bin/amd64
usr/bin/amd64/elfwrap
usr/bin/amd64/gcore
usr/bin/amd64/ld
usr/bin/amd64/ldd
usr/bin/amd64/plimit
usr/bin/amd64/pvs
. . .

The default display shows only the package’s file, directory, hard link, and link actions, which
are the objects that one would traditionally think of as a package’s contents. You can obtain the
complete set of actions for a package using pkg contents -m:

$ pkg contents -m SUNWtoo
set name=fmri value=pkg:/SUNWtoo@0.5.11,5.11-0.95:20080807T161429Z
license e9e74f0dd7ea1ec725fd34c9c371a3c5389269bc license=SUNWtoo.copyright pkg
.size=10824 transaction_id=1218125669_pkg%3A%2FSUNWtoo%400.5.11%2C5.11-0

174

Software Management 6

.95%3A20080807T161429Z

set name=authority value=opensolaris.org
set name=description value="Programming Tools"
depend fmri=pkg:/SUNWcsl@0.5.11-0.95 type=require
depend fmri=pkg:/SUNWcs@0.5.11-0.95 type=require
dir group=sys mode=0755 owner=root path=usr
dir group=bin mode=0755 owner=root path=usr/bin
dir group=bin mode=0755 owner=root path=usr/bin/amd64
dir group=bin mode=0755 owner=root path=usr/bin/i86
dir group=bin mode=0755 owner=root path=usr/ccs
dir group=bin mode=0755 owner=root path=usr/ccs/bin
dir group=bin mode=0755 owner=root path=usr/ccs/bin/amd64
dir group=bin mode=0755 owner=root path=usr/ccs/lib
dir group=bin mode=0755 owner=root path=usr/lib
dir group=bin mode=0755 owner=root path=usr/lib/abi
dir group=bin mode=0755 owner=root path=usr/lib/amd64
dir group=bin mode=0755 owner=root path=usr/lib/ld
dir group=bin mode=0755 owner=root path=usr/lib/ld/amd64
dir group=bin mode=0755 owner=root path=usr/lib/link_audit
dir group=bin mode=0755 owner=root path=usr/lib/link_audit/amd64
file a7ae9ddfd45463f398ffb9aea9e42fd818bb6155 elfarch=i386 elfbits=64 elfhash
=808e638647834d1c02f335c0e6755013a78a1925 group=bin mode=0555 owner=root path
=usr/bin/amd64/elfwrap pkg.size=34096
file 6f1aad1188e2f33fecf4e90e88a3f105f3354be5 elfarch=i386 elfbits=64 elfhash
=506c3e4353dabcb45c36770dca895710c034fd12 group=bin mode=0555 owner=root path
=usr/bin/amd64/gcore pkg.size=19256
. . .

Again, the output has been abridged for brevity, but you can see that this output provides all
of the actions included in the package, and much more detail about each action, including a
recorded hash for each file action that can be used to verify that the installed file matches the
expected contents. This enables you to check your installed packages using pkg verify:

$ pkg verify SUNWtoo

You can also check all packages by omitting the package name. Any files, directories, hard links,
or links that do not match the recorded hashes are reported, and pkg exits with status 1 if
the package fails to verify cleanly. Verification can be helpful if your system is behaving in an
unusual manner because it enables you to check whether your software has been corrupted or
tampered with. If any errors are reported by pkg verify, you can use the pkg fix command
to correct them.

Support for searching packages is provided through the pkg search command, as shown in
this example:

$ pkg search xvm
INDEX ACTION VALUE PACKAGE

175

Part II Using OpenSolaris

groupname group xvm pkg:/SUNWxvm@3.1-0.95
basename dir var/svc/manifest/system/xvm pkg:/SUNWxvm@3.1-0.95
basename dir var/svc/manifest/system/xvm pkg:/SUNWlibvirt@0.5.11-0.95
username user xvm pkg:/SUNWxvm@3.1-0.95

The output displays the packages that contain actions matching the search token. As shown in
the output, multiple action types can match a search token, and all matching values are printed.
Recall from Chapter 3 that you can also search your configured repositories by adding the -r
option. Use -s to search a repository that is not one of your configured repositories:

$ pkg search -s http://pkg.sunfreeware.com:9000 pine
INDEX ACTION VALUE PACKAGE
basename file opt/sfw/bin/pine pkg:/IPSFWpine@0.5.11-5.7
basename file opt/sfw/bin/pine pkg:/IPSFWpine@0.5.11-5.7
basename file opt/sfw/bin/pine pkg:/IPSFWpine@0.5.11-5.7

The pkg.sunfreeware.com repository contains three instances of the IPSFWpine@0.5.
11-5.7 package with different timestamps, which is why the same entry appears three times in
the example output.

Searches on your local system use an index to provide good performance. This index is normally
maintained by IPS automatically; as each package is installed or uninstalled, the index is
updated, which is noted in the output from pkg install and pkg uninstall. If the index is
corrupted, a search request will generate a message instructing you to rebuild the index; you can
do so with the following command:

pkg rebuild-index
PHASE ITEMS
Indexing Packages 583/583

Rebuilding the complete index normally takes just a minute or two.

The package catalog that is cached by IPS from each authority is normally updated automati-
cally as you install, uninstall, and update packages. It is also updated regularly by the appli-
cation/pkg/update SMF service. You can update the local catalog cache using pkg refresh:

pkg refresh

SVR4 Packaging and IPS

F rom Solaris 2.0 through Solaris 10, all of the Solaris operating system software, as well as many
applications, were delivered using a packaging technology known as SVR4 (short for System

V Release 4) Packaging. This packaging system was developed by AT&T and Sun as part of the
System V Release 4 project in the late 1980s. See Chapter 1 for more information on the history of
OpenSolaris.

continued

176

Software Management 6

continued
OpenSolaris continues to provide this packaging system so that applications that have been packaged
using it can be installed on OpenSolaris. Because an SVR4 package can express dependencies on
other SVR4 packages, IPS provides the legacy action so that an IPS package that provides the same
functionality as a legacy SVR4 package can declare this equivalence. When installing a package
that includes a legacy action, IPS creates the same package metadata in the SVR4 package database
that the SVR4 package would have provided, so that SVR4 packages that depend on the package
will install normally. As a result, you can run the SVR4 pkginfo(1) command on a freshly installed
OpenSolaris system to see a list of SVR4 packages. However, you can’t remove those packages. If
you attempt to do so with pkgrm(1M), it fails with an error message that indicates the package is
not correctly installed. SVR4 packages that are installed using pkgadd can be removed with pkgrm,
however.

If you have prior experience with Solaris 10 or earlier releases, you may have encountered the
patching system it used, which was layered on top of SVR4 packages. With IPS, all updates
are delivered as packages, rather than patches — the capabilities that the Solaris patching system
provided are embedded in the IPS design.

Updating Your Software
New versions of software appear with great frequency, and you’ll likely want to update your sys-
tem to the latest versions, whether to obtain fixes to bugs you’re encountering or to use new fea-
tures. OpenSolaris offers both graphical and command-line update tools.

The availability of updates depends on the authorities you have configured. If the preferred
authority of opensolaris.org is set to the OpenSolaris distribution’s release repository,
http://pkg.opensolaris.org/release, updates are provided for each release, as well as
important free updates, such as security updates. The OpenSolaris distribution also offers the
http://pkg.opensolaris.org/dev repository, which provides each development build of
the distribution, normally at two-week intervals. If you are interested in using the OpenSolaris
development updates, you can reset your preferred repository using pkg set-authority:

pkg set-authority -O http://pkg.opensolaris.org/dev opensolaris.org
pkg refresh

Remember that pkg refresh is necessary to obtain the updated package catalog from the
repository you have configured. Other package authorities provide updates according to
whatever schedules and policies suit their purpose.

You also use the set-authority subcommand to configure access to additional package repos-
itories. For example, the http://pkg.opensolaris.org/contrib repository provides a
collection of open source packages that are not supported by Sun. Other repositories hosted at
http://pkg.sun.com provide access to software that requires registration and support updates
for OpenSolaris and other Sun software products.

177

Part II Using OpenSolaris

To perform an update, the OpenSolaris desktop includes an Update Manager application (select
System � Administration � Update Manager). Figure 6-2 shows the Update Manager window.

The top half of the window shows packages for which updates are available; the bottom half
shows details about the selected package. If updates are available, click Update All to install
them. A new boot environment will be created based on the current one, and the package
updates applied to it. See the section ‘‘Boot Environment Management’’ later in this chapter for
more information.

FIGURE 6-2

Use Update Manager for easy software updates.

You can also check for available updates, and update the system, using the command-line tools.
As discussed earlier, the pkg list command lists the packages for which updates are available:

$ pkg list
NAME (AUTHORITY) VERSION STATE UFIX
BRCMbnx 0.5.11-0.86 installed u---
FSWxorg-fonts 0.5.11-0.86 installed u---
NVDAgraphics 0.5.11-0.86 installed u---
SUNW1394 0.5.11-0.86 installed u---
SUNWDTraceToolkit 0.5.11-0.86 installed u---

178

Software Management 6

SUNWPython 2.4.4-0.86 installed u---
SUNWPython-extra 0.5.11-0.86 installed u---
SUNWTcl 8.4.14-0.86 installed u---
SUNWTiff 0.5.11-0.86 installed u---
SUNWTk 8.4.14-0.86 installed u---
SUNWa2ps 4.13-0.86 installed u---
SUNWaac 0.5.11-0.86 installed u---
SUNWacc 0.5.11-0.86 installed u---
. . .

You can update just a single package and its dependents to the most recent version using pkg
install; you don’t need to specify a version because the most recent version is the default. To
update all of your packages to the most recent version, use the pkg image-update command.
Here is a sample update session:

pkg image-update
Checking that SUNWipkg (in ‘/’) is up to date . . .

DOWNLOAD PKGS FILES XFER (MB)
Completed 544/544 26632/26632 1560.96/1560.96

PHASE ACTIONS
Removal Phase 7668/7668
Update Phase 22607/22607
Install Phase 12666/12666
PHASE ITEMS
Reading Existing Index 8/8
Indexing Packages 544/544
stage1 written to partition 0 sector 0 (abs 4096)
stage2 written to partition 0, 266 sectors starting at 50 (abs 4146)
A clone of opensolaris exists and has been updated and activated. On next boot
the Boot Environment opensolaris-1 will be mounted on ‘/’. Reboot when ready to
switch to this updated BE.

NOTE: Please review release notes posted at:

http://opensolaris.org/os/project/indiana/resources/relnotes/200811/x86

As of this writing, you must manually update SUNWipkg (the package that contains
IPS) to its current version before running pkg image-update. If you don’t, pkg exits

with an error, instructing you to update it. The command to update it is pkg install SUNWipkg.

Be sure to review the release notes listed in the preceding message, especially if you are updating
to a development build of the OpenSolaris distribution, because additional manual steps may be
required to ensure that your system operates correctly after the update.

As shown in the output, a new boot environment is created and activated as part of the update
process. The name of the boot environment is automatically generated, but you can rename it
(see the next section).

179

Part II Using OpenSolaris

Boot Environment Management
As discussed earlier in this chapter, each time you upgrade the operating system using pkg
image-update, a new boot environment (often abbreviated as BE, hence the name of the
beadm command used in managing them) is created, ensuring that you can easily switch back
to the prior version if necessary. You can also create boot environments for your own uses, such
as configuring a system to run different operating systems and applications with just a reboot.
Thus, you need to know a bit about managing boot environments to fully exploit OpenSolaris’
capabilities.

Solaris 10 and earlier versions of Solaris also incorporate the concept of a boot
environment, as part of the Live Upgrade technology that can be used to upgrade

or patch Solaris. The boot environment concept in OpenSolaris is similar to, but different from,
the boot environments used with Live Upgrade. The commands used for each are different, and
currently the Live Upgrade and OpenSolaris boot environments do not interact in any way.

A boot environment consists of one or more datasets in the ZFS root pool; each dataset directly
under the pool’s ROOT dataset is defined as a boot environment. Thus, you should not directly
create your own datasets under this dataset using the zfs command. In addition, on x86 sys-
tems, an entry for each boot environment is created in the GRUB menu, enabling you to select
the desired boot environment during system boot.

See Chapter 8 for more information on ZFS.

Three possible states can apply to a boot environment:

■ Active — The system is currently booted from this BE.

■ Active on Reboot — This BE will be used to boot the system at the next reboot.

■ Mounted — The BE’s datasets are mounted at some path in the active BE.

These states are not exclusive. Most of the time your currently active BE will be active on reboot
as well. The active BE is also mounted, obviously, as the root file system.

When you install the OpenSolaris distribution, the initial boot environment that is created is
named opensolaris; it is also activated, of course. There isn’t anything special about this BE
name, though, and you can name a boot environment virtually anything you want — the only
restriction is that the name must be a valid ZFS dataset name because the boot environment
name is also the name of the root dataset for the boot environment. OpenSolaris creates
a snapshot of the opensolaris boot environment at installation time. (A boot environment
snapshot is just a ZFS snapshot of each file system that’s part of the boot environment.)

Viewing boot environments
You can use the beadm list command to view your boot environments:

$ beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------

180

Software Management 6

b95 - - 71.5K static 2008-08-22 22:35
opensolaris NR / 2.50G static 2008-08-22 21:53

The BE listing shows the name of each boot environment, whether it is active, its mount point
(if currently mounted), disk space used, retention policy, and creation date. The Active col-
umn denotes the currently active boot environment with an N, and the BE that will be active on
reboot with R. If neither state applies to the BE, a hyphen is displayed in this column. The list-
ing displays all BEs that are present in all ZFS pools attached to the system.

The retention policy information is intended to allow the system to automatically
clean up old boot environments and snapshots, but the automatic clean-up feature is

not currently implemented.

To list the datasets owned by each BE, add the -d option:

$ beadm list -d
BE/Dataset Active Mountpoint Space Policy Created
---------- ------ ---------- ----- ------ -------
b95

rpool/ROOT/b95 - - 71.5K static 2008-08-22 22:35
opensolaris

rpool/ROOT/opensolaris NR / 2.50G static 2008-08-22 21:53

Note that this listing doesn’t include all of the file systems and volumes on the system, which
are shown here:

zfs list -t filesystem,volume
NAME USED AVAIL REFER MOUNTPOINT
rpool 3.34G 7.43G 61K /rpool
rpool/ROOT 2.50G 7.43G 18K legacy
rpool/ROOT/b95 71.5K 7.43G 2.49G legacy
rpool/ROOT/opensolaris 2.50G 7.43G 2.49G legacy
rpool/dump 349M 7.43G 349M -
rpool/export 694K 7.43G 19K /export
rpool/export/home 676K 7.43G 658K /export/home
rpool/swap 512M 7.88G 49.6M -

The /export and /export/home file systems are shared across all boot environments in
the pool; this sharing is also applied to the dump and swap volumes, named rpool/dump
and rpool/swap in the preceding example. This means that no matter which of the boot
environments you are booted from, the same space is used for swap and dump, and /export
and /export/home refer to the same file systems. Therefore, users’ home directories persist
across all BEs.

Your installation of the OpenSolaris distribution may not have swap or dump volumes. Creation
of the swap and dump volumes is dependent on the amount of disk space you allocate for
installing OpenSolaris. If it’s less than the recommended amount, then dump and swap volumes
may not be created, as they are not required for OpenSolaris to operate correctly, and the

181

Part II Using OpenSolaris

installer’s first priority is to allocate sufficient space for your software. See Chapter 7 for
information about swap space, and Chapter 24 for information about crash dumps.

Usually, you’ll want your file systems that contain data to be shared across boot envi-
ronments. If so, then create additional file systems under rpool, rpool/export,

or rpool/export/home. However, if you need to create additional file systems that you do not
want shared across boot environments, create those file systems under the boot environment’s
root file system (e.g., rpool/ROOT/b95 or rpool/ROOT/opensolaris in the previous example)
so that they will be specifically associated with that boot environment.

You can list just the snapshots for each BE using beadm list -s:

$ beadm list -s
BE/Snapshot Space Policy Created
----------- ----- ------ -------
b95
opensolaris

opensolaris@b95 30.0K static 2008-08-23 22:13
opensolaris@install 2.90M static 2008-08-22 22:22

The opensolaris@b95 snapshot was used as the basis for the b95 boot environment, as shown
by using the zfs command to view the root dataset’s origin property:

$ zfs get origin rpool/ROOT/b95
NAME PROPERTY VALUE SOURCE
rpool/ROOT/b95 origin rpool/ROOT/opensolaris@b95 -

The section ‘‘Creating and destroying boot environments’’ later in this chapter provides more
information on snapshots.

Activating and renaming boot environments
You can specify which boot environment will be active on reboot using the beadm activate
command:

beadm activate b95

When you activate a BE, the pool’s bootfs property is set to the activated BE’s root dataset; and
its ZFS datasets are promoted so that they are no longer dependent on their origin snapshots
and datasets, which allows you to delete the snapshots and datasets associated with the inactive
boot environments if you no longer need them. In addition, on x86 systems the GRUB menu
will be modified so that the activated BE’s menu entry is made the default.

The promotion of the ZFS datasets has an interesting effect: The disk space account-
ing will charge the space for all snapshots to the newly active BE. To see this, com-

pare the listings before and after the BE b95 is activated:

beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------

182

Software Management 6

b95 - - 71.5K static 2008-08-22 22:35
opensolaris NR / 2.50G static 2008-08-22 21:53
beadm activate b95
beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
b95 R - 2.50G static 2008-08-22 22:35
opensolaris N / 1.75M static 2008-08-22 21:53

As mentioned earlier, boot environments can be renamed; use the beadm rename command:

beadm rename b95 b95-1
beadm list -d
BE/Dataset Active Mountpoint Space Policy Created
---------- ------ ---------- ----- ------ -------
b95-1

rpool/ROOT/b95-1 - - 80.5K static 2008-08-23 22:13
opensolaris

rpool/ROOT/opensolaris NR / 2.50G static 2008-08-22 21:53

As shown, the BE’s root dataset is renamed to the new name. On x86 systems, the GRUB menu
item for the boot environment is renamed to the new name.

You cannot rename the currently active boot environment, as the ZFS datasets mak-
ing up the boot environment must be remounted to be renamed, and that is not pos-

sible while the system is booted from them.

Creating and destroying boot environments
You can create additional BEs using beadm create:

beadm create altbe
beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
altbe - - 72.5K static 2008-08-23 21:53
b95 R - 2.50G static 2008-08-22 22:35
opensolaris N / 1.91M static 2008-08-22 21:53

Unlike a BE created automatically by pkg image-update, this newly created BE is not acti-
vated; either append the -a option to beadm create or use beadm activate to make it active
on the next reboot. Remember that a snapshot of the current BE is taken to serve as the basis
for the clones making up the new BE. This snapshot is named using the name of the new BE, so
creating a new BE named testbe will create a snapshot of the current BE called @testbe.

Keep in mind that a snapshot is a read-only copy of a file system at a point in time,
whereas a clone is a writable copy of a snapshot.

183

Part II Using OpenSolaris

You can create a boot environment in a ZFS pool that is different from the current BE’s pool by
adding the -p option to beadm create. If you have a second pool named bigpool, you can
create the new BE as follows:

beadm create -p bigpool testbe

Creating a BE in a different pool takes some time because rather than create a clone in the same
pool, which is virtually instantaneous, beadm must actually copy the ZFS datasets using ZFS’s
send and receive dataset capability.

You can create a boot environment based on a boot environment other than the currently active
BE using beadm create -e:

beadm create -e b95 altbe

The altbe environment will be created based on the current contents of BE b95. You can also
specify a snapshot of a BE to be used as the source, by including the snapshot name in the BE
specification:

beadm create -e b95@install altbe

You can create a snapshot of a BE using beadm create by specifying the snapshot name:

beadm create altbe@testsnap

This creates a snapshot with the provided snapshot name for each dataset that’s a component of
the BE.

You can also set ZFS properties on a BE’s datasets at creation time using the -o option to beadm
create. For example, you can create the BE’s datasets as compressed using the following
command:

beadm create -o compression=on altbe

Any ZFS dataset property may be set using this option. See Chapter 8 or the zfs(1M) man page
for a list of the ZFS dataset properties.

Of course, you also need to be able to destroy BEs to free the disk space they occupy; this can
be done using beadm destroy:

beadm destroy altbe
Are you sure you want to destroy altbe? This action cannot be undone (y/[n]): y

You can force the destroy operation to not prompt by adding the -F option to the command.
This is most useful for scripting; we don’t recommend getting into the habit of using -F interac-
tively, as it’s all too easy to destroy a boot environment accidentally.

Be aware that the destroy operation also destroys the ZFS snapshots from which the
boot environment is cloned, unless those snapshots have other dependent clones, in

which case they cannot be destroyed until those clones are promoted to remove the dependency.

184

Software Management 6

You can destroy a specific snapshot by specifying the snapshot name to beadm destroy:

beadm destroy altbe@testsnap

Mounting boot environments
Finally, if you need to correct a problem with a boot environment or compare files between boot
environments, you can mount and unmount BEs using beadm mount and beadm unmount:

beadm mount b95 /b95
beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
altbe - - 71.5K static 2008-08-24 21:19
b95 - /b95 79.5K static 2008-08-23 22:13
opensolaris NR / 2.50G static 2008-08-22 21:53
ls /b95
bin COPYRIGHT etc kernel lost+found net proc save tmp
boot dev export lib media opt root sbin usr
cdrom devices home LICENSE mnt platform rpool system var
beadm unmount b95

Currently, you must be careful to always unmount a mounted boot environment
before rebooting the system; otherwise, an attempt to boot from that BE will cause

the system to panic because the datasets’ mountpoint properties will be set to an incorrect
value.

Managing a Package Repository
IPS packages are published to, and installed from, repository servers that are accessed over a
network. You may be completely satisfied using the repositories provided by the OpenSolaris
community, Sun, or other software providers and community members, as the extensive list of
packages provided by the various repositories is likely to meet your needs. However, if you’re
a software developer or a system administrator, you may want to run your own repository
for development purposes, to distribute your custom packages using your own servers, or to
provide a local mirror of a repository to optimize performance and network utilization.

Mirroring has recently been implemented; see the IPS documentation for instructions
on setting up a mirror repository.

An IPS repository is provided by the SMF service application/pkg/server. This service is
disabled by default, so to start using it you first need to enable it:

svcadm enable application/pkg/server

This starts the IPS server, which is the daemon program pkg.depotd(1M). The service config-
uration is specified by the service’s SMF properties, which are members of the pkg application
property group. The properties are described in Table 6-2.

185

Part II Using OpenSolaris

TABLE 6-2

Application/pkg/server SMF Properties

Property Name Description

content_root Path to server’s static web content; defaults to /usr/share/lib/pkg

inst_root Path to repository storage; defaults to /var/pkg/repo

log_access Pathname of access log; defaults to no access log for SMF service,
stdout if run from a terminal

log_errors Pathname of error log; defaults to stderr, meaning the errors appear in
the SMF service log

port Network port for repository; defaults to 80

proxy_base Base URL for the server; used for reverse proxy configurations with a
web server. The default value is empty.

socket_timeout Seconds to wait for client response before closing the connection;
defaults to 60 seconds

threads Number of threads used to serve requests; defaults to 10

See Chapter 13 for more information on managing SMF services.

For example, to configure the IPS server to use port 8000, use the svccfg command, and then
svcadm to refresh and restart the server:

svccfg -s application/pkg/server setprop pkg/port = 8000
svcadm refresh application/pkg/server
svcadm restart application/pkg/server

We recommend that you modify the inst_root property to use a pathname that’s
outside of the boot environment’s datasets. That way, the repository is not cloned

in each boot environment. For example, you can create a dataset called rpool/export/repo
mounted at /export/repo and then modify the inst_root property to this value.

You can view the status of your repository server by connecting to it with your web browser.
The status page from pkg.opensolaris.org/release is shown in Figure 6-3.

Using the web interface, you can view statistics for a repository and browse information about
each package, which is the same information you can obtain from the command line using pkg
info and pkg contents.

The IPS repository also provides an RSS feed of package updates to the repos-
itory at the path /feed. For the opensolaris.org repository, the URL is thus

http://pkg.opensolaris.org/release/feed. This enables you to use the Live Bookmarks
feature of Firefox or another RSS reader to track updates to repositories, providing an alert to
packages you may want to install or update.

186

Software Management 6

FIGURE 6-3

A web browser can be used to view the IPS repository status.

Once you have a repository running, the next task is publishing packages into it, which is done
using the pkgsend(1) command. See its man page for basic information. Chapter 24 provides a
detailed example of building an IPS package and publishing it into a repository.

IPS also provides the pkgrecv(1) command to copy a package from an IPS repository in a for-
mat that allows it to be modified and then republished using pkgsend. See the man page for
more information.

If you’re familiar with other packaging systems, you may have noticed that there is
no on-disk format specified for an IPS package. The IPS designers intend to provide

such a format in the near future, but it does not currently exist.

Building Your Own Distribution
Rather than use the OpenSolaris software management tools to manage your own installation
of the OpenSolaris distribution, you may want to build your own custom distribution based
on its packages. This is possible because, as described in Chapter 1, the core technology in

187

Part II Using OpenSolaris

OpenSolaris is freely redistributable. The tools used to construct the OpenSolaris distribution,
called the Distribution Constructor, are also open source and available for you to use in
constructing your own distribution. This topic is beyond the scope of this book, but to explore
further, install the Distribution Constructor using the following command:

pkg install SUNWdistro-const

Once this package is installed, consult the distro_const(1M) man page and the documen-
tation links it provides to get started building your own distribution. You can also consult the
Distribution Community group, www.opensolaris.org/os/community/distribution/, for
assistance. The builders of most of the distributions discussed in Chapter 2 are members of this
community group.

If you do build a custom distribution that you’d like to redistribute, be aware that
you need to conform to the OpenSolaris trademark and branding guidelines, which

are maintained by the Trademark and Branding project, http://opensolaris.org/os/project/
branding/.

Resources
The Image Packaging System development is hosted at http://opensolaris.org/os/
project/pkg.

The boot environment management utilities and Distribution Constructor are products of the
Caiman installer project, http://opensolaris.org/os/project/caiman.

The Distributions community group provides resources for distribution creators; its home page
is http://opensolaris.org/os/community/distribution.

Summary
This chapter introduced the concepts underlying the innovative new packaging system in Open-
Solaris, the Image Packaging System (IPS), and demonstrated how to perform many of the com-
mon software management tasks using both the graphical Package Manager and the pkg com-
mand, including updating to a new release of the operating system and managing multiple boot
environments. You also learned how to create a package repository and obtain the tools needed
to build your own distribution. You’re ready to manage the software on an OpenSolaris system!

188

OpenSolaris
File Systems,
Networking,
and Security

IN THIS PART

Chapter 7
Disks, Local File Systems, and the
Volume Manager

Chapter 8
ZFS

Chapter 9
Networking

Chapter 10
Network File Systems and Directory
Services

Chapter 11
Security

Disks, Local File
Systems, and the Volume

Manager

IN THIS CHAPTER
Disks

File system management

devfs

UFS

Swap space

Other local file systems

The Solaris Volume Manager

OpenSolaris includes support for a variety of storage devices and
local file systems, as well as a traditional volume manager. This
chapter describes these capabilities, with the exception of ZFS,

which is described in the next chapter. Network file system support is
described in Chapter 10.

Although data is usually stored on disk, it is generally accessed through a
file system, hiding device-specific details. OpenSolaris provides file system
support through a pluggable framework so that a variety of file systems
can be used concurrently and applications are unaware of the type of
underlying file system on which their data actually resides. Applications
simply access files and directories through the standard POSIX APIs,
while the kernel transparently manages the low-level access using the file
system–specific code. New file systems can be introduced at any time
without affecting existing application code.

This chapter describes the general disk storage support provided in
OpenSolaris and focuses on the local file systems that applications use
to store data. However, because of the flexible nature of the file system
interface in UNIX, and the way that UNIX has traditionally exposed
services such as networking through the file system API, OpenSolaris
also provides access to a variety of other services as if they were true file
systems. This way, those services can be accessed using the familiar file
APIs, even though the underlying service may be quite different. One
example is the Process File System, procfs, which is a pseudo-file system
that actually provides access to all of the running processes on the system.
This file system is described in the proc(4) man page. Some of the other
nontraditional file systems are used for contracts, ctfs(7fs), or kernel

191

Part III OpenSolaris File Systems, Networking, and Security

modules, objfs(7fs). You can learn more about these types of file systems on their man
pages.

The file systems described in this chapter are the more traditional local file systems used for data
storage. Because of its close relationship with disks and standard file systems, the Solaris Volume
Manager (SVM) is also discussed.

Disks
Before delving into the specifics of each file system, you need to first understand how storage is
managed on OpenSolaris. Although most data is still commonly stored on traditional hard disk
drives, a variety of other media are treated by the system as if they were a standard disk. This
includes DVD drives, USB sticks, and system memory. Modern disks present a logical view of
the device as a sequential array of disk blocks, normally 512 bytes in size. Each block is individ-
ually addressable, but it is up to the operating system and file system to manage accesses down
to the individual byte level within a block. In addition to exposing blocks, older disks exposed
the concept of heads, tracks, and cylinders. These concepts still persist, but this data is usually
fabricated and no longer has any actual relationship to the underlying physical hardware.

Disk device names
All disks have a name under the /dev/dsk and /dev/rdsk subdirectories. Because disks can
be accessed at both the block level and the individual byte level, each disk is exposed with two
different names. The block-level access is made through the /dev/dsk name, and the byte-level
access, which is known as raw access, is made through the /dev/rdsk name (hence the ‘‘r’’).
Some commands must be used with the block name, while others must be used with the raw
name. These restrictions are described as each command is discussed.

Although OpenSolaris has a convention for naming individual disks, it is not always followed by
third-party device drivers, so you should not make any assumptions about how a disk will be
named. For disks managed by a driver that is part of OpenSolaris, the name is normally of the
following form:

c#t#d#s#

The name has up to four parts, with an embedded hex number for each part. A typical example
would be the name c0t0d0s0 or even c1t01000003BA4E5E2000002A0047FA3E22d0s2. The
t# portion of the name is optional and might not be present with some disks, depending on the
driver that manages the device. The meanings of each part of the name are controller (c), target
(t), disk (d), and slice (s).

Another common style of disk name that you will encounter follows a form similar to the ctds
name but instead of the s# component, it ends with a p# component. An example would be

192

Disks, Local File Systems, and the Volume Manager 7

c0t0d0p0. The meaning of this part of the name is partition (p). Both slices and partitions are
described in the next section.

As previously mentioned, the name is created by the device driver for the specific disk and
might not follow this convention. You don’t need to worry about the exact style of the
name — just understand that each disk has specific names in the file system, which you use to
access and manage that disk. Depending on what you’re doing, different paths and names are
used for the same device.

If you have many disks attached to your system, it can be confusing to determine which name
is associated with each disk. The format command, described below, is probably the easiest
tool to display the list of disks on the system. The prtconf command can also be used to
display a detailed view of the configuration of the system, which includes the layout of the
system buses and the devices attached to each bus. The dev_link property in the output shows
the /dev/dsk name for each disk, but you still need a detailed understanding of the system’s
hardware configuration to understand the output. This example shows a portion of the prtconf
output:

$ prtconf -v
. . .

sd, instance #18
. . .

Device Minor Nodes:
dev=(27,1152)

dev_path=/pci@5,0/pci1022,7450@4/pci108e,534d@4,1/sd@0,0:a
spectype=blk type=minor
dev_link=/dev/dsk/c2t0d0s0
dev_link=/dev/sd144a

dev_path=/pci@5,0/pci1022,7450@4/pci108e,534d@4,1/sd@0,0:a,raw
spectype=chr type=minor
dev_link=/dev/rdsk/c2t0d0s0
dev_link=/dev/rsd144a

. . .

Notice the two dev_link properties in the output. Use the /dev/dsk property; the other link
is for legacy naming.

Formatting and labeling
Before creating a file system on a disk, you must format and label it. Formatting is a low-level
process that writes data onto the disk so that it is usable by the disk controller. Modern disks
are normally preformatted, but OpenSolaris includes the format command, which can be used
if a disk must be reformatted. Labeling enables you to divide a disk into logical sections, or par-
titions, each of which can be used by a different operating system or file system. Both the fdisk
and format commands can be used to label a disk As described in the following sections, you
typically use both fdisk and format on x86-based systems, but only format on SPARC-based
systems.

193

Part III OpenSolaris File Systems, Networking, and Security

fdisk
The fdisk labeling goes back to the early days of MS-DOS and is the common disk label used
on x86 machines. This label enables you to divide a disk into four different partitions, each of
which can be used by a different operating system or file system on the same machine. When
only a single OS is installed, it is common to have a single fdisk partition that spans the entire
disk.

The OpenSolaris fdisk command is named after this style of label and is used to manage these
labels. The command takes the name of the device to partition:

fdisk /dev/rdsk/c2t0d0p0
Total disk size is 8924 cylinders
Cylinder size is 16065 (512 byte) blocks

Cylinders
Partition Status Type Start End Length %
========= ====== ============ ===== === ====== ===

1 Active Solaris2 1 8923 8923 100

SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Change between Solaris and Solaris2 Partition IDs
5. Exit (update disk configuration and exit)
6. Cancel (exit without updating disk configuration)

You can see that this disk has a single fdisk partition, used for OpenSolaris, and spans the
entire disk. If there is free space on the disk, then you can use fdisk to allocate a new partition
using some or all of that space. If there is no free space but you still want to use the disk,
then you need to shrink an existing partition to create some free space (as discussed in
Chapter 2).

Shrinking an fdisk partition that is in use by another OS or file system can cause data
loss if you are not careful.

In the preceding example, the fdisk partition type is Solaris2. OpenSolaris actually supports
two different types, and you can use option 4 in the fdisk program to switch back and forth.
The Solaris type is used for legacy compatibility. You use that type only if you have an older
version of Solaris installed on the system.

Each fdisk partition on a disk is named in the file system using the c#t#d#p# style of name.
For example, the first fdisk partition of the c0t0d0 disk will have the name c0t0d0p1. Each
disk also has a p0 name, which is used to access the entire disk, as shown earlier in the fdisk
command example. You always use the p0 name with the fdisk command because you are
operating on the whole disk, not on an individual fdisk partition.

194

Disks, Local File Systems, and the Volume Manager 7

format
The format command is used to manage VTOC-style disk labels. VTOC stands for Volume
Table of Contents. This is the label style that has been used since the early SunOS releases; it
predates Solaris support for fdisk-style labels. This style of label allows a disk to be divided into
eight slices on SPARC or 10 slices on x86.

On x86 systems, the last two slices are used for system information, the boot block
and alternate cylinder information, and are not directly partitioned by the user. This

leaves eight usable slices on both SPARC and x86.

This label is normally used on its own, on disks attached to SPARC systems, or indirectly, by
being placed inside of a Solaris2 fdisk partition, on x86. That is, on x86 it is standard to have
an fdisk-style label on the disk for compatibility with the BIOS boot loader and other operating
systems, and to have a VTOC-style label inside of the fdisk partition being used by OpenSolaris.
Unlike the fdisk label, the VTOC-style label is not normally used to provide support for multi-
ple operating systems. Confusingly, VTOC labeling is also called partitioning, so it is easy to get
mixed up when talking about fdisk and VTOC labels, especially because they are both used to
divide a disk into logically separate chunks. However, the term ‘‘slice’’ is commonly used when
referring to VTOCs.

The device for each VTOC slice on a disk is named using the c#t#d#s# style of name. For
example, the first VTOC slice of the c0t0d0 disk will have the name c0t0d0s0. Use the s#
name with various commands to refer to the specific slice on which the command will operate.

VTOC slices are numbered beginning with 0. With fdisk, partition 0 refers to the
whole disk, and partition 1 is the first partition used to store data. When using a

VTOC, there is no requirement for a slice that refers to the whole disk, although by convention,
slice 2 is usually set up to span the full disk. To add to the confusion, a new style of label, called
an EFI label (because it is part of the Extensible Firmware Interface definition), can be used in
place of either the fdisk or VTOC labels. This label also enables a disk to be divided into multiple
partitions, and is required for disks larger than the 2TB upper limit with fdisk and VTOC-style
labels. The format command can manage both VTOC and EFI labeled disks. Slice names in the file
system are also represented using the c#t#d#s# style of name when an EFI label is in use.

The format command discovers all of the disks on the system and prints a simple menu to
start:

format

Searching for disks . . . done

AVAILABLE DISK SELECTIONS:
0. c1t15d0 <DEFAULT cyl 8938 alt 2 hd 255sec 63>

/pci@5,0/pci1022,7450@4/pci108e,534d@4/sd@f,0
1. c2t0d0 <DEFAULT cyl 8921 alt 2 hd 255sec 63>

/pci@5,0/pci1022,7450@4/pci108e,534d@4,1/sd@0,0
Specify disk (enter its number):

195

Part III OpenSolaris File Systems, Networking, and Security

After you choose a disk, you are presented with another menu that enables you to perform a
variety of disk management tasks:

FORMAT MENU:
disk - select a disk
type - select (define) a disk type
partition - select (define) a partition table
current - describe the current disk
format - format and analyze the disk
repair - repair a defective sector
label - write label to the disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
verify - read and display labels
save - save new disk/partition definitions
inquiry - show vendor, product and revision
volname - set 8-character volume name
!<cmd> - execute <cmd>, then return
quit

format>

The most common task is partition, which enables you to define VTOC or EFI slices on the
disk. To manage EFI labels, the format command must be invoked with the expert flag (-e).

It is rare for x86 or SPARC systems to include firmware that can boot from an EFI
labeled disk. Use EFI labels only if you know your hardware can boot from disks with

that style of label or for secondary disks from which you don’t need to boot. Check the documen-
tation for your system if you are in doubt about its capability to boot from an EFI labeled disk.

Removable media
Support for removable media, such as DVD, CD-ROM, USB stick, SD Card, or floppy, is
provided by additional services and commands in OpenSolaris. The rmvolmgr is a system
service that monitors removable drives and automatically mounts media when it is inserted.
This daemon is managed by the system/filesystem/rmvolmgr SMF service. In some cases,
particularly with floppy drives, there is no way for the rmvolmgr to detect when a drive has
been inserted. You can use the volcheck command to check for new media. To unmount and
eject removable media, you can use the eject command. In some cases, drives cannot actually
eject the media — you have to use the physical eject button after the command has been run.

Even if the system cannot automatically eject the media, such as with a USB stick,
run the eject command. This ensures that the file system is properly unmounted

before you physically remove the media; otherwise, you risk losing data.

In most cases, when removable media is inserted, the rmvolmgr is configured to bring up the
Gnome Nautilus file browser or the Sound Juicer music player.

196

Disks, Local File Systems, and the Volume Manager 7

Gnome applications, as well as procedures to customize the graphical user interface,
are described in Chapter 4.

You can also access the device through its mount point in the file system. The default mount
point is /media but rmvolmgr also creates links named /cdrom, /floppy, and /rmdisk, as
necessary.

Formatting removable media is handled differently from fixed media drives. You must use the
format -e command, or the rmformat command, to format removable media. The rmformat
command with no options displays all of the removable media devices attached to the system:

rmformat
Looking for devices . . .

1. Logical Node: /dev/rdsk/c6t0d0p0
Physical Node: /pci@0,0/pci1022,7460@6/pci108e,534d@3,

2/storage@4/disk@0,0
Connected Device: USB DISK 25X PMAP
Device Type: Removable

Bus: USB
Size: 123.0 MB
Label: <None>

Access permissions: Medium is not write protected.
2. Logical Node: /dev/rdsk/c0t1d0p0

Physical Node: /pci@0,0/pci-ide@7,1/ide@1/sd@1,0
Connected Device: AOPEN DUW1608/ARR A04b
Device Type: DVD Reader/Writer

Bus: IDE
Size: <Unknown>

Label: <Unknown>

Access permissions: <Unknown>

3. Logical Node: /dev/rdsk/c14t0d0p0
Physical Node: /pci@0,0/pci8086,2448@1e/pci1179,1@b,

3/sdcard@0/disk@0,0
Connected Device: OSOL SD Memory Card
Device Type: Removable
Bus: <Unknown>

Size: 1.9 GB
Label: <None>

Access permissions: Medium is not write protected.

Here, the first device is a USB stick, the second is a DVD burner, and the third is an SD card.
You can also see the device name that OpenSolaris has assigned to each of these drives in the
Logical Node entry. You would use that name to run rmformat on the device. The rmfor-
mat command includes a variety of options for formatting different types of removable media.
See the man page for more details.

You may need to install the SUNWsdcard package to enable support for an SD card.
See Chapter 6 for information on installing software.

197

Part III OpenSolaris File Systems, Networking, and Security

RAM disk
OpenSolaris includes support for RAM disks — that is, disks whose only storage is system
memory and whose contents are lost when the system shuts down. However, in many cases, the
tmpfs file system described later in this chapter provides the same performance benefits and
is easier to manage. You manage RAM disks using the ramdiskadm command. This example
creates a 100MB RAM disk named memdisk:

ramdiskadm -a memdisk 100m
/dev/ramdisk/memdisk

The command outputs the device name, which can then be used just like a standard disk
device.

lofi
The loopback file driver, lofi, enables you to use a regular file as if it were a block device. For
example, if you have an ISO image file of a CD-ROM that you have downloaded, you can use
lofi to mount the file just as if it were an actual CD-ROM disk. The mount command, which
is described in more detail later in the section ‘‘File System Management,’’ can normally be used
to mount the file directly, as shown in this example:

mount -F hsfs /home/myhome/sxde.iso /mnt

Behind the scenes, mount uses the lofi driver. On old releases of OpenSolaris, or if you need
to create the device without mounting it, use the lofiadm command to create a lofi device
directly. This example shows the use of the lofiadm command to first set up the file as a
device before mounting it, instead of directly mounting the file:

lofiadm -a /home/myhome/sxde.iso
/dev/lofi/1

The new device is named /dev/lofi/1 and can be used like a regular disk. Here the lofi
device is being mounted:

mount -F hsfs /dev/lofi/1 /mnt

The lofi driver can perform decompression on-the-fly, which is used to support the live CD,
and there is an OpenSolaris project to add encryption.

SANs
Storage area networks (SANs) are a popular enterprise-grade approach to provisioning storage
onto a server. In this configuration, the disks reside on the SAN instead of being directly
attached to the system. The benefits of a SAN are that the storage devices can be easily shared,
provisioned, and reprovisioned among the servers. The drawback is that expensive SAN
networking gear and a host bus adapter (HBA) are required because SANs are generally Fibre

198

Disks, Local File Systems, and the Volume Manager 7

Channel-based. SANs are usually contrasted with network-attached storage (NAS). In a SAN,
disks are accessed at the block level, just as if they were locally attached. With NAS, access
is at the file level using a file system that is explicitly network-aware, such as NFS or CIFS.
Also, with NAS, the underlying network technology is much less of a factor than in a SAN
because NAS has been used for decades on industry standard networks, ranging from 10Mbs
Ethernet on up.

Network file systems are discussed in Chapter 10.

OpenSolaris includes drivers for a variety of Fibre Channel HBAs. Adding SAN-based storage is
primarily a SAN configuration operation, which is outside of the scope of this book. You should
follow the HBA-specific documentation included with your hardware.

By using iSCSI, described in the following section, you can achieve similar capabilities as with a
Fibre Channel-based SAN, but using standard TCP/IP networking.

iSCSI
The SCSI specification defines a disk protocol that has traditionally been used for locally
connected, high-performance disk drives. The iSCSI protocol encapsulates the SCSI protocol
inside the standard TCP/IP protocol, enabling block-level storage access across the network.
iSCSI offers similar benefits to those seen in a traditional SAN, but using industry standard
networking protocols and NICs. However, to use iSCSI in production, you most likely need
at least one dedicated 1Gbs NIC and fast network access to the remote storage to achieve
acceptable performance.

The SCSI specification uses the terms target and initiator. For the purposes of this chapter, think
of the target as a disk drive, and the initiator as the client computer using the disk. OpenSolaris
supports both an iSCSI target and initiator, so you can use OpenSolaris as a server to provide
storage to iSCSI clients or as a client system to use iSCSI storage on the network.

To use iSCSI, you may need to install either the target or the initiator soft-
ware, depending on how you want to configure the system. The target is in the

SUNWiscsitgt package and the initiator is in the SUNWiscsi package. See Chapter 6 for
information on installing software.

The following example walks through the steps to configure an iSCSI target and initia-
tor. For clarity, the system prompts are shown as target# on the host providing the
SCSI target disk and init# on the host using the remote disk. OpenSolaris provides two
commands — iscsitadm, which is used to manage iSCSI targets, and iscsiadm, which is
used to manage iSCSI initiators.

199

Part III OpenSolaris File Systems, Networking, and Security

Configuring the target
On the target system, you first create a directory where the storage will reside, and then use the
iscsitadm command to define the configuration:

target# mkdir /export/home/disks
target# iscsitadm modify admin -d /export/home/disks
target# iscsitadm create target -z 5g mytarget
target# iscsitadm list target
Target: mytarget

iSCSI Name: iqn.1986-03.com.sun:02:8f23a58f-337f-6989-d09f-
d4fb7bb3dfae.mytarget

Connections: 0

In this case, the storage will reside under the /export/home/disks directory. The first iscis-
tadm command defines that as the default directory. The second iscsitadm command creates a
new target that is 5GB in size, named mytarget. This target will be a file in the file system that
is used as a disk by the initiator. The final command shows the new target configuration.

An SMF service provides support for iSCSI targets. This service is named system/iscsitgt:
default and is automatically enabled when you configure the first target device.

Configuring the Initiator
On the initiator system you use the iscsiadm command to configure access to the remote stor-
age. The initiator can discover remote storage in various ways. This example shows the simplest
case. First, you specify the IP address of the target system (192.168.0.1 for this example):

init# iscsiadm add discovery-address 192.168.0.1
init# iscsiadm modify discovery -t enable
init# iscsiadm list discovery
Discovery:

Static: disabled
Send Targets: enabled
iSNS: disabled

init# iscsiadm list target
Target: iqn.1986-03.com.sun:02:8f23a58f-337f-6989-d09f-
d4fb7bb3dfae.mytarget

Alias: mytarget
TPGT: 1
ISID: 4000002a0000
Connections: 1

The target device is now visible — look at the disks available on the system: a new disk named
c1t01000003BA4E5E2000002A0047FA3E22d0 is now visible. The exact name will vary based
on your system and network configuration.

init# ls /dev/dsk
c0t0d0s0

200

Disks, Local File Systems, and the Volume Manager 7

c0t0d0s1
c0t0d0s2
c0t0d0s3
c0t0d0s4
c0t0d0s5
c0t0d0s6
c0t0d0s7
c1t01000003BA4E5E2000002A0047FA3E22d0s0
c1t01000003BA4E5E2000002A0047FA3E22d0s1
c1t01000003BA4E5E2000002A0047FA3E22d0s2
c1t01000003BA4E5E2000002A0047FA3E22d0s3
c1t01000003BA4E5E2000002A0047FA3E22d0s4
c1t01000003BA4E5E2000002A0047FA3E22d0s5
c1t01000003BA4E5E2000002A0047FA3E22d0s6
c1t01000003BA4E5E2000002A0047FA3E22d0s7

Using the iSCSI disk
Now you can create a file system on this disk, just as if it were a locally attached device (the
procedure to create a file system is described in more detail later in this chapter):

init# newfs /dev/rdsk/c1t01000003BA4E5E2000002A0047FA3E22d0s2
newfs: construct a new file system /dev/rdsk
/c1t01000003BA4E5E2000002A0047FA3E22d0s2: (y/n)? y
/dev/rdsk/c1t01000003BA4E5E2000002A0047FA3E22d0s2:

10485120 sectors in 32766 cylinders of 4 tracks, 80 sectors
5119.7MB in 256 cyl groups (128 c/g, 20.00MB/g, 2560 i/g)

super-block backups (for fsck -F ufs -o b=#) at:
32, 41072, 82112, 123152, 163872, 204912, 245952, 286992, 327712,
368752,
10076352, 10117392, 10158112, 10199152, 10240192, 10281232,
10321952,
10362992, 10404032, 10445072

On the target system you can monitor the performance of the target devices:

target# iscsitadm show stats
operations bandwidth

device read write read write
-------------------- ----- ----- ----- -----
mytarget 339 664 17M 83M

Finally, on the initiator, you can set up the vfstab entry and mount the file system you just
created. vfstab is used for persistently managing file system mounts, and is described in detail
in the section ‘‘Mounting and unmounting file systems’’ later in this chapter.

init# mount /remotespace
init# df -hl
Filesystem size used avail capacity Mounted on

201

Part III OpenSolaris File Systems, Networking, and Security

/dev/dsk/c0t0d0s0 7.5G 5.1G 2.3G 70% /
/devices 0K 0K 0K 0% /devices
/dev 0K 0K 0K 0% /dev
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 976M 688K 976M 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
sharefs 0K 0K 0K 0% /etc/dfs/sharetab
fd 0K 0K 0K 0% /dev/fd
swap 976M 32K 976M 1% /tmp
swap 976M 88K 976M 1% /var/run
/dev/dsk/c0t0d0s7 20G 20M 19G 1% /export/home
/dev/dsk/c1t01000003BA4E5E2000002A0047FA3E22d0s2

4.9G 5.0M 4.9G 1% /remotespace

Advanced iSCSI administration
There are some limitations to using iSCSI in OpenSolaris. An iSCSI device cannot currently be
used as a boot device or a dump device.

In OpenSolaris, a dump device is used to save a crash dump if the system panics. The
crash dump is necessary for postmortem analysis to determine the cause of the panic

and fix the bug. See Chapter 24 for more information.

The previous example walked through setting up a simple iSCSI configuration. Because the
disk traffic will be going over the network, it is recommended that you configure additional
security for your iSCSI devices. One option is to use IP Security (IPsec) for the network traffic.
This provides both authentication and encryption of the data. Alternatively, you can use the
built-in iSCSI support for either the Challenge Handshake Authentication Protocol (CHAP) or
the Remote Authentication Dial In User Service (RADIUS) protocol for authenticating remote
access, although neither of these actually encrypts the data.

See Chapter 11 for details on configuring IPsec.

This section only scratches the surface of using iSCSI. Consult the man pages and documenta-
tion for more information about a variety of other advanced topics for configuring and managing
iSCSI.

I/O Multipathing
Because SANs are generally used in enterprise-grade server configurations, multipathing is usu-
ally described in that context. Multipathing can be configured anytime you have more than one
path to access your disks. In a SAN configuration, this is done by adding multiple HBAs to the
server. Using multipathing enables the system to maintain access to its storage, even if an HBA
fails. In OpenSolaris, I/O multipathing is also sometimes called MPxIO.

OpenSolaris includes the scsi_vhci(7D) driver, which manages multipathing. If multipathing
were not enabled, the same disk would show up more than once in the device tree because

202

Disks, Local File Systems, and the Volume Manager 7

each path to the disk looks like a separate instance. With multipathing enabled, the device tree
on the system is restructured so that the separate instances are removed and a single instance
appears instead. If you look at a system in this state, you’ll notice that these disks appear under
the /device/scsi_vhci subdirectory. Multipath support is enabled by default in OpenSolaris.
If necessary, you must disable it by reconfiguring the driver for your HBA. You can also use the
mpathadm command to view information about the multipath configuration.

When using iSCSI, you can configure multipathing using the standard OpenSolaris networking
features such as IPMP or link aggregation. You can also use the scsi_vhci multipathing driver,
which is useful if you are using a mix of iSCSI and Fibre Channel-based devices.

IPMP and link aggregation are described in Chapter 9.

Remote replication
Remote replication of data is used when disaster recovery is important. This is typically in large
server configurations. This type of configuration is outside the scope of this book, but OpenSo-
laris includes support for remote replication using the ‘‘Sun StorageTek Availability Suite 4.0’’
software. The project, documentation, and source code are available on OpenSolaris.org.

When using ZFS, you can also use the send and receive operations to replicate a
file system to another machine. See Chapter 8 for more information.

Other Disk Utilities
The prtvtoc command can be used to print the VTOC label for a disk:

prtvtoc /dev/rdsk/c0t0d0s0
* /dev/rdsk/c0t0d0s0 partition map
*
* Dimensions:
* 512 bytes/sector
* 63 sectors/track
* 255 tracks/cylinder
* 16065 sectors/cylinder
* 8923 cylinders
* 8921 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory

0 2 00 1076355 10249470 11325824
1 3 01 16065 1060290 1076354

203

Part III OpenSolaris File Systems, Networking, and Security

2 5 00 0 143315865 143315864
5 0 00 11325825 52436160 63761984
6 0 00 63761985 79537815 143299799
7 0 00 143299800 16065 143315864
8 1 01 0 16065 16064

The fmthard command can format a disk in a non-interactive way, although the format com-
mand is usually preferable.

The iostat command is used to monitor disk I/O activity. It supports a variety of options, but
on a system with more than a couple of disks, the -nx options are the most useful. The out-
put displays one line for each disk, showing reads and writes per second (r/s, w/s), KB read and
written per second (kr/w, kw/s), wait queue length (wait), average number of active operations
(actv), average time in the wait queue in milliseconds (wsvc_t), average service time for active
operations in milliseconds (asvc_t), percent of the time wait queue is not empty (%w), and per-
cent of time the disk is busy (%b). The number 5 in the example specifies the output interval in
seconds; updated statistics are reported every five seconds:

iostat -nx 5
extended device statistics

r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c0t0d0

15.0 208.6 230.5 4455.3 0.0 10.0 0.0 44.9 0 38 c0t1d0
12.4 203.0 177.6 4314.7 0.0 12.8 0.0 59.2 0 46 c0t2d0

. . .

See Chapter 14 for more information about iostat. The iostat(1M) man page
describes all of the options and the output format in detail. DTrace, described in

Chapter 15, enables unprecedented observability into the dynamic behavior of disk I/O. You can
use the DTrace toolkit, which is listed in Chapter 15’s ‘‘Resources’’ section, to get several pre-built
DTrace programs for disk I/O analysis.

OpenSolaris includes a sophisticated dynamic reconfiguration (DR) capability. This functionality is
beyond the scope of this chapter, but one of the things DR can be used for is to reconfigure I/O
devices. See the cfgadm(1M) command for more information.

One further command that can be useful with disks, as well as in a variety of other contexts, is
the dd command. This command is used for converting and copying files; and because disks
look just like files in the file system, the command can be used to copy and convert raw disk
images. It includes a variety of arcane options, which are described on the man page.

The dd command options are unusual and differ from the typical command-line
syntax. The abbreviation stands for ‘‘data definition’’ and traces its roots all the way

back to the IBM Job Control Language (JCL) used in the punch card era.

204

Disks, Local File Systems, and the Volume Manager 7

File System Management
The specific commands used to create each type of file system are described later in the chapter,
in each file system-specific section. Once the file systems have been created, they are normally
managed using a common set of commands that work across all types of file systems.

Mounting and unmounting file systems
Once a file system has been created, the mount command is used to make the file system acces-
sible to the system:

mount /dev/dsk/c0t0d0s7 /export/home

The mount command accepts a variety of options, including various file system-specific options,
but in the simplest case you specify the slice to mount and the directory on which the file sys-
tem will be mounted. Once a file system is mounted, the directory is referred to as the mount
point. You can see from the disk path name in the example that the mount command must be
used with a block device. The umount command can be used with either the disk name or the
mount point to unmount a file system:

umount /export/home

A file system cannot be unmounted of it is busy — that is, if an application is using a file within
the file system or if a process’s current working directory is within the file system. In this case,
you need to determine which process is preventing the unmount. The lsof tool is the common
command in Linux to perform this task. While this command is not part of OpenSolaris, there is
a port that you can download and build. Because it relies on undocumented kernel implemen-
tation details, it is easily broken and may not always work. Instead, OpenSolaris includes the
fuser command, which provides similar information:

umount /export/home
umount: /export/home busy
fuser /dev/dsk/c0t0d0s7
/dev/dsk/c0t0d0s7: 29212c

This output tells you that pid 29212 is using this mount point as its current working
directory. You can read about all of the options and the output format on the fuser(1M) man
page.

The pfiles command, described in Chapter 14, enables you to observe all of the
files that a specific process is using.

Manual mounts using the mount command do not persist across reboots. Instead, the entries in
the /etc/vfstab file are used to manage persistent mounts. This is a simple ASCII file that you

205

Part III OpenSolaris File Systems, Networking, and Security

edit to add any mounts that should be done when the system boots. Each mount has a one-line
entry in this file, with seven columns, using the following format:

Device Device Mount File fsck Mount Mount
to Mount to fsck Point System pass at Boot Options

Type

This is a sample entry for the /export/home file system used in the preceding example:

/dev/dsk/c0t0d0s7 /dev/rdsk/c0t0d0s7 /export/home ufs 2 yes -

The block device is listed first, followed by the raw device, which is used to check the file
system for errors. The fsck command is described later in the ‘‘UFS’’ section. The next columns
specify the mount point, the type of file system, the fsck pass, whether the file system should
be mounted when the system boots, and, finally, any mount options. Because there are no
mount options, a dash (-) is used as a placeholder in this entry.

After an entry exists in the file, you can just use the mount point with the mount command:

mount /export/home

A variety of SMF milestones are used during boot to mount various file systems:

system/filesystem/minimal
system/filesystem/root
system/filesystem/usr
system/filesystem/local

See the service definitions and methods to understand what each milestone does.

SMF is described in Chapter 13.

Monitoring file systems
Although there are a variety of commands for interacting with the file system, the most useful
general-purpose commands for monitoring are df, du, and fsstat.

The df command displays each mounted file system, along with statistics about its usage:

$ df -hl
Filesystem size used avail capacity Mounted on
/dev/dsk/c0t0d0s0 5.2G 3.7G 1.5G 71% /
. . .

swap 1.0G 520K 1.0G 1% /tmp
/dev/dsk/c0t0d0s7 22G 706M 21G 4% /export/home

The du command shows space usage from any point in the file system:

$ du -sh book
174M book

206

Disks, Local File Systems, and the Volume Manager 7

The fsstat command displays information about each type of file system or about file systems
at specific mount points:

$ fsstat /
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes

15.6K 10.8K 717 4.95M 2.68K 29.7M 142K 1.11M 1.26G 241K 221M /

The fsstat command supports a variety of options for monitoring file system activity in differ-
ent ways. See the man page for full details.

File systems and shutting down
For better performance, most file systems buffer some of their data in kernel memory, delaying
the actual writes to disk. The fsflush process is a system process (it runs inside the kernel)
that periodically writes cached data out to disk. You’ll notice this process in the output of the
ps command. This means that an improper shutdown, such as turning off the system power,
can leave the file system in an inconsistent state. This situation, and how to recover from it, is
described in more detail in the ‘‘UFS’’ section of this chapter. The ZFS file system does not suf-
fer from this problem. To ensure that all file system data is in a valid state, always perform an
orderly shutdown using the init or shutdown commands. The sync command has also been
used in the past to ensure that file system data has been written to disk, but an orderly shut-
down does this automatically.

devfs
Devices in OpenSolaris are named in the file system, just like regular files. You have seen
examples of this with the disks named under /dev/dsk. Devfs is responsible for the entries
under /dev and /devices. This file system is primarily managed by the running operating
system and requires limited administrative attention. You’ll notice a devfs entry in the vfstab
and a daemon named devfsadmd.

The devfsadm command can be used to manage the namespace under /dev. The most
common usage is to simply run the command to cause any devices that have been dynamically
added to the system to appear in the file system. You can check the other options on the
man page.

UFS
The Unix File System (UFS) has been the primary file system used on OpenSolaris, and its pre-
decessor, Solaris, for more than 25 years. The roots of this file system trace back to the Berkeley
Fast File System developed by Marshall Kirk McKusick and Bill Joy for the BSD project in the

207

Part III OpenSolaris File Systems, Networking, and Security

early 1980s. This file system has been continuously enhanced over the years to reach its current
maturity. Its longevity is a testament to the strength of its basic design. However, the UFS file
system has been showing its age and is being phased out in favor of ZFS, which is the default
file system on OpenSolaris, and is described in the next chapter. For most new installations you
should consider using ZFS, although a large base of legacy installed UFS file systems will con-
tinue to be in use for many years.

Creating a UFS File System
The newfs command is used to create a new UFS file system on a block device slice:

newfs /dev/dsk/c0t0d0s7
newfs: /dev/rdsk/c0t0d0s7 last mounted as /export/home
newfs: construct a new file system /dev/rdsk/c0t0d0s7: (y/n)? y
Warning: 1392 sector(s) in last cylinder unallocated
/dev/rdsk/c0t0d0s7: 46342800 sectors in 7543 cylinders of 48
tracks, 128 sectors

22628.3MB in 472 cyl groups (16 c/g, 48.00MB/g, 5824 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 98464, 196896, 295328, 393760, 492192, 590624, 689056, 787488,
885920,

Initializing cylinder groups:
.........
super-block backups for last 10 cylinder groups at:
45418272, 45516704, 45615136, 45713568, 45812000, 45910432,
46008864,
46107296, 46205728, 46304160

The command prompts for confirmation and then emits a variety of bookkeeping messages as
the file system is being created.

Creating a new file system on a slice is a destructive operation. Any data previously
on the slice will be lost. It is common for VTOC slice 2 to span the entire disk, so

creating a file system on that slice can wipe out data on all of the other slices on the disk.

The newfs command is a simplified front end to the mkfs command. Several options can
be used to tune the file system in various ways. These are described on the mkfs_ufs(1M)
man page. In most cases, you won’t need to use these options, but a few might be useful. Use
the -T option if you are creating a file system that you expect to later grow to be larger than
1TB. Growing a UFS file system is described in the section ‘‘The Volume Manager’’ later in this
chapter. Another option is -C num, which specifies the maximum number of blocks that should
be allocated contiguously. In particular, this option is often set on a file system that will be used
with a database, where it is known in advance that data will be primarily written in contiguous
chunks. The tunefs command can be used to adjust some of these options after the file system
has been created.

208

Disks, Local File Systems, and the Volume Manager 7

Logging
One of the traditional problems with UFS is that its file system metadata, the data about the file
system itself, is written in separate operations at different locations on the disk. Thus, it is pos-
sible for this data to be out of sync if the system goes down unexpectedly, before all of these
writes have been completed. This leaves the file system in a corrupted state, which you would
need to repair before the file system can be mounted. In the worst case, serious data loss can
occur.

Logging is a solution to this problem and is one of the features added to UFS over the years.
With logging, the metadata operations are grouped into a transaction that is written to a log. If
the system goes down, then the log can be replayed when the system boots, restoring the file
system to a consistent state. Any incomplete transactions are discarded. A beneficial side effect
is that performance is also improved, because metadata writes are grouped and written in one
operation.

Logging is on by default, but you can disable it if necessary with the nologging mount option.

UFS Mount Options
All of the UFS-specific mount options are described on the mount_ufs(1M) man page. A few of
the options you might have an occasion to use are as follows:

■ noatime — Disables recording of file access times. If you are not interested in tracking
access times, then using noatime can provide a small performance boost.

■ quota — Enables disk-space quotas, as described shortly

■ forcedirectio — Provides a performance boost for certain applications, such as
databases

Checking and Repairing a UFS File System
UFS includes a variety of mechanisms, such as logging, to keep file systems consistent. However,
sometimes a file system will become corrupted and need to be fixed before it can be used. The
fsck command is used to check a file system and, optionally, to try to repair it. This command
is normally run automatically, if necessary, when the system boots. If you need to run it manu-
ally to repair a file system, specify the raw slice.

fsck /dev/rdsk/c0t0d0s7
** /dev/rdsk/c0t0d0s7
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups

209

Part III OpenSolaris File Systems, Networking, and Security

2 files, 9 used, 22820199 free (7 frags, 2852524 blocks,
0.0% fragmentation)

This is the output on a clean file system. Do not run this on a device that hosts a file system
that is already mounted; and do not run this command unless it is necessary. For example, on
a multi-terabyte file system, it can take a very long time (many hours or days) to complete. The
output of the command varies depending on the type of corruption that has occurred, but this
example also shows how fsck can repair a file system:

fsck /dev/rdsk/c0t0d0s7
** /dev/rdsk/c0t0d0s7
BAD SUPERBLOCK AT BLOCK 16: MAGIC NUMBER WRONG

LOOK FOR ALTERNATE SUPERBLOCKS WITH MKFS? y

LOOK FOR ALTERNATE SUPERBLOCKS WITH NEWFS? y

FOUND ALTERNATE SUPERBLOCK 98464 WITH NEWFS

USE ALTERNATE SUPERBLOCK? y

FOUND ALTERNATE SUPERBLOCK AT 98464 USING NEWFS
If filesystem was created with manually-specified geometry, using
auto-discovered superblock may result in irrecoverable damage to
filesystem and user data.

CANCEL FILESYSTEM CHECK? n

** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups

UPDATE STANDARD SUPERBLOCK? y

2 files, 9 used, 22820199 free (7 frags, 2852524 blocks,
0.0% fragmentation)

***** FILE SYSTEM WAS MODIFIED *****

The corruption on this file system was simple and easy to fix, but you may be faced with a seri-
ously corrupted file system that causes fsck to emit a seemingly unending series of prompts. If
you are not a UFS expert, and you just want fsck to try its best to fix things, use the -y option
to let fsck take its default repair action in all cases.

As you look around mounted UFS file systems, you will notice a lost+found directory at the
top level of each file system. This directory is where fsck puts any files it finds during a repair

210

Disks, Local File Systems, and the Volume Manager 7

operation that have become disconnected from any directory. In the worst case, you might be
able to look through these lost files and recover some of your data, although this can be hit or
miss. Don’t remove the lost+found directory, as fsck depends on it.

Quotas
UFS provides support for quotas, whereby disk space can be limited on a per-user basis. To use
quotas, the file system must first be mounted using the quota option, as described earlier. Use
this option in the vfstab so that quotas for the specified file system are enabled each time the
system boots.

The following example sets up quotas for the /export/home file system. Each file system that
will use quotas must have a file named quotas at the top level of the file system. The file
should be read-only and owned by root:

cd /export/home
touch quotas
chmod 600 quotas

Next, use the edquota command to edit the quotas for a user. This command brings up an edi-
tor where you can specify the user’s quota for each file system that is set up for quotas:

edquota sarah

Because only one file system is set up with quotas, this is the one-line entry you would see in
the file:

fs /export/home blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

This shows the entry for the /export/home file system. You specify the user’s total space lim-
its in the blocks soft and hard entries, in units of 1,024 byte blocks. The inodes limits are
used to set the total number of files that a user can have. The soft limit is used to warn users
when they exceed the limit, but the operation still succeeds. The hard limit cannot be exceeded
and causes the operation to fail.

You can use the -p option to quickly set up quotas for a number of users. See the
edquota(1M) man page for more information.

After all of the quotas are set up, turn on quotas using the quotaon command with the -a
option:

quotaon -a

The quota command with the -v option shows the usage for a specified user:

quota -v sarah
Disk quotas for sarah (uid 100):
Filesystem usage quota limit timeleft files quota limit timeleft
/export/home 113 1000 2000 2 50 50

211

Part III OpenSolaris File Systems, Networking, and Security

In this example, the soft space limit was set to one thousand 1,024-byte blocks, or approxi-
mately 1MB, and the hard space limit was set to 2,000 blocks, or about 2MB. The number of
files was limited to 50. The user is already using 113 blocks.

Once quotas are enabled, any command by which the user attempts to exceed his or her quota
will fail, as the following example shows. Note the warning when the soft limit is exceeded, and
the error when the hard limit is reached:

$ cd /export/home/sarah
$ mkfile 2m f1
quota_ufs: Warning: over disk limit (pid 29832, uid 100, inum 6,
fs /export/home)

quota_ufs: over hard disk limit (pid 29832, uid 100, inum 6, fs /export/home)
f1: initialized 2023424 of 2097152 bytes: Disc quota exceeded

In addition to the quota command, you can use the repquota command to report on quotas
by file system:

repquota /export/home
Block limits File limits

User used soft hard timeleft used soft hard timeleft
sarah -- 1993 1000 2000 2 50 50

You can read more information about UFS quotas in the OpenSolaris System Administration Guide,
Volume 2, Chapter 29, ‘‘Managing Quotas (Tasks).’’

Backup, Snapshots, and Restore
The ufsdump program is used for backing up UFS file systems — for both full and incremental
dumps. An incremental dump enables you to back up only those files that have changed since
the last incremental or full dump. The next example shows a full back up of the root file system.
Because an explicit dump device is not specified, ufsdump writes to the /dev/rmt/0 device,
which is the name of a magnetic tape device on OpenSolaris. Your backup device may be differ-
ent. If so, you can specify an explicit device using the -f option.

ufsdump -0cu /

The argument -0 means take a level-0, or full, dump. The -c argument specifies that the
defaults for a cartridge tape device should be used, and the -u option means that a dump record
should be written to /dev/dumpdates, recording that a successful dump was taken.

A file system should be dumped only when it is unmounted, or mounted read-only, so that
no changes occur while the dump is taking place. To dump a critical file system such as root,
you need to boot the system to single-user mode so that root is mounted read-only. Because
dumps can take a long time, this will have a significant effect on the availability of the system.
Instead, you can create a snapshot of the file system using the fssnap command and use

212

Disks, Local File Systems, and the Volume Manager 7

that as the source of the dump. The following example creates a snapshot of the root file
system:

fssnap -F ufs -o bs=/export/home/snap /
/dev/fssnap/0

This snapshot takes just a few seconds to create; and once it is complete, the root file system
can be modified while a dump of the snapshot is taken. The fssnap_ufs(1M) man page
describes all of the options for UFS snapshots. This example uses the -o bs option to specify a
backing-store for the snapshot. The snapshot is created as a temporary file in that directory. You
can now run the same dump as above, but using the snapshot as a raw device:

ufsdump -0cu /dev/rfssnap/0

Once the dump is finished, you can delete the snapshot:

fssnap -d /
Deleted snapshot 0.

UFS snapshots are not persistent across reboots.

The ufsrestore program is used to restore from your backups. The exact sequence of com-
mands you need to run depends on your dump strategy and how many incremental dumps you
need to restore, along with the level-0 dump.

Restoring a critical file system such as root is the most complex task, because you presumably
can no longer just boot from the original device. In this case, you first need to boot from an
alternate device, such as the OpenSolaris Live-CD or from an image on the net. Once you are
running, you need to create a UFS file system, and then you can use ufsrestore just as you
would if you were restoring a noncritical UFS file system:

newfs /dev/dsk/c0t0d0s0
mount /dev/dsk/c0t0t0s0 /a
cd /a
ufsrestore -rv

In this example, you are recreating the root file system from scratch while running on another
image, so you first need to make a file system, mount it, and finally restore it.

As with ufsdump, the command defaults to the /dev/rmt/0 device, or you can use the -f
option to specify an alternate dump file such as a different tape drive or other device. The
ufsrestore command restores dumps into the current directory and includes a variety of
options for interactive restores, as well as other features.

Restoring the root file system has additional complexity that you won’t see with other file
systems. Specifically, the information needed to boot the system also needs to be put in place.

213

Part III OpenSolaris File Systems, Networking, and Security

Because the boot block is not part of the root file system, it won’t be included in the UFS dump.
The procedure to install the boot block varies from SPARC to x86. On SPARC you use the
installboot program:

installboot /usr/platform/`uname-i`/lib/fs/ufs/bootblk /dev/rdsk/c0t0d0s0

On x86 you use installgrub:

installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c0t0d0

See the man pages for more details on these commands, as well as the various possibilities for
restoring individual files or directories from incremental backups.

OpenSolaris includes a variety of other programs for archiving and managing files,
including the tar(1), gtar(1), pax(1), and cpio(1) commands.

Swap Space
Swap space is not really a file system, but because it is related to storage and can be specified
in the vfstab, it is described here. The system’s physical memory, combined with its swap
space, defines the anonymous memory available to the system. The swap space is used when there
is pressure on physical memory, and some of the in-core memory must be paged out to disk.
In general, if this occurs often, then system performance will be noticeably degraded. In that
case, consider adding more physical memory to the system or moving some of the workload
to a different machine. However, in some cases it is beneficial to be able to swap out some of
the in-core pages, so you should almost always configure some swap space. When you have
insufficient anonymous memory, the most common symptom is that either existing processes
or new applications you try to start will begin to fail with out of memory errors. Adding swap
space will alleviate this symptom, but with the performance penalty already mentioned.

This chapter describes the traditional way to configure swap by using a disk slice or
file. When using ZFS as the root file system, then both the swap device and the sys-

tem dump device are configured to use a zvol in the root pool. See Chapter 8 for more informa-
tion on ZFS, and Chapter 24 for more information on configuring dump.

Swap space can be either an unused disk slice or a file. By convention, the installer usually sets
up slice 1 on your boot disk as a swap device. This would be a typical entry in the vfstab:

/dev/dsk/c0t0d0s1 - - swap - no -

If you want to use additional slices for swap, you can add the entries into the vfstab, but they
don’t take effect until the system reboots. To dynamically add swap space, use the swap com-
mand. With the -l option, it prints the swap space currently configured:

swap -lh
swapfile dev swaplo blocks free

214

Disks, Local File Systems, and the Volume Manager 7

/dev/dsk/c0t0d0s1 27,1153 4K 518M 457M
/dev/dsk/c0t1d0s1 27,2113 4K 1.2G 1.1G

The -s option prints a one-line summary, which is helpful to check overall usage:

swap -sh
total: 800M allocated + 85M reserved = 884M used, 1.6G available

The vmstat command, described in Chapter 14, can be used to dynamically monitor
swap space usage.

Use the -a option to add additional space, and the -d option to delete space. The next example
creates a 100MB file to be used for swap space and dynamically adds it:

mkfile 100m /export/swp
swap -a /export/swp
swap -lh
swapfile dev swaplo blocks free
/dev/dsk/c2t0d0s1 27,1153 4K 518M 457M
/dev/dsk/c1t15d0s1 27,2113 4K 1.2G 1.1G
/export/swp - 4K 100M 100M

This additional swap space would not be persistent across reboots unless you also added it to
the vfstab.

A common question is, ‘‘How much swap space should be configured?’’ The answer obviously
varies based on the amount of physical memory and the workload running on the system. Your
application vendor may recommend a specific amount of swap. With the larger amount of
physical memory on modern systems, the old rule of thumb to use twice the physical memory
is usually no longer valid. If you have 8GB, 16GB, or even more physical memory, then having
twice that in swap space doesn’t make sense. With larger memory configurations, and no
other factors, having swap set between one-third to half of physical memory is generally a
good guideline. The OpenSolaris installer defaults to half of physical memory, with an upper
bound of 32GB and a lower bound of 0.5GB. You can easily add more swap space later if
needed.

However, a swap device can also be used for system crash dumps if there is a panic. If possible,
configuring a separate dump device is preferable because it will speed reboots after a panic. (See
Chapter 24, as well as the dumpadm(1M) man page, for information on configuring a dump
device and dump content.) If you are also using your swap device as a dump device, ensure
that it is large enough to hold a system dump, whose size increases with the size of physical
memory even though compression is used. In this case, having swap configured for half or
more of physical memory may be required. Generally, larger memory systems are used in server
configurations where uptime is a factor, so a dedicated dump device makes more sense because
post-panic rebooting is much faster. Remember that dumping into swap doesn’t apply when
using ZFS root on OpenSolaris, as described earlier, so dump size is not a factor when sizing
swap in that case.

215

Part III OpenSolaris File Systems, Networking, and Security

Other Local File Systems
OpenSolaris includes a variety of other local file systems.

pcfs
The pcfs file system is used to mount traditional file systems used on the Windows operating
system. These file systems include FAT12, which is used on floppies, and FAT16 or FAT32 file
systems. In addition to floppies, this type of file system is common on other removable media
such as USB sticks. Although the removable media volume manager will automatically handle
mounts on removable media, if you must manually mount one of these file systems, simply use
the -F pcfs option on the mount command. The mkfs -F pcfs command with the raw device
is used to create a pcfs on a disk. The options are described on the mkfs_pcfs(1M) man
page. Support for other common Windows file systems, such as ntfs, is not part of a standard
OpenSolaris installation, but open source utilities and projects on the OpenSolaris.org website
provide some support.

hsfs
The hsfs file system supports the High Sierra and ISO 9660 file systems commonly used on
CD-ROMs. Again, the removable media volume manager normally automatically handles mounts
of removable media, but you can use the -F hsfs option on the mount command if you need
to manually mount this file system. Remember that the file system must be mounted read-only.
The mount_hsfs(1M) man page describes the options.

You cannot use the mkfs command to create one of these file systems because this type of file
system resides on read-only media. Instead, a special utility called mkisofs is used to create
hsfs file systems. You can then use the cdrecord or cdrw commands to burn data in this for-
mat, if your system is equipped with a DVD or CD-ROM writable drive.

tmpfs
The tmpfs file system resides in anonymous memory — that is, in physical memory and swap
space. This file system is similar in concept to a RAM disk, but it is at the file system level
instead of the device level. As such, it is easier to manage because you don’t actually have to
create a file system; the tmpfs file system manages that automatically. As with a RAM disk,
the contents of this file system are not preserved across reboots. A tmpfs file system is most
often used as the mount point for /tmp because /tmp is defined not to be preserved across
reboots. By using a memory-based file system for /tmp, activities such as compilation, which
create many short-lived temporary files, can be significantly sped up. Although tmpfs is usually
mounted on /tmp, additional mounts can be placed anywhere. The /var/run file system is
another common tmpfs mount point. All tmpfs mounts share the same anonymous memory as
the backing store. The swap device name is used when mounting tmpfs.

Because tmpfs shares anonymous memory with other applications, it reduces the available
physical memory and swap space for running applications. All of the tmpfs-specific mount

216

Disks, Local File Systems, and the Volume Manager 7

options are described on the mount_tmpfs(1M) man page. In particular, the size option limits
the amount of anonymous memory used by a particular mount:

mount -F tmpfs -o size=10m swap /foo

lofs
The lofs file system is not a true file system but is instead the loop-back file system. It enables
you to mount a directory or file someplace else within the system’s directory tree, making that
part of the tree visible in more than one place. There are no lofs-specific mount options, but
the generic options, such as read-only, can be used. The following example mounts / under
/export/home/foo as a read-only mount:

mount -F lofs -o ro / /export/home/foo

The lofs file system is used by various other parts of the system, such as Zones, described in
Chapter 19.

SAM-QFS
SAM-QFS (Storage Archive Manager/Quick File System) is a high-end, enterprise-level file sys-
tem and archiving solution that can be used with OpenSolaris. Like ZFS, QFS integrates volume
management support into the file system. In addition, QFS can be used in a clustered config-
uration to provide shared data access. SAM provides transparent data archiving support and is
integrated with QFS, so the two components automatically work together. Configuring and man-
aging SAM-QFS is outside the scope of this book, but OpenSolaris includes this software. The
project, along with its source code, is available on OpenSolaris.org.

FUSE
FUSE stands for ‘‘file system in user space.’’ This file system is actually a shim layer that
allows new file systems to run as user-level applications instead of having to be integrated
into the kernel. The OpenSolaris FUSE project is working to port FUSE from the BSD version.
Using FUSE enables support for new file systems that cannot be integrated into the kernel
for various reasons, speeds porting of some file systems, and simplifies the development
of new file systems. The current status of the project, as well as the source, is available at
http://opensolaris.org/os/project/fuse/. A variety of popular file systems can be
used with FUSE, including versions of ntfs and ext2.

The Volume Manager
A volume manager is used to create a composite storage device out of a collection of disks.
OpenSolaris includes the Solaris Volume Manager (SVM), which provides this feature. Using
SVM, you can take a set of disks and make a larger volume, either by concatenating the
disks together or by striping across the disks. You can either mirror disks or use RAID-5 for

217

Part III OpenSolaris File Systems, Networking, and Security

redundancy. You can also use SVM as a component in a clustered configuration to provide
redundant access to data for improved uptime.

Because SVM is a traditional volume manager, it works at the disk-block level and
presents pseudo-devices that look like standard disks. A file system, such as UFS,

must be created on top of one of these volumes, just as you would with a standard disk. The ZFS
file system, described in the next chapter, actually incorporates the functionality of a volume
manager with the file system, providing the features of both in an integrated way that enables
them to work better than when the functionality is implemented as separate layers. In general,
you either choose ZFS, which is preferred, or use UFS with SVM, but you typically won’t mix the
use of ZFS and SVM on the same system.

SVM uses the term metadevice as the name for the volumes it provides. All of the SVM com-
mands use meta as a prefix. This section provides a brief overview on configuring and using
SVM, but you should consult the manual to fully understand all of the features.

Creating the metadb
SVM stores its configuration data in metadbs (metadevice databases). Metadbs must be stored on
a raw slice. If you plan to use SVM when installing your system, set aside a small slice of about
10MB on several disks, for your metadbs. For proper behavior, SVM should be configured with
at least three metadbs on three different disks. If one of the disks fails, SVM needs to find the
configuration on another disk. SVM also uses a quorum algorithm to validate the metadbs, so if
you have only two disks and one fails, SVM cannot be sure that the visible metadb is actually
correct. In this situation, the system will boot to single-user so that you can manually verify the
configuration and delete the bad metadb. However, by having three different metadbs on three
different disks, any one disk can fail, and SVM can still have a metadb quorum with the other
two disks.

This example assumes three different disks that have been partitioned with a 10MB slice 7 for
storing the metadbs. You must use the -f flag when you are creating the first metadb. Notice
that you don’t need to specify the full disk path name:

metadb -af c0t0d0s7
metadb -a c0t1d0s7
metadb -a c0t2d0s7

You can also place more than one metadb on a slice. While this will not help if the disk fails, it
can be used for redundancy if some of the blocks on the disk where a metadb is stored go bad.

Creating a metadevice
Now that the metadbs have been created, you can create metadevices. A metadevice is a
pseudo-device that appears just like a regular disk to the code layered above it, such as file
system code, but uses real disks underneath. In this example, you create a simple mirror for the
UFS file system /export/home on c0t0d0s6 and c0t1d0s6. SVM mirrors are composed of
metadevices, so the first step is to create a simple one-stripe metadevice on each slice. Because

218

Disks, Local File Systems, and the Volume Manager 7

you are creating a mirror and SVM works at the block level, both the c0t0d0s6 and c0t1d0s6
slices must be partitioned so that they are the exact same number of blocks in size:

metainit d1 1 1 c0t0d0s6
d1: Concat/Stripe is setup
metainit d2 1 1 c0t1d0s6
d2: Concat/Stripe is setup

This command creates metadevices named d1 and d2. There is only one stripe and one slice in
each device. If you have enough disks, you could concatenate or stripe several slices into one
larger, nonredundant metadevice, and use that to build your mirror.

Now that you have created the underlying metadevices, you can create a one-sided mirror using
the -m option:

metainit metaexport -m d1
metaexport: Mirror is setup

Here, you created a mirror named metaexport, on top of the d1 metadevice. This example also
shows that you can use your own logical names for your metadevices. This mirror has only one
side, so now you attach the other metadevice to make a two-way mirror:

metattach metaexport d2
metaexport: submirror d2 is attached

Once a side has been attached to a mirror, the mirror must be resynced so that both sides are
block-for-block identical. It does not matter that there is no data on this metadevice yet; SVM
works at the block level, so it must mirror each block. This is one example where the tighter
integration that ZFS provides between the file system and volume management features is a big
improvement. Resyncing a mirror can take a long time, depending on the size of the mirror. You
can use the metastat command to monitor the progress:

metastat -c
metaexport m 25GB d1 d2 (resync-9%)

d1 s 25GB c0t1d0s6
d2 s 25GB c0t0d0s6

The -c option prints condensed output. You can see that metaexport is a mirror, composed of
the d1 and d2 metadevices, and that resyncing is 9% complete. Once the resync has finished,
the mirror will be redundant and loss of one of the disks will not cause data loss. You don’t
need to wait for mirror resyncs to complete before using the metadevice. That bookkeeping is
handled transparently by the SVM code.

Now you can create a file system on the mirror and set up the vfstab entry. Metadevices reside
under the /dev/md subdirectory and have both block and raw names, just like real disks:

newfs /dev/md/rdsk/metaexport
newfs: construct a new file system /dev/md/rdsk/metaexport: (y/n)? y

219

Part III OpenSolaris File Systems, Networking, and Security

Warning: 5056 sector(s) in last cylinder unallocated
/dev/md/rdsk/metaexport: 54154304 sectors in 8815 cylinders
of 48 tracks, 128 sectors

26442.5MB in 551 cyl groups (16 c/g, 48.00MB/g, 5824 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32, 98464, 196896, 295328, 393760, 492192, 590624, 689056, 787488,
885920,

Initializing cylinder groups:
..........
super-block backups for last 10 cylinder groups at:
53186208, 53284640, 53383072, 53481504, 53579936, 53678368,
53776800, 53875232, 53973664, 54072096

This is the entry in the vfstab:

/dev/md/dsk/metaexport /dev/md/rdsk/metaexport /export/home ufs 2 yes -

Other commands and features
The metastat command is used to display the configuration. You already saw the condensed
output earlier. Here is the full output for the configuration you just created:

metastat
metaexport: Mirror

Submirror 0: d1
State: Okay

Submirror 1: d2
State: Okay

Pass: 1
Read option: roundrobin (default)
Write option: parallel (default)
Size: 54154305 blocks (25 GB)

d1: Submirror of metaexport
State: Okay
Size: 54154305 blocks (25 GB)
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare
c0t0d0s6 0 No Okay Yes

d2: Submirror of metaexport
State: Okay
Size: 54154305 blocks (25 GB)
Stripe 0:

Device Start Block Dbase State Reloc Hot Spare
c0t1d0s6 0 No Okay Yes

Device Relocation Information:
Device Reloc Device ID

220

Disks, Local File Systems, and the Volume Manager 7

c0t0d0 Yes id1,sd@SSEAGATE_ST336607LSUN36G_3JA6EFT100007418CACF
c0t1d0 Yes id1,sd@SSEAGATE_ST336607LSUN36G_3JA6EEA200007418KWQB

This output shows all of the components of the d1 and d2 metadevices and indicates that they
are themselves components of the metaexport mirror metadevice. The State column shows
that each component is working properly. If there were a problem with one of the disks in one
of the submirrors, it would print with an error status. You can see that the mirror will perform
reads in a round-robin fashion, from one side to the other, which improves performance. You
can also see that writes to both sides of the mirror are done in parallel. If the mirror were
configured with hot-spare disks and one of those disks was spared in, that would be displayed
in the Hot Spare column. The Device Relocation Information shows the device ID for each disk
in the configuration. Device IDs are used so that SVM can keep track of disks, even if they are
recabled and show up on the system with a new c#t#d# name.

Although this example used only a single slice on each side of the mirror, because d1 and d2
are metadevices, you can add additional slices to those devices and grow their size later. This
enables you to grow the size of the mirror as well. OpenSolaris includes the growfs command,
which you can use to grow the size of a UFS file system if the underlying storage has increased
in size. You can see how building your file system on top of a volume, instead of directly on a
slice, gives you this flexibility. However, there is no way to shrink a UFS file system if the size of
the underlying volume is reduced. Reducing the size of a volume that is hosting a UFS file sys-
tem will leave that file system corrupted and unusable.

In addition to the simple mirror shown in the example, SVM supports RAID-5 stripes, soft par-
titions, hot spares, and metasets, which are used in clustered configurations to manage volume
failover across nodes. If you plan to use SVM, consult the documentation to learn more about
these features.

Resources
The Network Storage project delivers Fibre Channel and iSCSI support, along with a variety
of other low-level storage software. That project is at http://opensolaris.org/os/
project/nws. The I/O multipathing project is at http://opensolaris.org/os/project/
mpxio. Remote replication is part of the Sun StorageTek Availability Suite project at
http://opensolaris.org/os/project/avs. The UFS community at http://
opensolaris.org/os/community/ufs includes pointers to source code and a discus-
sion of UFS-related topics. The original Berkeley Fast File System paper is available at
http://cs.berkeley.edu/∼brewer/cs262/FFS.pdf, as well as several other sites.

File system projects for compatibility with other operating systems include the ext3 project at
http://opensolaris.org/os/project/ext3 and ntfs reader at http://sourceforge
.net/projects/mount-ntfs.

Although they are not described in this chapter, databases have a close relationship with storage
and file systems. The community at http://opensolaris.org/os/community/databases

221

Part III OpenSolaris File Systems, Networking, and Security

provides discussions and resources for using databases on OpenSolaris. The Volume Man-
ager community at http://opensolaris.org/os/community/volume manager
provides resources for the SVM. Other projects covered in this chapter include SAM-QFS,
http://opensolaris.org/os/project/samqfs, and FUSE, http://opensolaris.org/
os/project/fuse.

Summary
This chapter described how disk storage is managed and configured on OpenSolaris, including
how to format disks and how disk devices appear on the system. It introduced general file sys-
tem concepts and described a variety of local file systems. In particular, it explained UFS and
swap space, which are commonly used on many systems. It briefly covered other available local
file systems, and then examined the Solaris Volume Manager’s features and basic configuration.

The next chapter describes ZFS, the preferred alternative to UFS and SVM. However, many of
the basic concepts described in this chapter, such as disk fundamentals, monitoring disk I/O,
and the details of other file systems besides UFS, are helpful even when using ZFS.

222

ZFS

IN THIS CHAPTER
ZFS pools

Mirroring

RAID Z

ZFS file systems

ZFS volumes

ZFS encryption

ZFS versioning

One of the unique features of OpenSolaris is the ZFS file system.
Most likely, one of the main reasons you’re interested in OpenSo-
laris is because of the fame that this powerful, yet easy-to-use, file

system has gained.

The motivation behind ZFS is to make available to everyone the flexibility
of the pooled storage model that large-scale storage systems provide, but
without the complex administration and high cost of those storage systems.
By integrating management of the disks and the file systems together, ZFS
tries to make your storage as self-managing as your system’s memory. ZFS
is designed to scale to extremely large quantities of data by using 128-bit
data addressing and dynamically scaling its metadata, rather than using
the fixed scales demanded by UFS and other file systems of its generation,
which weren’t designed for terabyte and larger scales.

ZFS provides high performance through a fully parallel design with an I/O
pipeline that’s modeled on the concepts of CPU instruction pipelines. By
using a transactional, copy-on-write update model, ZFS ensures that its
data is always consistent on disk. ZFS computes a checksum on every data
and metadata block, and because its checksums cover the entire data path
and are stored separately from the data being checksummed, it can detect
data corruption caused by any element of the storage subsystem, not just
disk errors. As a result, there is no need for a traditional file system check-
ing and repair utility such as fsck, and inexpensive disks can provide sim-
ilar reliability to high-priced storage systems.

223

Part III OpenSolaris File Systems, Networking, and Security

In addition to scalability, performance, and reliability, ZFS also provides advanced features such
as built-in compression and encryption, constant-time snapshots and clones of file systems, fast
and easy data replication, and a simple, logical administrative model that makes the power of
ZFS available to anyone.

ZFS’s unique feature set also provides a powerful base for building the OpenSolaris software
management functions described in Chapter 6.

ZFS Basics
Conceptually, ZFS is extremely simple. Disks are assigned to pools, and datasets are carved out of
the pools. There are two primary types of datasets: file systems and volumes. A volume provides a
virtual device, which can be accessed as either a block device or a raw character device, whereas
a file system is just a directory hierarchy for organizing and storing files. The two objects, pools
and datasets, each have an administration command: zpool for pools, and zfs for datasets. If
you’re using the OpenSolaris distribution, you already have a ZFS pool and some file systems
and volumes created, so start by examining them to get a basic idea of what ZFS looks like.

First, use the zpool command to list the pools available:

$ zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
backup 278G 33.4G 245G 12% ONLINE -
rpool 17.5G 2.58G 14.9G 14% ONLINE -
scratch 37.2G 26.7G 10.6G 71% ONLINE -

This system has three different pools. The default name for the pool created by the OpenSolaris
distribution’s installer to hold the system software is rpool, although any name could be used.
(Pools from which a system can boot are called root pools, hence rpool.) You can use the com-
mand zpool status to see more details about pools. With no additional arguments it displays
the status of all pools, or you can specify the name of a specific pool, such as rpool:

$ zpool status rpool
pool: rpool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
c9d0s0 ONLINE 0 0 0

errors: No known data errors

The most immediately interesting piece of information in the status display is the config section,
which displays the devices that make up the pool. This pool is a simple one, created from a
single disk slice.

224

ZFS 8

A pool is also a file system, and by default it is mounted on the system at the mount point
/poolname. Use the zfs command to examine the pool’s file system:

$ zfs list rpool
NAME USED AVAIL REFER MOUNTPOINT
rpool 2.58G 14.7G 49.5K /rpool

The amount of space used and available is displayed in the columns labeled USED and AVAIL,
respectively. The REFER column displays the amount of data accessible within the specific file
system, while the USED value is the sum of the space used by this file system and all of its
subsidiary file systems. To list all of those subsidiaries, add a simple -r option to the zfs list
command:

$ zfs list -r rpool
NAME USED AVAIL REFER MOUNTPOINT
rpool 2.58G 14.7G 49.5K /rpool
rpool@install 16K - 49.5K -
rpool/ROOT 2.57G 14.7G 18K none
rpool/ROOT@install 0 - 18K -
rpool/ROOT/opensolaris 2.57G 14.7G 2.00G legacy
rpool/ROOT/opensolaris@install 113M - 1.94G -
rpool/ROOT/opensolaris/opt 479M 14.7G 479M /opt
rpool/ROOT/opensolaris/opt@install 79K - 3.61M -
rpool/export 52K 14.7G 19K /export
rpool/export@install 15K - 19K -
rpool/export/home 18K 14.7G 18K /export/home
rpool/export/home@install 0 - 18K -

This listing has several interesting entries. First, you might wonder what all of the entries
with the string @install at the end are; these are snapshots of the file systems that were
taken at the conclusion of the OpenSolaris installation process. A snapshot is a third distinct
type of dataset that is a read-only copy of either a file system or a volume at a particular
point in time. Later in this chapter, you’ll learn more details about using and creating ZFS
snapshots; but for now, it’s enough to understand that these particular @install snapshots
save the original copy of every file that was initially installed on the system. Your listing
may not include the snapshots, depending on the value of the pool’s listsnapshots
property. You can add the option -t all to ensure that snapshots are included in the
listing.

Another interesting entry in this listing is the rpool/ROOT file system. This is a special file
system name that is created by the OpenSolaris distribution’s installation software to contain the
root file system for each instance of OpenSolaris installed within a root pool. By convention,
each file system immediately under rpool/ROOT is expected to be a bootable installation of
OpenSolaris.

See Chapter 6 for details on managing OpenSolaris software.

225

Part III OpenSolaris File Systems, Networking, and Security

Managing ZFS Pools
To use ZFS as your file system, you first need to create a pool. This section demonstrates
creating and managing common pool configurations.

One particularly fast and cheap way to experiment with ZFS is to use flash memory
devices. The examples in this section demonstrate different ways to create and man-

age pools and file systems using USB flash memory.

A simple single-device pool (using a disk device at /dev/dsk/c11t0d0p0) named tank is cre-
ated with the following:

zpool create tank c11t0d0p0
zpool status tank
pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0

errors: No known data errors
zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 3.81G 92.5K 3.81G 0% ONLINE -

As shown here, it’s not necessary to specify the full path to the device; zpool is smart enough
to fill that in for you. Note also that creating this pool is quite fast — just a few seconds.

OpenSolaris disk device names are discussed in Chapter 7.

When creating ZFS pools, it’s preferable to assign the whole disk to ZFS, rather than just a par-
tition. When ZFS is managing the entire disk, it enables the disk’s built-in write cache, which
improves the I/O performance to that disk. However, at this writing you cannot use an entire
disk for a root pool. ZFS labels disks using an EFI label that is not understood by current sys-
tem firmware, so the system cannot boot from the disk. If you need to add more storage to this
pool, you can do so very easily, again with the zpool command:

zpool add tank c7t0d0p0
zpool status tank
pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM

226

ZFS 8

tank ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0
c7t0d0p0 ONLINE 0 0 0

errors: No known data errors
zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 7.62G 114K 7.62G 0% ONLINE -

Both devices are now listed in the pool configuration and the capacity of the pool has increased
to include the space on the second device. This type of pool is known as a concatenation.

Destroying a pool is also simple:

zpool destroy tank
zpool status tank
cannot open ‘tank’: no such pool

If you inadvertently destroy a pool, don’t panic! You can get it back if the devices haven’t been
reused. Use zpool import -D <poolname> to re-import the pool. See the section ‘‘Migration’’
later in this chapter for more details.

Unfortunately, ZFS cannot currently remove a device from a pool that is a concate-
nation. To remove the devices from such a pool, you must destroy the pool. It’s bet-

ter to configure most pools as mirrors or Raid Zs, which are covered in the next two sections, so
that you can replace failed devices without loss of data.

Mirrors
In ZFS (as well as in traditional volume managers), a mirror is a storage pool in which a copy
of each block is written to each device that is a part of the mirror. This redundancy provides
the most basic type of storage protection: If one device in the mirror fails, the other device (or
devices, if the mirror is more than a two-way mirror) can continue to provide service. A ZFS
mirror, however, provides a higher level of data protection than a traditional volume manager.
Both types handle failed devices in essentially the same way, but ZFS is capable of detecting a
single bad block error via the checksum that it stores with each piece of data. If such an error
occurs, ZFS automatically checks the other devices in the mirror; and if it finds one that has
good data, it uses the good copy to attempt to repair the bad block.

See Chapter 7 for information on the Solaris Volume Manager (SVM).

Converting a single-device pool to a mirror is quite easy:

zpool status tank
pool: tank

state: ONLINE
scrub: none requested

config:

227

Part III OpenSolaris File Systems, Networking, and Security

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
c7t0d0p0 ONLINE 0 0 0

errors: No known data errors
zpool attach tank c7t0d0p0 c11t0d0p0
zpool status tank
pool: tank
state: ONLINE
scrub: resilver completed with 0 errors on Sat Mar 29 12:56:25 2008

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0

errors: No known data errors

One notable item in the status listing is the scrub status (see the section ‘‘Data scrubbing’’ later
in this chapter for more about what this means). Once a device is attached to a mirror, ZFS
automatically initiates a resilver, the process of duplicating all of the existing pool data onto the
mirror device. Because this pool was empty, the resilver required no time to complete, but even
in the case of a large pool, the ZFS resilver will often be much faster than that of the mirror
devices provided by traditional block-level volume managers such as Solaris Volume Manager.
This optimization is possible because the integrated design of ZFS enables the device layer to
duplicate only blocks that actually contain file system data, rather than also duplicating all of the
free blocks, which is necessary when the volume manager and file system are effectively black
boxes to each other.

Because it’s so easy to convert a single-device pool to a mirror with ZFS, the
OpenSolaris distribution’s installer doesn’t ask you to spend time creating complex

disk configurations at installation. If your system has multiple disks, it’s highly recommended that
you use zpool attach to convert your OpenSolaris root pool to a mirrored configuration. See
Chapter 3 for an example.

You can also create the pool as a mirror initially, using a longer form of the create
subcommand:

zpool create tank mirror c7t0d0p0 c11t0d0p0

Detaching a device from a mirror is simple as well:

zpool detach tank c11t0d0p0
zpool status tank
pool: tank
state: ONLINE

228

ZFS 8

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
c7t0d0p0 ONLINE 0 0 0

errors: No known data errors

You can also replace one device with another in a single operation:

zpool status tank
pool: tank

state: ONLINE
scrub: resilver completed with 0 errors on Sat Mar 29 13:42:44 2008

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c10t0d0p0 ONLINE 0 0 0
c7t0d0p0 ONLINE 0 0 0

errors: No known data errors
zpool replace tank c7t0d0p0 c11t0d0p0

While the replacement is in progress, the pool status shows it:

$ zpool status tank
pool: tank

state: ONLINE
scrub: resilver completed with 0 errors on Sat Mar 29 13:45:06 2008

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c10t0d0p0 ONLINE 0 0 0
replacing ONLINE 0 0 0
c7t0d0p0 ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0

errors: No known data errors

Once the replacement is completed, the pool status reflects the new configuration:

$ zpool status tank
pool: tank

state: ONLINE

229

Part III OpenSolaris File Systems, Networking, and Security

scrub: resilver completed with 0 errors on Sat Mar 29 13:45:06 2008
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c10t0d0p0 ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0

errors: No known data errors

You can also take a device offline, which might be necessary to perform maintenance on it:

zpool offline tank c11t0d0p0
zpool status tank
pool: tank
state: DEGRADED

status: One or more devices has been taken offline by the administrator.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.

action: Online the device using ‘zpool online’ or replace the device with
‘zpool replace’.

scrub: resilver completed with 0 errors on Sat Mar 29 14:39:57 2008
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0
c10t0d0p0 ONLINE 0 0 0
c11t0d0p0 OFFLINE 0 0 0

errors: No known data errors

As you can see, the pool goes into a degraded state, with the reason reported in the status. The
action entry provides advice on operations that can be performed to return the pool to the nor-
mal online state.

ZFS also automatically detects devices that have been disconnected, placing them in the offline
state:

$ zpool status tank
pool: tank
state: DEGRADED
scrub: resilver completed with 0 errors on Sat Mar 29 14:47:05 2008

config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0

230

ZFS 8

c10t0d0p0 ONLINE 0 0 0
c11t0d0p0 REMOVED 0 0 0

errors: No known data errors

Once the device is reattached, it’s automatically detected and brought online, and the mirror
automatically resilvered.

RAID Z
While mirrors are an effective means of increasing the availability of data in a storage system,
they are an expensive solution. The capacity of the mirror is the size of a single device in the
mirror, so a two-way mirror effectively doubles the per-bit storage cost. A mirror can negatively
affect performance because it’s necessary to write a copy of the data to each device. It’s often
desirable to increase reliability at a lower cost in terms of both money and performance, so
the storage industry developed techniques for spreading the data across multiple disks (called
striping) and using mathematical techniques to detect and correct errors (called parity checking).
With such a configuration, costs are lower than in a mirror configuration of equivalent capacity,
while enabling the system to tolerate errors in one or two devices simultaneously, thus offering
essentially the same level of reliability as a two- or three-way mirror. This technique is called
RAID 5 or RAID 6 (a standard mirror is known as RAID 1). ZFS offers its own flavor of RAID 5,
called RAID Z.

The acronym RAID stands for Redundant Arrays of Inexpensive Disks. A good intro-
duction to RAID concepts can be found at http://en.wikipedia.org/wiki/RAID.

Creating a RAID Z pool is just as simple as creating a mirror:

zpool create tank raidz c7t0d0p0 c11t0d0p0 c10t0d0p0
zpool status tank

pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
raidz1 ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0

errors: No known data errors

This example created a RAID Z pool with three disks, capable of sustaining a single drive failure
because it is a raidz1 (single-parity) pool, as shown in the output. Note that raidz is a synonym
for raidz1. To create a double-parity pool, enabling the pool to sustain two drive failures without
data loss, you can use a type of raidz2. Currently, these are the only two types of RAID Z pools.

231

Part III OpenSolaris File Systems, Networking, and Security

In other respects, a RAID Z pool is managed similarly to a mirror; however, the attach and
detach subcommands can only be used on mirrors, not on RAID Z devices. As a result, you
must create a pool as raidz initially, not convert it later. Replacing a device in a RAID Z pool
is supported, of course.

It’s common to create far more complex pool configurations that consist of multiple RAID Z
groupings on larger storage servers such as a Sun x4500 server. The ZFS Best Practices Guide at
http://solarisinternals.com/wiki/index.php/ZFS Best Practices Guide provides
examples and recommendations for such configurations; we recommend consulting it if you’re
planning a large ZFS deployment.

Spare devices
To run a truly reliable storage system, plan for disks to fail. Mirrors and RAID Z are an essential
part of a reliability strategy, but configuring spare devices (also called hot spares) buys an extra
bit of assurance. If a device in a pool fails, ZFS automatically replaces the failed disk using
a device from the list of available spares. A ZFS pool can have any number of spare devices
assigned, and you can share spare devices between multiple pools. Spares may be configured at
pool creation time or added later. The following configures a spare at pool creation:

zpool create tank mirror c7t0d0p0 c10t0d0p0 spare c11t0d0p0
zpool status tank
pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c7t0d0p0 ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0

spares
c11t0d0p0 AVAIL

errors: No known data errors

To add a spare after a pool exists, use the add subcommand:

zpool add tank spare c11t0d0p0

When a replacement is in use, the spare is brought online into the pool and marked in use
(here, the failure was caused by disconnecting the disk):

$ zpool status tank
pool: tank
state: DEGRADED

status: One or more devices are faulted in response to persistent errors.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.

232

ZFS 8

action: Replace the faulted device, or use ‘zpool clear’ to mark the device
repaired.

scrub: resilver completed with 0 errors on Thu Apr 3 20:33:04 2008
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
c7t0d0p0 ONLINE 0 0 0
spare DEGRADED 0 0 0
c10t0d0p0 FAULTED 0 0 0 too many errors
c11t0d0p0 ONLINE 0 0 0

spares
c11t0d0p0 INUSE currently in use

errors: No known data errors

Once the faulted device is repaired, you can use the clear subcommand to request that it be
brought back online, enabling the pool to exit the degraded state:

zpool clear tank
zpool status tank

pool: tank
state: ONLINE
scrub: resilver completed with 0 errors on Thu Apr 3 20:37:32 2008

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
spare ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0

spares
c11t0d0p0 INUSE currently in use

errors: No known data errors

Once you’re satisfied that the original device is functioning properly, you can return the spare to
the available spare list using the detach subcommand. The status subcommand then displays
the spare as available, as shown here:

zpool detach tank c11t0d0p0
zpool status tank

pool: tank
state: ONLINE
scrub: resilver completed with 0 errors on Thu Apr 3 20:37:32 2008

config:

233

Part III OpenSolaris File Systems, Networking, and Security

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0

spares
c11t0d0p0 AVAIL

errors: No known data errors

ZFS will not automatically detach a spare device from use after it has been brought
online in a pool; you need to do this manually after you’ve repaired and verified a

failed device.

Data scrubbing
Another reliability feature of ZFS pools is data scrubbing. One problem with traditional file sys-
tems is that the reliability of any data that’s not referenced by the system’s normal operation is
unknown; you may have errors that are silently lying in wait to be found when the data is actu-
ally needed. To combat this hazard, ZFS provides a data-scrubbing feature to verify the integrity
of every block of data in a pool. During a scrub operation, ZFS reads each block and verifies
it against its checksum. If it finds an error on a device that is part of a mirror or raidz device,
ZFS attempts to repair the block; otherwise, the error is reported. A scrub is initiated on a pool
named tank as follows:

zpool scrub tank

You can observe the progress of the scrub operation using zpool status:

$ zpool status tank
pool: tank
state: ONLINE
scrub: scrub in progress, 9.21% done, 0h41m to go

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0

spares
c11t0d0p0 AVAIL

errors: No known data errors

234

ZFS 8

Scrubbing runs at a low priority relative to other I/O, so it should not interfere with the
operation of the pool. However, a scrub operation that is in progress can be stopped if
necessary. For example, here’s how to stop a scrub on the pool named tank:

zpool scrub -s tank
zpool status tank

pool: tank
state: ONLINE
scrub: scrub stopped with 0 errors on Fri Apr 4 22:45:52 2008

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0

spares
c11t0d0p0 AVAIL

errors: No known data errors

As discussed earlier, a resilver of a mirror is effectively the same as a scrub, so you’ll see the
results of a resilver reported in the scrub status if your pool is a mirror.

Migration
ZFS pools can be easily migrated from system to system; unlike most file systems, migration is
supported even if the two systems are of different instruction-set architecture endianness (byte
ordering), such as SPARC and x86. ZFS makes this possible by using an adaptive endianness
scheme to store data. Each block has its endianness recorded when written, and if the system
reading the data does not have the same endianness as the data block, ZFS automatically swaps
the data bytes to the host endianness.

Migration of a pool between systems of different endianness is possible only if ZFS is
given the use of entire disk devices to build the pool. This is because the use of only

a portion of a disk requires using a Solaris VTOC disk label, which is endian-specific. When ZFS
uses an entire disk device, it labels the disk with an endian-neutral EFI label, enabling the label to
be read by systems of opposite endianness. Chapter 7 covers disk devices and labeling.

ZFS records the hostname and hostid of the system that owns the pool in the pool’s private
data structures, so to ready a pool to be moved, use the export subcommand to release the
ownership:

zpool export tank
zpool status tank
cannot open ‘tank’: no such pool

235

Part III OpenSolaris File Systems, Networking, and Security

Once the storage is attached to the new system, use the import subcommand to make the pool
accessible to OpenSolaris. You can use import with no arguments to find the pools that are
available for import:

zpool import
pool: tank

id: 3244598400197407233
state: ONLINE

action: The pool can be imported using its name or numeric
identifier.

config:

tank ONLINE
raidz2 ONLINE

c7t0d0p0 ONLINE
c11t0d0p0 ONLINE
c10t0d0p0 ONLINE

Then use the pool name or id to import it:

zpool import tank
zpool status tank
pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
raidz2 ONLINE 0 0 0

c7t0d0p0 ONLINE 0 0 0
c11t0d0p0 ONLINE 0 0 0
c10t0d0p0 ONLINE 0 0 0

errors: No known data errors

You can also use the -a option, rather than specify a pool name, to import all pools that the
system can find on its attached storage devices.

If a pool you attempt to import wasn’t exported from its owning system, the import will fail
with a message that it appears to be in use by another system. If that’s the case, you can use the
-f option to the import subcommand to force the import to proceed — this is quite helpful
for unplanned storage migrations in case of catastrophic system failure.

If you are attempting to import a pool and you have an existing pool with the same name, the
import will fail. However, you can rename the pool as it is importing to resolve the conflict:

zpool import tank frank

236

ZFS 8

To rename a pool that is currently in use, you first export it (zpool export) and
then use zpool import to provide its new name, as the preceding example shows.

The import subcommand has several other options that are infrequently used; they are
discussed in the zpool(1M) man page.

Pool properties
ZFS pools have a number of properties that can be viewed and modified using the get and set
subcommands. To view all of the properties, use the special property name all:

$ zpool get all tank
NAME PROPERTY VALUE SOURCE
tank size 1.91G -
tank used 92.5K -
tank available 1.91G -
tank capacity 0% -
tank altroot - default
tank health ONLINE -
tank guid 15434063680586116038 -
tank version 10 default
tank bootfs - default
tank delegation on default
tank autoreplace on local
tank cachefile - default
tank failmode wait default

The properties whose source is listed as a hyphen (-) are read-only properties used to report
status of the pool. Otherwise, the SOURCE column indicates whether the property is the default
value or is locally set on the pool. Table 8-1 briefly summarizes the pool properties.

The properties detailing the size and space usage of the pool should be self-explanatory. The
remainder of this section describes some of the more interesting properties in greater detail.
Consult the zpool(1M) man page for reference information on all of the pool properties.

The version property is discussed later in this chapter in the section ‘‘ZFS Versioning.’’ The
delegation property is used to enable the delegated administration feature for the ZFS datasets
within this pool (more about this feature later in the chapter).

The autoreplace property controls whether the system can automatically replace a device that
is a member of the pool with a new device found in the same location. Its default setting is off,
meaning the administrator must manually replace any devices using the replace subcommand
described earlier in this chapter. To set the autoreplace property value, use zpool set:

$ zpool set autoreplace=on tank
$ zpool get autoreplace tank
NAME PROPERTY VALUE SOURCE
tank autoreplace on local

237

Part III OpenSolaris File Systems, Networking, and Security

TABLE 8-1

Pool Properties

Property Description

altroot Directory under which pool datasets are mounted

autoreplace Indicates whether automatic device replacement is allowed

available Storage space available in a pool

bootfs Default bootable dataset

cachefile File used to cache pool configuration

capacity Percentage of space used

delegation Indicates whether dataset delegation is available in pool

failmode System’s reaction to pool failure

guid Global unique identifier for this pool, generated at creation

health System’s assessment of pool’s health, such as ONLINE, DEGRADED, or OFFLINE

listsnapshots Controls whether snapshots are included in default output from zfs list

size Size of a pool

used Storage space used in a pool

version Pool version

The failmode property defines how the system should react to a failure of the pool. The
default value of wait causes all I/O to the pool to be blocked until the pool is returned to
health. Other possible values are panic, which causes the system to generate a crash dump on
pool failure, and continue, which generates an I/O error on any write requests but allows reads
to any devices that are online. The default value is probably the best compromise for most pools
because panic makes the system somewhat more brittle, and continue can lead to situations
in which applications can access data that might be stale.

The listsnapshots property controls the behavior of the zfs command when listing the
datasets in a pool. If set to off, the default value, then snapshots are not included in the zfs
list output. Setting it to on includes snapshots in dataset listings. The -t option to zfs list
can be used to override this setting.

The altroot and cachefile properties are typically used in manipulating pools and datasets
during system installation; they are set as a result of using the -R or -c options to zpool
import. The bootfs property is used by the ZFS booting support in the kernel to locate the

238

ZFS 8

correct dataset to mount as the root file system. The OpenSolaris version of GRUB also offers a
bootfs command, which is used to override the property when you want to boot a different
root file system within the pool.

See Chapter 6 for more information on OpenSolaris software management, including
booting of alternate root file systems.

Pool history
Good system administrators keep detailed records on what is changed, and when, on their
systems in order to help analyze problems and reconstruct system state when failures occur.
They also configure system auditing to record who is responsible for changes, which is especially
important when multiple staff have administrative rights; this also helps detect the activities of
intruders.

Chapter 11 discusses the OpenSolaris auditing facility.

ZFS provides a pool history feature to record significant events affecting pools, which you can
access using the zpool history command. The pool history is implemented as a 128KB ring
buffer within the pool, which means it will eventually wrap around and overwrite events, so you
can’t rely on it to maintain a full history over time — that’s the realm of the auditing facility.
When investigating a system problem, though, you’ll often find that some recent change has trig-
gered the problem. Data ring buffers are quite effective aids to an administrator investigating a
problem, yet they impose little cost because their bounded size eliminates the need to manage
them as an additional entity, unlike a full-blown system auditing or logging feature. This sort
of limited-capacity telemetry recorder is common in many systems where reconstructing recent
events is important, such as the well-known ‘‘black boxes’’ used to record airliner data.

The pool history for tank can be viewed using the following:

$ zpool history tank
History for ‘tank’:
2008-04-11.18:03:15 zpool create tank c11t0d0p0
2008-04-11.19:17:59 zpool set replace=on tank

One detail to note about the pool history implementation is that the pool creation record is
never overwritten; thus, you can always determine when the pool was created.

You can use the -l option to include the username, zone, and hostname in the output of each
record. The -i option includes internal event records, such as the following:

$ zpool history -i tank
History for ‘tank’:
2008-04-11.18:03:15 zpool create tank c11t0d0p0
2008-04-11.19:17:58 [internal pool property set txg:901] autoreplace 1 tank
2008-04-11.19:17:59 zpool set replace=on tank

239

Part III OpenSolaris File Systems, Networking, and Security

Monitoring ZFS performance
There are many resources for monitoring general system I/O performance, such as the
iostat(1M) command. These resources are also generally useful with ZFS, but ZFS also
provides a very simple I/O performance monitoring capability, the zpool iostat command. To
simply report a snapshot in time for all pools in the system, use the following:

$ zpool iostat
capacity operations bandwidth

pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
backup 30.9G 247G 0 0 56 15
rpool 2.61G 14.9G 0 0 6.04K 14.0K
scratch 29.8G 7.48G 0 0 346 9.22K
---------- ----- ----- ----- ----- ----- -----

This system is a lightly loaded desktop, so the statistics are unimpressive. The following shows
one pool on a more heavily loaded server:

$ zpool iostat tank
capacity operations bandwidth

pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
tank 2.72T 3.15T 210 410 902K 4.05M

Most often, you’ll probably want to use an interval argument to have the statistics reported
every few seconds — this example reports every five seconds — continuing until you break out
with ˆ C:

$ zpool iostat tank 5
capacity operations bandwidth

pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
tank 2.72T 3.15T 210 410 902K 4.05M
tank 2.72T 3.15T 22 307 61.4K 11.9M
tank 2.72T 3.15T 81 216 118K 5.54M
tank 2.72T 3.15T 16 229 82.2K 6.20M
tank 2.72T 3.15T 50 299 263K 7.85M
tank 2.72T 3.15T 13 246 86.9K 2.48M

If you want to collect only a specific number of samples, you can add one more argument to
specify the sample count:

$ zpool iostat tank 5 12

This example would report the statistics for the pool every five seconds for one minute.

You can also get detailed information for each device in a pool by adding the -v option:

$ zpool iostat -v
capacity operations bandwidth

240

ZFS 8

pool used avail read write read write
------------ ----- ----- ----- ----- ----- -----
rpool 3.11G 131G 0 0 2.71K 2.02K

c7t0d0s0 3.11G 131G 0 0 2.71K 2.02K
------------ ----- ----- ----- ----- ----- -----
space 10.1G 268G 1 4 25.2K 130K

mirror 10.1G 268G 1 4 25.2K 130K
c7t3d0p0 - - 0 2 17.1K 130K
c7t4d0p0 - - 0 2 16.9K 130K

------------ ----- ----- ----- ----- ----- -----

ZFS can be configured with additional devices reserved for some of its internal operations to
increase performance for some workloads. See the zpool(1M) man page for details on log and
cache devices for more information.

More detailed performance analysis can be performed using the DTrace environment,
which is discussed in Chapter 15. Further information on system monitoring is pro-

vided in Chapter 14.

ZFS Datasets
As discussed briefly at the beginning of this chapter, data in ZFS is stored in entities called
datasets, which can be either file systems or volumes, and snapshots can be used to retain a
point-in-time copy of either a file system or a volume. In this section, you’ll learn more about
managing each of these dataset types.

ZFS file systems
Once you’ve configured a pool in which to store your data, the next step is to configure the file
systems that will actually organize the data. In a traditional file system such as UFS, you would
create a partition using fdisk and/or format; format a file system within it using a command
such as newfs; and then create directories within the file system to place data files. The same
can be done with ZFS, of course, although adhering strictly to traditional file system manage-
ment practices won’t enable you to take full advantage of ZFS.

Management of UFS and other OpenSolaris file systems is discussed in Chapter 7.

In ZFS, file systems can be plentiful, as they’re not limited by the scarcity of resources such as
partitions. Instead, they are easy and fast to create, and are best thought of as administrative
control points, more like a souped-up version of a directory than a traditional file system.
Because ZFS offers many features at the file system level, strongly consider creating a file system,
rather than a directory, when you need an additional container for storing a set of files. By doing
so, you’ll have the option to apply different ZFS property settings, such as compression, to each
file system and to delegate administrative access to the file systems to individual users so that
they, too, can take advantage of ZFS features, such as snapshots and clones, as they need them.

241

Part III OpenSolaris File Systems, Networking, and Security

When you create a pool, you also implicitly create a file system with the same name as the pool:

zpool create tank
zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 105K 1.87G 18K /tank
ls /tank
#

Because the pool was just created, its file system is empty. While you could use the pool this
way, usually you’ll want to create additional file systems within the pool to organize the data:

zfs create tank/fish
zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 130K 1.87G 19K /tank
tank/fish 18K 1.87G 18K /tank/fish

As you can see, the -r option to zfs list recursively displays the information on all datasets
that are children of the specified dataset. Destroying a file system is simple:

zfs destroy tank/fish

However, you can’t destroy the file system associated with the pool:

zfs destroy tank
cannot destroy ‘tank’: operation does not apply to pools
use ‘zfs destroy -r tank’ to destroy all datasets in the pool
use ‘zpool destroy tank’ to destroy the pool itself

As suggested in this error message, the -r option to zfs destroy destroys a dataset and all of
its children. If you don’t specify -r and the dataset contains child datasets, then the operation
will fail:

zfs create tank/fish/pacific
zfs destroy tank/fish
cannot destroy ‘tank/fish’: filesystem has children
use ‘-r’ to destroy the following datasets:
tank/fish/pacific

This behavior shouldn’t be surprising — it’s similar to that of rmdir when you attempt to
remove a directory.

It’s also easy to rename a file system:

zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 156K 1.87G 19K /tank
tank/fish 38K 1.87G 20K /tank/fish

242

ZFS 8

tank/fish/pacific 18K 1.87G 18K /tank/fish/pacific
zfs rename tank/fish/pacific tank/pacific
zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 156K 1.87G 19K /tank
tank/fish 20K 1.87G 20K /tank/fish
tank/pacific 18K 1.87G 18K /tank/pacific

You can rename a file system only within its pool; to move a file system from one
pool to another, see the section ‘‘Data replication and backups’’ later in this chapter.

As shown in the examples so far, by default, a ZFS file system is automatically mounted as soon
as it’s created; also by default, its pathname is constructed by preceding the file system name
with / so that it’s mounted relative to the root of the system. This behavior can be modified,
however, by setting the values of the canmount and mountpoint properties on the file system.
See the section ‘‘Dataset properties’’ later in this chapter for more details on managing dataset
properties.

ZFS volumes
Most of the time, you’ll use ZFS just for storing files, so you’ll deal mostly with file systems.
Sometimes, though, the system requires a basic block or character device in which to store data.
In a traditional Solaris storage and file system hierarchy, you would typically create a separate
partition at the disk level, and then access the block or character device nodes associated with
the partition using a device path such as /dev/dsk/c0d0s3. However, partitioning the disk in
this way is directly counter to the ZFS design principle of pooling the available storage devices
in order to use the available storage as efficiently as possible. Thus, ZFS provides another type of
dataset, the volume, which presents itself to the system as a disk device that can be accessed as
either a block or character device.

When you install OpenSolaris, it automatically creates two ZFS volumes to be used as the swap
and crash dump devices. The swap device serves as the overflow area for the system’s main
memory, while the dump device is used to save the contents of the system’s memory when the
operating system panics. These volumes are named rpool/swap and rpool/dump, respectively:

$ zfs list rpool/swap rpool/dump
NAME USED AVAIL REFER MOUNTPOINT
rpool/dump 512M 15.9G 16K -
rpool/swap 768M 15.9G 16K -

In this case, the system has a 768MB swap volume available for use, and a 512MB dump
volume.

See Chapter 7 for more information on swap devices, and Chapter 24 for information
on dump devices.

243

Part III OpenSolaris File Systems, Networking, and Security

You can create additional volumes using zfs create by adding the -V option to specify that
the dataset is a volume, rather than a file system. For example, the following creates a 50MB vol-
ume named testvol in the tank pool:

zfs create -V 50m tank/testvol
zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 50.2M 1.83G 21K /tank
tank/fish 18K 1.83G 18K /tank/fish
tank/pacific 18K 1.83G 18K /tank/pacific
tank/testvol 50M 1.87G 16K -

As you can see, volumes are listed along with file systems by zfs list. Note that the space
configured for the volume is immediately allocated exclusively to the volume dataset and is
unavailable to the rest of the datasets in the pool. You can configure the volume as a sparse
volume, for which storage space will be allocated only as it is actually used, by adding the
-s option to the create subcommand. However, that’s not advisable because software that
uses storage devices directly is often unprepared to encounter an ‘‘out of space’’ error, which
can occur when you create a sparse volume and force it to compete with other datasets for
space — as a result, the software may fail with unreliable results.

To access a volume’s device nodes, prefix the volume name with /dev/zvol/dsk for the block
device node, and /dev/zvol/rdsk for the character device node:

$ ls -l /dev/zvol/*/tank/testvol
lrwxrwxrwx 1 root root 35 Apr 13 21:40 /dev/zvol/dsk/tank
/testvol -> ../../../../devices/pseudo/zfs@0:4c
lrwxrwxrwx 1 root root 39 Apr 13 21:40 /dev/zvol/rdsk/tank
/testvol -> ../../../../devices/pseudo/zfs@0:4c,raw

Just as with file systems, you can easily rename a volume:

zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 50.2M 1.83G 21K /tank
tank/fish 18K 1.83G 18K /tank/fish
tank/pacific 18K 1.83G 18K /tank/pacific
tank/testvol 50M 1.87G 16K -
zfs rename tank/testvol tank/fish/volume
zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 50.2M 1.83G 21K /tank
tank/fish 50.0M 1.83G 18K /tank/fish
tank/fish/volume 50M 1.87G 16K -
tank/pacific 18K 1.83G 18K /tank/pacific

To destroy a volume, use zfs destroy:

zfs destroy tank/fish/volume

244

ZFS 8

Common uses of ZFS volumes include serving as the backing store for iSCSI targets, or as the
storage for xVM guest domains.

See Chapter 7 for information on iSCSI. See Chapter 20 for information on xVM.

ZFS snapshots
The third, and last, type of dataset is the snapshot. As discussed earlier in this chapter, a snap-
shot is merely a point-in-time copy of its base dataset, which can be either a file system or a vol-
ume. Snapshots are useful in their own right, as they provide an exceptionally efficient and con-
venient means of saving the state of a dataset for later reference or recovery. They also provide
the basis for other ZFS features, such as cloning and copying datasets, which are discussed in
subsequent sections. Understanding and using snapshots is important in leveraging the full capa-
bilities of ZFS.

Snapshots are very fast to create in ZFS, in part because they use a copy-on-write design. Rather
than replace a data block in place when new data is written to it, a new block is allocated and
the data written there, and then the parent is updated to reference the new block, with the old
block freed once it is no longer referenced, and so on up the tree structure that ZFS uses to
track block references. As a result, taking a snapshot merely requires creating a reference to the
root of the block tree (known as the überblock) at that point in time, which prevents it or any
block within its tree from being freed. Paradoxically, a snapshot actually speeds up file system
operation, because there’s no need to free blocks that have been overwritten! Figure 8-1 shows
the block tree when a snapshot has been created and new blocks written. The snapshot root and
all blocks it points to are immutable, while the live dataset points to the modified blocks written
within it, as well as unmodified blocks from the snapshot.

FIGURE 8-1

A ZFS block tree with snapshot and new blocks

Live rootSnapshot root

To create a snapshot, use the zfs snapshot command. Because a snapshot is based on a file
system or volume dataset, the snapshot is named using the name of the base dataset, followed

245

Part III OpenSolaris File Systems, Networking, and Security

by the @ character, and then the snapshot name. You can create a snapshot named today for
the tank/fish dataset with the following command:

zfs snapshot tank/fish@today
zfs list -r tank/fish
NAME USED AVAIL REFER MOUNTPOINT
tank/fish 50.0M 1.83G 18K /tank/fish
tank/fish@today 0 - 18K -
tank/fish/pacific 18K 1.83G 18K /tank/fish/pacific
tank/fish/volume 50M 1.87G 16K -

Like the other dataset types, you can rename a snapshot:

zfs rename tank/fish@today tank/fish@trip
zfs list -r tank/fish
NAME USED AVAIL REFER MOUNTPOINT
tank/fish 50.1M 1.83G 19K /tank/fish
tank/fish@trip 16K - 18K -
tank/fish/pacific 18K 1.83G 18K /tank/fish/pacific
tank/fish/volume 50M 1.87G 16K -

The data contained in a file system snapshot is directly accessible only if the base dataset’s
snapdir property is set to the value visible. When this is the case, the snapshot can be
accessed via the file system’s .zfs/snapshot directory; in the example, that would be as
follows:

$ ls -ld /tank/fish/.zfs/snapshot/trip
drwxr-xr-x 2 root root 2 Apr 13 21:05 /tank/fish
/.zfs/snapshot/trip

In most instances, it is better to access the contents of a file system snapshot by cre-
ating a clone, rather than making the snapshot directory visible. That’s because the

snapshot directory is included if you attempt to use traditional UNIX utilities such as cp, tar, or
cpio to copy the file hierarchy under a file system; backup software that is not aware of ZFS may
also capture the snapshot data if it is exposed in this way. See the following section, ‘‘ZFS clones,’’
for more information.

You can return a dataset to its state as a particular snapshot using the rollback subcommand:

zfs rollback tank/fish@trip

One point to understand is that a snapshot of a given dataset applies only to that dataset, not
to any subsidiary datasets; as a result, in our example, the rollback of tank/fish would not
return tank/fish/pacific to a prior state because no snapshot of it was created. However,
it’s easy to create snapshots of an entire dataset hierarchy at once by adding -r to the snapshot
command:

zfs snapshot -r tank@today
zfs list -r tank

246

ZFS 8

NAME USED AVAIL REFER MOUNTPOINT
tank 50.2M 1.83G 19K /tank
tank@today 0 - 19K -
tank/fish 50.1M 1.83G 19K /tank/fish
tank/fish@trip 16K - 18K -
tank/fish@today 0 - 19K -
tank/fish/pacific 18K 1.83G 18K /tank/fish/pacific
tank/fish/pacific@today 0 - 18K -
tank/fish/volume 50.0M 1.87G 16K -
tank/fish/volume@today 0 - 16K -

You can’t rollback the entire hierarchy at once, but rolling back each dataset in the hierarchy can
be done individually if needed.

If there are multiple snapshots of a dataset, an attempt to rollback to any snapshot other than
the most recent will fail:

zfs rollback tank/fish@trip
cannot rollback to ‘tank/fish@trip’: more recent snapshots exist
use ‘-r’ to force deletion of the following snapshots:
tank/fish@today

As the error message indicates, using the -r option destroys the more recent snapshots. The
next section discusses clones, but a similar error will occur if there is a clone of one of those
snapshots:

zfs rollback -r tank/fish@trip
cannot rollback to ‘tank/fish@trip’: clones of previous snapshots exist
use ‘-R’ to force deletion of the following clones and dependents:
tank/todays-fish

You need to be aware of pool space when using snapshots. While they consume no space ini-
tially, they increase the overall space usage in the pool, as each modification to the base dataset
consumes additional blocks in the pool without releasing any blocks that are referenced only
by the snapshot. As a result, some housekeeping cleanup of snapshots on a regular basis may
be required to avoid filling a pool. When you no longer need a snapshot, use zfs destroy to
delete the snapshot:

zfs destroy tank/fish@trip

One popular use of snapshots is to set up an automatic snapshot service, which can
help protect you from the common problem of mistakenly deleting a file that you

really need. Sometimes you can get the file from a backup, but all too often, backups haven’t
been done recently enough to capture the current contents of the file, or it takes a long time
to get a file restored from backup, or the backup turns out to be corrupt. ZFS can’t protect you
from all of these problems, but by taking frequent snapshots you can often avoid these common
mistakes. OpenSolaris includes an automatic snapshot capability in the SUNWzfs-auto-snapshot
package, which can snapshot datasets at several different frequencies. OpenSolaris also includes

247

Part III OpenSolaris File Systems, Networking, and Security

a feature known as ‘‘time slider,’’ which provides management tools for the automatic snapshot
service and integration with the GNOME file browser, Nautilus, to view and retrieve the files in
ZFS snapshots; this is in the package SUNWgnome-time-slider. Consult the OpenSolaris documen-
tation for details on this feature.

ZFS clones
While snapshots of a ZFS dataset are quite useful in their own right, they have one limitation:
they’re read-only. Sometimes, what you really want is a copy of a dataset that you can then
modify. That’s what ZFS clones provide, as they are a full read-write dataset that is based on a
snapshot of another dataset.

To create a clone, you first need to take a snapshot of a dataset, and then you create the clone
from the snapshot. Using the tank pool, which already has some snapshots, you can create a
clone:

zfs list -r tank/fish
NAME USED AVAIL REFER MOUNTPOINT
tank/fish 50.1M 1.83G 19K /tank/fish
tank/fish@trip 16K - 18K -
tank/fish@today 0 - 19K -
zfs clone tank/fish@today tank/todays-fish
zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 50.3M 1.83G 21K /tank
tank/fish 50.1M 1.83G 19K /tank/fish
tank/fish@trip 16K - 18K -
tank/fish@today 0 - 19K -
tank/todays-fish 0 1.83G 19K /tank/todays-fish

In general, you won’t notice any difference between a clone and an ordinary dataset. The only
way to tell that a dataset is a clone is by the presence of an origin property:

zfs get origin tank/todays-fish
NAME PROPERTY VALUE SOURCE
tank/todays-fish origin tank/fish@today -

Because a clone is dependent on the original dataset and snapshot from which it was created,
you can’t destroy the original snapshot and dataset:

zfs destroy tank/fish@today
cannot destroy ‘tank/fish@today’: snapshot has dependent clones
use ‘-R’ to destroy the following datasets:
tank/todays-fish

However, ZFS provides a way out of this quandary: by promoting the clone dataset. The effect of
a promotion is that the dependency is reversed, so the original dataset is now the dependent:

zfs promote tank/todays-fish
zfs list -r tank

248

ZFS 8

NAME USED AVAIL REFER MOUNTPOINT
tank 50.3M 1.83G 21K /tank
tank@today 16K - 19K -
tank/fish 50.0M 1.83G 19K /tank/fish
tank/todays-fish 35K 1.83G 19K /tank/todays-fish
tank/todays-fish@trip 16K - 18K -
tank/todays-fish@today 0 - 19K -
zfs get origin tank/fish
NAME PROPERTY VALUE SOURCE
tank/fish origin tank/todays-fish@today -

As you can see, the promotion also moves any snapshots of the original dataset to the promoted
clone. As the original dataset no longer has any dependents, it can now be destroyed:

zfs destroy tank/fish

It may not be immediately obvious, but a clone can be created only within the same pool as its
original dataset. If you try to create the clone in a different pool, you’ll receive an error:

zfs clone tank/todays-fish@trip rpool/fish-trip
cannot create ‘rpool/fish-trip’: source and target pools differ

Dataset replication and backups
As noted previously, a rename or clone of a dataset cannot cross the boundary of a pool.
However, ZFS offers another highly efficient means of moving data between pools, and,
indeed, between systems. With traditional file system such as UFS you can use a byte-level
copying utility such as dd(1M) to copy data from one disk device to another. Utilities
such as dd can be very fast because there is no need for the utility to conform to all
of the file system implementation semantics; it just copies bytes between raw devices.
However, this is also dd’s weakness. Because it is copying a device, not a file system, it
doesn’t understand which portions are in use and which are free, so it must copy every-
thing. With a large storage device that may not be very full, this can obviously be quite
inefficient.

ZFS provides a low-level, file-system-aware copying capability in the zfs send and zfs
receive commands. These commands operate at the block level, but because zfs send under-
stands the file system, it includes only blocks that are in use. It’s also capable of performing
incremental copies, including only the differences between one snapshot and another. This
feature enables you to efficiently maintain backup copies of datasets.

ZFS doesn’t actually send a dataset, but instead sends a snapshot of a dataset, so it’s always
sending a self-consistent version of the dataset. Thus, the first step in sending the dataset is to
take a snapshot; you then supply that snapshot name to zfs send:

zfs snapshot tank/fish@trip
zfs send tank/fish@trip

249

Part III OpenSolaris File Systems, Networking, and Security

However, this is not a very useful example, as it just dumps the snapshot to standard output;
you can, of course, use shell redirection to send it to a file, or pipeline it through standard
OpenSolaris utilities. Most often, you’ll pipeline a zfs send with a zfs receive to create a
copy of the dataset in some other pool. The following copies a dataset snapshot from one pool
to another on the same system:

zfs send tank/fish@trip | zfs receive newpool/crab@trap

This will create the new dataset newpool/crab@trap as a complete copy of the
tank/fish@trip snapshot.

Moving data from one pool to another on the local system is useful, but often you’ll want
to copy to some other system. A good solution is to use ssh as the remote transport, which
ensures that the data will be encrypted during transmission between the systems:

zfs send tank/fish@trip | ssh faraway zfs receive backup_tank/fish

This copies the snapshot to backup_tank/fish@trip on the system faraway.

Both of these examples copied an entire dataset as of a given snapshot; but if you followed the
recommendation earlier in this chapter and used datasets in place of directories for organizing
data, you’ll likely want to replicate a hierarchy of datasets at a point in time. As shown earlier,
you can use zfs snapshot -r to create snapshots of a dataset and all of its descendants at
once; using zfs send -R you can send all of those snapshots in one stream:

zfs send -R tank@today | zfs receive -d backup

The -d option enables zfs receive to create any necessary file systems within the backup
pool to replicate the sent file system hierarchy.

If you’re replicating a dataset on a regular basis, you’ll almost certainly want to use incremen-
tal sends so that you only transfer changes that have occurred since the last common snapshot,
as this greatly reduces the amount of data that must be sent. To do this, you must specify the
base snapshot against which the incremental changes can be computed. The choice you need to
make is whether to have zfs send include any other intermediate snapshots between the two
endpoints; depending on your choice, you’ll use either the -i or -I option to zfs send. The
following example demonstrates sending only the endpoints with -i:

zfs snapshot scratch/pkg@a
zfs send scratch/pkg@a | zfs receive backup/pkg
zfs list -r backup/pkg
NAME USED AVAIL REFER MOUNTPOINT
backup/pkg 19K 239G 19K /backup/pkg
backup/pkg@a 0 - 19K -
zfs snapshot scratch/pkg@b
zfs snapshot scratch/pkg@c
zfs list -r scratch/pkg

250

ZFS 8

NAME USED AVAIL REFER MOUNTPOINT
scratch/pkg 42K 5.25G 19K /scratch/pkg
scratch/pkg@a 0 - 19K -
scratch/pkg@b 0 - 19K -
scratch/pkg@c 0 - 19K -
zfs send -i scratch/pkg@a scratch/pkg@c | zfs receive backup/pkg
zfs list -r backup/pkg
NAME USED AVAIL REFER MOUNTPOINT
backup/pkg 19K 239G 19K /backup/pkg
backup/pkg@a 0 - 19K -
backup/pkg@c 0 - 19K -

As shown here, the copy to the backup pool did not replicate the @b snapshot. Compare this
to the use of -I to include the intermediate snapshots (note that it’s necessary to first roll
the destination dataset back to the snapshot that matches the base snapshot used on the send
side):

zfs rollback -r backup/pkg@a>

zfs send -I scratch/pkg@a scratch/pkg@c | zfs receive backup/pkg
zfs list -r backup/pkg
NAME USED AVAIL REFER MOUNTPOINT
backup/pkg 19K 239G 19K /backup/pkg
backup/pkg@a 0 - 19K -
backup/pkg@b 0 - 19K -
backup/pkg@c 0 - 19K -

In this case, the @b snapshot was included in the send stream and created on the receive pool.

Dataset properties
Like pools, datasets use properties to report statistics and configure the dataset’s behavior; previ-
ous sections of this chapter mentioned a couple of dataset properties. While pools have a small
set of properties, all of which are defined by the ZFS implementation, datasets have two types
of properties: native and user. Both types of property are set using zfs set, and retrieved with
zfs get.

One feature of properties that is very convenient and important to understand is that a dataset
automatically inherits properties from its parent dataset, unless specifically overridden. The root
dataset in a pool inherits its properties from the implementation-defined default values. The
properties that are used to provide statistics on a dataset are not inherited, of course. If you have
set a property locally on a dataset and wish to revert it to being inherited from the parent, use
the zfs inherit command to specify the property that should be inherited:

zfs inherit mountpoint tank/fish

When you list properties with zfs get, the default display format includes the SOURCE column,
which identifies from where the property’s value came. Table 8-2 lists the possible source values.

251

Part III OpenSolaris File Systems, Networking, and Security

TABLE 8-2

Property Source Values

Value Description

- No source; used only for read-only properties

default Implementation-defined default value

inherited Inherited from an ancestor dataset

local Set locally on this dataset

temporary Set only for the duration of this mount

Native properties
Native properties are the properties defined by the ZFS implementation; these are the properties
that report statistics and control behavior. As not all of the native properties apply to all types of
datasets, Tables 8-3 and 8-4 provide a quick reference to the native properties applicable to file
systems and volumes, respectively. The properties applicable to a snapshot depend on whether
it is a snapshot of a file system or a volume; in either case, the snapshot will have only a subset
of the properties of its base dataset’s type. The zfs(1M) man page documents all of the native
properties in detail.

To set a property, use zfs set:

zfs set readonly=on tank/fish

You can then retrieve the property with zfs get:

zfs get readonly tank/fish
NAME PROPERTY VALUE SOURCE
tank/fish readonly on default

When writing scripts, you’ll often want to use the -H and -o options to get just the value of a
property:

$ zfs get -H -o value readonly tank/fish
on

Most of the native properties can be set at any time; however, a few must be set at the time the
dataset is created (casesensitivity, normalization, and utf8only). To set a property
when a dataset is created, use the -o option to zfs create:

zfs create -o utf8only=on tank/test

The next few sections describe some of the more important native properties.

252

ZFS 8

TABLE 8-3

File System Properties

Property Description

aclinherit Inheritance of ACL entries

aclmode Modification of ACLs in a chmod(2) operation

atime Whether access times of files are updated when read

available Space available to the file system

canmount Whether the file system is mountable

casesensitivity Case sensitivity of filename matching

checksum Checksum algorithm for data integrity

compression Compression algorithm

compressratio Compression ratio achieved

copies Number of data copies stored

creation Time the file system was created

devices Whether device nodes can be opened

exec Whether processes can be executed

mounted Whether the file system is mounted

mountpoint Mount point for the file system

nbmand Use of nonblocking mandatory locks with CIFS

normalization Use Unicode-normalized filenames in name comparisons

origin Snapshot on which a clone is based

primarycache Controls whether ZFS data and metadata are cached in the primary cache

quota Limit on space that the file system can consume

readonly Whether the file system can be modified

recordsize Suggested block size for files

referenced Amount of data accessible within the file system

refquota Space limit for this file system

refreservation Minimum space guaranteed to the file system

reservation Minimum space guaranteed to the file system and descendants

253

Part III OpenSolaris File Systems, Networking, and Security

TABLE 8-3 (continued)

Property Description

secondarycache Controls whether ZFS data and metadata are cached in the
secondary cache

setuid Allow setuid file execution

shareiscsi Export volumes within the file system as iSCSI targets

sharenfs Share the file system via NFS

sharesmb Share the file system via CIFS

snapdir Whether the .zfs directory is visible

type Type of dataset

used Space consumed by the file system and descendants

usedbychildren Space freed if children of the file system were destroyed

usedbydataset Space freed if snapshots and refreservation were
destroyed, and contents of the file system were deleted

usedbyrefreservation Space freed if the refreservation was removed

usedbysnapshots Space freed if all snapshots of the file system were destroyed

utf8only Use only UTF-8 character set for filenames

version On-disk version of the file system

vscan Whether to scan regular files for viruses

xattr Whether extended attributes are enabled

zoned Whether the file system is managed from a nonglobal zone

TABLE 8-4

Volume Properties

Property Description

available Space available to the volume

checksum Checksum algorithm for data integrity

compression Compression algorithm

compressratio Compression ratio achieved

copies Number of data copies stored

creation Time the volume was created

254

ZFS 8

TABLE 8-4 (continued)

Property Description

origin Snapshot on which the clone is based

primarycache Controls whether ZFS data and metadata are cached in the
primary cache

readonly Whether the volume can be modified

referenced Amount of data accessible within the volume

refreservation Minimum space guaranteed to the volume

reservation Minimum space guaranteed to the volume and descendants

secondarycache Controls whether ZFS data and metadata are cached in the
secondary cache

shareiscsi Export the volume as an iSCSI target

type Type of dataset

used Space consumed by the volume and descendants

usedbychildren Space freed if children of the volume were destroyed

usedbydataset Space freed if snapshots and refreservation were
destroyed, and contents of the volume were deleted

usedbyrefreservation Space freed if the refreservation was removed

usedbysnapshots Space freed if all snapshots of the volume were destroyed

volblocksize Block size of the volume

volsize Logical size of the volume

Information related to a number of the native properties is covered elsewhere in
this book. See Chapter 19 for information on the zoned property and integration

between zones and ZFS. See Chapter 7 for information on iSCSI. See Chapter 11 for information
on access control lists (ACLs). See Chapter 10 for information on the NFS and CIFS network file
systems.

Mountpoint
The mountpoint property is used to control where a dataset is mounted in the file system. As
mentioned earlier, the default mount point for a file system is computed by prepending / to the
dataset name, so the default mount point for the dataset tank/fish would be /tank/fish. If
you want a file system to be mounted at a completely different location, you can set the mount-
point property to have it mounted at any path you like:

zfs set mountpoint=/space/mars tank/fish

Combined with property inheritance, this makes it very easy for you to reorganize your file sys-
tem layout as your needs change.

255

Part III OpenSolaris File Systems, Networking, and Security

There are two special values for the mountpoint property:

■ legacy — The file system will not be mounted automatically by ZFS, but can be
mounted using an entry in /etc/vfstab or using the mount -F zfs command.

■ none — The file system cannot be mounted.

Compression
One useful feature of ZFS is integrated data compression, controlled by setting the compres-
sion property. Compression is not enabled by default, but if your system has limited disk
space, you can make it go farther by enabling compression on your datasets (it can be used
for either file systems or volumes). You may also want to use compression if your system has
fairly fast CPUs in comparison to its disks, as is often the case with modern laptops, especially
multi-core systems. ZFS offers a choice of compression algorithms and levels:

■ lzjb — A compression algorithm that provides a decent level of compression (typically
reducing space consumption by not quite half) and does not significantly affect perfor-
mance

■ gzip-N — Uses the same compression as the gzip(1) command, with N replaced by
a value in the range 1 to 9. Larger numbers offer better compression, but cost more in
performance, especially when writing.

■ gzip — The same as gzip-N, with N equal to 6

■ on — Uses the default compression value, which is currently the same as lzjb

■ off — No compression

A change in the compression setting applies only to data that is written after the
change. You often will want to set the compression value at dataset creation time to

ensure that it is applied to all of the data in the dataset.

Copies
Earlier in this chapter, you saw how to set up mirror and RAID Z pools to increase the reliabil-
ity of your data storage. However, if your pool only has a single disk, or is a concatenation, you
can’t use either of those techniques. In this situation, you can use the copies property to cause
ZFS to make multiple copies of each block of data. You can set the copies value to either 2 or
3 and ZFS will spread an extra copy or two of your data in different areas of the disk, which can
improve its resilience against a failure in an area. It won’t help you if the disk completely fails,
however.

Of course, creating multiple copies also doubles or triples the amount of space required to store
your data, so do so only when you have plenty of disk space. One way to offset this overhead is
to use copies and compression together — you’ll pay less in space to get the additional reliabil-
ity that the copies feature provides.

Like the compression property, a change in the copies property applies only to
data written after the property is changed.

256

ZFS 8

Quotas and reservations
Like CPU time and memory, disk space is a system resource that often requires management
to ensure that it is used fairly. ZFS provides quotas and reservations to assist you in apportion-
ing disk space. Unlike UFS, which provides quotas that apply to a user, ZFS applies quotas and
reservations to a dataset; by setting permissions on the dataset’s directory so that only a specific
user can write to a dataset, you can achieve an effect similar to the UFS quota system. Another
difference between UFS and ZFS quotas is that ZFS does not offer the ‘‘soft’’ quota limits that
UFS does.

See Chapter 7 for information on UFS quotas. See Chapter 18 for information on
resource management for CPU and memory resources.

The quota property sets a limit on the total space that can be consumed by a dataset and all
of its children; you can also set quotas on the child datasets, but such specific quotas will not
enable more space to be consumed than an inherited quota would enable.

The reservation property specifies the minimum amount of space guaranteed to a dataset and
its children; any other datasets in the pool will not be allowed to consume space that would
leave less than this amount of space for the dataset. Additionally, ZFS offers the refreserva-
tion property, which specifies the minimum amount of space guaranteed to a specific dataset,
and does not reserve space for any children of the dataset.

User properties
User properties have no effect on how a ZFS dataset behaves; they are provided so that users
can add locally meaningful information to datasets or identify datasets for some other purpose
such as archiving. User properties are distinguished from native properties by including a colon
character in the name; other rules about their syntax are detailed in the zfs(1M) man page.
Because there is no central authority that allocates names of user properties, it’s recommended
that you prefix any user properties you create with a unique identifier such as your reversed
domain name (com.sun is reserved for Sun’s use, for example). This limits the likelihood of a
naming conflict between different programs that use user properties. For example, you might
create a user property to record the department that owns a dataset:

zfs set :department=sales tank/prospects
zfs get :department tank/prospects
NAME PROPERTY VALUE SOURCE
tank/prospects :department sales local

Like native properties, user properties are inherited by a dataset from its ancestor.

ZFS encryption
Encryption support for ZFS is under development and is expected to appear in OpenSolaris in
the near future. The design has been reviewed and approved; and the materials, including the
command changes expected, may be viewed in the architecture case directory, which is available
at http://opensolaris.org/os/community/arc/caselog/2007/261.

257

Part III OpenSolaris File Systems, Networking, and Security

To briefly summarize the expected features, encryption is performed at the dataset level; thus,
both file systems and volumes can be encrypted, including the swap and dump volumes. You
must specify that a dataset is to be encrypted when you create the dataset, so that all data in the
dataset will have encryption applied to it. This means that you need to move data in existing
datasets into new datasets to encrypt it; the most efficient means of doing this is with zfs send
and zfs receive. You do not need to move data to a new pool, though, because existing pools
can be upgraded with zpool upgrade to obtain support for the encryption feature. See the
section ‘‘ZFS Versioning’’ later in this chapter for more information on upgrading pools.

The encryption implementation uses a randomly generated per-dataset key that is never changed
to perform the actual data encryption. The encryption key is then itself encrypted, or wrapped,
with a key that you specify. You can use a different wrapping key for each dataset, or use a
common wrapping key for multiple (or all) datasets in a pool. Keys can be stored in hardware
encryption devices or standard file-based storage devices, or can be supplied interactively as a
passphrase. AES is the only encryption algorithm initially supported. Delegation of encryption
features is also supported, so you can allow users to encrypt their own datasets if desired.

Encryption of data is a complex topic. We recommend consulting the ZFS documentation,
including the zfs(1M) and zpool(1M) man pages, for detailed information before attempting
to use the ZFS encryption feature.

ZFS Delegated Administration
If your system has multiple users, you may want to make use of ZFS’s delegated administration
features to allow them to manage their own ZFS datasets. You have a choice of two techniques
for delegating administration; the appropriate one to use depends on the scope of the power you
wish to delegate.

If you want to share administration of the ZFS pools, or all of the ZFS datasets on the system,
you can assign RBAC (role-based access control) profiles that allow that capability to a user.
If you want to share administrative access to pools, this is your only choice. The ZFS storage
management profile allows administration of all pools on the system, while the ZFS File System
Management profile allows administration of all datasets on the system. To assign the storage
management profile to user jack, use the usermod command:

usermod -P "ZFS Storage Management" jack

See Chapter 11 for more information on RBAC.

Often, though, you may wish to delegate administration of the datasets more finely, so that
a user has administrative-level access to only certain datasets. To support this administrative
model, ZFS provides the zfs allow and zfs unallow commands, which assign administrative
access at the dataset level to a user or group. The permissions can be specified quite precisely,
so that users can modify only certain properties, or perform only specific administrative

258

ZFS 8

operations on a dataset. Also, like properties, the delegated administration permissions can
be inherited by a dataset’s descendants. As a simple example, you can assign user jack the
capability to create and destroy child datasets of the dataset tank/jack, as well as the capability
to take snapshots of the dataset, as follows:

zfs allow jack create,destroy,mount,snapshot tank/jack

The following displays the delegated permissions on the dataset:

zfs allow tank/jack

Local+Descendent permissions on (tank/jack)

user jack create,destroy,mount,snapshot

If no permissions are delegated for a dataset, then the attempt to display them produces no
output.

You can revoke a permission with zfs unallow:

zfs unallow jack snapshot tank/jack

This change would prevent user jack from taking any snapshots.

This is just a taste of what’s possible with the delegated administration capability. Consult the
zfs(1M) man page for more details on the delegations that are possible.

ZFS Versioning
Many types of software use the concept of versioning to enable the software to evolve over
time yet still retain compatibility with older data. Solaris has leaned heavily on versioning as a
mechanism to enable it to provide the compatibility guarantees for which it is well known, while
allowing innovation in the operating system to proceed.

ZFS has two levels of versioning, at both the pool and dataset levels. If a pool is formatted using
an older version, zpool status notes that in the pool’s status entry:

$ zpool status
pool: backup
state: ONLINE

status: The pool is formatted using an older on-disk format. The pool can
still be used, but some features are unavailable.

action: Upgrade the pool using ‘zpool upgrade’. Once this is done, the
pool will no longer be accessible on older software versions.

scrub: none requested
config:

NAME STATE READ WRITE CKSUM

259

Part III OpenSolaris File Systems, Networking, and Security

backup ONLINE 0 0 0
c8t0d0 ONLINE 0 0 0

errors: No known data errors

You can examine the versions of your pools and datasets with the zpool and zfs upgrade
commands:

$ zpool upgrade
This system is currently running ZFS pool version 10.

All pools are formatted using this version.
$ zfs upgrade
This system is currently running ZFS filesystem version 3.

The following filesystems are out of date, and can be upgraded. After being
upgraded, these filesystems (and any ‘zfs send’ streams generated from
subsequent snapshots) will no longer be accessible by older software versions.

VER FILESYSTEM
--- ------------
2 rpool/space
2 rpool/space/dc
2 rpool/space/dc/zones
2 rpool/space/dc/zones/dctest
2 rpool/space/dc/zones/dctest/root
1 rpool/space/dminer
2 rpool/space/hg
1 rpool/space/hg-clones
1 rpool/space/iso
2 rpool/space/iso/preview1
2 rpool/space/iso/preview2

1 rpool/space/live
2 rpool/space/pkg
1 rpool/space/sw
2 rpool/space/zones
2 rpool/space/zones/test

Use the -v option to zpool upgrade or zfs upgrade to print details about the
differences between the versions of pools and datasets.

Use the following to upgrade a specific pool to the most current version supported by your
system:

zpool upgrade backup
This system is currently running ZFS pool version 10.

260

ZFS 8

Successfully upgraded ‘backup’ from version 8 to version 10

Similarly, the following upgrades a dataset:

zfs upgrade rpool/space/iso
1 filesystems upgraded

You can use the -a option rather than a specific pool or dataset name to upgrade all of your
pools or datasets. You can also use the -V option to choose a specific version to which the pool
or dataset should be upgraded.

Pool and dataset versions are independent of each other; you can use the most cur-
rent dataset version in a pool that has an older version, and vice versa.

Generally, it’s a good idea to upgrade your pools and datasets to the most current
version — otherwise, you may find some features to be unavailable; for example, hot
spare devices weren’t introduced until pool version 3, but if you need to move a pool or dataset
to a system that supports only an older version of ZFS, make sure you don’t upgrade that pool
or dataset to a later version. Also, be aware that you cannot downgrade a pool or dataset from a
newer to an older version, so it’s important to exercise some caution in upgrading.

When you create a pool or dataset, it is, by default, created as the most current ver-
sion supported by your system. You may specify that an older version be used by set-

ting the version property at creation:

zpool create -o version=4 oldtank c7t0d0p0

Resources
The ZFS community at opensolaris.org provides a wealth of detailed information on ZFS:
http://opensolaris.org/os/community/zfs.

The BigAdmin page on ZFS has a number of articles on various ZFS topics: www.sun
.com/bigadmin/topics/zfs.

Jeff Bonwick, the principal inventor of ZFS, provides background on some of the ideas behind
ZFS in his blog: http://blogs.sun.com/bonwick.

The Solaris Internals website has an extensive guide to ZFS best practices:
http://solarisinternals.com/wiki/index.php/ZFS Best Practices Guide.

The source code for ZFS is available via the ONNV repository at opensolaris.org, in the fol-
lowing subdirectories:

■ Core file system: usr/src/uts/common/fs/zfs/

■ Commands: usr/src/cmd/zfs and usr/src/cmd/zpool

■ GRUB implementation of ZFS for booting: usr/src/grub/grub-0.95/stage2/
fsys_zfs.c

261

Part III OpenSolaris File Systems, Networking, and Security

Summary
This chapter introduced the features of ZFS, including pools, file systems, volumes, and snap-
shots. Uses of some of the important properties were described. Techniques for efficiently trans-
ferring and backing up datasets, monitoring performance, and delegating administration were
demonstrated.

262

Networking

IN THIS CHAPTER
Network interfaces

Network Auto-Magic (NWAM)

IP multipathing

Link aggregation

DNS, DHCP, and NTP

inetd

Routing

Firewalls

Network troubleshooting

In the last twenty years, the Internet has become the predominant
application for computer systems, whether providing services such as
a website, or consuming them, such as a client system running a web

browser. Indeed, Sun’s venerable slogan, ‘‘The Network Is the Computer,’’
well expresses how vital networking capability has become in computing.
As a result, all modern operating systems include a TCP/IP protocol stack
and standard networking services that enable users to construct their own
branch local area networks, aggregate them into organization-wide wide
area networks, and connect to the global Internet. This chapter tackles the
major networking features included in OpenSolaris.

This chapter assumes that you have a basic knowledge
of Internet networking, such as the format of

an IP address. If you’re not an experienced Internet user already, you
might find it helpful to consult an introductory text or article, such as
http://en.wikipedia.org/wiki/IP Address, that explains the basic
concepts.

Network Interfaces
To communicate over a network, the first thing you need is a connection to it. As on other
UNIX-like systems, OpenSolaris models a connection to the network as a network interface.

Historically, a network interface was provided as a
separate printed-circuit board to be installed into a

computer. As a result, network interfaces are commonly referred to as NICs,

263

Part III OpenSolaris File Systems, Networking, and Security

for ‘‘network interface card,’’ even though today most network interfaces are built into the system
at the factory. Another term that’s occasionally used for a network interface is network adapter.

On OpenSolaris, network interfaces exist at two layers: the link (also called data-link) layer, and
the IP layer. These layers correspond to layers 2 and 3 of the OSI model. When sending data,
the IP layer is responsible for formatting data from a transport such as TCP into datagrams for
transmission on the Internet, and for selecting source and destination IP addresses that can be
used to send the datagram. The source IP address selected corresponds to one of the network
interfaces. The datagram is passed to the link layer, which translates the IP addresses into MAC
(Media Access Control, also commonly called Ethernet) addresses, and transmits the message on
the physical network medium. The process of receiving data operates in reverse, with the link
layer collecting messages and passing them up to the IP layer, which in turn passes them to the
transport.

Networking Concepts and Standards

In order for heterogeneous computer systems to communicate over a network, they must have
a common understanding of how to interpret each other’s signals, which are called protocols.

This requires the creation of documents known as standards, which provide protocol specifications
to developers of networking hardware and software. The standards and protocols use a theoretical
model of networking known as the OSI seven-layer model. A brief summary of this model can
be found at http://en.wikipedia.org/wiki/OSI model, as well as any standard networking
text.

Standards for link and MAC layers are primarily developed by cooperative industry efforts sponsored
by the IEEE, a professional association that has its roots in electrical and electronics engineering.
The predominant networking standards produced by it are known as IEEE 802, which includes
specifications for the Ethernet and Wi-Fi technologies.

The Internet itself is governed by a cooperative international effort under an organization known as
ICANN, the Internet Corporation for Assigned Names and Numbers. The standards that ICANN uses
to enable Internet interoperability are developed by another organization, the Internet Engineering
Task Force (IETF), which publishes its technical specifications as a series of documents known as
Requests for Comment (RFCs). The networking features in OpenSolaris are primarily designed to
implement the standards developed by the IEEE and the IETF.

The simplest form of a network interface is a physical Ethernet port built into your system.
Another common network interface is a Wi-Fi wireless network radio transmitter/receiver, also
often built into modern systems, especially laptops. However, not all interfaces are tied directly
to a hardware component because OpenSolaris includes network virtualization technology,
including loopback interfaces, logical interfaces, tunnels, and virtual NICs. Network interfaces
can also be constructed as composites of multiple physical devices using link aggregation and

264

Networking 9

multipathing. The following sections introduce you to the gamut of network interfaces supported
on OpenSolaris.

Displaying IP interfaces
If you’re using the OpenSolaris distribution, you likely already have several network interfaces
configured on your system. That’s because OpenSolaris configures the system to use a tech-
nology known as Network Auto-Magic (commonly called NWAM, pronounced ‘‘en-wham’’),
which is designed to automatically detect and configure any network interfaces available on your
system using DHCP, the Dynamic Host Configuration Protocol. The OpenSolaris Live CD also
uses this technology to provide automatic network access when the CD is booted. You will learn
more about NWAM and DHCP later in this chapter.

Like other UNIX-based systems, IP network interfaces on OpenSolaris are configured and dis-
played using the ifconfig(1M) command. You can list the IP interfaces on your system using
ifconfig -a:

$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1
inet 127.0.0.1 netmask ff000000

e1000g0: flags=201000802<BROADCAST,MULTICAST,IPv4,CoS> mtu 1500 index 8
inet 0.0.0.0 netmask 0

wpi0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 9
inet 192.168.1.30 netmask ffffff00 broadcast 192.168.1.255

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1
inet6 ::1/128

The output of ifconfig is a bit dense but it contains a lot of information, so it’s worthwhile
to spend a little time learning to understand it. Each IP interface’s data begins in column 0 with
its name, and additional lines of output related to that interface are indented, so the preceding
listing shows four IP interfaces, named lo0, e1000g0, wpi0, and lo0.

OpenSolaris defaults to naming the interfaces based on the name of the driver, the piece of soft-
ware that controls the hardware. The e1000g driver is used for Intel’s Gigabit Ethernet hard-
ware, for example, while the wpi driver is used for Intel’s 3945 Wi-Fi hardware. OpenSolaris
then appends an instance number, starting at zero, to the driver name to distinguish each piece
of hardware; for example, if you have two e1000g interfaces, they would be named e1000g0
and e1000g1. This is somewhat different from Linux, for example, which usually bases interface
names on generic names such as eth for all Ethernet interfaces, irrespective of the drivers used
to control them.

You can rename network interfaces to fit your own needs. See the BigAdmin article
at http://sun.com/bigadmin/sundocs/articles/vnamingsol.jsp for information

on using this feature.

265

Part III OpenSolaris File Systems, Networking, and Security

If you’re wondering why there are two interfaces named lo0, rather than lo0 and lo1, a clue to
the answer is found in the first token on the second line of output for each interface. This token
is the protocol family for the interface; inet represents ordinary IP (also called IPv4, or IP ver-
sion 4) interfaces, while inet6 represents IPv6 (IP version 6) interfaces. The flags field con-
tains IPv4 for the first instance, and IPv6 for the second instance. OpenSolaris provides sepa-
rate IP interface instances for each of the IP protocol families, which is why you see two inter-
faces named lo0. This is different from Linux, which models the two protocol families as multi-
ple addresses on the same interface.

IPv4 is the standard address format used on the Internet at present, although
IPv6 addressing is expected to eventually replace it as the standard because

IP version 4 addresses are becoming a scarce commodity. However, IPv6 is not currently
widely deployed, so this book does not cover using IPv6 with OpenSolaris. For more infor-
mation on IPv6 and OpenSolaris, consult the Solaris IP Services Administration Guide at
http://docs.sun.com/app/docs/doc/819-3000.

Another question that probably arises from the ifconfig -a output is why, if your system has
only two network interfaces, does ifconfig list more than that? As you might discern from
the string LOOPBACK in the flags section of the output, the lo0 interface is a loopback inter-
face used by the system to connect to itself without the need for any physical networking hard-
ware. This makes it a virtual interface, which is also expressed in the flags field by the string
VIRTUAL.

The addresses used for loopback interfaces (127.0.0.1 for IPv4, ::1 for IPv6) are
reserved for loopback by the IP protocol standards approved by the IETF. It is an

error to attempt to assign them to a physical interface.

You can examine the IP configuration for a particular interface by specifying the interface name
as the single argument to ifconfig:

$ ifconfig wpi0
wpi0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 9
inet 192.168.1.30 netmask ffffff00 broadcast 192.168.1.255

Several other portions of the output bear closer examination. The flags field displays a
numeric value, followed by a series of symbolic values that interpret the numeric value. The
flags UP and RUNNING are normally displayed for interfaces that have an address assigned and
are capable of sending and receiving packets. The DHCP flag indicates that DHCP was used to
obtain the address assigned to this interface. The second line of output shows the details of the
interface’s address configuration: its address (preceded with the inet keyword because this is an
IPv4 interface), its netmask, and the broadcast address for the network. The interface’s address is
the single most important piece of information in the entire ifconfig output because it is used
by other systems to communicate with this system.

Contrast the preceding output with that for e1000g0:

$ ifconfig e1000g0

266

Networking 9

e1000g0: flags=201000802<BROADCAST,MULTICAST,IPv4,CoS> mtu 1500 index 8
inet 0.0.0.0 netmask 0

This interface is not up or running, and does not have an address assigned, as evidenced by the
value 0.0.0.0 for the address. As a result, it is not usable for communication at this time.

The MULTICAST and CoS flags, as well as other flag values not shown in these
examples, are described in the ifconfig(1M) man page.

Configuring interfaces automatically with NWAM
NWAM is designed to automatically configure physical network interfaces on the system without
any configuration actions by the user. It does so by bringing up each network interface and
attempting to configure it using DHCP. The version of NWAM currently included in Open-
Solaris is designed to configure only a single network interface at a time. By default, NWAM
prefers wired interfaces to wireless, so it attempts to configure a wired interface first; if that fails,
then NWAM attempts to configure any wireless interfaces. Switching between wired and wireless
networks is as simple as unplugging or plugging in the Ethernet cable; NWAM automatically
detects the cable being connected or disconnected and takes the appropriate action. This extends
to wireless networks as well; if you’re connected to a wireless network and the connection is
lost, perhaps because you moved out of range of the base station, NWAM rescans for wireless
networks and attempts to connect to another network.

NWAM isn’t the right answer for every situation at this time. Because it brings only one inter-
face online at a time, you wouldn’t use it on systems where you want to run multiple interfaces
simultaneously, such as running your system as a router, using availability and performance fea-
tures such as IP multipathing (IPMP) and link aggregation, or clustering with private intercon-
nects. Many server configurations require one or more of these features, which are explored later
in this chapter.

Some wired Ethernet drivers do not provide the notifications needed by NWAM
to automatically switch between wired and wireless networking. The NWAM

project has collected information about driver support for link status notifications at
http://opensolaris.org/os/project/nwam/prototype/dl note link/. All OpenSolaris
wireless drivers support the mechanisms that NWAM uses to detect signal loss.

Enabling NWAM
As mentioned earlier, the OpenSolaris distribution, by default, uses Network Auto-Magic
(NWAM) to configure its network interfaces. You can use SMF’s svcs command to verify that
you’re using NWAM:

$ svcs nwam
STATE STIME FMRI
online 10:33:36 svc:/network/physical:nwam

If the state is online, you’re using NWAM; if the state is disabled, you’re not. However, if
your system is a desktop or laptop system that is not being used as a server, then consider using

267

Part III OpenSolaris File Systems, Networking, and Security

NWAM because you will spend less time setting up and maintaining your system’s network con-
figuration.

See Chapter 13 for details on SMF.

If your system is not using NWAM and you want to switch to NWAM, use the following two
commands:

svcadm disable network/physical:default
svcadm enable network/physical:nwam

You can also switch to NWAM by selecting System�Administration�Network from the
GNOME desktop.

Switching from manual configuration to NWAM causes any running network inter-
faces to shut down and restart, which likely terminates any active network connec-

tions. Be especially careful not to do this if you’re connected to the system over the network!

Interacting with NWAM
After NWAM configures an interface, it displays a notification pop-up in the desktop notification
area if you’re logged in to the console and have the NWAM Manager applet configured as
part of your GNOME desktop (it’s included in the default session). NWAM also displays a
notification when an interface is deconfigured due to loss of connection. If you’re not running a
graphical desktop on the system console, NWAM proceeds silently. Often, when the system is
rebooted, NWAM has a network connection up and running before you log in and can see its
notifications.

Wireless networks require special handling by NWAM. Because it’s impolite — and illegal
in some jurisdictions — to connect to a network that you don’t have permission to use,
NWAM presents a list of wireless networks that its scans detect, from which you can choose an
appropriate network. This happens only if none of the scanned networks is recognized as known,
which means that they have been previously connected to by your system. The known networks
are recorded in /etc/nwam/known_wifi_nets, which contains entries such as the following:

rover 0:40:5:ca:b4:56

The first column in each entry is the SSID (or name) of the Wi-Fi network, and the second is
the MAC address of the access point you’ve connected to; both must match for a network to be
considered known. If no known networks are found, the NWAM notification pop-up instructs
you to right-click on the NWAM Manager icon. Once you do, the NWAM Manager presents the
menu shown in Figure 9-1. (If user interaction is required to select a network but no user is
logged in to a graphical desktop on the system console, NWAM does not connect and tries again
in a few minutes.)

In the menu’s top section you select the interface you want to use, overriding NWAM’s
automatic behavior. You can also configure the relative priority of the interfaces, perhaps to

268

Networking 9

make wireless interfaces preferred over wired. The third section of the menu lists the wireless
networks found by scanning: Click on one to select it. The bottom portion enables you to join
a network that wasn’t found by scanning, or to manage the known wireless networks list. It’s
sometimes necessary to use Join Unlisted Wireless Network because wireless networks can
be configured to not broadcast their availability, which prevents NWAM from automatically
discovering them.

FIGURE 9-1

NWAM Manager’s pop-up menu enables you to control NWAM’s operation.

Configuring a Wi-Fi network to not broadcast its SSID is sometimes recommended as
a security measure, but it tends to add more inconvenience for legitimate users than

security against illegitimate ones because the SSID can be easily obtained by watching legitimate
traffic. If you need a secure wireless network, use WPA (Wi-Fi Protected Access) to control access
to your network, and, potentially, IP security as well. WEP (Wired Equivalent Privacy) is not rec-
ommended because flaws in its design allow its encryption to be easily broken. See your wireless
access point or wireless router’s documentation for instructions on configuring WPA. IP security
(IPsec) is discussed in Chapter 11.

If you select a network that uses encryption (both WEP and WPA are supported), an additional
dialog prompts you to enter the encryption key needed to access the network. After entering the
key once, it’s stored on the system in a secure location for future use, so you don’t need to reen-
ter it every time you connect to the network.

Once NWAM connects to a network, it attempts to use the configuration parameters
provided by the DHCP server to update the system configuration. Currently, the default
behavior of NWAM is limited to updating the DNS and name service switch configura-
tion if the DHCP server has supplied DNS configuration information. If DNS servers are
supplied, NWAM uses the script /lib/svc/method/net-svc (the start method for the
svc:/network/service:default SMF service) to update /etc/resolv.conf and
/etc/nsswitch.conf to use this DNS configuration.

269

Part III OpenSolaris File Systems, Networking, and Security

For instance, if the DHCP server supplies a DNS domain of example.com and a DNS server
address of 192.168.1.7, /etc/resolv.conf is updated as follows:

domain example.com
nameserver 192.168.1.7

The hosts and ipnodes entries in /etc/nsswitch.conf will read as follows:

hosts: files dns
ipnodes: files dns

NWAM allows for some customization of its behavior, including specifying the preference
order for interfaces and providing more complex actions when interfaces are configured and
deconfigured. You can even use NWAM to configure static addresses on your network interfaces,
but that is rarely done with the current implementation and is therefore not recommended.
Because NWAM’s features are under active development, consult the nwamd(1M) man page and
the project page at www.opensolaris.org/os/project/nwam/ for current information on
customizing NWAM.

Troubleshooting NWAM
If you think you’re using NWAM but your system doesn’t seem to be able to reach any other
systems on the network, there are several steps you can take to diagnose and correct the
problem.

First, verify that NWAM is in the online state, using the svcs command shown earlier. If its
state is shown as disabled, follow the procedure in the section ‘‘Enabling NWAM’’ to ensure
it’s enabled. If it’s in the offline or maintenance state, then something more serious is
wrong with your system; use the svcs -x command and the SMF troubleshooting procedures in
Chapter 13 to determine what services are causing the problem.

If NWAM is online, your next step is to examine the network interfaces with ifconfig -a, as
described earlier. If you have no interfaces other than the loopback interface, then either you
don’t have any network interfaces on your system (which is unlikely) or you don’t have the
necessary interface drivers. See Chapter 5 for information on checking your hardware for driver
support and obtaining drivers.

If the ifconfig output shows no interfaces with an IP address, and no interfaces have the
DHCP flag indicating that NWAM is attempting to configure them with DHCP, wait a few
minutes for NWAM to make another attempt to configure the interfaces. If you have already
done this, then restart NWAM:

svcadm restart nwam

270

Networking 9

Again, give NWAM a few minutes after restarting to try to bring up your network interfaces. If
the ifconfig -a output shows that DHCP is being attempted on one of the interfaces, use the
netstat -D command to examine what’s happening with DHCP:

$ netstat -D
Interface State Sent Recv Declined Flags
e1000g0 SELECTING 5 0 0

Output similar to this — in which the interface is in the SELECTING state and has a Recv value
of 0 (no packets have been received) — most likely means that you have a connection problem.
If the interface is a wired network, the problem is likely a disconnected cable or a more seri-
ous network infrastructure failure (e.g., a switch, router, or server that is down). If it’s a wireless
network, you may have an incorrect encryption key, or again, there could be a network infras-
tructure failure. You can use tools such as ping or snoop to investigate further. See the ‘‘Trou-
bleshooting’’ section later in this chapter.

Configuring interfaces manually
If you’ve decided that NWAM isn’t for you, OpenSolaris offers a manual method to configure
network interfaces, which has been in use since Solaris 2.0. Using manual configuration, you
still have the option to configure your system with static addresses or use DHCP, and you can
use all of OpenSolaris’ other networking features. Chapter 3 described how to use the GNOME
Network Manager application to manually configure network interfaces; in this section you’ll
learn how to manipulate the underlying configuration files directly.

Some information sources recommend that you use the sys-unconfig(1M) program
to reconfigure network interfaces. Be aware that sys-unconfig deconfigures several

aspects of your system, such as the root password and ssh server key, and halts your system. You
then need to boot the system and answer a series of questions to reconfigure it. We don’t recom-
mend this approach to system reconfiguration because it is likely to disrupt your system in ways
that will be at least as time-consuming to fix as the manual procedures outlined here, which try to
avoid modifying the system unnecessarily.

If you’re currently using NWAM and want to switch to manual configuration, you must disable
NWAM and enable the manual configuration service, network/physical:default, as follows:

svcadm disable network/physical:nwam
svcadm enable network/physical:default

Switching from NWAM to manual configuration causes any running network inter-
faces to shut down. This likely terminates any active network connections, so avoid

switching if you’re connected to the system over the network.

271

Part III OpenSolaris File Systems, Networking, and Security

Next, decide whether you’re going to use DHCP or a static address to configure each interface,
and then follow one of the subsequent procedures accordingly. First, however, you need to
know the name of the interface you want to configure. You can obtain the full list of available
links using the dladm show-link command (you’ll learn more about the dladm command in a
subsequent section):

dladm show-link
LINK CLASS MTU STATE OVER
e1000g0 phys 1500 up --
e1000g1 phys 1500 up --

Note that this example uses a different system than the examples in the previous section on
NWAM. The important output here is the LINK column, because these are the device names
that you can use to configure IP interfaces. This system has two e1000g links: e1000g0 and
e1000g1. The procedures in the next section will configure these interfaces for use with IP, but
before you can configure an IP interface in any way you must use the plumb subcommand of
ifconfig to create an IP interface attached to a link:

ifconfig e1000g0 plumb

You can verify that the interface is properly plumbed with ifconfig:

$ ifconfig e1000g0
e1000g0: flags=201000842<BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2

inet 0.0.0.0 netmask 0

Configuring a DHCP interface
Once you’ve plumbed an IP interface, you can configure it with DHCP using the dhcp subcom-
mand of ifconfig. For example, the following configures e1000g0 using DHCP:

ifconfig e1000g0 dhcp start

This command normally pauses for a few seconds while the DHCP transaction completes, and
then exits with no output. You can verify it completed successfully by checking the interface’s
configuration with ifconfig:

$ ifconfig e1000g0
e1000g0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu
1500 index 2
inet 10.0.2.15 netmask ffffff00 broadcast 10.0.2.255

If there’s a problem completing the DHCP transaction, you may see output similar to the
following:

ifconfig e1000g0 dhcp start
ifconfig: e1000g0: wait timed out, operation still pending . . .

272

Networking 9

If this occurs you need to investigate the problem using netstat, snoop, and possibly other
tools. See the ‘‘Troubleshooting’’ section of this chapter for suggestions.

At this point, you have a running DHCP interface but only until you next reboot the system.
If you want this interface to be persistently configured, you must create two empty files,
/etc/hostname.interface and /etc/dhcp.interface, replacing interface with the
name of the link. The network/physical:default service uses the presence of these files as
a signal to configure the interface on the next reboot. The following command configures the
e1000g0 interface persistently:

touch /etc/hostname.e1000g0 /etc/dhcp.e1000g0

The empty /etc/hostname.e1000g0 file causes the interface to be plumbed, and the empty
/etc/dhcp.e1000g0 file causes DHCP to be started on the interface.

Stop DHCP on an interface using ifconfig, using one of the following two commands:

ifconfig e1000g0 dhcp release
ifconfig e1000g0 dhcp drop

The difference between the two commands is that a release sends a packet to the DHCP
server informing it that your system is no longer using the address, whereas drop just
stops DHCP on the interface without informing the DHCP server. Generally, it’s better to
use release so that the DHCP server can reuse the address for other clients immediately;
otherwise, it must wait until the lease on the address expires. See the section ‘‘Dynamic Host
Configuration Protocol’’ later in this chapter for more information on address leases.

To permanently deconfigure an interface after you’ve stopped it using one of these commands,
just remove both the hostname.interface and dhcp.interface files:

rm /etc/hostname.e1000g0 /etc/dhcp.e1000g0

OpenSolaris also supports configuring network interfaces using the Reverse Address
Resolution Protocol (RARP), an older protocol still used in some environments. As

RARP has very limited capabilities and is primarily of historical interest, it is not covered here.
Consult the ifconfig(1M) man page for information on using RARP.

Configuring a static IP interface
If your network doesn’t use DHCP, or you’re configuring a system that will be an important part
of your infrastructure, such as a server or a router, then you can configure the IP interfaces with
static addresses. To configure an IP interface temporarily with a static address, use ifconfig:

ifconfig e1000g0 inet 192.168.1.20/24

This assigns the IPv4 address 192.168.1.20 to the interface, with the first 24 bits specified as the
network portion of the address (an IPv6 address can be assigned instead by replacing the inet

273

Part III OpenSolaris File Systems, Networking, and Security

protocol family token with inet6 and supplying a properly formatted IPv6 address). You can
display the result with ifconfig:

$ ifconfig e1000g0
e1000g0: flags=201000842<BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3

inet 192.168.1.20 netmask ffffff00 broadcast 192.168.1.255

The 24-bit prefix specification results in a netmask of ffffff00 and a broadcast address of
192.168.1.255. This interface is not yet online, though, because it is missing the UP flag; this
can be included at the same time the address is assigned by adding the up token to the end of
the ifconfig command, but it was intentionally omitted to enable you to check the interface
configuration first, which is recommended. Once you’re satisfied that the interface is configured
properly, you can bring it up using ifconfig:

ifconfig e1000g0 inet up

As with the examples configuring a DHCP interface, the ifconfig command configures
an interface only temporarily, so it is lost when the system is rebooted unless you configure
it persistently. The persistent configuration for a statically addressed interface is stored in
/etc/hostname.interface; unlike the DHCP case, this file is not empty but contains
fragments of the ifconfig command required to configure the interface. To make the simple
configuration of e1000g0 demonstrated earlier persistent, use the echo command or your
favorite editor to place the following in /etc/hostname.e1000g0:

192.168.1.20/24

This is all that’s necessary to configure the interface because the network/physical:default
start method script, /lib/svc/method/net-physical, will prepend ifconfig inter-
face inet to the contents of the /etc/hostname.interface file to construct the
ifconfig command that’s executed to configure the interface during system boot. Note
that the /etc/hostname.interface file can have multiple lines; each line will cause
network/physical:default to execute a separate ifconfig command against the
interface, in the order they are listed in the file. One subtlety when using a multi-line host-
name.interface file is that you must add the up command to one of the commands to
bring the interface up; see the section ‘‘Logical interfaces’’ later in this chapter for examples of a
multi-line file.

In most cases, you need to perform two additional tasks to complete your static network config-
uration:

■ Configure routing so that you can connect to systems beyond your local network. See the
section ‘‘Routing’’ later in this chapter.

■ Configure the DNS resolver so that your system can translate hostnames to IP addresses.
See the section ‘‘Configuring the DNS resolver’’ later in this chapter.

When configuring a local static address, it is also helpful to configure a mapping between the IP
address and a name in the local /etc/inet/hosts file. This isn’t strictly required, but names

274

Networking 9

are friendlier to use, easier to type, and can help in recognizing systems when troubleshooting
problems.

See Chapter 10 for information on name service configuration.

To deactivate a statically addressed interface, use ifconfig to mark the interface as down:

ifconfig e1000g0 inet down

The IP address remains set on the interface when you mark it down. You can remove
the /etc/hostname.interface file to prevent the interface from being configured on the
next boot.

Configuring a Wi-Fi interface
If the interface you’re configuring manually is a Wi-Fi (also known by its standards name,
IEEE 802.11) interface, then there is more to be done before you can configure it with IP. For
a standard wired Ethernet interface, usually all that’s necessary to configure its data link is to
plug in a cable between your system and the network switch; but in the case of Wi-Fi, you
need to provide the driver with the information necessary to establish the connection over the
airwaves, because often there is more than one Wi-Fi network that is reachable from a particular
location. The dladm(1M) command is the OpenSolaris interface for configuring data links, and
it includes the functions needed to configure a Wi-Fi link.

First, use dladm scan-wifi to display the available Wi-Fi networks at your location:

dladm scan-wifi
LINK ESSID BSSID/IBSSID SEC STRENGTH MODE SPEED
wpi0 sony 0:1:4a:10:ac:4c wep weak g 54Mb
wpi0 rover 0:21:29:63:a8:85 none excellent g 54Mb

For each access point that is seen, dladm displays the data link name, the ESSID (also called the
network name), the BSSID (which is the network address of the access point), the security mode
(none, wep, or wpa), an indication of the signal strength, the IEEE 802.11 mode (which can
be a, b, g, or n) and the speed at which the network is operating. If you have a choice, select
a network with the appropriate security mode, the best strength, and the best speed.

Next, use dladm connect-wifi to establish the connection, specifying the ESSID of the
desired network:

dladm connect-wifi -e rover wpi0

No output is returned if the connection is established successfully. You can verify the status
using dladm show-wifi:

dladm show-wifi
LINK STATUS ESSID SEC STRENGTH MODE SPEED
wpi0 connected rover none weak g 36Mb

275

Part III OpenSolaris File Systems, Networking, and Security

To switch networks once connected, you first need to disconnect, using dladm
disconnect-wifi:

dladm disconnect-wifi wpi0
dladm show-wifi
LINK STATUS ESSID SEC STRENGTH MODE SPEED
wpi0 disconnected -- -- -- -- --

If the network to which you want to connect is using WEP or WPA for security, you must
create the security key required to access that network; consult your network administrator if
you don’t already know the key. Security keys are managed by additional dladm subcommands:
create-secobj, show-secobj, and delete-secobj. To create a key, specify its class (which
must be either wep or wpa) and provide a name — dladm prompts for the actual key value,
which is obscured during entry and must be entered twice, with matching values:

dladm create-secobj -c wep sony-key
provide value for ‘sony-key’: *****
confirm value for ‘sony-key’: *****

Use show-secobj to list the security objects known to dladm:

dladm show-secobj
OBJECT CLASS
sony-key wep

Note that there is no way for dladm to display the actual value of the key; and if you need to
change a key, you must delete it and recreate it. After a key is created, you can use it to connect
to a secure network by specifying the key name with the -k option to connect-wifi:

dladm connect-wifi -k sony-key -e sony wpi0
dladm show-wifi
LINK STATUS ESSID SEC STRENGTH MODE SPEED
wpi0 connected sony wep weak g 36Mb

Once you have the Wi-Fi link successfully connected, you can proceed to configure it using
DHCP or a static IP address by following the procedures described earlier.

Logical interfaces
As with systems such as Linux, you can associate multiple IP addresses with a single physical
interface in OpenSolaris. Doing so requires creating a logical interface, which is just an additional
address tied to a physical interface. Historically, one significant use of logical interfaces has been
to add more addresses to a physical network when the initially configured IP address space has
been exhausted. In that situation, you can use logical interfaces to configure an additional IP
network on the same physical network. In OpenSolaris, the most common current uses are for

276

Networking 9

IP multipathing, covered in the next section, and to provide distinct IP addresses for nonglobal
zones without dedicating physical interfaces to the zones.

Zones are discussed in Chapter 19.

You can add a logical interface to a physical interface using ifconfig’s addif subcommand.
For example, use the following to add the address 10.1.3.17/22 to the e1000g0 physical
interface:

ifconfig e1000g1 addif 10.1.3.17/22
Created new logical interface e1000g1:1
ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1
inet 127.0.0.1 netmask ff000000

e1000g0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 2
inet 10.0.2.15 netmask ffffff00 broadcast 10.0.2.255

e1000g1: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500
index 3
inet 192.168.1.20 netmask fffffc00 broadcast 192.168.3.255

e1000g1:1: flags=201000842<BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500
index 3
inet 10.1.3.17 netmask fffffc00 broadcast 10.1.3.255

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1
inet6 ::1/128

As shown here, the logical interface’s name is constructed using the physical interface’s name
as the base, appending a colon and an instance number. Note that the logical interface is not
brought up automatically — you need to mark it as up for it to be usable:

ifconfig e1000g1:1 up
ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1
inet 127.0.0.1 netmask ff000000

e1000g0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 2
inet 10.0.2.15 netmask ffffff00 broadcast 10.0.2.255

e1000g1: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500
index 3
inet 192.168.1.20 netmask fffffc00 broadcast 192.168.3.255

e1000g1:1: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500
index 3
inet 10.1.3.17 netmask fffffc00 broadcast 10.1.3.255

277

Part III OpenSolaris File Systems, Networking, and Security

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1
inet6 ::1/128

To make the logical interface persistent across reboots, you can add the addif command to the
hostname.interface file; for example, /etc/hostname.e1000g1 for the preceding configu-
ration:

192.168.1.20/22 up
addif 10.1.3.17/22 up

To deconfigure a logical interface, use the removeif subcommand to remove the address from
the physical interface. To remove the logical interface previously created, use the following:

ifconfig e1000g1 removeif 10.1.3.17

To remove it from the persistent configuration, you must remove the line that adds it from the
hostname.interface file.

IP multipathing
One unique networking feature of OpenSolaris is a technology called IP network multipathing
(IPMP). When you group interfaces together with IPMP, OpenSolaris provides enhanced failure
detection for each interface in the group and can move IP addresses from failed interfaces to
working ones, which enables network traffic to continue uninterrupted while you repair the
problem, improving network reliability and availability. This is conceptually similar to the
I/O multipathing used with storage technologies such as Fibre Channel that provide multiple
connections to storage devices — hence the name.

See Chapter 7 for information on I/O multipathing.

IPMP can also automatically restore service on a failed interface once it has been repaired. IPMP
enables interfaces in groups to be either active or standby: an active interface is up and usable
for IP traffic, whereas a standby interface is brought up only to replace an active interface. If
more than one interface in the group is configured as active, IPMP can spread network traffic
over the interfaces, improving overall network performance. The load-spreading performed by
IPMP applies only to outgoing traffic, and is per-connection: Once an interface is selected for
transmitting to a specific address and port number, all traffic for that destination is transmitted
on the same interface.

Unless there are incremental financial costs associated with using additional
interfaces, or there is a wide disparity in performance between the interfaces, it’s

generally best to configure all interfaces as active. The examples in this section focus on all-active
configurations. Consult the OpenSolaris documentation for information on configuring standby
interfaces.

There are several technical requirements to use IPMP:

■ You must have two or more physical interfaces connected to the same subnet. The inter-
faces may use the same driver, but that is not required.

278

Networking 9

■ You cannot use different media types, such as Ethernet and InfiniBand, in the same group,
although that is rarely an issue because Ethernet is so prevalent.

■ The interfaces do not need to be the same speed; you can group a 100 Mb Ethernet inter-
face with a 1 Gb Ethernet interface, for example.

■ You must use static IP addresses with IPMP; IPMP’s operation is not compatible with using
DHCP to configure your network interfaces.

■ Finally, you cannot use NWAM with IPMP because the two features conflict with each
other.

All interfaces in an IPMP group must have unique MAC addresses to ensure that each
interface’s traffic is separately distinguishable on the network. This is usually an issue

only on SPARC systems, which are often configured by default to share a single MAC address
across all interfaces. You can verify this using the eeprom command to examine the OpenBoot
firmware’s local-mac-address? setting:

eeprom local-mac-address?
local-mac-address?=false

If the value is false, you need to modify it to true, which is also done with the eep-
rom command:

eeprom local-mac-address?=true

You must reboot the system after this change for it to take effect.

One last note: You can have multiple IPMP groups on a system, though each interface (including
any standby interfaces) can be a member of only one group. The examples in this section show
only a single group on the system.

Before you proceed to configure an IPMP group, you need to make one decision: will it use
active (also called probe-based) failure detection or only passive (or link-based) failure detection?
When configured to use active failure detection, the IPMP daemon, in.mpathd, sends periodic
probe packets to a probe target address that’s configured for each interface; the probe address is
usually the router for the IP network, though any system connected to the link can be the probe
target. If in.mpathd doesn’t receive a response to the probes for a configurable period of time,
the interface is considered failed and IPMP begins a failover operation.

Passive failure detection is implemented by in.mpathd monitoring the interface’s RUNNING flag;
most OpenSolaris network drivers are designed to set this flag when the link is detected to be
active, and to clear the flag when a link failure is detected. This detection is primarily useful for
quickly detecting a failure or disconnection of the network cable, or a failure of the switch to
which the interface is connected. Passive detection, however, is unable to detect whether there
is a failure further along the network link, such as between the switch and the router.

Passive detection is always used by IPMP when the driver supports it (to determine this, you
need to read the driver documentation or experiment with disconnecting cables and checking

279

Part III OpenSolaris File Systems, Networking, and Security

the interface flags with ifconfig). If the driver doesn’t support it, then you must configure
active detection. The main disadvantage of active detection is that you must configure additional
IP addresses, called test addresses, on each network interface; these addresses are used exclusively
for in.mpathd’s probes. If IP addresses are in short supply, then you may need to make
use of IPv4 private addresses; see the OpenSolaris documentation for information on this
option.

Another slight disadvantage of active failure detection is that it adds a small amount of addi-
tional traffic to the local network, as in.mpathd will send an ICMP echo request probe from
each test address to the target address roughly once every 1–2 seconds. This load is almost
unmeasurable on gigabit-speed Ethernet networks, though, unless you have an unusually large
number of systems running IPMP.

We recommend configuring active failure detection if possible, as you’ll get more complete fail-
ure detection and thus better reliability.

If your network supports IPv6, you can avoid assigning IPv4 test addresses;
in.mpathd can use the IPv6 link-local address as its test address when this is

available. See the OpenSolaris documentation for more on this option.

Configuring an IPMP group with passive failure detection
Creating a group that uses only passive failure detection is simple. In this example, two inter-
faces are configured on the system:

$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
elxl0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 4

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
nfo0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 5

inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255
lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

The elxl0 and nfo0 interfaces are both connected to the 192.168.1.0 network. To create an
IPMP group, just assign an interface to a group using the group subcommand to ifconfig:

ifconfig elxl0 group mygroup
ifconfig nfo0 group mygroup
ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
elxl0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 4

280

Networking 9

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup
ether 0:10:5a:0:f8:89

nfo0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 5
inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup
ether 0:e0:4c:ba:37:69

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

The group is automatically created as soon as an interface is assigned to it, and disappears when
no interfaces are assigned. Also, once an interface is placed in a group, ifconfig automatically
starts in.mpathd to monitor the group, if needed; the system runs only one in.mpathd pro-
cess to monitor all IPMP groups.

As with all ifconfig commands, the group it creates is not persistent and will vanish when the
system is rebooted. To make this configuration persistent, you must add the group subcommand
to each interface’s /etc/hostname.interface file. For the preceding configuration, the con-
tents of the files are as follows:

$ cat /etc/hostname.elxl0
192.168.1.11/24 group mygroup
$ cat /etc/hostname.nfo0
192.168.1.21/24 group mygroup

To remove an interface from an IPMP group, specify an empty group name to ifconfig:

ifconfig elxl0 group ""

Of course, to permanently remove the interface from the group, remove the group subcom-
mand from the interface configuration file.

Configuring active failure detection
Using active failure detection with an IPMP group requires a bit more configuration work.
For each interface in the group, you must add a logical interface that in.mpathd can use for
its probes, and mark the logical interface as reserved for this purpose so that it will be left in
place when in.mpathd starts a failover operation. This is done using the deprecated and
-failover options to ifconfig. The deprecated option sets the DEPRECATED flag, which
prevents IP from using the interface for ordinary network traffic. The -failover option sets the
NOFAILOVER flag, preventing the interface from participating in failover.

Continuing with the last example, the following commands create the logical interfaces and
mark them for IPMP usage:

ifconfig elxl0 addif 192.168.1.70/24 up deprecated -failover
Created new logical interface elxl0:1

281

Part III OpenSolaris File Systems, Networking, and Security

ifconfig nfo0 addif 192.168.1.71/24 up deprecated -failover
Created new logical interface nfo0:1

The resulting interface configuration appears as follows:

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
elxl0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup
ether 0:10:5a:0:f8:89

elxl0:1: flags=209040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4
,NOFAILOVER,CoS> mtu 1500 index 2

inet 192.168.1.70 netmask ffffff00 broadcast 192.168.1.255
nfo0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3

inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup
ether 0:e0:4c:ba:37:69

nfo0:1: flags=209040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4
,NOFAILOVER,CoS> mtu 1500 index 3

inet 192.168.1.71 netmask ffffff00 broadcast 192.168.1.255
lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

To make this configuration persistent, the /etc/hostname.interface files contain the
following:

$ cat /etc/hostname.elxl0
192.168.1.11/24 group mygroup up
addif 192.168.1.70/24 deprecated -failover up
$ cat /etc/hostname.nfo0
192.168.1.21/24 group mygroup up
addif 192.168.1.71/24 deprecated -failover up

To remove a test address and disable active failure detection, delete the logical interface’s address
using the removeif subcommand to ifconfig, as shown earlier. To remove it permanently,
delete the addif command from the interface configuration file.

IPMP in action
To close this discussion on IPMP, the next example demonstrates what happens when IPMP
detects a failure. In this case, the cable was disconnected from the nfo0 interface. First, in the

282

Networking 9

system log /var/adm/messages, the following messages were recorded:

Jun 19 14:02:13 compaq nfo: [ID 104132 kern.info] NOTICE: nfo0:
link down detected: status:7849<100_BASEX_FD,100_BASEX,10_BASE_FD

,10_BASE,MFPRMBLSUPR,CANAUTONEG,EXTENDED>
Jun 19 14:02:13 compaq nfo: [ID 311469 kern.info] nfo0: restarting
auto-negotiation

Jun 19 14:02:21 compaq in.mpathd[156]: [ID 594170 daemon.error] NIC failure
detected on nfo0 of group mygroup

Jun 19 14:02:21 compaq in.mpathd[156]: [ID 832587 daemon.error] Successfully
failed over from NIC nfo0 to NIC elxl0

See Chapter 14 for more information on system logging.

This is a rather unusual case because although the nfo driver detected the link failure, it did
not clear the interface’s RUNNING flag, so the failure was not detected by in.mpathd until sev-
eral seconds later when its probes did not receive responses. The failover happened very quickly,
within a second, once in.mpathd detected the failure, which is typical. The resulting interface
configuration is as follows:

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
elxl0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup

elxl0:1: flags=209040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4
,NOFAILOVER,CoS> mtu 1500 index 2

inet 192.168.1.70 netmask ffffff00 broadcast 192.168.1.255
elxl0:2: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500
index 2

inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255
nfo0: flags=219000842<BROADCAST,RUNNING,MULTICAST,IPv4
,NOFAILOVER,FAILED,CoS> mtu 0 index 3

inet 0.0.0.0 netmask 0
groupname mygroup

nfo0:1: flags=219040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4
,NOFAILOVER,FAILED,CoS> mtu 1500 index 3

inet 192.168.1.71 netmask ffffff00 broadcast 192.168.1.255
lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

283

Part III OpenSolaris File Systems, Networking, and Security

An additional logical interface, elxl0:2, was created on the surviving interface, the address
from nfo0 was moved to it, and the FAILED flag was set on nfo0. Users of the system were
entirely unaware of the interface failure and the failover process. Once the cable was reconnected
to nfo0, IPMP automatically moved the interface back, as shown in the log and interface
configuration here:

$ tail /var/adm/messages
. . .

Jun 19 14:11:58 compaq nfo: [ID 455749 kern.info] nfo0: auto-negotiation done,
advert:5e1<PAUSE,100BASE_TX_FD,100BASE_TX,10BASE_T_FD,10BASE_T>,
lpable:45e1<PAUSE,100BASE_TX_FD,100BASE_TX,10BASE_T_FD,10BASE_T>,
exp:1<LPCANAN>

Jun 19 14:11:58 compaq nfo: [ID 103695 kern.info] nfo0: Link up: 100Mbps full
duplex with symmetric flow control

Jun 19 14:12:13 compaq in.mpathd[156]: [ID 299542 daemon.error] NIC repair
detected on nfo0 of group mygroup

Jun 19 14:12:13 compaq in.mpathd[156]: [ID 620804 daemon.error] Successfully
failed back to NIC nfo0

$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
elxl0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup

elxl0:1: flags=209040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4
,NOFAILOVER,CoS> mtu 1500 index 2

inet 192.168.1.70 netmask ffffff00 broadcast 192.168.1.255
nfo0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 3

inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255
groupname mygroup

nfo0:1: flags=209040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4
,NOFAILOVER,CoS> mtu 1500 index 3

inet 192.168.1.71 netmask ffffff00 broadcast 192.168.1.255
lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

If for some reason all of the interfaces fail, IPMP can detect that. You’ll see a message like the
following in the log for a failure such as disconnecting the switch to which the interfaces are
connected:

Jun 19 14:18:50 compaq in.mpathd[156]: [ID 168056 daemon.error] All Interfaces
in group mygroup have failed

284

Networking 9

Once the switch is plugged back in, the following messages appear in the log:

Jun 19 14:19:24 compaq in.mpathd[156]: [ID 299542 daemon.error] NIC repair
detected on elxl0 of group mygroup

Jun 19 14:19:24 compaq in.mpathd[156]: [ID 620804 daemon.error] Successfully
failed back to NIC elxl0

Jun 19 14:19:24 compaq in.mpathd[156]: [ID 237757 daemon.error] At least 1
interface (elxl0) of group mygroup has repaired

Jun 19 14:19:24 compaq in.mpathd[156]: [ID 299542 daemon.error] NIC repair
detected on nfo0 of group mygroup

Jun 19 14:19:24 compaq in.mpathd[156]: [ID 620804 daemon.error] Successfully
failed back to NIC nfo0

IPMP can do a great deal to improve your network reliability, especially when used on critical
infrastructure systems. To further explore IPMP, consult the OpenSolaris documentation,
specifically the System Administration Guide: IP Services, at http://docs.sun.com/app/docs/
doc/819-3000.

Link aggregation
Another network interface technology supported by OpenSolaris is link aggregation, which is a
standard defined by IEEE 802.3ad. Linux distributions often refer to this technology as Ethernet
bonding.

Like IPMP, link aggregation groups interfaces together to improve network performance and
reliability. Unlike IPMP, link aggregation is done at the link layer, rather than at the IP layer;
this means that an aggregation uses only a single IP address, and it can be used with dynamic IP
addresses provided by DHCP. Aggregations do not use the active probe-based failure detection
that IPMP groups can provide, but they can be configured to use the Link Aggregation Control
Protocol (LACP) to provide link failure detection.

Aggregations require that each interface’s driver support link up/down notification, and that each
interface operates with the same duplex, although identical speeds and drivers are not required.
Unlike IPMP, the load-spreading behavior of an aggregation may be configured and may provide
better balance than IPMP for some traffic patterns. IPMP and link aggregation are not mutually
exclusive; you can create multiple aggregations and then assign the aggregated interfaces to an
IPMP group.

Aggregations cannot be used with Network Auto-Magic at this time. You must disable
NWAM and manually configure IP interfaces if aggregations are in use.

As aggregations are a link-layer entity, you use the dladm(1M) command to manage them. Use
the create-aggr subcommand to create an aggregation:

dladm create-aggr -l e1000g0 -l e1000g1 aggr0

285

Part III OpenSolaris File Systems, Networking, and Security

This command creates an aggregation named aggr0, formed using the physical links e1000g0
and e1000g1. You must first ensure that none of the physical links is plumbed at the IP
layer — otherwise, dladm displays an error message stating that the devices are in use and
fails; if this happens, use the ifconfig unplumb command to remove the IP plumbing of the
interface. You can view the resulting set of links using dladm show-link:

dladm show-link
LINK CLASS MTU STATE OVER
e1000g0 phys 1500 up --
e1000g1 phys 1500 up --
aggr0 aggr 1500 up e1000g0 e1000g1

As you can see, an aggregation is a different class of link and is formed over other links. Unlike
ifconfig, objects configured using dladm are persistent by default, so this aggregation will
appear on the next reboot (to create a temporary aggregation, perhaps to test out this feature,
you can use the -t option to dladm create-aggr). You can view details of the aggregation
using dladm show-aggr:

dladm show-aggr
LINK POLICY ADDRPOLICY LACPACTIVITY LACPTIMER FLAGS
aggr0 L4 auto off short -----

See the dladm(1M) man page for details on the aggregation settings. In particular, if you are
using a switch that supports LACP, you likely need to change the LACPACTIVITY setting to
ensure proper operation with the switch. By adjusting the policy settings, you can control the
aggregation’s load-spreading behavior.

With the aggregation created, you can use it just like a physical link to configure IP interfaces
on top of. Of course, you need to start by plumbing the aggregation interface; here, it’s config-
ured using DHCP:

ifconfig plumb aggr0
ifconfig aggr0 dhcp start
ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
aggr0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 2

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

As you know, to make this configuration persistent, you create the hostname.aggr0 and
dhcp.aggr0 files:

touch /etc/hostname.aggr0 /etc/dhcp.aggr0

286

Networking 9

Use the add-aggr and remove-aggr subcommands to add interfaces to and remove interfaces
from an aggregation once it’s been created. delete-aggr deletes the aggregation entirely. See
dladm(1M) for details.

Configuring virtual LAN interfaces
Virtual LAN technology (VLAN) enables you to create multiple logical link-layer networks on
a single physical network link by tagging packets at the link layer with an identifier, which
enables intelligent network switches to isolate the traffic on the different VLANs. In other
words, the physical network behaves as if it were multiple physical networks, as the traffic on
each network is not visible to the others. OpenSolaris network interfaces can be configured to
recognize and use VLAN tagging by creating VLANs using the dladm(1M) command.

Use dladm create-vlan to create a VLAN interface:

dladm create-vlan -l e1000g0 -v 2 red0

This creates a VLAN over the e1000g0 physical interface, using a tag of 2, named red0. The
tag value isn’t special; just ensure that it is a number between 1 and 4094, and that all systems
and switch ports that are meant to be part of the same VLAN use the same tag value.

To view the link, use dladm show-link:

dladm show-link red0
LINK CLASS MTU STATE OVER
red0 vlan 1500 down e1000g0

You can examine the VLAN link properties using dladm show-vlan:

dladm show-vlan red0
LINK VID OVER FLAGS
red0 2 e1000g0 -----

Once the link is created, you can plumb and configure an IP interface. Here’s a simple example
of configuring the OpenSolaris IP interface using DHCP:

ifconfig red0 plumb
ifconfig red0
red0: flags=201000842<BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 13

inet 0.0.0.0 netmask 0
ether 8:0:27:2f:10:81

ifconfig red0 dhcp start

Remember that the switch port to which the physical interface is connected must be configured
to accept an identical VLAN tag — otherwise, the network traffic is dropped by the switch. Con-
sult your switch’s documentation for instructions.

A VLAN link can be deleted using dladm delete-vlan.

287

Part III OpenSolaris File Systems, Networking, and Security

Configuring a virtual NIC
Yet another type of network interface supported by OpenSolaris is a virtual NIC. A virtual NIC
is similar to a logical interface in that it’s tied to a specific physical interface, but it differs in that
it’s a link-layer entity, rather than an IP entity, and can reserve specific resources such as buffers
and priority queues from the physical NIC. The vnic driver is included in current releases of
OpenSolaris but is used only by virtualization software such as xVM and VirtualBox.

See Chapter 22 for information on VirtualBox, and Chapter 20 for information on
xVM.

OpenSolaris support for virtual NICs is still under development by the Crossbow project
and is not yet a published interface, so this book does not cover it. The goal of Cross-
bow is to provide complete virtual IP protocol stacks from the link layer up as a basis
for network resource management. For more information, see the project website at
http://opensolaris.org/os/project/crossbow/.

Configuring IP tunnels
An additional type of network interface on OpenSolaris is the IP tunnel. A tunnel is, essentially, a
virtual point-to-point interface used to connect two networks over a third network, without that
third network being directly aware that it is making that connection. Point-to-point interfaces
connect only two systems; they’re like a private line, as opposed to Ethernet or other broadcast
networks that operate as party lines, with many systems talking and listening. The most
common use for a tunnel is to create a virtual private network (VPN) between multiple physical
locations of an organization over the public Internet. This is highly attractive for a company
because it avoids the high costs of leasing physical lines to connect sites, a practice common
in the 1980s and early 1990s. VPNs are also often used to provide access to the company’s
computing resources to employees who are working at home or traveling. This is likely where
you’ll encounter IP tunnels, though most VPN software manages the tunneling automatically,
without you even being aware that the tunnel is being used. If you display the network interface
list using ifconfig -a while a VPN is running on OpenSolaris, you may see a tunnel interface
similar to the ip.tun0 interface shown here:

lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
elxl0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 3

inet 192.168.1.11 netmask ffffff00 broadcast 192.168.1.255
nfo0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500
index 4

inet 192.168.1.21 netmask ffffff00 broadcast 192.168.1.255
ip.tun0: flags=10010008d1<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST,IPv4
,FIXEDMTU> mtu 1366 index 5

288

Networking 9

inet tunnel src 192.168.1.21 tunnel dst 192.168.5.223
tunnel hop limit 60
inet 10.16.24.12 --> 10.16.22.19 netmask ffffffff

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252
index 1

inet6 ::1/128

As you can see, a tunnel interface has several additional parameters:

■ Tunnel source and destination, which are the Internet addresses of the systems at each end
of the tunnel

■ Tunnel hop limit, which can be used to limit the number of network links any tunneled
packets may traverse. The default value is 60.

■ Source and destination addresses, which are the addresses of each end of the tunnel. These
are addresses on the networks that are being connected.

The following ifconfig commands were used to create this tunnel:

ifconfig ip.tun0 plumb
ifconfig ip.tun0 10.16.24.12 10.16.22.19 tsrc 192.168.1.21 tdst 192.168.5.223
ifconfig ip.tun0 up

You can create a /etc/hostname.ip.tun0 file to persistently configure such a tunnel — in
this case, as follows:

10.16.24.12 10.16.22.19 tsrc 192.168.1.21 tdst 192.168.5.223 up

For traffic to flow over a tunnel, you must configure both ends of it. On the other end, you
must perform a similar configuration process, but reverse the two pairs of source and destination
addresses:

ifconfig ip.tun0 plumb
ifconfig ip.tun0 10.16.22.19 10.16.24.12 tsrc 12.168.5.223 tdst 192.168.1.21
ifconfig ip.tun0 up

At this point, you should have a tunnel that can pass traffic between the two systems. To route
packets for other systems, you need to configure each system as a router. See the section ‘‘Con-
figuring a dynamic router’’ later in this chapter for information.

Configuring and securing a VPN is a complex topic beyond the scope of this book. The Open-
Solaris documentation provides good examples in the System Administration Guide: IP Services,
http://docs.sun.com/app/docs/doc/819-3000.

Chapter 11 provides information on using the IPsec security technology in Open-
Solaris.

289

Part III OpenSolaris File Systems, Networking, and Security

PPP and PPP over Ethernet
If you need to connect to a network using the Point-to-Point Protocol (PPP), OpenSolaris is up
to the task. PPP is typically used for the following types of network links:

■ Dial-up networking using a modem over the phone network

■ Leased lines

■ Wireless wide-area networks (WWAN), such as the high-speed 3G cellular data networks

■ Digital subscriber line (DSL), which uses a variant known as PPP over Ethernet (PPPoE).
Usually a router purchased or rented from the ISP (Internet service provider) provides the
PPPoE function.

OpenSolaris includes PPP software, based on the open source ANU PPP implementation, which
is also used on Linux, BSD, and other commercial UNIX systems. Because PPP is currently
used by a relatively small percentage of users, this book does not cover PPP configuration. For
assistance, consult the OpenSolaris documentation, specifically the System Administration Guide:
Network Services available at http://docs.sun.com/app/docs/doc/819-1634. See also the
‘‘Resources’’ section at the end of this chapter for recommended books on PPP.

See Chapter 5 for additional information about using dial-up and WWAN modems
with OpenSolaris.

Network Services
Once you have successfully configured a network interface, you’ll likely want to connect to
another system, perhaps to check your favorite website or blog, read your e-mail, or IM a
friend or colleague. These tasks all require using services on the network. In this section, you’ll
learn about a few of the networking services in OpenSolaris that are critical to using it on the
Internet.

Domain Name System
All systems on the Internet are reachable using an IP address, but IP addresses — like phone
numbers — are not very easy for humans to remember. Most people can remember the names
of many more people than they can their numbers. Hence, the phone book and address book
were created, and, more recently, online versions of these tools. Similarly, once the Internet grew
beyond the first few dozen sites in the 1980s, it was clear that users needed the capability to
refer to sites by name in order to use the Internet.

At first this was solved by creating the hosts file, which is simply a text file that associates a
name with an IP address, and copying that hosts file to all of the sites on the Internet so that
they could refer to each other by name. OpenSolaris, like almost all operating systems, includes
a hosts file, which is stored at /etc/inet/hosts and contains a couple of entries by default.

290

Networking 9

If you installed your system with the name opensolaris, then the hosts file contains the fol-
lowing (the block comment at the beginning has been omitted for brevity):

::1 localhost
127.0.0.1 opensolaris opensolaris.local localhost loghost

Recall from earlier in this chapter that the ::1 and 127.0.0.1 addresses are the IPv6 and
IPv4 loopback interfaces on your system, so you can connect to your own system using
opensolaris, opensolaris.local, localhost, or loghost. You can add entries to the file
for other systems as well.

Introduction to DNS
The problem with the hosts file, of course, was that copying it to each and every system on
the Internet wasn’t practical once the Internet grew to a few thousand hosts and kept growing;
the hosts file was always out of date, and an increasing amount of time was spent copying it. A
better approach was needed, so Internet researchers invented the Domain Name System (DNS),
which became the directory service of the Internet.

The core idea of the DNS is to organize the names into a hierarchy and delegate the manage-
ment of a portion of the hierarchy to an organization that owns that piece; the organization
is then free to further register names and delegate authority within its hierarchy as needed.
Each level of the hierarchy is called a domain. For example, there are top-level domains such as
com, edu, mil, org, us, uk, zh, and so on, which are created through an international standards
process. Organizations can register a second-level domain with a registrar that’s designated
for each top-level domain, and then create their own names within their domain. Examples of
second-level domains include sun.com, opensolaris.org, and wiley.com.

The registrars and organizations are responsible for running (or hiring another organization to
run) a DNS server that can translate a name within their domain of authority into an IP address.
Each system on the Internet then runs a DNS client, commonly known as a resolver, which
can perform lookups from the DNS servers. The OpenSolaris distribution includes both DNS
resolver and DNS server software, which are based on the Internet Systems Consortium’s BIND
software, used on virtually all UNIX-like systems. If you’re already accustomed to this software
on other platforms, you’ll find OpenSolaris familiar in this respect. The following sections
demonstrate how to configure your own DNS resolver and DNS server on OpenSolaris.

DNS can store and retrieve other types of information beyond IP addresses, but
this book does not cover that topic. See the ‘‘Resources’’ section at the end of this

chapter for additional materials on DNS.

Configuring the DNS resolver
The OpenSolaris DNS resolver is configured using the file /etc/resolv.conf, which is the
same file used on Linux and most other UNIX systems. If you’re using DHCP to configure
your network interfaces, either via NWAM or a manual configuration, you probably won’t need

291

Part III OpenSolaris File Systems, Networking, and Security

to configure the DNS resolver at all, as the DHCP server is usually configured to provide the
DNS domain and list of DNS servers appropriate for your network. If you’re not using DHCP,
or your DHCP server doesn’t supply DNS configuration data, then you need to create your
own resolv.conf file to use DNS. The most basic resolv.conf contains a nameserver
statement:

nameserver 192.168.1.7

This simple configuration relies on a single DNS server at IP address 192.168.1.7 to help you
resolve DNS queries. If that name server is unavailable for some reason, you won’t be able to
look up any addresses in DNS. You can list additional DNS servers in resolv.conf, and the
DNS resolver will try them in the order listed:

nameserver 192.168.1.7
nameserver 10.2.3.34

Note that the name servers listed do not need to be on your local network. Consult your net-
work administrator for the list of DNS servers that can be used on your network.

While this configuration will work, it’s not the most usable one because you are forced
to type the full DNS domain name of any system you want to contact, such as file-
server.example.com. Providing full domain names for systems that you contact frequently,
especially those in your local domain, can be tedious. You can use the search parameter to
provide a list of domains that the resolver will automatically append to any name passed to
it, enabling you to use short names in your applications. For example, in the example.com
domain you might have the following resolv.conf:

search example.com
nameserver 192.168.1.7
nameserver 10.2.3.34

You can use the domain parameter, rather than the search parameter, in
resolv.conf, though domain allows only a single domain to be listed, whereas

search allows up to six domains. Be careful when using the search feature, as the time required
to resolve a DNS query can increase quite a bit when you search multiple domains.

See the next section for information on testing your resolver configuration.

One last thing you may need to do if you’re setting up your own DNS resolver configuration is
to enable DNS lookups in the OpenSolaris name service switch.

See Chapter 10 for information on the name service switch.

To enable the system to use DNS for all IP address lookups, edit /etc/nsswitch.conf and
ensure that the hosts (and ipnodes, if you’re using IPv6) entries contain the dns keyword,
such as this:

hosts: files dns
ipnodes: files dns

292

Networking 9

A few other parameters can be supplied in resolv.conf but are not discussed here. See the
resolv.conf(4)man page for more information.

You may notice when perusing the SMF service configuration that OpenSolaris
includes a service called svcs:/network/dns/client:default. This service is

an implementation detail related to OpenSolaris name services and SMF service dependencies
and doesn’t actually do anything at this writing. Do not disable or remove this service yourself
because doing so may interfere with future operation of the DNS resolver.

DNS troubleshooting
OpenSolaris supplies a special command, dig(1M), for troubleshooting DNS lookups. If you’ve
configured your DNS resolver in /etc/resolv.conf, then you can use dig to look up a
domain name such as www.opensolaris.com and see the gory details of the DNS response:

$ dig www.opensolaris.com

; <<>> DiG 9.3.4-P1 <<>> www.opensolaris.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1734
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 4

;; QUESTION SECTION:
;www.opensolaris.com. IN A

;; ANSWER SECTION:
www.opensolaris.com. 22082 IN CNAME opensolaris.com.
opensolaris.com. 22082 IN A 72.5.124.83

;; AUTHORITY SECTION:
opensolaris.com. 16723 IN NS ns8.sun.com.
opensolaris.com. 16723 IN NS ns1.sun.com.
opensolaris.com. 16723 IN NS ns2.sun.com.
opensolaris.com. 16723 IN NS ns7.sun.com.

;; ADDITIONAL SECTION:
ns1.sun.com. 159128 IN A 192.18.128.11
ns2.sun.com. 159128 IN A 192.18.99.5
ns7.sun.com. 159128 IN A 192.18.43.15
ns8.sun.com. 159128 IN A 192.18.43.12

;; Query time: 3 msec
;; SERVER: 192.168.1.7#53(192.168.1.7)
;; WHEN: Fri Jun 20 14:46:02 2008
;; MSG SIZE rcvd: 207

The output of dig is broken down into several sections that correspond to details of the DNS
protocol. The QUESTION section shows the type of query you supplied — in this case, an A (or

293

Part III OpenSolaris File Systems, Networking, and Security

address lookup) for www.opensolaris.com; address queries are the default unless you specify
a different type on the command line.

The ANSWER section displays the answer to the query. This answer contained two parts: a CNAME
record, which indicates that the name www.opensolaris.com is actually an alias for the true
name opensolaris.com, and an A (or address) record for opensolaris.com that supplies its
IP address.

The AUTHORITY and ADDITIONAL sections provide additional data that the resolver can use to
improve its performance in resolving additional names within the opensolaris.com domain: a
list of name servers in the AUTHORITY section, and the addresses for those servers in the ADDI-
TIONAL section.

Note that each record in the output includes a number; that number is a cache timeout in
seconds for the record, telling the resolver how long the data is guaranteed by the server to be
usable. If the resolver chooses to cache this data for future reference, it must discard it when the
cache timeout expires. This caching greatly reduces the amount of DNS traffic on the Internet
and improves performance in looking up frequently requested data.

dig is a very flexible, powerful command-line DNS client. Make an extra effort to become famil-
iar with it if you’re running a DNS server because it will be your best tool to begin testing and
troubleshooting any DNS problems, as demonstrated in the next section.

Configuring a DNS server
If you’ve registered your own DNS domain, or have been delegated a domain to manage
within your organization, you’ll need a DNS server to respond to queries for your domain’s IP
addresses. This section demonstrates how to configure a single DNS server for a domain.

If you’ve registered your own domain, you can easily find services, likely from the
registrar you used, that will provide DNS hosting for your domain for a small fee. We

suggest exploring this option unless you’re interested in taking on this responsibility yourself.

The DNS server on OpenSolaris is provided by the named(1M) daemon, which is run under the
SMF (Service Management Facility) service instance svc:/network/dns/server:default.
The OpenSolaris version of named has been enhanced to interact well with SMF, by using SMF
service properties to configure options that on other operating systems must be set by editing
the init scripts used to start the service. These are described in the named man page.

SMF is discussed in Chapter 13.

To configure named, you organize the data it will supply, such as name and IP address
mappings, into zone files, and then provide the list of zones in its main configuration file,
which by default is /etc/named.conf. On OpenSolaris you may want to consider relocating
the configuration file, along with the zone files, to a ZFS dataset that will be shared between

294

Networking 9

boot environments so that the DNS configuration remains consistent across system updates.
The example demonstrates this by placing the data in /export/named. Note that the term
‘‘zones’’ in the named configuration has nothing to do with the Zones virtualization feature of
OpenSolaris.

See Chapter 6 for details on OpenSolaris boot environments. See Chapter 8 for
details on ZFS.

To begin the DNS server configuration process, create the ZFS dataset that will contain the con-
figuration files:

zfs create rpool/export/named

This dataset will be mounted at /export/named. You can then create the master named.conf
file by editing /export/named/named.conf using your favorite editor. Here’s an example file:

options {
directory "/export/named";

};

zone "example.com" {
type master;
file "example";

};

zone "1.168.192.in-addr.arpa" {
type master;
file "192.168.1";

};

A complete description of the syntax of the named.conf and zone data files is beyond
the scope of this book. Consult the BIND 9.5 Administrator Reference Manual at

http://isc.org/sw/bind/arm95 for detailed documentation.

This sample file begins with an options clause identifying the directory in which other files
referenced in the configuration can be found. You can set other options, but this configuration
doesn’t require any others. The first zone clause specifies that this server is a master server for
the domain example.com, and that the data for this zone is found in the example file, which
is in /export/named. This zone data is used to map names in the example.com domain to IP
addresses.

The second zone clause specifies that this server is a master server for the 1.168.192.in-
addr.arpa domain. Unless you have some knowledge of DNS already, this domain name must
look quite strange. Briefly, DNS reserves the in-addr.arpa domain for mapping addresses to
names; the subdomains within it are the reversed form of the IP address for the network. This

295

Part III OpenSolaris File Systems, Networking, and Security

convention is specified in the DNS standards and is known to all resolvers so that when a sys-
tem attempts to retrieve the name that corresponds to an IP address, the resolver automatically
reverses the address and looks it up in the in-addr.arpa domain. The implication of BIND’s
design is that when you assign a name to an IP address that will be published in DNS, you must
update both zone files for forward (name-to-address) and reverse (address-to-name) resolution to
provide consistent results.

Here is the sample zone file for the example.com domain:

$TTL 86400
@ IN SOA ns.example.com. sam.example.com. (

2008062001 ; serial
10800 ; refresh
3600 ; retry
3600000 ; expire
86400) ; minimum

@ NS ns.example.com.

ns A 192.168.1.1
www A 192.168.1.2
mail A 192.168.1.3
sleepy A 192.168.1.4
stuffy A 192.168.1.5

This zone file begins by using a $TTL directive to set the time-to-live (TTL) in seconds for each
record in the file that does not specify an explicit TTL value. The value used here, 86400, equals
24 hours. Generally, a value of a day or so is reasonable, as it enables clients to cache the data
for some time and reduces the load on your network and DNS servers. If you have a scheduled
renumbering or renaming of systems on your network, then you can lower this value as the
changes approach so that clients will not cache stale data past the transition date.

The next record is the SOA, or Start of Authority, record, which defines some basic data about
the domain that can be used in resolving problems with DNS lookups for data in the zone. The
@ token in the first field is translated by BIND as the zone name that was declared for this file
in named.conf. The remaining fields of the record specify, in order, the following:

■ The master name server for the zone (ns.example.com)

■ The e-mail address of the administrative contact for this zone, with the first period replac-
ing the @ symbol that normally separates a user’s mailbox from its domain name. Thus,
the e-mail address would be sam@example.com

■ A serial number (by convention this is usually the date the file was updated plus a
sequence number) and TTL values specific to this record. Unless you have a good
understanding of DNS, just use the preceding TTL values in your own zones — they’re
quite common.

296

Networking 9

The next record is the NS, or nameserver, record, which declares that ns.example.com is a
name server for example.com. If you have more than one name server for a zone, list a NS
record for each name server.

The remaining records in the file are A, or address, records for each named system in the
domain. If a system has more than one address, by virtue of having multiple physical or logical
interfaces, you can list an A record for each address associated with the name.

Here’s the sample zone file for the 1.168.192.in-addr.arpa domain:

$TTL 86400
@ IN SOA ns.example.com. sam.example.com. (

2008062001 ; serial
10800 ; refresh
3600 ; retry
3600000 ; expire
86400) ; minimum

@ NS ns.example.com.

1 PTR ns.example.com.
2 PTR www.example.com.
3 PTR mail.example.com.
4 PTR sleepy.example.com.
5 PTR stuffy.example.com.

Here, the in-addr.arpa zone file is very similar to the example.com zone file. It includes
identical SOA and NS records (though this is not strictly required; you could have different own-
ers and name servers for the in-addr.arpa zone); the difference is entirely in the remaining
records, all PTR records, which are the record type used to map an IP address to a domain
name.

You can verify that your zone files are correct before proceeding using the named-checkzone
command:

named-checkzone example.com /export/named/example
zone example.com/IN: loaded serial 2008062001
OK
named-checkzone 1.168.192.in-addr.arpa /export/named/192.168.1
zone 1.168.192.in-addr.arpa/IN: loaded serial 2008062001
OK

Next, you must configure the dns/server service in SMF to use the configuration files in
/export/named:

svccfg -s dns/server:default
svc:/network/dns/server:default> setprop options/configuration_file
=/export/named/named.conf
svc:/network/dns/server:default> exit

297

Part III OpenSolaris File Systems, Networking, and Security

svcadm refresh dns/server
svcadm enable dns/server

Now that the server has been started, you can use dig to verify that it’s working. First, confirm
that name-to-address translation is working by looking up the address record for one of the
hostnames in the domain; using the @localhost argument directs dig to contact the DNS
server running on this system, rather than any server that may be configured in your system’s
/etc/resolv.conf:

dig @localhost stuffy.example.com

; <<>> DiG 9.3.4-P1 <<>> @localhost stuffy.example.com
; (2 servers found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1988
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;stuffy.example.com. IN A

;; ANSWER SECTION:
stuffy.example.com. 86400 IN A 192.168.1.5

;; AUTHORITY SECTION:
example.com. 86400 IN NS ns.example.com.

;; ADDITIONAL SECTION:
ns.example.com. 86400 IN A 192.168.1.1

;; Query time: 27 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Jun 20 16:21:25 2008
;; MSG SIZE rcvd: 85

In this case, the name was resolved successfully. Next, verify that the address-to-name mapping
is working by looking up the PTR record associated with one of the addresses using the
in-addr.arpa domain:

dig @localhost 2.1.168.192.in-addr.arpa. ptr

; <<>> DiG 9.3.4-P1 <<>> @localhost 2.1.168.192.in-addr.arpa. ptr
; (2 servers found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 213
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:

298

Networking 9

;2.1.168.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:
2.1.168.192.in-addr.arpa. 86400 IN PTR www.example.com.

;; AUTHORITY SECTION:
1.168.192.in-addr.arpa. 86400 IN NS ns.example.com.

;; ADDITIONAL SECTION:
ns.example.com. 86400 IN A 192.168.1.1

;; Query time: 20 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Jun 20 16:21:49 2008
;; MSG SIZE rcvd: 104

If this works as well, then your domain is operating correctly. You can proceed to configure the
clients in your domain to use your DNS server by updating resolv.conf on each client. You
can also configure additional servers, known as slave or secondary servers, which replicate the
data from the master server; see the BIND documentation for instructions. Finally, if you’re run-
ning a DHCP server, update the configuration that it provides to DHCP clients to include the
DNS domain name and name server address.

You can also configure the BIND DNS server to accept dynamic DNS updates from
DHCP servers so that system name and address associations can be formed dynami-

cally based on the system names desired by individual users. Consult the BIND manual and your
DHCP server documentation for details about enabling dynamic updates.

Multicast DNS
OpenSolaris includes a second DNS implementation, known as multicast DNS, so called because
the participating systems send IP multicast packets to the network to resolve names. An IP
multicast packet uses a special IP network address (the 224.0.0.0 network) that will be sent to
all of the systems on a network link. The IP addresses you normally use are known as unicast
addresses because they are destined for only a single system. Multicast DNS (mDNS) is of
interest because it enables you to create a network in which systems can find one another by
name, without the need to set up and manage a centralized DNS server such as BIND. Such
networks are often called ad hoc networks. This is especially attractive in home and small office
networks, or any situation for which you would like to use system names but don’t want to
bother with the management effort of a standard DNS server. Unlike standard DNS, each system
participating in multicast DNS must be running the multicast DNS service, but the multicast
DNS service requires almost no configuration.

In addition to hostname-to-IP address resolution, multicast DNS can be used to locate other
services on the network, such as printers, though OpenSolaris does not yet use it for this
purpose. Multicast DNS is included on a wide variety of systems, including Linux and Apple’s

299

Part III OpenSolaris File Systems, Networking, and Security

Mac OS X. Apple refers to the technology as Bonjour and uses it extensively. Apple also
supplies multicast DNS software for Windows, called Bonjour for Windows; you can get it from
http://apple.com/support/downloads/bonjourforwindows.html.

Configuring multicast DNS is a simple, two-step process. First, enable the network/dns/
multicast service:

svcadm enable network/dns/multicast

This starts the multicast DNS daemon, mdnsd(1M). Then, edit /etc/nsswitch.conf to add
mdns to the hosts (and ipnodes, if using IPv6) search list:

hosts: files mdns dns
ipnodes: files mdns dns

Your system will now advertise itself as hostname.local; the .local top-level domain is
reserved for the use of mDNS. You can verify that your system is advertising itself correctly
using the getent command. If your system is named celtic and has IP address 192.168.1.30,
you can look it up as celtic.local:

$ getent hosts celtic.local
192.168.1.30 celtic.local.

If the output is as shown, then your mDNS service is operating correctly, and you can look
up any other systems on your local network that have mDNS configured by using the .local
domain name.

OpenSolaris also includes the dns-sd(1M) command, which is used to both advertise and look
up services using mDNS. You can use it to make your own mDNS-capable applications. For
more information on multicast DNS, see http://multicastdns.org.

Dynamic Host Configuration Protocol
When widespread deployment of IP networks in organizations began in the 1990s, configuring
those systems into the network with little or no administrative effort became an important prob-
lem to solve to make the network deployments cost-effective. The IETF developed the Dynamic
Host Configuration Protocol (DHCP) as the primary solution to that problem.

The core principle in DHCP’s design is that a DHCP server has a pool of addresses that it leases
to clients for a specified time period upon request. Along with an address lease, a DHCP server
can also provide a set of configuration parameters, called options, which the client can use to
operate correctly on the network. Roughly 100 options have been standardized through the
IETF; commonly used options include a default router, DNS servers, NTP servers, and network
boot servers. Vendors of networking equipment, as well as individual organizations, can also
define custom options for their own purposes.

OpenSolaris includes both a DHCP client and a DHCP server whose implementations are custom
to OpenSolaris. This section describes the use of both.

300

Networking 9

Using the DHCP client
As demonstrated earlier in this chapter, the DHCP client is automatically used to configure
interfaces when NWAM is used for network interface configuration. You can also choose to use
DHCP for manually configured interfaces. The OpenSolaris DHCP client is implemented by
the dhcpagent(1M) daemon; dhcpagent is automatically started when ifconfig is used to
configure a DHCP interface, and the single daemon process then manages all DHCP-configured
interfaces on the system. The dhcpagent daemon also automatically exits when there are no
longer any interfaces under DHCP control running on the system. Thus, it’s unlikely that you’ll
have a need to directly manage the dhcpagent process.

You can configure some behavior of dhcpagent by modifying the parameters specified in its
configuration file, /etc/default/dhcpagent. The parameters are documented extensively in
the file’s comments. In most situations, you won’t need to modify the default values, but if your
system is frequently shut down and moved from one network to another while powered off,
such as a laptop, then set the value of RELEASE_ON_SIGTERM to yes, as this ensures that your
system operates correctly when moved from one network to another. If you move your system
to a different network while it is powered off and the RELEASE_ON_SIGTERM setting is the
default value, no, then your client will attempt to continue using its address from the original
network if that address’s lease has time remaining. If this happens, your client will almost
certainly be unable to communicate with the new network; should that occur, you need to issue
the command ifconfig interface dhcp release followed by ifconfig interface dhcp
start to recover.

Another useful feature of dhcpagent is its capability to run a script when the state of the
interface changes, such as when an address lease is acquired, extended, or released, or it
expires. You can use this feature by creating a script called /etc/dhcp/eventhook; the
script must be owned and executable by root; otherwise, dhcpagent will ignore it. See the
dhcpagent man page for a skeletal eventhook script that you can extend for your own
purposes.

If you are using Network Auto-Magic (NWAM), use its scripting mechanisms, rather
than dhcpagent’s eventhook, to perform custom actions when interfaces are started

and stopped. See the nwamd(1M) man page for details on NWAM profiles and scripting.

A final useful feature of dhcpagent is the method used to retrieve DHCP options supplied
by the server. This is especially helpful if you’re supplying an eventhook script or using
NWAM profiles to reconfigure aspects of your system, but it’s also a troubleshooting tool
whenever you’re using DHCP for interface configuration. All of the options included in the
DHCP server’s lease to the client are stored by dhcpagent. You can then use the dhcpinfo(1)
command to query dhcpagent for any option, and dhcpinfo will print its value to standard
output.

When using dhcpinfo, you can request option values by option code number or by the
more mnemonic option names that OpenSolaris defines in /etc/dhcp/inittab; this file
is documented in the dhcp_inittab(4) man page. For example, if you are running DHCP

301

Part III OpenSolaris File Systems, Networking, and Security

on the interface wpi0, you can retrieve the DNS domain name using either of the following
invocations of dhcpinfo (note that dhcpinfo is stored in /sbin, which may not be in your
PATH environment variable, so the example uses the full pathname to the executable):

$ /sbin/dhcpinfo -i wpi0 DNSdmain
example.com
$ /sbin/dhcpinfo -i wpi0 15
example.com

Configuring a DHCP server
If you’re already familiar with the Internet Systems Consortium’s (ISC) DHCP server from
other platforms, then you can use it on OpenSolaris; you need to download the source
from ISC directly at http://isc.org or obtain a pre-built package from the sunfree-
ware.com package repository. See Chapter 6 for information on installing packages from
repositories.

Otherwise, you can use the OpenSolaris implementation of the DHCP server. The first step is to
ensure that the software is installed. You can install it with the following command:

pkg install SUNWdhcs SUNWdhcsb

Once the DHCP server is installed, you can proceed to configure it. For this task, you have two
options: the dhcpconfig(1M) command, or the DHCP Manager, dhcpmgr(1M), which is a
graphical configuration tool for the DHCP server. If you want to use the DHCP Manager, you
must also install its package:

pkg install SUNWdhcm

If you’d like to configure the server using the DHCP Manager, run /usr/sadm/admin/bin/
dhcpmgr; this will begin a wizard-style step-by-step procedure that creates an initial configu-
ration for the DHCP server. However, this section explains how to configure the DHCP server
using the command-line tools.

An example configuration session using DHCP Manager can be found in Chapter 24.

To create the initial DHCP server configuration, use dhcpconfig -D. There are two required
options that specify how and where the DHCP server data will be stored. The -p option speci-
fies the path in which to place the configuration files, and the -r option specifies the format to
use for the files: SUNWfiles uses a text file format, and SUNWbinfiles uses a binary file for-
mat. SUNWbinfiles is recommended, as it provides better performance. It’s also recommended
that you place the file storage in a separate ZFS dataset that can be shared across OpenSolaris
boot environments.

The DHCP server also offers the option to store data in the NIS+ name service, but
NIS+ has been deprecated by Sun and may be removed from a future release. Thus,

new installations using NIS+ are discouraged.

302

Networking 9

For example, the following commands configure a DHCP server on the system named openso-
laris to use SUNWbinfiles and store the data in /export/dhcp:

zfs create rpool/export/dhcp
dhcpconfig -D -r SUNWbinfiles -p /export/dhcp
Created DHCP configuration file.
Created dhcptab.
Added "Locale" macro to dhcptab.
Added server macro to dhcptab - opensolaris.
DHCP server started.

The DHCP configuration file is stored at /etc/inet/dhcpsvc.conf; see its man page,
dhcpsvc.conf(4). View and edit its contents using dhcpconfig -P. After this configuration
is created, it appears as follows:

dhcpconfig -P
DAEMON_ENABLED TRUE
RESOURCE SUNWbinfiles
RUN_MODE server
PATH /export/dhcp
CONVER 1

The initial dhcpconfig output also refers to creating the dhcptab file and adding macros to it.
A macro is just an administrative mechanism used by the DHCP server to group related options;
dhcptab is the configuration file where the macros are stored. When supplying leases to clients,
the server also supplies options in its replies, and clients can use those options to configure
themselves. The clients see only a list of options and are unaware of the macro mechanism used
on the server. The dhtadm command is used to manage the contents of dhcptab; to view it,
use dhtadm -P:

dhtadm -P
Name Type Value
==
opensolaris Macro :Include=Locale:Timeserv=10.0.2.15:LeaseTim
=86400:LeaseNeg:DNSdmain
="example.com":DNSserv=10.0.2.3:
Locale Macro :UTCoffst=-18000:

This provides the most basic DHCP configuration, with a macro that’s named the same as the
DHCP server’s hostname, and a Locale macro that defines the local time offset against UTC
time. The DNS information was taken from /etc/resolv.conf on this system; if the DHCP
server is not configured for DNS, then this information won’t be added to the server macro. The
LeaseTim and LeaseNeg options specify that leases are good for 24 hours (86400 seconds)
and that the leases are negotiable, which means they can be extended at the client’s request. You
can modify the default lease duration, but it is highly unlikely that you’ll want to change the
leases to be non-negotiable, as that disrupts systems that stay on the network for longer than the
initial lease duration; they’ll be forced to disconnect from the network for at least a few seconds
at the expiration of the lease to negotiate a new one.

303

Part III OpenSolaris File Systems, Networking, and Security

Now that you have a simple set of configuration values for DHCP clients, you need to provide
the DHCP server with a set of addresses that it can lease to the clients. Before you can do
that, however, you must ensure that the DHCP server’s /etc/inet/netmasks table (or the
NIS netmasks map, if the server is configured to use NIS for name service lookups) contains
the correct network mask for each network on which the server will provide address leases.
The server in this example is using a 24-bit network mask on the 10.0.2.0 network, so the
netmasks entry would be as follows:

10.0.2.0 255.255.255.0

Now you’re ready to create DHCP addresses — with the pntadm command. You must start by
creating a DHCP network table for each network on which the server leases addresses. For the
10.0.2.0 network, this is done as follows:

pntadm -C 10.0.2.0

The network table is empty initially. To create addresses, use pntadm -A:

pntadm -A 10.0.2.20 -m opensolaris

The -m option specifies a dhcptab macro to associate with this address. To view the contents of
the network table, use pntadm -P:

pntadm -P 10.0.2.0
Client ID Flags Client IP Server IP Lease Expiration Macro Comment
00 00 10.0.2.20 10.0.2.15 Zero opensolaris

As you can see, the table has a number of columns, which the dhcp_network(4) man page
describes. Here’s a brief summary:

■ Client ID is the client to which the address was last assigned; each DHCP client provides
an identifier that must be unique on a network. Usually this is based on the MAC address
of the network interface. Because this is a new address that hasn’t yet been assigned, it has
the value 00.

■ Flags is used to specify various properties of the IP address; it could be manually
assigned to a specific Client ID, or it may be unusable.

■ Client IP is the address being leased.

■ Server IP is the IP address of the DHCP server.

■ Lease Expiration is the date and time when the lease expires; because the address has
yet to be assigned, this has the value zero.

■ The Macro field associates the address with a macro from the dhcptab table; usually this
should be the name of the server macro, though it’s not required to be.

■ Comment can be used by the administrator to record notes or other identifying informa-
tion for this address.

304

Networking 9

You can use dhtadm to create additional macros that the DHCP server will use auto-
matically when constructing the set of options supplied in lease responses to clients.

A network macro, named the same as the network address, is automatically used for all clients on
that network; this macro often contains a default router option so that clients can reach systems
on other networks. The DHCP Manager’s Network Wizard automatically does this for you. You
can also create macros that are associated with a specific client ID or a specific vendor’s clients
to customize the configuration for a particular client or class of clients. See the dhcptab(4) man
page for information about the macros that are processed in responding to a client’s lease request.

Now that you have an address available for lease, you can start up a system that is a DHCP
client and it should obtain this address from your DHCP server. Before it offers an address to a
client, the DHCP server uses ICMP echo requests to verify that the address is not in use. If the
server receives a response, it marks the address as disabled in the network table and attempts to
find another address to offer to the client. If the server has no more available addresses, you’ll
see messages such as the following in your system log:

Jun 24 21:15:56 opensolaris in.dhcpd[803]: [ID 603263 daemon.notice] No more
IP addresses on 192.168.2.0 network (01080027440630)

Monitor the DHCP server’s logs and periodically scan the DHCP network tables for addresses
that have been marked unusable to ensure that addresses are available. You can use tools such
as ping and snoop, described later in this chapter, to troubleshoot any unusable addresses
and reenable them using pntadm -M once you’ve resolved any conflicts. Add more addresses as
needed using pntadm, and delete addresses from the DHCP configuration using pntadm -D.

The DHCP server is managed as the SMF service svc:/network/dhcp-server, which exe-
cutes in.dhcpd(1M). In addition to using the svcadm command to control the service, you can
use dhcpconfig -S -e to enable the server, and dhcpconfig -S -d to disable it. To unconfig-
ure the server, use dhcpconfig -U.

This section has only scratched the surface of the DHCP server’s capabilities; see the OpenSolaris
documentation for much more information about the DHCP server.

File Transfer Protocol
The File Transfer Protocol (FTP) is one of the earliest Internet applications and is commonly
supported by IP systems. OpenSolaris includes both the FTP client program, ftp, and the
server, in.ftpd. The FTP server is managed by SMF as the service svc:/network/ftp. This
service is disabled by default in OpenSolaris because SSH, which is enabled by default, includes
the sftp program that performs a similar file transfer function using SSH as the transport, thus
providing encryption of the data while in transit. The OpenSolaris FTP server implementation is
based on the WU-FTP daemon originally developed at Washington University and commonly
used on current operating systems.

One popular application of FTP is to set up an anonymous FTP service, which allows for public
download of content from the server. This service is often used for distributing large files such
as CD or DVD images, as FTP can transfer these more efficiently than HTTP. You can set up an

305

Part III OpenSolaris File Systems, Networking, and Security

anonymous FTP service using ftpconfig(1M). As with other services, it’s recommended that
you place the FTP service data in a ZFS dataset that is shared across OpenSolaris boot environ-
ments, as shown in the following example:

zfs create rpool/export/ftp
ftpconfig /export/ftp
Creating user ftp
Updating directory /export/ftp

This sets up the anonymous FTP server directory and user account, which appears like this:

ls /export/ftp
bin dev etc lib pub usr
grep ftp /etc/passwd
ftp:x:102:1:Anonymous FTP:/export/ftp:/bin/true

When running a public anonymous FTP server, you should disable non-anonymous FTP access
to help protect any other user accounts from attack via FTP; you can do so by adding the fol-
lowing entry to /etc/ftpd/ftpaccess:

echo ‘defaultserver deny *’ >>/etc/ftpd/ftpaccess

At this point the service is ready for use, so you can enable it:

svcadm enable ftp

Any files you want to distribute via anonymous FTP can be copied to /export/ftp/pub; users
can then log in to the FTP service using the ftp account, supply their e-mail address as a pass-
word, and download files from /pub.

Network Time Protocol
All modern operating systems provide a clock to record the time of events in logs, place a
timestamp on files, and provide job-scheduling functions, among other uses. However, some
hardware and operating systems are better at keeping time than others, and if you aren’t careful,
your systems can easily end up with clocks that differ by seconds or minutes, possibly even
hours. Clock skew, the name for this condition, can cause significant operational problems, as
many administrative operations are scheduled to occur at specific times. Accurate timekeeping
can be especially important in security protocols, which often use cryptographic algorithms that
depend on accurate clocks to prevent replay attacks.

The Network Time Protocol (NTP) was developed to provide accurate time to an operating
system from highly accurate clock sources and to synchronize the clocks of other systems on a
network to systems that have accurate clocks. OpenSolaris, like most operating systems, includes
the open source NTP reference implementation, developed cooperatively through a project
hosted at the University of Delaware. A great deal of information on the protocol and project is
available from its main website, http://ntp.org. As of this writing, OpenSolaris includes NTP

306

Networking 9

version 3 software, while the documentation on the ntp.org website is primarily based on the
more recent version 4.

Most organizations of significant size operate their own NTP servers, so check with
your network administrator or ISP for a suggested NTP configuration on your net-

work. Alternately, you can find time servers on the Internet if you don’t have one of your own;
for details see http://support.ntp.org/bin/view/Servers/NTPPoolServers.

On OpenSolaris, the NTP configuration is stored in the file /etc/inet/ntp.conf. You can get
full details on the configuration options available in this file by reviewing the xntpd(1M) man
page, which is the name of the executable daemon program. To configure your system to use
the U.S.A. public servers specified on the ntp.org website, create the ntp.conf file with the
following contents:

driftfile /var/ntp/ntp.drift
server 0.us.pool.ntp.org
server 1.us.pool.ntp.org
server 2.us.pool.ntp.org
server 3.us.pool.ntp.org
server pool.ntp.org

Once you’ve done that, simply enable the SMF service for NTP:

svcadm enable network/ntp

You can use the ntpq command to verify that NTP has found servers and is working, as
follows:

ntpq -p

remote refid st t when poll reach delay offset disp
==
NTP.MCAST.NET 0.0.0.0 16 - - 64 0 0.00 0.000 16000.0

+mail.ggong.info tick.ucla.edu 2 u 223 256 377 90.81 0.952 1.45
+server.donkeyfl bonehed.lcs.mit 2 u 41 256 377 22.78 -1.585 1.24
-mirror ntp-2.gw.uiuc.e 3 u 13 512 377 47.74 11.288 2.73
-sulaco.textdriv clock.isc.org 2 u 590 1024 357 60.87 -11.906 0.64
*8.15.10.42 clock.xmission. 2 u 181 256 377 23.96 1.341 0.32

The last server listed is preceded with an asterisk (*), which means that it has been selected for
synchronization and thus NTP is working properly. See the ntpq(1M) man page for information
on interpreting the details of this table.

If you are operating a home or small office network, configure just one server system this way,
and then use it as your own local time server, configuring any other clients to reference it, to
prevent overloading the public NTP servers. In addition, consider making your server available
as part of the public NTP server pool — instructions are included on the support.ntp.org
site referenced earlier.

307

Part III OpenSolaris File Systems, Networking, and Security

See Chapter 11 for an example of configuring a group of related systems as NTP
peers for Kerberos.

Mail service
Electronic mail, or e-mail, is one of the oldest Internet applications, dating to the earliest days of
the Internet. OpenSolaris, like other UNIX-like systems, includes e-mail software with the oper-
ating system. Specifically, OpenSolaris includes the sendmail(1M) transport agent, and both
command-line clients such as mailx(1) and the graphical desktop mail clients Evolution and
Thunderbird.

See Chapter 4 for information on Evolution and Thunderbird.

By default, sendmail on OpenSolaris is configured to operate only as a client, which means
that processes on your system can use it to send outgoing messages, but no messages will
be accepted from other systems for delivery. This configuration is preferred for most systems
because it minimizes the likelihood that your system can be exploited as a conduit for the
scourge of Internet junk mail or spam.

If you’re configuring your system as a mail server, then also configure it as a DNS
client, described earlier in this chapter.

To configure your system as a mail server, you must first verify that your system’s hostname can
be resolved correctly in the name services using the check-hostname program:

$ check-hostname
Hostname mailman OK: fully qualified as mailman.example.com

This is the output you’ll see if the system name is configured properly; if the configuration is
incorrect, check-hostname provides a recommended change to the system configuration,
which you should make and then rerun check-hostname to verify. Once check-hostname
is satisfied, you must convert sendmail’s configuration to allow for remote mail service by
modifying the config/local_only property of the sendmail SMF service:

svccfg -s svc:/network/smtp:sendmail setprop config/local_only=false
svcadm refresh svc:/network/smtp:sendmail

The sendmail configuration files are stored in /etc/mail/cf. The standard configuration sup-
plied with OpenSolaris is suitable for most sites to begin using. Consult the sendmail docu-
mentation for information on customizing the sendmail configuration for your site’s purposes.

At this point, the service is configured and can be restarted:

svcadm restart svc:/network/smtp:sendmail

If you are going to run a mail service that is connected to the Internet, we recommend that you
investigate mail-filtering software so that you can cope with the spam that will inevitably find

308

Networking 9

your server. See the sendmail documentation for information on integrating mail filtering with
sendmail.

Finally, consider installing POP or IMAP mailbox server software so that users can efficiently
access their mailboxes with the mail client of their choice. OpenSolaris does not include POP
or IMAP software as of this writing, but open source, as well as commercial, software for this
purpose is easy to find. The pkg.sunfreeware.com repository includes an open source mail
server in the IPSFWimap package.

HTTP
The vast majority of websites and Internet applications used today communicate using the
Hypertext Transport Protocol (HTTP), making it the most important application protocol in
networking. Versions of the Apache HTTP server, Sun’s HTTP server, and all of the popular web
application environments such as application servers and servlet engines are available as part
of OpenSolaris. Chapter 23 provides details on installing and using these packages, as well as
related software such as MySQL.

OpenSolaris also includes the Firefox web browser as part of the standard desktop, which is dis-
cussed in Chapter 4.

inetd
If you’re familiar with UNIX or Linux operating systems, you’ve probably encountered the
super-server known as inetd. The function of inetd is to provide a single process that
listens on a set of network ports and, when data is received on that port, to invoke a service
that can process the received data. This enables infrequently used services to be started only
when needed, minimizing the number of processes running and system memory consumed.
Constraining system resources can be helpful as a simple resource-management strategy.

More sophisticated OpenSolaris resource management capabilities are described in
Chapter 18.

In Solaris 10, inetd was converted to a delegated restarter in the SMF framework. It continues
to provide the on-demand service invocation function, but now it’s integrated with SMF so that
the inetd services can be managed like any other OpenSolaris service.

SMF is discussed in Chapter 13.

For those familiar with inetd on other platforms, the most noticeable effect of this change is
that /etc/inetd.conf is no longer used to configure inetd services. OpenSolaris retains
an inetd.conf file, but it is provided only to enable packages that expect to add a service to
inetd.conf to continue to do so. Once an inetd.conf entry is added, you must convert
the service definition from inetd.conf to an SMF service manifest. Fortunately, OpenSolaris
provides the inetconv utility to automatically perform this conversion and import the gener-
ated SMF service manifest; the auto-import can be disabled if you want to customize the service

309

Part III OpenSolaris File Systems, Networking, and Security

definition after its conversion but prior to import. See the inetconv(1M) man page for details
about using inetconv if you encounter a package that installs an inetd.conf entry. Inetd
checks the inetd.conf file when it starts and will print a message such as the following if
inetd.conf has been modified:

Jun 26 19:36:21 testsys inetd[3353]: [ID 702911 daemon.warning] Configuration
file /etc/inet/inetd.conf has been modified since inetconv was last run.
"inetconv -i /etc/inet/inetd.conf" must be run to apply any changes to
the SMF

Because inetd services are also SMF services, you can use the SMF administration commands
such as svcadm, svccfg, and svcprop to manage them. In addition, a special command is
provided for managing inetd services, inetadm, which duplicates some functions of svcadm:
You can enable an inetd service using inetadm -e and disable it with inetadm -d. It also
provides several options that are specific to inetd services.

When invoked with no options, inetadm displays the status of all inetd-managed services, as
shown here:

ENABLED STATE FMRI
disabled disabled svc:/application/x11/xfs:default
disabled disabled svc:/application/x11/xvnc-inetd:default
disabled disabled svc:/application/print/rfc1179:default
disabled disabled svc:/network/finger:default
disabled disabled svc:/network/telnet:default
disabled disabled svc:/network/shell:default
disabled disabled svc:/network/shell:kshell
disabled disabled svc:/network/rexec:default
disabled disabled svc:/network/talk:default
disabled disabled svc:/network/ftp:default
disabled disabled svc:/network/nfs/rquota:default
disabled disabled svc:/network/swat:default
disabled disabled svc:/network/security/ktkt_warn:default
disabled disabled svc:/network/rpc/spray:default
disabled disabled svc:/network/rpc/rex:default
enabled online svc:/network/rpc/gss:default
disabled disabled svc:/network/rpc/metamh:default
disabled disabled svc:/network/rpc/rusers:default
disabled disabled svc:/network/rpc/metamed:default
disabled disabled svc:/network/rpc/mdcomm:default
disabled disabled svc:/network/rpc/rstat:default
enabled online svc:/network/rpc/smserver:default
disabled disabled svc:/network/rpc/wall:default
disabled disabled svc:/network/rpc/meta:default
disabled disabled svc:/network/login:eklogin
disabled disabled svc:/network/login:klogin
disabled disabled svc:/network/login:rlogin
disabled disabled svc:/network/comsat:default

310

Networking 9

disabled disabled svc:/network/stlisten:default
disabled disabled svc:/network/stdiscover:default
disabled disabled svc:/application/cups/in-lpd:default

The properties of inetd services are handled in a slightly different fashion from standard SMF
services. There is a set of property defaults attached to the inetd service itself that each of its
services inherits unless you override them. You can display these defaults using inetadm -p:

$ inetadm -p
NAME=VALUE
bind_addr=""
bind_fail_max=-1
bind_fail_interval=-1
max_con_rate=-1
max_copies=-1
con_rate_offline=-1
failrate_cnt=40
failrate_interval=60
inherit_env=TRUE
tcp_trace=FALSE
tcp_wrappers=FALSE
connection_backlog=10

Consult the inetd(1M) man page for details about these properties. You can modify any of
these default properties using inetadm -M. For example, the following limits the connection
rate for all nowait services to 10 connections per second:

inetadm -M max_con_rate=10
inetadm -p
NAME=VALUE
bind_addr=""
bind_fail_max=-1
bind_fail_interval=-1
max_con_rate=10
max_copies=-1
con_rate_offline=-1
failrate_cnt=40
failrate_interval=60
inherit_env=TRUE
tcp_trace=FALSE
tcp_wrappers=FALSE
connection_backlog=10

The properties of an individual service can be displayed using inetadm -l:

$ inetadm -l rexec
SCOPE NAME=VALUE

name="exec"
endpoint_type="stream"

311

Part III OpenSolaris File Systems, Networking, and Security

proto="tcp6only,tcp"
isrpc=FALSE
wait=FALSE
exec="/usr/sbin/in.rexecd"
user="root"

default bind_addr=""
default bind_fail_max=-1
default bind_fail_interval=-1
default max_con_rate=10
default max_copies=-1
default con_rate_offline=-1
default failrate_cnt=40
default failrate_interval=60
default inherit_env=TRUE
default tcp_trace=FALSE
default tcp_wrappers=FALSE
default connection_backlog=10

Table 9-1 describes the per-service properties. See the inetd(1M) man page for details about
the inheritable properties.

TABLE 9-1

inetd Service Properties

Property Name Description

name Service name, used to specify the port or RPC program number on which
inetd will listen. Must be available in the /etc/services table for
non-RPC services, in the /etc/rpc table for RPC services.

endpoint_type Socket type, usually stream for TCP services, dgram for UDP services,
tli for RPC services

proto Protocols for service: tcp for TCPv6, tcp6only for TCPv6

isrpc True for RPC services

wait True for wait services, which inetd must handle specially. A service that
has endpoint_type dgram must be a wait service.

exec Executable path inetd invokes when data is received for this service

user User identity from /etc/passwd to use when running the executable

Any of the properties, including the inherited defaults, can be modified on any inetd service
using inetadm -m:

inetadm -m rexec max_con_rate=-1
inetadm -l rexec

312

Networking 9

SCOPE NAME=VALUE
name="exec"
endpoint_type="stream"
proto="tcp6only,tcp"
isrpc=FALSE
wait=FALSE
exec="/usr/sbin/in.rexecd"
user="root"

default bind_addr=""
default bind_fail_max=-1
default bind_fail_interval=-1

max_con_rate=-1
default max_copies=-1
default con_rate_offline=-1
default failrate_cnt=40
default failrate_interval=60
default inherit_env=TRUE
default tcp_trace=FALSE
default tcp_wrappers=FALSE
default connection_backlog=10

The functionality of the tcp_wrappers property is discussed in the next section.

OpenSolaris As a Router or Firewall
In addition to behaving as a network client and server, OpenSolaris can also serve as a network
router and firewall. Many organizations purchase dedicated special-purpose hardware to perform
these functions, but OpenSolaris’ functionality might be suitable for your environment.

Routing
When computer systems are attached to the same physical network, they can communicate
with each other directly by sending packets on the network medium, whether it’s wired or
wireless. When the systems are attached to different networks, an intermediate system, called a
router, must be used to forward data from one network to another. On the Internet, there can be
several, perhaps dozens, of routers along the path from one system to another. In order for your
system to exchange data with other networks across a router, it must be aware that the router
exists, and know for which networks the router can accept traffic for forwarding, as not all
routers can accept traffic for all destinations. You must configure routing in some way, regardless
of whether your system will operate as a router — otherwise, it can only contact systems on
the same network. In addition, if your system is to operate as a router, it must be configured to
forward packets; otherwise, any traffic directed to it by systems for routing will be discarded.

IP forwarding
By default, OpenSolaris is configured to not provide forwarding of IP packets, because most sys-
tems do not operate as routers, but instead are end systems connected to only a single network

313

Part III OpenSolaris File Systems, Networking, and Security

at a time; you should not enable forwarding unless your system is configured as a router. You
can view your system’s forwarding configuration using the routeadm(1M) command:

$ routeadm -p ipv4-forwarding
persistent=disabled default=disabled current=disabled

To enable forwarding, use routeadm -e:

routeadm -e ipv4-forwarding
routeadm -p ipv4-forwarding
persistent=enabled default=disabled current=disabled

Note that the persistent configuration was changed to enabled, but it isn’t yet the current, run-
ning configuration. To make the persistent configuration current, use routeadm -u:

routeadm -u
routeadm -p ipv4-forwarding
persistent=enabled default=disabled current=enabled

You can also disable IPv4 forwarding using routeadm -d, and apply it with routeadm -u:

routeadm -d ipv4-forwarding
routeadm -p ipv4-forwarding
persistent=disabled default=disabled current=enabled
routeadm -u
routeadm -p ipv4-forwarding
persistent=disabled default=disabled current=disabled

Static IP routing
Static routing, so called because the routes are not changed automatically in response to routing
protocol messages, is the most basic type of routing on OpenSolaris. Static routing is configured
with the route command. To add a route, use route add, supplying the destination system or
network and the address of the next-hop router:

route add net 192.168.2.0/24 10.0.2.10
add net 192.168.2.0: gateway 10.0.2.10

You can verify the route is installed using route get, supplying the address of the network or a
system on the network:

route get 192.168.2.0
route to: 192.168.2.0

destination: 192.168.2.0
mask: 255.255.255.0

gateway: 10.0.2.10
interface: e1000g0

flags: <UP,GATEWAY,DONE,STATIC>
recvpipe sendpipe ssthresh rtt,ms rttvar,ms hopcount mtu expire

0 0 0 0 0 0 1500 0

314

Networking 9

Delete a route using route delete:

route delete 192.168.2.0/24 10.0.2.10
delete net 192.168.2.0: gateway 10.0.2.10

Verify the deletion with route get:

route get 192.168.2.0
192.168.2.0: not in table

Routes configured with the route command are temporary and will be lost when
the system is rebooted. Configuration of persistent static routes must be done

using the /etc/gateways file, in combination with enabling the in.routed daemon via the
svc:/network/routing/route:default service. See gateways(4) for details on static
route configuration, and the example later in this section to set up in.routed.

However, even after deleting the route, systems on that network may still be reachable, as
demonstrated by the following:

route get 192.168.2.1
route to: 192.168.2.1

destination: default
mask: default

gateway: 10.0.2.2
interface: e1000g0

flags: <UP,GATEWAY,DONE,STATIC>
recvpipe sendpipe ssthresh rtt,ms rttvar,ms hopcount mtu expire

0 0 0 0 0 0 1500 0

What’s going on here? The answer is that the system has a configured default router, which is
the router of last resort. If no more specific route to a network can be found, the default router
is used. OpenSolaris, like all systems with IP networking, maintains a routing table in the ker-
nel, which is used to assign outgoing traffic to the correct interface. You can view the routing
table with the netstat -r command. The routing table on an OpenSolaris client system usually
appears similar to the following table:

$ netstat -r
Routing Table: IPv4
Destination Gateway Flags Ref Use Interface

-------------------- ------------------- ----- ----- ---------- ---------
default 10.0.2.2 UG 1 0 e1000g0
10.0.2.0 10.0.2.15 U 1 3 e1000g0
opensolaris opensolaris UH 1 315 lo0

Routing Table: IPv6
Destination/Mask Gateway Flags Ref Use If

------------------------- ------------------------- ----- --- ------- -----
localhost localhost UH 1 0 lo0

315

Part III OpenSolaris File Systems, Networking, and Security

You may be wondering how that default route was configured. If you configure a network
interface using DHCP, and the DHCP server supplies a Router option in its response, then the
OpenSolaris DHCP client automatically installs that default route into the kernel. If you’re using
static IP address configuration, you can create the file /etc/defaultrouter, which lists the
addresses of any default routers, one per line, and these routes are added during system boot;
see defaultrouter(4) for more information.

Note that you can have more than one default route, or more than one route to any destination;
in a well-designed network, this will often be the case. The following example routing table
shows a system that is routing between three different networks using static routes (the -n
option to netstat prevents it from translating IP addresses to names):

netstat -nr

Routing Table: IPv4
Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ---------- ---------
default 68.189.244.1 UG 1 12510876 dmfe1
default 10.10.10.254 UG 1 8772019
10.10.10.0 10.10.10.1 U 1 4618 dmfe1:2
68.189.244.0 68.189.244.104 U 1 6567 dmfe1
192.168.1.0 192.168.1.7 U 1 53697 dmfe0
224.0.0.0 192.168.1.7 U 1 0 dmfe0
127.0.0.1 127.0.0.1 UH 2 2565 lo0

Dynamic IP routing
Static routes can be useful, but administrators must update them when the network topology
changes. To ease the maintenance burden, a number of routing protocols have been developed
for the Internet, with names such as RIP, BGP, and OSPF. If you’re setting up a network of any
appreciable size, strongly consider using dynamic routing.

The OpenSolaris distribution includes two dynamic routing packages. The simple in.routed
daemon is installed as part of the default installation in package SUNWroute and is managed
under the SMF service svc:/network/routing/route:default; it uses the RIP protocol to
exchange routes between routers. A much more powerful routing service, known as Quagga, is
available from the OpenSolaris package repository under the name SUNWquagga. You can install
it using the following command:

pkg install SUNWquagga

Quagga is an open source project hosted at http://quagga.net. It provides a sophisticated
routing service that runs on UNIX systems and includes support for current versions of RIP,
BGP, and OSPF. To use RIP as your routing protocol, you can use either in.routed or Quagga;
otherwise, you need to use Quagga. This book does not cover Quagga configuration details.

316

Networking 9

Configuring a dynamic router
You can view the routing service configuration with routeadm; the following default output dis-
plays the configuration for both routing and forwarding services:

routeadm
Configuration Current Current

Option Configuration System State

IPv4 routing disabled disabled
IPv6 routing disabled disabled

IPv4 forwarding disabled disabled
IPv6 forwarding disabled disabled

Routing services "route:default ripng:default"

Routing daemons:

STATE FMRI
online svc:/network/routing/ndp:default

disabled svc:/network/routing/ripng:default
disabled svc:/network/routing/ripng:quagga
disabled svc:/network/routing/rdisc:default
disabled svc:/network/routing/route:default
disabled svc:/network/routing/legacy-routing:ipv4
disabled svc:/network/routing/legacy-routing:ipv6
disabled svc:/network/routing/zebra:quagga
disabled svc:/network/routing/rip:quagga
disabled svc:/network/routing/ospf:quagga
disabled svc:/network/routing/ospf6:quagga
disabled svc:/network/routing/bgp:quagga

This system has the Quagga package installed, but for this example you enable only the
standard in.routed routing service. First, modify the routing services setting to include only
route:default (the ripng:default service is used for routing IPv6 packets, which is not
part of this example):

routeadm -s routing-svcs="route:default"

Next, enable IPv4 routing and forwarding, and apply the configuration to the system:

routeadm -e ipv4-forwarding
routeadm -e ipv4-routing
routeadm -u

You can view the routing configuration using routeadm:

routeadm
Configuration Current Current

Option Configuration System State

317

Part III OpenSolaris File Systems, Networking, and Security

IPv4 routing enabled enabled
IPv6 routing disabled disabled

IPv4 forwarding enabled enabled
IPv6 forwarding disabled disabled

Routing services "route:default"

Routing daemons:

STATE FMRI
online svc:/network/routing/ndp:default

disabled svc:/network/routing/ripng:default
disabled svc:/network/routing/ripng:quagga
disabled svc:/network/routing/rdisc:default

online svc:/network/routing/route:default
disabled svc:/network/routing/legacy-routing:ipv4
disabled svc:/network/routing/legacy-routing:ipv6
disabled svc:/network/routing/zebra:quagga
disabled svc:/network/routing/rip:quagga
disabled svc:/network/routing/ospf:quagga
disabled svc:/network/routing/ospf6:quagga
disabled svc:/network/routing/bgp:quagga

IP routing configuration and management is a fairly complex topic that extends well beyond the
scope of this book. To manage RIP effectively, not to mention the more advanced protocols such
as BGP and OSPF, you will definitely need to spend some time learning about the details of
their configuration. For this, you can consult the in.routed(1M) and quagga(8) man pages
and the Quagga documentation. See also the ‘‘Resources’’ section at the end of this chapter for
references.

Configuring a firewall with IP filter
Systems connected to the Internet need to be protected against a variety of attacks against any
network services they are running. Chapter 11 discusses the extensive array of security features
built into OpenSolaris, but one concept in networking security that’s particularly important is
the idea of defense in depth. The Secure by Default (SBD) feature limits the set of network ser-
vices on OpenSolaris that is enabled by default, and thus vulnerable to attack. However, a sec-
ond level of security can be provided through the use of a firewall. The function of a firewall is
to block network traffic from reaching any applications or services unless explicitly allowed. All
modern operating systems include some form of firewall software, and they all operate on the
same basic principle: Packets that are received or sent on a network interface are inspected, the
contents of each packet are compared against a set of rules, and the packet is blocked or passed
based on the matching rules. Thus, even if you have a network service running on your system,
you can use a firewall to restrict who may use it to only a select group of systems or networks,
and you can use the firewall to restrict what outgoing traffic may be sent.

318

Networking 9

The OpenSolaris firewall function is provided by the IP Filter software, an open source
implementation that is also included on variants of BSD UNIX and can be used on most other
UNIX-like operating systems, including Linux. IP Filter provides two closely related features:
packet filtering and Network Address Translation (NAT). NAT is a technique that enables
multiple systems to appear to share a single IP address. It’s commonly used on the public
Internet by individuals or small organizations to set up a private network that can access the
Internet within the home or office. However, rather than obtain a block of public IP addresses,
which can be expensive, only a single IP address for the organization’s router is purchased from
the Internet service provider. That address is shared by the router’s software with the systems
inside the private network. Virtually all modern routers include NAT software. Note that you
can run a filtering firewall without using NAT, and vice versa, but often you will run both.
On OpenSolaris, for most purposes, the Secure by Default configuration installed makes it
unnecessary to run a filtering firewall on each system. However, if you need to enable additional
network services on your system, consider running a filtering firewall.

A simplified firewall configuration capability for OpenSolaris is currently under
development.

The example in this section uses both filtering and NAT together, on a system configured as an
IPv4 router; see the ‘‘Routing’’ section for examples of routing configuration. This example uses a
system with the following network interface configuration:

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
e1000g0: flags=201104843<UP,BROADCAST,RUNNING,MULTICAST,ROUTER,IPv4
,CoS> mtu 1500 index 2

inet 10.0.2.15 netmask ffffff00 broadcast 10.0.2.255
ether 8:0:27:2f:10:81

e1000g1: flags=201100843<UP,BROADCAST,RUNNING,MULTICAST,ROUTER,IPv4
,CoS> mtu 1500 index 3

inet 192.168.2.1 netmask ffffff00 broadcast 192.168.2.255
ether 8:0:27:36:98:af

The e1000g0 interface is connected to the public network, while the e1000g1 interface is con-
nected to the private network.

IP Filter is disabled by default on OpenSolaris and requires configuration before it can
be enabled and used. First, configure the packet filtering rules, which are stored in the
configuration file /etc/ipf/ipf.conf. Here is an example ipf.conf:

#
ipf.conf
#
IP Filter rules to be loaded during startup
#
See ipf(4) manpage for more information on

319

Part III OpenSolaris File Systems, Networking, and Security

IP Filter rules syntax.
#
Filter set for firewalled router between external net and internal

Block everything from outside network by default
block in log on e1000g0 all
block return-rst in log on e1000g0 proto tcp from any to any

Allow ssh and http in
pass in quick on e1000g0 proto tcp from any to e1000g0/32 port = 22
pass in quick on e1000g0 proto tcp from any to e1000g0/32 port = 80

Allow any connections initiated from this system or the private network
pass out quick on e1000g0 proto tcp/udp from 192.168.2.0/24 to any keep state
pass out quick on e1000g0 proto icmp from 192.168.2.0/24 to any keep state
pass out quick on e1000g0 proto tcp/udp from 10.0.2.15/32 to any keep state
pass out quick on e1000g0 proto icmp from 10.0.2.15/32 to any keep state

Complete documentation of the ipf.conf(4) syntax is provided in its man page. Conceptually,
each rule is specified as follows:

action direction filter

A number of actions can be specified, but most often the action is either block or pass. A
blocked packet is discarded unless otherwise specified, whereas a passed packet is forwarded
up the networking stack. The direction must be either in or out, corresponding to whether the
packet is being received or sent, respectively. The filter specifies packet characteristics that must
be matched to apply the action; you can filter based on a network interface, an IP address, a
protocol, or a port number.

The most important thing to understand about IP Filter’s filtering behavior is that it will match
each packet against the entire set of filter rules in the order they appear in the file, and the
last matching rule will be applied. This complete matching can be short-circuited, however,
using the quick option to a filter, which means that if the rule is matched to a packet, then the
matching process concludes and the action specified by the rule is taken immediately.

The preceding rule set is designed to block incoming traffic from the external network (network
10.0.0.0, on e1000g0) except for the explicitly permitted services. Outgoing traffic originating
from either the internal 192.168.2.0 network or the local system is permitted. A detailed expla-
nation of each section of the rule set follows.

The first section applies the default blocking rules:

Block everything from outside by default
block in log on e1000g0 all
block return-rst in log on e1000g0 proto tcp from any to any

The first rule blocks all packets received on e1000g0; the log option in the rule causes each
packet to be recorded in IP Filter’s packet log device, which can be monitored using the ipmon

320

Networking 9

utility. The second rule applies an alternate blocking behavior for any TCP traffic received
on e1000g0. The return-rst option to the action in this rule causes IP Filter to generate a
reply packet that has the TCP reset flag set. The other end of the connection interprets such
a response as a refused connection, which is friendlier than just dropping the packet; a lack
of response causes the other end to keep retrying, perhaps indefinitely, because the lack of
response may indicate that the network is disrupted in some way, or that the end system is
down. Both the resulting user experience and extra network load are undesirable.

The next section of the rule set allows incoming traffic on the e1000g0 interface for services
that are to be visible to the outside network:

Allow ssh and http in
pass in quick on e1000g0 proto tcp from any to e1000g0/32 port = 22
pass in quick on e1000g0 proto tcp from any to e1000g0/32 port = 80

The only two services allowed in are ssh and http, which use these ports. Note the use of the
quick option to each of these actions, ensuring that no further filtering will be applied.

The port and protocol for most standard services can be found by consulting the
/etc/services file. See services(4) for more information.

The final section of the rule set restricts outgoing traffic to the outside network:

Allow any connections initiated from this system or the private network
pass out quick on e1000g0 proto tcp/udp from 192.168.2.0/24 to any keep state
pass out quick on e1000g0 proto icmp from 192.168.2.0/24 to any keep state
pass out quick on e1000g0 proto tcp/udp from 10.0.2.15/32 to any keep state
pass out quick on e1000g0 proto icmp from 10.0.2.15/32 to any keep state

As no restrictions are desired on either this system or any of the systems on the inside network,
the four rules allow any traffic to be sent to any recipient. The keep state option to the filters
is critical, because IP Filter recognizes responses to outgoing traffic and allows it to pass, even
though the other rules restricting incoming traffic would cause it to be blocked.

Internet addresses can be faked, or spoofed. Do not rely exclusively on IP address
filtering, but make your traffic filters as specific as possible, so that they limit your

network’s vulnerability to spoofing attacks.

If the 192.168.2.0 network is registered in the external network’s routing tables so that systems
on that network can reach it, then the preceding filtering would be sufficient to protect the
internal network while allowing it to communicate. However, it’s more likely that the internal
network is a private address space that is not visible to the external network. In that case, it’s
necessary to configure this system as a NAT gateway to convert the addresses on the internal
network into addresses on the gateway system, so that the external network responses can be
routed back. The NAT configuration is placed in /etc/ipf/ipnat.conf, and for this example
configuration the NAT rules are very simple:

Simple NAT configuration

321

Part III OpenSolaris File Systems, Networking, and Security

map dmfe1 192.168.2.0/24 -> 10.0.2.15/32 portmap tcp/udp 40000:60000
map dmfe1 192.168.2.0/24 -> 10.0.2.15/32

The first rule causes all TCP and UDP traffic from the internal network to be remapped into
the gateway’s port range between 40000 and 60000. This potentially restricts the number of
simultaneous connections from each of those addresses, but unless you have an unusually active
inside network connecting to many outside hosts, such a configuration will likely be sufficient;
you can extend the port range if needed. The second rule causes ICMP traffic to have only its
source address rewritten. See ipnat.conf(4) for details on the NAT configuration options
available with IP Filter.

Once you have created the configuration files for IP Filter, you can enable it with the svcadm
command:

svcadm enable ipfilter

If you modify the IP Filter configuration, you can reload the configuration using svcadm:

svcadm refresh ipfilter

IP Filter includes several management and monitoring commands:

■ ipf(1M) is used to manage the filter rules.

■ ipnat(1M) is used to manage the NAT rules.

■ ipfstat(1M) can be used to view filtering statistics.

■ ipmon(1M) can be used to view the packet filter logs.

Consult the man pages for each of these commands for more information on their usage and
options.

TCP Wrappers
In addition to IP Filter, OpenSolaris includes an alternate network access control technology,
called TCP Wrappers. It can be used to monitor an incoming request for a specific service and
apply access control based on the client’s address. If your requirements for service access con-
trol are met by TCP Wrappers, it may be preferable to IP Filter because it imposes a cost only
on the services configured to use it. By contrast, a network packet filter such as IP Filter must
inspect every packet entering the system to provide protection, which can affect performance on
very busy systems. See the tcpd(1M) man page for general information on TCP Wrappers.

The most common use of TCP Wrappers is to provide network access control for inetd ser-
vices. You can enable TCP Wrappers support for either a single inetd service or for all inetd
services using inetadm. To enable TCP Wrappers for all inetd services, use inetadm -M:

inetadm -M tcp_wrappers=TRUE
inetadm -p

322

Networking 9

NAME=VALUE
bind_addr=""
bind_fail_max=-1
bind_fail_interval=-1
max_con_rate=-1
max_copies=-1
con_rate_offline=-1
failrate_cnt=40
failrate_interval=60
inherit_env=TRUE
tcp_trace=FALSE
tcp_wrappers=TRUE
connection_backlog=10

To enable TCP Wrappers for only a single service, such as telnet, use inetadm -m:

inetadm -m telnet tcp_wrappers=true
inetadm -l telnet
SCOPE NAME=VALUE

name="telnet"
endpoint_type="stream"
proto="tcp6"
isrpc=FALSE
wait=FALSE
exec="/usr/sbin/in.telnetd"
user="root"

default bind_addr=""
default bind_fail_max=-1
default bind_fail_interval=-1
default max_con_rate=-1
default max_copies=-1
default con_rate_offline=-1
default failrate_cnt=40
default failrate_interval=60
default inherit_env=TRUE
default tcp_trace=FALSE

tcp_wrappers=TRUE
default connection_backlog=10

TCP Wrappers is configured by a pair of files, /etc/hosts.allow and /etc/hosts.deny.
To deny access to telnet to all hosts except those in the local DNS domain (example.com for
this example), use the following rules:

1. Configure /etc/hosts.deny to deny all clients:

in.telnetd: ALL

2. Configure /etc/hosts.allow to allow example.com:

in.telnetd: .example.com

323

Part III OpenSolaris File Systems, Networking, and Security

TCP Wrappers is capable of extensive access control checks and can invoke additional com-
mands when a protected service is accessed. Consult the hosts_access(4) man page for
detailed information.

Troubleshooting
Modern networks are very complex, with many components involved in shepherding packets
from one system to another. In spite of this complexity, networks are quite reliable, especially
when technologies such as IPMP and redundant routers are used to eliminate single points of
failure. Nonetheless, failures occur, and being able to diagnose the root cause is an important
skill. OpenSolaris provides several tools to investigate networking problems. In earlier sections
of this chapter you learned about some protocol-specific tools such as dig; in this section you’ll
learn about the basic tools that can be used to observe TCP/IP network behavior.

netstat
The netstat command has long been a standard diagnostic tool for networking problems on
UNIX systems. Earlier sections of this chapter demonstrated the use of netstat for examining
DHCP transactions and routing tables, but other options can be used to examine active connec-
tions and statistics for the protocols or interfaces.

Coincidentally, when readying this chapter, I was the victim of a serious network failure due
to a lightning strike. Once the ISP’s network had recovered after a number of hours and the
cable modem had reconnected, the system was unable to obtain an address using DHCP. A brief
investigation led to the diagnosis. First, the output of netstat -D indicated that the DHCP
operation was in progress, but no replies had been received:

netstat -D
Interface State Sent Recv Declined Flags
dmfe1 SELECTING 23 0 0 [BUSY]

Inspecting the interface more completely with netstat -i:

netstat -i -I dmfe1
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
dmfe1 1500 0.0.0.0 0.0.0.0 0 0 0 25 0 0

The lack of any statistics other than output errors (Oerrs) indicates a serious problem: neither
incoming nor outgoing packets are being transmitted, and all packets being transmitted are caus-
ing errors. This indicates an issue with the link, which the output of ifconfig also confirms:

ifconfig dmfe1
dmfe1: flags=201104803<UP,BROADCAST,MULTICAST,DHCP,ROUTER,IPv4,CoS> mtu 1500
index 3

324

Networking 9

inet 0.0.0.0 netmask ff000000
ether 0:3:ba:c:14:d8

The lack of the RUNNING flag on the interface indicates that the driver is not detecting an active
link, and inspection of the system (an old Sun Netra X1) confirmed that the link LED for the
interface was not lit. Swapping cables and connecting the cable modem to a different system, as
well as a different cable modem to this system, led to the ultimate diagnosis, which turned out
to be two failures: a failed network interface on the cable modem and a failed network interface
on the OpenSolaris system.

ping and traceroute
Two more network diagnostic commands commonly found on UNIX systems are ping and
traceroute. Both use ICMP, the Internet Control Message Protocol, to diagnose Internet
connectivity.

Ping is used to determine the reachability of another system and the round-trip time for traf-
fic to it; the latter measures network latency, the time required for a packet to reach its destina-
tion, which is a key determining factor in network performance. On OpenSolaris, ping with no
options merely determines reachability:

$ ping www.yahoo.com
www.yahoo.com is alive

On Linux systems, ping with no options sends a request once per second and reports statistics;
to obtain the equivalent behavior on OpenSolaris, you must use the -s option:

$ ping -s www.charter.net
PING www.charter.net: 56 data bytes
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=0. time=25.183 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=1. time=23.589 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=2. time=23.872 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=3. time=23.958 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=4. time=24.643 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=5. time=24.032 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=6. time=25.617 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=7. time=23.677 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=8. time=23.770 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=9. time=24.023 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=10. time=24.033 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=11. time=23.551 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=12. time=24.049 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=13. time=25.062 ms
64 bytes from 64-192-190-12.wcg.net (64.192.190.12): icmp_seq=14. time=23.909 ms
^C
----www.charter.net PING Statistics----

325

Part III OpenSolaris File Systems, Networking, and Security

15 packets transmitted, 15 packets received, 0% packet loss
round-trip (ms) min/avg/max/stddev = 23.551/24.198/25.617/0.628

Widely variable round-trip times or loss of a significant percentage of packets can indicate net-
work instability that may require further investigation. If so, traceroute should be the next
tool you use — it can help determine which hop on the path between the systems is at fault:

$ traceroute -n www.charter.net
traceroute: Warning: Multiple interfaces found; using 192.168.1.7 @ dmfe0
traceroute to www.charter.net (64.192.190.12), 30 hops max, 40 byte packets
1 192.168.1.1 0.727ms 0.570ms 0.568 ms
2 10.85.0.1 11.802ms 6.751ms 7.431 ms
3 172.20.15.49 8.366ms 9.028ms 9.630 ms
4 172.20.15.26 10.062ms 10.917ms 9.239 ms
5 65.124.189.105 17.112ms 17.192ms 17.229 ms
6 205.171.30.93 17.281ms 16.962ms 15.410 ms
7 67.14.5.162 16.831ms 17.030ms 15.154 ms
8 63.237.128.170 25.031ms 25.261ms 23.441 ms
9 * * *

10 * * *

In this case the destination system isn’t responding to the ICMP requests used by traceroute
(apparently it’s configured not to do so), but all of the hops prior to that point are operating
correctly.

Snoop
When diagnosing network problems, it’s often useful, and sometimes necessary, to directly
inspect the network traffic; for this OpenSolaris includes the snoop command as its packet
capture and decoding utility. You can use snoop in two ways: The first is to display captured
packets in real time, while the second is to capture packets to a file and then decode them
later. For detailed problem analysis, capturing to a file is usually the preferred option; real-time
display is most useful for quick inspection of whether traffic of a certain type is arriving or being
sent.

Here is the simplest use of snoop to capture and display traffic in real time:

snoop
Using device dmfe0 (promiscuous mode)
client-30.2great.com -> netra TCP D=22 S=61598 Ack=1351882141
Seq=1438228666 Len=0 Win=32806 Options=<nop,nop,tstamp 647025 9391886>

clint-19 -> proxy-outbound-32b.kewr0.s.vonagenetworks.net UDP D=10000
S=5061 LEN=625

clint -> clint-19 ICMP Redirect (for host proxy-outbound-32b.kewr0
.s.vonagenetworks.net to linksys.2great.com)

clint-19 -> proxy-outbound-32b.kewr0.s.vonagenetworks.net UDP D=10000
S=5061 LEN=625

326

Networking 9

proxy-outbound-32b.kewr0.s.vonagenetworks.net -> clint-19 UDP D=5061
S=10000 LEN=457

In this mode, snoop selects the first physical network interface, places it in promiscuous
mode to capture all traffic seen by the interface, and displays a summarized interpretation of
the highest-level protocol that it can recognize in the packet. If you have multiple network
interfaces, you can specify the interface using the -d option. To capture to a file, use the -o
option and specify the filename:

snoop -d dmfe0 -o /tmp/trace
Using device dmfe0 (promiscuous mode)
14

While capturing to a file, snoop displays the count of packets captured. You can then inspect
the capture file using snoop -i:

snoop -i /tmp/trace
. . .

20 0.08831 clint -> ntp.LogicX.net NTP client [st=3]
(2008-07-01 21:56:56.92521)
21 0.01776 ntp.LogicX.net -> clint NTP server [st=2]
(2008-07-01 21:56:56.92329)
22 0.83377 clint -> clint-30.2great.com TCP D=61598 S=22 Push
Ack=1438231354 Seq=1351886317 Len=64 Win=32806 Options=<nop,nop,tstamp
9490373 745420>

23 0.06050 clint-30.2great.com -> clint TCP D=22 S=61598
Ack=1351886381 Seq=1438231354 Len=0 Win=32806 Options=<nop,nop,tstamp
745521 9490373>

These examples captured and displayed all traffic on an interface. It’s usually more useful to
include some filtering, either to the packets captured or to the packets displayed. For example,
the following captures only DHCP traffic:

snoop -d dmfe0 dhcp
Using device dmfe0 (promiscuous mode)

hugo -> nitro DHCP/BOOTP DHCPREQUEST
nitro -> hugo DHCP/BOOTP DHCPACK

You can specify filters based on source or destination IP address (using hostnames, if that is
more convenient), a protocol such as TCP or UDP, port number, MAC address, or packet
length, among other packet characteristics. See the snoop(1M) man page for details about the
filter expressions. You can also display more detailed output using the -V and -v options, which
decode the packet more completely. Finally, the -x option can be used to dump the raw bytes
from the packet for a truly detailed inspection. See the man page for a more detailed description
of these options and more examples of using snoop.

If you prefer to use a graphical interface for network traffic inspection, you can
obtain the Wireshark, also known as Ethereal, program from the sunfreeware.com

package repository; see http://sunfreeware.com for information.

327

Part III OpenSolaris File Systems, Networking, and Security

SNMP
The Simple Network Management Protocol (SNMP) can be used to diagnose networking
problems on remote systems. This book does not cover SNMP, but OpenSolaris does include an
SNMP agent based on the Net-SNMP distribution; for more information on the agent, see the
project’s home page at www.net-snmp.org and the snmpd(1M) man page. The OpenSolaris
agent is managed by SMF as the service svc:/application/management/sma:default.

Resources
Current projects in OpenSolaris networking can be tracked via the Networking community’s
website, http://opensolaris.org/os/community/networking.

Renaming of network interfaces is discussed in an article at http://sun.com/bigadmin/
sundocs/articles/vnamingsol.jsp.

Sun’s main documentation on network interface administration can be found in the IP Services
Administration Guide at http://docs.sun.com/app/docs/doc/819-3000.

Sun documents many of the Solaris network services in the System Administration Guide: Network
Services at http://docs.sun.com/app/docs/doc/819-1634.

The Internet Systems Consortium (ISC) website at http://isc.org provides source code and
documentation for the BIND DNS server and the ISC DHCP server.

The main site for information on multicast DNS is http://multicastdns.org.

A good overview of the DHCP protocol and user information for the ISC DHCP server can be
found in The DHCP Handbook, Second Edition, by Ralph Droms and Ted Lemon (Sams, 2002).

Detailed guidance in configuring and managing a mail server with sendmail is available in
sendmail, Fourth Edition, by Bryan Costales, Claus Assmann, George Jansen, and Gregory Shapiro
(O’Reilly, 2007).

For more information on PPP, consult Using and Managing PPP, by Andrew Sun (O’Reilly,
1999), and PPP Design, Implementation, and Debugging, Second Edition, by James D. Carlson
(Addison-Wesley, 2000).

Information on the Quagga routing suite is available at its website, http://quagga.net.

Extensive information on the Network Time Protocol is available at http://ntp.org.

For further reading on TCP/IP, see Internetworking with TCP/IP, Vol. 1, Fifth Edition, by Douglas
E. Comer (Prentice Hall, 2005).

328

Networking 9

Summary
In this chapter, you’ve learned how OpenSolaris network interfaces are configured and managed,
including the new Network Auto-Magic (NWAM) capability for automatic configuration, and
you explored features such as IPMP that are unique to OpenSolaris. You also were introduced
to some of the more commonly used network services on OpenSolaris, including DNS, DHCP,
FTP, NTP, routing, and firewalls. Finally, you learned about some of the most useful network
troubleshooting tools on OpenSolaris.

329

Network File Systems
and Directory Services

IN THIS CHAPTER
Sharing files using NFS and
CIFS

The NFS automounter

The name service switch

Setting up NIS clients

Setting up NIS master and
slave servers

LDAP and OpenSolaris

The motivation for creating computer networks is to share informa-
tion. In Chapter 9, you learned how to use the basic Internet pro-
tocols to transfer information between systems using programs such

as ftp. However, copying files from system to system creates the problem
of efficiently distributing copies and keeping them consistent. File synchro-
nization programs exist, but it’s usually more convenient to store files cen-
trally and access them just like a file that’s stored on a local disk, a con-
cept known as a network file system. Sun long ago created the Network File
System (NFS) to provide exactly this service. Microsoft created the Com-
mon Internet File System (CIFS) to provide similar functionality for the
Windows operating system. OpenSolaris includes both client and server
software for both NFS and CIFS.

In most networks of any size it’s also desirable to share and synchronize
system configuration data, such as user accounts, among systems. Again,
it’s possible to use synchronization software to distribute files such as
/etc/passwd among a set of systems, but such a solution doesn’t scale
well. It’s also possible to use a network file system for this purpose, but
most uses of such configuration data involve searching for only a specific
entry. Clearly, in such cases, having each system open a large data set
and search it does not scale to an appreciable number of systems. Such
solutions also limit the possibility to improve performance through caching
of frequently obtained results, so the naming service was invented. Think
of naming services as special-purpose databases that use a key value to
retrieve a complete record.

The most well-known naming service is the Domain Name System (DNS)
used by systems connected to the Internet to translate domain names to
Internet Protocol (IP) addresses, but others have been created to solve this

331

Part III OpenSolaris File Systems, Networking, and Security

problem for other types of administrative data. Sun designed the Network Information Service
(NIS) to provide an easy-to-use naming service for small-to-medium size environments. For
environments that require an enterprise-level directory service, OpenSolaris offers the standard
Lightweight Directory Access Protocol (LDAP), which was developed to provide greater flexibility
and scalability than NIS can offer. Windows offers the Active Directory service for enterprise
deployments, which is based on LDAP, but with proprietary extensions; OpenSolaris can work
as a client of Active Directory services, but not as a server.

This chapter describes how to use the NFS, CIFS, and NIS services on OpenSolaris. A brief dis-
cussion of LDAP concludes the chapter.

DNS is discussed in Chapter 9.

Introduction to NFS
The Network File System (NFS) has been the standard network file system in the UNIX industry
since the 1980s, and its protocol standards are published and maintained by the Internet Engi-
neering Task Force (IETF), which is responsible for all Internet standards. Designed originally
for sharing files between UNIX systems, NFS has been ported to virtually every operating system
over the last 20 years and continues to be enhanced. Sun originated this technology and contin-
ues to be a leader in its development. The NFS protocol has several versions, known as versions
2, 3, and 4, with additional versions under development. Clients and servers typically negoti-
ate the best NFS version automatically, but be aware of the versions supported by your systems
because mismatched versions can be a source of interoperability problems. OpenSolaris supports
versions 2 through 4 of the NFS protocol.

As mentioned, the idea behind NFS is to make files that are stored on one system (the server)
available on another system (the client) directly through the client’s file system hierarchy. This
means that you can use the shell’s cd command to access directories on the server, and any
file utilities such as more or editors such as vi to access or edit the files. As with the local file
systems described in Chapters 7 and 8, this requires that the client mount the file system before
accessing it to locate files or read or write data. Additionally, before any clients can mount a
file system, the server must share the file system. This chapter describes the administrative tasks
required to share and access files via NFS.

Introduction to CIFS
The Common Internet File System (CIFS) — also called Server Message Block (SMB), the name
of the original protocol created by IBM on which CIFS is based — is the file-sharing mechanism
commonly used between Windows clients and servers. It also provides printer-sharing services,
though they are not currently included in the OpenSolaris CIFS implementation. While NFS can

332

Network File Systems and Directory Services 10

be used on both Windows clients and servers, it is not part of the standard Windows product.
Because many installations have many more Windows systems than UNIX systems, the burden
often falls on the UNIX systems to provide interoperability with the Windows file sharing.

Several commercial products have appeared over the years to address the need for file sharing
between UNIX systems and Windows, with varying degrees of success. A major difficulty for
these products has been a lack of access to details about the required Windows protocols.
Another significant problem is that a number of facets of the protocols are highly dependent on
Windows-specific behavior that can be difficult to emulate on a non-Windows operating system.

The most well-known solution for Windows file-sharing interoperability is the open source
project called Samba, which has been developed by reverse-engineering the Windows net-
working and file-sharing protocols. It has been available on Solaris and OpenSolaris for many
years. While quite successful, the Samba project is entirely a user-level implementation of the
file-sharing function. Coupled with its design for cross-platform portability, this means that
Samba is not as well integrated into the OpenSolaris file system interfaces and management
model as one might like. To integrate CIFS more completely with OpenSolaris and to provide
a higher level of interoperability with Windows services such as Active Directory, Sun has
developed an implementation of CIFS functionality for OpenSolaris through the OpenSolaris
CIFS Server, CIFS Client, and Winchester projects. If your background is with Linux or BSD
UNIX, you may already be familiar with Samba and feel comfortable with its management.
If so, then you may want to install the Samba package and use it in much the same way.
Samba is available in the OpenSolaris package repository; see Chapter 6 for information on
installing additional packages. This chapter focuses on the CIFS implementation developed by
the preceding projects and included in OpenSolaris.

This chapter uses the terms SMB and CIFS interchangeably. In all cases, the refer-
ence is to the native file-sharing protocols used by versions of the Microsoft Win-

dows operating system.

The native CIFS service provides CIFS file sharing, but does not include CIFS printer sharing. If
your requirements include CIFS printer sharing, you may prefer to use the Samba package. How-
ever, modern Windows clients can also be configured to use UNIX printer protocols by adding
Print Services for UNIX, so this limitation may not be important.

Managing File Sharing
Since Solaris 2.0, Solaris has used the share command to share a directory, and OpenSo-
laris continues to provide this command as a basic interface. However, sharing wasn’t easy
to manage, as any shares set up with the share command are not persistent, lasting only
until the system is rebooted. To set up a persistent share, users were required to edit the file
/etc/dfs/dfstab and insert appropriate share commands, and then use the shareall
command to activate sharing from the persistent configuration (or reboot, at which time the
shareall command would be automatically executed). When ZFS was introduced, it included

333

Part III OpenSolaris File Systems, Networking, and Security

properties to manage sharing of its data sets and the zfs share and zfs unshare commands
to start and stop the sharing during a particular session; this improves the management of
sharing but is a ZFS-specific solution.

ZFS is discussed in detail in Chapter 8.

To provide a more uniform interface to manage file sharing, OpenSolaris includes two new
commands, sharemgr and sharectl. Using sharemgr, you can set up share groups to
configure sharing of multiple file systems or directories with common properties. The sharectl
command is used to configure the properties of a file sharing service, such as NFS or CIFS.

Installing sharing packages
Depending on your distribution, the NFS or CIFS services may need to be installed. On the
OpenSolaris distribution, the NFS service is provided by the SUNWnfss package; you can verify
whether it is installed with the following command:

pkg list SUNWnfss
NAME (AUTHORITY) VERSION STATE UFIX
SUNWnfss 0.5.11-0.86 known ----

If the output of pkg list shows the package in the known state, then it must be installed using
the pkg install command to enable the NFS service:

pkg install SUNWnfss

The CIFS service is in a different package, SUNWsmbs, which must be installed to enable it.

Share groups and sharemgr
File sharing can be easily managed by using the share groups that are configured using
sharemgr. Using share groups, you can create a common configuration for a set of shares, and
then start or stop sharing that group as a unit. Usually, you set up a share group for any set of
files that you want to share with a common policy, such as read-only for all users, or read-write
for only a particular set of users.

You can list the share groups configured on a system with the sharemgr list command:

$ sharemgr list
default
zfs

As shown here, OpenSolaris is automatically configured with two basic share groups: default
and zfs. The default group is meant to hold legacy NFS shares that have been previously
configured in /etc/dfs/dfstab; the zfs group contains any ZFS datasets that have been
shared by setting the sharenfs or sharesmb properties using the zfs command.

334

Network File Systems and Directory Services 10

Sharing directories
To share a directory, no matter what local file system it is on, first create an additional share
group in which to place the shared directory (assuming you don’t already have an appropriate
group created), and then add the directory to the share group. Using the default group is
possible but not advised because you’d be mixing up legacy shares from /etc/dfs/dfstab
with your standard shares. For example:

sharemgr create test
sharemgr list -v
default enabled nfs
test enabled smb nfs
zfs enabled
sharemgr add-share -r share-example -s /shared/example test
sharemgr show -v test
test

share-example=/shared/example

This example share is now available to both CIFS and NFS clients, as that is the default for
share groups created using sharemgr when both services are installed on the system. Because
the shares in this group are available via CIFS, you must supply a resource name with the -r
option to add-share, as the resource name is used by CIFS clients to access the share. To
make the share group available to only one of the protocols, create it specifying only a single
protocol:

sharemgr create -P nfs nfsgroup
sharemgr list -v
default enabled nfs
test enabled smb nfs
zfs enabled
nfsgroup enabled nfs

Alternatively, if you already have the group created and want to remove a protocol from it, use
the -P option to sharemgr delete:

sharemgr delete -P nfs test
sharemgr list -v
default enabled nfs
test enabled smb
zfs enabled
nfsgroup enabled nfs

Specify no protocol argument to delete to remove the group completely:

sharemgr delete nfsgroup
sharemgr list -v
default enabled nfs
test enabled smb
zfs enabled

335

Part III OpenSolaris File Systems, Networking, and Security

You can remove a share from a share group using the remove-share subcommand, specifying
either the share path with -s or the resource name (if assigned) with -r. You can use either of
the following two commands to remove the share added in the example:

sharemgr remove-share -s /shared/example test
sharemgr remove-share -r share-example test

Shares can also be moved from one group to another; simply specify the new group, and the
share’s existing group will be automatically located and updated:

sharemgr move-share -s /shared/example nfsgroup
sharemgr show -vp nfsgroup
nfsgroup nfs=()

share-example=/shared/example

As shown in these examples, each share group is automatically enabled once it has been created.
You can control whether a particular share group is enabled using the enable and disable
subcommands:

sharemgr disable test
sharemgr list -v
default enabled nfs
test disabled smb
zfs enabled

The enable and disable subcommands control the persistent state of the share group — that
is, if you disable a share group, then it remains disabled across system reboots. You can also
control the current state of the group using the start and stop subcommands:

sharemgr start test
sharemgr stop test

The start and stop subcommands operate only on enabled share groups; attempt-
ing to start or stop a disabled share group has no effect but it doesn’t produce an

error message. Generally, you should use enable and disable to manage the state of share
groups persistently; start and stop are intended primarily for use by the SMF services that
activate and deactivate file sharing.

The properties that can be set through sharemgr are described in its man page. Most of the
properties relate to security topics; see the section ‘‘NFS security’’ later in this chapter for
examples of property manipulation with sharemgr.

The properties that apply to sharing the directories in the group with NFS are independent of
the properties that apply to sharing via CIFS, although currently no properties apply to CIFS
shares.

When creating share groups, you may notice that sharemgr automatically creates
an SMF service instance that corresponds to each share group. These SMF services

336

Network File Systems and Directory Services 10

are named using the FMRI pattern svc:/network/shares/group:groupname, where groupname is
replaced by the name of the group. These service instances should be viewed as an implementa-
tion detail that you can essentially ignore, as they are managed automatically, based on your use
of sharemgr. The only effect that you need to be aware of is that group names must be valid SMF
instance names. See Chapter 13 for more information on SMF.

Sharing ZFS datasets
You can also use sharemgr to manage the sharing of ZFS datasets, in much the same way as
the earlier examples demonstrated for directories. Recall that you can also choose to use the zfs
command to directly manipulate the sharenfs and sharesmb properties on the dataset. In
that case, sharemgr represents the share as a subgroup of the automatically created zfs share
group. In addition, each ZFS dataset inherits its properties from its parent, so multiple datasets
are often shared by setting properties only on a parent dataset. Any dataset that inherits its
sharenfs and sharesmb properties from its parent is a member of the parent’s share group:

zfs set sharesmb=off space
zfs set sharenfs=on space
zfs set sharesmb=on space/test
zfs get -r sharesmb space
NAME PROPERTY VALUE SOURCE
space sharesmb off local
space/nfs_test sharesmb off inherited from space
space/test sharesmb on local
zfs get -r sharenfs space
NAME PROPERTY VALUE SOURCE
space sharenfs on local
space/nfs_test sharenfs on inherited from space
space/test sharenfs on inherited from space
sharemgr show -vp zfs
zfs

zfs/space nfs=()
/space
/space/nfs_test
zfs/space/test nfs=() smb=()
space_test=/space/test

You can also manipulate the zfs share group properties with sharemgr, and sharemgr will
update the dataset properties to record the settings:

sharemgr set -P nfs -S sys -p ro="*" zfs/space
sharemgr show -vp zfs
zfs

zfs/space nfs=() nfs:sys=(ro="*")
/space
/space/nfs_test
zfs/space/test nfs=() smb=() nfs:sys=(ro="*")
space_test=/space/test

337

Part III OpenSolaris File Systems, Networking, and Security

zfs get -r sharenfs space
NAME PROPERTY VALUE SOURCE
space sharenfs sec=sys,ro local
space/nfs_test sharenfs sec=sys,ro inherited from space
space/test sharenfs sec=sys,ro inherited from space

Here, the sharenfs property’s value has been modified to contain the security settings speci-
fied to the sharemgr command in the format that would be used with the share command.
This demonstrates that you can use the zfs or sharemgr commands interchangeably to manage
sharing of ZFS datasets.

When creating ZFS datasets that will be shared with CIFS, strongly consider setting
the casesensitivity property to either insensitive or mixed, as most

CIFS clients expect the file system to be case insensitive, unlike UNIX systems, which use a
case-sensitive file system. See the ZFS documentation for more information on this property
setting.

Configuring sharing services with sharectl
Besides using sharemgr to manage share groups, it’s sometimes necessary to configure the shar-
ing service. OpenSolaris includes a new command for this purpose, sharectl(1M). Using it,
you can view the status of the file sharing services and manipulate properties that control how
the sharing services operate.

Use the following to view the status of the file sharing services:

sharectl status
smbfs disabled client
smb online
nfs online

In this case, the server has both CIFS and NFS services enabled and online, but it is not using
the CIFS client, which is disabled. Disabling the CIFS service would result in the following:

svcadm disable smb/server
sharectl status
smbfs disabled client
smb disabled
nfs online

Note that sharectl doesn’t allow you to directly enable or disable the service — that occurs
automatically as you create and delete share groups with sharemgr — but you can use the SMF
command svcadm to disable the service directly if necessary.

The configuration properties of the NFS service can be viewed with sharectl get:

sharectl get nfs
listen_backlog=32

338

Network File Systems and Directory Services 10

protocol=ALL
servers=16
lockd_listen_backlog=32
lockd_servers=20
lockd_retransmit_timeout=5
grace_period=90
server_versmin=2
server_versmax=4
client_versmin=2
client_versmax=4
server_delegation=on
nfsmapid_domain=
max_connections=-1

The properties listed are described in detail in the NFS man page, nfs(4) and are stored in the
file /etc/default/nfs. In general, the default property settings for the NFS service provide
good performance and interoperability with most other NFS implementations and won’t often
need to be changed. If it is necessary to tune any of them, you can use sharectl set to
modify the properties of the service. For example, some of your clients may have interoperability
bugs with NFS version 4 but no bugs with NFS version 3. While it’s usually preferable to obtain
a fix for the clients, it may be necessary to restrict the server to advertising version 3 as its
maximum version. Using sharectl, this is easily done:

sharectl set -p server_versmax=3 nfs
sharectl get -p server_versmax nfs
server_versmax=3
svcadm restart nfs/server

You must use svcadm to restart the NFS service for the change to take effect.

The CIFS service also has a number of properties, again viewable with sharectl get:

sharectl get smb
system_comment=
max_workers=64
netbios_scope=
lmauth_level=4
keep_alive=5400
wins_server_1=
wins_server_2=
wins_exclude=
signing_enabled=false
signing_required=false
restrict_anonymous=false
pdc=
ads_site=
ddns_enable=false
autohome_map=/etc

339

Part III OpenSolaris File Systems, Networking, and Security

The properties are stored in the SMF repository as properties of the smb/server service. See
the smb(4) man page for a detailed explanation of the SMB properties; most of them are used
only when integrating your CIFS server with Windows servers, not in the workgroup mode
described in the following section. As with the NFS properties, you can use sharectl set
to modify the SMB server properties, and you need to restart the smb/server service for the
changes to take effect.

Configuring the CIFS service in workgroup mode
The OpenSolaris CIFS service can run in one of two modes: workgroup or domain. This book
does not address configuring the CIFS service in domain mode because that mode requires
Windows Active Directory domains and services to be configured, a topic beyond the scope of
this book. The procedures to configure the CIFS service in domain mode are documented in the
OpenSolaris CIFS Administration Guide at http://docs.sun.com/app/docs/doc/820-2429.

By default, the CIFS service runs in workgroup mode as a member of a default workgroup
called WORKGROUP. This is also the name of the default workgroup used by Windows clients, so
you can likely just use this default workgroup to interoperate with standard Windows clients
in many smaller networks. If you do need to change the workgroup name, use the smbadm
command. For example, if your workgroup were named engineering, then the command to
join that workgroup would be as follows:

smbadm join -w engineering

The next step in configuring the CIFS service is to modify the OpenSolaris Pluggable Authenti-
cation Module (PAM) to enable SMB password encryption for user accounts. This is necessary
because the encryption for CIFS passwords uses a different algorithm than the default UNIX
password encryption used for standard OpenSolaris user accounts. Add the following to the end
of /etc/pam.conf:

other password required pam_smb_passwd.so.1 nowarn

More information on PAM can be found in Chapter 11.

Once PAM is configured, you must set (or reset) the password of each user who will access the
server’s CIFS shares so that the CIFS-encrypted version of the password can be stored. To do
this, either run the passwd command as root, specifying the username, or have each user log in
to the CIFS server and run the passwd command. The following sets the password for user sam:

passwd sam
New Password:
Re-enter new Password:
passwd: password successfully changed for sam

Once you’ve completed these steps, SMB shares from your server can be accessed by users on
CIFS clients using the passwords entered, which will be the same passwords used to log in

340

Network File Systems and Directory Services 10

to the user account on the CIFS server. If you have the CIFS client software installed as well
(which is highly recommended if you are running a CIFS server), you can verify that passwords
and shares are correctly configured and working using the smbutil command:

$ smbutil view //sam@localhost
Password:
Share Type Comment

space_test disk
example disk

2 shares listed from 2 available

The encrypted SMB passwords for users are stored separately from the UNIX pass-
words, in the file /var/smb/smbpasswd. Do not modify this file directly — instead,

use the passwd command. However, several administrative tools from the open source world may
directly modify /etc/passwd, so consult their documentation to ensure correct operation with
the OpenSolaris CIFS server when considering their use.

Automatic sharing of user home directories with CIFS
The OpenSolaris CIFS server includes a special feature to ease the sharing of any home direc-
tories located on the server. This mechanism is not enabled by default but is easily enabled
by creating the file /etc/smbautohome and adding entries to it. The smbautohome(4) man
page discusses the complete set of options, which include how to use this feature with Active
Directory domains. For a simple workgroup server such as the example in the previous section,
the best solution is probably to configure the smbautohome function to automatically share the
home directories listed in the passwd table in your configured name services. This enables you
to manage your OpenSolaris system in a UNIX-centric fashion, while the CIFS service does the
hard work. The following simple command appends the required entry to /etc/smbautohome
to enable this type of home directory sharing:

echo "+nsswitch" >>/etc/smbautohome

Advanced CIFS server topics
Basic statistical information on the CIFS server is maintained by the drivers and can be viewed
using the smbstat(1M) command. For example, use the following to view basic information on
the number of clients and files being accessed:

smbstat -i
SMB Info:
state open_files connections sessions
2 0 1 1

341

Part III OpenSolaris File Systems, Networking, and Security

The OpenSolaris CIFS server has some additional features that are useful in more complex Win-
dows integration environments but they are beyond the scope of this book.

One important feature is identity mapping, which is used to convert between Windows and UNIX
user identities in evaluating a user’s access privileges to files and directories shared by the CIFS
server. The default mode of operation for the CIFS service is to use an ephemeral mapping of
Windows users to UNIX users; in this case, the Windows user and group identities are automat-
ically converted to UNIX uids and gids, which are not retained across restarts of the CIFS server.
You can, however, configure rules for mapping identities between the environments using the
idmap(1M) command, which allows for better security coordination between UNIX and CIFS
identities. See the man page and the OpenSolaris documentation for more information.

The CIFS server also provides the capability to automatically perform virus scans on files as the
CIFS clients access them. This feature is not enabled by default and requires a virus-scanning
engine, usually on a Windows server, as the products available to perform this function seldom
run on non-Windows servers. See the vscanadm(1M) and vscand(1M) man pages for more
information.

Accessing Files with NFS
Once you have a server that is sharing files over NFS, you can access those files from an
NFS client. As mentioned earlier, before you can access files, you first must mount an NFS
share within your system’s local file system hierarchy. There are multiple ways to do this on
OpenSolaris. Before you can mount a share, you need to know its name. If you don’t know what
shares are available from a server, you can use the showmount command to discover them. The
following lists NFS shares from the server nfssrv:

$ showmount -e nfssrv
export list for nfssrv:
/shared/def (everyone)
/space (everyone)
/space/nfs_test (everyone)
/space/test (everyone)

The (everyone) portion of the listing indicates that the share is mountable by any client.
If it’s restricted to only certain clients, that is reported too. For example, if these shares were
restricted to only the clients on the 192.168.1.0 IP network, then the output would look like the
following:

$ showmount -e nfssrv
export list for nfssrv:
/shared/def @192.168.1
/space @192.168.1
/space/nfs_test @192.168.1
/space/test @192.168.1

342

Network File Systems and Directory Services 10

If the server does not have NFS services running, then you’ll see an error similar to the
following:

$ showmount -e nfssrv
showmount: nfssrv: RPC: Program not registered

Manual NFS mounts
On an OpenSolaris client, the simplest way to mount an NFS share is to use the mount
command, specifying the share to be mounted and the local directory on which it should be
mounted. If the server nfssrv is sharing the directory /space/test and you want to access
the files within it at the local directory /mnt, then the following mount command will do the
trick:

mount -F nfs nfssrv:/space/test /mnt

This mount is a temporary mount, and is lost once the client is rebooted, but it will remain
mounted until that time or until it is manually unmounted. To make the mount persistent, so
that it will be remounted after a system reboot, add an entry to /etc/vfstab:

nfssrv:/space/test - /mnt nfs - yes -

As noted in Chapter 7, the format of /etc/vfstab is as follows:

Device to
Mount

Device to
fsck

Mount
Point

File System
Type

fsck
Pass

Mount at
Boot

Mount
Options

For NFS mounts, fsck is not used because the server is responsible for file system integrity, so
those two fields are specified as placeholders using the value dash (-). The device to mount is
specified using the server:path format (the server portion can be specified using its hostname
or IP address). In this example, no mount options are specified; instead, it uses the client’s
default values, so a placeholder value is used for the options as well. Once an entry is created in
/etc/vfstab, you can mount it using only the mount point name:

mount /mnt

You must enable the NFS client service to cause the NFS mount to occur at boot:

svcadm enable nfs/client

Mounting NFS file systems specified in the local /etc/vfstab is the only function of the
nfs/client service, so it can be safely disabled if you’re not using them. This service is
delivered as disabled by default on OpenSolaris because no persistent NFS mounts are created
during system installation.

343

Part III OpenSolaris File Systems, Networking, and Security

If you no longer want an NFS share to be mounted, use the umount command to terminate the
mount:

umount /mnt

Note that an unmount will fail if any files on the file system are open, or if the current work-
ing directory of a process is within the file system. You can force the unmount by adding the -f
option to the umount command:

umount /mnt
nfs umount: /mnt: is busy
umount -f /mnt

Forcibly unmounting a file system can cause service failures and data corruption, so
do so only in emergency situations.

If the mount was persistent by virtue of being recorded in /etc/vfstab, then you need to
remove the entry from /etc/vfstab to prevent the mount from returning after the system is
rebooted.

If you have multiple persistent NFS mounts in /etc/vfstab, you can mount or unmount all of
them at once using mountall and umountall:

mountall -F nfs
umountall -F nfs

Alternately, you can manipulate the nfs/client SMF service to mount and unmount all NFS
mounts — enabling the service mounts all NFS mounts; disabling it unmounts them:

svcadm enable nfs/client
svcadm disable nfs/client

See Chapter 13 for details on SMF and the svcadm command.

Mounting NFS shares with the automounter
As you’ve seen, it’s possible to mount NFS shares using entries in your system’s local
/etc/vfstab, but this method doesn’t scale very well if you need to mount an NFS share
on more than a few clients, which in all but the smallest networks is likely to be the case. In
addition, you usually can’t just synchronize copies of /etc/vfstab across multiple systems
because unless your systems are identical models of the same hardware, it’s highly likely that
they don’t use the same device paths for other file systems, such as the root (/) file system,
that can be mounted using /etc/vfstab. Also, if you have a large number of clients and a
server (or many servers) with a large number of shares, having all of those clients mounting
all of the shares all of the time can consume extra resources on each system to maintain active

344

Network File Systems and Directory Services 10

mounts for each client. It’s unlikely that all of the clients would need to access all of the shares
simultaneously.

To improve NFS’s capability to scale with the number of clients, servers, and shares, a separate
facility called the automounter was developed. The premise of the automounter is to mount
a share from a server only when it’s accessed by the client; that is, the share is automatically
mounted on demand. Once the client is no longer referencing the share, it can be automatically
unmounted. By separating the configuration of mounts controlled by the automounter from
those configured in /etc/vfstab, it is possible to share the configuration among multiple
clients. Usually the shared configuration is stored using the NIS or LDAP naming services, which
are discussed later in this chapter. In this section, you’ll learn how to configure the automounter
using local files on the client; the same principles can be extended to configure the automounter
in the naming service.

The primary configuration file for the automounter is the file /etc/auto_master. Its default
contents in OpenSolaris are as follows:

+auto_master
/net -hosts -nosuid,nobrowse
/home auto_home -nobrowse

The +auto_master entry instructs the automounter to insert the entries from an auto_master
map from the system’s network name service as if it occurred at that point in the file. If you
aren’t using any network naming service, then no entries will be inserted.

The remainder of the auto_master file is formatted as three fields: a mount point, a map name,
and an optional list of mount options. The mount point specifies a directory name within the
client’s file system under which all of the entries in the specified map name will be mounted.
This mount point is set up as an autofs mount point within the kernel. The autofs file
system works by trapping access to any pathnames assigned to it within the kernel; if that path-
name isn’t already available on the file system, then the pathname is forwarded by the kernel to
the automount daemon, automountd, to look up the path in the automount maps, and, if it’s
found, to attempt to mount it. The automount map name is located in any name services that
the system is configured to use. In the local file system, the map is a file under /etc with the
specified name, so the preceding entry for /home will be looked up in /etc/auto_home. With
the NIS name service, any underscores in the map name are replaced with a period, so the map
name would be auto.home.

Any mount options specified in an auto_master entry are applied by default to all mount
points included in the referenced map; but if an entry within the referenced map contains
specific mount options, those options override the defaults specified in auto_master. For
example, the entry for /net specifies -nosuid, which means that the setuid bit on any files
accessed through this mount point will be ignored.

If you add entries to auto_master on a running system, you need to restart the autofs SMF
service for the new automount mount points to take effect:

svcadm restart autofs

345

Part III OpenSolaris File Systems, Networking, and Security

The /net entry is a special entry; the map name -hosts means that the client can
access any NFS share on any NFS server that can be reached using a hostname or IP
address. For example, if the server nfssrv with IP address 192.168.2.4 is sharing
/space/archives, then an NFS client with this /net entry can access that share using the
name /net/nfssrv/space/archives or /net/192.168.2.4/space/archives.

The /home entry is an example of a more typical auto_master entry, as it specifies a mount
point and a map name. By convention, each user’s home directory in OpenSolaris is accessed
using the pathname /home/username; the home directory for user sam would be accessed at
/home/sam. This is configured by adding an entry to /etc/auto_home, referencing the server
on which sam’s home directory is stored. If the home directory is on nfssrv, at pathname
/space/sam, then the entry in /etc/auto_home would be as follows:

sam nfssrv:/space/sam

Once this entry exists, simply cd to /home/sam, or access the files in /home/sam, as if they
were on a local disk.

Like the auto_master map, you can specify mount options on each entry in an automount
map. If you wanted to have sam’s home directory mounted using only NFS version 3 or earlier,
you could add the option as follows:

sam -vers=3 nfssrv:/space/sam

A number of additional capabilities are available in automount maps, such as specify-
ing multiple locations, as well as variable substitutions based on the client’s hardware

and OS version. There is even an executable form, whereby a script may be run to generate an
automount entry dynamically when accessed. See the automount(1M) man page for details.

NFS security
Most often, you’ll want to use share groups to set up common security settings for a group of
shares. For example, by default, NFS shares are shared read-write, and are shared with a weak
authentication method, AUTH_SYS, which essentially requires the server to trust the user id and
group id credentials presented by the client. This obviously leaves the data fairly unprotected,
which may be acceptable in an otherwise secure network, but few networks are. NFS can use
other, stronger security modes, including Kerberos and Diffie-Hellman. These stronger security
modes require that the server authenticate each user itself, rather than trust the client. Kerberos
authentication can also encrypt the data during transmission, ensuring confidentiality, whereas if
you use Diffie-Hellman, you need to separately configure IP security (IPsec) to encrypt data dur-
ing transmission.

The available NFS security modes are described in the nfssec(5) man page.
Kerberized NFS, IPsec, and general security topics in OpenSolaris are discussed in

Chapter 11.

346

Network File Systems and Directory Services 10

Controlling read and write access
Using a strong authentication mode for NFS is advisable but it’s not always the only option.
Some data may be best protected by sharing it read-only, with write access reserved to only the
server system and perhaps a few well-secured, trusted clients. You can use sharemgr to modify
the properties of the group to share the group read-only for all clients like so:

sharemgr set -P nfs -S sys -p ro="*" test
sharemgr show -pv test
test smb=() nfs:sys=(ro="*")

share-example=/shared/example
space-test=/space/test
st2=/space/test2
st3=/space/test3

The following grants read-write access to the client knox.fort.mil:

sharemgr set -P nfs -S sys -p rw=knox.fort.mil test
sharemgr show -vp test
test smb=() nfs:sys=(ro="*" rw="knox.fort.mil")

share-example=/shared/example
space-test=/space/test
st2=/space/test2
st3=/space/test3

You might also allow read-write access to any clients that are configured to use Diffie-Hellman
authentication, which provides strong authentication and is quite trustworthy:

sharemgr set -P nfs -S dh -p rw="*" test
sharemgr show -vp test
test smb=() nfs:sys=(ro="*" rw="knox.fort.mil") nfs:dh=(rw="*")

share-example=/shared/example
space-test=/space/test
st2=/space/test2
st3=/space/test3

As shown in the output of sharemgr show, the different NFS security modes are configured
independently. The NFS protocol negotiates a security mode between the client and server based
on the capabilities of each and the security modes specified by the share on the server and the
mount on the client.

Configuring Diffie-Hellman authentication
To use Diffie-Hellman authentication, both client and server must have access to each other’s
public keys, which leads to the problem of distributing the keys. While it’s possible to replicate
the file used to store the keys (/etc/publickey) on each system, it really isn’t a viable solution
when more than a few machines are involved. It’s best to use a name service such as NIS or
LDAP to store the keys, which allows all systems configured to use the name service to obtain
the keys as needed with little administrative overhead. Later in this chapter you’ll learn the

347

Part III OpenSolaris File Systems, Networking, and Security

basics for setting up the name service; the example here assumes that NIS has already been
configured.

First, you need to create Diffie-Hellman keys for the NFS server’s root account, as well as for
any users who need authenticated access. To configure the root key for nfssrv, run newkey on
the NIS master server:

nismaster# newkey -h nfssrv -s nis
Adding new key for unix.nfssrv@test.domain.
Enter nfssrv’s root login password:
Please confirm nfssrv’s root login password:

Next, add a key for each user, again on the NIS master. For user sam:

nismaster# newkey -u sam -s nis

WARNING:
The publickey entry in /etc/nsswitch.conf is "publickey:nis files".
It should be "publickey: nis"; add ‘files’ if you want the
‘nobody’ key.

Adding new key for unix.102@test.domain.
Enter sam’s login password:
Please wait for the database to get updated . . .

This warning can be safely ignored because nis is included in the list of publickey data
sources, and it’s advisable to include files as well so that the nobody key is available. Now
that you’ve created the keys, rebuild the NIS maps:

nismaster# cd /var/yp; make

At this point, the keys are published to the entire NIS domain. Now you must log in as root
to the NFS server and load the cached, decrypted copy of its private key. This key is stored in
the file /etc/.rootkey file, which is readable only by root. This step is necessary so that the
system can re-enable the Diffie-Hellman authentication mechanism after reboot without requiring
input from an administrator to decrypt the system key. Before you can do that, though, you
must enable the keyserv daemon, which holds decrypted copies of the users’ private keys on
the local system. This design is used to protect the secret keys from discovery by nonprivileged
users.

nfssrv# svcadm enable keyserv
nfssrv# keylogin -r
Password:
Wrote secret key into /etc/.rootkey

Finally, user sam must ensure that his private key is decrypted on the client he’s logged into.
This can be done either by running keylogin within a session that’s already logged in or by

348

Network File Systems and Directory Services 10

logging out and then back in, as the keylogin process is performed automatically during login.
At this point, sam will be strongly authenticated for any NFS operations.

You must also ensure that the keyserv service is enabled on any client systems that
are expected to access shared directories using Diffie-Hellman authentication.

NFS monitoring and troubleshooting
If your system is configured as an NFS server, then you should see the following SMF services
online:

$ svcs ‘*nfs*’
STATE STIME FMRI
disabled Apr_25 svc:/network/nfs/client:default
online Apr_25 svc:/network/nfs/rquota:default
online Apr_25 svc:/network/nfs/status:default
online Apr_25 svc:/network/nfs/mapid:default
online Apr_25 svc:/network/nfs/nlockmgr:default
online Apr_25 svc:/network/nfs/server:default
online Apr_25 svc:/network/nfs/cbd:default

Normally you don’t need to directly manipulate any of these services, as sharemgr enables and
disables them as needed. As noted earlier, the nfs/client service needs to be enabled only if
you have NFS mounts configured in your /etc/vfstab. The nfs/cbd service is not related to
the NFS server but to the NFS client; it is automatically enabled when an NFSv4 mount is done
either by the mount command or by the automounter.

If user accounts are unable to read or write files, then investigate the NFS identity
mapping done by the nfsmapid service. This should work automatically when sys-

tems are in the same DNS domain, but can be overridden to deal with unusual situations. Consult
the nfs(4) man page for details on the identity mapping implementation.

The nfsstat(1M) command can be used to examine various counters that are maintained by
the NFS implementation regarding the operations it performs, both client and server. See the
man page for more information.

Accessing Files with CIFS
If your network includes servers that are sharing files using CIFS, which may be either Windows
servers, OpenSolaris servers configured to share files with the CIFS server, or other UNIX or
Linux servers that are sharing files with Samba, then you can use the OpenSolaris CIFS client to
access those files.

The OpenSolaris CIFS client is implemented as a standard OpenSolaris file system called the
smbfs. This means that, as with NFS or any local file system, you use the standard OpenSolaris

349

Part III OpenSolaris File Systems, Networking, and Security

mount command to mount a share from the CIFS server onto a local directory on the client and
then access it as a seamless part of the file system. For example, to mount the share example
from server smbsrv on the directory /mnt, the command is as follows:

mount -F smbfs //sam@smbsrv/example /mnt
Password:

Note two differences between smbfs mounts and most other mounts, though. The first is the
somewhat unusual-looking name used to specify the resource to mount (discussed in the sidebar
later in this section). A second difference is that you will likely be prompted for the password
of the user identity used for the mount (user sam in the example). Password prompts can be
avoided; see the sidebar, ‘‘CIFS Resource Names and Passwords,’’ for ways to do this.

This mount then shows up as a standard file system in listings from utilities such as
mount or df:

$ df -h
Filesystem Size Used Avail Use% Mounted on
rpool/ROOT/opensolaris

3.5G 2.3G 1.2G 66% /
swap 519M 808K 518M 1% /etc/svc/volatile
/usr/lib/libc/libc_hwcap3.so.1

3.5G 2.3G 1.2G 66% /lib/libc.so.1
swap 518M 8.0K 518M 1% /tmp
swap 518M 68K 518M 1% /var/run
rpool/ROOT/opensolaris/opt

1.2G 5.1M 1.2G 1% /opt
rpool/export 1.2G 21K 1.2G 1% /export
rpool/export/home 1.2G 507K 1.2G 1% /export/home
rpool 1.2G 57K 1.2G 1% /rpool
rpool/ROOT 1.2G 18K 1.2G 1% /rpool/ROOT
//sam@smbsrv/example 6.8G 4.9G 2.0G 72% /mnt

Unmounting the SMB file system is done using the umount command to specify the mount
point or resource name that should be unmounted, just as with any other file system. The
following unmounts the preceding mount:

umount /mnt

Just as with NFS or other file systems, a mount command creates a temporary mount that is lost
when the system reboots. Likewise, umount will fail if the file system is in use by any process;
you can use the -f option to forcibly unmount the file system. You can add smbfs mounts to
/etc/vfstab, but you need to ensure that the system’s root user has access to appropriate
passwords by adding them to the root user’s .nsmbrc file (normally this is /root/.nsmbrc
on OpenSolaris distributions), which is discussed in the sidebar, ‘‘CIFS Resource Names and
Passwords.’’

If your environment makes extensive use of CIFS, you might want to allow ordinary
users to mount CIFS shares for themselves. To enable this functionality for all users,

350

Network File Systems and Directory Services 10

add the SYS_MOUNT privilege to the Basic Solaris User rights profile by appending the following
two lines to /etc/security/exec_attr:

Basic Solaris \
User:solaris:cmd:::/usr/lib/fs/smbfs/mount:privs=sys_mount
Basic Solaris \ User:solaris:cmd:::/usr/lib/fs/smbfs/umount:privs
=sys_mount

See Chapter 11 for details on rights profiles.

You can also mount CIFS shares with the automounter, in a manner similar to that used for
mounting NFS shares. However, CIFS share mounts are restricted to being used only in a direct
automounter map, which is a type that was not discussed earlier, though it can be used for NFS
mounts as well. The examples earlier showed the use of indirect maps. The difference is that
each entry in a direct map places a single mount on a full pathname in the NFS or CIFS client.
By contrast, each entry in an indirect map provides a mount on a subdirectory of a top-level
directory that is configured for the map as a whole. To add a direct map to the automounter
configuration, add an entry similar to the following to /etc/auto_master:

/- auto_direct -intr

The special key /- in /etc/auto_master specifies that the entry is for a direct map. After
adding this entry, create the /etc/auto_direct file and add entries for each directory that will
be mounted using the automounter, as shown in this example:

/example -noprompt,fstype-smbfs //cifssrv/example

This adds a direct map entry for a CIFS share that allows anonymous access, which would be
configured on the server. This is the most common scenario for which you might want to use
the automounter with CIFS shares. If the share doesn’t allow anonymous access, you must not
use the noprompt option in the automounter map; and you must create a user and password
for use in accessing the share in root’s .nsmbrc file. See the following sidebar.

CIFS Resource Names and Passwords

The resource names used to access CIFS shares have the following general format:

//[workgroup;][user[:password]@]server/share

Items in brackets ([]) are optional. Thus, the most basic specification of a CIFS resource is as follows:

//server/share

continued

351

Part III OpenSolaris File Systems, Networking, and Security

continued
When this simple format is used, the username will be the name of the OpenSolaris user running
the mount command. The workgroup is either the standard default name of workgroup or the
name of the default domain specified in the user’s .nsmbrc file; you need to specify the workgroup
only if the server is a member of a workgroup other than the one that would be obtained by the
default or by using the .nsmbrc file settings. If the server is using Active Directory authentication,
then the workgroup must be the name of the Active Directory domain in which the user account
is defined. Otherwise, it must be the name of the workgroup configured on the server. If you do
specify the workgroup name, be careful to use shell quoting to prevent the shell from interpreting
the semicolon as a command separator.

Password prompts in mounting smbfs file systems can be avoided in one of three ways: including
the password on the mount command, using the smbutil login command, or placing an obscured
version of the password in the user’s .nsmbrc file. We do not recommend placing passwords on
the command line, as it can be viewed using utilities such as ps or pargs, which compromises
security. The most secure option is to use the smbutil login command, which loads the password
into the smbfs driver, where it is used when needed. This is approximately as secure as the stronger
authentication options used with NFS, but it can be inconvenient because a system reboot requires
another smbutil login to reload the password into the driver. Therefore, saving a password
into the .nsmbrc file in your home directory offers a fairly good balance between security and
convenience. To do this, use the smbutil crypt command to generate an obscured version of the
password. Then add an entry containing it to the default section of your .nsmbrc file, and ensure
that the .nsmbrc file is readable only by you. Here’s an example:

$ smbutil crypt
Password:
$$17650017577695e

Next, edit $HOME/.nsmbrc and add the password to the default section:

[default]
password=$$17650017577695e

Finally, ensure that the .nsmbrc file is readable only by you:

$ chmod 600 $HOME/.nsmbrc

Once you’ve done this, you should no longer be prompted for passwords when mounting SMB
shares, and your access to those shares is authenticated, although not as strongly as with the more
secure options in NFS. You can also create different password entries for specific servers or shares,
and specify a different username if your OpenSolaris login name is not the same as your login name
on the CIFS server. For example, suppose the CIFS server is named cifssrv, the user is sam, and
the preceding password hash is the correct one for sam. You can create the following entries in
.nsmbrc:

[cifssrv]
user=sam
password=$$17650017577695e

352

Network File Systems and Directory Services 10

OpenSolaris Naming Services
OpenSolaris offers several naming services, which can be used to assist an administrator in man-
aging a network of computer systems. NIS and LDAP are the primary naming services in current
use, but the local configuration files on the system are also modeled as a naming service in the
OpenSolaris system architecture. In this section, you’ll learn how to use these naming services.
Before diving into the details of configuring a naming service, it’s helpful to understand some of
the OpenSolaris infrastructure that’s used to knit the naming services together with the rest of
the system.

Sun developed, and OpenSolaris continues to include, the NIS+ naming service,
which was intended to be a successor to NIS. Unlike NIS and, more recently, LDAP,

it failed to catch on with other operating systems and remained essentially proprietary to Solaris.
Sun considers NIS+ deprecated and discourages its use in new installations. As a result, this
book does not cover NIS+, although it is currently still a part of OpenSolaris, and you will see
references to it in Sun’s official documentation.

The name service switch
As it is usually necessary to use multiple naming services to operate a system that’s connected
to a network, Sun developed a technology known as the name service switch to enable admin-
istrators to control how the various naming services are used in looking up information. The
name service switch consists of two components: a configuration file, /etc/nsswitch.conf,
and a set of library calls, commonly called the getXbyY calls (e.g., gethostbyname(3C)),
which use the configuration specified in /etc/nsswitch.conf to retrieve information from
the naming services. After you install the OpenSolaris distribution, the default contents of
/etc/nsswitch.conf appear as follows (the header comments have been omitted for brevity):

passwd: files
group: files
hosts: files
ipnodes: files
networks: files
protocols: files
rpc: files
ethers: files
netmasks: files
bootparams: files
publickey: files
At present there isn’t a ‘files’ backend for netgroup; the system will
figure it out pretty quickly, and won’t use netgroups at all.
netgroup: files
automount: files
aliases: files
services: files
printers: user files

353

Part III OpenSolaris File Systems, Networking, and Security

auth_attr: files
prof_attr: files
project: files

tnrhtp: files
tnrhdb: files

This file specifies, for each type of information, such as password or printer data, which name
services should be used to look up the information, and the order in which they should be
used. You may need to edit this file to customize how your system behaves. We recommend
consulting the nsswitch.conf(4) man page for detailed information on constructing nss-
witch.conf entries. In addition, OpenSolaris ships example files for each name service as
/etc/nsswitch.nameservice, such as /etc/nsswitch.nis for NIS, that you can use as a
starting point.

OpenSolaris does not support using both NIS and LDAP naming services simultane-
ously on a client.

Name service caching with nscd
One issue early in Solaris’ development was that a large number of programs would frequently
look up data in name services, such as translating uids to usernames when listing a directory
with the ls -l command, and would suffer performance problems from repeatedly translating
the same information. They would also excessively load the name servers with what amounted
to duplicate requests. Clever coding in the programs can overcome this, but that places a bur-
den on the developer of any program that needs to look up data in a name service to develop
appropriate caching strategies — and the quality of such algorithms varies widely. To provide
a consistent, high-quality solution to this problem for the entire operating system, OpenSolaris
includes the name service cache service, which provides a fast, centralized clearinghouse for name
service lookups. You can see it running on your OpenSolaris system with the svcs command:

$ svcs -p name-service-cache
STATE STIME FMRI
online 16:02:42 svc:/system/name-service-cache:default

16:02:42 254 nscd

Several of the name service lookup functions have been implemented to channel their requests
through the name service cache. You probably won’t need to manage the name service cache,
as it generally goes about its business transparently, but you can consult the nscd(1M) and
nscd.conf(4) man pages for more detailed information.

Some older Solaris references may recommend disabling the name service cache,
but recent work on it has made that advice obsolete; we do not recommend

disabling the name service cache. Changes to the name service switch configuration file
/etc/nsswitch.conf are seen automatically by nscd and take effect immediately. If you
suspect that it isn’t using the correct configuration, restart the service as follows:

svcadm restart name-service-cache

354

Network File Systems and Directory Services 10

Troubleshooting name service lookups
Occasionally, you might run into problems with your system not obtaining correct information
from its name services. The first step in troubleshooting name service problems on a client
is to use the getent(1M) command to simulate lookups from the command line. getent
calls the various getXbyY lookup functions that work through the name service switch and the
name service cache, so it effectively simulates the results obtained by other programs using
those functions, enabling you to start diagnosing the source of any problems. For example,
you can test hostname-to-IP address translation for a system named indy using the following
command:

$ getent hosts indy
192.168.0.1 indy

Each name service also offers specific commands that can be used to help debug problems; those
commands are discussed in the sections on each name service that follow.

NIS
The Network Information Service (NIS) is a relatively simple naming service developed in the
1980s by Sun to provide a more convenient means of administering workgroups of UNIX work-
stations. It was ported to all of the major UNIX variants over the years, as well as to Linux, so it
is widespread in organizations with significant UNIX operating system populations.

Unlike more recent naming services such as LDAP, NIS does not present a hierarchical
namespace; instead, each NIS domain is an administrative entity without any capability to
work in combination with other NIS domains. Thus, larger organizations with multiple sites
and multiple administrative boundaries will likely not run NIS servers but instead use LDAP
as their naming service. Each domain has a single master server (generally called master) that
stores the domain’s data and responds to client queries. Additionally, a domain may have slave
servers (usually called slaves) that hold duplicate copies of the domain data and respond to
client queries. All updates to the domain’s data must be made on the master and then pushed to
the slaves.

In NIS, the data is organized into maps, which are really just simple databases that have only
a single search key. They are implemented using a very simple underlying database technology
known as dbm or ndbm. Details about ndbm can be found in its man page, ndbm(3C); its limited
capabilities and implementation details also constrain the scalability of NIS as a name service. In
addition to the ndbm limitations, the protocol used to replicate data between master and slave
servers requires sending the complete contents of the new maps from the master to each slave,
rather than just the differences from the prior version of the map. This means that updates can
take quite some time to propagate between the master and slave servers, so you may not be able
to have more than a few slaves.

355

Part III OpenSolaris File Systems, Networking, and Security

Generally speaking, NIS is best suited to networks on a single site, used with maps that contain
at most a few thousand entries per map. However, NIS is very easy to set up and manage, so
if its limitations are acceptable for your uses, it’s far easier to start using than a more powerful
name service such as LDAP.

The NIS maps are generated from standard OpenSolaris text configuration files using the
make(1S) command. This command must be run to load updates made to the text configu-
ration files into the dbm tables that underlie the NIS maps and notify the NIS server daemon.
OpenSolaris includes a Makefile that is used to drive the conversion of the files into NIS
maps. (The NIS maps and data files are listed later in this chapter, in Table 10-1.)

Confusingly, the commands and daemons related to managing the NIS service begin
with the yp prefix, not the nis prefix, which is instead used for managing the

NIS+ service. This is because the original name of the NIS service was the Yellow Pages service;
the name was changed because of trademark conflicts, but references to YP still exist in some
command output and documentation.

Configuring a NIS client
Some information sources recommend using the sys-unconfig(1M) program to reconfigure
your system to a NIS client. Be aware that sys-unconfig will deconfigure a number of aspects
of your system, such as the root password and ssh server key, and then halt your system. You
then need to boot the system and answer a series of questions to reconfigure the system. We do
not recommend this approach to system reconfiguration because it will likely disrupt your sys-
tem in ways that will be at least as time-consuming to fix as the more manual procedures out-
lined here, which attempt to avoid modifying the system unnecessarily.

If you already have a NIS domain that you’d like to configure your client to use, you can do so
quite easily. One question you need to consider is whether your client should be configured to
locate a NIS server automatically using network broadcasts or be configured to use a specific
set of NIS servers. The broadcast option is less secure but easier to maintain, but it also
requires that the NIS servers be directly reachable on any network link to which your system is
connected (in other words, there cannot be an IP router between the client and the server). We
recommend using the broadcast option if your network’s topology supports it, though both are
described here.

We do not currently recommend configuring a mobile client such as a laptop as
a NIS client if that client won’t always be connected to a network with the NIS

service. The OpenSolaris projects Network Auto-Magic and Duckwater are designed to make the
system work better with transient network and name service configurations. See the ‘‘Resources’’
section at the end of this chapter for references to Duckwater. Network Auto-Magic is discussed
further in Chapter 9. Using NIS on mobile clients may be recommended once those projects are
delivered.

356

Network File Systems and Directory Services 10

Configuring hostnames for NIS servers
The first step in configuring a NIS client is to ensure that the client will be able to translate
the hostname of the NIS server(s) to IP addresses, and vice versa. If your system is already
configured to use DNS to resolve IP addresses, then you’ve met this requirement. This approach
is best, as most clients need to use DNS to access the Internet. You can verify this by checking
the hosts entry in /etc/nsswitch.conf:

$ grep ∧hosts /etc/nsswitch.conf
hosts: files dns

As this example contains the string dns, you are already using DNS for IP address resolution;
but if DNS is not included in the output, then you need to either configure the system as a DNS
client or add entries for the NIS servers to your local /etc/inet/hosts file.

Configuring a DNS client is discussed in Chapter 9.

If you need to add an entry to /etc/inet/hosts, ask your NIS administrator or some other
user to provide the name and address of the NIS server(s). If you have one server with the name
nismaster and its address is 192.168.0.1, then you can add this entry to /etc/inet/hosts
as follows:

echo "192.168.0.1 nismaster" >>/etc/inet/hosts

Repeat this command with the name and address of any additional NIS servers you may use.

Configuring the NIS domain name
The next step is to configure the system’s NIS domain name. You must configure it both in the
kernel and in the system’s /etc/defaultdomain configuration file so that it can be loaded
again on the next reboot. As the domainname(1M) command can be used to both set the kernel
value and display it, the following example shows how to configure the system’s domain as
test.domain:

domainname test.domain
domainname >/etc/defaultdomain

Configuring the NIS client
Now you must decide whether to use broadcasts to locate the NIS servers, or configure a spe-
cific list on your client. If you had to add local /etc/inet/hosts entries as described earlier
in this chapter, then we recommend using a configured server list.

To do so, use the ypinit command:

ypinit -c

357

Part III OpenSolaris File Systems, Networking, and Security

In order for NIS to operate sucessfully, we have to construct a list of the
NIS servers. Please continue to add the names for YP servers in order of
preference, one per line. When you are done with the list, type a <control D>

or a return on a line by itself.
next host to add: nismaster
next host to add:

The current list of yp servers looks like this:

nismaster

Is this correct? [y/n: y] y
svcadm enable nis/client
ypwhich
nismaster

To use broadcasts to locate servers, use the following command sequence:

mkdir /var/yp/binding/`domainname`
svcadm enable nis/client
ypwhich
nismaster

If ypwhich prints a server name and not an error message, then your client has successfully
joined the NIS domain.

Configuring the name service switch
Once your client has joined the NIS domain, you can start using NIS to look up usernames and
other data, but you need to configure the name service switch to use NIS. The best way to do
this is to use one of the example files that are shipped with OpenSolaris as a starting point and
edit it as needed. The file /etc/nsswitch.nis is an example file that configures your client to
use NIS for all naming service lookups; it will still use local files as a preferred source for some
information. Start by copying the sample file into place:

cp /etc/nsswitch.nis /etc/nsswitch.conf

You could use this file as is, but we do not recommend doing so. The sample file’s default
configuration will cause your client to use only NIS for IP address resolution, which is rarely
desirable. Most clients prefer local files in case you need to add special entries. In addition,
you’ll almost certainly want to use DNS to resolve IP addresses so that you can access the entire
Internet directly. Thus, unless your NIS administrator has provided other instructions, edit
/etc/nsswitch.conf and modify the hosts and ipnodes entries so that they appear as
shown here:

hosts: files dns
ipnodes: files dns

358

Network File Systems and Directory Services 10

At this point, your system should be using NIS to look up usernames, groups, and so on. You
can use the getent command to verify that it’s working correctly. For example, if you know
that user sam is listed in the NIS passwd map but not in your local /etc/passwd file, you can
confirm that his username is found using the following:

$ getent passwd sam
sam:PUwTFalsenB2U:12345:10:Sam Pull:/home/sam:/bin/ksh

If NIS and the name service switch were not working correctly, this command would return
either no output or an error message.

Configuring a NIS master server
Before you begin configuring a NIS server, you may need to install the NIS server package. You
can check with the following command:

$ svcs nis/server
svcs: Pattern ‘nis/server’ doesn’t match any instances
STATE STIME FMRI

This output indicates that the NIS server package is not installed. You can install it as follows:

pkg install SUNWyp

Once you have this package installed, you can proceed with configuring the NIS service.

Configuring NIS map data
To start configuring your NIS master server, collect the data files used in generating the NIS
maps into a separate working directory. While this step is not strictly required, it is a good idea
from an administrative point of view, as it enables you to segregate the domain data in the maps
from the configuration of the NIS master. In the example that follows, this data is collected into
a directory called /export/nismaster using a separate ZFS dataset. This is a good location to
use on the OpenSolaris distribution because it will be shared across multiple OpenSolaris boot
environments.

Management of OpenSolaris boot environments is discussed in Chapter 6. ZFS is dis-
cussed in Chapter 8.

Start by creating the ZFS dataset, which will be automatically mounted at /export/nismaster
by virtue of it inheriting its mount point from its parent, the rpool/export dataset:

zfs create rpool/export/nismaster

Next, collect the data files for the NIS maps by copying each of the files listed in Table 10-1 to
the /export/nismaster directory.

359

Part III OpenSolaris File Systems, Networking, and Security

TABLE 10-1

NIS Map Data Files

File NIS Maps

/etc/auto_home auto.home

/etc/auto_master auto.master

/etc/bootparams bootparams

/etc/ethers ethers.byaddr, ethers.byname

/etc/group group.bygid, group.byname

/etc/inet/hosts hosts.byaddr, hosts.byname

/etc/inet/ipnodes ipnodes.byaddr, ipnodes.byname

/etc/mail/aliases mail.aliases, mail.byaddr

/etc/netgroup netgroup, netgroup.byuser, netgroup.byhost

/etc/netid netid.byname

/etc/netmasks netmasks.byaddr

/etc/networks networks.byaddr, networks.byname

/etc/passwd passwd.byname, passwd.byuid

/etc/project project.byname, project.byprojid

/etc/protocols protocols.byname, protocols.bynumber

/etc/publickey publickey.byname

/etc/rpc rpc.bynumber

/etc/security/audit_user audit_user

/etc/security/auth_attr auth_attr

/etc/security/exec_attr exec_attr

/etc/security/prof_attr prof_attr

/etc/services services.byname, services.byservicename

/etc/shadow passwd.byname, passwd.byuid

/etc/timezone timezone.byname

/etc/user_attr user_attr

360

Network File Systems and Directory Services 10

Notice that multiple maps are generated from some of the files — this is how NIS
works around the fact that dbm databases can have only a single search key, while

many of the configuration files have multiple search keys. Each search key is accommodated by
generating a corresponding map using it as a key, so that, for example, NIS can be used to trans-
late a username into a uid and vice versa.

Once you’ve finished copying the files, edit the /var/yp/Makefile to instruct it to use the
files in /export/nismaster. Change the following entries in the Makefile to the values
shown:

DIR =/export/nismaster
INETDIR=/export/nismaster
RBACDIR=/export/nismaster
PWDIR =/export/nismaster
ALIASES = /export/nismaster/aliases

Creating the NIS master server
Now that you’ve collected the data files and modified the Makefile, it’s time to configure the
NIS master. You must first configure its domain name. For example, to configure the domain
test.domain, use the following:

domainname test.domain
domainname >/etc/defaultdomain

Once the domain is configured, use ypinit(1M) to configure the master server. If you know
that you will be configuring additional slaves, make sure that their hostnames are available and
enter them in the list of servers when prompted by ypinit. Don’t worry if you think you may
need to add a slave later but aren’t sure what system it will be; the procedure for adding slaves
in the next section shows you how to do this. The following example shows how to configure
just the master without any slaves:

ypinit -m

In order for NIS to operate sucessfully, we have to construct a list of the
NIS servers. Please continue to add the names for YP servers in order of
preference, one per line. When you are done with the list, type a <control D>

or a return on a line by itself.
next host to add: nismaster
next host to add: ∧D

The current list of yp servers looks like this:

nismaster

Is this correct? [y/n: y] y

Installing the YP database will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.

361

Part III OpenSolaris File Systems, Networking, and Security

Do you want this procedure to quit on non-fatal errors? [y/n: n] n
OK, please remember to go back and redo manually whatever fails. If you
don’t, some part of the system (perhaps the yp itself) won’t work.
The yp domain directory is /var/yp/test.domain
There will be no further questions. The remainder of the procedure should take
5 to 10 minutes.
. . .

Assuming that the ypinit command succeeded, you should be able to verify that the NIS ser-
vices are online:

$ svcs network/nis/*
STATE STIME FMRI
online 16:42:21 svc:/network/nis/xfr:default
online 16:42:21 svc:/network/nis/server:default
online 16:42:21 svc:/network/nis/update:default
online 16:42:21 svc:/network/nis/passwd:default
online 16:42:21 svc:/network/nis/client:default

Additionally, your server should be bound to itself as the NIS server, which you can check with
the ypwhich command:

$ ypwhich
nismaster

This completes the NIS master initial configuration process.

Configuring a NIS slave server
To increase the reliability of your NIS service, it’s best to configure at least one slave server
so that the NIS service remains available for lookups even if the master server is unavailable,
whether because of a planned maintenance operation or an unplanned failure.

To add a slave, first verify that the slave is already listed in the ypservers map. If it isn’t, add
it. To display the map contents, use ypcat -k:

$ ypcat -k ypservers
nismaster

In this case, only the master has been configured. That means you need to add the slave to the
ypservers map. However, unlike the other maps in a NIS domain, the ypservers map does
not have a text file from which it is generated. Therefore, you must update it directly using the
makedbm command, which generates the dbm database files that the NIS service uses as its stor-
age medium. You need to log in to the NIS master and assume the root role. The first step is to
convert the ypservers dbm file to a text file:

makedbm -u /var/yp/`domainname`/ypservers >/tmp/ypservers
cat /tmp/ypservers
YP_LAST_MODIFIED 1212266517

362

Network File Systems and Directory Services 10

YP_MASTER_NAME nismaster
nismaster

Now that you have a text file, you can append the new slave to it. If the name of the slave were
nisslave, the command is as follows:

echo "nisslave" >>/tmp/ypservers
cat /tmp/ypservers
YP_LAST_MODIFIED 1212266517
YP_MASTER_NAME nismaster
nismaster
nisslave

The next step is to convert the text file back to dbm format and verify that the slave is listed:

makedbm /tmp/ypservers /var/yp/`domainname`/ypservers
ypcat -k ypservers
nismaster
nisslave

This completes the work necessary on the master to add the slave. Now you need to log in to
the slave and become root to configure it as a slave. First you must configure the slave as a NIS
client using the procedure described earlier. Once the slave has been configured as a client, you
can proceed to configure it as a slave server:

ypinit -s nismaster

Installing the YP database will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n] n
OK, please remember to go back and redo manually whatever fails. If you
don’t, some part of the system (perhaps the yp itself) won’t work.
The yp domain directory is /var/yp/test.domain
There will be no further questions. The remainder of the procedure should take
a few minutes, to copy the data bases from nismaster.
Transferring audit_user . . .

Transferring user_attr . . .

Transferring prof_attr . . .

Transferring exec_attr . . .

Transferring auth_attr . . .

Transferring ageing.byname . . .

Transferring auto.home . . .

Transferring auto.master . . .

Transferring netmasks.byaddr . . .

Transferring netid.byname . . .

Transferring publickey.byname . . .

363

Part III OpenSolaris File Systems, Networking, and Security

Transferring mail.byaddr . . .

Transferring mail.aliases . . .

Transferring protocols.byname . . .

Transferring services.byservicename . . .

Transferring services.byname . . .

Transferring rpc.bynumber . . .

Transferring networks.byaddr . . .

Transferring networks.byname . . .

Transferring ipnodes.byname . . .

Transferring ipnodes.byaddr . . .

Transferring hosts.byaddr . . .

Transferring hosts.byname . . .

Transferring group.bygid . . .

Transferring group.byname . . .

Transferring passwd.byuid . . .

Transferring protocols.bynumber . . .

Transferring ypservers . . .

Transferring passwd.byname . . .

nisslave’s nis data base has been set up

without any errors.

Verify that the NIS service is online on the slave server:

$ svcs nis/server
STATE STIME FMRI
online 22:54:53 svc:/network/nis/server:default

Managing NIS maps
Once your NIS servers are up and running, the main regular task in managing them is updating
the maps. The most common updates are the passwd and shadow files to add, delete, or
modify user accounts (users can modify their own passwords using the passwd command).
If you followed the procedures recommended earlier, you need to edit the files stored in
/export/nismaster to make any necessary changes. After you’ve done that, you need to
rebuild the NIS maps to include the changes, which is done by running the following command:

cd /var/yp
make

If any slaves are configured, the new maps are pushed to them immediately. Pushing NIS maps
can be a time-consuming process, so in many sites it is preferable to have the map updates
done at scheduled times, such as noon and midnight or another time that makes sense based
on domain size and update frequency. This is usually done by creating a cron(1M) job script,
which is used to execute the preceding make command on the defined update schedule. Note
that because the push is sequential to each slave and clients may be bound to different servers,
not all clients will see changes simultaneously.

364

Network File Systems and Directory Services 10

Leaving a NIS domain
If your system is a member of a NIS domain and you’d like to revert your system to using only
its local configuration files as the name service, you can do so quite easily. Some documentation
recommends using the sys-unconfig command, but we believe that sys-unconfig affects
too many other aspects of your system configuration. Use the following procedure to revert a
client from NIS to local files:

cp /etc/nsswitch.files /etc/nsswitch.conf
svcadm disable nis/client
rm /var/yp/binding/`domainname`
domainname ‘’
rm /etc/defaultdomain

This procedure first configures the name service switch to ignore NIS and use only local files,
which is important to do first so that disabling the NIS client and removing its configuration
will not cause system processes to hang while attempting to look up data in NIS. If you want
to revert to files plus DNS for IP address resolution, then copy /etc/nsswitch.dns to
/etc/nsswitch.conf.

If your system is also a NIS slave, you need to modify the NIS master’s ypservers map to
remove the slave from the map; otherwise, the NIS master server can’t completely push any map
updates. See ‘‘Configuring a NIS Slave Server’’ earlier in the chapter for instructions on editing
the ypservers map. You also need to disable the NIS service on the slave:

svcadm disable nis/server

Removing a NIS master results in destroying the NIS domain. If you need to move the master to
a different server, copy the data files and /var/yp/Makefile to the new master server, config-
ure it as before, and then reconfigure the clients and slaves as needed.

LDAP
As you’ve seen, NIS provides a very capable workgroup-level naming service. However, its
limited scalability proved to be a problem as computing environments grew ever larger in the
1990s. Large enterprises need to manage large system and user bases, with a large number
of applications, yet simultaneously keep their IT costs low. This meant that a more capable
directory service was required. The computer industry developed the Lightweight Directory
Access Protocol (LDAP) standard as a directory service protocol to meet those requirements. It
is based on earlier work known as the X.500 Directory Access Protocol that was developed by
telephony standards bodies; the most significant difference initially was that LDAP uses TCP/IP
as its communication protocol, though X.500 directories subsequently adopted TCP/IP too.

LDAP is designed to provide a comprehensive corporate directory of people, organizations,
computer systems, printers, and indeed any object about which one might want to record infor-
mation. As a result, it has a complex means of describing and organizing data, called a schema,

365

Part III OpenSolaris File Systems, Networking, and Security

which can be standardized across systems and enterprises so that multiple applications can reuse
the directory data. The most common application for LDAP is to provide a corporate personnel
address book and a standardized single-sign-on service across a corporation’s computer systems
and applications.

LDAP has been the subject of an extensive standardization effort, so interoperability between
directories is possible but achieving a usable, cross-platform LDAP directory environment can
be quite challenging and depends to some extent on the specific LDAP server you are using, as
your server may not include specific schema definitions that are needed by a particular type of
client. A detailed discussion of such issues is beyond the scope of this book. Note that ease of
use for LDAP on OpenSolaris is a subject of several active projects; see the ‘‘Resources’’ section at
the end of this chapter for more information.

OpenSolaris as an LDAP server
To use OpenSolaris as an LDAP server, you need to acquire LDAP server software, as the
distribution does not currently include it in the standard installation. If you have a Linux
background, you may be familiar with the OpenLDAP server software, which is commonly
used on Linux platforms. It’s also available for OpenSolaris from the pkg.opensolaris.org
repository. To install OpenLDAP, install the OpenLDAP package:

pkg install SUNWopenldap

More information on package installation, the Image Packaging System, and software
repositories is available in Chapter 6.

Once you have installed the OpenLDAP software, consult the documentation installed under
/usr/share/doc/openldap, the example configuration files in /etc/openldap, and the man
pages for detailed configuration information.

Another open source LDAP server to consider is the OpenDS server, which is based on
technology that Sun open sourced in 2006 and is under continuing development. The project
offers prebuilt versions of the directory server that may be downloaded from its website,
http://opends.org/. The server is primarily written in Java, so it runs on virtually any
operating system. The OpenDS package offers a very simple, graphical setup program that will
have your LDAP server up and running in just a couple of minutes.

Sun also offers an LDAP directory server as part of its Java Enterprise System. OpenSolaris is
designed to support use of this server; see http://docs.sun.com/app/docs/coll/1224.4
for details about installing and configuring the Sun Java System Directory Server.

OpenSolaris as an LDAP client
OpenSolaris can also be configured as an LDAP client using the ldapclient(1M) utility, which
is included in the basic installation. If your LDAP server administrator has configured the server
to support profile-based configuration, configuring an LDAP client is easy using ldapclient. If

366

Network File Systems and Directory Services 10

the default configuration profile on the LDAP server is to be used, and the server’s IP address is
10.1.2.3, you can configure your LDAP client as follows:

ldapclient init 10.1.2.3

This retrieves an LDAP configuration profile and stores the resulting configuration in files under
/var/ldap. It also enables the ldap/client SMF service and copies /etc/nsswitch.ldap
to /etc/nsswitch.conf to switch the system to use LDAP as its preferred name service. You
need to modify /etc/pam.conf to add pam_ldap(5) as an authentication module if you want
to use LDAP for user authentication. See its man page for more information.

Other, more complex client configuration scenarios are possible; consult the ldapclient man
page for directions.

As with NIS, we recommend using DNS, rather than LDAP, for IP address resolution,
so edit /etc/nsswitch.conf and modify the hosts and ipnodes entries to

search files and dns, rather than LDAP.

If your computing environment is predominantly Microsoft Windows, you’ll likely find that
the Microsoft Active Directory is already implemented in your environment, so you may want
to focus on using OpenSolaris as an Active Directory client; see ‘‘Resources’’ at the end of this
chapter for references that can assist with this. You may also want to investigate configuring
the Evolution mail and calendar client to use Active Directory as its address book and calendar
storage; see Chapter 4 for information on Evolution.

Resources
The OpenSolaris NFS community is home to a number of projects under development in NFS;
see the community page at http://opensolaris.org/os/community/nfs.

A how-to guide for setting up Solaris 10 and OpenSolaris as clients of a Microsoft Active Direc-
tory server is available from the Sun BigAdmin site at http://sun.com/bigadmin/features/
articles/kerberos s10.jsp.

Current troubleshooting information for the CIFS service is maintained at http://genunix
.org/wiki/index.php/Solaris CIFS Service Troubleshooting.

Several OpenSolaris projects are underway to improve OpenSolaris name service usability, man-
agement, and interoperability:

■ The Duckwater project, http://opensolaris.org/os/project/duckwater, is
focused on ease-of-use improvements for LDAP and general name service configuration.

■ The Sparks project, http://opensolaris.org/os/project/sparks, is providing
enhancements to the name service switch and name service cache.

367

Part III OpenSolaris File Systems, Networking, and Security

■ The Winchester project, http://opensolaris.org/os/project/winchester, is
working to improve interoperability between OpenSolaris and Windows Active Directory.

An older reference that is useful, primarily for NIS, which has changed little in many years, is
Managing NFS and NIS by Hal Stern, Mike Eisler, and Ricardo Labiaga (O’Reilly, 1999).

For a focused introduction to LDAP, you may want to investigate LDAP System Administration by
Gerald Carter (O’Reilly, 2003).

Summary
This chapter introduced the file-sharing services included in OpenSolaris, NFS, and CIFS, and
showed how you can configure OpenSolaris to both share its files and access the files of other
systems over each service, allowing you to exchange files seamlessly with virtually any other
system you may encounter. Additionally, the OpenSolaris naming service infrastructure was dis-
cussed, including the name service switch and cache, and procedures for configuring your sys-
tem as either a NIS client or server were demonstrated. Finally, you learned the steps involved
in obtaining and installing LDAP server software, as well as configuring OpenSolaris as an
LDAP client.

368

Security

IN THIS CHAPTER
Security overview

Pluggable Authentication
Modules (PAM)

Password management

Secure by Default (SBD)

Role-based access control
(RBAC)

Privileges

Access Control Lists (ACLs)

Secure Shell (SSH)

IP Security

Logs

Basic Audit Reporting Tool
(BART)

Solaris Auditing

Kerberos

Trusted Extensions

There are two kinds of people in the computer world: those who
care about security and those who should care about security.
From large companies to small companies to government systems

to your personal home network, computer systems can be compromised.
Luckily, OpenSolaris contains numerous security features to protect against
and ameliorate various forms of attacks. Unfortunately, many of the
features are not enabled by default because they would affect performance
or usability of the system. If you want your OpenSolaris system to be safe,
you must take active steps to secure it. This chapter will help you put the
appropriate security measures in place.

Security Overview
Computer attacks are varied and numerous. You’ve probably read about
some of the infamous ones, such as the theft of over 45 million customer
credit and debit card numbers from the T. J. Maxx company in 2006 and
2007 by hackers who cracked the wireless network in one of the stores
and used it as a gateway to the central database. But computer attacks
don’t need to be direct. Someone could break into your system by calling
one of your users on the telephone and convincing him to provide his
password. An attacker could even snoop your wireless network to obtain
access to data without ever breaking into a computer.

The intent of the attacks varies as well. Some attacks are purely malev-
olent, such as viruses and worms meant only to cause damage. Other
attacks, such as breaking into a system to steal proprietary or customer

369

Part III OpenSolaris File Systems, Networking, and Security

data, are clearly for financial gain. Still other attacks use your system as only a platform from
which to launch a denial of service, phishing, or other attack on different systems or users. You
must protect your computer systems against all forms of attacks, occurring at any time.

Furthermore, attackers need not be experts in computer work. A multitude of free and open
source tools can aid anyone with basic computer skills in carrying out some fairly complex
attacks. No one is immune, including the authors of this book. One of the authors recounts
the following incident with some embarrassment but also with the hope of preventing you
from making a similar mistake. A few years ago, among other computers in his home network,
he had a machine running an older version of Solaris. Because his home network sat behind
a router that implemented Network Address Translation, the IP addresses and hostnames
of the individual machines were not exposed. Feeling that this rudimentary level of security
was sufficient, he didn’t configure a software firewall or otherwise secure the Solaris machine
in any way.

One morning, after logging into the Solaris box, the author noticed that his shell prompt looked
a little different than usual. With a bit of poking, he discovered two interesting changes to his
system. First, a new daemon was running that he didn’t recognize. Second, he found a bunch
of new files installed in an out-of-the-way path. The daemon turned out to be a backdoor access
program, providing return access to the attacker. The new files were a root kit, a bunch of tools
for taking over a system once it has been compromised. The shell appeared different because
the root kit had tried to mess with it to hide the new backdoor access daemon. Luckily for the
author, the root kit was for a slightly different variant of UNIX, so it didn’t operate effectively,
leaving the clues that he was able to uncover.

Fortunately, OpenSolaris provides substantial security measures that could have prevented this
attack or made it easier to detect, including secure by default, role-based access control, priv-
ileges, ipfilter, logs, and auditing. This chapter explores these techniques and others that will
help you maintain effective security.

Being a global security citizen
The single most important mechanism to maintain security of your system is to stay up-to-date
with security fixes. You can keep on top of known security flaws in a number of ways. For
example, the United States Computer Emergency Readiness Team (US-CERT) tracks computer
security flaws of all kinds. You can subscribe by e-mail or RSS to receive timely updates
about vulnerabilities and alerts. Following the Sun security alerts and discussions about news
of OpenSolaris vulnerabilities is another way to stay informed. The Sun Alert and Security
Discussion on the Sun Developer Network is a good source to check periodically.

Another important part of being a global security citizen is reporting any security flaws you find.
The quicker everyone is aware of a problem, the quicker a patch can be generated, and the less
time there will be for a malicious user to exploit the flaw. The ‘‘Resources’’ section at the end of
this chapter contains pointers to websites where you can report security problems.

370

Security 11

Organization of this chapter
The remainder of this chapter is organized around several broad levels of security, with some
additional topics, such as Kerberos, at the end. The four main aspects of security are as follows:

■ Preventing unauthorized access — By using secure authentication techniques and dis-
abling unneeded network services, you can prevent unauthorized access to your systems.
Topics include pluggable authentication modules, password management, and secure by
default.

■ Limiting the damage — Even if an attacker breaks into the system, proper security prac-
tices can limit the attacker’s damage. Topics include role-based access control, privileges,
and file system access control lists.

■ Ensuring secure communication — Attackers can also cause damage without breaking
into your system directly, by eavesdropping or snooping, so it is vital to protect commu-
nications between machines. Topics include secure shell and IP security.

■ Detecting attacks — Despite your best efforts, your system may still be compromised.
Tools to detect these attacks include logs and auditing.

Terminology

A few terms used throughout this chapter require some explanation. First, many people incorrectly
refer to computer attackers as hackers. The term hacker, however, simply refers to someone

who is skilled with computers, and can have a positive or negative connotation. Thus, some people
prefer to call computer attackers crackers or black-hats. In this book we call them attackers.

Similarly, the term hacking can have either positive or negative connotations, and does not
necessarily imply nefarious activity.

Finally, the term harden is commonly employed among security mavens to describe the process
of securing a system against attackers. A hardened system is one to which all necessary security
precautions have been applied.

Preventing Unauthorized Access
Most computer attacks involve gaining access, or attempting to gain access, to a computer
system. Attackers can accomplish this in a multitude of ways, from cracking account passwords
to exploiting flaws in a network service. Your first goal in security is to prevent unauthorized
access.

Secure access relies on user authentication. Authentication is the process of determining that
someone is the person he or she claims to be. Authentication is imperative when someone first
accesses the system.

371

Part III OpenSolaris File Systems, Networking, and Security

User education and physical security
Unfortunately, the best authentication security can be defeated by any user who simply lets
slip his or her password or is tricked into giving the attacker direct access to his or her system.
The process of gaining access to a computer system through nontechnical means is called social
engineering.

Furthermore, even if you harden your OpenSolaris system and set it up with secure authentica-
tion and educate your users, an attacker could still break in if she obtains physical access to the
system. For example, if you leave your logged-in system unattended, an attacker can merely sit
down in front of the computer and start typing. In this case, an attacker would need only min-
utes in an account to install a Trojan horse that would allow future remote access.

User education, social engineering, and physical security in general are beyond the scope of
this book. However, here are a few tips. Make sure you have a documented security policy and
educate your users about the policy. Instruct users to never give their passwords to anyone and
never write them down, to always log out or bring up a password-protected screensaver when
they step away from their desks, and to never leave laptops unattended. For more information
on these topics, consult one of the general security references listed in the ‘‘Resources’’ section at
the end of this chapter.

Pluggable Authentication Modules (PAM)
OpenSolaris uses Pluggable Authentication Modules (PAM) for a generalized authentication frame-
work. Although you don’t need to worry about — or even notice — PAM most of the time,
it actually underlies all the authentication mechanisms in OpenSolaris. Thus, it’s important to
have a general understanding of PAM before delving into the various authentication mechanisms
available.

PAM enables authentication, account management, session management, and password
management to be centralized into pluggable modules instead of distributed throughout the
various programs (such as login, passwd, sshd, and others) that need these capabilities. For
example, instead of looking up passwords directly to authenticate users, the login program
calls a generic library function, pam_authenticate(), which in turn calls into one or more
modules to actually perform the authentication. In a simple file-based password scheme, the
PAM library might load a module to check passwords in /etc/shadow. In a Kerberized system,
the PAM library might load a module to request a ticket from the Kerberos Key Distribution
Center. Deciding which modules to use is based on a configuration file. That way, there is a
clear separation between the authentication entry points, such as login, and the authentica-
tion mechanisms, such as Kerberos, described later in this chapter. Because of this level of
indirection, a system administrator can change the authentication mechanism for the system
in one central configuration file without changing any settings in the programs that use the
authentication.

Additionally, PAM allows multiple modules to be specified for a single service and type. This
feature is called module stacking. For example, you might want password authentication to check
Kerberos first, and then, only if that authentication fails, check the local password files.

372

Security 11

The PAM configuration is centralized in the /etc/pam.conf file. The best way to under-
stand the syntax of the file is through examples. Here are example entries for the login
service:

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_cred.so.1
login auth required pam_unix_auth.so.1
login auth required pam_dial_auth.so.1

These entries stack five different modules for the login authentication functionality. The mod-
ules are processed in the order they appear in the file. All five modules must return success, as
indicated by the requisite and required keywords. The difference between requisite and
required is that failure of a requisite module terminates processing immediately, whereas
failure of a required module allows the rest of the modules to be processed before returning
failure overall.

Note that the actual password-checking is performed in the pam_unix_auth module. The
first module, pam_authtok_get, just prompts the user for username and password. The
second module, pam_dhkeys, handles Diffie-Hellman key exchange, if in use. pam_unix_cred
checks the user’s credentials and privileges, and pam_dial_auth is only relevant for dial-up
connections.

Each module listed in /etc/pam.conf has an associated man page, which you can
read for details about that module’s policies and functionalities.

Now that you’ve seen an example, take a look at the syntax of /etc/pam.conf. Each line of
the file consists of the following elements, in order:

1. Service name — The name of the service, which in the preceding example is login.
other serves as the default for all services not explicitly listed.

2. Module type — One of the four functionalities provided:

■ auth: Authenticates users and sets up their credentials

■ account: Checks if users’ accounts are valid, including checking roles and password
expiration

■ session: Manages login sessions

■ password: Changes user passwords

3. Control flag — Specifies how this module fits into the stacking. In addition to requisite
and required, other common control flags are sufficient and optional. suffi-
cient causes success to be returned to the service immediately if the module returns
success, skipping any remaining modules. optional modules count if they succeed but
are ignored if they fail.

4. Module path — The name of the module itself.

373

Part III OpenSolaris File Systems, Networking, and Security

5. Options — This field enables you to pass options directly to the module. These options
are module-specific. For example, as shown in the section on Kerberos later in this
chapter, you can pass the expire_pw option to the pam_krb5_migrate module
to force users to create new passwords the next time they log in and are migrated to
Kerberos.

Here’s the default authentication stack for all services not explicitly mentioned in
/etc/pam.conf, as specified by the other service name:

other auth requisite pam_authtok_get.so.1
other auth required pam_dhkeys.so.1
other auth required pam_unix_cred.so.1
other auth required pam_unix_auth.so.1

This is identical to the login stack, except that pam_dial_auth is missing. That’s because it’s
only relevant to the login and ppp service, not other kinds of logins, such as dtlogin and
rlogin.

The defaults for the account module type are as follows:

other account requisite pam_roles.so.1
other account required pam_unix_account.so.1

pam_roles checks the role-based access control (RBAC) configuration to verify that the user is
allowed to take the specified role. RBAC is described in detail later in this chapter.

pam_unix_account checks for password expirations and other account access details.

The defaults for the session type use only a single module:

other session required pam_unix_session.so.1

This module basically just updates /var/adm/lastlog, which is used to determine the last
time the user logged in.

Finally, the defaults for password, which come into play when a password is updated, are a bit
more complicated:

other password required pam_dhkeys.so.1
other password requisite pam_authtok_get.so.1
other password requisite pam_authtok_check.so.1
other password required pam_authtok_store.so.1

pam_dhkeys handles the Diffie-Hellman key exchange, while pam_authtok_get queries the
user for the new password, and pam_authtok_store actually sets the new password. The most
interesting module here is pam_authtok_check, which verifies that the newly entered pass-
word meets certain criteria, such as minimum length. The next section describes these checks in
more detail.

374

Security 11

Password management
Even in the most rudimentary security model, every account in your system must have a pass-
word. An account without a password allows anyone to log in as that user!

Chapter 3 describes basic user and password creation and management.

OpenSolaris supports four different password management schemes:

■ Local Files — This default model places encrypted passwords in /etc/shadow. This
option is not network-aware, so each user must have a separate account on each system.

■ NIS — This option stores the user account and password information in a central Net-
work Information Service repository, enabling access to be configured simultaneously for
multiple networked machines.

■ NIS+ (Network Information Service Plus) — Because NIS+ is deprecated, password
management with NIS+ is not covered in this book.

■ LDAP — This option stores user account and password information in a central LDAP
directory tree, enabling access to be configured simultaneously for multiple networked
machines.

Chapter 10 covers NIS and LDAP trade-offs, setup, and configuration.

On a specific machine, you specify the desired password database in the passwd field of
/etc/nsswitch.conf. This field lists password databases in the order they should be checked.
Always list ‘‘files’’ first so that local settings on the machine can override the directory server. To
use files for all passwords, use the following default passwd line:

passwd: files

To specify NIS for passwords, use this line:

passwd: files nis

To specify LDAP, use the following:

passwd: files ldap

Chapter 10 discusses /etc/nsswitch.conf in more detail.

Even if you use a directory server for user accounts, always store the root password
in the local files instead of in the directory server, and use unique root passwords

for each machine. If you store the root password in the directory server, an attacker who cracks
the root password or obtains root access on one machine can then access any machine in your
network. In addition, always place files first in the passwd entry so that a problem with the
network or name service won’t prevent you from accessing a system if necessary.

375

Part III OpenSolaris File Systems, Networking, and Security

Behind the scenes, password setting and checking use PAM to implement standardized checks
across different system entry points. See the section ‘‘Pluggable Authentication Modules (PAM)’’
earlier in this chapter for more details.

Why Aren’t There Any Passwords in /etc/passwd?

In the traditional UNIX model, /etc/passwd stores login names, User ID numbers (UIDs), login
shells, encrypted passwords, and a few other fields. When a user attempts to log in, the given

password is encrypted and compared to the stored password. If they match, the user is logged in.
However, /etc/passwd must be world-readable in order for commands such as ls, which map
UIDs to login names or vice-versa, to function properly. Although the passwords are encrypted
with a one-way function that theoretically protects the passwords, the availability of the encrypted
versions is still a security risk because an attacker can run a password-cracking program against
the encrypted passwords to discover the passwords themselves. Thus, OpenSolaris stores the actual
encrypted passwords in /etc/shadow, which is readable only by root, and the login program runs
as a setuid root executable to access it.

Strong passwords
Traditionally, Solaris passwords are encrypted with the crypt_unix algorithm, which, among
other limitations, silently limits the passwords to eight characters in length. However, the Open-
Solaris distribution uses the stronger SHA256 algorithm by default. You can change the default
encryption algorithm by editing the /etc/security/policy.conf configuration file. The fol-
lowing line lists the allowed algorithms:

CRYPT_ALGORITHMS_ALLOW=1,2a,md5,5,6

Confusingly, algorithms 1 and 2a refer to the MD5 and Blowfish algorithms, respectively, which
are compatible with Linux and BSD. The ‘‘md5’’ option is a stronger version of MD5 that is not
compatible with Linux and BSD. The 5 and 6 options represent the SHA256 and SHA512 algo-
rithms respectively. Finally, although not listed, __unix__ is a valid option to revert to the old
crypt_unix algorithm.

To change the default algorithm, you must change the CRYPT_DEFAULT line. For example,
to use the Linux and BSD-compatible MD5 algorithm, change the CRYPT_DEFAULT entry in
/etc/security/policy.conf as follows:

CRYPT_DEFAULT=1

That’s it! No reboot is needed. However, existing passwords are not converted to the new
encryption format until they are changed. See the man page policy.conf(4) for more
information about the configurations in /etc/security/policy.conf.

LDAP can be configured to encrypt passwords using either the client’s settings
in /etc/security/policy.conf and /etc/default/passwd or the

376

Security 11

LDAP server settings. To use the client settings, do not use the pam_ldap module or the
pam_authtok_store server_policy option in /etc/pam.conf.

Additional password settings can be configured in /etc/default/passwd. These settings
enforce password security. For example, you can set the minimum password length from its
default of six characters by modifying the PASSLENGTH field:

PASSLENGTH=8

Now users will not be allowed to create passwords of fewer than eight characters:

$ passwd
passwd: Changing password for test1
Enter existing login password:
New Password:
passwd: Password too short - must be at least 8 characters.
Please try again

The /etc/default/passwd file contains several other useful tunable parameters, as described
in Table 11-1.

See the pam_authtok_check(5) and passwd(1) man pages for more information.

The HISTORY flag applies only to passwords stored in local files.

Password aging
Forcing users to change their passwords periodically is considered good security policy because
it limits the amount of time in which an attacker could benefit from a snooped or cracked
password. The downside is that users are more likely to forget their passwords, or to write them
down to remember them.

NIS does not support password aging.

If you decide to implement password aging, you have several options. First, you can set aging
on a per-account basis using the passwd command with the -x option:

passwd -x 90 nick
passwd: password information changed for nick

User nick’s password is now set to expire in 90 days. When you use password aging, specify a
minimum number of days between password changes, with the -n option, and the number of
days to warn the user before the password expires, with the -w option:

passwd -n 10 -w 15 -x 90 nick
passwd: password information changed for nick

377

Part III OpenSolaris File Systems, Networking, and Security

TABLE 11-1

Tunables in /etc/default/passwd

Tunable Description

PASSLENGTH Minimum length of passwords

HISTORY Number of previous passwords to store and disallow users from
repeating

MINDIFF Minimum number of characters at the beginning of the password
that must be different from the previous characters

MINALPHA /
MINNONALPHA/MINDIGIT/
MINSPECIAL

Minimum numbers of alphabetic, non-alphabetic, numeric, and
special characters in the password

MINUPPER / MINLOWER Minimum numbers of uppercase and lowercase characters in the
password

MAXREPEATS Number of allowed characters repeating in a row in the password

WHITESPACE Boolean property specifying whether whitespace is allowed in the
password

DICTIONLIST Specifies a list of words on which the password is not allowed to
be based

DICTIONBDIR Specifies the directory in which to store the password dictionary

MAXWEEKS / MINWEEKS Password aging; discussed in the next section

When the age limit of the password falls under the warning time, nick will be warned:

login as: nick
Password:
Your password will expire in 10 days.

Last login: Sun Mar 9 22:55:34 2008 from 192.168.1.100
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

When the age limit of the password is reached, nick will be forced to change his password the
next time he logs in:

login as: nick
Password:
Warning: Your password has expired, please change it now.

New Password:
Re-enter new Password:

378

Security 11

sshd-kbdint: password successfully changed for nick

Last login: Sun Mar 9 22:36:56 2008 from 192.168.1.100
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

Disable password aging for an account by setting the days-to-age with the passwd
-x option to -1.

Managing aging on a per-account basis can be useful if specific accounts need different aging
policies, although it’s often more convenient to configure a systemwide aging policy. To set
aging for all accounts, use the /etc/default/passwd configuration file discussed in the
previous section to set the MINWEEKS and MAXWEEKS parameters.

Setting MINWEEKS and MAXWEEKS in /etc/default/passwd does not affect preex-
isting accounts.

Remote logins
By default, OpenSolaris does not allow remote logins as root. This policy is useful because
it requires anyone logging in as root to first login as a non-root user, and then su to root,
providing a trail in the logs that makes root logins easier to track. The section on logs later in
this chapter describes the various password and login logs that you should be aware of as an
administrator.

You can adjust this policy by setting or commenting out the CONSOLE line in /etc/
default/login:

If CONSOLE is set, root can only login on that device.
Comment this line out to allow remote login by root.
#
CONSOLE=/dev/console

Additionally, only allow remote logins over a secure service such as ssh. Disable insecure
services such as telnet and rlogin. These insecure services are actually disabled by default
in the standard OpenSolaris service configuration. The section ‘‘Secure by Default’’ later in
this chapter explains how to disable unsafe network services. Kerberos, a useful tool for
authentication within intranets, is described in detail at the end of this chapter.

Firewalls
Even if attackers can’t gain access to a user account, they could still do significant damage by
exploiting flaws in network services, finding open ports, or otherwise accessing the system in
unexpected ways. To prevent these kinds of attacks, run a firewall that inspects incoming and
outgoing packets, and filters out unwanted packets according to various rules.

Because of its networking specificity, the ipfilter security feature of OpenSolaris
is covered in Chapter 9.

379

Part III OpenSolaris File Systems, Networking, and Security

Secure by Default (SBD)
OpenSolaris contains quite a few network services, many of which are insecure for various
reasons, such as allowing plain-text logins. Even those that aren’t inherently insecure provide
potential access points for attackers. These unneeded services include rlogin, telnet, finger,
ftp, and others. You should disable all unused network services, or configure them to accept
connections only from localhost. That may sound like an arduous task, but OpenSolaris
makes it easy with Secure by Default (SBD).

Because of Secure by Default, an OpenSolaris installation out-of-the-box runs only one network
service that is not limited to local connections — ssh, which provides a mechanism to remotely
administer the machine. Most of the other services, such as rlogin, telnet, finger, and ftp
are not running. Those that still run, such as rpcbind, sendmail, and X server, are config-
ured to accept connections only from localhost.

If you ever need to return to this pristine state, simply run the following command:

netservices limited

As of this writing, the netservices command on the OpenSolaris distribution pro-
duces warnings about services that don’t exist. You can safely ignore the warnings.

The opposite of netservices limited is netservices open. This option enables most net-
work services (see Table 11-2 for a complete list):

netservices open

netservices open can expose you to serious security risk! Do not use netser-
vices open on a production or Internet-facing machine.

In addition to the two extremes of netservices limited and netservices open, you can
manually open or close specific services using SMF. Behind the scenes, netservices limited
uses an SMF profile to disable the services shown in Table 11-2.

To selectively run any of these services, simply enable them with svcadm and perform any other
configuration required by that particular service. For example, to allow ftp connections to your
machine, run svcadm enable ftp. The following example checks the state of the ftp service,
enables it, and then verifies that it is enabled:

svcs ftp
STATE STIME FMRI
disabled 16:43:47 svc:/network/ftp:default
svcadm enable ftp
svcs ftp
STATE STIME FMRI
online 16:43:59 svc:/network/ftp:default
#

380

Security 11

TABLE 11-2

Network Services Disabled by Default

Service SMF FMRI

NFS status daemon network/nfs/status

NFS lockd network/nfs/nlockmgr

NFS client network/nfs/client

NFS server network/nfs/server

NFS rquotad network/nfs/rquota

NFS v4 callback daemon network/nfs/cbd

NFS ID mapping network/nfs/mapid

CIFS client network/smb/client

DHCP server network/dhcp-server

Network Time Protocol network/ntp

Reverse Address Resolution
Protocol

network/rarp

Service Location Protocol network/slp

Kerberos network/security/kadmin network/security/krb5_prop
network/security/krb5kdc

SNMP application/management/sma

Seaport application/management/seaport

Solstice Enterprise Agent application/management/snmpdx

Internet print protocol application/print/ipp-listener

Line printer daemon application/print/rfc1179

Finger network/finger

FTP network/ftp

Remote Login network/login:rlogin network/login:klogin
network/login:eklogin

Remote Shell network/shell:default network/shell:kshell

Telnet network/telnet

UUCP network/uucp

CHARGEN network/chargen

381

Part III OpenSolaris File Systems, Networking, and Security

TABLE 11-2 (continued)

Service SMF FMRI

Daytime network/daytime

Discard network/discard

Echo network/echo

Time network/time

Comsat (biff) server network/comsat

Remote execution network/rexec

Talk network/talk

Service Tag Discovery Probe network/stdiscover

Service Tag Listener network/stlisten

SVM communication network/rpc/mdcomm

Kernel statistics server network/rpc/rstat

Network Username server network/rpc/rusers

SVM remote metaset network/rpc/meta

SVM remote mediator network/rpc/metamed

SVM remote multihost disk network/rpc/metamh

OCF server network/rpc/ocfserv

Remote Execution Service network/rpc/rex

Spray packets network/rpc/spray

Write to All Users (wall) network/rpc/wall

X font server application/x11/xfs

To selectively disable services you don’t need, use svcadm disable. It’s best to start in the
hardened state and selectively enable services you need, rather than start with all services
enabled and selectively disable the ones you don’t need.

Chapter 13 discusses SMF and service management in more detail.

In addition to disabling the services listed in Table 11-2, netservices limited configures
some services, such as rpcbind, to accept connections only from localhost. Configuring
services to accept only local connections is slightly trickier than simply disabling them, and

382

Security 11

involves setting SMF properties. Each service that can be configured in this way has an SMF
property that can be used to specify local connections only. Unfortunately, the property names
are not consistent; some are Boolean properties where true means remote connections are
allowed, while others are Boolean properties where false means remote connections are
allowed. Table 11-3 lists the services and their properties:

TABLE 11-3

Network Services Configured to Accept Local Connections Only

Service SMF FMRI SMF Property Property Type and
Values

Syslog system/system-log config/log_from_
remote

Boolean: false
for local only;
true for remote

rpcbind network/rpc/bind config/local_only Boolean: true for
local only, false
for remote

X Server application/x11/x11
-server

options/tcp_listen Boolean: false
for local only,
true for remote

sendmail network/smtp:sendmail config/local_only Boolean: true for
local only, false
for remote

You can check the values of these service properties with the svcprop command, and set
them with the svccfg command. The following example checks whether the syslog service
allows remote connections, specifies that it should allow remote connections, and verifies the
setting:

svcprop -p config/log_from_remote system-log
false
svccfg -s system-log setprop config/log_from_remote=true
svcadm refresh system-log
svcprop -p config/log_from_remote system-log
true
svcadm restart system-log

You must refresh the service with svcadm refresh before the property change takes effect.

383

Part III OpenSolaris File Systems, Networking, and Security

The list of services enabled and disabled by default changes as new ser-
vices are added to the OpenSolaris code base. For the definitive list, see the

/var/svc/profile/generic_limited_net.xml file on your system.

Thinking Like an Attacker

When hardening your system, it’s a good idea to test it from the outside by thinking like an
attacker. The best way to perform this exercise is to use some of the same tools that attackers

use for port scanning and vulnerability detection. Popular, free port-scanning tools include the
following:

■ Unix utilities, including netstat, traceroute, and ping

■ Network Mapper (Nmap) — This powerful open source tool has appeared in
movies such as The Bourne Ultimatum and The Matrix Reloaded. Nmap can be
found in the OpenSolaris distribution in the SUNWnmap package. You can down-
load the source code for other distributions and build it yourself, or you can run it
from Linux or Microsoft Windows.

■ The Network Vulnerability Scanner (Nessus) — This powerful vulnerability detec-
tion tool is no longer open source, but (as of this writing) it is still free to download
and use. Unfortunately, there doesn’t appear to be a version for OpenSolaris on
x86, but you can run it on OpenSolaris on SPARC, Linux, or other operating sys-
tems.

See the ‘‘Resources’’ section at the end of this chapter for links.

Limiting the Damage
Despite your best efforts to prevent unauthorized access, your system may still experience secu-
rity breaches. It is imperative that you are prepared for these potential break-ins by configuring
your system to limit the damage as much as possible. Even if an attacker compromises a user
account or exploits a flaw in a network service, proper use of security measures can prevent a
bad situation from becoming disastrous. A side benefit of preparing your system to expect the
worst is that you protect it from clueless or incompetent users and prevent poorly written pro-
cesses from inadvertently damaging the system.

Role-based access control
The traditional UNIX security model has only two access control levels: regular users with
limited access and the aptly named superuser, or root user, with complete system access. The
main problem with this model is the power of root. Attackers who obtain root access can
perform whatever malicious activities they can imagine. Alternatively, a clueless admin who

384

Security 11

needs root access for one specific activity could inadvertently misconfigure the system, mess up
security settings, delete files, or damage the computer in some other way. Moreover, because
there’s no other way to delegate administration, multiple people often end up knowing the root
password and accessing the root account, providing increased opportunities for attackers to
break in.

When delegating administrative tasks, users almost never need the full power of root. Instead,
they usually need access to only a handful of commands to perform their administrative tasks.
The approach of assigning to users only the exact authorizations they need for their particular
tasks is the principle of least privilege. Several solutions are available in the UNIX and Linux
world to implement this principle.

One implementation of least privilege with which you might be familiar is sudo. This software,
used by Ubuntu Linux and Mac OS X, among others, enables users to ‘‘do’’ certain actions as
superuser. These actions can usually be individually assigned to specific users, enabling the
desired fine-grained control over administrative authorizations.

Sudo is available on OpenSolaris in the SUNWsudo package. You can install it from
the network repository with the following command:

pkg install SUNWsudo

Natively, however, OpenSolaris takes a slightly different approach, using role-based access control
(RBAC) to implement least privilege for users.

RBAC terminology
Before delving into the details of RBAC, it’s important to understand the terminology. RBAC
introduces three new concepts:

■ Authorization — A fine-grained capability for a specific task. For example,
solaris.smf.modify.framework allows a user to enable and disable SMF services.

■ Rights profile — A grouping of authorizations. For example, the Cron Man-
agement Rights Profile allows management of at and cron jobs by including the
solaris.jobs.* and solaris.smf.manage.cron authorizations. Rights profiles
can also contain commands that must be run as specific user IDs or with certain security
privileges.

■ Role — A special account on the system. Similar to a user, except that you cannot log in
directly to a role. Roles can be assigned authorizations and rights profiles, and are assigned
to specific users.

Using RBAC
As explained in Chapter 3, the OpenSolaris distribution from Sun makes root itself a role, gives
the initial user account the Primary Administrator rights profile, and assigns the root role to the
initial user account.

385

Part III OpenSolaris File Systems, Networking, and Security

If you don’t create a user account in the installer, the OpenSolaris distribution does
not make root a role.

The benefit of making root a role is that the only way to access the root account is to first log
in as a user assigned the root role. Even if attackers managed to obtain the root password, they
couldn’t access the root role without first accessing another account with that role assigned.
Thus, making root a role adds an extra level of security to your system. However, as explained
later in this section, the Primary Administrator role is quite powerful, basically giving root
capabilities. Therefore, when using the OpenSolaris distribution, protect the initial user account
as you would root.

There are two different ways to use RBAC as a user with the Primary Administrator role. The
first, as described in Chapter 3, is to prefix privileged commands with the pfexec command.
For example, if you try to create a file in /etc without pfexec, the command is rejected. With
pfexec, the command succeeds:

$ touch /etc/blah
touch: cannot touch `/etc/blah’: Permission denied
$ pfexec touch /etc/blah
$ ls /etc/blah
/etc/blah

If you grow tired of using pfexec, you can run multiple commands from a profile shell, which
is a special version of the shell that understands RBAC, obviating the need to execute pfexec
explicitly. For example, you can use pfcsh as follows:

$ pfcsh
% touch /etc/newfile

The OpenSolaris distribution provides sh and csh versions of the profile shell, called
pfsh and pfcsh, respectively. Other distributions of OpenSolaris, such as Solaris

Express, also provide a ksh version, pfksh, which is not in the OpenSolaris distribution because
of redistribution restrictions. Currently, there is no bash version of the profile shell.

Authorizations
Now that you understand the terminology and how to use RBAC as initially configured, it’s
time to delve into the details. An authorization is a fine-grained capability for a specific task. All
authorizations are listed in the /etc/security/auth_attr file. Here is a short listing from
that file:

tail /etc/security/auth_attr
solaris.smf.value.servicetags:::Change Service Tag Service Property Values
::help=StValue.html
solaris.smf.value.smb:::Change Values of SMB Service Properties::help=
SmfValueSMB.html

386

Security 11

solaris.smf.value.tnd:::Change Trusted Network Daemon Service Property Values
::help=ValueTND.html
solaris.smf.value.vscan:::Change Values of VSCAN Properties::help=
SmfValueVscan.html
solaris.snmp.:::SNMP Management::help=AuthSnmpHeader.html
solaris.snmp.read:::Get SNMP Information::help=AuthSnmpRead.html
solaris.snmp.write:::Set SNMP Information::help=AuthSnmpWrite.html
solaris.system.:::Machine Administration::help=SysHeader.html
solaris.system.date:::Set Date & Time::help=SysDate.html
solaris.system.shutdown:::Shutdown the System::help=SysShutdown.html

The first field in each entry is the authorization name. As an administrator, you won’t
need to create or change the authorizations themselves, and you should not modify
/etc/security/auth_attr.

Keep in mind that authorization names are not inherently meaningful. Each program that
requires authorizations must explicitly check for that authorization name. For example, here’s
the code in the lpset command that checks for the solaris.print.admin authorization:

if (chkauthattr("solaris.print.admin", pw->pw_name) == 1)
return (1); /* "solaris.print.admin" is authorized */

You can view the authorizations for the current user by running the auths command. Here are
the authorizations for a normal user:

$ auths
solaris.device.cdrw,solaris.profmgr.read,solaris.jobs.user,solaris
.mail.mailq,solaris.device.mount.removable,solaris.admin.usermgr.read
,solaris.admin.logsvc.read,solaris.admin.fsmgr.read,solaris.admin
.serialmgr.read,solaris.admin.diskmgr.read,solaris.admin.procmgr.user
,solaris.compsys.read,solaris.admin.printer.read,solaris.admin
.prodreg.read,solaris.admin.dcmgr.read,solaris.snmp.read,solaris
.project.read,solaris.admin.patchmgr.read,solaris.network.hosts
.read,solaris.admin.volmgr.read

Here are the authorizations for root:

auths
solaris.*

As expected, and as expressed with the wildcard *, root has every possible authorization.

You can assign authorizations directly to users using the usermod command. For example,
suppose you want to allow user test to enable and disable SMF services. Without the
solaris.smf.modify.framework authorization, test can’t do that:

$ auths | grep smf
$ /usr/sbin/svcadm disable telnet
svcadm: svc:/network/telnet:default: Permission denied.

387

Part III OpenSolaris File Systems, Networking, and Security

As root, or as a user with the solaris.grant authorization, you can assign the
solaris.smf.modify.framework authorization to user test:

usermod -A solaris.smf.modify.framework test

If your user information is stored in a directory server such as NIS or LDAP, you
cannot assign or modify authorizations or profiles (discussed in subsequent sections)

with usermod.

Now user test can enable and disable SMF services:

$ auths | grep smf
solaris.smf.modify.framework,solaris.device.cdrw,solaris.profmgr.
read,solaris.jobs.user,solaris.mail.mailq,solaris.device.mount.
removable,solaris.admin.usermgr.read,solaris.admin.logsvc.read,
solaris.admin.fsmgr.read,solaris.admin.serialmgr.read,solaris.
admin.diskmgr.read,solaris.admin.procmgr.user,solaris.compsys.
read,solaris.admin.printer.read,solaris.admin.prodreg.read,
solaris.admin.dcmgr.read,solaris.snmp.read,solaris.project.read,
solaris.admin.patchmgr.read,solaris.network.hosts.read,solaris.
admin.volmgr.read
$ svcs telnet
STATE STIME FMRI
online 13:21:45 svc:/network/telnet:default
$ /usr/sbin/svcadm disable telnet
$ svcs telnet
STATE STIME FMRI
disabled 13:21:49 svc:/network/telnet:default

The -A option to usermod replaces the current authorizations that aren’t part of
an assigned rights profile with the new list, rather than add the authorization to the

existing list.

One question you might have at this point is how to determine which authorizations are
required for which actions. The answer, unfortunately, is basically trial and error. There’s no
explicit mapping that you can look up, and the command man pages don’t provide the specific
authorizations.

Despite the capability to assign authorizations directly to users, it’s best to avoid that in favor
of the bigger picture: rights profiles and roles. For one thing, messing around with individual
authorizations is annoying and difficult to track. Moreover, simply assigning the appropriate
authorization to a user is often not enough to allow that user to perform the desired action,
because the necessary application or script itself may check user IDs or privileges to run. These
user ids and privileges are assigned as part of a rights profile. Finally, as mentioned, it’s not
always clear which authorization is required for which action. The predefined rights profiles
include the necessary authorizations for the higher-level goals. For all of these reasons, it’s best
to work on the level of rights profiles and roles, rather than directly assign authorizations.

388

Security 11

Rights profiles
A rights profile is a collection of authorizations along with a list of commands that can be run
with different user IDs or special privileges by users or roles assigned to that rights profile. The
rights profile information is split between /etc/security/prof_attr, which lists the autho-
rizations, and /etc/security/exec_attr, which lists the commands. For example, consider
the File System Management rights profile. The entry in /etc/security/prof_attr looks
like this:

File System Management:::Manage, mount, share file systems:profiles=
SMB Management,VSCAN Management;auths=solaris.smf.manage.autofs,
solaris.smf.manage.shares.*, solaris.smf.value.shares.*,solaris.
admin.fsmgr.*,solaris.admin.diskmgr.*,solaris.admin.volmgr.*;help=
RtFileSysMngmnt.html

The fields in this entry are colon-separated. The first field in the entry, File System Management,
is the name of the profile. The next field that’s filled is just a human-readable description. The
final field sets the properties. One property of particular interest is the profiles property,
which allows a profile to be layered on other profiles. In this case, the File System Manage-
ment profile incorporates the SMB Management and VSCAN profiles. The second property
of particular interest is the auths property, which specifies the specific authorizations from
/etc/security/auth_attr that are part of this rights profile. In this case, you can see
several file-system-related authorizations listed, which is expected because this is the File System
Management rights profile.

The second half of the rights profile description is in /etc/security/exec_attr. Here are a
few of the many File System Management entries from that file:

File System Management:solaris:cmd:::/sbin/mount:privs=sys_mount
File System Management:solaris:cmd:::/usr/sbin/quotacheck:uid=0;gid=sys
File System Management:suser:cmd:::/usr/bin/eject:euid=0
File System Management:suser:cmd:::/usr/bin/mkdir:euid=0

Each entry in this file starts with the profile name. In all of these cases, the final field
lists a command and any security attributes that must accompany it. For example, the
/usr/bin/mkdir command is listed with an effective uid of 0. The /sbin/mount command is
listed with the sys_mount privilege. Because of these security attributes, non-root users assigned
this rights profile can run these commands, which will execute with the appropriate privileges.
Process privileges are discussed later in this chapter.

OpenSolaris comes with quite a few interesting rights profiles already defined, from Apache 22
Administration to Project Management to ZFS File System Management. Three profiles deserve
particular examination:

■ Basic Solaris User — Contains the default authorizations and commands required by
any user of the system, including read access to many facilities, read/write access to the
CD/DVD device, and others.

389

Part III OpenSolaris File Systems, Networking, and Security

■ Primary Administrator — Essentially grants superuser capabilities, including all autho-
rizations and the capability to run any command as uid 0. As mentioned earlier, this pro-
file is assigned to the user created by the OpenSolaris installer.

■ All — Grants access to all commands. To prevent overriding the security and privilege
settings on commands in other profiles, this profile should generally be listed last in a
user’s profile list.

To examine the rights profiles of a particular user, run the profiles command:

$ profiles
Basic Solaris User
All

As you can see, by default a standard user account contains two profiles: Basic Solaris User and
All. These are assigned in the /etc/security/policy.conf file:

AUTHS_GRANTED=solaris.device.cdrw
PROFS_GRANTED=Basic Solaris User

This file lists the authorizations and profiles granted by default to all users. You might be won-
dering where the All profile comes from. The Basic Solaris User profile includes the All profile,
so listing only the Basic Solaris User draws in the All profile after the Basic Solaris User profile
(recall that the order is important!)

Assigning and using profiles
Now that you understand the basics of profiles, you can assign them to users. For example, sup-
pose you want to allow the user test to configure and administer zones. With only the default
profiles and authorizations, test can’t create a zone:

$ /usr/sbin/zonecfg -z myzone
WARNING: you do not have write access to this zone’s configuration file;
going into read-only mode.

You can assign the Zone Management profile to user test with the usermod command:

usermod -P "Zone Management" test

The -P option to usermod replaces current profiles that aren’t part of the default
assignment in /etc/security/policy.conf with the new list, rather than add

the profiles to the existing list.

Now user test should be able to create a zone. However, test still cannot run zonecfg
directly in a normal shell:

$ profiles
Zone Management
Basic Solaris User

390

Security 11

All
$ /usr/sbin/zonecfg -z myzone
WARNING: you do not have write access to this zone’s
configuration file;
going into read-only mode.

What’s going on? Doesn’t the Zone Management profile provide the capability to create zones? It
does, but it requires an extra step. Note that zonecfg is listed in /etc/security/exec_attr
as follows:

Zone Management:solaris:cmd:::/usr/sbin/zonecfg:uid=0

Because zonecfg requires special privileges to run, it must be executed from a profile shell. As
explained earlier, there are two ways to execute privileged commands. The first way is to actu-
ally run the shell, and then execute the zonecfg command from inside it. This example uses
the pfsh shell:

$ pfsh
$ /usr/sbin/zonecfg -z myzone
myzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:myzone> create
zonecfg:myzone> set zonepath=/test/myzone
zonecfg:myzone> exit
$ exit
$

The second way is to execute a privileged command directly with pfexec:

$ pfexec /usr/sbin/zonecfg -z myzone
myzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:myzone> create
zonecfg:myzone> set zonepath=/test/myzone
zonecfg:myzone> exit
$

For convenience, you can configure a role with a profile shell as the default shell and assign the
rights profiles to that role to avoid dealing explicitly with profile shells.

Creating profiles
You can, of course, create, modify, and delete profiles. The easiest way is to directly modify
/etc/security/prof_attr and /etc/security/exec_attr. For example, here’s an
entry from /etc/security/prof_attr to create a new profile that combines a few random
authorizations:

myprofile:::Test Profile:auths=solaris.network.wifi.config;solaris.smf.manage.
cron;solaris.jobs.admin

391

Part III OpenSolaris File Systems, Networking, and Security

Here’s the entry from /etc/security/exec_attr to give that profile the capability to execute
zonecfg as uid 0:

myprofile:solaris:cmd:::/usr/sbin/zonecfg:uid=0

Now you can assign this profile to a user:

usermod -P myprofile test

This enables the user to perform the actions allowed by the profile:

$ profiles
myprofile
Basic Solaris User
All
$ pfexec /usr/sbin/zonecfg -z myzone
myzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:myzone> create
zonecfg:myzone> set zonepath=/test/myzone
zonecfg:myzone> exit
$

To delete the profile, simply remove the entries from exec_attr and prof_attr.

Roles
A role is an identity on the system similar to a user. Like a user, a role can be assigned autho-
rizations and rights profiles. Given that a role is so similar to a user, you might be wondering
why you should use roles. Here are a few advantages:

■ Roles must be explicitly assigned to users. To log in as that role, you must first log in as
one of the users with that role assigned, then su to the role. Even an attacker who gains
a role password cannot log in as that role unless the attacker also gains access to a user
account with that role assigned.

■ A role can be assigned a profile login shell, avoiding the need to run the shell explicitly or
use pfexec to access commands allowed by assigned profiles.

■ Roles can be assigned to more than one user, centralizing the assignments of authoriza-
tions and profiles.

Now that you understand the benefits of roles, you are ready to learn how to use them. The first
step is to create a role, with the roleadd command. This example adds a role for zone adminis-
tration, assigning the pfsh profile shell and the Zone Management profile to it:

roleadd -s /usr/bin/pfsh -P "Zone Management" zoneadm
passwd zoneadm
New Password:
Re-enter new Password:
passwd: password successfully changed for zoneadm

392

Security 11

Roles are created in the same namespace as users, so you can’t use a username or userID for a
role that’s already been used for a user. Adding a role creates an entry in /etc/passwd just like
it does for a user, and a fairly self-explanatory entry in /etc/user_attr:

grep zoneadm /etc/passwd
zoneadm:x:109:1::/home/zoneadm:/usr/bin/pfsh
grep zoneadm /etc/user_attr
zoneadm::::type=role;profiles=Zone Management

You can delete and modify roles with roledel and rolemod, respectively. Use rolemod
-P to assign profiles to the role. You can also assign authorizations directly to the role with
rolemod -A.

If your user information is stored in a directory server such as NIS or LDAP, you
cannot assign or modify roles with rolemod.

As mentioned, only users with roles assigned can use those roles. Without assigning the role to
anyone, it can’t be used:

$ su zoneadm
Password:
Roles can only be assumed by authorized users
su: Sorry
$

You can assign roles with the usermod command:

usermod -R zoneadm test

Now user test can su to the zoneadm role. You can use the roles command to view the roles
assigned to a user. The following example verifies that this user is assigned the zoneadm role,
switches to that role, and then executes zonecfg to create a zone:

$ roles
zoneadm
$ su zoneadm
Password:

$ /usr/sbin/zonecfg -z myzone
myzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:myzone> create
zonecfg:myzone> set zonepath=/test/myzone
zonecfg:myzone> exit
$

You cannot log in directly as a role. You must always log in to a user account with
that role assigned and su to the role.

393

Part III OpenSolaris File Systems, Networking, and Security

Making root a role
As described earlier, the OpenSolaris distribution makes root a role if you create a user in the
installer. If you’re using a different distribution, or you didn’t create an initial user and you now
want to make root a role by hand, you can do so easily with usermod:

usermod -K type=role root
grep root /etc/user_attr
root::::type=role;auths=solaris.*,solaris.grant;profiles=Web Console
Management,All;lock_after_retries=no;clearance=admin_high;min_label=
admin_low

You must assign the root role to at least one user; otherwise, you’ll never be able to
log in as root again!

usermod -R root test

You can use this technique to move any user to a role. To move a role back to a user, you must
use rolemod instead:

rolemod -K type=normal root

Privileges
As discussed earlier in the chapter, role-based access control (RBAC) implements the policy of
least privilege for users in OpenSolaris. Privileges in OpenSolaris essentially do the same thing,
but at the process level.

setuid
Before delving into OpenSolaris privileges, it’s helpful to understand the old way of solving the
problem of running processes with more permissions than the user who runs them. The Set User
ID (setuid) capability in UNIX enables a process to run with the permissions of the executable
file’s owner instead of the permissions of the user who executes it. A setuid executable that runs
with root permissions is called setuid root. Traditionally, setuid is the only mechanism available
to run commands that require more privileges than the user executing the command has.
Thus, many commands in OpenSolaris, such as passwd and rlogin, run with setuid, usually
setuid root.

Setuid root programs, however, are security risks. A process running as root has virtually unlim-
ited power. If it’s compromised, through a bug, buffer-overflow attack, or some other technique,
the attacker can do unlimited damage.

Furthermore, although most processes that run as root need only a handful of additional
capabilities, the all-or-nothing model gives them far more privileges than they need, creating
security risks. Consider a process that needs to communicate over a privileged network port.

394

Security 11

In the all-or-nothing model, this process would need to run as root, giving it a multitude of
unneeded capabilities, such as write access to all files on the system, fork and exec privileges,
access to devices, and more. If attackers compromised this process, perhaps via a bug in the
applications, they could use it to perform any malicious activities they desired.

Because setuid root programs can be so dangerous, and are so well-loved by
attackers, periodically scan your system for new setuid root programs. The Basic

Audit Reporting Tool (BART) described later in this chapter can help with this task.

Privileges overview
The privileges mechanism in OpenSolaris provides a safer alternative to the all-or-nothing model
of running processes as setuid root. Processes can instead be assigned fine-grained privileges for
specific activities. For example, the process that needs access to a privileged port would require
the PRIV_NET_PRIVADDR privilege. Assigning the requisite privileges to a command in a rights
profile provides several benefits. First, only users or roles assigned that rights profile can exe-
cute it. Second, and most important, the command can be assigned the least privileges it needs
to run properly, instead of the unlimited privileges of root.

OpenSolaris, coming from the traditional UNIX model, hasn’t transitioned completely to priv-
ileges, so you’ll still see quite a few setuid programs and daemons running as root. However,
some commands have transitioned to use privileges, or have at least become part of rights pro-
files specifying that they run as uid 0 instead of being setuid root explicitly. Furthermore, a few
system daemons now run as user daemon instead of user root, with the appropriate privileges.

To list all the privileges in OpenSolaris, run ppriv -lv, or look at the privi-
leges(5) man page.

To enhance security further, processes that are privilege-aware can discard the privileges with
which they were started but no longer need. For example, after daemonizing, a process could
drop the PRIV_PROC_FORK and PRIV_PROC_EXEC privileges such that, even if the process were
compromised, it wouldn’t be capable of doing as much damage.

Although privileges apply principally to processes, they can also be assigned directly to users.
Processes started by those users inherit the specified privileges from them. Unlike authorizations,
privileges are enforced at the kernel level, so no profile shell or su to a role is needed.

By default, zones have restricted privileges. However, they are configurable. Consult
Chapter 19 for details on privileges and zones.

Viewing privileges
You can use the ppriv command to view your shell’s current privileges:

$ ppriv $$
755: -bash

395

Part III OpenSolaris File Systems, Networking, and Security

flags=<none>

E: basic
I: basic
P: basic
L: all

This output requires some explanation. Table 11-4 summarizes the four privilege sets for each
process.

TABLE 11-4

Process Privilege Sets

Set Description

Effective Privileges the process is current using (currently ‘‘in effect’’)

Inheritable Privileges that are passed across a call to exec

Permitted Privileges the process is currently allowed to use.

Limit Maximum privileges that the process would ever be allowed to assume

The output from ppriv uses E, I, P, and L to refer to the Effective, Inheritable, Permitted, and
Limit sets, respectively. The effective, inheritable, and permitted sets are all basic, while the
limit set is all. The basic set, as the name implies, reflects fundamental privileges that all pro-
cesses generally need. The all set, also as the name implies, reflects all privileges on the system.
To see an explicit list of privileges instead of the basic and all shorthands, use the -v option
to ppriv:

$ ppriv -v $$
755: -bash
flags=<none>

E: file_link_any,proc_exec,proc_fork,proc_info,proc_session
I: file_link_any,proc_exec,proc_fork,proc_info,proc_session
P: file_link_any,proc_exec,proc_fork,proc_info,proc_session
L: contract_event,contract_observer,cpc_cpu,dtrace_kernel,

dtrace_proc,dtrace_user,file_chown,file_chown_self,file_dac_execute,
file_dac_read,file_dac_search,file_dac_write,file_downgrade_sl,file_
flag_set,file_link_any,file_owner,file_setid,file_upgrade_sl,
graphics_access,graphics_map,ipc_dac_read,ipc_dac_write,ipc_owner,
net_bindmlp,net_icmpaccess,net_mac_aware,net_privaddr,net_rawaccess,
proc_audit,proc_chroot,proc_clock_highres,proc_exec,proc_fork,proc_
info,proc_lock_memory,proc_owner,proc_priocntl,proc_session,proc_
setid,proc_taskid,proc_zone,sys_acct,sys_admin,sys_audit,sys_config,
sys_devices,sys_ip_config,sys_ipc_config,sys_linkdir,sys_mount,sys_
net_config,sys_nfs,sys_res_config,sys_resource,sys_smb,sys_suser_

396

Security 11

compat,sys_time,sys_trans_label,win_colormap,win_config,win_dac_
read,win_dac_write,win_devices,win_dga,win_downgrade_sl,win_
fontpath,win_mac_read,win_mac_write,win_selection,win_upgrade_sl

Running ppriv as root shows the following:

ppriv $$
728: sh
flags=<none>

E: all
I: basic
P: all
L: all

As expected, the root shell has all privileges. Interestingly, though, the inheritable set is only
basic. That’s a security measure to prevent even those processes running with root privileges
from spawning other processes with those same privileges.

You can also view the privilege sets on a currently running process with ppriv:

ppriv `pgrep syslogd`
488: /usr/sbin/syslogd
flags=<none>

E: all
I: basic
P: all
L: all

Another useful feature of ppriv is the -D option, which causes it to specify exactly which priv-
ileges are missing for a desired operation. Use it with -e to execute a command under ppriv.
For example, users by default can’t chown files:

$ ls -l testfile
-rw-r--r-- 1 test other 0 Mar 26 11:08 testfile
$ chown nsolter testfile
chown: testfile: Not owner
$ ppriv -eD chown nsolter testfile
chown[892]: missing privilege "file_chown_self" (euid=108, syscall
= 16) needed at tmp_setattr+0x5e
chown: testfile: Not owner

Now you know that you need the file_chown_self privilege to change ownership of a file.
The truss command also prints the missing privileges for an operation:

$ truss chown nsolter testfile
. . .

chown("testfile", 101, -1) Err#1 EPERM [file_chown_self]
. . .

397

Part III OpenSolaris File Systems, Networking, and Security

Privileges and RBAC
As described earlier, rights profiles can contain commands that run with specific security
attributes. One of those attributes could be simply running as uid or euid root. However,
you can also specify finer-grained privileges. For example, consider the entry for the mount
command in /etc/security/exec_attr:

File System Management:solaris:cmd:::/sbin/mount:privs=sys_mount

This line says that the mount command should run with the extra sys_mount privilege when
executed by a user assigned the File System Management rights profile. Recall that users must
execute privileged commands via a profile shell or with pfexec.

This technique is the preferred way to use process privileges. Rather than assign privileges
directly to users or roles, you specify commands with security privileges as part of a rights
profile. That rights profile can then be assigned to a user or role.

Assigning privileges to users and roles
Although it’s not the preferred way to use privileges, you can assign them directly to users
and roles with the usermod and rolemod commands. This is sometimes useful for quickly
modifying a user’s or role’s privileges for testing purposes, but adding unneeded privileges can
be a security risk and removing necessary privileges can make user accounts unusable. Instead
of assigning privileges directly to users and roles, it’s better to assign privileges to processes via
rights profiles, as described previously.

Restricted shell
If you’re concerned about clueless users inadvertently damaging the system in some way,
you can assign a restricted shell to them instead of a standard shell. The restricted shell,
/usr/lib/rsh, prohibits changing directories, setting the PATH, using / in path or command
names, and redirecting output. It’s not too fun to use, but it can be useful for severely limiting a
user. You can set the login shell for a user with usermod:

usermod -s /usr/lib/rsh test

Now user test can’t do too much:

$ cd /
cd: restricted
$ /usr/bin/passwd
/usr/bin/passwd: restricted

Most users shouldn’t need to be assigned a restricted shell. However, you should also strongly
encourage all users to avoid putting the current directory in their paths. Users with a dot (.)
in their paths are at risk for Trojan horse commands that could be placed in a public directory,
and then executed unknowingly instead of the desired command if that directory were the
working directory.

398

Security 11

Access control lists
By employing the requisite file system security measures, you can limit an attacker’s ability to
access files, even if your system is compromised in some way.

Traditional UNIX file permissions allow you to grant read, write, and execute access at three dif-
ferent levels: to the file owner, to the group, and to ‘‘the world.’’ To protect files from nefari-
ous attackers, users should not grant write and execute access to anyone except themselves. A
world-readable, writable, or executable file can be accessed by anyone with access to the sys-
tem, so an attacker who breaks in to any account could access that file. However, sometimes
you need to grant access to files for various reasons. Because the traditional UNIX file permis-
sions are fairly coarse, OpenSolaris implements finer-grained access control lists (ACLs) for its
file systems. Unfortunately, ACLs differ between UFS and ZFS/NFSv4.

See Chapters 7, 8, and 10 for coverage of UFS, ZFS, and NFS, respectively.

UFS access control lists
UFS ACLs add the capability to specify permissions on a per-user and per-group basis. For
example, for a specific file, you could give read and write permissions to one user and read-only
permissions to another user. Or you could give execute permissions to one group, except for
one user in that group.

Use getfacl to see the ACLs on a UFS file:

$ getfacl accltest

file: accltest
owner: nsolter
group: staff
user::rw-
group::r-- #effective:r--
mask:r--
other:r--

The user, group, and other lines are simply the standard owner, group, and ‘‘all other’’ file per-
missions. The mask is the maximum permissions for any user other than the owner. By setting
the mask, you can reduce the permissions, which are represented by the effective permissions
listed in the right column of this output.

You can use setfacl to set ACLs on a UFS file. The following example removes read permis-
sions from group and other, giving read permissions only to user test for the accltest file:

$ setfacl -m group::---,other:---,user:test:r-- accltest
$ getfacl accltest

file: accltest

399

Part III OpenSolaris File Systems, Networking, and Security

owner: nsolter
group: staff
user::rw-
user:test:r-- #effective:r--
group::--- #effective:---
mask:r--
other:---

Note that group is followed by two colons, but other only one colon. With the -m option to
setfacl, you can specify selected ACL entries. Use -s to set all ACL entries.

As another example, you could give the staff group read permissions, except for user test.
This example also shows that you can use the octal representation for permissions instead of the
symbolic representation:

$ setfacl -m group::4,user:test:0 accltest
$ getfacl accltest

file: accltest
owner: nsolter
group: staff
user::rw-
user:test:--- #effective:---
group::r-- #effective:r--
mask:r--
other:---

You can also set default ACLs on a directory, which apply to any file created in that directory:

$ setfacl -m default:user::6,default:group::0,default:other:0.
$ getfacl.

file: .
owner: nsolter
group: staff
user::rwx
group::r-x #effective:r-x
mask:r-x
other:r-x
default:user::rw-
default:group::---
default:other:---
$ touch defaulttest
$ getfacl defaulttest

file: defaulttest
owner: nsolter
group: staff
user::rw-

400

Security 11

group::--- #effective:---
mask:---
other:---

To delete ACLs, use the -d option to setfacl:

$ setfacl -d user:test accltest
$ getfacl accltest

file: accltest
owner: nsolter
group: staff
user::rw-
group::r-- #effective:r--
mask:r--
other:---

In our experience, UFS ACLs are not commonly used, so to avoid confusing your fel-
low users, employ them only when strictly necessary.

ZFS access control lists
In addition to providing the finer-grained user-level controls in UFS ACLs, ZFS provides
finer-grained permissions. Instead of just read, write, and execute, the NFSv4 specification
includes all of the following permissions:

read_data read_xattr delete_child
list_directory write_xattr read_acl
write_data execute write_acl
add_file read_attributes write_owner
append_data write_attributes synchronize
add_subdirectory delete

However, synchronize and append_data are not supported on OpenSolaris; and note that
some of the permissions, such as list_directory, add_subdirectory, and delete_child,
are applicable only to directories. Most of the permissions are self-explanatory, but consult the
chmod(1) man page for a detailed description of each of these permissions.

ZFS uses the same ACLs as NFSv4 and CIFS. See Chapter 10 for details on NFS and
CIFS.

ZFS permissions also have a concept of allow or deny. Each permission is explicitly allowed or
denied. The remainder of this section shows ZFS ACL examples.

Use /usr/bin/ls -v to view ZFS ACLs:

$ /usr/bin/ls -v accltest
-rw-r--r-- 1 nsolter staff 15 Apr 1 13:58 accltest

401

Part III OpenSolaris File Systems, Networking, and Security

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

As shown in ACL entry 1, the file owner is explicitly allowed to read, write, and append data,
write attributes, extended attributes and ACLs, and change the file owner. However, the file
owner is denied execution permissions in ACL entry 0. Entries 2 and 3 deny write and execute
permissions for the group, but allow read permissions. Entries 4 and 5 deny write and execute
permissions, but allow read permissions for everyone who is not the owner or in the group.

The GNU versions of ls and chmod do not understand ZFS ACLs. You must use
/usr/bin/ls and /usr/bin/chmod, not the GNU versions /usr/gnu/bin/ls

and /usr/gnu/bin/chmod to view and modify ZFS ACLs. Because /usr/gnu/bin is first in
your path by default, you may need to explicitly list the full path for ls and chmod to get the
/usr/bin versions.

You can modify ZFS file ACLs with the /usr/bin/chmod command. To remove all permissions
from group and other and give read permissions to user test, use the following commands:

$ /usr/bin/chmod 600 accltest
$ /usr/bin/chmod A+user:test:read_data:allow accltest
$ /usr/bin/ls -v accltest
-rw-------+ 1 nsolter staff 0 Apr 1 17:46 accltest

0:user:test:read_data:allow
1:owner@:execute:deny
2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
3:group@:read_data/write_data/append_data/execute:deny
4:group@::allow
5:everyone@:read_data/write_data/append_data/write_xattr/execute

/write_attributes/write_acl/write_owner:deny
6:everyone@:read_xattr/read_attributes/read_acl/synchronize:allow

The first command uses the shortcut of setting the file permissions to 600, which ZFS automati-
cally translates into the appropriate ACLs for owner, group, and everyone. The second command
explicitly adds the read_data permission for the test user.

If instead you want to give everyone read permissions except for user test, run the following
commands:

$ /usr/bin/chmod 644 accltest
$ /usr/bin/ls -v accltest
-rw-r--r--+ 1 nsolter staff 0 Apr 1 18:00 accltest

402

Security 11

0:user:test::deny
1:user:test:read_data:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data/execute:deny
5:group@:read_data:allow
6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow
$ /usr/bin/chmod A1- accltest
$ /usr/bin/chmod A0=user:test:read_data:deny accltest
$ /usr/bin/ls -v accltest
-rw-r--r--+ 1 nsolter staff 0 Apr 1 18:00 accltest

0:user:test:read_data:deny
1:owner@:execute:deny
2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
3:group@:write_data/append_data/execute:deny
4:group@:read_data:allow
5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

This example first uses the standard UNIX permissions to give everyone read permissions.
Then it removes entry 1 in the ACL list, which gives read permissions to user test, with this
command:

$ /usr/bin/chmod A1- accltest

Finally, it changes entry 0 to deny read permissions for user test:

$ /usr/bin/chmod A0=user:test:read_data:deny accltest

Note that the test user can still list the file attributes and the ACLs on the file, because
read_attributes and read_acl are not denied.

ZFS also provides a compact permissions format. To see permissions in this format, use ls -V:

$ /usr/bin/ls -V accltest
-rw-r--r--+ 1 nsolter staff 0 Apr 1 18:00 accltest

user:test:r-------------:-------:deny
owner@:--x-----------:-------:deny
owner@:rw-p---A-W-Co-:-------:allow
group@:-wxp----------:-------:deny
group@:r-------------:-------:allow

everyone@:-wxp---A-W-Co-:-------:deny
everyone@:r-----a-R-c--s:-------:allow

403

Part III OpenSolaris File Systems, Networking, and Security

In this format, each permission is represented by a single unique character, in order, from
read_data (r) to synchronize (s). You can use this shorthand in the chmod com-
mand line as well. For example, to give user test the read_data, read_xttr, read,
read_attributes, and read_acl permissions, you can use the following:

$ /usr/bin/chmod A0=user:test:raRc:allow accltest
$ /usr/bin/ls -v accltest
-rw-r--r--+ 1 nsolter staff 0 Apr 1 18:00 accltest

0:user:test:read_data/read_xattr/read_attributes/read_acl:allow
1:owner@:execute:deny
2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
3:group@:write_data/append_data/execute:deny
4:group@:read_data:allow
5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

As with UFS, ZFS supports ACLs on directories. Unlike UFS, ZFS also supports four different
inheritance flags: file_inherit, dir_inherit, inherit_only, and no_propagate. These
flags can be specified on directories, and applied to files and subdirectories created within those
directories. The file_inherit and dir_inherit flags specify that files and subdirectories cre-
ated in that directory should inherit the permissions of that directory. The inherit_only flag
means that the specified permissions apply only to subdirectories and files, not to the directory
itself. Finally, no_propagate means that the permissions inheritance should not apply transi-
tively to files and subdirectories within subdirectories.

Note that the behavior of the inheritance flags is moderated by the aclinherit property on the
ZFS dataset. See Chapter 8 for details on ZFS dataset properties.

Encrypted files
Another way to protect your files against attackers who obtain access to your user account, or
even to root, is to encrypt them. You can use the encrypt and decrypt commands to encrypt
and decrypt your files, respectively. First, use encrypt –l to see a list of available algorithms
and their keysizes:

$ encrypt -l
Algorithm Keysize: Min Max (bits)
--
aes 128 128
arcfour 8 128
des 64 64
3des 192 192

404

Security 11

To encrypt a file, you need a key, which you can generate with the pktool command and store
it in a file:

$ pktool genkey keystore=file outkey=filekey keytype=generic \
keylen=192

Finally, encrypt the file:

$ encrypt -a 3des -k filekey -i test.txt -o test.encrypted.txt

If you don’t specify a key, you’ll be prompted for a passphrase, which is converted into a key.

You can decrypt the file with the decrypt command:

$ decrypt -a 3des -k filekey -i test.encrypted.txt -o \
test.decrypted.txt

Consult the pktool(1), encrypt(1), and decrypt(1) man pages for more informa-
tion on these tools. The OpenSolaris cryptography framework takes advantage of spe-

cial cryptography hardware if it is found on the system.

Encrypting individual files by hand can get tiresome. Luckily, there is a project in progress to
provide encryption support for ZFS datasets.

To learn more about ZFS encryption, consult Chapter 8, ‘‘ZFS.’’

Message digests
OpenSolaris provides several tools for manually calculating message digests and message authen-
tication codes (MACs). A message digest, also called a hash or a checksum, is simply a number that
is uniquely generated from a file. The mathematical algorithms used in hash computation make
it extremely unlikely that different files would generate the same hash. These digests are useful
for verifying file or message integrity.

A message authentication code is like a digest, but protected with a key, such that it can provide
message authentication.

If you come from a Linux background, you’re probably familiar with /usr/bin/md5sum,
/usr/bin/sha1sum, and the other Secure Hash Algorithm (SHA) digests such as
/usr/bin/sha224sum and so on. OpenSolaris also includes the traditional digest
command, which provides functionality similar to md5sum and friends.

Additionally, OpenSolaris provides the mac command for key-protected authentication.

Consult the man pages for these commands, all in section 1, for details.

405

Part III OpenSolaris File Systems, Networking, and Security

Preventing user stack execution
In addition to protecting access to regular files, you must consider executable files. Most
legitimate programs have no need to execute code off their stack. However, attackers can exploit
executable stacks for buffer overflows and other similar attacks. Unfortunately, the default
behavior in OpenSolaris is to mark each program’s stack as executable. However, you can
change this behavior by adding the following two lines to /etc/system and rebooting the
system:

set noexec_user_stack=1
set noexec_user_stack_log=1

The first line makes the user stacks non-executable, while the second specifies that attempts to
execute code off the stack should be logged. With these changes, stacks are not executable, thus
preventing many of these kinds of attacks.

On rare occasions, stack execution is required by legitimate programs. Although we
recommend disabling this feature, be aware that if you come across an application

that requires it, you’ll need to enable it.

Zones and resource management
Two related OpenSolaris features, zones and resource management, are useful for limiting user
and process damage to your system. Zones can serve as security containers, isolating malicious
users or rogue processes, while effective resource management can provide similar protection
even in the global zone.

The security applications of zones and resource management are discussed in
Chapters 19 and 18, respectively.

Ensuring Secure Communication
Even if attackers are unable to attack your OpenSolaris system directly, they could still gain
important information by eavesdropping or snooping your network communication between
machines. Furthermore, snooping the networking communication is a great way to obtain
passwords and other information that enables the attacker to break into the system.

Attackers can also interfere with your network communication by modifying packets as they go
by, or by resending, or replaying, certain packets.

Communication over the network is secure only if it guarantees confidentiality, authenticity, and
integrity. Confidentiality means that no one between the sender and intended recipient of the
data can read the data. Confidentiality is enabled through encryption. The process of encryption
mangles the message in such a way that only the intended recipient can unmangle, or decrypt,

406

Security 11

it. Thus, encryption protects the secrecy of your communication. The encryption algorithms are
generally public, but each individual or machine uses different keys. There are two basic forms
of encryption in use today:

■ Symmetric, or shared-key, encryption — Uses the same key to both encrypt and
decrypt messages. Symmetric encryption is usually quick, but the downside is the
problem of key distribution. Because both the sender and the recipient of a message need
the shared key, there’s a bootstrapping problem of getting that shared key to both parties
in a secure fashion. Well-known symmetric encryption algorithms are 3DES and Blowfish.

■ Asymmetric, or public-key, encryption — Uses different keys for encryption and
decryption. A user or machine can freely distribute a public key, which anyone can
use to encrypt a message that only the intended user or machine can then decrypt with
its private key. This technique avoids the bootstrapping key distribution problem but
generally results in performance that is significantly below that of symmetric encryption.
A common compromise is to use public key encryption to securely exchange a shared
key, which is then used for the remainder of the transaction. Well-known public key
algorithms are Diffie-Hellman and RSA.

Authenticity means that the recipient can securely verify the sender. Authentication is usually
obtained through digital signatures, in which the sender uses his or her private key to produce
a hash or digest of the message that only the sender could produce.

Data integrity means that the information is not modified en route. Integrity is usually provided
by including digests, or secure checksums, of the message that can be verified by the recipient.
Digest algorithms, like encryption algorithms, are public, but use a shared secret key (or pub-
lic/private key pairs) to provide security. Well-known digest algorithms include MD5 and SHA.

There are basically two levels at which secure communication can be implemented: the
application level and the network level. Application-level support can be implemented in an ad
hoc fashion by each application type, or it can implement a standard. The most widely known
standards are the Secure Socket Layer (SSL) and its successor, the Transport Layer Security
(TLS). For example, communication between a web browser and a web server, or between an
e-mail client and an e-mail server, often use SSL or TLS. The key aspect of application-level
security is that it must be provided by each application independently. The Secure Shell,
discussed in more detail in the next section, is one of the most useful applications employing
application-level security.

Technically speaking, SSL and TSL implement security at the socket layer, which is
right below the application layer; but the implementation is usually part of the appli-

cation itself, rather than something at the network layer that can apply to all applications, which
is why this book categorizes it as application-level security.

An alternative to application-level security is network-level security — specifically, Internet
Protocol (IP)-level security. Security at this level protects all IP network traffic (which is almost
everything of interest) between the systems implementing it. With IP-level security, there is
no need for individual applications to implement their own forms of encryption and integrity.
OpenSolaris’ implementation of IP security is discussed later in this chapter.

407

Part III OpenSolaris File Systems, Networking, and Security

Secure Shell
The Secure Shell (SSH) provides a secure alternative to telnet, rlogin, rsh, ftp, and other
clear-text network services. If you’ve ever used the ssh command to log in to a remote machine,
you’ve used the Secure Shell network service. As described in the ‘‘Secure by Default’’ section
earlier in this chapter, the SSH service is the only network service enabled by default in Open-
Solaris to allow connections from remote machines. OpenSolaris currently provides an imple-
mentation of version 2 of the SSH protocol (SSH-2).

It’s possible to use telnet, rlogin, and other similar services in a more secure fash-
ion with Kerberos covered later in this chapter.

Basic use of ssh is quite straightforward. On the server, make sure that the ssh service is
online:

svcs ssh
STATE STIME FMRI
online 10:19:56 svc:/network/ssh:default

If it’s not running, enable it using the SMF techniques described in Chapter 13.

On the client machine, you can use the ssh command to obtain a secure remote shell on the
server:

$ ssh mendelssohn
Password:
Last login: Sat Mar 29 10:23:09 2008 from 192.168.1.101
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

The first time you connect to a remote machine, you’ll see the following:

The authenticity of host ‘mendelssohn (192.168.1.120)’ can’t be established.
RSA key fingerprint is 85:71:ee:5e:03:9f:a1:52:1e:67:1c:26:7d:4a:c1:7a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘mendelssohn,192.168.1.120’ (RSA) to
the list of known hosts.

That’s normal and expected. You can usually just answer ‘‘yes’’ unless you’re concerned about the
authenticity of the machine in question.

Non-password-based authentication
If you want to get fancy, there are a few different ways to set up your systems such that ssh
authenticates automatically instead of prompting for passwords. One method, described later
in this chapter, is to use Kerberos. A second mechanism, which must be implemented by the

408

Security 11

superuser or someone assigned the Primary Administrator role, authenticates at the host level
instead of the user level.

Host-level authentication is generally considered to be less secure than user-level
authentication.

To configure host-level authentication, follow these steps:

1. On the server machine, add the following property to /etc/ssh/sshd_config (or
change it from no to yes):

HostbasedAuthentication yes

2. Set the same property, HostbasedAuthentication, to yes in the /etc/
ssh/ssh_config files on each client that will be authenticated to this server.

3. Create a file on the server machine /etc/shosts.equiv, and add to it all the client
machines, one per line. The hostnames should be fully qualified.

4. Add the SSH public key for each client machine to the /etc/ssh/ssh_known_hosts
file on the server. The SSH public key is found in /etc/ssh/ssh_host_dsa_key.pub.
You can copy it from the client to the server using scp, which is described in more detail
later.

5. Restart the SSH service on the server:

svcadm restart ssh

With these changes, you can now ssh into the server from the configured clients without enter-
ing a password:

$ ssh mendelssohn
Last login: Sat Mar 29 11:31:05 2008 from chopin.example.com
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

Host-based authentication requires DNS to be configured properly for the machines
in your network. Consult Chapter 10 for instructions on setting up DNS.

The final method for avoiding password-based authentication is user-based public key authen-
tication. This method requires each user to generate a public/private key pair. The following
example shows the configuration for SSH authentication from the client machine chopin to
the server machine mendelssohn, and assumes the user has separate home directories on
the two machines, rather than a single network-accessible home directory. The first step is to
generate the public/private key pair with the ssh-keygen command on the client machine.
You can generate either rsa or dsa keys, specified with the -t flag. The differences between the
two algorithms are beyond the scope of this book. Consult a cryptography book listed in the
‘‘Resources’’ section at the end of this chapter for more information.

409

Part III OpenSolaris File Systems, Networking, and Security

$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/export/home/nsolter/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /export/home/nsolter/.ssh/id_dsa.
Your public key has been saved in /export/home/nsolter/.ssh/id_dsa.pub.
The key fingerprint is:
ab:80:31:81:32:51:16:b9:de:5a:48:9b:61:f5:d1:c0 nsolter@chopin

The public key must go into the user’s ∼/.ssh/authorized_keys file on the server machine.
To do this, on the server machine, create the directory if it doesn’t already exist:

$ mkdir ∼/.ssh

Then copy the public key from the client machine. You can use the scp command described in
the next section:

$ scp ∼/.ssh/id_dsa.pub mendelssohn:.ssh/id_dsa_chopin.pub
Password:
id_dsa.pub 100% |*****************************| 601 00:00

Finally, put the key into the ∼/.ssh/authorized_keys file on the server machine:

$ cat ∼/.ssh/id_dsa_chopin.pub >> ∼/.ssh/authorized_keys

Now you can ssh from the client machine to the server machine using your public/private keys
instead of your password:

$ ssh mendelssohn
Enter passphrase for key ‘/export/home/nsolter/.ssh/id_dsa’:
Last login: Sat Mar 29 11:31:07 2008 from chopin.example.com
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

Sadly, you haven’t made your life much easier because you’ve just substituted the dsa key
passphrase for the account password. However, if you must log into multiple machines on
which you have accounts with different passwords, you can set up your ssh configurations on
each machine to allow public/private key authentication. That way, you can ssh to any of those
machines by typing only your key passphrase, instead of the separate account password for each
machine.

To avoid entering even your key passphrase, use the ssh authentication agent to store your
private keys:

$ ssh-agent /bin/bash
$ ssh-add
Enter passphrase for /export/home/nsolter/.ssh/id_dsa:
Identity added: /export/home/nsolter/.ssh/id_dsa (/export/home

410

Security 11

/nsolter/.ssh/id_dsa)
$ ssh mendelssohn
Last login: Sat Mar 29 11:34:49 2008 from chopin.example.com
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

The first command, ssh-agent, starts the authentication agent. You must specify a shell to start
it in so that the environment variables are set up properly. The second command, ssh-add,
adds your keys from ∼/.ssh/. Now, whenever you ssh to a machine configured with your
public key, ssh obtains the private key from the ssh-agent instead of prompting you for the
passphrase. Some users like to configure their login scripts to start the ssh authentication agent
automatically.

If you’re using the OpenSolaris distribution, you’ll find that the default GNOME ses-
sion starts ssh-agent for you automatically.

If you want to remove your keys, run ssh-add -D:

$ ssh-add -D
All identities removed.
$ ssh mendelssohn
Enter passphrase for key ‘/export/home/nsolter/.ssh/id_dsa’:
Last login: Sat Mar 29 11:57:48 2008 from chopin.example.com
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

Now you’re back to entering your passphrase with each ssh connection.

Secure copy and FTP
The secure copy command, scp, is layered on top of ssh. You can use it to copy files to or
from a remote host over a secure connection. The following example copies the test file from
chopin to mendelssohn:

$ scp test.txt mendelssohn:test.txt
test.txt 100% |*****************************| 0 00:00

scp uses the same authentication mechanisms as ssh. In the example, the user has
configured the ssh authentication agent to use non-password-based authentication

without entering a passphrase. See the previous section for details.

Secure copy is a secure alternative to the File Transfer Protocol (FTP), but the user interface
might be unfamiliar. If you prefer the traditional FTP interface, you can use sftp, which is also
layered on top of ssh:

$ sftp mendelssohn
Connecting to mendelssohn . . .

sftp> put test.txt

411

Part III OpenSolaris File Systems, Networking, and Security

Uploading test.txt to /export/home/nsolter/test.txt
test.txt 100% 0 0.0KB/s 00:00
sftp> quit
$

SSH Tunneling
Another useful feature of ssh is tunneling, also called port forwarding. You can use tunneling
to run any TCP-based network service through ssh, enabling you to run a nonsecure service
in a secure manner. To take a trivial example, you can enable a secure telnet by forwarding an
unused local port to port 23 on the server:

$ ssh -L 9876:mendelssohn:23 mendelssohn
Last login: Sat Mar 29 13:47:19 2008 from mendelssohn.exa
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

In a second shell, you can obtain a secure telnet connection to the mendelssohn server by con-
necting to localhost port 9876:

$ hostname
chopin
$ telnet localhost 9876
Trying 127.0.0.1 . . .

Connected to localhost.
Escape character is ‘∧]’.
login: nsolter
Password:
Last login: Sat Mar 29 13:49:10 from chopin.example.com
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$ hostname
mendelssohn

To use ssh tunneling, port forwarding must be enabled on the server by setting
AllowTcpForwarding yes in /etc/ssh/sshd_config.

One of the most useful capabilities of ssh tunneling is X11 forwarding, which you can use to
run GUI applications from a remote machine on your desktop in a secure manner. ssh provides
a convenience option, -X, to use X11 forwarding. Simply connect to the remote machine with
the -X option and launch X11 applications:

$ ssh -X mendelssohn
Last login: Sat Mar 29 13:52:56 2008 from mendelssohn.exa
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$/usr/X11/bin/xterm &
[1] 714
$

412

Security 11

ssh sets up a proxy X11 server on the remote host and sets the shell DISPLAY to connect to
it. Assuming you’re running an X11 server on the client, with this example, an xterm window
should pop up.

To use X11 forwarding, it must be enabled on the server by setting X11Forwarding yes in
/etc/ssh/sshd_config.

To improve the performance of SSH X11 forwarding, use the -C option to ssh to
compress the data sent across the network.

Because you can run any network service securely with ssh, ssh tunneling is sometimes called
a ‘‘poor man’s virtual private network (VPN).’’ However, IPsec, described in the next section,
provides an easier way to implement a VPN.

IP security
IP security (IPsec) implements network security at the IP level. TCP and UDP traffic running on
top of IP is protected, so any application built on top of TCP or UDP benefits from the secu-
rity without any modifications. These applications don’t care, or even need to know, that their
underlying networking communication is being encrypted and/or authenticated. Because pretty
much every network application of interest uses the TCP or UDP protocols, IPsec can protect
basically every network communication on your system. IPsec works with both IPv4 and IPv6.
This chapter shows examples of IPv4 only.

IPsec is actually two different protocols:

■ Authentication Header (AH) — Provides authentication, integrity, and protection
against replays

■ Encapsulating Security Payload (ESP) — Provides encryption, authentication,
integrity, and protection against replays

You can use the protocols individually or in tandem. Note that although ESP seems to provide
a superset of the functionality provided by AH, ESP actually provides slightly less authentication
than AH provides. That’s because ESP encrypts and authenticates the IP payload, but not the IP
header. AH, however, authenticates some fields of the IP header.

IPsec uses the concept of a Security Association (SA), which defines the secure connection
between two machines. Note that SAs are unidirectional, so secure communication between two
machines requires two SAs (one in each direction).

IPsec requires shared keys between the participating machines. Managing these shared keys
manually could be a logistical nightmare. Luckily, OpenSolaris provides an implementation of
the Internet Key Exchange (IKE) protocol, which shares the keys automatically. The rest of this
section shows you how to configure IPsec using IKE for key management.

413

Part III OpenSolaris File Systems, Networking, and Security

Key management configuration
IPsec relies on shared keys, so before configuring IPsec you must set up your key exchange.
OpenSolaris provides an implementation of IKE, so that is the recommended key exchange
method. Unfortunately, there’s a bootstrapping problem in that IKE itself needs to communicate
securely and with integrity between machines. IKE allows several methods to implement this
security. The simplest is a preshared key, which is a fancy way of saying the administrator must
manually generate a key and ensure that both participating machines know its value.

If you’re a glutton for punishment, you can manage the IPsec keys manually instead
of using IKE. See ipseckey(1M) for details.

To configure IKE with preshared keys, first create /etc/inet/ike/config on each machine.
You can start with /etc/inet/ike/config.sample:

cp /etc/inet/ike/config.sample /etc/inet/ike/config
chmod 644 config

The only part of this file you need to modify is the rules. Delete all the text in the file below this
comment:

Now some rules . . .

Now add a new rule for the two machines that will be exchanging keys. For example, to con-
figure IKE to exchange keys between two machines, one named mendelssohn, with IP address
192.168.1.120, and one named chopin, with IP address 192.168.1.130, add the following rule
to /etc/inet/ike/config on mendelssohn:

{
label "mendelssohn to chopin"
local_addr 192.168.1.120
remote_addr 192.168.1.130
p1_xform
{auth_method preshared oakley_group 5 auth_alg md5 encr_alg 3des }
p2_pfs 5

}

You can use whatever name you want as the label.

In /etc/inet/ike/config on chopin, add a similar rule, just reversing the local_addr and
remote_addr:

{
label "chopin to mendelssohn"
local_addr 192.168.1.130
remote_addr 192.168.1.120
p1_xform
{auth_method preshared oakley_group 5 auth_alg md5 encr_alg 3des }
p2_pfs 5

}

414

Security 11

Verify the syntax of the configuration file on each machine with the following command:

/usr/lib/inet/in.iked -c -f /etc/inet/ike/config
in.iked: Configuration file /etc/inet/ike/config syntactically checks out.

Next, create a shared key. You can use the pktool command to generate a key. The key must
be identical on both machines, so run this command on only one of the machines to generate a
single key, and then copy the key to the other machine:

pktool genkey keystore=file outkey=ikekey keytype=generic keylen=128 print=y
Key Value ="b60cb44978e470dc6af3936186d39d9a"

Now add this key to /etc/inet/secret/ike.preshared. The entry should look like this on
mendelssohn (IP address 192.168.1.120):

{ localidtype IP
localid 192.168.1.120
remoteidtype IP
remoteid 192.168.1.130
key b60cb44978e470dc6af3936186d39d9a
}

It should look like this on chopin (IP address 192.168.1.130):

{ localidtype IP
localid 192.168.1.130
remoteidtype IP
remoteid 192.168.1.120
key b60cb44978e470dc6af3936186d39d9a
}

Note that, as implied by the term ‘‘shared key,’’ the keys must be identical on the two machines.

Use scp or another encrypted transfer mechanism to transfer the shared key from
the machine on which you generate it to the machines that will use it.

If the ike service is not yet running, enable it:

svcadm enable ike
svcs ike
STATE STIME FMRI
online 11:42:07 svc:/network/ipsec/ike:default

Otherwise, just refresh and restart the service:

svcadm refresh ike
svcadm restart ike

415

Part III OpenSolaris File Systems, Networking, and Security

Now IKE should be set. You can verify that the shared keys are correct on each node with
ikeadm. You’ll probably need to change the privilege level of the ike service first. Don’t forget
to change it back when you’re finished!

svccfg -s ike setprop config/admin_privilege=keymat
svcadm refresh ike
svcadm restart ike
ikeadm dump preshared

PSKEY: For <unspecified> exchanges
PSKEY: Pre-shared key (16 bytes): b60cb44978e470dc6af3936186d39d9a/128
LOCIP: Address:
LOCIP: AF_INET: port 0, 192.168.1.120 (mendelssohn.example.com).
REMIP: Address:
REMIP: AF_INET: port 0, 192.168.1.130 (chopin.example.com).

Completed dump of preshared keys

svccfg -s ike setprop config/admin_privilege=base
svcadm refresh ike
svcadm restart ike

You can also configure IKE to use public key certificates for authentication, which
scale better than preshared keys. Consult the ikecert(1M) and ike.config(4) man

pages for more details.

Basic IPsec configuration
Now that you have IKE configured, you can set up IPsec between the two nodes. On each
machine, create /etc/inet/ipsecinit.conf. You can start with the sample provided, which
contains only comments:

cp /etc/inet/ipsecinit.sample /etc/inet/ipsecinit.conf
chmod 644 /etc/inet/ipsecinit.conf

Add a single line specifying the policy for communication between mendelssohn and chopin.
On mendelssohn, add the following sample policy, which uses both the AH and ESP protocols
(the details of the policy configuration are explained below):

{laddr mendelssohn raddr chopin} ipsec {auth_algs any encr_algs any sa shared}

On chopin, add the identical policy, with only the laddr and raddr entries reversed:

{laddr chopin raddr mendelssohn} ipsec {auth_algs any encr_algs any sa shared}

/etc/inet/ipsecinit.conf is read before default routes are established or
naming services are started. Also, it’s a bad idea to rely on an insecure name service

416

Security 11

for IPsec name resolution, so ensure that all hostnames can be resolved through local files, or use
only IP addresses in the configuration file.

Now restart the ipsec/policy service (or enable it if it’s not yet enabled):

svcadm restart ipsec/policy

As a final step, verify that the traffic between the two machines is indeed being encrypted
and authenticated. You can use snoop to view the packet details. Just run snoop in one
terminal window, and then cause some traffic to be sent between the nodes with ping or some
other command. Here’s the snoop output of a ping from mendelssohn to chopin with the
preceding IPsec configuration:

snoop -v chopin
Using device iwi0 (promiscuous mode)
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 13:40:11.43546
ETHER: Packet size=146 bytes
ETHER: Destination=0:18:de:3e:14:19,
ETHER: Source =0:16:6f:3c:64:7b,
ETHER: Ethertype=0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version=4
IP: Header length=20 bytes
IP: Type of service=0x00
IP: xxx.=0 (precedence)
IP: ...0=normal delay
IP: 0...=normal throughput
IP:0..=normal reliability
IP:0.=not ECN capable transport
IP:0=no ECN congestion experienced
IP: Total length=132 bytes
IP: Identification=54498
IP: Flags=0x0
IP: .0..=may fragment
IP: ..0.=last fragment
IP: Fragment offset=0 bytes
IP: Time to live=255 seconds/hops
IP: Protocol=51 (AH)
IP: Header checksum=6219
IP: Source address=192.168.1.120, mendelssohn.example.com
IP: Destination address=192.168.1.130, chopin.example.com
IP: No options
IP:
AH: ----- Authentication Header -----
AH:

417

Part III OpenSolaris File Systems, Networking, and Security

AH: Next header=50 (ESP)
AH: AH length=4 (24 bytes)
AH: <Reserved field=0x0>

AH: SPI=0xc028b0ab
AH: Replay=21
AH: ICV=30121c4fe669c4240e662b90
AH:
ESP: ----- Encapsulating Security Payload -----
ESP:
ESP: SPI=0x8f571059
ESP: Replay=21
ESP:ENCRYPTED DATA....

As you can see, this packet contains both an AH section and an ESP section because the IPsec
policy you specified includes both those protocols.

Configuring IPsec policy
You can indicate specific IPsec policies in the /etc/inet/ipsecinit.conf file. For example,
to use only ESP with the Blowfish encryption algorithm and the md5 authentication algorithm,
change the policy line on mendelssohn to the following:

{laddr mendelssohn raddr chopin} ipsec {encr_algs blowfish encr
_auth_algs md5 sa shared}

Make the same changes on chopin, and then restart the ipsec/policy service on each node:

svcadm restart ipsec/policy

You can verify the policies in effect by running the ipsecconf command:

ipsecconf -l
#INDEX 60
{ laddr mendelssohn.example.com/32 raddr chopin.example.com/32
dir out } ipsec { encr_algs blowfish-cbc(128..448) encr_auth
_algs hmac-md5(128) sa shared }
. . .

Finally, running snoop on a ping confirms that only ESP, not AH, is being used:

snoop -v chopin
Using device iwi0 (promiscuous mode)
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 14:57:3.09929
ETHER: Packet size=134 bytes
ETHER: Destination=0:18:de:3e:14:19,
ETHER: Source =0:16:6f:3c:64:7b,
ETHER: Ethertype=0800 (IP)

418

Security 11

ETHER:
IP: ----- IP Header -----
IP:
IP: Version=4
IP: Header length=20 bytes
IP: Type of service=0x00
IP: xxx.=0 (precedence)
IP: ...0=normal delay
IP: 0...=normal throughput
IP:0..=normal reliability
IP:0.=not ECN capable transport
IP:0=no ECN congestion experienced
IP: Total length=120 bytes
IP: Identification=61700
IP: Flags=0x0
IP: .0..=may fragment
IP: ..0.=last fragment
IP: Fragment offset=0 bytes
IP: Time to live=255 seconds/hops
IP: Protocol=50 (ESP)
IP: Header checksum=4604
IP: Source address=192.168.1.120, mendelssohn.example.com
IP: Destination address=192.168.1.130, chopin.example.com
IP: No options
IP:
ESP: ----- Encapsulating Security Payload -----
ESP:
ESP: SPI=0x7279a2f6
ESP: Replay=3
ESP:ENCRYPTED DATA....

To find out which encryption and authentication algorithms are available on your sys-
tem, run the ipsecalgs command.

You can also specify IPsec policy on a per-port basis. For example, to secure only telnet traffic,
you could add rport 23 to the previous example:

{laddr mendelssohn raddr chopin rport 23} ipsec {encr_algs
blowfish encr_auth_algs md5 sa shared}

You can also use the ipsecconf command to make temporary policy changes that persist until
the next ipsec/policy service restart or system reboot. However, that is not recommended
when using the ipsec/policy SMF service to manage IPsec. Instead, make changes to the
configuration file as described earlier. Consult the ipsecconf(1M) man page for more detailed
options if you’re curious.

As described in Chapter 9, you can use IPsec in tunnel mode to implement a virtual
private network (VPN).

419

Part III OpenSolaris File Systems, Networking, and Security

Detecting Attacks
As a final line of defense, configure your system so that it can detect attacks if and when they
occur. Assume your system will be broken into despite your best efforts at security, and pre-
pare accordingly. If you are never attacked, great; but if you are, you’ll notice quickly and will
be able to fix the problems instead of letting Trojan horses and root kits linger.

Logs
Your OpenSolaris system can be configured to log quite a bit of useful information, some of it
relevant to security. Unfortunately, it’s not all logged to the same place, and some features must
be explicitly enabled before you can use them.

System log
The system log is the first place to look for information. The syslogd daemon, under control
of the system/system-log:default service, logs various system events. Configurable in
/etc/syslog.conf, the default is to send error, alert, and some lower-priority messages to
/var/adm/messages and to console. Although these messages are not usually security related,
you should monitor them to detect anything unusual. For example, if your IPsec policy is
misconfigured, you might see a message like this in the system log:

Mar 31 10:35:34 mendelssohn ip: [ID 468610 kern.error] ipsec_check
_global_policy: Dropping the datagram because the incoming packet
is secure, but the recipient expects clear; Source 192.168.001.130,
Destination 192.168.001.120.

Some system log messages are also sent to /var/log/syslog.

One of the first things attackers might do after gaining access to your system is to
modify the system log and other logs to attempt to hide their traces. One technique

to make this log modification less likely is to configure the system-log service to send log mes-
sages to a remote host. Consult the syslog.conf(4) man page for details on this configuration.

Login logs
Information about logins to your system is quite useful in detecting malicious activity. OpenSo-
laris logs all successful logins and logouts from the system in /var/adm/wtmpx. This file is in
binary format, but you can use the last command to view the logins. For example, here are the
recent logins for user test:

last test
test pts/5 chopin.example.com Mon Mar 31 11:14 - 11:14 (00:00)
test pts/4 192.168.1.101 Mon Mar 31 11:13 still logged in
test sshd 192.168.1.101 Mon Mar 31 11:13 still logged in
test pts/2 chopin.example.com Sat Mar 29 14:43 - 14:43 (00:00)

420

Security 11

test sshd chopin.example.com Sat Mar 29 14:43 - 14:43 (00:00)
test pts/2 chopin.example.com Sat Mar 29 14:38 - 14:43 (00:04)
test sshd chopin.example.com Sat Mar 29 14:38 - 14:43 (00:04)
. . .

wtmp begins Tue Mar 4 14:56

The /var/adm/sulog records all uses of su, both successful and failed. If you’ve set up
your system to disallow root logins remotely, or, even better, made root a role, then every
attempt to become root will be logged in /var/adm/sulog. Here are some sample entries from
/var/adm/sulog:

SU 03/31 11:39 - pts/5 test-root
SU 03/31 11:39 + pts/5 test-root

The – or + in the fourth column indicates failure or success, respectively.

By default, OpenSolaris does not log all failed login attempts. However, numerous failed logins
can be an indication that someone is attempting to crack a password. To enable the failed login
log, first add the following lines to /etc/default/login:

SYSLOG=YES
SYSLOG_FAILED_LOGINS=0

Note that SYSLOG=YES should already be in the file by default, and SYSLOG_FAILED
_LOGINS=5 is in the file by default but commented out. These two lines specify that all failed
logins should be logged.

Next, specify in /etc/syslog.conf where the failed logins should be logged:

auth.notice /var/adm/authlog

Finally, create the file /var/adm/authlog that you specified in /etc/syslog.conf with
owner root, group sys, and 600 permissions, and refresh the system-log service so that the
changes take effect:

touch /var/adm/authlog
ls -l /var/adm/authlog
-rw-r--r-- 1 root root 0 Mar 31 11:11 /var/adm/authlog
chmod 600 /var/adm/authlog
chgrp sys /var/adm/authlog
ls -l /var/adm/authlog
-rw------- 1 root sys 0 Mar 31 11:11 /var/adm/authlog
svcadm refresh system-log

Now failed login attempts are logged to /var/adm/authlog:

Mar 31 11:14:04 mendelssohn login: [ID 143248 auth.notice] Login
failure on /dev/pts/5 from chopin.example.com

421

Part III OpenSolaris File Systems, Networking, and Security

SMF logs
As described in Chapter 13, SMF services each have their own log in /var/svc/log,
named after their FMRI. In addition to providing useful debugging information when
something goes wrong, the logs for security services in particular can provide useful secu-
rity information. For example, messages like the following in the ipsec/policy log in
/var/svc/log/network-ipsec-policy:default.log are a good indication that IPsec is
not functioning on your system:

[Mar 4 16:15:51 Executing start method ("/usr/sbin/ipsecconf -q -a
/etc/inet/ipsecinit.conf").]
Policy configuration file (/etc/inet/ipsecinit.conf) does not exist.
IPsec policy not configured.
[Mar 4 16:15:51 Method "start" exited with status 0.]

Security service logs
In addition to the general logs and SMF logs just described, various security services log infor-
mation in different places. For example, IKE logs information in /var/log/in.iked.log. Ker-
beros, by default, logs information about tickets in /var/krb5/krb5.log. Read the documen-
tation for whatever services you’re using, and check the logs periodically to ensure that every-
thing looks fine.

Basic Audit Reporting Tool
Auditing takes logging to the next level, recording not only error conditions and boundary cases,
but tracking even ‘‘normal’’ system and user events, commands, actions, and file system modifi-
cations. By employing auditing, you can keep a record of all system, user, and file system activ-
ity, providing an essential resource in detecting malicious activity on the system. OpenSolaris
provides two auditing services: the Basic Audit Reporting Tool (BART) and general Solaris Audit-
ing. This section discusses BART; the next section discusses Solaris Auditing.

Although it’s fairly simple, the BART is quite useful for detecting changes to files on your
system. It can do two things: catalog information about files on your system and compare
catalogued information generated at different times. By default, BART catalogs all attributes of
all files, including creation time, permissions, and size. The recommended way to use BART is
to create a snapshot of your file system immediately after system installation. Then, periodically
compare the current system to that snapshot (or to more recent snapshots) to detect any
suspicious changes, such as a new setuid root file.

The OpenSolaris distribution creates an @install snapshot of ZFS file systems at
install time. You can access this snapshot in the /.zfs/snapshot/install direc-

tory of each file system. See Chapter 8 for more about ZFS snapshots.

BART uses the term manifest to describe the catalogued file system information. Don’t confuse a
BART manifest with an SMF manifest, described in Chapter 13; they’re not related.

422

Security 11

BART doesn’t cross file system boundaries, but works on both UFS and ZFS file systems. If you
have both UFS and ZFS file systems on your machine, you need to generate separate manifests
for each.

Creating BART manifests
Create a snapshot of your system using the bart command:

bart create -R / > /var/bart/bart-baseline-manifest

bart create spits its output to stdout by default, so you must redirect it to a file to save it.
The manifest contains single-line entries for each file or directory, including hidden files. For
example, here’s the entry for /etc/passwd on a UFS file system:

/etc/passwd F 1063 100644 user::rw-,group::r--,mask:r--,other
:r-- 47eade28 0 3 ddb6fea9b46e925e73c7c1369e1d90a5

The fields for a regular file are, in order, as follows: filename, file type (F for ‘‘file’’), size,
file permissions, ACLs, modification time (in seconds since January 1, 1970), UID of the file
owner, UID of the group, and checksum of the contents. For comparison, here’s the entry for
/etc/passwd on a ZFS file system:

/etc/passwd F 765 100644 owner@:execute:deny,owner@:read_data/write
_data/append_data/write_xattr/write_attributes/write_acl/write_owner
:allow,group@:write_data/append_data/execute:deny,group@:read_data
:allow,everyone@:write_data/append_data/write_xattr/execute/write
_attributes/write_acl/write_owner:deny,everyone@:read_data/read
_xattr/read_attributes/read_acl/synchronize
:allow 47e96ee6 0 3 b17ca5b685481e6cc7e3c559598d4f34

Consult the bart_manifest(4) man page for more details about the format of this file.

Comparing BART manifests
You can compare your snapshot manifest to your baseline manifest using the bart compare
command:

bart compare /var/bart/bart-baseline-manifest \
/var/bart/bart-snapshot > /var/bart/bart-report

As with the bart create command, you must redirect the output to a file. This comparison
report lists all differences between the two manifests, with the original called control and
the changes called test. For example, the report just generated shows the following entry for
/etc/shadow:

/etc/shadow:
mode control:100400 test:100444
acl control:user::r--,group::---,mask:---,other:--- test:user::r--,

group::r--,mask:r--,other:r —

423

Part III OpenSolaris File Systems, Networking, and Security

Note the changes to the mode: The permissions have changed from 400 (readable only by root)
to 444 (readable by everyone). That’s not good! Another change in this report is as follows:

/usr/bin/trojanhorse:
add

There’s evidently a new file /usr/bin/trojanhorse since the baseline. A closer look at that
file shows that it’s a setuid root executable:

ls -l /usr/bin/trojanhorse
-r-sr-xr-x 1 root bin 264 Mar 31 12:33 /usr/bin/trojanhorse

There definitely appears to be some malicious activity on this system!

Customizing BART reports

The BART report generated in the previous section had some bogus entries, including the
following:

/var/bart/bart-snapshot:
add

/var/ntp/ntpstats/loopstats:
size control:3706 test:4658
mtime control:47f1286f test:47f12f6f
contents control:9061f8a6921cb4111f4e2765b9fb6330 test:b3918953395b65bc3b

c7dc8d7864aec9

The first, bart-snapshot, is the new manifest generated by the second bart create com-
mand. The second, loopstats, is dynamic Network Time Protocol (NTP) information. Neither
of those really needs to be flagged in the report. Luckily, you can customize your reports by set-
ting up a rules file. Here’s a rules file to ignore all files in /var/bart and to ignore the size,
mtime, and contents attributes of files in /var/ntp/ntpstats:

cat /var/bart/bartrules
CHECK all

/var/bart
IGNORE all

/var/ntp/ntpstats
IGNORE size mtime contents

The rules in a BART rules file are processed in order, with later rules modifying earlier rules.
This file contains three rules. Note that the first rule says to check everything. Without that first
rule, the exclusion rules that follow would be the only rules, and so nothing outside /var/bart
and /var/ntp/ntpstats would be checked. See the bart_rules(4) man page for more
details about the format of the rules file.

424

Security 11

Now that you’ve created a rules file, you can use it to modify your manifest comparison:

bart compare -r /var/bart/bartrules bart-baseline-manifest bart-snapshot
/etc/shadow:
mode control:100400 test:100444
acl control:user::r--,group::---,mask:---,other:--- test:user

::r--,group::r--,mask:r--,other:r--
/usr/bin/trojanhorse:
add

Now the report shows only the two differences of real interest.

You can also employ a rules file when generating the manifests originally with bart create.
However, you can only compare manifests that were generated with the same rules.

If you have a large collection of machines, consider automating BART and collect-
ing BART manifests onto a central security server. Glen Brunette describes how to do

that in the blog post at http://blogs.sun.com/gbrunett/entry/automating_solaris
_10_file_integrity.

Solaris Auditing
Solaris Auditing, provided as part of the Solaris Basic Security Module, enables your OpenSolaris
system to record a wide variety of system and user events, commands, and other actions. Audit-
ing is highly configurable, enabling administrators to select exactly the events in which they are
interested.

Turning on auditing
To turn on auditing, you first need to enable the Basic Security Module (BSM). To do so, run
the /etc/security/bsmconv script and reboot your system:

/etc/security/bsmconv
This script is used to enable the Basic Security Module (BSM).
Shall we continue with the conversion now? [y/n] y
bsmconv: INFO: checking startup file.
bsmconv: INFO: turning on audit module.
bsmconv: INFO: initializing device allocation.

The Basic Security Module is ready.
If there were any errors, please fix them now.
Configure BSM by editing files located in /etc/security.
Reboot this system now to come up with BSM enabled.
init 6

Once the system comes up, specify your audit configuration in /etc/security/audit_
control. Here’s a sample /etc/security/audit_control file:

dir:/var/audit
flags:lo,as,ss

425

Part III OpenSolaris File Systems, Networking, and Security

minfree:20
naflags:lo

The first line specifies the directory in which binary audit records should be stored. You can
specify multiple directories, in order of preference.

Audit records can eat up a lot of disk space quickly. Consider creating a separate ZFS
file system with quotas and reservations for your audit records. See Chapter 8 for

details on ZFS. You can also periodically delete old audit data files in /var/audit.

The second line in the sample /etc/security/audit_control, flags, specifies which
event classes should be audited. An event class is a predefined collection of audit events.
For example, the lo class includes login and logout events. The event classes are defined in
/etc/security/audit_class and the events themselves in /etc/security/audit_event.
The sample /etc/security/audit_control audits the lo, as, and ss classes, to collect
information on login or logout, systemwide administration, and system state changes.

Note that the flags line specifies events to be logged that can be attributed to a specific user.
The naflags line lists classes to audit for events that are ‘‘non-attributable’’ to a specific user.

Run bsmrecord to view a user-friendly list of audit events in a given class. For
example, use the following to see the events in the lo class:

bsmrecord -c lo
...
terminal login
program /usr/sbin/login See login(1)

/usr/dt/bin/dtlogin See dtlogin
event ID 6152 AUE_login
class lo (0x00001000)

header
subject
[text] error message
return

login: logout
program various See login(1)
event ID 6153 AUE_logout
class lo (0x00001000)

header
subject
[text] "logout" username
return

...

The minfree line specifies, as a percentage of free space in the file system storing the audit
records, a threshold at which the audit_warn script is invoked. See the audit_control(4),

426

Security 11

audit_class(4), and audit_event(4) man pages for more information on the syntax and
contents of these configuration files.

The final step to turn on auditing is to enable the auditd service:

svcadm enable auditd
svcs auditd
STATE STIME FMRI
online 14:26:50 svc:/system/auditd:default

Now audit information for the event classes you specified are stored in /var/audit/.

Reviewing audit data
The audit system stores audit data in binary format, so you can’t just read the files directly.
Instead, use a combination of the auditreduce and praudit commands to view events. For
example, to view all audit events for user test, run the following:

auditreduce -u test | praudit -s
file,2008-03-31 15:31:55.000 -06:00,
header,69,2,AUE_ssh,,mendelssohn.example.com,2008-03-31 15:31
:55.366 -06:00
subject,test,test,other,test,other,1150,1231787470,2434 71168
192.168.1.101
return,success,0
...
file,2008-03-31 15:32:51.000 -06:00,

The selection command, auditreduce, filters the audit records, in this case retrieving all
records attributable to user test. However, auditreduce produces binary output. Luckily,
praudit takes binary input in standard input and converts it to a (supposedly) human-readable
format. The records are bracketed by file entries, showing the timestamp of the first and last
entries in the log. The records themselves are a little obscure. The example record is the login,
via ssh, for the test user. Use bsmrecord to find details on the expected fields for each
record type.

Use the -x option to praudit to get output in XML format, which includes name
tags for fields:

auditreduce -u test | praudit -x | head -11
<?xml version=’1.0’ encoding=’UTF-8’ ?>

<?xml-stylesheet type=’text/xsl’ href=’file:///usr/share/lib/xml
/style/adt_record.xsl.1’ ?>

<!DOCTYPE audit PUBLIC ‘-//Sun Microsystems, Inc.//DTD Audit V1
//EN’ ‘file:///usr/share/lib/xml/dtd/adt_record.dtd.1’>

<audit>

<file iso8601="2008-03-31 15:31:55.000 -06:00"></file>

427

Part III OpenSolaris File Systems, Networking, and Security

<record version="2" event="login - ssh" host=
"mendelssohn.example.com" iso8601="2008-03-31 15:31:55.366 -06:00">

<subject audit-uid="test" uid="test" gid="other" ruid="test" rgid
="other" pid="1150" sid="1231787470" tid="2434 71168 192.168.1.101"/>

<return errval="success" retval="0"/>

</record>

As another example, suppose you want to know who restarted the ipsec/policy daemon.
You can use auditrecord to select all records of event AUE_smf_restart and FMRI
ipsec/policy:

auditreduce -m AUE_smf_restart -o fmri=ipsec/policy | praudit -x
<?xml version=’1.0’ encoding=’UTF-8’ ?>

<?xml-stylesheet type=’text/xsl’ href=’file:///usr/share/lib/xml
/style/adt_record.xsl.1’ ?>

<!DOCTYPE audit PUBLIC ‘-//Sun Microsystems, Inc.//DTD Audit V1
//EN’ ‘file:///usr/share/lib/xml/dtd/adt_record.dtd.1’>

<audit>

<file iso8601="2008-03-31 16:07:20.000 -06:00"></file>

<record version="2" event="restart service instance" host
="mendelssohn.example.com" iso8601="2008-03-31 16:07:20.150 -06:00">

<subject audit-uid="nsolter" uid="root" gid="root" ruid="root" rgid
="root" pid="1300" sid="2762192639" tid="14146 5632 192.168.1.101"/>

<use_of_authorization>solaris.smf.manage.ipsec</use_of_
authorization>

<fmri>svc:/network/ipsec/policy:default/:properties/restarter
_actions/restart</fmri>

<return errval="success" retval="0"/>

</record>

<file iso8601="2008-03-31 16:07:20.000 -06:00"></file>

</audit>

You can see that it was user nsolter, operating as root. This example demonstrates that
audit records are tracked under the original user login ID, even if that user su’s to a different
user, or even to root. This feature provides another incentive for disallowing direct logins
as root.

Auditing on a per-user basis
Instead of recording audit data for all users, you can choose to audit only specific
users. For example, to audit user test instead of every user, add the following entry to
/etc/security/audit_user:

test:lo,as,ss

428

Security 11

Remove the flags from /etc/security/audit_control, so the complete file looks like this:

dir:/var/audit
flags:
minfree:20
naflags:lo

Note that you leave the naflags in the /etc/security/audit_control file because they
have no meaning for specific users (by definition, they are not attributable to any user).

Finally, restart the auditd service so that the changes take effect:

svcadm restart auditd

Now only the test user is audited for the lo, as, and ss event classes.

Syslogging audit events
In addition to generating binary audit records, the audit system can produce human-readable
syslog entries. To configure this feature, first add a plugin entry to /etc/security/audit
_control:

plugin:name=audit_syslog.so.1; p_flags=lo,ss

The p_flags in this entry specify the subset of classes being audited that should additionally be
syslogged.

Next, specify in /etc/syslog.conf where audit messages should be logged:

audit.notice /var/adm/auditlog

Create the auditlog file:

touch /var/adm/auditlog

Finally, refresh the system-log service and restart the auditd service:

svcadm refresh system-log
svcadm restart auditd

Here are sample login and svcadm restart events from the /var/adm/auditlog:

tail /var/adm/auditlog
Mar 31 16:21:52 mendelssohn audit: [ID 702911 audit.notice] login
- ssh ok session 2933273505 by test as test:other from 192.168.1
.101 proc_uid bin
Mar 31 16:22:12 mendelssohn audit: [ID 702911 audit.notice] restart
service instance ok session 2994180326 by nsolter as root
:root from 192.168.1.101 proc_uid bin uauth solaris.smf.manage.ipsec

429

Part III OpenSolaris File Systems, Networking, and Security

Auditing security features
Some of the security features discussed earlier in this chapter can be audited by selecting certain
auditing classes. For example, to audit Kerberos, select the ap class. To audit profile shell com-
mands, select the ua or as classes. To audit role login or logout, select the lo class. Consult the
documentation or man page for the feature of interest to determine the correct auditing class.

Configuring audit policy
You can tune auditing options with the auditconfig command. However, any changes
made with auditconfig are temporary, and do not persist across a reboot. To make
permanent configuration changes, add the appropriate auditconfig commands to the
/etc/security/audit_startup file.

For a list of policy options, run auditconfig -ls policy. The most interesting policy option
is perzone. If that option is not set, auditing is conducted on a systemwide basis, with a sin-
gle audit record stored according to the global zone configuration. If you set perzone, however,
each zone can run its own auditd service, and configure and record auditing information on a
per-zone basis.

Turning off auditing
To disable auditing on your system, run the /etc/security/bsmunconv script and reboot.
Unless you run it at the single-user level, the script will give you a warning:

/etc/security/bsmunconv
bsmunconv: ERROR: this script should be run at run level S.
Are you sure you want to continue? [y/n] y
This script is used to disable the Basic Security Module (BSM).
Shall we continue the reversion to a non-BSM system now? [y/n] y
bsmunconv: INFO: removing c2audit:audit_load from /etc/system.
bsmunconv: INFO: stopping the cron daemon.

The Basic Security Module has been disabled.
Reboot this system now to come up without BSM.
init 6

Virus scanning
Computer viruses are another form of attack on your system. OpenSolaris provides a
virus-scanning service, VSCAN, that works with third-party scan engines. Because it requires
non-open-source scan engines, and is useful mostly for scanning Windows file systems,
configuration is beyond the scope of this book. However, you can read the vscand(1M)and
vscanadm(1M) man pages for more details.

Most of the supported scan engines are for SPARC hardware only.

430

Security 11

Kerberos
Kerberos, originally developed at the Massachusetts Institute of Technology (MIT), is an authen-
tication system useful for managing a network of machines. It enables users to authenticate
on one machine in the network and thereafter access services or log in to other machines in
the network without additional authentication. It’s quite handy and is widely deployed within
intranets.

Kerberos implements authentication using the concept of tickets. When users first authenticate
themselves, they are granted a ticket-granting ticket (TGT) from the key distribution center (KDC).
Whenever a user subsequently attempts to use a service that requires authentication, Kerberos
sends the TGT to the KDC requesting a ticket for that particular service. This interaction is
invisible to users; after one authentication, they can use the services with Kerberos performing
additional ticket-granting behind the scenes.

The network of computers participating in the Kerberos authentication is called the Kerberos
realm. Think of the realm as similar to a domain; in fact, Kerberos realms are often synonymous
with domains of the same name.

Users in Kerberos are called principals. Confusingly, services, such as NFS, and machines are also
principals. Users must have a Kerberos account, which means they must have a Kerberos prin-
cipal name and password. You can use PAM to configure automatic UNIX user accounts to Ker-
beros principal mappings.

OpenSolaris provides an implementation of the KerberosV5 protocol. However, the OpenSolaris
distribution doesn’t include the Kerberos packages in the initial install, so you first need to
install them on each computer that you want to Kerberize:

pkg install SUNWkdc

Now you can configure Kerberos in your network.

Kerberos needs to be able to map hostnames to IP addresses and vice versa for hosts
in your domains, and to assemble the fully qualified domain name from the hostname

and domainname commands. Thus, DNS or another naming service must be configured properly.
See Chapter 9 for more information about DNS.

Clock synchronization
Kerberos requires the participating computers to keep their clocks synchronized. The easiest way
to maintain consistent clocks is to use the Network Time Protocol (NTP) service available on
OpenSolaris.

Chapter 9 provides an overview of the Network Time Protocol and an example of
configuring your system to synchronize its clock with an external NTP server.

431

Part III OpenSolaris File Systems, Networking, and Security

NTP can be configured in a number of different ways. Typically, computers are synchronized
with an external NTP server to keep their clocks accurate. However, Kerberos cares only that
the participating machines are consistent among themselves regarding the concept of the correct
time. Thus, for Kerberos’ purposes, you can use a simpler symmetric configuration that makes
each host a peer of the others.

Additionally, set up your NTP service to use authentication. (Given that this is the security
chapter, you didn’t really think you’d get away without authentication, did you?) NTP uses
symmetric key authentication, meaning that identical keys must be replicated on each host.

Here are the steps for configuring a network of machines to synchronize their clocks in ‘‘sym-
metric active’’ mode with MD5-based authentication.

First, create a keys file in /etc/inet/ntp.keys on each host. Each line of the file declares one
key and contains three entries: key number, key type, and the key itself. The key number is any
number you choose starting from 1. There are several different types; this example uses M for
MD5. The MD5 keys are eight-character strings. Here is an example /etc/inet/ntp.keys file
defining one key:

123M DeMoPaSs

The keys must be identical on each host.

Your /etc/inetn/ntp.keys file should be readable only by root to prevent non-
root users from viewing the plain-text keys. Be sure to chmod the file to 600 or 400.

Next, create your NTP configuration file in /etc/inet/ntp.conf on each node. Here is an
example ntp.conf:

server 127.127.1.0

peer 192.168.1.106 key 123 prefer
peer 192.168.1.107 key 123
peer 192.168.1.108 key 123
Add additional peer entries for all the machines to be kerberized

enable auth
statsdir /var/ntp/ntpstats/
filegen peerstats file peerstats type day enable
filegen loopstats file loopstats type day enable
filegen clockstats file clockstats type day enable

authentication settings
keys /etc/inet/ntp.keys
trustedkey 123

These settings require a bit of explanation. The server line specifies that the machine should
use itself as the time server, meaning it will take its initial idea of time from its internal clock.

432

Security 11

The following peer lines list all the other machines in the network as peers. You should
replace the IP addresses in this example with the IP addresses or hostnames of the machines
in your own network. The key 123 part of the line indicates that communication with those
peers should be encrypted with that key number. Finally, one of the peers is listed as the
preferred one.

The enable auth line enables authentication. The next four lines specify statistics logging. The
final two lines specify the location of the ntp.keys file you created earlier, and declare that key
number 123 is a trusted key.

The final step is to start the NTP service. Run the following on each node:

svcadm enable ntp

The Network Time Protocol doesn’t correct clock times immediately. It may take a
few hours for the clocks on your machines to synchronize.

Setting up the key distribution center
After synchronizing clocks, the second task to get Kerberos running on your network is to con-
figure the key distribution center (KDC). Although you could create all the configuration files by
hand, OpenSolaris provides a nice utility called kdcmgr to set up the KDC. Run the following
command as root on the machine that will be your KDC (substituting your desired administrator
username and your desired realm):

kdcmgr create master

Starting server setup

Enter the Kerberos realm: example.com

Setting up /etc/krb5/kdc.conf.

Setting up /etc/krb5/krb5.conf.

Initializing database ‘/var/krb5/principal’ for realm ‘EXAMPLE.COM’,
master key name ‘K/M@EXAMPLE.COM’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

Enter the krb5 administrative principal to be created: nick/admin

Authenticating as principal nick/admin@EXAMPLE.COM with password.
WARNING: no policy specified for nick/admin@EXAMPLE.COM; defaulting to no policy

433

Part III OpenSolaris File Systems, Networking, and Security

Enter password for principal "nick/admin@EXAMPLE.COM":
Re-enter password for principal "nick/admin@EXAMPLE.COM":
Principal "nick/admin@EXAMPLE.COM" created.

Setting up /etc/krb5/kadm5.acl.

Setup COMPLETE.

If you see an error message like one of the following from kdcmgr, you probably
don’t have DNS configured properly:

kdcmgr

yourhostname.example.com is unreachable, exiting.

Setup FAILED.

kdcmgr
Error: can not determine full hostname (FQHN). Aborting
Note, trying to use hostname and domainname to get FQHN.

If you’d rather set up the configuration files and perform the other configuration
steps by hand, see the detailed instructions in the System Administration Guide:

Security Services Solaris book listed in the ‘‘Resources’’ section at the end of this chapter.

Setting up the Kerberos clients
Now you need to configure the client machines in your network. Don’t get confused by the use
of the word ‘‘client.’’ Even if these machines will be servers of various sorts, they’re clients of the
Kerberos key distribution center. Every machine that will participate in your Kerberos network
must be configured as a client. OpenSolaris provides an interactive script, kclient, for this
purpose. Run the script as follows, substituting your realm, the hostname of your KDC, and the
administrative principal, all of which you specified while configuring the KDC:

kclient

Starting client setup

Do you want to use DNS for kerberos lookups ? [y/n]: n

No action performed.
Enter the Kerberos realm: example.com
Specify the KDC hostname for the above realm: mendelssohn

434

Security 11

Note, this system and the KDC’s time must be within 5 minutes of each other for
Kerberos to function. Both systems should run some form of time
synchronization system like Network Time Protocol (NTP).

Setting up /etc/krb5/krb5.conf.

Enter the krb5 administrative principal to be used: nick/admin
Obtaining TGT for nick/admin . . .

Password for nick/admin@EXAMPLE.COM:

Do you have multiple DNS domains spanning the
Kerberos realm EXAMPLE.COM ? [y/n]: n

No action performed.

Do you plan on doing Kerberized nfs ? [y/n]: n
No action performed.

host/tchaikovsky.example.com entry already exists in KDC database.
host/tchaikovsky.example.com entry already present in keytab.

Do you want to copy over the master krb5.conf file ? [y/n]: n
No action performed.

Setup COMPLETE.

As with setting up the Key Distribution Center, you can perform the configuration
steps by hand. See the System Administration Guide: Security Services book listed in

the ‘‘Resources’’ section for more detail.

Starting Kerberized services
OpenSolaris provides Kerberos-aware (kerberized) versions of the ftp, rlogin, rcp, rsh,
rdist, ssh, and telnet services. Configure these services on machines in your Kerberos realm
as follows:

Kerberized network services other than ssh enforce secure authentication
only — they don’t enforce encrypted session traffic for privacy.

■ ftp — Specify that the in.ftpd daemon should be started with the -K option, which
allows only authenticated connections:

inetadm -m svc:/network/ftp:default exec="/usr/sbin/in.ftpd -K"
svcadm restart ftp

435

Part III OpenSolaris File Systems, Networking, and Security

■ rlogin — Disable the insecure network/login:rlogin service and enable either or
both of the login:klogin or login:eklogin services:

svcadm disable network/login:rlogin
svcadm enable network/login:klogin
svcadm enable network/login:eklogin

■ rcp, rsh, and rdist — Disable the network/shell:default service and enable the
shell:kshell service:

svcadm disable network/shell:default
svcadm enable network/shell:kshell

■ ssh — No changes necessary; ssh supports Kerberos by default.

■ telnet — Specify that the telnet daemon should be started with the -a user option:

inetadm -m svc:/network/telnet:default \
exec="/usr/sbin/in.telnetd -a user"
svcadm restart network/telnet:default

Chapters 3 and 13 describe svcadm and other service management commands.
Chapter 9 describes inetadm and inetd.

Creating Kerberos accounts
Every user in your system who will use Kerberos must be registered as a Kerberos principal,
which is basically a user of the Kerberos service. Your users might become confused keeping
track of different Kerberos and OpenSolaris usernames, so it’s a good idea to create a principal
name for each user that is identical to his or her username. A side benefit of this approach is
that Kerberos automatically maps principal names to OpenSolaris usernames, so if a user has
a Kerberos ticket under the principal nsolter and tries to rlogin to a server where he has
access under the username nsolter, Kerberos will automatically map the Kerberos principal
nsolter to the username nsolter and give him access.

A Kerberos principal account alone is not enough to access services on a machine
in the Kerberos realm. Users can access services on a machine via Kerberos only if

they have a valid OpenSolaris user account on that machine. Instead of duplicating user accounts
across machines, it’s best to store accounts in a directory service such as NIS or LDAP. See
Chapter 10 for more information on directory services.

You can create Kerberos principals with the kadmin command. The following command, run on
the KDC master, creates a principal nsolter and verifies that it was created:

kadmin -p nick/admin
Authenticating as principal nick/admin with password.
Password for nick/admin@EXAMPLE.COM:
kadmin: addprinc nsolter
WARNING: no policy specified for nsolter@EXAMPLE.COM; defaulting to no policy

436

Security 11

Enter password for principal "nsolter@EXAMPLE.COM":
Re-enter password for principal "nsolter@EXAMPLE.COM":
Principal "nsolter@EXAMPLE.COM" created.
kadmin: list_principals
...
nick/admin@EXAMPLE.COM
nsolter@EXAMPLE.COM
kadmin: quit

This manual approach could quickly become tiresome if you have more than a handful of users
on your system. An alternative is to configure PAM to create Kerberos principals automatically
for your users when they next log in, as described shortly in the section ‘‘Configuring PAM for
Kerberos.’’

Managing tickets
The first action every Kerberos user needs to take when logging into a system is to obtain a
ticket. As described in the next section, you can use PAM to configure your system so that users
obtain tickets automatically upon login. However, if your system isn’t set up to obtain tickets
automatically, or if you prefer manual control, you can also manage your tickets directly using
kinit, klist, and kdestroy. For example:

login as: nsolter
Using keyboard-interactive authentication.
Password:
Last login: Mon Mar 17 13:25:11 2008 from 192.168.1.101
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$ klist -f
klist: No credentials cache file found (ticket cache FILE:/tmp/krb5cc_101)
$ kinit
Password for nsolter@EXAMPLE.COM:
$ klist -f
Ticket cache: FILE:/tmp/krb5cc_101
Default principal: nsolter@EXAMPLE.COM

Valid starting Expires Service principal
03/17/08 13:59:48 03/17/08 21:59:48 krbtgt/EXAMPLE.COM@EXAMPLE.COM

renew until 03/24/08 13:59:48, Flags: RIA
$ kdestroy
$ klist -f
klist: No credentials cache file found (ticket cache FILE:/tmp/krb5cc_101)

If you see an error like the following, you probably don’t have a Kerberos principal
set up that maps to the username for which you’re attempting to obtain a ticket:

$ kinit
kinit(v5): Client not found in Kerberos database while getting
initial credentials

437

Part III OpenSolaris File Systems, Networking, and Security

Using Kerberized services
Once you have a ticket, you can access Kerberized services running on other machines in the
realm without needing to re-authenticate yourself. For example, ssh automatically detects your
ticket and logs you in without prompting for a password:

$ ssh mendelssohn
Last login: Mon Mar 17 15:57:37 2008 from tchaikovsky.example
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

For all the other Kerberized services, special options to the commands are required.

Kerberized services don’t require encrypted session traffic for privacy, only secure
authentication. For privacy, you should always use ssh or add the -x option to the

other network commands for encrypted sessions.

Use ftp with the -x option, for instance, to specify that it should use both authentication and
encryption:

$ ftp mendelssohn
Connected to mendelssohn.example.com.
220 mendelssohn.example.com FTP server (Version wu-2.6.2+Sun) ready.
Name (mendelssohn:nsolter):
530 Must perform authentication before identifying USER.
Login failed.
ftp> quit
221 Goodbye.
$ ftp -x mendelssohn
Connected to mendelssohn.example.com.
220 mendelssohn.example.com FTP server (Version wu-2.6.2+Sun) ready.
334 Using AUTH type GSSAPI; ADAT must follow
GSSAPI accepted as authentication type
GSSAPI authentication succeeded
200 PROT P ok.
Name (mendelssohn:nsolter):
232 User nsolter logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

You can use rsh and rcp with -a and -x to specify authentication and encryption:

$ rsh mendelssohn date
mendelssohn.example.com: Connection refused
$ rsh -ax mendelssohn date
This rsh session is using encryption for all data transmissions.
Mon Mar 17 16:12:06 MDT 2008

438

Security 11

The rlogin command supports -x and -A to specify encryption and authentication:

$ rlogin -Ax mendelssohn
connected with Kerberos V5
This rlogin session is using encryption for all data transmissions.
Last login: Mon Mar 17 16:06:29 from tchaikovsky.example
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

You can telnet to another machine using the -x option to specify encryption and
authentication:

$ telnet -x mendelssohn
Trying 192.168.1.120 . . .

Connected to mendelssohn.example.com.
Escape character is ‘∧]’.
Waiting for encryption to be negotiated . . .

[Kerberos V5 accepts you as ``nsolter@EXAMPLE.COM``]
done.
Last login: Mon Mar 17 15:51:16 from tchaikovsky.example
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

If you attempt to connect to a remote machine running only Kerberized services without these
special options, your connection will be rejected:

$ telnet mendelssohn
Trying 192.168.1.120 . . .

Connected to mendelssohn.example.com.
Escape character is ‘∧]’.
Connection to mendelssohn.example.com closed by foreign host.

Also, if you attempt to connect without a valid ticket, your connection will be rejected:

$ telnet -x mendelssohn
Trying 192.168.1.120 . . .

Connected to mendelssohn.example.com.
Escape character is ‘∧]’.
Waiting for encryption to be negotiated . . .

Authentication negotiation has failed, which is required for
encryption. Good-bye.

Kerberized NFS
In addition to the network services described earlier, Kerberos can enable secure Network File
System (NFS) access.

439

Part III OpenSolaris File Systems, Networking, and Security

You can also run NFS over Secure RPC without using Kerberos. See Chapter 10 for
details on NFS and Secure RPC.

To configure Kerberized NFS, first add a Kerberos principal for nfs, specifying the name of the
server that will be the NFS server (in this case. chopin):

kadmin -p nick/admin
Authenticating as principal nick/admin with password.
Password for nick/admin@EXAMPLE.COM:
kadmin: addprinc nfs/chopin.example.com
WARNING: no policy specified for nfs/chopin.example.com@EXAMPLE.COM;
defaulting to no policy
Enter password for principal "nfs/chopin.example.com@EXAMPLE.COM":
Re-enter password for principal "nfs/chopin.example.com@EXAMPLE.COM":
Principal "nfs/chopin.example.com@EXAMPLE.COM" created.
kadmin: quit

On the machine that will be the NFS server, add the nfs principal to the keytab:

kadmin -p nick/admin
Authenticating as principal nick/admin with password.
Password for nick/admin@EXAMPLE.COM:
kadmin: ktadd nfs/chopin.example.com
Entry for principal nfs/chopin.example.com with kvno 3, encryption type
AES-128 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:
/etc/krb5/krb5.keytab.
Entry for principal nfs/chopin.example.com with kvno 3, encryption type Triple
DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/chopin.example.com with kvno 3, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/chopin.example.com with kvno 3, encryption type DES
cbc mode with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin: quit

Verify that the entry is in the keytab:

klist -k
Keytab name: FILE:/etc/krb5/krb5.keytab
KVNO Principal
---- --

3 host/chopin.example.com@EXAMPLE.COM
3 host/chopin.example.com@EXAMPLE.COM
3 host/chopin.example.com@EXAMPLE.COM
3 host/chopin.example.com@EXAMPLE.COM
3 nfs/chopin.example.com@EXAMPLE.COM
3 nfs/chopin.example.com@EXAMPLE.COM
3 nfs/chopin.example.com@EXAMPLE.COM
3 nfs/chopin.example.com@EXAMPLE.COM

440

Security 11

On the NFS server and any machines that will be NFS clients, uncomment the following three
lines in /etc/nfssec.conf:

krb5 390003 kerberos_v5 default - # RPCSEC_GSS
krb5i 390004 kerberos_v5 default integrity # RPCSEC_GSS
krb5p 390005 kerberos_v5 default privacy # RPCSEC_GSS

On the NFS server, share your files, specifying one of the three Kerberos security modes
listed in /etc/nfssec.conf. This example shares /export/shared manually with the share
command:

share -F nfs -p -o sec=krb5 /export/shared
share
- /export/shared sec=krb5 ""

On the NFS client machines, mount the file system, also specifying the Kerberos security mode:

mount -F nfs -o sec=krb5 chopin:/export/shared /mnt

If you’re using the automounter, you can add the sec option to the appropriate entry in
/etc/auto_master.

Now users on the NFS clients can access the NFS-mounted files only if they are authenticated
by Kerberos:

$ klist -f
Ticket cache: FILE:/tmp/krb5cc_101
Default principal: nsolter@EXAMPLE.COM

Valid starting Expires Service principal
04/02/08 16:36:12 04/03/08 00:36:12 krbtgt/EXAMPLE.COM@EXAMPLE.COM

renew until 04/09/08 16:36:12, Flags: FRIA
04/02/08 16:36:34 04/03/08 00:36:12 nfs/chopin.example.com@EXAMPLE.COM

renew until 04/09/08 16:36:12, Flags: FRAT
$ ls /mnt
testfile
$ kdestroy
$ klist -f
klist: No credentials cache file found (ticket cache FILE:/tmp/krb5cc_101)
$ ls /mnt
/mnt: Permission denied
$

Configuring PAM for Kerberos
You can use the pam_krb5 and pam_krb5_migrate PAM modules to do the following:

■ Configure your system to obtain tickets for users automatically when they first log in

■ Create Kerberos principals automatically for users who don’t already have them

441

Part III OpenSolaris File Systems, Networking, and Security

■ Change both the UNIX and Kerberos passwords simultaneously when the user changes
his or her password

To implement that functionality, make the following changes to /etc/pam.conf on each client
machine:

1. Add pam_krb5.so.1 and pam_krb5_migrate.so.1 to the auth stack for each
non-kerberized service, and change pam_unix_auth in the stack to requisite instead
of required. Note that the pam_krb5_migrate entry has an expire_pw option to
force users to change their passwords when they are migrated to Kerberos. This example
assumes that login is the only authentication service that is explicit:

#
login service
#
login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_cred.so.1
login auth sufficient pam_krb5.so.1
login auth requisite pam_unix_auth.so.1
login auth optional pam_krb5_migrate.so.1 expire_pw

#
Default definitions for Authentication management
Used when service name is not explicitly mentioned for
authentication
#
other auth requisite pam_authtok_get.so.1
other auth required pam_dhkeys.so.1
other auth required pam_unix_cred.so.1
other auth sufficient pam_krb5.so.1
other auth requisite pam_unix_auth.so.1
other auth optional pam_krb5_migrate.so.1 expire_pw

Don’t add the Kerberos PAM modules to the authentication stacks for Kerberized services
such as krlogin, krsh, and ktelnet.

2. Add pam_krb5.so.1 to the default account management stack:

Default definition for Account management
Used when service name is not explicitly mentioned for
account management
#
other account requisite pam_roles.so.1
other account required pam_krb5.so.1
other account required pam_unix_account.so.1

442

Security 11

3. Add pam_krb5.so.1 to the default password management stack:

#
Default definition for Password management
Used when service name is not explicitly mentioned for
password management
#
other password required pam_dhkeys.so.1
other password requisite pam_authtok_get.so.1
other password requisite pam_authtok_check.so.1
other password sufficient pam_krb5.so.1
other password required pam_authtok_store.so.1

4. Add two entries to the /etc/pam.conf file on the KDC:

k5migrate auth required pam_unix_auth.so.1
k5migrate account required pam_unix_account.so.1

5. Finally, add two entries for each client machine to the access control list in
/etc/krb5/kadm5.acl on the KDC:

host/tchaikovsky.example.com@EXAMPLE.COM U root
host/tchaikovsky.example.com@EXAMPLE.COM ui *

After modifying the access control list, you must restart the kadmin service:

svcadm restart network/security/kadmin

For more information on the Kerberos PAM modules, see the pam_krb5(5) and
pam_krb5_migrate(5) man pages.

With these changes to /etc/pam.conf, users who already have Kerberos principals in the
realm will obtain tickets automatically when they log in:

login as: nsolter
Using keyboard-interactive authentication.
Password:
Last login: Mon Mar 17 15:03:26 2008 from 192.168.1.101
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$ klist -f
Ticket cache: FILE:/tmp/krb5cc_101
Default principal: nsolter@EXAMPLE.COM

Valid starting Expires Service principal
03/17/08 15:04:29 03/17/08 23:04:29 krbtgt/EXAMPLE.COM@EXAMPLE.COM

renew until 03/24/08 15:04:29, Flags: RIA

443

Part III OpenSolaris File Systems, Networking, and Security

Logins may take perceptibly longer with Kerberos than without because of the extra
encryption and network traffic.

When users without existing Kerberos principals log in, they are migrated to Kerberos and
prompted to change their passwords:

login as: ktest
Using keyboard-interactive authentication.
Password:

User `ktest’ has been automatically migrated to the Kerberos realm EXAMPLE.COM

Your Kerberos password has expired.

Warning: Your password has expired, please change it now.

New Password:
Re-enter new Password:
Kerberos password successfully changed

Last login: Mon Mar 17 14:20:53 2008 from 192.168.1.101
Sun Microsystems Inc. SunOS 5.11 snv_83 January 2008
$

If you’re using local files to store passwords, then Kerberos will update the password
for the Kerberos principal on the machine to which the user is logging in, but not on

other machines in the realm.

Kerberos logs
One of the benefits of using Kerberos is that it logs on the KDC each ticket that is issued.
Configurable in /etc/krb5/krb5.conf, the default log location is /var/krb5/kdc.log. The
following example entries show that user nsolter obtained a ticket-granting ticket and an NFS
ticket:

Apr 02 16:36:12 mendelssohn krb5kdc[360](info): AS_REQ (5 etypes
{17 16 23 3 1})
192.168.1.125: ISSUE: authtime 1207175772, etypes {rep=17 tkt=17 ses=17},

nsolt
er@EXAMPLE.COM for krbtgt/EXAMPLE.COM@EXAMPLE.COM
Apr 02 16:36:34 mendelssohn krb5kdc[360](info): TGS_REQ (5 etypes
{17 16 23 3 1}
) 192.168.1.125: ISSUE: authtime 1207175772, etypes {rep=17 tkt=17 ses=17},
nsol
ter@EXAMPLE.COM for nfs/chopin.example.com@EXAMPLE.COM

444

Security 11

Enhancing Kerberos availability
In the Kerberos configuration so far, the KDC is a single point of failure. There are a couple
ways to increase the availability of the service. You may recall that the command you used to
create the KDC was kdc create master. As implied by the ‘‘master,’’ you can also create slave
KDCs, which contain a copy of the KDC database, and you can issue tickets. You can create a
slave KDC with the interactive kdcmgr create slave command:

kdcmgr create slave

Starting server setup

Enter the Kerberos realm: example.com
What is the master KDC’s host name?: mendelssohn

Setting up /etc/krb5/kdc.conf.

Setting up /etc/krb5/krb5.conf.

Enter the krb5 administrative principal to be used: nick/admin
Obtaining TGT for nick/admin . . .

Password for nick/admin@EXAMPLE.COM:

Setting up /etc/krb5/kadm5.acl.

Setting up /etc/krb5/kpropd.acl.

Waiting for database from master . . .

...
Waiting for database from master . . .

kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key
Enter KDC database master key:

Setup COMPLETE.

Another mechanism to increase the availability of the KDC is to run it on a high-availability
cluster, using the OpenSolaris Open High Availability Cluster software.

Chapter 16 describes Open High Availability Cluster in more detail.

Trusted Extensions
Trusted Extensions (TX), as the name implies, is an extension to the basic OpenSolaris secu-
rity features. TX was originally a separate product, called Trusted Solaris 8, but it has been

445

Part III OpenSolaris File Systems, Networking, and Security

integrated into Solaris 10 and OpenSolaris. TX provides mandatory access control, implemented
through labels. With TX, everything on the system is labeled, and each user has a specific
clearance, or label range. TX is most useful for implementing hierarchical security models,
such as that employed by the United States military, with top secret, secret, confidential, and
unclassified security levels.

A full treatment of Trusted Extensions is beyond the scope of this book. For more details, con-
sult one of the references in the next section.

Resources
The T.J. Maxx credit-card theft is described at http://arstechnica.com/news.ars/post/
20070506-blame-for-record-breaking-credit-card-data-theft-laid-at-the-
feet-of-wep.html.

The following books cover general security and cryptography concepts:

■ Counter Hack Reloaded: A Step-by Step Guide to Computer Attacks and Effective Defenses,
Second Edition, by Ed Skoudis with Tom Liston (Prentice Hall, 2006). Provides detailed
descriptions of computer attack techniques and tools, and how to protect against them.

■ Cryptography and Network Security: Principles and Practice, by William Stallings (Prentice
Hall, 1999). Contains solid explanations of cryptographic algorithms, plus various secu-
rity protocols discussed in this chapter, including Kerberos, IPsec, and SSL.

■ Cryptography: Theory and Practice, by Douglas R. Stinson (CRC Press, 1995). For the math-
ematically inclined, this book provides a rigorous treatment of cryptography.

■ Applied Cryptography: Protocols, Algorithms, and Source Code in C, by Bruce Schneier
(Wiley, 1996). If you want to get down-and-dirty with the source code for the crypto-
graphic algorithms, this is your book. Bruce Schneier also writes a great security blog,
though lately it focuses more on anti-terrorism security, rather than computer security:
http://schneier.com/blog.

You can track and report OpenSolaris security problems at the following:

■ United States Computer Emergency Readiness Team (US-CERT) — http://us-
cert.gov.

■ The Sun Solve Security page — Contains links to Sun security alerts, among other pages:
http://sunsolve.sun.com/show.do?target=security/sec.

■ Sun Alert and Security Discussion Forum — http://forum.java.sun.com/
forum.jspa?forumID=839.

The OpenSolaris community security resources include the following:

■ OpenSolaris security community group — Contains links to useful presentations, Sun
blueprints, and other documentation and explanations that you might not find elsewhere.

446

Security 11

It also hosts several ‘‘unofficial’’ projects, such as Trusted Extensions, PAM, and Secure by
Default: http://opensolaris.org/os/community/security.

■ The OpenSolaris security mailing list — security-discuss@opensolaris.org.

■ Various official OpenSolaris projects, including of particular interest:

■ Flexible Mandatory Access Control — A joint project with the United States National
Security Agency: http://opensolaris.org/os/project/fmac.

■ Forensic Tools — http://opensolaris.org/os/project/forensics.

■ Kerberos — http://opensolaris.org/os/project/Kerberos.

■ OpenSolaris Security Audit — http://opensolaris.org/os/project/audit.

■ Solaris Security Toolkit — The Solaris Security Toolkit, formerly called the Jump-
Start Architecture and Security Scripts (JASS) toolkit, provides a simplified means
to secure, harden, and audit Solaris. There is work in progress to open source the
code and provide a Security Toolkit for OpenSolaris. This toolkit will be quite use-
ful when it’s available for OpenSolaris. You can track its status on the OpenSolaris
security toolkit project page: https://opensolaris.org/os/project/jass.

The official Sun documentation includes the following:

■ System Administration Guide: Security Services — Covers most of the topics in this chapter:
http://docs.sun.com/app/docs/doc/819-3321?l=en.

■ System Administration Guide: IP Services — Covers IPsec: http://docs.sun.com/app/
docs/doc/819-3000?l=en.

■ System Administration Guide: Network Services — Contains a section on the Network Time
Protocol: http://docs.sun.com/app/docs/doc/819-1634?l=en.

■ Solaris Trusted Extensions Collection — Several books on Trusted Extensions:
http://docs.sun.com/app/docs/coll/175.12?l=en.

■ Solaris ZFS Administration Guide — Includes coverage of ACLs in ZFS: http://docs
.sun.com/app/docs/doc/817-2271?l=en.

■ Sun Security Blueprints — Dozens of medium-length (15–50 page) tutorials on various
security topics: http://sun.com/blueprints/browsesubject.html#security.

Pointers to other useful security articles (not necessarily by Sun or OpenSolaris folks) can be
found on Sun’s BigAdmin site: http://sun.com/bigadmin/collections/security.html.

Some useful tools for thinking like an attacker include the following:

■ Network Mapper (Nmap) — http://nmap.org.

■ The Network Vulnerability Scanner (Nessus) — http://nessus.org/nessus.

Finally, the OpenSolaris source code can be an invaluable resource for learning more about
OpenSolaris security features. The security-related source code is all over the place, so the easiest
approach is to use the source code search tool at http://src.opensolaris.org/source/ to
find the code for a particular security feature.

447

Part III OpenSolaris File Systems, Networking, and Security

Summary
This chapter provided a tour of the OpenSolaris security features. You learned about preventing
unauthorized access with Pluggable Authentication Modules (PAM), passwords, and Secure
By Default. You read about limiting attacker damage with role-based access control (RBAC),
privileges, and access control lists, among other topics. To protect network communication, you
learned about secure shell and IP Security (IPsec). The chapter further explained that logs and
auditing are imperative for detecting intrusions. It also included a detailed tutorial on networked
authentication with Kerberos. Finally, it provided a brief overview of Trusted Extensions (TX).

448

OpenSolaris
Reliability,

Availability, and
Serviceability

IN THIS PART

Chapter 12
Fault Management

Chapter 13
Service Management

Chapter 14
Monitoring and Observability

Chapter 15
DTrace

Chapter 16
Clustering for High Availability

Fault Management

IN THIS CHAPTER
Predictive self-healing

Fault management overview

Fault management commands

Using fault management

Computer systems can fail in myriad ways. Computer hardware
suffers from physical limitations and wear and tear that limit
its lifetime. From disks to processors to network cards, it’s not

a question of whether your hardware will fail, it’s a question of when.
Although software doesn’t have the same physical limitations as hardware,
it has its own share of problems. Bugs in applications, device drivers, file
systems, system software, and any other software component can cause
diverse kinds of failures.

Luckily, OpenSolaris provides substantial infrastructure for reliability, avail-
ability, and serviceability (RAS) in the presence of these inevitable faults.
Predictive self -healing, described in this chapter and Chapter 13, provides a
unified approach to fault management and service management in OpenSo-
laris. The observability tools, presented in Chapter 14, enable administra-
tive monitoring and troubleshooting. In addition, the innovative Dynamic
Tracing facility (DTrace), covered in Chapter 15, enables administrators to
troubleshoot complex problems on live systems. Finally, the layered Open
High Availability Cluster software, described in Chapter 16, enables you to
group multiple physical OpenSolaris machines to obtain even higher avail-
ability of your system as a whole.

Predictive Self-Healing
Traditionally, UNIX systems handle hardware and software faults in an ad
hoc manner without much, if any, automated detection or repair. At best,
the system logs a message for the user. The administrator is responsible for

451

Part IV OpenSolaris Reliability, Availability, and Serviceability

the detection, isolation, diagnosis, and repair of a problem. For example, if a CPU starts show-
ing problems, the administrator needs to decide whether it’s a transitory or permanent problem,
and whether to disable or replace it. If a system daemon dies, the administrator is responsible
for detecting the failure and restarting the application.

OpenSolaris takes a different approach, providing a unified infrastructure for predictive
self-healing in the presence of failures. Three principal innovations are involved in predictive
self-healing on OpenSolaris:

■ Unified error-handling channels, fault management, and service manage-
ment — OpenSolaris manages both faults and services in a unified fashion, providing a
single event channel for all error reports, a Fault Manager component that interprets the
events, and a Service Manager component that monitors software services.

■ Automated recovery when possible — The OpenSolaris predictive self-healing frame-
work can automatically restart software daemons that die, and automatically deconfigure
some hardware components that fail.

■ Unified knowledge base articles — Faults are assigned unique identifiers that can be
used by administrators to look up the problem and solution on the Predictive Self-Healing
Knowledge Article Web website.

Fault management is necessarily inexact, and thus must employ heuristic algorithms to deter-
mine when a service or hardware component is really faulted, rather than transitively failing or
simply appearing to fail because of a problem in another area. For example, suppose the system
sees an unaligned memory reference. That could be due to either a hardware memory error or a
software bug. If it happens just once, a good heuristic algorithm is unlikely to flag it as a hard-
ware error, but if it occurs consistently on memory references from different programs, it’s more
likely to be a hardware problem.

Fault managed resource identifiers
As part of the predictive self-healing framework, each hardware and software resource on
the system is identified by a unique Universal Resource Identifier (URI) called a Fault Managed
Resource Identifier (FMRI).

Chapter 6 introduces FMRIs and describes their use in IPS package names.

For hardware components, the FMRI for the motherboard might look like the following:

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0

The FMRI for a processor might look like this:

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0/chip=0/cpu=0

452

Fault Management 12

For software services, the FMRI for the Secure Shell service looks like this:

svc:/network/ssh:default

The FMRI for the Internet Key Exchange (IKE) service looks like this:

svc:/network/ipsec/ike:default

Chapter 13 explains how OpenSolaris service management uses FMRIs.

Fault management versus service management
OpenSolaris divides predictive self-healing into two areas: fault management and service manage-
ment. The Fault Manager primarily handles hardware failures, while the Service Manager handles
software service failures. This chapter focuses on fault management; Chapter 13 covers service
management.

Fault Management Overview
OpenSolaris fault management is an extensible framework to unify fault handling. Starting
from the bottom of the fault management stack, OpenSolaris defines an event proto-
col for error events. Participating components called error handlers, generally hardware
drivers, are instrumented to generate error reports (ereports) in the event protocol format
when something goes wrong. This telemetry data is picked up by the Fault Management
Daemon (FMD).

The FMD is itself managed by the Service Management Facility under the
FMRI svc:/system/fmd:default. See the fmd(1M) man page for more infor-

mation.

The FMD diagnoses problems based on the ereports, and then generates fault events or fault
diagnoses. You can think of the error reports as the symptoms of a problem, and the fault
events as the diagnoses of the problem. Put another way, the fault is the problem and the errors
are the symptoms of that problem. There is not necessarily a one-to-one mapping between
ereports and fault diagnoses. Often, multiple error reports are explained by a single fault
diagnosis.

In addition to generating fault diagnoses, the FMD can take action to notify an administration
via system log messages or SNMP traps. Furthermore, the FMD can actually perform automated
repairs when appropriate.

453

Part IV OpenSolaris Reliability, Availability, and Serviceability

FMD pluggable modules
The FMD itself is just a generic framework for pluggable modules. These modules implement
the logic to actually diagnose problems and take corrective actions. There are two types of mod-
ules: diagnosis engines and agents. Diagnosis engines diagnose problems, whereas agents take cor-
rective actions or issue notifications.

The main hardware diagnosis engine supplied on OpenSolaris is eft. This diagnosis engine is a
collection of fault trees written in the Eversholt fault diagnosis language. Don’t worry if you’ve
never heard of Eversholt: Invented at Sun, it is used primarily for Solaris and OpenSolaris fault
management. There is also a ZFS diagnosis engine, which diagnoses faults in ZFS.

Chapter 8 describes ZFS in detail.

OpenSolaris has a number of agent modules, including the following:

■ cpumem-retire and io-retire: The CPU/Memory Retire Agent and I/O Retire Agent
are responsible for deconfiguring failed hardware.

■ syslog-msgs: Logs fault diagnoses to the system log

■ snmp-trapgen: Generates SNMP traps for fault diagnoses

■ zfs-retire: The ZFS Retire Agent takes care of any automated ZFS actions.

The OpenSolaris Fault Management Architecture (FMA) theoretically allows multiple
fault managers to co-exist on the system. Thus far, the FMD is the only fault manager

supplied natively by OpenSolaris.

Knowledge articles
Each fault management case has a Universal Unique Identifier (UUID). Cases usually correspond
to a single diagnosis. Furthermore, each diagnosis has a unique Sun Message Identifier, with a
corresponding web page at http://sun.com/msg. The articles on the Sun Knowledge Article
website are called, appropriately enough, Knowledge Articles.

The Sun Message Identifier shows up in system log entries, fault logs, and some command out-
puts. For example, zpool status -x includes a Knowledge Article pointer in the see entry:

zpool status -x
pool: testpool
state: UNAVAIL

status: One or more devices could not be opened. There are insufficient
replicas for the pool to continue functioning.

action: Attach the missing device and online it using ‘zpool online’.
see: http://www.sun.com/msg/ZFS-8000-3C

scrub: none requested
config:

454

Fault Management 12

NAME STATE READ WRITE CKSUM
testpool UNAVAIL 0 0 0 insufficient replicas
/export/home/fma/fma-zfs UNAVAIL 0 0 0 cannot open

SMF Services, described in Chapter 13, also have Knowledge Articles for error condi-
tions and faults, included in the svcs -x command output.

Fault management hardware support
The overarching goal of OpenSolaris fault management is to handle every fault through
the framework. However, the generation of error reports and fault diagnoses are fairly
hardware-specific, so fault handling with this framework has not been implemented yet for all
the possible hardware and software components. That means your particular hardware might not
be monitored as part of this framework.

That said, active work is under way to supply generic fault handlers for classes of architec-
ture. For example, the Generic Machine Check Architecture project aims to integrate x86
processors that implement the Machine Check Architecture (MCA) into the OpenSolaris fault
management framework. Other recent projects include support for the UltraSPARC T1 and T2
systems.

Fault Management Commands
The OpenSolaris fault management framework provides three main commands for administra-
tors: fmadm, fmdump, and fmstat. This section examines those commands in turn, plus some
additional commands.

General OpenSolaris administration does not require you to use these commands
because important faults are logged to the system log.

fmadm
The fmadm command provides administrative control over the FMD. The most useful option is
faulty, which lists the resources that are currently faulted. For example:

fmadm faulty
--------------- ------------------------------------ -------------- ---------
TIME EVENT-ID MSG-ID SEVERITY
--------------- ------------------------------------ -------------- ---------
Apr 07 16:09:32 c870f49c-d6b9-c3b4-e4ac-d6db0eaf2cc5 ZFS-8000-D3 Major

Fault class : fault.fs.zfs.device

455

Part IV OpenSolaris Reliability, Availability, and Serviceability

Description : A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for
more information.

Response : No automated response will occur.

Impact : Fault tolerance of the pool may be compromised.

Action : Run ‘zpool status -x’ and replace the bad device.

You can also use the fmadm config option to see the list of modules currently loaded:

fmadm config
MODULE VERSION STATUS DESCRIPTION
cpumem-retire 1.1 active CPU/Memory Retire Agent
disk-transport 1.0 active Disk Transport Agent
eft 1.16 active eft diagnosis engine
fmd-self-diagnosis 1.0 active Fault Manager Self-Diagnosis
io-retire 2.0 active I/O Retire Agent
snmp-trapgen 1.0 active SNMP Trap Generation Agent
sysevent-transport 1.0 active SysEvent Transport Agent
syslog-msgs 1.0 active Syslog Messaging Agent
zfs-diagnosis 1.0 active ZFS Diagnosis Engine
zfs-retire 1.0 active ZFS Retire Agent

The fmadm command also gives you the capability to manually load and unload modules, and
to repair, flush, and perform other actions on the FMD. You won’t normally need to use these
capabilities, and you can consult the fmadm(1M) man page for more information.

fmstat
The fmstat command provides statistics from the fault management modules:

fmstat
module ev_recv ev_acpt wait svc_t %w %b open solve memsz bufsz
cpumem-retire 1 0 0.0 1.9 0 0 0 0 0 0
disk-transport 0 0 0.0 866.6 0 0 0 0 32b 0
eft 3 3 0.0 7.3 0 0 1 1 1.4M 0
fmd-self-diagnosis 0 0 0.0 0.1 0 0 0 0 0 0
io-retire 0 0 0.0 0.1 0 0 0 0 0 0
snmp-trapgen 1 0 0.0 9.9 0 0 0 0 32b 0
sysevent-transport 0 0 0.0 2494.7 0 0 0 0 0 0
syslog-msgs 1 0 0.0 9.8 0 0 0 0 0 0
zfs-diagnosis 2 2 0.0 11.2 0 0 0 0 0 0
zfs-retire 0 0 0.0 0.1 0 0 0 0 0 0

The ev_recv column shows the number of events received by that module; the ev_acpt col-
umn shows the number of events accepted; and so on.

456

Fault Management 12

You can obtain more statistics on specific modules with the -m and -a options, as shown here:

fmstat -m zfs-diagnosis -a
NAME VALUE DESCRIPTION

fmd.accepted 2 total events accepted by module
fmd.buflimit 10M limit on total buffer space
fmd.buftotal 280b total buffer space used by module

fmd.caseclosed 0 total cases closed by module
fmd.caseopen 2 cases currently open by module

fmd.casesolved 1 total cases solved by module
fmd.ckptcnt 2 number of checkpoints taken

fmd.ckptrestore true restore checkpoints for module
fmd.ckptsave true save checkpoints for module
fmd.ckpttime 47739944ns total checkpoint time
fmd.ckptzero false zeroed checkpoint at startup

fmd.debugdrop 0 dropped debug messages
fmd.dequeued 8 total events dequeued by module

fmd.dispatched 8 total events dispatched to module
fmd.dlastupdate 8719972828434ns hrtime of last event dequeue completion

fmd.dropped 0 total events dropped on queue overflow
fmd.dtime 91213668ns total processing time after dequeue

fmd.loadtime 65059846749ns hrtime at which module was loaded
fmd.memlimit 10M limit on total memory allocated
fmd.memtotal 336b total memory allocated by module

fmd.prdequeued 4 protocol events dequeued by module
fmd.snaptime 8719972838765ns hrtime of last statistics snapshot
fmd.thrlimit 8 limit on number of auxiliary threads
fmd.thrtotal 0 total number of auxiliary threads

fmd.wcnt 0 count of events waiting on queue
fmd.wlastupdate 8719972828434ns hrtime of last wait queue update

fmd.wlentime 74653491ns total wait length * time product
fmd.wtime 74642323ns total wait time on queue

fmd.xprtlimit 256 limit on number of open transports
fmd.xprtopen 0 total number of open transports

fmd.xprtqlimit 1024 limit on transport event queue length

fmdump
The fmdump command enables you to examine the error reports and fault diagnoses directly
from the error logs. fmdump without any options shows a one-line entry for each fault
diagnosis:

fmdump
TIME UUID SUNW-MSG-ID
Apr 07 16:09:32.1724 c870f49c-d6b9-c3b4-e4ac-d6db0eaf2cc5 ZFS-8000-D3
Apr 11 15:06:09.9541 00ef1a80-6f5f-44cd-ef4f-fb0e7265963c INTEL-8000-PR

457

Part IV OpenSolaris Reliability, Availability, and Serviceability

You can examine the ZFS diagnosis in more detail by specifying its UUID along with the -v
option:

fmdump -v -u c870f49c-d6b9-c3b4-e4ac-d6db0eaf2cc5
TIME UUID SUNW-MSG-ID
Apr 07 16:09:32.1724 c870f49c-d6b9-c3b4-e4ac-d6db0eaf2cc5 ZFS-8000-D3
100% fault.fs.zfs.device

Problem in: zfs://pool=c8e108872ea709c3/vdev=39d1cbdfa50ff878
Affects: zfs://pool=c8e108872ea709c3/vdev=39d1cbdfa50ff878

FRU: -
Location: -

Note that this diagnosis also appears in the system log:

Apr 7 16:09:32 mendelssohn fmd: [ID 441519 daemon.error] SUNW-MSG-ID:
ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
Apr 7 16:09:32 mendelssohn EVENT-TIME: Mon Apr 7 16:09:32 MDT 2008
Apr 7 16:09:32 mendelssohn PLATFORM: TECRA M3, CSN: 36019791H, HOSTNAME:
mendel ssohn
Apr 7 16:09:32 mendelssohn SOURCE: zfs-diagnosis, REV: 1.0
Apr 7 16:09:32 mendelssohn EVENT-ID: c870f49c-d6b9-c3b4-e4ac-d6db0eaf2cc5
Apr 7 16:09:32 mendelssohn DESC: A ZFS device failed. Refer to http:
//sun.com/msg/ZFS-8000-D3 for more information.
Apr 7 16:09:32 mendelssohn AUTO-RESPONSE: No automated response will occur.
Apr 7 16:09:32 mendelssohn IMPACT: Fault tolerance of the pool may be
compromised.
Apr 7 16:09:32 mendelssohn REC-ACTION: Run ‘zpool status -x’ and replace the
bad device.
Apr 7 16:09:38 mendelssohn zfs: [ID 664491 kern.warning] WARNING: Pool
‘testpoo l’ has encountered an uncorrectable I/O error. Manual intervention is required.

To examine the error reports that led to the diagnoses, use the -e option to fmdump:

fmdump -e
TIME CLASS
Apr 07 16:09:31.9644 ereport.fs.zfs.vdev.open_failed
Apr 07 16:09:32.0801 ereport.fs.zfs.data
Apr 09 11:00:22.8596 ereport.fs.zfs.vdev.open_failed
Apr 09 11:00:22.8596 ereport.fs.zfs.zpool
Apr 10 13:35:55.7876 ereport.fs.zfs.vdev.open_failed
Apr 10 13:35:55.7876 ereport.fs.zfs.zpool
Apr 11 14:29:26.5469 ereport.fs.zfs.vdev.open_failed
Apr 11 14:29:26.5469 ereport.fs.zfs.zpool
Apr 11 15:06:08.9454 ereport.cpu.intel.l0icache_uc
Apr 11 15:06:09.9499 ereport.cpu.intel.l0icache_uc
Apr 11 15:06:10.9597 ereport.cpu.intel.l0icache_uc

458

Fault Management 12

To see the full event, use the -V option. Use the -c option to specify a specific event class:

fmdump -V -e -c ereport.fs.zfs.vdev.open_failed
TIME CLASS
Apr 07 2008 16:09:31.964478474 ereport.fs.zfs.vdev.open_failed
nvlist version: 0

class = ereport.fs.zfs.vdev.open_failed
ena = 0x6dc76ba22d900001
detector = (embedded nvlist)
nvlist version: 0

version = 0x0
scheme = zfs
pool = 0xc8e108872ea709c3
vdev = 0x39d1cbdfa50ff878

(end detector)

pool = testpool
pool_guid = 0xc8e108872ea709c3
pool_context = 0
vdev_guid = 0x39d1cbdfa50ff878
vdev_type = file
vdev_path = /export/home/fma/fma-zfs
parent_guid = 0xc8e108872ea709c3
parent_type = root
prev_state = 0x1
__ttl = 0x1
__tod = 0x47fa9b9b 0x397cc60a

. . .

Other fault management commands
You can see the topology, or view, of a system’s fault-management-enabled resources with the
fmtopo command. Note the nonstandard path of fmtopo:

/usr/lib/fm/fmd/fmtopo
TIME UUID
Apr 10 17:13:27 fef22410-0f28-cf16-ec0b-cfd1f23e7574

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0/chip=0

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0/chip=0/cpu=0

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0/hostbridge=0

459

Part IV OpenSolaris Reliability, Availability, and Serviceability

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0/hostbridge=0/pciexrc=0
. . .

For more details, use -P to see the resource properties:

/usr/lib/fm/fmd/fmtopo -P all hc://:product-id=TECRA-M3:chassis-id=
36019791H:server-id=mendelssohn/motherboard=0/chip=0/cpu=0
TIME UUID
Apr 10 17:20:48 7d6c4f8f-a7cb-ea99-a552-c0369e9a9afb

hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=mendelssohn
/motherboard=0/chip=0/cpu=0
group: protocol version: 1 stability: Private/Private
resource fmri hc://:product-id=TECRA-M3:chassis-id=36019791 . . .

ASRU fmri cpu:///cpuid=0
FRU fmri hc://:product-id=TECRA-M3:chassis-id=36019791 . . .

group: authority version: 1 stability: Private/Private
product-id string TECRA-M3
chassis-id string 36019791H
server-id string mendelssohn

group: cpu-properties version: 1 stability: Private/Private
cpuid uint32 0x0
chip_id int32 0
core_id int32 0
clog_id int32 0
pkg_core_id int32 0

You can also specify a different topology scheme, such as cpu, in which case you will see differ-
ent names for the same resources. For example, the CPU in the previous example can be named
with the cpu schema:

/usr/lib/fm/fmd/fmtopo -s cpu
TIME UUID
Apr 14 13:47:18 54ac989a-f456-49f0-9e19-e2224ffa0484

cpu:///cpuid=0

Additional fault management commands include /usr/lib/fm/fmd/fminject and
/usr/lib/fm/fmd/fmsim, which can be used to inject and simulate faults, respectively.
Consult the Fault Management Daemon Programmer’s Reference Manual (FMDPRM) listed in the
‘‘Resources’’ section at the end of this chapter for more details.

460

Fault Management 12

Using Fault Management
The fault management framework logs faults to the system log, usually configured as
/var/adm/messages, by default, so you generally don’t need to interact with the framework
directly. As an administrator, you only need to monitor the system log for errors, look up the
referenced knowledge base article, and take the recommended corrective action, if required.

Alternatively, you can configure your system to send SNMP traps for fault events to whatever
management framework you’re using. For more details, consult the documentation on the Fault
Management Community Group website referenced in the ‘‘Resources’’ section at the end of this
chapter.

If you’re curious, you can sometimes use the fault management commands directly to obtain
more information. For example, suppose you see a message like the following in your system
log:

Apr 11 15:06:09 mendelssohn fmd: [ID 441519 daemon.error] SUNW-MSG-ID:
INTEL-8000-PR, TYPE: Fault, VER: 1, SEVERITY: Major

Apr 11 15:06:09 mendelssohn EVENT-TIME: Fri Apr 11 15:06:09 MDT 2008
Apr 11 15:06:09 mendelssohn PLATFORM: TECRA M3, CSN: 36019791H, HOSTNAME:
mendelssohn

Apr 11 15:06:09 mendelssohn SOURCE: eft, REV: 1.16
Apr 11 15:06:09 mendelssohn EVENT-ID: 00ef1a80-6f5f-44cd-ef4f-fb0e7265963c
Apr 11 15:06:09 mendelssohn DESC: A level 0 Instruction Cache on this cpu is
faulty. Refer to http://sun.com/msg/INTEL-8000-PR for more information.

Apr 11 15:06:09 mendelssohn AUTO-RESPONSE: The system will attempt to offline
this cpu to remove it from service.

Apr 11 15:06:09 mendelssohn IMPACT: Performance of this system may be affected.
Apr 11 15:06:09 mendelssohn REC-ACTION: Schedule a repair procedure to replace
the affected CPU. Use ‘fmadm faulty’ to identify the module.

The preceding message seems to indicate a problem with one of the system’s CPUs.
The first thing to do is look at the supplied web page for a knowledge base article:
http://sun.com/msg/INTEL-8000-PR. If you want more information, however, start
with fmadm faulty:

fmadm faulty
--------------- ------------------------------------ -------------- ---------
TIME EVENT-ID MSG-ID SEVERITY
--------------- ------------------------------------ -------------- ---------
Apr 11 15:06:09 00ef1a80-6f5f-44cd-ef4f-fb0e7265963c INTEL-8000-PR Major

Fault class : fault.cpu.intel.l0icache
Affects : cpu:///cpuid=0

degraded but still in service

461

Part IV OpenSolaris Reliability, Availability, and Serviceability

FRU : hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=
mendelssohn/motherboard=0/chip=0

Description : A level 0 Instruction Cache on this cpu is faulty. Refer to
http://sun.com/msg/INTEL-8000-PR for more information.

Response : The system will attempt to offline this cpu to remove it from
service.

Impact : Performance of this system may be affected.

Action : Schedule a repair procedure to replace the affected CPU. Use
‘fmadm faulty’ to identify the module.

FRU stands for field replaceable unit, a component that can be replaced easily.

To obtain even more information from your system about the error, check out the
actual fault log for messages with the unique EVENT-ID listed in the fmadm faulty
output:

fmdump -v -u 00ef1a80-6f5f-44cd-ef4f-fb0e7265963c
TIME UUID SUNW-MSG-ID
Apr 11 15:06:09.9541 00ef1a80-6f5f-44cd-ef4f-fb0e7265963c INTEL-8000-PR
100% fault.cpu.intel.l0icache

Problem in: hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=
mendelssohn/motherboard=0/chip=0/cpu=0

Affects: cpu:///cpuid=0
FRU: hc://:product-id=TECRA-M3:chassis-id=36019791H:server-id=

mendelssohn/motherboard=0/chip=0
Location: -

There is only one message (a fault summary) that still doesn’t give you much more information.
To see the actual error events that caused the fault manager to generate the fault, look at the raw
error log with fmdump -e. This example uses the -t option to fmdump to find only those errors
that were part of this particular problem:

fmdump -e -t 15:06
TIME CLASS
Apr 11 15:06:08.9454 ereport.cpu.intel.l0icache_uc
Apr 11 15:06:09.9499 ereport.cpu.intel.l0icache_uc
Apr 11 15:06:10.9597 ereport.cpu.intel.l0icache_uc

462

Fault Management 12

For more detail, use the -V option to fmdump. This example looks only at the final ereport,
using the -t option to fmdump to specify it:

fmdump -V -e -t 15:06:10
Apr 11 2008 15:06:10.959775322 ereport.cpu.intel.l0icache_uc
nvlist version: 0

detector = (embedded nvlist)
nvlist version: 0

version = 0x0
scheme = hc
hc-list = (array of embedded nvlists)
(start hc-list[0])
nvlist version: 0

scheme =
hc-name = motherboard
hc-id = 0

(end hc-list[0])
(start hc-list[1])
nvlist version: 0

scheme =
hc-name = chip
hc-id = 0

(end hc-list[1])
(start hc-list[2])
nvlist version: 0

scheme =
hc-name = cpu
hc-id = 0

(end hc-list[2])

(end detector)

compound_errorname = ICACHELO_ERR_ERR
IA32_MCG_STATUSl = 0x0
machine_check_in_progress = 0
bank_number = 0x0
bank_msr_offset = 0x404
IA32_MCi_STATUS = 0xe200000000000100
overflow = 1
error_uncorrected = 1
error_enabled = 0
processor_context_corrupt = 1
error_code = 0x100
class = ereport.cpu.intel.l0icache_uc

463

Part IV OpenSolaris Reliability, Availability, and Serviceability

ena = 0x20b23e0000000001
__ttl = 0x1
__tod = 0x47ffd2c2 0x3935025a

That’s probably more detail than you wanted, but it can be helpful in some cases.

Resources
The most important resource for OpenSolaris fault management is the Knowledge Article Web
at http://sun.com/msg. This collection of articles, each referenced by a unique Sun Message
Identifier, provides important information about various problems.

The OpenSolaris Fault Management Community Group, at http://opensolaris.org/os/
community/fm, contains an overview of OpenSolaris fault management, pointers to documen-
tation and relevant blog entries, and a list of fault management projects. Interesting projects
include the following:

■ Generic Machine Check Architecture Improvement: http://opensolaris.org/os/
project/generic-mca

■ Events Registry: http://opensolaris.org/os/project/events-registry

Although aimed at Fault Management Daemon module developers, the Fault Management Dae-
mon Programmer’s Reference Manual (FMD PRM) is useful for understanding various aspects of
the fault management architecture on OpenSolaris.

The source code for the Fault Management Daemon, various fault management com-
mands, and the plug-in modules lives in usr/src/cmd/fm/. You can browse it at
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/fm.

Summary
This chapter introduced the OpenSolaris approach to fault management and explained how
predictive self-healing is a combination of fault management and service management. By
reading this chapter, you learned about the OpenSolaris fault management framework and the
commands for interacting with the framework, including fmadm, fmstat, and fmdump. You also
saw examples of ZFS and CPU faults handled through the fault framework.

464

Service Management

IN THIS CHAPTER
Processes and services

Service manifests and methods

Service management
commands

Restarters and the SMF
repository

Customizing SMF services

S ince the first versions of UNIX in 1969, one of the core abstrac-
tions in the operating system is the process, used to provide
multi-programming and scheduling of system resources. Open-

Solaris, of course, continues to use the process for essentially the same
purposes as earlier versions of UNIX. However, beginning with Solaris 10,
a higher-level abstraction called a service has become central to the system
administration model. Chapter 3 briefly introduced the idea of services and
the most basic commands used to manipulate them. Chapter 12 described
fault management, which together with service management, provides the
predictive self-healing feature of OpenSolaris. In this chapter, you’ll gain an
in-depth understanding of OpenSolaris service management and learn how
to develop your own services.

Processes and Services
Considering the deep roots of the process model in UNIX and the com-
monality it represents with other operating systems, it’s logical to ask why
OpenSolaris has added the concept of a service to the system. After all, a
service is implemented in terms of processes, so what does the service pro-
vide that a process doesn’t?

The highly oversimplified answer to this question is that not all processes
are equally important. After all, a process is created to execute almost every
command that you type to a command shell, but many of those processes
are born, execute, and die in a matter of milliseconds. Some, such as a text
editor, a web browser, or an e-mail client, last much longer, but even

465

Part IV OpenSolaris Reliability, Availability, and Serviceability

those longer-lasting processes are only of interest to the user who launched them because they
don’t provide a function to any other user of the system. As a result, most processes don’t
require any management — their management is handled automatically by the system as a
by-product of each user’s interaction with the process.

Other processes, however, can be of great importance to every user of a system. For example,
a routing daemon such as in.routed is responsible for monitoring the network for routing
messages to determine the paths for sending network traffic to other systems. If it fails, your
system will likely become unable to communicate with any systems that are not on the local
network. Worse, it may be quite some time before anyone realizes there’s a problem with the
system because the network might continue to function without change, and failures may affect
only some communications or users. Diagnosing and correcting such problems immediately can
be much less difficult and less costly than doing so long after the fact. In response, many larger
enterprises install monitoring tools to detect failures as soon as possible, but such tools can be
expensive, and they usually still require action by an administrator to restart the failed process.

In addition, the increasing complexity of applications means that nearly all meaningful work
done on a system involves communication between multiple processes. Even serving a typical
web page can involve an HTTP server, an application server, and a database server; if any one of
those processes fails, the entire website fails. If that website is how a business makes money, that
failure is costing it money every second it continues.

The sheer number of system and application services available increases yearly and is com-
pounded by the trend toward consolidating applications on single systems to increase efficiency
and utilization of those systems. Consider also that virtualization technologies enable even
further consolidation, and it becomes apparent that it’s very desirable for the operating system to
provide more assistance than it traditionally has in ensuring that the applications are running as
much as possible. That is the core problem the Service Management Facility (SMF) is designed
to solve.

Beyond that, the designers of the SMF recognized two related problems that had to be solved
to present a complete solution: providing a consistent administration model for managing sys-
tem services, and a mechanism for delivering service descriptions so that the system can under-
stand the service relationships — for example, the preceding scenario in which multiple services
implement a website.

SMF versus UNIX init

Aproblem that has traditionally dogged UNIX systems has been a lack of consistency regarding
how different ‘‘services’’ are started, stopped, and managed. System V UNIX took some tentative

continued

466

Service Management 13

continued
steps toward standardizing this aspect of the system with the concept of init scripts. The premise
of init scripts was that each script is responsible for starting a daemon or performing some other
task needed to start or stop the system. The scripts were organized into directories based on the
system’s run-level. A numerical sequencing of the scripts within each directory controlled the order
in which they would be executed, and a prefix character specified whether a script was used to
start or stop its daemon. Because it was typically convenient to use the same script for both starting
and stopping, it would receive a single command argument of start or stop to specify which
function was desired. This was how Solaris through Solaris 9 was booted, and Linux adopted the
same system. For example, the /etc/rc2.d directory in Fedora 8 has the following contents:

K01smartd K75netfs S09isdn
K01smolt K75udev-post S10network
K02avahi-daemon K84btseed S11auditd
K02haldaemon K84bttrack S12restorecond
K02NetworkManager K85rpcgssd S13rpcbind
K02NetworkManagerDispatcher K85rpcidmapd S15mdmonitor
K05atd K86nfslock S25pcscd
K05saslauthd K87irqbalance S26rsyslog
K10psacct K87multipathd S27messagebus
K15httpd K88wpa_supplicant S44acpid
K20nfs K89dund S50bluetooth
K24irda K89netplugd S55sshd
K50netconsole K89pand S80sendmail
K69rpcsvcgssd K89rdisc S85gpm
K72autofs K91capi S90ConsoleKit
K73setroubleshoot K95firstboot S90crond
K73winbind K95kudzu S97yum-updatesd
K73ypbind S00microcode_ctl S98cups
K74lm_sensors S06cpuspeed S99anacron
K74nscd S08ip6tables S99local
K74ntpd S08iptables

This system has obviously worked well enough to survive basically intact for 20 years, but it has
problems.

First, while designed as a modular architecture for starting and stopping a system, init is flawed
as a solution to that problem. It’s strictly sequential, which means the boot process remains very
linear, even as systems become increasingly parallel with multiple processors and threads. There’s
no provision for a service to signal a problem in a way that can stop the parade of services beyond

continued

467

Part IV OpenSolaris Reliability, Availability, and Serviceability

continued
it. Nor is there a provision for handling a service that hangs in its start process, so a problem or bug
with one fairly irrelevant service can prevent important services from starting. Longtime Solaris users
have certainly seen this happen when a NIS server is unreachable during system boot, for instance.

Second, because starting and stopping individual services wasn’t the primary design center, there’s
very little management functionality offered. While you can try to execute one of these scripts
individually after the system is booted to start or stop the corresponding function, there’s no general
guarantee that it will work correctly when run outside of the init framework. Each script can be
called with a start or stop argument, but there’s no consistency specified beyond that. An
occasional service might offer a restart option, but very few do. There’s no standard way to
determine the state of a service after it starts. Unless you pore over scripts and source code, it’s
basically impossible to tell which services have dependencies on each other. Some information
can be inferred from the sequencing within the run-level directories, but the forced linearity of
the naming scheme means that the dependencies are only approximate. Service configuration
is not standardized — each is responsible for defining and implementing its own configuration
store.

Finally, the method for diagnosing service problems is specific to each service. All of these
deficiencies in the init system are corrected by SMF’s dependency system and the commands it
provides to monitor, configure, and manage the services.

SMF By Example
Before diving further into the theory, concepts, and gritty details of SMF, take a look at an
example service that is available on virtually any platform: the Secure Shell (SSH) daemon,
sshd. Start by looking at the files included in the ssh server package using the pkg command:

$ pkg contents -t file SUNWsshd
PATH
etc/ssh/sshd_config
lib/svc/method/sshd
usr/lib/ssh/sftp-server
usr/lib/ssh/sshd
var/svc/manifest/network/ssh.xml

Details of browsing and managing packages can be found in Chapter 6. The capabili-
ties and uses of ssh are discussed in Chapter 11.

Of the files in the listing, /etc/ssh/sshd_config, /usr/lib/ssh/sftp-server,
and /usr/lib/ssh/sshd are similar to the files you’d find in a Linux package such as
openssh-server on Fedora 8. The other two files, however, are decidedly unfamiliar. First,
look at the ssh.xml file, which is shown in Listing 13-1.

468

Service Management 13

LISTING 13-1

ssh service manifest

$ cat /var/svc/manifest/network/ssh.xml
<?xml version="1.0"?>

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">

<!--
CDDL HEADER START

The contents of this file are subject to the terms of the
Common Development and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in compliance
with the License.

You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
or http://www.opensolaris.org/os/licensing.
See the License for the specific language governing permissions
and limitations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/OPENSOLARIS.LICENSE.
If applicable, add the following below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright 2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

ident "@(#)ssh.xml 1.8 05/06/10 SMI"

NOTE: This service manifest is not editable; its contents will
be overwritten by package or patch operations, including
operating system upgrade. Make customizations in a different
file.

-->

<service_bundle type=’manifest’ name=’SUNWsshdr:ssh’>

<service
name=’network/ssh’
type=’service’
version=’1’>

<create_default_instance enabled=’false’ />

469

Part IV OpenSolaris Reliability, Availability, and Serviceability

<single_instance />

<dependency name=’fs-local’
grouping=’require_all’
restart_on=’none’
type=’service’>

<service_fmri
value=’svc:/system/filesystem/local’ />

</dependency>

<dependency name=’fs-autofs’
grouping=’optional_all’
restart_on=’none’
type=’service’>

<service_fmri value=’svc:/system/filesystem/autofs’ />

</dependency>

<dependency name=’net-loopback’
grouping=’require_all’
restart_on=’none’
type=’service’>

<service_fmri value=’svc:/network/loopback’ />

</dependency>

<dependency name=’net-physical’
grouping=’require_all’
restart_on=’none’
type=’service’>

<service_fmri value=’svc:/network/physical’ />

</dependency>

<dependency name=’cryptosvc’
grouping=’require_all’
restart_on=’none’
type=’service’>

<service_fmri value=’svc:/system/cryptosvc’ />

</dependency>

<dependency name=’utmp’
grouping=’require_all’
restart_on=’none’
type=’service’>

<service_fmri value=’svc:/system/utmp’ />

</dependency>

<dependency name=’config_data’
grouping=’require_all’
restart_on=’restart’
type=’path’>

470

Service Management 13

<service_fmri
value=’file://localhost/etc/ssh/sshd_config’ />

</dependency>

<dependent
name=’ssh_multi-user-server’
grouping=’optional_all’
restart_on=’none’>

<service_fmri
value=’svc:/milestone/multi-user-server’ />

</dependent>

<exec_method
type=’method’
name=’start’
exec=’/lib/svc/method/sshd start’
timeout_seconds=’60’/>

<exec_method
type=’method’
name=’stop’
exec=’:kill’
timeout_seconds=’60’ />

<exec_method
type=’method’
name=’refresh’
exec=’/lib/svc/method/sshd restart’
timeout_seconds=’60’ />

<property_group name=’startd’
type=’framework’>

<!-- sub-process core dumps shouldn’t restart session -->

<propval name=’ignore_error’
type=’astring’ value=’core,signal’ />

</property_group>

<property_group name=’general’ type=’framework’>

<!-- to start stop sshd -->

<propval name=’action_authorization’ type=’astring’
value=’solaris.smf.manage.ssh’ />

</property_group>

<stability value=’Unstable’ />

<template>

<common_name>

<loctext xml:lang=’C’>

SSH server

471

Part IV OpenSolaris Reliability, Availability, and Serviceability

</loctext>

</common_name>

<documentation>

<manpage title=’sshd’ section=’1M’ manpath=’/usr/share/man’ />

</documentation>

</template>

</service>

</service_bundle>

While it’s possible to define a service directly using the svccfg command, normally you will
find that services are defined by an XML file called a manifest because it is more convenient,
maintainable, and reliable to deliver service definitions using such a mechanism, rather than as a
scripted set of commands.

The service manifest
Let’s walk through the ssh manifest section-by-section to understand how a service is defined.
After the XML version header, the very first item is as follows:

<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">

This clause tells the XML parser that the document is a service bundle, and its format is defined
by the DTD file, service_bundle.dtd.1. The rest of the manifest contents are required to be
in the format described by the DTD.

The SMF DTD is extensively commented and is a useful resource in understanding
SMF, especially when developing your own service definitions.

Service declaration
The next section (ignoring comments) is the basic service declaration:

<service_bundle type=’manifest’ name=’SUNWsshdr:ssh’>

<service
name=’network/ssh’
type=’service’
version=’1’>

<create_default_instance enabled=’false’ />

<single_instance />

First, the service_bundle element’s type attribute defines which type of service bundle this
document contains — in this case, a manifest, which is the most common type. Another type

472

Service Management 13

is the profile, described later in this chapter. The name attribute, by convention, is used to
record the name of the package in which this service is delivered — in this case, SUNWsshdr.

Next, the actual service declaration begins, defining the service name. The full name of the ser-
vice is known as a service FMRI (short for Fault Managed Resource Identifier). The actual FMRI
for the ssh service is written as svc:/network/ssh, but the prefix does not need to be written
in the manifest because it’s implied by being part of a service declaration.

See Chapter 12 for more on fault management and FMRIs.

The type attribute defines this as a service; other possibilities are restarter and milestone.
The version attribute allows for service versioning, which is currently not used in SMF; all ser-
vice manifests shipped in OpenSolaris have a version attribute set to 1. Eventually, versions
may be used to enable services to change in future releases of OpenSolaris while maintaining
compatibility for services written for older releases. See later sections of this chapter for details
on restarters and milestones.

The last two elements of this section, create_default_instance and single_instance,
define an actual instance of a service, which is necessary for the service to run. This can be a
confusing aspect of SMF because while you generally talk about services running, in fact you are
normally referring to an instance of a service. Most services will have a single instance, named
default, and that instance is what the create_default_instance element defines; the
FMRI for the instance will be svc:/network/ssh:default.

The enabled attribute indicates whether this instance should be enabled or disabled immedi-
ately after the instance is defined. In most cases the manifest declares the service to be disabled
by default. This is based on an OpenSolaris architecture best practice, which suggests that only
service instances that are required to boot and initialize the system should be enabled by default,
with all others disabled to reduce the system’s vulnerability to attack. This has the additional
benefit of reducing system load by limiting the number of unneeded processes started on the
system. The services that are enabled by default are typically those used to configure the system
after installation.

See Chapter 11 for more information on OpenSolaris security policies.

The single_instance element notifies SMF that only one instance of this service can be
online at a time. Few of the early services have had multiple instances, but because SMF is
incorporated further into the design of other subsystems, multiple instances of services are
starting to appear. The most notable example in OpenSolaris is the network/physical service,
which has both default and nwam instances to support the traditional Solaris networking
configuration (the default instance) and the automatic configuration from the Network
Auto-Magic project (the nwam instance).

Network configuration is discussed in Chapter 9.

473

Part IV OpenSolaris Reliability, Availability, and Serviceability

Dependencies

One of the core principles of SMF is that services are related to each other by dependencies.
Each service declares its dependencies in its manifest, and ssh is fairly typical in this respect,
having a number of dependencies. Here’s a look at just one of them:

<dependency name=’fs-local’
grouping=’require_all’
restart_on=’none’
type=’service’>

<service_fmri
value=’svc:/system/filesystem/local’ />

</dependency>

Each dependency has a name attribute. By convention, dependencies are named based on the
service to which the dependency refers, as is the case here, though it used an abbreviated form.

The grouping attribute is the key attribute in the dependency, specifying how critical the
dependency is to this service. The require_all grouping used here is the most common type
of dependency. It represents a ‘‘hard’’ dependency — one that must come online before this
service can be started. There are other types of dependency groupings, though:

■ require_any — At least one service in the grouping must come online in order for this
service to come online.

■ optional_all — All services in the grouping must be online, disabled, or in mainte-
nance. Essentially, this means that if the dependency is enabled, it should be started prior
to this service, but this service should be brought online regardless of the result of starting
the dependency. This is useful in cases where your service can provide additional func-
tionality or behave differently if the dependency is available, but can function correctly
without it. The ssh service uses this grouping for the autofs service dependency because
many users have their home directories located on automounted file systems, which aren’t
available until after the autofs service is online.

■ exclude_all — If any of the services in the grouping are online, this service may not be
brought online.

The restart_on attribute specifies how SMF should propagate changes in the state of the
dependency to this service. In this case, the value none specifies that no change in the state of
the dependency will cause this service to be automatically restarted; the result of this setting is
that the dependency applies only for initial startup of this service. Other possible values are as
follows:

■ error — Restart if the dependency fails

■ restart — Restart if the dependency restarts

■ refresh — Restart if the dependency restarts or is refreshed

474

Service Management 13

When writing your own service manifests, include a comment with each dependency
recording why the dependency exists, so that future service maintainers understand

why it’s there. Unlike the ssh manifest, most system manifests do contain at least some comments
on their dependencies.

The type and service_fmri attributes together specify that this dependency is on another ser-
vice, and the FMRI of that service. Compare that setting to another of ssh’s dependencies:

<dependency name=’config_data’
grouping=’require_all’
restart_on=’restart’
type=’path’>

<service_fmri
value=’file://localhost/etc/ssh/sshd_config’ />

</dependency>

Rather than specify a dependency on another service, this dependency is on a file — in this
case, the sshd configuration file; if the file does not exist, ssh will not be brought online.

You will not currently see path dependencies used very often. While it seems like a
good idea for services that have such configuration files, the current SMF implemen-

tation makes it less attractive than it appears. If the configuration file doesn’t exist, the service is
left in the offline state, and other services that have optional (rather than required) dependencies
on that service will be brought online. More often, the desired behavior is for the service whose
configuration file is missing to go to the maintenance state, which blocks any services that depend
on it from being brought online. To achieve this behavior, the service’s start method should
check for the file’s existence and exit with the code 96 (SMF_EXIT_ERR_CONFIG).

Additionally, there is no monitoring of the file for changes, so the service cannot be notified of
updates to the file. An efficient file event monitoring capability has recently been added to Open-
Solaris, but SMF does not yet make use of it to monitor file dependencies.

Dependents
In addition to defining the service’s dependencies, the manifest can also define its dependents.
There is no difference between how SMF treats these two methods of defining the dependency
relationships between services, so why would you use a dependent element in one service’s
manifest and a dependency in the other’s?

The SMF community recommends that when writing a service manifest, you directly define all
of the dependencies you are aware of by using dependency elements. However, if the devel-
oper of a service realizes that some other services need to depend on it and he does not have the
ability to modify and deliver the dependent service’s manifest at the same time as his service, he
should use a dependent element in his service manifest to create the correct dependency rela-
tionship. The ssh manifest has a single dependent element:

<dependent
name=’ssh_multi-user-server’

475

Part IV OpenSolaris Reliability, Availability, and Serviceability

grouping=’optional_all’
restart_on=’none’>

<service_fmri
value=’svc:/milestone/multi-user-server’ />

</dependent>

Like the dependency element, the dependent element has name, grouping, and restart_on
attributes that work in the same fashion, and it includes a service_fmri element that
identifies the dependent service. It lacks a type attribute, because declaring a file as being a
dependent would make no sense and no other types of dependencies are supported by SMF.
The ssh manifest’s use of dependent also demonstrates another reason why it’s useful: when
a service has optional dependencies on a large set of services, which is the case for milestones
such as multi-user-server. Milestones are discussed later in this chapter.

Listing all of those optional dependencies would lead to a very large service manifest, and may
lead to extra work in maintaining the dependencies due to the need to update multiple service
manifests if the dependencies change. Using a dependent element in the ssh manifest keeps
its relationships local to the single manifest, simplifying the developer’s maintenance of the ssh
service.

Methods
The next section of the service manifest makes the crucial connection between the SMF service
definition and the programs that are run to provide the service. These are the method declara-
tions from the ssh manifest:

<exec_method
type=’method’
name=’start’
exec=’/lib/svc/method/sshd start’
timeout_seconds=’60’/>

<exec_method
type=’method’
name=’stop’
exec=’:kill’
timeout_seconds=’60’ />

<exec_method
type=’method’
name=’refresh’
exec=’/lib/svc/method/sshd restart’
timeout_seconds=’60’ />

Each exec_method element defines a different action that can be taken on the service. The ssh
service defines the three method types that are standard across most SMF services:

■ start — To bring the service online. Required.

476

Service Management 13

■ stop — To take the service offline. Required.

■ refresh — To reload the service’s configuration without an interruption of the service.
Optional.

Each method declaration is required to have the type, name, exec, and timeout_seconds
attributes.

The exec attribute defines the command that should be run for that method. This is often the
full pathname of an executable program, but two special tokens may also appear. The ssh stop
method demonstrates the first token, :kill. This token directs SMF to send processes that
are part of the service a signal; the mechanism SMF uses to track those processes is discussed
later in this chapter. SIGTERM is the default, although any signal can be sent by adding it as
an option to the :kill token. The other special token is :true, which can used in a required
method declaration to instruct SMF that no action is to be taken for this method on the service.
You most often see :true used as the stop method for services that are transient in nature.

The timeout_seconds attribute provides a boundary for the expected execution time on
the method. If the method does not exit within the duration specified, SMF will terminate the
method and retry it, until a retry limit is reached, at which point the service is placed into a
maintenance state. The retry limit for all services at this time is three method failures in a row,
or a restart rate of greater than once per second, and it is not configurable.

Property groups
The next section of the ssh manifest contains two property_group elements:

<property_group name=’startd’
type=’framework’>

<!-- sub-process core dumps shouldn’t restart session -->
<propval name=’ignore_error’
type=’astring’ value=’core,signal’ />

</property_group>

<property_group name=’general’ type=’framework’>
<!-- to start stop sshd -->
<propval name=’action_authorization’ type=’astring’

value=’solaris.smf.manage.ssh’ />
</property_group>

Both of the property groups have a type of framework, meaning that they are property groups
defined by SMF to be usable on any service. A property_group element may contain prop-
val elements, each of which is used to set the value of a single-valued property; the property
element is available to set the value of list-valued properties.

A service may also define property groups with a type of application, which the service will
use to store configuration values for its own use. Because ssh has a configuration file that it uses
on multiple platforms, it doesn’t use application property groups, although the contents of

477

Part IV OpenSolaris Reliability, Availability, and Serviceability

its configuration file, /etc/ssh/sshd_config, could easily be modeled using SMF properties.
More complex service configuration languages, such as that used by the ipfilter firewall, are
less likely to be candidates for modeling with SMF property groups.

The ignore_error property in the first property group element is used to alter how SMF treats
some failures in this service. In this case, the property includes a list of two values:

■ core — SMF will not restart the service if it produces a core dump.

■ signal — SMF will not restart the service if a subprocess of the service exits due to a
signal from a process that is not part of the service, such as a kill signal sent by an admin-
istrator.

The service will be restarted if all of its processes exit.

The action_authorization property in the second property group is used to delegate some
administrative tasks on the service using the OpenSolaris role-based access control (RBAC)
framework. By specifying a value for the action_authorization property, users who
are assigned that authorization (solaris.smf.manage.ssh in this example) will have the
capability to use svcadm to modify the state of this service.

See Chapter 11 for details on assigning authorizations using RBAC.

Stability and templates
The last section of the service manifest contains information describing the service for developers
and administrators:

<stability value=’Unstable’ />

<template>

<common_name>

<loctext xml:lang=’C’>
SSH server
</loctext>

</common_name>

<documentation>

<manpage title=’sshd’ section=’1M’ manpath=’/usr/share/man’ />
</documentation>

</template>

The stability element is often confusing to those new to OpenSolaris. You might assume that
it’s making a comment on how well the service works, but that’s not the case. Instead, it relates
to the OpenSolaris architectural review process as defined by the Architecture Process and Tools
community and governed by the Architecture Review Committees (ARCs).

The ARCs and the OpenSolaris development process are described in Chapter 1.

478

Service Management 13

In this realm, the term stability describes the conditions under which an interface may be
changed in an incompatible fashion. The interface in this case reflects the names of the service,
instances, and properties defined within the manifest. The stability values are defined by a
document known as the Interface Taxonomy, which is maintained by the ARCs; the value used
here, Unstable, means that the name of the service, any instances, or any property groups,
are subject to change in a minor release of OpenSolaris. A separate document called the Release
Taxonomy defines what constitutes a minor release.

The Architecture Process and Tools community at www.opensolaris.org/os/community/arc/
publishes both the Interface Taxonomy and the Release Taxonomy.

The template element provides a place for the service developer to include some very basic
information about the service, which can be displayed by the SMF management tools. While
it’s desirable for the service name to be as descriptive as possible, the common_name element is
used to provide a name in ordinary language that should be clear to a user. Its documentation
element provides a pointer to the manual page describing the service, which can be accessed
using the man command. This element can also contain a link to web-based documentation
resources, though the ssh service hasn’t provided one. The SMF community has additional
work in progress to expand the template section to enable service authors to provide more
information about the properties and values. This work will enable the configuration tools to
provide more assistance to users by improving the documentation and validation of properties.

When writing your own service manifest, it’s usually not a good idea to start from a
blank file and write it from scratch. Instead, find an existing service that is similar

to your new one and use its manifest as a starting point, modifying it for your new service’s pur-
poses. The Easy Tools project, at http://opensolaris.org/os/project/phpEasyTools/, is
also developing a tool to simplify manifest construction.

Service method script
Now let’s turn our attention to the other part of this service, the method script. Not all services
use a script as their start method, but a substantial percentage do. Listing 13-2 shows the ssh
method script, /lib/svc/method/sshd.

LISTING 13-2

ssh method script

#!/sbin/sh
#
Copyright 2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
ident "@(#)sshd 1.4 04/11/17 SMI"

SSHDIR=/etc/ssh
KEYGEN="/usr/bin/ssh-keygen -q"

479

Part IV OpenSolaris Reliability, Availability, and Serviceability

PIDFILE=/var/run/sshd.pid

Checks to see if RSA, and DSA host keys are available
if any of these keys are not present, the respective keys are created.
create_key()
{

keypath=$1
keytype=$2

if [! -f $keypath]; then
grep "^HostKey $keypath" $SSHDIR/sshd_config > /dev/null 2>&1
if [$? -eq 0]; then

echo Creating new $keytype public/private host key pair
$KEYGEN -f $keypath -t $keytype -N ‘’
return $?

fi
fi

return 0
}

This script is being used for two purposes: as part of an SMF
start/stop/refresh method, and as a sysidconfig(1M)/sys-unconfig(1M)
application.
#
Both, the SMF methods and sysidconfig/sys-unconfig use different
arguments..

case $1 in
sysidconfig/sys-unconfig arguments (-c and -u)

’-c’)
create_key $SSHDIR/ssh_host_rsa_key rsa
create_key $SSHDIR/ssh_host_dsa_key dsa
;;

’-u’)
sys-unconfig(1M) knows how to remove ssh host keys, so there’s
nothing to do here.
:
;;

SMF arguments (start and restart [really "refresh"])
’start’)

if [-f /.livecd] && [! -f $SSHDIR/ssh_host_rsa_key]; then
create_key $SSHDIR/ssh_host_rsa_key rsa
create_key $SSHDIR/ssh_host_dsa_key dsa

fi
/usr/lib/ssh/sshd
;;

480

Service Management 13

’restart’)
if [-f "$PIDFILE"]; then

/usr/bin/kill -HUP `/usr/bin/cat $PIDFILE`
fi
;;

*)
echo "Usage: $0 { start | restart }"
exit 1
;;

esac

exit $?

This method script shouldn’t look all that unfamiliar if you’re a Linux user; the /etc/init.d/sshd
script in Fedora 8 contains similar operations, including generating the keys, starting the dae-
mon, and using the sshd.pid file to find the right process to signal when reloading the
configuration. This similarity demonstrates that adapting a service written for a platform lacking
SMF will often not require many changes in the service itself, as the SMF manifest can be
used to define the service so that it uses existing code to start and stop itself. In fact, for many
daemon services, you may not need to write a method script at all, as the daemon can just be
run directly as the service start method, and the SMF :kill method token can be used to
stop the service or send a SIGHUP signal to refresh it.

Service management commands
While the system is running, you can manage and monitor services using a set of service man-
agement commands. This section demonstrates each of these in turn. Table 13-1 lists the SMF
commands.

TABLE 13-1

Service Management Commands

Command Tasks

svcs Displays service status and dependencies; diagnoses service
problems

svcadm Manages service state

svccfg Configures service properties; imports service manifests

svcprop Retrieves service properties

481

Part IV OpenSolaris Reliability, Availability, and Serviceability

svcs
The svcs(1m)command provides a monitoring interface for SMF. Its most basic form, without
any options, displays the state of all of the currently enabled services, as shown in the example
in Listing 13-3.

LISTING 13-3

Example service listing

$ svcs
STATE STIME FMRI
legacy_run Mar_03 lrc:/etc/rcS_d/S99punchclean
legacy_run Mar_03 lrc:/etc/rc2_d/S20sysetup
legacy_run Mar_03 lrc:/etc/rc2_d/S47pppd
legacy_run Mar_03 lrc:/etc/rc2_d/S72autoinstall
legacy_run Mar_03 lrc:/etc/rc2_d/S73cachefs_daemon
legacy_run Mar_03 lrc:/etc/rc2_d/S81dodatadm_udaplt
legacy_run Mar_03 lrc:/etc/rc2_d/S89PRESERVE
legacy_run Mar_03 lrc:/etc/rc2_d/S98deallocate
legacy_run Mar_03 lrc:/etc/rc3_d/S50apache
disabled Mar_03 svc:/system/xvm/xend:default
disabled Mar_03 svc:/system/xvm/console:default
disabled Mar_03 svc:/system/xvm/domains:default
disabled Mar_03 svc:/system/xvm/store:default
online Mar_03 svc:/system/svc/restarter:default
online Mar_03 svc:/network/loopback:default
online Mar_03 svc:/system/identity:node
online Mar_03 svc:/system/filesystem/root:default
online Mar_03 svc:/system/scheduler:default
online Mar_03 svc:/system/boot-archive:default
online Mar_03 svc:/system/filesystem/usr:default
online Mar_03 svc:/system/keymap:default
online Mar_03 svc:/system/device/local:default
online Mar_03 svc:/system/filesystem/minimal:default
online Mar_03 svc:/system/coreadm:default
online Mar_03 svc:/system/identity:domain
online Mar_03 svc:/system/rmtmpfiles:default
online Mar_03 svc:/system/resource-mgmt:default
online Mar_03 svc:/system/cryptosvc:default
online Mar_03 svc:/system/power:default
online Mar_03 svc:/system/sysevent:default
online Mar_03 svc:/network/ipsec/ipsecalgs:default
online Mar_03 svc:/system/device/fc-fabric:default
online Mar_03 svc:/network/ipsec/policy:default
online Mar_03 svc:/milestone/devices:default
online Mar_03 svc:/milestone/network:default
online Mar_03 svc:/system/picl:default
online Mar_03 svc:/network/initial:default
online Mar_03 svc:/system/manifest-import:default

482

Service Management 13

online Mar_03 svc:/network/service:default
online Mar_03 svc:/network/dns/client:default
online Mar_03 svc:/milestone/name-services:default
online Mar_03 svc:/milestone/single-user:default
online Mar_03 svc:/application/print/ppd-cache-update:default
online Mar_03 svc:/network/routing-setup:default
online Mar_03 svc:/network/routing/ndp:default
online Mar_03 svc:/network/routing/route:default
online Mar_03 svc:/system/filesystem/local:default
online Mar_03 svc:/system/cron:default
online Mar_03 svc:/system/sysidtool:net
online Mar_03 svc:/system/boot-archive-update:default
online Mar_03 svc:/network/rpc/bind:default
online Mar_03 svc:/application/opengl/ogl-select:default
online Mar_03 svc:/network/shares/group:default
online Mar_03 svc:/system/sysidtool:system
online Mar_03 svc:/network/shares/group:zfs
online Mar_03 svc:/milestone/sysconfig:default
online Mar_03 svc:/system/sac:default
online Mar_03 svc:/system/utmp:default
online Mar_03 svc:/network/inetd:default
online Mar_03 svc:/system/console-login:default
online Mar_03 svc:/system/dbus:default
online Mar_03 svc:/system/postrun:default
online Mar_03 svc:/network/rpc/gss:default
online Mar_03 svc:/network/rpc/smserver:default
online Mar_03 svc:/network/security/ktkt_warn:default
online Mar_03 svc:/system/avahi-bridge-dsd:default
online Mar_03 svc:/system/filesystem/autofs:default
online Mar_03 svc:/system/dumpadm:default
online Mar_03 svc:/network/ntp:default
online Mar_03 svc:/system/system-log:default
online Mar_03 svc:/network/ssh:default
online Mar_03 svc:/network/dns/multicast:default
online Mar_03 svc:/application/font/fc-cache:default
online Mar_03 svc:/system/fmd:default
online Mar_03 svc:/milestone/multi-user:default
online Mar_03 svc:/system/intrd:default
online Mar_03 svc:/application/graphical-login/gdm:default
online Mar_03 svc:/system/hal:default
online Mar_03 svc:/system/filesystem/rmvolmgr:default
online Mar_03 svc:/milestone/multi-user-server:default
online Mar_03 svc:/network/physical:nwam
online Mar_03 svc:/system/name-service-cache:default
online 22:05:02 svc:/system/zones:default

You can use the svcs -a option to display a similar listing that includes all services known to
the system, including those that are disabled.

483

Part IV OpenSolaris Reliability, Availability, and Serviceability

Listing 13-3 shows several disabled services, even though the -a option wasn’t speci-
fied. They are listed because they are only temporarily disabled. On the next boot of

the system, these services will revert to being enabled.

You can easily check the state of a single service by specifying its name as an argument to svcs,
such as for ssh:

$ svcs ssh
STATE STIME FMRI
online 19:40:42 svc:/network/ssh:default

The default listing of a service shows its current state, the time it entered that state (in the
STIME column), and its fully qualified FMRI. If you specify the -o option, you can control the
columns displayed (several others are possible) and the order in which they are displayed. This
feature is most often used in scripts. This example demonstrates another feature of svcs, and
all of the SMF commands: It automatically expands a partial service name to its full FMRI so
that you don’t need to provide the entire proper name of a service. In the case of a command
such as svcadm, which would modify a service’s configuration or state, the expansion of the
name must yield a unique FMRI; otherwise, the operation is rejected and an error message is
generated stating that the pattern matches multiple service instances. For svcs, the expansion
works in all cases because it is only displaying information; multiple matches will just yield
information on all of them.

You can use svcs -l to see a more detailed listing of a service’s status. Again looking at ssh:

$ svcs -l ssh
fmri svc:/network/ssh:default
name SSH server
enabled true
state online
next_state none
state_time Thu Mar 06 19:40:42 2008
logfile /var/svc/log/network-ssh:default.log
restarter svc:/system/svc/restarter:default
contract_id 64
dependency require_all/none svc:/system/filesystem/local (online)
dependency optional_all/none svc:/system/filesystem/autofs (online)
dependency require_all/none svc:/network/loopback (online)
dependency require_all/none svc:/network/physical (multiple)
dependency require_all/none svc:/system/cryptosvc (online)
dependency require_all/none svc:/system/utmp (online)
dependency require_all/restart file://localhost/etc/ssh/sshd_config (online)

This long listing repeats the information shown in the short listing earlier, and adds much more
detail. You should recognize the dependencies and the name from the manifest. One item of
particular interest is the log file; the default system restarter provides a log file for each of its
services. If you look at the log file, you’ll see that the restarter logs an entry every time it exe-
cutes one of the service’s methods, including the exit status of the method. The standard output

484

Service Management 13

and standard error file descriptors from the service methods are also captured and recorded
in the log file, though many services use a specific log or the system log service, syslog, to
record log information. See the section ‘‘Restarters’’ later in this chapter for information on the
contract_id.

You can display just the dependencies of a service by using svcs -d. You can also
display the dependents of a service using svcs -D.

Another useful option is svcs -p, which is used to display the processes associated with a ser-
vice. Looking again at the ssh service:

$ svcs -p ssh
STATE STIME FMRI
online 22:33:33 svc:/network/ssh:default

22:33:33 1246 sshd

In this case, process 1246 is the only process associated with the service; it’s the main ssh lis-
tening daemon, waiting for incoming ssh connections. You won’t see any active ssh sessions
associated with the service. Because of the way that sshd spawns each session, the individual
sessions are independent of the ssh service. This feature enables the ssh service to be restarted
without terminating any active sessions. If multiple processes are associated with a service, they
will all be listed; the hal service (which provides a hardware abstraction layer for the GNOME
desktop) shows an example of multiple processes for a service:

$ svcs -p hal
STATE STIME FMRI
online 19:40:44 svc:/system/hal:default

19:40:40 480 hald
19:40:40 481 hald-runner
19:40:42 518 hald-addon-netw
19:40:43 528 hald-addon-acpi
19:40:43 535 hald-addon-stor

The final option to explore in the svcs command is svcs -x. If any service is not in the nor-
mal state (online for enabled services, offline for disabled services), svcs -x should be the
first step in diagnosing the problem. An example of ssh in a failure state might look like the
following:

$ svcs -x
svc:/network/ssh:default (SSH server)
State: maintenance since Sun Mar 09 19:37:50 2008

Reason: Restarting too quickly.
See: http://sun.com/msg/SMF-8000-L5
See: sshd(1M)
See: /var/svc/log/network-ssh:default.log

Impact: This service is not running.

To investigate the problem further, start by inspecting the log file listed in the svcs -x output.
The manual page listed is also likely to be helpful. In addition, don’t overlook the first reference,

485

Part IV OpenSolaris Reliability, Availability, and Serviceability

to the web page http://sun.com/msg/SMF-8000-L5. This is a Sun knowledge article that
provides help in diagnosing the root cause of the failure you’re experiencing. Consulting this
article will provide the latest information and recommended procedures to repair the problem.
Once you’ve investigated and corrected the problem, you can ask SMF to bring the service back
to its intended state with the svcadm command.

svcadm
The svcadm(1m) command is used to manipulate the state of services. Seven subcommands
are available within it. The enable and disable subcommands are the ones you’ll most com-
monly use; they set the permanent desired state of the service. SMF will immediately attempt to
transition the service from whatever state it is currently in to the desired state. If the service is
not running, enabling it will cause it to immediately start, provided its dependencies are met; if
dependencies are not met, it will remain offline and you can use svcs -x to diagnose the prob-
lem. The enabled or disabled state can be set temporarily, rather than permanently, by using the
-t option; a temporary setting applies only until the next time the system is booted.

svcs ssh
STATE STIME FMRI
online Mar_21 svc:/network/ssh:default
svcadm disable ssh
svcs ssh
STATE STIME FMRI
disabled 22:32:35 svc:/network/ssh:default
svcadm enable ssh
svcs ssh
STATE STIME FMRI
online 22:32:42 svc:/network/ssh:default

Many experienced UNIX or Linux users are accustomed to stopping services such as
ssh by merely using the kill or pkill command to directly terminate the daemon

process. In the case of OpenSolaris with SMF, you might be confused by the fact that the daemon
won’t seem to die. This is a simple demonstration of how SMF changes the system model to one in
which services just keep going, like the Energizer Bunny. It won’t take long to retrain yourself to
use svcadm disable to stop services instead.

One important detail to understand about all of the svcadm subcommands is that they act asyn-
chronously. That is, the SMF infrastructure is notified of the new desired state of the service,
and then the command exits; the service may take some time to reach the desired state after the
command has completed. The enable and disable subcommands can operate synchronously
if you specify the -s option, which causes the command to wait until the service has reached
the desired state.

The restart subcommand is used to transition a service that is online to the offline state,
and then return it to the online state. This means that the service’s stop method will be run,
followed by its start method. If any services that depend on this service have requested to be
restarted if it restarts, then they will also be restarted in the same fashion.

486

Service Management 13

The refresh subcommand causes the service’s refresh method, if any, to be executed. Before
the method is executed, the service’s configuration in the SMF repository is also updated to cap-
ture any changes that have been saved in the repository but not yet applied to the service.

One common mistake is to modify a service’s configuration using svccfg and then
use svcadm restart to restart the service without using svcadm refresh to

ensure that the configuration has been applied.

The clear subcommand notifies SMF that the administrator has corrected the condition that
caused a service to be placed in a maintenance state. The service’s restarter will attempt to start
the service. Working from the example in the previous section, you can use this option to bring
ssh back online:

svcs ssh
STATE STIME FMRI
maintenance 19:37:50 svc:/network/ssh:default
svcadm clear ssh
svcs ssh
STATE STIME FMRI
online 19:56:49 svc:/network/ssh:default

It’s possible, however, that the service may still have difficulty and be placed back into a main-
tenance state. If this occurs, you need to dig in using svcs -x to locate and examine the service
log files, and use documentation resources such as the knowledge base and documents from the
OpenSolaris communities to diagnose the root cause of the problem.

The mark subcommand enables the administrator to manually place a service into the mainte-
nance state; it’s rare to actually do this other than when you’re developing services.

The milestone subcommand provides a way to temporarily enable all of the services that
are dependencies of the specified milestone, and disable all others. This subcommand is
presently somewhat restricted; it operates only for the special milestones none, single-user,
multiuser, multi-user-server, and all, which are discussed more fully later in this
chapter.

svccfg
The svccfg(1m) command provides all of the basic functionality required to configure SMF
services. Using svccfg, you have direct access to the configuration of each service in the
repository, and if you have the required authorization, you can modify the service configuration.
You can use svccfg in an interactive session by entering svccfg with no arguments to a shell
prompt:

$ svccfg
svc:> help
General commands: help set repository end
Manifest commands: inventory validate import export archive
Profile commands: apply extract

487

Part IV OpenSolaris Reliability, Availability, and Serviceability

Entity commands: list select unselect add delete
Snapshot commands: listsnap selectsnap revert
Property group commands: listpg addpg delpg
Property commands: listprop setprop delprop editprop
Property value commands: addpropvalue delpropvalue setenv unsetenv
svc:>

svccfg can also be used in a non-interactive mode; some subcommands require selecting a ser-
vice or instance FMRI, which is done by specifying the -s option — for example, to view the
properties of the ssh service:

$ svccfg -s ssh listprop
fs-local dependency
fs-local/entities fmri svc:/system/filesystem/local
fs-local/grouping astring require_all
fs-local/restart_on astring none
fs-local/type astring service
fs-autofs dependency
fs-autofs/entities fmri svc:/system/filesystem/autofs
fs-autofs/grouping astring optional_all
fs-autofs/restart_on astring none
fs-autofs/type astring service
net-loopback dependency
net-loopback/entities fmri svc:/network/loopback
net-loopback/grouping astring require_all
net-loopback/restart_on astring none
net-loopback/type astring service
net-physical dependency
net-physical/entities fmri svc:/network/physical
net-physical/grouping astring require_all
net-physical/restart_on astring none
net-physical/type astring service
cryptosvc dependency
cryptosvc/entities fmri svc:/system/cryptosvc
cryptosvc/grouping astring require_all
cryptosvc/restart_on astring none
cryptosvc/type astring service
utmp dependency
utmp/entities fmri svc:/system/utmp
utmp/grouping astring require_all
utmp/restart_on astring none
utmp/type astring service
config_data dependency
config_data/entities fmri file://localhost/etc/ssh/sshd_config
config_data/grouping astring require_all
config_data/restart_on astring restart
config_data/type astring path
general framework
general/action_authorization astring solaris.smf.manage.ssh

488

Service Management 13

general/entity_stability astring Unstable
general/single_instance boolean true
dependents framework
dependents/ssh_multi-user-server fmri svc:/milestone/multi-user-server
startd framework
startd/ignore_error astring core,signal
start method
start/exec astring "/lib/svc/method/sshd start"
start/timeout_seconds count 60
start/type astring method
stop method
stop/exec astring :kill
stop/timeout_seconds count 60
stop/type astring method
refresh method
refresh/exec astring "/lib/svc/method/sshd restart"
refresh/timeout_seconds count 60
refresh/type astring method
tm_common_name template
tm_common_name/C ustring "SSH server"
tm_man_sshd template
tm_man_sshd/manpath astring /usr/share/man
tm_man_sshd/section astring 1M
tm_man_sshd/title astring sshd

If you compare the properties of the ssh service to the service manifest listed earlier in this
chapter, you’ll see that all of the data from the manifest is recorded as properties of the service.
Each dependency is represented as a property group using the name of the dependency as the
name of the property group. Each method definition is also represented as a property group,
again using the method name as the property group name.

As shown in the svccfg listprop command output, the notation used to refer to
properties resembles UNIX pathname notation. If you equate a property group to

a directory, and a property value to a file within that directory, the notation will seem quite
natural.

The setprop subcommand is used to set the value of a property; you must first select a service
or instance with the select subcommand, and then use setprop to modify a property value.
For example, the following modifies the timeout of the ssh stop method:

svccfg
svc:> select network/ssh
svc:/network/ssh> listprop stop/timeout_seconds
stop/timeout_seconds count 60
svc:/network/ssh> setprop stop/timeout_seconds=30
svc:/network/ssh> listprop stop/timeout_seconds
stop/timeout_seconds count 30
svc:/network/ssh> exit

489

Part IV OpenSolaris Reliability, Availability, and Serviceability

The exit subcommand terminates an interactive svccfg session. Any changes made during the
session are written immediately to the repository. To apply the changed values in the repository
to the service, you must refresh the service using svcadm refresh.

An SMF manifest is converted to property groups in the repository using the svccfg import
subcommand, and the export subcommand can be used to translate a service from its reposi-
tory representation back into a service manifest. A related subcommand is archive, which can
be used to dump the entire repository for disaster recovery purposes, as it dumps the persistent
properties of the services, not the transient state.

svcprop
The svcprop(1m) command is provided primarily as a programmatic interface for retrieving
property values from scripts. The following example retrieves a property value such as the time-
out on the start method:

$ svcprop -p start/timeout_seconds ssh
60

You can also use the -q option just to test the existence of a property. This will result in
svcprop exiting with a zero exit code if the property exists, a nonzero code if it doesn’t.

Another option available in svcprop is to request that it wait for a value to change before print-
ing it, which can be done using the -w option. The most common use of this option is to wait
for a service to move to the online or offline state when it’s not possible or desirable to use the
-s option to svcadm enable or svcadm disable. Because the service’s state is stored in the
restarter/state property, the following command can be used to wait for it to change:

$ svcprop -w -p restarter/state ssh

Once the property changes state, svcprop will print its value and exit.

SMF Machinery
At this point you’ve had a chance to explore how a service is defined and how it can be config-
ured and monitored. Having explored the surface of SMF, now it’s time to take apart its machin-
ery and see how it works.

Restarters
The core of the SMF machinery is the concept of a restarter. A restarter is a process or, more
properly, a service, that is responsible for monitoring and restarting other services. UNIX has
actually had a form of a restarter since the very beginning, and it exists on all versions of
UNIX-derived systems: the init(1m) process, which is the process that the kernel has always
started first and assigned the PID 1, and which has been responsible for starting all of the other

490

Service Management 13

processes used to boot the system and manage transitions between run-levels. init also serves
as the default parent process for any process that has remained running after its parent process
has exited, as shown by the PPID column in a process listing:

UID PID PPID C STIME TTY TIME CMD
root 0 0 0 23:22:59 ? 0:01 sched
root 1 0 0 23:23:02 ? 0:00 /sbin/init
root 2 0 0 23:23:02 ? 0:00 pageout
root 3 0 0 23:23:02 ? 1:16 fsflush
root 121 1 0 23:23:17 ? 0:00 /usr/lib/picl/picld
root 7 1 0 23:23:05 ? 0:02 /lib/svc/bin/svc.startd
root 9 1 0 23:23:05 ? 0:06 /lib/svc/bin/svc.configd
root 354 1 0 23:23:25 ? 0:01 /usr/lib/dbus-daemon --system
root 18 1 0 23:23:08 ? 0:01 /lib/inet/nwamd
root 399 359 0 23:23:25 ? 0:00 /usr/lib/saf/ttymon
root 73 1 0 23:23:12 ? 0:01 devfsadmd
root 412 1 0 23:23:26 ? 0:00 /usr/lib/autofs/automountd
root 85 1 0 23:23:15 ? 0:00 /usr/lib/sysevent/syseventd
root 510 508 0 23:23:30 ? 0:00 /usr/sbin/gdm-binary

In OpenSolaris, init continues to serve as the default parent process, but the function of
starting all boot processes and managing run-level transitions has been ceded to a new process,
svc.startd(1m), which is the master restarter for the system. You can see it in the preceding
process listing. This change means that all services on the system, unless declared otherwise,
have svc.startd as their restarter.

More properly, the master restarter is the service identified by the FMRI svc:/system/svc/res
tarter:default, and svc.startd is merely the process that implements that service, but
you’ll more often see references to svc.startd as the master restarter. If svc.startd fails for
any reason, init is responsible for restarting it.

To declare an alternate restarter for a service, the service manifest must include the
restarter element, which has as its value the FMRI of the service that will serve as

the restarter.

Referring to svc.startd as the master restarter might imply that there are other types of
restarters, and that’s a correct assumption. SMF provides the concept of a delegated restarter,
which is simply a service that provides restarting for other services. Why have delegated
restarters? The simple reason is because some sets of services can benefit from more common
functionality from a restarter. Rather than have svc.startd grow ever more complex to meet
those demands, it instead provides a delegation model that enables it to hand off the task of
directly managing those services to the delegated restarter, which can then communicate the
status of the services back to svc.startd. This delegation enables svc.startd to focus on the
two core tasks of maintaining the service graph for the entire system and providing a standard set
of restart actions for all services.

491

Part IV OpenSolaris Reliability, Availability, and Serviceability

The service graph is the construct used by svc.startd to represent the state of each service
in the system, as well as its relationship to other services. It is simplest to accurately track this
information if svc.startd maintains the states and merely parcels out the tasks of starting
and stopping services to the delegated restarters. This division of labor makes it necessary for
the delegated restarters to communicate changes in the state of any services they manage to
svc.startd, because changes in the status of one service might require actions against another
service based on dependency relationships.

The only delegated restarter currently included in OpenSolaris is inetd, which man-
ages several of the networking services. See Chapter 9 for more on inetd and net-

working services.

The restart actions available on a standard service are the methods, which you have already seen
defined in the service manifest. The methods shown in the ssh manifest are those defined by
svc.startd. Delegated restarters can define additional methods for their services; this is true
of inetd, which defines several alternative methods.

Methods also have additional attributes that you haven’t yet encountered, provided by the
method_context element. This element enables a service author to specify in detail the
execution environment in which the method should run. Attributes that can be specified include
the user, groups, privileges, RBAC profile, environment variables, working directory, project, and
resource pool with which to execute the method.

One question you might have at this point is how svc.startd tracks the states of all the
service processes it spawns. That depends on the service because svc.startd supports three
different service models for its services, selected by setting the value of the startd/duration
property on the service.

The first two are fairly simple to explain. A wait service is one that has only a single process
that should be restarted anytime it exits; currently, no services in OpenSolaris use this model.
A transient service either does not spawn any long-lived processes or does not want to have
svc.startd manage any of its long-lived processes. This type of service will not have any pro-
cesses associated with it when listed with svcs -p, for example:

$ svcprop -p startd/duration device/local
transient
$ svcs -p device/local
STATE STIME FMRI
online Mar_10 svc:/system/device/local:default

Most of the transient services perform simple tasks such as mounting file systems or config-
uring network interfaces.

The third type of service is a contract service; if a service doesn’t have a specific setting for
the startd/duration property, then it will be a contract service. The obvious question
here is, what does a contract mean? A fairly detailed answer can be found by reading the
process(4) man page on OpenSolaris, but for SMF’s purposes it’s sufficient to understand that

492

Service Management 13

its restarters use process contracts to track the status of processes and receive notifications when
they exit. Essentially, the contract subsystem in the kernel offloads some of the bookkeeping
that svc.startd would need to perform to track all of the processes it spawns. Prior to the
introduction of contracts, some of the same features could be gained by using the waitpid
function, but contracts provide greater efficiency and features not possible in the waitpid
model.

The contract terms that are specified by svc.startd when it runs the service’s start method
tell the kernel which events for the service are of interest to svc.startd. The default contract
terms specify that svc.startd wants to be notified if any of the following are true:

■ The service encounters a hardware error

■ Any process in the service receives a signal from a process outside the service, which
causes it to exit

■ Any process in the service produces a core file

■ All processes in the service exit

Under the default terms, svc.startd will attempt to restart the service if any of these condi-
tions occur. As shown in the ssh service manifest, these terms can be modified by setting the
startd/ignore_error property. Most services function best under the default contract terms,
though.

You can use the ctstat(1) and ctwatch(1) commands to observe the active con-
tracts and events on the system. The ctrun(1) command is used to execute a com-

mand in a separate contract from its parent process. See the man pages for these tools for more
information.

SMF repository
In addition to restarters, another piece of the SMF machinery that you haven’t seen yet is
the repository. Simply, the SMF repository is a database that is used to store all of the service
definitions and properties known to SMF; it can be found at /etc/svc/repository.db.
However, it’s not really quite that simple, because while there’s a database underlying it, the
database is not directly exposed. All access to the repository is mediated by a daemon called
svc.configd(1m); and the service configuration library, libscf(3lib), is used to read and
write values in the repository. This library is used by all of the SMF commands presented thus
far, as well as svc.startd and any other restarters, to access the repository.

There are several reasons why the repository is managed via svc.configd. First, svc.configd
can provide a performance boost by implementing an in-memory caching layer so that transac-
tion rates aren’t bounded by system I/O performance and aren’t competing directly with other
I/O needs. By routing all access to the repository this way, the cache is maximally effective.
Second, svc.configd can provide automatic, intelligent notification to svc.startd when the
types of properties that have special meaning to svc.startd are modified, thereby lessening

493

Part IV OpenSolaris Reliability, Availability, and Serviceability

its impact on the system by avoiding the need to poll for changes. Third, using svc.configd
provides fine-grained access permissions for all data in the repository; SMF uses the RBAC
systemwide mechanism for delegating administrative tasks, as you saw in the ssh service
manifest.

Obviously, the repository, svc.configd, and svc.startd represent critical failure points in
the SMF machinery, so you might wonder how OpenSolaris maintains a high level of reliabil-
ity. The answer, of course, in the case of svc.configd is that svc.startd uses the contract
subsystem to monitor its health. There’s a dedicated thread in svc.startd whose only job is
to notice an exit of svc.configd and start a new process to take its place. As mentioned ear-
lier, svc.startd is automatically restarted by init on failure, and it ensures that it can pick
up its state in such a case by storing the state of each service in the repository. Each service has
a restarter property group that is used for bookkeeping purposes by svc.startd:

$ svcprop -p restarter ssh
restarter/logfile astring /var/svc/log/network-ssh:default.log
restarter/contract count 64
restarter/start_pid count 418
restarter/start_method_timestamp time 1205708475.901372000
restarter/start_method_waitstatus integer 0
restarter/auxiliary_state astring none
restarter/next_state astring none
restarter/state astring online
restarter/state_timestamp time 1205708475.903837000

The state, next_state, and contract properties are the most critical element of the
restarter property group, as they enable a restart of svc.startd to rebuild the service graph
and continue operation correctly. The contract subsystem enables contracts to be adopted, so by
recording the state of the service and the contract that was associated with any online services,
svc.startd allows for its replacement instance to pick up where it left off by notifying the
kernel of the contracts it is adopting. The recorded start_method_timestamp similarly
enables a replacement restarter to recognize whether a service’s in-progress start method has
timed out and requires corrective action.

The reliability of the repository is somewhat dependent on the natural implementation of the
database, which is, of course, designed to maintain its integrity. However, because it can’t
completely protect itself against failures in the storage subsystem, its reliability is partially
based on keeping automatic backups. If you look at /etc/svc, you’ll see several copies of the
repository:

$ ls -l /etc/svc
total 57620
lrwxrwxrwx 1 root root 31 Mar 11 08:14 repository-boot -> repository
-boot-20080311_081406
-rw------- 1 root root 3529728 Feb 15 19:57 repository-boot-20080215_195720
-rw------- 1 root root 3529728 Feb 15 20:35 repository-boot-20080215_203514
-rw------- 1 root root 3529728 Feb 15 20:40 repository-boot-20080215_204043

494

Service Management 13

-rw------- 1 root root 3529728 Mar 11 08:14 repository-boot-20080311_081406
lrwxrwxrwx 1 root root 42 Dec 31 16:52 repository-manifest_import ->
repository-manifest_import-20071231_165230
-rw------- 1 root root 2609152 Apr 23 2006 repository-manifest_import
-20060423_192650
-rw------- 1 root root 2669568 Jul 31 2006 repository-manifest_import
-20060731_223346
-rw------- 1 root root 2939904 Nov 24 2006 repository-manifest_import
-20061124_184442
-rw------- 1 root root 3529728 Dec 31 16:52 repository-manifest_import
-20071231_165230
-rw------- 1 root sys 3529728 Mar 11 08:14 repository.db
drwxr-xr-x 3 root sys 11520 Mar 12 21:04 volatile

The repository.db file is the repository currently in use. As you might surmise from the
names of the other repository files here, a copy is made on each reboot of the system, and each
time the manifest-import service finds new services to import. The repository-boot
symlink points to the most recent boot-time copy, and the repository-manifest-import
symlink points to the most recent copy made by manifest-import.

Of course, the system may be unable to boot due to corruption in the repository or other fatal
errors in the SMF services. If this happens, the boot process will stop, state that it needs to
enter System Maintenance Mode, and prompt you for the root password. Once you’ve logged in,
there’s a cheat sheet for recovery stored at /lib/svc/share/README. The instructions there
will help you determine the problem and, it is hoped, repair the system.

Recovery instructions are also in the Sun knowledge base, at www.sun.com/msg/
SMF-8000-QD.

The manifest-import service
This chapter earlier described use of the svccfg import command to convert an XML service
manifest into its representation in the SMF repository. You might be wondering at this point
how the repository is populated with all of the service manifests that are delivered as part of the
system. If you were paying close attention to the first boot of the system, you would have seen a
progress message like the following displayed during the boot process:

Loading smf(5) service descriptions: 120/120
Loaded 120 smf(5) service descriptions

These messages are emitted by the service system/manifest-import, which is respon-
sible for importing all of the service manifests under the /var/svc/manifest directory
hierarchy. On subsequent boots of the system, the manifest-import service re-scans the
/var/svc/manifest hierarchy and imports any new or updated manifests.

More details about the SMF bootstrapping process are available in the man page
smf_bootstrap(5).

495

Part IV OpenSolaris Reliability, Availability, and Serviceability

One interesting thing to understand is that the manifest-import service is really just another
SMF service; you can find its manifest at /var/svc/manifest/system/manifest-import.xml.
However, that raises an obvious chicken-and-egg conundrum: If manifest-import is the
service that imports the manifests, and it’s one of those services, then how does it get started to
begin with?

The answer is in the directory /lib/svc/seed. There you’ll find two files, global.db and
nonglobal.db. These are the seed repositories for the global zone and nonglobal zones,
respectively.

The OpenSolaris zones technology is described in Chapter 19.

The seed repository is a prebuilt SMF repository that contains just enough of the service graph
imported to boot the system (or nonglobal zone) to the point where the manifest-import
service starts and imports the rest of the manifests. The seed repository is built as part of the
OS/Net consolidation’s build process and delivered to /lib/svc/seed as part of the system
packaging. The installer (or the zoneadm install process in the case of a nonglobal zone)
is then responsible for copying the seed repository to /etc/svc/repository.db so that the
initial boot of the system (or zone) happens correctly. On the OpenSolaris distribution’s Live
CD, the entire repository has been prebuilt by running the manifest-import service during
the CD construction process.

Milestones and init compatibility
Another element of the SMF machinery is the milestone. A milestone is a service, but it isn’t
designed to offer functionality of its own. Instead, it provides a means of establishing conve-
niently aggregated dependencies. Several special milestones provided in the SMF implementation
are designed to preserve compatibility with the old init script operations (described earlier
in this chapter). If you look at the default service listing from svcs, you’ll see a number of
services whose FMRIs look oddly reminiscent of the init script names. Here’s an excerpt that
demonstrates these FMRIs:

$ svcs
STATE STIME FMRI
legacy_run 16:10:04 lrc:/etc/rcS_d/S99punchclean
legacy_run 16:10:18 lrc:/etc/rc2_d/S20sysetup
legacy_run 16:10:18 lrc:/etc/rc2_d/S47pppd
legacy_run 16:10:18 lrc:/etc/rc2_d/S72autoinstall
legacy_run 16:10:18 lrc:/etc/rc2_d/S73cachefs_daemon
legacy_run 16:10:18 lrc:/etc/rc2_d/S81dodatadm_udaplt
legacy_run 16:10:18 lrc:/etc/rc2_d/S89PRESERVE
legacy_run 16:10:18 lrc:/etc/rc2_d/S98deallocate
legacy_run 16:10:21 lrc:/etc/rc3_d/S50apache
disabled 16:10:08 svc:/system/xvm/console:default
disabled 16:10:10 svc:/system/xvm/store:default
disabled 16:10:10 svc:/system/xvm/xend:default
disabled 16:10:10 svc:/system/xvm/domains:default

496

Service Management 13

online 16:09:48 svc:/system/svc/restarter:default
online 16:09:50 svc:/network/loopback:default
online 16:09:51 svc:/system/identity:node

As shown in the listing, the first nine services have an FMRI that begins with the string
lrc:. This special FMRI denotes that the service is a ‘‘legacy run control’’ script. Each
of them corresponds to a script in the /etc/rc*.d directories. Thus, for example,
the service lrc:/etc/rc2_d/S47pppd is the service that corresponds to the script
/etc/rc2.d/S47pppd. This is visible evidence of how SMF continues to provide compatibility
with the init scripts that have long been used in booting Solaris.

It’s important to understand that these legacy services are really only pseudo-services as far as
SMF is concerned. They show up in the svcs listing because SMF’s designers felt this would
be helpful to administrators in at least viewing what was started when the system booted. How-
ever, the simple listing indicating that the service started and the time at which it started is all
SMF will tell you about it; none of the other SMF commands — indeed, none of the other svcs
options — will operate on the legacy services:

svcs lrc:/etc/rc2_d/S47pppd
STATE STIME FMRI
legacy_run 16:10:18 lrc:/etc/rc2_d/S47pppd
svcs -l lrc:/etc/rc2_d/S47pppd
svcs: Operation not supported for legacy service ‘lrc:/etc/rc2_d/S47pppd’
svcprop lrc:/etc/rc2_d/S47pppd
svcprop: Operation not supported for legacy service ‘lrc:/etc/rc2_d/S47pppd’
svccfg -s lrc:/etc/rc2_d/S47pppd
svccfg: Operation not supported for legacy service ‘lrc:/etc/rc2_d/S47pppd’
svcadm disable lrc:/etc/rc2_d/S47pppd
svcadm: Operation not supported for legacy service ‘lrc:/etc/rc2_d/S47pppd’

To manage legacy services, you need to use the legacy commands such as ps and kill, and
execute the init script directly. This should provide some motivation to convert any legacy ser-
vices you’ve written to SMF so you can take advantage of all the SMF functionality.

Returning to the topic on which we started this section, you might wonder how these services
were started because SMF mostly seems to want nothing to do with them. This is where the
standard milestones come in. SMF provides a set of milestones that correspond to the old UNIX
run-levels:

$ svcs ‘*-user*’
STATE STIME FMRI
online 16:10:04 svc:/milestone/single-user:default
online 16:10:18 svc:/milestone/multi-user:default
online 16:10:21 svc:/milestone/multi-user-server:default

The single-user milestone is equivalent to the S, or single-user, run-level, while the
multi-user milestone is equivalent to run-level 2, or multi-user, and the multi-user-server
milestone is equivalent to run-level 3, multi-user plus networking services.

497

Part IV OpenSolaris Reliability, Availability, and Serviceability

Although milestones are equivalent to the UNIX run-levels in terms of the services
that are run, you must use the init command to set the system’s run-level; the

svcadm milestone command does not change init’s view of the system’s run-level.

Let’s look at the multi-user milestone to see how it works. Begin by displaying the start
method’s properties:

$ svccfg -s multi-user listprop ‘start/*’
start/exec astring "/sbin/rc2 start"
start/restart_on astring external_fault
start/timeout_seconds count 1800
start/type astring method

As you can see, when the milestone is started, it executes the program /sbin/rc2. It also has a
very long timeout: 1,800 seconds, or one-half hour, which should be plenty of time for all of the
legacy scripts in /etc/rc2.d to run. The restart_on value for the milestone is an unusual
one, external_fault. This value tells svc.startd that the milestone may be restarted only
if the method exits due to a hardware error or a signal from some other process, and may not
be restarted if it times out. This is necessary because the legacy scripts were never written with
the expectation that they might be run more than once; if they don’t complete within the time-
out, the milestone will be placed into maintenance state and any dependent services will remain
offline until the problem is corrected. Each of the run-level milestones works similarly.

If you look at /sbin/rc2, you’ll see that the rc scripts are actually run using
a special program, /lib/svc/bin/lsvcrun. You can look at the source at

http://src.opensolaris.org if you’re interested in how legacy service handling in SMF works.

Another feature of these milestones is that they can be used as ‘‘target’’ milestones for booting
the system, as well as with the svcadm milestone command. When booting OpenSolaris, you
can use the options -m milestone=<milestone-name> to have the system boot with some
services disabled; this option is supplied either to the OBP boot command on SPARC systems,
or to the kernel$ command in GRUB on x86 systems. This option will cause svc.startd to
only start the graph of services that are dependencies of the specified milestone.

Two additional specially defined milestones can be used similarly: none and all. The all mile-
stone is the usual default milestone to which the system is booted, whereby all enabled services
are brought online. The none milestone specifies that only the master restarter (svc.startd) is
to be enabled. This is sometimes useful for letting you log into and debug a system with serious
service-related problems. The procedure in this case is to boot to the none milestone, log in as
root, and then use the svcadm milestone all command to allow SMF to proceed with start-
ing other services. While the services are starting, you can observe them using the svcs com-
mand, or use tools such as truss or dtrace to observe system or process activity.

svc.startd has two properties configurable with svccfg that can be useful in
diagnosing system boot problems. The first, options/boot_messages, controls the

verbosity of the boot process. The default setting, quiet, prints very few messages to the console
during boot. Change its value to verbose, and svc.startd prints a message to the console

498

Service Management 13

as each service is started. This property can also be set for a single boot by supplying the -m ver-
bose option to the boot command line.

The second property, options/logging, controls the verbosity of svc.startd in its logging.
This can have the value quiet (the default), verbose, or debug. A detailed explanation of these
values is available in the man page for svc.startd.

Several other milestones, listed in Table 13-2, are defined by the standard OpenSolaris services.
They can’t be used as target milestones for booting, but they are useful as convenient dependen-
cies for other services, as they signal certain capabilities in the boot process. For example, if you
have a service that needs to be able to look up values in whatever name service the system is
using, but is not dependent on a specific type of name service such as LDAP or NIS, you can
specify a dependency on the name-services milestone and be assured that the system’s con-
figured name services will be online before your service is started.

TABLE 13-2

Capability Milestones

Milestone Capability

devices Hardware devices configured

network IP networking running

name-services Name service clients online

sysconfig Initial system configuration completed

Profiles
Yet one more element of SMF’s machinery is another type of service bundle known as the profile.
As discussed earlier in this chapter, the SMF community recommends that only services that are
critical to starting the system to the point of importing manifests should be enabled by default in
their manifests, while all other services should be delivered disabled. That, of course, raises the
question of how all of the services that are online after the system is installed are enabled. Pro-
files are the answer to that question. In SMF parlance, a profile is an XML service bundle that
contains a listing of service instances and the value of the general/enabled property for each
service instance.

The system profiles are delivered in /var/svc/profile:

$ ls /var/svc/profile
generic.xml name_service.xml ns_nisplus.xml
generic_limited_net.xml ns_dns.xml ns_none.xml
generic_open.xml ns_files.xml platform.xml
inetd_generic.xml ns_ldap.xml platform_none.xml
inetd_upgrade.xml ns_nis.xml

499

Part IV OpenSolaris Reliability, Availability, and Serviceability

After the manifest-import service has imported all of the service manifests during initial
boot, it applies the generic.xml profile, which isn’t actually a profile but a symlink to
generic_limited_net.xml. This profile is the default service profile for all OpenSolaris
systems, and is intended to provide a quite secure network configuration. The purpose of this
profile is to allow network access to the system only via ssh; other enabled network services
are configured to respond only to requests from the local system, not remote systems. Also
provided is the generic_open.xml profile, which can be applied to set the system to have
most network services open for remote requests, which was the default configuration for Solaris
through Solaris 10.

See Chapter 11 for more information on OpenSolaris network security profiles.

The other profiles in /var/svc/profile are included by the generic profiles to configure
some specific subsets of the SMF services. You can inspect each of these profiles to see how they
work. You can also write your own profiles and use the svccfg apply command to apply a
profile appropriate for your system’s configuration.

Customizing SMF Services
To close your tour of SMF, it’s important to understand some of the best practices that you
should follow in customizing SMF on your own systems. The first thing to keep in mind when
you think about customizing SMF is that the service manifests are not meant to be edited by
users or administrators. They are delivered as read-only files in their packages, and any updates
that are delivered in those packages will overwrite your edits to the manifests. Thus, while it
might seem natural to edit a manifest file and re-import it to change a setting for a service or to
introduce a new dependency, never do so because it will be lost on an upgrade.

Instead, you can modify a service property directly in the repository using svcadm or svccfg.
SMF automatically maintains historical information about service instances in the form of saved
snapshots of the service properties. By comparing the state of instances in the repository to the
saved snapshot taken when the service was imported, SMF can detect your customizations and
preserve them even if the service is modified by a new manifest shipped as part of an updated
package.

The Snapshots section of smf(5) describes the snapshots that are taken. You can also
access snapshotted values of properties using the -s option to the svcprop command

or using svccfg.

Similarly, never edit service method scripts because they are almost always delivered by the
packages as read-only files, and they’ll be overwritten on any upgrade of the package. To modify
a service method, make a copy of the script and edit it. Then use svccfg to modify the service
properties to point the service at your modified method. Here’s an example of modifying the

500

Service Management 13

ssh service’s start method:

cp /lib/svc/method/sshd /lib/svc/method/sshd-local
<edit /lib/svc/method/sshd-local and make your changes>
svccfg -s ssh setprop
svc:/network/ssh> setprop start/exec = "/lib/svc/method/sshd-local start"
svc:/network/ssh> exit
svcadm refresh ssh

The next time the ssh service is started, the new method script will be run.

If you would prefer to have a manifest in which your alternate value is stored, another option
is to create an alternate instance of the service, such as svc:/network/ssh:local to replace
the standard instance, svc:/network/ssh:default. Probably the easiest way to do this is to
copy the manifest for the standard instance, edit it, import it, and then enable it and disable the
standard instance. The steps would be similar to the following:

cp /var/svc/manifest/network/ssh.xml /var/svc/site/ssh.xml
<edit /var/svc/site/ssh.xml and create ssh:local instance>
svccfg import /var/svc/site/ssh.xml
svcadm disable svc:/network/ssh:default
svcadm enable svc:/network/ssh:local

Resources
The OpenSolaris SMF community continues to actively develop SMF; its home page is at
http://opensolaris.org/os/community/smf.

Sun’s BigAdmin site contains a collection of articles about SMF that can be accessed from
http://sun.com/bigadmin/content/selfheal.

The source code for SMF can be found in the OS/Net consolidation source tree; the bulk of the
code is located under usr/src/cmd/svc.

Summary
This chapter explained how the introduction of the SMF service as a first-class administrative
object is a natural evolution of the UNIX process model. It examined the ssh service to explain
how SMF services are defined. The chapter also introduced the SMF commands and machinery,
and used them to demonstrate common tasks. Finally, it provided recommendations for the best
way to customize SMF services to meet your system’s needs.

501

Monitoring and
Observability

IN THIS CHAPTER
Getting system configuration
information

Primary utilities

/proc

Kstats

Other utilities

Logs

SNMP

System management can be broadly divided into two main tasks:
configuration and monitoring. The configuration and monitoring
capabilities of the various OpenSolaris subsystems are described in

the individual chapters in this book. System-wide hardware fault handling
is described in Chapter 12 on FMA, and system-wide software service
management is covered in Chapter 13 on SMF. However, some system
monitoring capabilities don’t fit neatly into a specific subsystem. This
chapter describes these various tools and procedures.

Because there is such a broad range of different utilities, this chapter may
feel a bit eclectic. The sections group the various utilities into general
categories, but because many different utilities are introduced, each
utility is not described in complete detail. To learn more about all of the
options and features of a particular tool, consult the man page for that
utility.

Although the predefined utilities described in this chapter can be used
for many day-to-day monitoring and troubleshooting tasks, you will
occasionally encounter a complex problem that cannot be understood
using these tools. OpenSolaris includes the innovative DTrace facility,
which can be used to programmatically monitor and analyze problems in a
way that many other operating systems cannot match — although because
OpenSolaris is open source, DTrace has been ported to other operating
systems. Chapter 15 is devoted to DTrace. Use DTrace whenever you have
a complex monitoring problem that can’t be understood using the standard
system utilities.

503

Part IV OpenSolaris Reliability, Availability, and Serviceability

Getting System Configuration Information
The first task when monitoring a system or analyzing a problem is to understand the system
configuration. OpenSolaris includes a variety of tools that can be used to obtain information
about the configuration. The uname command will indicate what version of OpenSolaris is in
use and the system’s architecture:

$ uname -a
SunOS myhost 5.11 snv_98 i86pc i386 i86pc

On x86 systems, the processor type is always reported as i386, even if running on a
64-bit Intel or AMD-based system.

Use either the sysdef or prtconf commands to output detailed information about the
hardware configuration and device tree. A full understanding of the prtconf output requires
detailed knowledge of hardware, but this command is frequently used to determine how much
physical memory is on the system:

$ prtconf
System Configuration: Sun Microsystems i86pc
Memory size: 32256 Megabytes
System Peripherals (Software Nodes):

i86pc
scsi_vhci, instance #0
isa, instance #0

lp, instance #0 (driver not attached)
asy, instance #0 (driver not attached)
asy, instance #1 (driver not attached)
pit_beep, instance #0

pci, instance #1
pci1022,7460, instance #1

pci108e,534d, instance #0
pci108e,534d, instance #1
pci108e,534d, instance #2

mouse, instance #0
. . .

Here, the second line of output shows that the system has 32GB of memory.

The prtdiag command is used to print a simpler view of the hardware configuration, along
with diagnostic information about failed components on the system:

$ prtdiag
System Configuration: Sun Microsystems Sun Fire X4600
BIOS Configuration: American Megatrends Inc. 080012 07/10/2006
BMC Configuration: IPMI 1.5 (KCS: Keyboard Controller Style)

504

Monitoring and Observability 14

==== Processor Sockets ====================================

Version Location Tag
-------------------------------- --------------------------
Dual Core AMD Opteron(tm) Processor 885 CPU 1
Dual Core AMD Opteron(tm) Processor 885 CPU 2
Dual Core AMD Opteron(tm) Processor 885 CPU 3
Dual Core AMD Opteron(tm) Processor 885 CPU 4
Dual Core AMD Opteron(tm) Processor 885 CPU 5
Dual Core AMD Opteron(tm) Processor 885 CPU 6
Dual Core AMD Opteron(tm) Processor 885 CPU 7
Dual Core AMD Opteron(tm) Processor 885 CPU 8

==== Memory Device Sockets ================================

Type Status Set Device Locator Bank Locator
------- ------ --- ------------------- --------------------
DDR in use 0 DIMM0 BANK0
DDR in use 0 DIMM1 BANK1

==== On-Board Devices =====================================
LSI serial-ATA #1
Gigabit Ethernet #1
Gigabit Ethernet #2
ATI Rage XL VGA

==== Upgradeable Slots ====================================
ID Status Type Description
--- --------- ---------------- ----------------------------
0 in use PCI-X PCIX SLOT0
1 available PCI-X PCIX SLOT1
2 available other PCIExp SLOT2
3 available other PCIExp SLOT3
4 available other PCIExp SLOT4
5 available other PCIExp SLOT5
6 available other PCIExp SLOT6
7 available other PCIExp SLOT7

This example, on an X64 machine, shows the BIOS version and indicates that the system has
eight dual-core AMD CPUs, and two populated memory banks. Finally, information about
on-board devices, as well as devices on the bus, is listed.

On x86 systems, prtdiag depends on BIOS support for the System Management
BIOS (SMBIOS) image; some systems may not provide this support, in which case

prtdiag will display little information. You can see the raw SMBIOS data with the smbios(1M)
command.

505

Part IV OpenSolaris Reliability, Availability, and Serviceability

The output on a SPARC system appears differently, as the following abbreviated example illus-
trates:

$ prtdiag
System Configuration: Sun Microsystems sun4v Sun Fire(TM) T1000
Memory size: 8064 Megabytes

================================ Virtual CPUs ================================

CPU ID Frequency Implementation Status
------ --------- ---------------------- -------
0 1000MHz SUNW,UltraSPARC-T1 on-line
1 1000MHz SUNW,UltraSPARC-T1 on-line
. . .

23 1000MHz SUNW,UltraSPARC-T1 on-line

========================= IO Configuration =========================

IO

Location Type Slot Path Name Model
-------- ---- ---- -------------------------------- -------------- ------
MB/NET0 PCIE MB /pci@7c0/pci@0/network@4 network-pci14e4,1668
MB/NET1 PCIE MB /pci@7c0/pci@0/network@4,1 network-pci14e4,1668
MB/NET2 PCIX MB /pci@7c0/pci@0/pci@8/network@1 network-pci108e,1648
MB/NET3 PCIX MB /pci@7c0/pci@0/pci@8/network@1,1 network-pci108e,1648
MB/PCIX PCIX MB /pci@7c0/pci@0/pci@8/scsi@2 scsi-pci1000,50 LSI,1064
. . .

The psrinfo command is used to print detailed information about the processors on the
system:

$ psrinfo -pv
The physical processor has 2 virtual processors (0 1)
x86 (AuthenticAMD 20F12 family 15 model 33 step 2 clock 2613 MHz)

Dual Core AMD Opteron(tm) Processor 885
The physical processor has 2 virtual processors (2 3)
x86 (AuthenticAMD 20F12 family 15 model 33 step 2 clock 2613 MHz)

Dual Core AMD Opteron(tm) Processor 885
. . .

The physical processor has 2 virtual processors (14 15)
x86 (AuthenticAMD 20F12 family 15 model 33 step 2 clock 2613 MHz)

Dual Core AMD Opteron(tm) Processor 885

This shows details about the eight AMD processors, including that each runs at 2.6 GHz. You
can also use the isainfo command to get a detailed list of the various low-level processor fea-
tures available:

$ isainfo -v
64-bit amd64 applications

506

Monitoring and Observability 14

ahf sse3 sse2 sse fxsr amd_3dnowx amd_3dnow amd_mmx mmx cmov amd_sysc
cx8 tsc fpu

32-bit i386 applications
ahf sse3 sse2 sse fxsr amd_3dnowx amd_3dnow amd_mmx mmx cmov amd_sysc
cx8 tsc fpu

The isa in the isainfo command stands for Instruction Set Architecture.

The modinfo command indicates which kernel modules are loaded:

$ modinfo
Id Loadaddr Size Info Rev Module Name
0 fffffffffb800000 17bde6 - 0 unix ()
1 fffffffffb906ea0 28f638 - 0 genunix ()
3 fffffffffbb40000 5f10 1 1 specfs (filesystem for specfs)
4 fffffffffbb45e70 4790 3 1 fifofs (filesystem for fifo)
5 fffffffff8325000 1b7c0 155 1 dtrace (Dynamic Tracing)
6 fffffffffbb4a548 5a68 16 1 devfs (devices filesystem 1.19)
7 fffffffffbb4fd68 10e08 17 1 dev (/dev filesystem 1.6)

. . .

A variety of less commonly used commands can provide more information. The prtpicl
command prints data used by the Platform Information and Control Library (PICL). This library
provides a uniform API for hardware-related data. See the picld(1M) man page for more
information. The /usr/X11/bin/scanpci command also prints data about PCI devices. The
data from both commands is similar to that obtained with the sysdef or prtconf commands.
The lgrpinfo command prints data about locality groups. Locality groups are data used by the
operating system to represent the Non-Uniform Memory Access (NUMA) characteristics of the
hardware.

Many modern multiprocessor systems are NUMA. That is, not all processors have the
same access time to all memory. Some memory is ‘‘closer’’ to an individual processor

than other memory. The operating system uses locality groups as part of its scheduling input to
determine the most efficient processor on which to schedule processes. In some cases it is advan-
tageous for an application to be aware of locality groups and explicitly control which processors
to use. You might also use this data when you are troubleshooting a performance problem.

The following example shows a portion of the tree view of the lgrpinfo output on a Sun Fire
x4600, which illustrates the differing amounts of memory and access time in each latency group:

$ lgrpinfo -Tlcm
0
|-- 10
| CPUs: 0-13
| Memory: installed 28G, allocated 26G, free 2.4G
| Latency: 124
| `-- 9

507

Part IV OpenSolaris Reliability, Availability, and Serviceability

| CPUs: 0-5
| Memory: installed 12G, allocated 9.8G, free 1.7G
| Latency: 91
| `-- 1
| CPUs: 0 1
| Memory: installed 3.5G, allocated 2.8G, free 769M
| Latency: 61
|-- 12
| CPUs: 0-15
| Memory: installed 32G, allocated 30G, free 2.4G
| Latency: 124
| `-- 11
| CPUs: 0-3 6 7 12 13
| Memory: installed 16G, allocated 14G, free 1.8G
| Latency: 91
| `-- 2
| CPUs: 2 3
| Memory: installed 4.0G, allocated 3.4G, free 573M
| Latency: 61
|-- 14
| CPUs: 0-15
| Memory: installed 32G, allocated 30G, free 2.4G
| Latency: 124
| `-- 13
| CPUs: 0 1 4 5 8-11
| Memory: installed 16G, allocated 15G, free 1.4G
| Latency: 91
| `-- 3
| CPUs: 4 5
| Memory: installed 4.0G, allocated 3.6G, free 431M
| Latency: 61
|-- 15
|
. . .

In node 12 in this output, you can see that the nested nodes 11 and 2 show better latency. That
is, node 2, which contains CPUs 2 and 3, has the best relative latency between those two CPUs.
Moving up to node 11, the relative latency is less for this node, which contains CPUs 0–3, 6, 7,
12, and 13. Finally, the relative latency is even less at node 12, which contains CPUs 0–15. The
lgrpinfo(1) man page describes this output in more detail.

The smbios command can be used to print information from the System Management BIOS on
systems that have that feature.

Chapter 9 describes utilities to gather information about the network configuration.
Chapters 7 and 8 describe the utilities to gather information about storage and file

systems.

508

Monitoring and Observability 14

Primary Utilities
This section describes the most common utilities you will use when looking at the overall usage
of the system.

The netstat command and other utilities such as snoop are used to monitor net-
work activity. Chapter 9 describes these utilities.

uptime
The uptime command indicates how long the system has been running since the last reboot. It
also prints the system load average and is commonly used for a quick one-line view of how busy
the system is.

The load average is shown as three numbers, which are the average number of threads in the
run queue over the past 1, 5, and 15 minutes. Roughly speaking, these numbers represent the
average number of running and runnable threads. If these numbers approximate the number
of processors on the system, then the system is 100 percent busy. Numbers consistently greater
than the number of processors on the system indicate that the system has more work to do than
it can complete. If this condition persists, then either there is a problem that requires further
attention or you should consider spreading some of the load to a different system.

The following example for an idle system indicates that the load average values are very low:

$ uptime
6:38pm up 108 day(s), 3:17, 2 users, load average: 0.02, 0.01, 0.01

The next example, on a busier four-processor system, shows values indicating that the system
has more work than it can complete over the past 15-minute interval:

$ uptime
6:39pm up 160 day(s), 1:45, 1 user, load average: 11.82, 13.04, 7.55

If the system seems sluggish, check the load average; if it is unexpectedly high, use some of the
tools described in this chapter to understand what is happening.

ps
The ps command is one of the first utilities to use when you want to monitor system activity.
The ps command has many options to enable you to observe different aspects of the currently
running processes. The -e and -f options are commonly used to get an initial view. The -e
option requests that all processes should be displayed, and the -f option requests a full listing,
which provides more data about each process:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD

509

Part IV OpenSolaris Reliability, Availability, and Serviceability

root 0 0 0 Apr 30 ? 0:04 sched
root 1 0 0 Apr 30 ? 0:02 /sbin/init
root 2 0 0 Apr 30 ? 0:00 pageout
root 3 0 0 Apr 30 ? 7:54 fsflush

daemon 602 1 0 Apr 30 ? 0:00 /usr/lib/nfs/nfs4cbd
. . .

This output shows you what is running and the user ID of each process. The TIME field
shows how much CPU time the process has used; a high value may be an indication of a
process that is running out of control. However, in this example, the fsflush process is
a system housekeeping process, and not one that you should worry about if the TIME is
high.

You can use the -o option to indicate specific elements of the process data you are interested in.
This example uses vsz to show the total size of the process, rss to show the resident set size,
and pmem to show the percent of physical memory that each process is using. These options are
helpful when you think the system is experiencing memory pressure and you want to see what
processes are using a lot of memory.

$ ps -eo user,pid,vsz,rss,pmem,time,args
USER PID VSZ RSS %MEM TIME COMMAND
root 0 0 0 0.0 00:04 sched
root 1 2540 1140 0.1 00:02 /sbin/init
root 2 0 0 0.0 00:00 pageout
root 3 0 0 0.0 07:57 fsflush

daemon 602 2756 1576 0.1 00:00 /usr/lib/nfs/nfs4cbd
gjelinek 2951 159228 133544 6.4 07:23 /usr/X11/bin/Xorg :0 -depth 24
. . .

The output shows that the Xorg process size is 159MB of virtual memory, and it is using
133MB of physical memory, which represents more than 6 percent of the system’s physical
memory.

OpenSolaris implements virtual memory for processes, and resident set size (RSS)
is the amount of physical memory that a process is actually using. Some parts of a

process are typically not paged in to physical memory and that memory is reported in the overall
memory size, but not in the RSS.

You can observe many other process attributes with the ps command — it is well worth the
time to study the man page and familiarize yourself with the data that you can obtain using this
command.

prstat
The ps command has certain limitations that can be inconvenient. It shows only a snapshot
of the current process data, and it can be hard to see the most important data when many

510

Monitoring and Observability 14

processes are running. The top command has traditionally been used to monitor the most
active processes on a system. OpenSolaris provides a version of this command, but the preferred
alternative is the prstat command, which provides similar functionality and is built using
standard system interfaces, making it more efficient than the top command:

$ prstat
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

1161 gjelinek 218M 104M sleep 49 0 0:02:13 0.6% soffice.bin/6
2951 gjelinek 156M 130M sleep 59 0 0:07:37 0.3% Xorg/1
3346 gjelinek 90M 25M sleep 59 0 0:01:39 0.1% gnome-terminal/2
3302 gjelinek 72M 14M sleep 59 0 0:00:42 0.1% metacity/1
3312 gjelinek 3880K 2316K sleep 59 0 0:01:42 0.0% gam_server/28
4082 gjelinek 323M 124M sleep 49 0 0:08:35 0.0% firefox-bin/9

. . .

Total: 115 processes, 312 lwps, load averages: 0.04, 0.03, 0.02

By default, prstat prints a screen of data. It updates its display every five seconds and sorts the
running processes by CPU usage so that the highest consumers are shown first. In this example,
the soffice.bin process is using the most CPU, but only 0.6 percent. If there were a runaway
process, its CPU time would be high, and it would be one of the first processes shown in the
prstat output.

Other useful data, including memory consumption, is also displayed. You can sort the data by
different statistics, as this example, sorting on resident set size, shows:

$ prstat -s rss
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

2951 gjelinek 156M 130M sleep 59 0 0:07:40 0.3% Xorg/1
4082 gjelinek 323M 124M sleep 49 0 0:08:36 0.0% firefox-bin/9
1161 gjelinek 218M 104M sleep 49 0 0:02:22 0.7% soffice.bin/6
4006 gjelinek 278M 85M sleep 49 0 0:02:45 0.0% thunderbird-bin/8

. . .

It can also be useful on a multi-user system to summarize by user:

$ prstat -t
NPROC USERNAME SWAP RSS MEMORY TIME CPU

56 gjelinek 468M 650M 32% 0:26:54 2.3%
48 root 92M 99M 4.8% 0:00:42 0.0%
2 lp 1900K 4292K 0.2% 0:00:00 0.0%
1 dladm 444K 668K 0.0% 0:00:00 0.0%
8 daemon 9428K 11M 0.5% 0:00:00 0.0%

. . .

Use the prstat command when you want to dynamically observe what is using the most
resources on the system.

511

Part IV OpenSolaris Reliability, Availability, and Serviceability

vmstat
In some cases you need a system-wide summary of key activity. You can use several commands
to monitor this data, including the vmstat command, which provides an overall summary of a
variety of virtual memory-related system statistics:

$ vmstat 10
kthr memory page disk faults cpu

r b w swap free re mf pi po fr de sr s1 s2 s3 -- in sy cs us sy id
0 0 0 1420872 236664 31 343 96 7 11 0 31 3 3 6 0 607 2868 555 2 1 96
0 0 0 662624 41700 3 37 162 592 3125 0 5667 87 87 0 0 3011 3595 6988 3 47
50

0 0 0 662544 48872 1 17 70 6 29 0 44 88 88 92 0 2196 3753 5815 3 45 51
0 0 0 662544 42284 4 50 110 734 1640 0 3098 80 80 0 0 2417 5564 6070 4 44 52
0 1 0 662544 47560 4 100 480 350 2557 0 3740 104 0 128 0 2880 6404 7432 4 43
54

0 1 0 662544 45640 3 121 522 0 0 0 0 98 96 126 0 2354 4304 4559 4 45 51
0 1 0 662544 36264 11 167 651 627 1097 0 2936 105 0 142 0 1780 3861 2345 5 48
47

0 2 0 662544 32864 25 179 650 1226 2202 0 4243 111 0 151 0 1972 5498 4515 5 46
49

0 2 0 662544 33772 10 237 1252 890 3593 0 6828 126 0 181 0 2161 3664 4215 4 46
50

. . .

The man page explains the meaning of each column in detail. In brief, the kthr columns show
the number of kernel threads in various states. The memory columns show the available swap
space and the size of the free list. The page columns show a variety of statistics related to
paging. The disk columns summarize disk operations, up to four disks. The faults columns
show interrupt and system call trap rates. Finally, the cpu columns show CPU time spent
executing user-level (us) and kernel (sy) code, as well as idle time (id).

The first line of data is a summary since the system booted. The subsequent lines are a summary
for the interval, which in this example was specified as 10 seconds.

The vmstat command is primarily used to observe two different aspects of the overall system
behavior: CPU utilization and the virtual memory system. The example is slightly hard to read
because some of the numbers are large and the columns aren’t lined up. Reformatting the cpu
data on its own, and ignoring the first line of output, results in the following:

cpu
us sy id
3 47 50
3 45 51
4 44 52
4 43 54

512

Monitoring and Observability 14

4 45 51
5 48 47
5 46 49
4 46 50

The CPU data is the total across all of the processors on the system. This example was run
on a two-processor system, and you can see that one processor is spending almost 100
percent of its time executing in the kernel (system time averages close to 50 percent, which
represents one total CPU), while the other is essentially doing nothing (idle time averages
around 50 percent, which represents the second CPU). This is not what you would normally
expect to see because typical applications spend the majority of their time either executing in
user-level code or idle. You can look at the virtual memory statistics to get a sense of what is
happening.

Reformatting the output so that you can focus on the virtual memory-related statistics reveals the
following:

memory page
swap free re mf pi po fr de sr

662624 41700 3 37 162 592 3125 0 5667
662544 48872 1 17 70 6 29 0 44
662544 42284 4 50 110 734 1640 0 3098
662544 47560 4 100 480 350 2557 0 3740
662544 45640 3 121 522 0 0 0 0
662544 36264 11 167 651 627 1097 0 2936
662544 32864 25 179 650 1226 2202 0 4243
662544 33772 10 237 1252 890 3593 0 6828

A detailed explanation of the OpenSolaris virtual memory subsystem is beyond the scope of this
book, but this example can be understood with only a few basic concepts. The system has 2GB
of physical memory, but the free column shows that only about 32MB–48MB is free. This is not
necessarily bad because OpenSolaris tries to efficiently use as much physical memory as it can,
but the amount of free memory is a small percentage of the total, so that is one clue. Looking at
the page-in (pi) and page-out (po) data, you can see that the amount of paging activity is fairly
high. On a typical system these numbers might spike occasionally, but over time they should
be consistently small. That is a second clue. Finally, the scan-rate (sr) is also high. The scan-
ner is the part of the VM system that tries to page out pages when there is demand for physical
memory. The fact that the scanner is running steadily and scanning a large number of pages in
each interval is the final clue and a clear indication that the system is low on memory. This also
explains the CPU data shown. The system is spending all of its time trying to reclaim memory
for applications to use. In other words, it is thrashing.

Another useful diagnostic from the vmstat command is the length of the run queue in the
kthr r column. Although the example does not illustrate this situation, a run queue that is
consistently non-0 is an indication that the system has work backed up that it is not completing.

513

Part IV OpenSolaris Reliability, Availability, and Serviceability

In other words, the system is overloaded, so you should continue to investigate or consider
moving some of the work to a different system if the condition persists.

mpstat
The mpstat command provides a summary of processor statistics, broken down by
CPU, for the system. This example shows statistics every five seconds on a four-processor
system:

$ mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 1053 4 417 94 59 129 38 15 4166 0 197917 37 17 0 46
1 1035 3 391 142 108 121 37 14 4693 0 222818 39 18 0 43
2 1056 4 394 42 1 128 40 14 4777 0 222863 39 18 0 42
3 1043 5 442 317 190 155 39 16 1902 0 112913 30 13 0 57

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 0 0 6 16 3 25 11 8 7298 0 627722 54 32 0 13
1 0 0 2 14 2 16 9 3 6150 0 715774 62 35 0 3
2 0 0 2 11 1 17 8 5 34685 0 696003 58 37 0 6
3 1 0 30 289 186 109 8 11 3917 0 167391 14 9 0 76

. . .

As with the vmstat command, the first block of output is a summary since the system booted,
while subsequent blocks are summaries for the interval.

The various columns are described in the man page. Briefly, you can see major and minor faults,
cross-calls, interrupts, context switches, thread migrations, spins on mutexes and locks, the
number of system calls, and time spent in various kernel states. These last columns are the same
data that is reported by the vmstat command.

You use the mpstat command when you need to get more information about system activity
related to CPU utilization. Looking at the CPU utilization numbers first, as you did in the
vmstat example, this example shows a typical distribution of user-level, kernel-level, and idle
time. Looking at some of the other data, you can see the number of involuntary context switches
(icsw) per CPU. The numbers here are low; consistently high numbers would be an indication
that there are more runnable threads than processors on which to schedule them. High thread
migration (migr) can be the underlying cause of performance problems because the cache on
the new processor might not be warmed up for the process.

The mpstat command reports locking statistics in the smtx and srw columns, but the lock-
stat command, described shortly, provides better visibility into locking issues.

The wt column reports the time spent waiting for I/O. Previously, this statistic was
always inaccurate and a source of confusion. The software has been changed so that

this data is now always reported as 0. This applies not only to the mpstat command, but to all
commands that report this data, such as iostat or sar.

514

Monitoring and Observability 14

iostat
The iostat command is used to obtain I/O statistics. As with the previous commands, you can
specify a reporting interval, and the first line shows a summary since the system was booted:

$ iostat 5
tty sd0 sd1 sd2 sd3 cpu

tin tout kps tps serv kps tps serv kps tps serv kps tps serv us sy wt id
0 66 32 2 7 32 2 3 0 0 0 0 0 0 2 1 0 97
0 67 9 1 3 9 1 0 0 0 0 0 0 0 3 2 0 95
3 67 249 61 11 261 61 1 0 0 0 0 0 0 16 6 0 78
0 16 150 84 12 193 84 4 0 0 0 0 0 0 6 11 0 83
0 16 194 106 9 192 106 4 0 0 0 0 0 0 6 11 0 83
0 16 236 105 14 254 105 3 0 0 0 0 0 0 5 10 0 86
0 16 146 87 12 168 87 3 0 0 0 0 0 0 14 10 0 76
0 16 172 86 11 212 86 4 0 0 0 0 0 0 4 10 0 86

. . .

This example shows I/O for the terminal (tty) and four disks (sd0-sd3). It indicates that
shortly after the command was started, the sd0 and sd1 disks began to experience increased
I/O. The disk columns are reporting the Kbytes/second (kps), transfers/second (tps) and
average service time (serv), in milliseconds, for the four disks. The cpu columns report the
same data that you can obtain using the vmstat or mpstat commands.

Another useful option is -D, which reports reads/second (rps), writes/second (wps), and the
percentage of disk utilization (util). This percentage indicates how busy the disk is, not how
full it is:

$ iostat -D 5
sd0 sd1 sd2 sd3

rps wps util rps wps util rps wps util rps wps util
2 1 1.2 2 1 0.5 0 0 0.0 0 0 0.0
0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0
0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0

17 0 6.8 17 0 2.1 0 0 0.0 0 0 0.0
118 0 71.4 118 0 26.1 0 0 0.0 0 0 0.0
158 0 91.8 158 0 34.0 0 0 0.0 0 0 0.0
119 0 86.2 118 0 27.6 0 0 0.0 0 0 0.0
. . .

Here, I/O to sd0 and sd1 increased shortly after the command was started. The utilization can
be used as an initial indicator if you suspect I/O activity is the cause of a performance issue, but
you will certainly need to investigate further to determine whether the situation is normal or
points to a deeper problem.

One limitation to note in the output is that disk names are reported using internal names, such
as sd0 or sd1. This can make it hard to understand which disks are actually experiencing the
I/O. Use the -n option to report the names in the standard style:

$ iostat -nD 5
c0t0d0 c0t1d0 c1t0d0 c1t1d0

515

Part IV OpenSolaris Reliability, Availability, and Serviceability

rps wps util rps wps util rps wps util rps wps util
2 1 1.2 2 1 0.5 4 2 2.6 3 2 1.2
67 117 93.3 67 117 26.7 99 132 98.5 87 139 34.6
66 113 93.4 65 113 20.7 93 116 98.0 77 116 25.3
81 0 83.6 81 0 16.6 138 5 95.4 100 0 21.8
23 0 21.6 23 0 2.8 36 0 24.3 31 0 4.3

You can also specify the names of the disks to monitor on the command line, which is useful
when the system has many disks and you are interested in only a subset.

Monitoring I/O is a complex task, and the iostat command includes numerous options that
enable you to view a variety of statistics. It is worth studying the man page and spending time
investigating the various capabilities.

/proc
The previous section described some of the key utilities you can use to understand activity on
the system. In particular, the ps and prstat commands are frequently used to observe process
activity. However, in some cases you need to delve more deeply into the specifics of an individ-
ual process. OpenSolaris provides the /proc pseudo-file system, which is used by various util-
ities to access data about each running process, along with a set of associated utilities, the proc
tools, which enable you to observe and manage various aspects of running processes. Many of
these tools can also be used to examine a core file. The proc tools are listed in Table 14-1.

This section doesn’t cover all of these tools, but a few examples illustrate some of their capabili-
ties.

The /proc file system in OpenSolaris is somewhat different from the one in Linux. In
OpenSolaris, /proc is used purely to provide visibility and control of running pro-

cesses, whereas in Linux, /proc also implements a collection of unrelated interfaces. In OpenSo-
laris, those interfaces are implemented in other ways, not by using /proc.

One very common task is to kill a running process. Using the traditional ps and kill com-
mands, you must use grep or some other matching tool to find the process ID to kill. Many of
the proc tools accept user-friendly names to do this. The following example kills all processes
named evince:

$ pkill evince

You can use pgrep to easily find running processes and combine them with another command.
This example shows the stack for the Xorg process:

pstack `pgrep Xorg`
2951: /usr/X11/bin/Xorg :0 -depth 24 -nobanner
-auth /var/dt/A:0-4gaOWf
fffffd7fff2da82a __read () + a

516

Monitoring and Observability 14

00000000004bf17f _XSERVTransLocalRead () + f
00000000004b557a ReadRequestFromClient () + 14a
000000000048aaea Dispatch () + 2fa
000000000049e035 main () + 495
000000000047a33c _start () + 6c

TABLE 14-1

Proc Tools

Tool Description

pargs Prints arguments or environment variables

pcred Prints or sets the effective or real UID and GID

pflags Prints general proc and signal information

pfiles Prints information about open files

pgrep Finds processes by name or other attributes

pkill Sends a signal to processes specified by name or other attributes

pldd Prints the dynamic libraries linked into the process

prun Resumes running the process or specified lightweight process. See
pstop.

psig Prints information about signal handling

pstack Prints a stack trace for the full process or each lightweight process

pstop Stops the process or the specified lightweight process. See prun.

ptime Times the process using microstate accounting

pwait Waits for the process to end

pwdx Prints the current working directory

This example shows all open files for Xorg:

pfiles `pgrep Xorg`
2951: /usr/X11/bin/Xorg :0 -depth 24 -nobanner
-auth /var/dt/A:0-4gaOWf

Current rlimit: 256 file descriptors
0: S_IFREG mode:0644 dev:27,1152 ino:23302 uid:0 gid:0 size:30899

O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE
/var/log/Xorg.0.log

1: S_IFSOCK mode:0666 dev:318,0 ino:38121 uid:0 gid:0 size:0

517

Part IV OpenSolaris Reliability, Availability, and Serviceability

O_RDWR
SOCK_STREAM
SO_REUSEADDR,SO_SNDBUF(49152),SO_RCVBUF(49152)
sockname: AF_INET6 :: port: 6000

2: S_IFREG mode:0644 dev:27,1152 ino:31112 uid:0 gid:0 size:48941
O_WRONLY|O_CREAT|O_LARGEFILE
/var/dt/Xerrors

3: S_IFSOCK mode:0666 dev:318,0 ino:38122 uid:0 gid:0 size:0
O_RDWR

SOCK_STREAM
SO_REUSEADDR,SO_SNDBUF(49152),SO_RCVBUF(49152)
sockname: AF_INET 0.0.0.0 port: 6000

4: S_IFSOCK mode:0666 dev:318,0 ino:4417 uid:0 gid:0 size:0
O_RDWR

SOCK_STREAM
SO_SNDBUF(16384),SO_RCVBUF(5120)
sockname: AF_UNIX /tmp/.X11-unix/X0

5: S_IFIFO mode:0000 dev:308,0 ino:2634 uid:0 gid:0 size:0
O_RDWR

. . .

50: S_IFIFO mode:0000 dev:308,0 ino:64761 uid:6209 gid:10 size:0
O_RDWR|O_NONBLOCK

52: S_IFIFO mode:0000 dev:308,0 ino:62309 uid:6209 gid:10 size:0
O_RDWR|O_NONBLOCK

The output has been trimmed, but you can see that Xorg has 53 open files.

Kstats
Internally, OpenSolaris maintains a large number of detailed kernel statistics. Sometimes it is
useful to examine this data, although many of the statistics are related to the implementation
of specific subsystems and are hard to interpret without a detailed understanding of the code.
Many of the commands described in this chapter, as well as elsewhere in this book, use kstats as
their underlying source of information. In most cases, using those commands will be preferable
to accessing the raw kstat data. Because these statistics are specific to the kernel implementation,
the data being maintained can change over time as each subsystem evolves.

You can use the kstat command to select and print kstat data. By default, the command prints
all kstats, which is generally too much information and not what is needed; but kstats are orga-
nized by module, class, and name, so you can use various options to select the specific data
you want — e.g., CPU data is in the cpu module:

$ kstat -m cpu
module: cpu instance: 0
name: intrstat class: misc

crtime 49.521558236

518

Monitoring and Observability 14

level-1-count 1895859
level-1-time 7619887450

. . .

module: cpu instance: 0
name: sys class: misc

bawrite 6
bread 5337

. . .

module: cpu instance: 0
name: vm class: misc

anonfree 0
anonpgin 0

. . .

module: cpu instance: 1
name: intrstat class: misc

crtime 53.115550131
level-1-count 35
level-1-time 375708

. . .

module: cpu instance: 1
name: sys class: misc

bawrite 398
bread 7342

. . .

module: cpu instance: 1
name: vm class: misc

anonfree 0
anonpgin 0

. . .

This truncated example indicates that the cpu module includes three differently named kstats:
intrstat, sys, and vm. This example was run on a two-CPU system, so there are instances
of these statistics for each CPU. As previously mentioned, most of the kstats are not explicitly
documented, so you need to use the source for the release you are running to truly understand
this data.

Other Utilities
In addition to the most commonly used commands described already, OpenSolaris includes
other utilities for monitoring the system.

cpustat
The cpustat and cputrack commands provide detailed information about CPUs based on
their hardware performance counters. This can be useful in certain low-level troubleshooting
situations, although you need in-depth knowledge of the CPU to understand the meaning of this

519

Part IV OpenSolaris Reliability, Availability, and Serviceability

data. You can use the help option (-h) to see a list of the available performance counters. This
abbreviated example shows the counters available on an AMD-based system:

cpustat -h
Usage:
. . .

event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
FP_dispatched_fpu_ops_ff LS_seg_reg_load
LS_uarch_resync_self_modify LS_uarch_resync_snoop
LS_buffer_2_full LS_retired_cflush LS_retired_cpuid
DC_access DC_miss DC_refill_from_L2 DC_refill_from_system
DC_misaligned_data_ref DC_uarch_late_cancel_access
DC_uarch_early_cancel_access DC_dispatched_prefetch_instr
DC_dcache_accesses_by_locks BU_memory_requests
BU_data_prefetch BU_cpu_clk_unhalted IC_fetch IC_miss
IC_refill_from_L2 IC_refill_from_system
IC_itlb_L1_miss_L2_hit IC_uarch_resync_snoop
IC_instr_fetch_stall IC_return_stack_hit
IC_return_stack_overflow FR_retired_x86_instr_w_excp_intr

. . .

Hardware performance counters are built into the CPU and are used to track various
low-level CPU activities. As such, these are CPU-specific and are used primarily for

advanced monitoring.

truss
The truss command is frequently used to watch the system call activity of a single process. You
can either start a command under truss or attach to a running process, as this example shows:

truss -p 970
/1: read(4, "\n\0D6FB J\0A002\0CA 6FF".., 96) = 96
/1: pollsys(0x094CD310, 8, 0x08046938, 0x00000000) = 0
/1: pollsys(0x094CD310, 8, 0x08046938, 0x00000000) = 0
/1: pollsys(0x094CD310, 8, 0x08046938, 0x00000000) = 0
/1: lwp_unpark(3) = 0
/3: lwp_park(0xF929EE58, 0) = 0
/1: ioctl(4, FIONREAD, 0x080468AC) = 0
/1: pollsys(0x094CD310, 8, 0x08046938, 0x00000000) = 0
/1: write(4, " 51804\0D6\bA0021702\0\0".., 2636) = 2636
/1: read(4, "1C07D6FB I\0A002 l\0\0\0".., 32) = 32
/1: read(4, "1C07D6FB I\0A002 101\0\0".., 32) = 32
/1: read(4, 0x08044CC0, 32) Err#11 EAGAIN
/1: pollsys(0x080B4420, 1, 0x00000000, 0x00000000) = 1
/1: read(4, "0118 NFC\001\0\0\0\0\0\0".., 32) = 32
/1: readv(4, 0x08044C80, 2) = 1024
/1: write(4, "9503\n\0D6\bA0021E03A002".., 1472) = 1472
. . .

520

Monitoring and Observability 14

The truss command is a useful way to get a general overview of what an individual process, or
tree of processes, is doing, but running truss on a process adds overhead that can affect the
result you are trying to observe. For example, if you diagnosing a timing issue, using truss
might cause the timing problem to disappear. In those cases, DTrace, described Chapter 15,
might be a preferable solution.

You can use the -f option to truss all children of a command, and various options for times-
tamps to get a general understanding of how the system call activity of a process is affecting
its performance. In addition to tracing system calls, you can also use truss to trace user-level
library function calls using the -u option. This example shows the command line to trace the
printf calls from libc in addition to the system calls:

$ truss -u libc:printf demo

intrstat
In rare cases, a system will seem to be busy but no specific process appears to be causing the
load. It’s possible that the system is experiencing a high number of interrupts. This can happen
for various reasons, some of which are normal, but it is also possible that a broken device or
defective driver is causing the problem. You can monitor interrupt activity using the intrstat
command:

intrstat

device | cpu0 %tim cpu1 %tim
-------------+------------------------------

ata#1 | 20 0.1 0 0.0
ehci#0 | 0 0.0 122 0.0

nvidia#0 | 0 0.0 122 0.3

device | cpu0 %tim cpu1 %tim
-------------+------------------------------

adpu320#1 | 0 0.0 0 0.0
ata#1 | 0 0.0 0 0.0
bge#0 | 0 0.0 5 0.0

ehci#0 | 0 0.0 123 0.0
nvidia#0 | 0 0.0 123 0.3

. . .

By default, the command outputs data every second, but you can configure this with the inter-
val option. The data for each CPU is displayed by column. If you have more than the four CPUs
that will fit, the additional data is printed in multiple tables. You can also select specific CPUs
using the -c or -C options. In this example there are no problems, but if the number of inter-
rupts and the percentage of time handling those interrupts is consistently high, that might be an
indication of a problem requiring further investigation.

521

Part IV OpenSolaris Reliability, Availability, and Serviceability

The trapstat command, which is only available on SPARC-based systems, enables you to col-
lect statistics about traps:

trapstat
vct name | cpu0 cpu1 cpu2 cpu3
------------------------+------------------------------------
24 cleanwin | 21 0 44 3
41 level-1 | 2 1 1 7
44 level-4 | 0 264 0 276
46 level-6 | 1013 0 0 0
4a level-10 | 0 0 0 100
4d level-13 | 0 1 1 1
4e level-14 | 3 2 2 102
60 int-vec | 1108 386 100 380
64 itlb-miss | 177 35 214 56
68 dtlb-miss | 11725 417113 8140 6608
6c dtlb-prot | 2 0 0 0
84 spill-user-32 | 1 0 9 0
8c spill-user-32-cln | 2 0 8 1
98 spill-kern-64 | 12007 11107 4214 3390
a4 spill-asuser-32 | 6 0 48 4
ac spill-asuser-32-cln | 8 0 416 0
c4 fill-user-32 | 1 0 0 0
cc fill-user-32-cln | 8 0 374 6
d8 fill-kern-64 | 10997 10841 4212 3275

108 syscall-32 | 6 0 140 1
127 gethrtime | 4 0 0 0

lockstat
The lockstat command can be used to monitor the kernel’s locking behavior on the system.
Lock contention can be another cause of unexplained poor performance:

lockstat sleep 30
Adaptive mutex spin: 358 events in 30.043 seconds (12 events/sec)

Count indv cuml rcnt nsec Lock Caller

130 36% 36% 0.00 2595 0xffffff01480ab080 lwp_unpark+0x32
78 22% 58% 0.00 3383 0xffffff01480ab080 lookuppnat+0x67
17 5% 63% 0.00 7732 0xffffff0148ffc050 bge_intr+0x1a8
16 4% 67% 0.00 2760 0xffffff0148ffc050 bge_chip_factotum+0x62
13 4% 71% 0.00 726 0xffffff014f16f2c0 polllock+0x31
10 3% 74% 0.00 926 0xffffff014e81b1c0 polllock+0x31
8 2% 76% 0.00 11715 0xffffff014f16f2c0 fifo_read+0x4e
8 2% 78% 0.00 1250 0xffffff01471b4000 callout_execute+0xcf

. . .

1 0% 100% 0.00 538 0xffffff014812d680 vn_rele+0x21

522

Monitoring and Observability 14

1 0% 100% 0.00 1149 0xffffff0148d97f50 ohci_allocate_periodic_in
_resource+0x100

Adaptive mutex block: 5 events in 30.043 seconds (0 events/sec)

Count indv cuml rcnt nsec Lock Caller

2 40% 40% 0.00 62847 0xffffff01480ab080 lwp_unpark+0x32
1 20% 60% 0.00 10250 0xffffff014bf3b1f8 cv_timedwait_sig+0x1e8
1 20% 80% 0.00 43437 0xffffff01496b84c0 cv_wait_sig_swap_core+0x193
1 20% 100% 0.00 87939 0xffffff01480ab080 lookuppnat+0x67

Spin lock spin: 2181 events in 30.043 seconds (73 events/sec)

Count indv cuml rcnt nsec Lock Caller

1090 50% 50% 0.00 2041 0xffffff0148ab5b28 disp_lock_enter+0x31
875 40% 90% 0.00 1888 cpu0_disp disp_lock_enter+0x31
152 7% 97% 0.00 1714 0xffffff0148ab5b28 disp_lock_enter_high+0x11
64 3% 100% 0.00 1627 cpu0_disp disp_lock_enter_high+0x11

Thread lock spin: 5 events in 30.043 seconds (0 events/sec)

Count indv cuml rcnt nsec Lock Caller

3 60% 60% 0.00 288 cpu0_disp ts_update_list+0x54
1 20% 80% 0.00 229 sleepq_head+0xb98 ts_update_list+0x54
1 20% 100% 0.00 832 0xffffff0148ab5b28 ts_update_list+0x54

The lockstat command collects data until the command specified as an argument has com-
pleted. You can use sleep, as in the example, to collect data for the specified period of time.
This example collected data for 30 seconds.

sar
The system activity reporter (sar) is another utility that can report much of the same data that
is reported by the previously described commands. The standard usage is with an interval time
and count. This example shows a five-second interval for three iterations:

$ sar 5 3
SunOS myhost 5.11 snv_88 i86pc 05/05/2008

19:03:11 %usr %sys %wio %idle

523

Part IV OpenSolaris Reliability, Availability, and Serviceability

19:03:16 2 1 0 97
19:03:21 0 1 0 99
19:03:26 8 2 0 90

Average 4 1 0 95

Aside from utilization, a variety of options can report additional system data, such as system
calls, block device I/O, paging, and run queue length.

One advantage of using sar over the other stat commands is that the output is timestamped.
The data can be saved to a file to provide a historical record of activity for later analysis. You
can use the system/sar service to handle this automatically. See the sadc(1M) man page for
more information about using sar for automatic logging.

See Chapter 13 for more information on managing services with SMF.

Logs
In addition to using various utilities to view current activity, sometimes you need historical data
to get a sense of past activity on the system.

syslog
The primary system log file is normally /var/adm/messages. This file consists of timestamped
entries for system message. In addition to the timestamp, each entry is flagged with a tag indi-
cating the severity and the subsystem that generated the message. Here is an example of some
entries from the log file:

May 4 19:26:10 myhost su: [ID 810491 auth.crit] ‘su root’ failed for sarah
on /dev/pts/12

May 5 01:15:03 myhost sendmail[1910]: [ID 702911 mail.crit] My unqualified
host name (myhost) unknown; sleeping for retry

May 5 05:40:28 myhost ufs: [ID 845546 kern.notice] NOTICE: alloc: /: file
system full

May 5 07:40:15 myhost ntpdate[7993]: [ID 558275 daemon.notice] adjust time
server 129.146.228.54 offset -0.003553 sec

This shows the timestamp for each entry and the host that generated the entry. This is useful
when logging has been configured to a remote host. For local logging, this will simply be the
hostname of the system. Next is a tag with the subsystem and severity. The first line was gen-
erated by the auth subsystem and the severity is critical. Finally, the rest of the line contains
the actual log message. The next three lines were generated by the mail, kernel, and daemon
subsystems.

524

Monitoring and Observability 14

Data in this file is logged through the syslog(3C) facility and the log file is managed by the
syslogd. The syslogd can be configured to send various messages to different destinations
or to even send all log data to a remote host. The syslogd is configured through the sys-
log.conf file and managed by the system/system-log SMF service. The syslog.conf(4)
man page describes how to configure handling for the various levels of messages.

Most of the messages in the log file are informative and do not indicate a problem. At a mini-
mum, you should review the syslog(3C) man page and track the high-severity log messages.

Log management
Without management, log files grow endlessly and eventually consume all of the free space
on the disk. OpenSolaris includes the logadm command, which is a general-purpose util-
ity to rotate logs and prevent this problem. The logadm command is configured by the
/etc/logadm.conf file and run by root’s crontab entry.

The logadm command is configured to rotate the /var/adm/messages file, along with other
log files, on a regular basis so that you don’t need to worry about a single file filling the file sys-
tem. Note that the older /var/adm/messages files are named messages.0, messages.1, and
so on. You may need to look in one of these older files if the data you need is not in the current
log file. You can customize the logadm.conf file if you need to maintain the log files for longer
than the default configuration.

User activity
The system tracks user logins in the /var/adm/utmpx database. Unlike the syslog file, you
do not access this file directly. You can use the who or w commands to see a list of users cur-
rently logged in. The last command shows a record for each user, indicating when, and for
how long, they were logged in. This output will also show when the system was booted:

$ last
sarah console :0 Sun May 4 18:54 still logged in
reboot system boot Sun May 4 18:50
reboot system down Sun May 4 18:43
sarah console :0 Sat May 3 13:44 - down (1+05:05)
reboot system boot Sat May 3 13:39
reboot system down Sat May 3 13:38
sarah console :0 Wed Apr 30 13:36 - down (3+00:03)
reboot system boot Wed Apr 30 13:30
reboot system down Wed Apr 30 12:34
sarah console :0 Mon Apr 21 19:04 - down (8+18:26)
. . .

The /var/adm/sulog file contains a record for each attempt by a user to run the su command.
This is particularly useful to monitor which users are su-ing to root.

525

Part IV OpenSolaris Reliability, Availability, and Serviceability

See the ‘‘Accounting’’ section in Chapter 18 and the ‘‘Auditing’’ section in Chapter
11 for information on setting up and using those facilities to track user activity in

more detail.

SNMP
The various utilities described up to this point focus on monitoring and observing a single
system. In an enterprise setting there are many systems, and it is generally impractical to try
to closely monitor each one individually. Instead, enterprise-grade management software is
usually deployed to collect data from all of the systems in a distributed fashion. If a problem
is observed, the utilities described in the chapter, and elsewhere in this book, can be used to
further diagnose the problem.

The Simple Network Management Protocol (SNMP) is a well-established and very common
protocol used to enable distributed monitoring and management of networked systems. A full
discussion of SNMP management is beyond the scope of this book, but this section offers a
brief overview of the SNMP capabilities provided with OpenSolaris. For details, consult the
documentation. If your site uses an unbundled system management framework that provides
its own agentry, consult the documentation for the product you are using to learn more about
configuring its management agents for OpenSolaris.

Within the SNMP framework, an agent is a component that resides on the system being
managed. A management application communicates with the agents using SNMP to perform
the appropriate task. Because a variety of components exist within a complex system, such
as a server running OpenSolaris, there can be a number of agents to manage the various
subsystems. A master agent listens for SNMP requests and dispatches the request to the appro-
priate sub-agent. SNMP uses a well-defined management information base (MIB) to define the
capabilities and attributes for each agent.

OpenSolaris provides the system management agent (SMA) as its master agent. The SMA is
based on the Net-SNMP open source project. This agent runs on the standard SNMP network
port 161. If another SNMP agent is already running on this port, the SMA won’t start. You can
check the agent’s log file (/var/log/snmpd.log) to see if this is the case.

The Net-SNMP project is based at www.net-snmp.org.

If you don’t already have the SNMP packages installed, you first need to install them on your
system. The following command installs all of the necessary packages:

pkg install SUNWsacom SUNWsmagt SUNWsmcmd SUNWsmmgr

The /etc/sma/snmp/snmpd.conf file configures the SMA. You can use this file as a
template and customize it for your configuration. The SMA supports the AgentX protocol
for communicating with sub-agents. See the snmpd.conf(4) man page for information

526

Monitoring and Observability 14

on configuring the agent, and the sma_snmp(5) man page for general information about
the SMA. The SMA is managed by the application/management/sma SMF service and
must be enabled or restarted after configuration changes have been made. The various MIB
definitions shipped with OpenSolaris are delivered in the /etc/sma/snmp/mibs directory.
The HOST-RESOURCES-MIB.txt file defines interfaces for managing a host computer, and the
SNMPv2-MIB.txt file defines interfaces for accessing information about the SNMP service itself.

Enabling SNMP allows remote machines to monitor, and possibly manage, the various
OpenSolaris subsystems. You should understand the security implications of SNMP

and consider configuring security within SMA to limit the possibility of a remote host gaining
access to the system.

Resources
The source for the various stat utilities described in this chapter resides under the
usr/src/cmd/stat directory. Most of the other utilities are directly under the usr/src/cmd
directory — for example, intrstat, kstat, lockstat, prtconf, prtdiag, ps, syseventd,
and uname. The proc tools are under usr/src/cmd/ptools.

The kstat library is under usr/src/lib/libkstat.

The SNMP source is in the SFW consolidation under http://cvs.opensolaris.org/
source/xref/sfw/usr/src/cmd/sma/net-snmp.

The SNMP SMA documentation is available at http://docs.sun.com/app/docs/
doc/819-6813.

Solaris Performance and Tools by McDougall, Mauro, and Gregg (Prentice Hall, 2007) is an excel-
lent reference devoted to the topic of this chapter.

Summary
This chapter provided an overview of OpenSolaris monitoring and observability. It discussed the
various utilities you can use to display the system configuration and view various aspects of sys-
tem behavior, along with some basic guidelines for troubleshooting. It also described the system
log files, which you can use to access historical data. Finally, it introduced SNMP, which is used
for distributed monitoring.

527

DTrace

IN THIS CHAPTER
Getting started

Tracing syntax

The dtrace command

Speculative tracing

Boot-time tracing

Postmortem tracing

User-level and high-level
language tracing

The DTrace facility is one of the most innovative capabilities within
OpenSolaris. DTrace enables you to observe and understand the
dynamic behavior of the entire software system, from the low-level

kernel details to high-level application behavior, in ways that were not pos-
sible prior to the creation of DTrace.

DTrace is fundamentally different from previous tools. Using DTrace
enables you to get a complete view of all of the software running. The
software does not have to be instrumented or explicitly built for monitor-
ing. Instead, the standard software that is normally running in production
can be observed at any time using DTrace. As such, there is no special
application that the software must run under to observe the system’s
behavior. Instead, if you notice a problem or the system is in a state that
needs further investigation, you can immediately start using DTrace to dive
into the running system to understand what is happening.

For DTrace to be used in this fashion, on production systems, it is criti-
cal that DTrace be safe. This safety is the second key innovation within
DTrace. Previous tracing or debugging facilities could not be used on live,
production systems without the possibility that the system could be desta-
bilized or even crash. However, use on production systems was one of the
key design goals of DTrace and, as such, safety was designed into the facil-
ity from the beginning.

DTrace probes, which are described later in this chapter, enable you to
observe behavior at virtually any point of interest within the system. The
number of available probes varies depending on the version of OpenSolaris
that you are running, but as an example, the system used to write this
chapter includes more than 75,000 probes. However, even with so many

529

Part IV OpenSolaris Reliability, Availability, and Serviceability

probes, they have no runtime impact until enabled, and then only the enabled probes will have
any effect, which is minimal. The impact of probes increases linearly with the total number
enabled, and once the probes have been disabled, they have no further runtime overhead.

Finally, DTrace includes a programming language that is used to express a variety of tracing
behaviors, from simple to highly complex. In this way, you define the appropriate behavior to
enable you to understand any aspect of the system, as needed.

Because DTrace is such a sophisticated facility, this chapter can only introduce its basic capabil-
ities. It is hoped that this will whet your appetite to dive in, start using DTrace to gain insight
into the behavior your systems and applications, and eventually learn more about this powerful
feature within OpenSolaris.

Once you understand this chapter, not only will you know the capabilities of DTrace, but you
will also comprehend advanced tracing techniques such as speculative tracing, tracing during
boot, and postmortem tracing, and you will have a basic knowledge of application-level tracing
in a variety of high-level languages.

Getting Started
Before delving into the full DTrace syntax, it is worth looking at a few simple examples to
illustrate the basic capabilities of DTrace and how you might use it to start investigating some
aspects of the system.

As described in Chapter 14, OpenSolaris includes the truss command, which enables you to
trace the system calls made by a process. This command is useful for tracing a single process, or
a process and its children, but what if you want to observe all of the system call activity on the
system? DTrace is perfect for this sort of task.

As previously mentioned, DTrace includes a programming language to define your tracing
behavior. This language is called D and this simple D program will trace all system calls:

syscall:::
{

printf("%d %s %s\n", pid, probefunc, execname);
}

The first line of the program specifies the probes that will be enabled. Although probes haven’t
been explained yet, you can easily see that system calls are being specified. The rest of the pro-
gram, which is the action taken when the probe fires, looks a lot like a one-line C program. As
you will see, the D programming language resembles C in several ways. This one-line program
will print three different variables: the process ID of the process making the system call (pid),
the system call name (probefunc), and the name of the process (execname) making the call.
DTrace includes a variety of built-in variables such as these, which are described later in this
chapter.

530

DTrace 15

If you type this command into a file named ex1.d and run DTrace as follows, you’ll see output
similar to the example, although the exact output depends on what processes are active on your
system:

/usr/sbin/dtrace -q -s ex1.d
1107 ioctl dtrace
1107 ioctl dtrace
1107 ioctl dtrace
1107 ioctl dtrace
1107 ioctl dtrace
1107 sysconfig dtrace
1107 sysconfig dtrace
1107 sysconfig dtrace
1107 sysconfig dtrace
1107 schedctl dtrace
1107 schedctl dtrace
1107 sigaction dtrace
...

The obvious problem here is that dtrace itself is running and the system call tracing of itself is
mixed in with any useful data you might collect about other, more interesting processes that are
running.

The examples in this chapter are run as root. However, there are three
DTrace-related privileges (dtrace_kernel, dtrace_proc, and dtrace_user) that

can be assigned to a user. See Chapter 11 for more information on configuring privileges. The
privileges(5) man page describes each of these privileges in more detail.

A simple modification to the program solves this problem:

syscall:::
/execname != "dtrace"/
{

printf("%d %s %s\n", pid, probefunc, execname);
}

You can see that the second line of this new program, which is a pattern that will be matched,
specifies that the execname should not be dtrace. This part of the probe function is called a
predicate in the D script language. In this way, you can trace all processes except the dtrace
process itself. Running this, your output will now appear more informative:

dtrace -q -s ex2.d
994 ioctl gnome-terminal
994 ioctl gnome-terminal
994 pollsys gnome-terminal
994 pollsys gnome-terminal
994 write gnome-terminal
994 write gnome-terminal
994 ioctl gnome-terminal

531

Part IV OpenSolaris Reliability, Availability, and Serviceability

994 ioctl gnome-terminal
994 pollsys gnome-terminal
797 setitimer Xorg
797 setitimer Xorg
797 clock_gettime Xorg
797 clock_gettime Xorg
797 read Xorg
...

It may not be immediately obvious, but this second example suffers from the same problem as
the first. Although the dtrace process is not being traced, the program is printing to the termi-
nal window and that activity, the terminal emulator process and the window system, still domi-
nate the output.

While you could modify the predicate to exclude more processes, or redirect the command out-
put to a file, DTrace includes a variety of additional capabilities that enable you to hone in on
exactly the data in which you are interested.

For the sake of this example, assume that you weren’t actually interested in tracing all of
the system calls. Instead, what you really wanted to understand is how a certain log file,
/var/log/myapp, is getting modified. That is, you know the file is modified at some point,
but you don’t know what process is actually making the change or why. Tracing the system
calls initially seemed like a good way to detect this, but now you can see that there is so much
activity on the system that just tracing system calls swamps the data you actually want.

One simple solution is to modify the program to only trace open system calls, as this example
shows:

syscall::open:entry
{

printf("%s, %s\n", execname, copyinstr(arg0));
}

You can see a few differences in this program. First, the probe line has been modified. Instead
of tracing all system calls, only the entry to the open system call is being traced. The action has
also been modified to print the process name and the value of the first argument to the system
call, arg0, which is the filename passed to the open system call. The syntax for this parameter
may seem a bit odd. Because the DTrace probes are running in the kernel, you need to copy the
data from the user-level code into the probe’s address space. Running this example, you might
see something like the following:

dtrace -q -s ex3.d
rcapd, /dev/null
rcapd, /var/run/daemon/rcap.stat.jSaaya
in.routed, /dev/kstat
rcapd, /dev/null

532

DTrace 15

rcapd, /var/run/daemon/rcap.stat.kSaaya
rcapd, /dev/null
rcapd, /var/run/daemon/rcap.stat.lSaaya
...

You could certainly pipe this command through grep to look for the file you are interested in,
but that wouldn’t leverage the capabilities of DTrace or enable you to use DTrace to explore
the behavior further. Instead, you can add a predicate to the program that will do the matching
for you:

syscall::open:entry
/"/var/log/myapp" == copyinstr(arg0)/
{

printf("%s, %s\n", execname, copyinstr(arg0));
}

In the predicate, which is the new second line in the program, you can see that the matching
is being done on the file you are interested in. Running this example produces the following
output:

dtrace -q -s ex4.d
myprog, /var/log/myapp

There is only a single line of output, which tells you that the process named myprog is the one
opening the file; but what if different processes are opening this file and you want to see what
any one of them is doing? Now that you know how to select the processes in which you are
interested, you can use DTrace to explore the behavior of any process that opens this file. This
final example shows how to trace all of the system calls of a process after it opens the log file:

syscall::open:entry
/"/var/log/myapp" == copyinstr(arg0)/
{

self->trace = 1;
}

syscall:::entry
/self->trace/
{

printf("%s, %s enter\n", execname, probefunc);
}

syscall:::return
/self->trace/
{

printf("%s, %s exit\n", execname, probefunc);
}

533

Part IV OpenSolaris Reliability, Availability, and Serviceability

This example has three clauses instead of the single clause you have seen up to now. A DTrace
program clause is composed of the three parts you have seen in the examples: a probe specifica-
tion, a predicate, and actions.

The first clause uses a predicate to do the matching, as shown previously. However, instead
of just printing the data, it sets a variable. The self name represents the thread being traced.
You can set the value of variables on the thread, and then use that data in other parts of the
program. The trace variable on the thread is not a special name. You can use any name and
DTrace will dynamically create that variable for you. You can also see that the predicates on
the other clauses use this new trace variable to determine when the actions on those clauses
should run. If the value of trace is nonzero, then the actions will run when the probe fires.
Using a thread-local variable this way is a common construct within DTrace programs; you
have one clause that does some form of selection and sets some data on the thread, and then
other clauses use that data in their predicates or actions. In this case, the second clause will
print some data when the system call is entered, and the third clause prints some data when the
system call returns.

Running this program shows something like the following:

dtrace -q -s ex5.d
myprog, open enter
myprog, open exit
myprog, write enter
myprog, write exit
myprog, rexit enter
progdemo, open enter
progdemo, open exit
progdemo, close enter
progdemo, close exit
progdemo, write enter
progdemo, write exit
progdemo, open enter
progdemo, open exit
progdemo, write enter
progdemo, write exit
progdemo, close enter
progdemo, close exit
progdemo, rexit enter

You can see that the same process shown earlier, myprog, is opening the log file, writing some
data, and exiting; but another process named progdemo also opens the file, calls close, write,
open, and so on. What is this second process doing? You immediately want to know what files
are being opened or closed, what data is being written to what files, and so on. DTrace enables
you to easily answer all of these questions, and more, with simple changes to your program. It
is common to use DTrace to watch some aspect of the system’s behavior, which will give you
new ideas or questions about what is going on; and then, with additional enhancements to your

534

DTrace 15

program, as this example illustrated, you can refine your tracing to understand exactly what is
happening.

Tracing Syntax
The previous examples showed that a DTrace program is made up of one or more clauses, each
of which has three parts: a probe specification, a predicate, and actions. In this section, the syn-
tax of each of these components is described in more detail.

Although this section is just an overview of the programming capabilities in DTrace,
it is still long and might seem a bit overwhelming. Remember that most D programs

are actually very simple and that you can achieve a great deal of visibility into the behavior of
the system with extremely small programs. However, DTrace is capable of tracing to any level of
sophistication, as your needs and abilities increase. The best way to use DTrace is to jump in, get
your feet wet with simple D programs, and then expand your knowledge as needed.

Program structure
Because clauses are executed in the order you write them, you cannot reference variables that
have not yet been declared. For example, the following portion of a program is incorrect:

fbt:::entry
/self->t/
{
}

syscall::open:entry
/execname == "myapp"/
{

self->t = 1;
}

Attempting to compile the preceding program results in an error:

dtrace -s ex26.d
dtrace: failed to compile script ex26.d: line 2: self->t has not yet
been declared or assigned

Changing the order in which the clauses are written corrects the problem.

Within your program, you can use comments in the C style, as in this example:

/*
* This is a comment.
*/

535

Part IV OpenSolaris Reliability, Availability, and Serviceability

Probes
You have seen that a probe specification is composed of four different fields, delimited by colons
(:). This is one of the specifications from an earlier example:

syscall::open:entry

The four fields in the specification are as follows:

provider:module:function:name

What is a probe?
Within the system, all of the points of interest that can be traced using DTrace are known as
probes. As mentioned in the introduction to this chapter, there are tens of thousands of these
probe points on a standard OpenSolaris system. These probes are not normally hard-coded into
the software, as you might expect from traditional tracing systems. Instead, the probes are made
available by the probe provider. For example, the fbt provider is the function boundary tracing
provider. This provider enables you to trace virtually every function entry and exit point within
the kernel. When new functions are added to the OpenSolaris kernel, developers do not imple-
ment any special code to enable DTrace to trace their new functions. The fbt provider knows
how to trace the functions automatically.

A key feature of probes is that they have no effect when they are not enabled. That is, the pro-
duction code running on your system has all of the probe points available, but there is no over-
head for these probes until a DTrace program is running. At that time, only the probes that are
enabled within the D program actually have any effect. When the DTrace program ends, any
probes that were enabled are gone and there is no longer any overhead. Even when probes are
enabled they have very little overhead, so the probe effect is very low.

The probe effect is something typically seen in traditional tracing systems where the
presence of a probe changes the software’s behavior. For example, in a program with

a race condition, if you added print commands to enable you to see what is happening, the actual
presence of the print commands might change the software behavior so that the race condition no
longer occurs.

What probes are available?
You can use the -l option to the dtrace command to see a list of all probes. Because there
are so many probes, you might want to redirect the output to a file. Looking at the output,
you’ll see something like the following example, although the exact order of the probes printed
will vary:

dtrace -l
ID PROVIDER MODULE FUNCTION NAME
1 dtrace BEGIN

536

DTrace 15

2 dtrace END
3 dtrace ERROR
4 fbt pfil pfil_list_add entry
5 fbt pfil pfil_list_add return

. . .

You can see that each probe has a provider, module, function, and name. These are the
four fields of a probe specification described earlier. Within your programs, you use this data
to specify exactly which probes should be enabled when the program is running. The earlier
examples also demonstrated that each field in the probe specification is optional. This was the
probe specification for the first example:

syscall:::

This specification enabled every probe delivered by the syscall provider. If you were to use
the following probe specification, you could trace virtually every function entry and return point
in the kernel:

fbt:::

There are a handful of nonstandard function boundaries where it is unsafe to trace,
so the fbt provider will not enable probes at those points.

You can see in the -l listing that the dtrace provider delivers three probes with no specific
module or function. These probes are described later in the chapter.

Providers
The exact providers available on your system will vary according to which release of OpenSo-
laris you are running. However, a set of common, frequently used providers is described in
Table 15-1.

There are many other providers that are not described in this chapter. See the DTrace manual at
http://docs.sun.com/app/docs/doc/819-3620 for more information on all providers.

You can use the dtrace -l command with the -P option to see a list of probes that are deliv-
ered by a specific provider. This example lists the profile probes:

dtrace -l -P profile
ID PROVIDER MODULE FUNCTION NAME

480 profile profile-97
481 profile profile-199
482 profile profile-499
483 profile profile-997
484 profile profile-1999
485 profile profile-4001
486 profile profile-4999
487 profile tick-1

537

Part IV OpenSolaris Reliability, Availability, and Serviceability

488 profile tick-10
489 profile tick-100
490 profile tick-500
491 profile tick-1000
492 profile tick-5000

TABLE 15-1

Common Providers

Provider Description

dtrace Probes for the DTrace framework

fbt Function boundary tracing. Enables you to trace entry and return of almost
every function in the kernel.

io Probes for disk I/O

lockstat Probes for observing lock activity. The lockstat command, described in
Chapter 14, is actually a DTrace program that uses this provider.

pid Similar to the fbt provider. Enables you to trace entry and return of any
function in a user-level process. You can also trace user-level instructions by
address or using an offset within a specific function.

proc Probes for process-related activity such as creation of a new process or
exec-ing a new image

profile Probes that fire at fixed time intervals. These probes are not defined at any
specific point in the code. Instead, they fire after a specified time. This
capability is useful for the traditional sampling style of tracing.

sdt Statically defined tracing. Unlike the other providers, these are for probes that
have been explicitly added to the code by developers at key points of interest.

syscall Probes for entry and return from each system call

The module and function
In addition to the provider and name fields, the other two components of a probe specification
are the module and function fields.

The module specifies which kernel module or user library contains the probe. The function
specifies which function in the module contains the probe. Both of these are used to narrow
the probe selection when there are multiple probes with the same provider and name. Some
providers, such as the dtrace or profile providers, don’t publish module and function
names. However, these fields are commonly used with providers, such as fbt, which publish a
large number of probes.

538

DTrace 15

Advanced probe specification
Up to this point you have only seen examples of a probe specification with four simple fields,
some of which have been empty. However, you can use a variety of more complex specifications
in your clauses. For example, the following specification will enable entry probes for both the
read and write system calls:

syscall::read:entry, syscall::write:entry

In this way, a single clause can use the same predicate and action on multiple probes. The
specification does not have to be written on the same line. It could just as easily be written as
follows:

syscall::read:entry,
syscall::write:entry

You can also use wildcards in a probe specification. For example, if you look at the various
syscall provider probes, you will see the following functions related to wait:

dtrace -l -P syscall | grep wait
77403 syscall wait entry
77404 syscall wait return
77575 syscall waitsys entry
77576 syscall waitsys return
. . .

If you wanted to trace both wait and waitsys you could use the following probe specification:

syscall::wait*:

The asterisk (*) provides similar pattern matching to what you see in the shell.

dtrace provider probes
Earlier, in the probe listing, you saw that the dtrace provider publishes three probes: BEGIN,
END, and ERROR. These probes are related to the behavior of DTrace itself. The BEGIN probe is
used on a clause that should execute before any other probe in your program fires. You would
use this for any initialization required in the rest of your program. Likewise, the END probe is
used on a clause that should execute when your program is ending. It fires after all other probes
have completed firing and DTrace is cleaning up. You could use this probe for printing any data
that has been accumulated during the execution of your program. Finally, the ERROR probe can
be defined for any error handling required by your program. It will fire if a runtime error is
detected while one of the program’s clauses is executing.

Predicates
When a D program is running, the specified probes in the program are enabled. When one of
these probes is hit, the probe is said to fire. However, as shown in the earlier examples, before

539

Part IV OpenSolaris Reliability, Availability, and Serviceability

the actions are executed, the clause’s predicate must evaluate to true. Predicates allow a second
level of filtering, beyond the simple probe specification, to determine when the actions should
run. If the predicate on a clause evaluates to false, then the clause actions are not executed.

In addition to their role in filtering before a clause’s actions are run, predicates are the main
flow-of-control construct within D programs. Although much of the DTrace syntax resembles
the C programming language, control-flow constructs such as if-then-else, for, or while
loops are not available. The primary reason for this omission is the requirement for safety
that DTrace offers in production environments. Programs with general-purpose control-flow
constructs cannot always be evaluated to determine if they will complete. That is, there is no
way to determine whether an arbitrary program will go into an infinite loop on some arbitrary
input. Because the probes are executing in the kernel and DTrace must always be safe to use
on live systems, the D programming language only offers the more restrictive control flow that
predicates provide.

Although full if-then-else control flow is not provided, the C variant using ?:
is available for use within assignment statements in actions. If you are not familiar

with the C programming language, the ?: operator enables you to write a condensed form of
if-then-else embedded within an assignment statement. The following example sets the variable
t to ‘‘true’’ if i is not equal to 0; otherwise, it sets t to ‘‘false’’:

t = i != 0 ? "true" : "false";

You can also nest ?: constructs within each side of the conditional, as this example illustrates:

suffix = i > 1024 ? (i > 1048576 ? "M" : "K") : "";

The true portion of the conditional is a second, nested conditional. More information about the
syntax of statements within actions is described later in the ‘‘Actions’’ section.

Predicate syntax
Predicates use the boolean operators provided by DTrace. As you have seen in the examples, a
predicate follows the probe specification on the clause and is enclosed within slashes (//). The
conditional operators are described a little later in the ‘‘Actions’’ section. One of the key points
to note is that predicates can be composed of complex conditionals using the boolean and (&&)
and or (||) constructs. Here is a simple example:

/self->i > 0 && self->i < 100/

Complex control flow
It may seem that the lack of the usual flow-of-control constructs is too limiting for complex
programming, but through the use of predicates on multiple clauses, you can achieve similar
results. The following trivial example shows a program that iterates until the open system call
has been traced ten times, and then exits:

dtrace:::BEGIN
{

540

DTrace 15

i = 0;
}

syscall::open:entry
/i < 9/
{

i++;
}

syscall::open:entry
/i == 9/
{

printf("10 open system calls\n");
exit(0);

}

This program has two clauses with the same probe specification, but with different predicates.
This is a common programming construct in DTrace programs. The predicate is used to control
which clause action is to be run when the probe fires, with a common variable used as a condi-
tional value in the predicates.

Actions
The set of actions is the third and final component of a clause. These are encased in curly
braces ({}) and use a programming syntax similar to C. The actions define the behavior
when a probe fires. Aside from the ability to write complex tracing actions, DTrace includes a
variety of sophisticated data structures for collecting and aggregating data in various ways. The
functionality described in this section enables you to trace system behavior from the simple to
the extremely complex, as your needs dictate.

Although your clauses will frequently have a set of actions associated with them, this portion
of the clause is also optional, and you can still obtain useful information with no actions.
By default, a clause with no actions traces the enabled probe associated with the clause. The
following example uses a thread-local variable to enable tracing of all of the function calls made
within the kernel by the myapp program during the processing of the open system call. It uses
fbt probes with no actions on those clauses:

syscall::open:entry
/execname == "myapp"/
{

self->t = 1;
}

syscall::open:return
/self->t/
{

self->t = 0;
}

541

Part IV OpenSolaris Reliability, Availability, and Serviceability

fbt:::entry
/self->t/
{
}

fbt:::return
/self->t/
{
}

Running the preceding shows the following output:

dtrace -s ex25.d
dtrace: script ‘ex25.d’ matched 81835 probes
CPU ID FUNCTION:NAME
1 13743 open32:entry
1 7153 copen:entry
1 13359 falloc:entry
1 16189 ufalloc:entry
1 11057 ufalloc_file:entry
1 6304 fd_find:entry
1 6305 fd_find:return
1 6306 fd_reserve:entry
1 6307 fd_reserve:return
1 11058 ufalloc_file:return
1 16190 ufalloc:return

. . .

While this is useful, it can be hard to read. Simply adding the -F option to the dtrace
command, which nicely formats function call entry and return data, shows the following
output:

dtrace -F -s ex25.d
dtrace: script ‘ex25.d’ matched 81835 probes
CPU FUNCTION
1 -> open32
1 -> copen
1 -> falloc
1 -> ufalloc
1 -> ufalloc_file
1 -> fd_find
1 <- fd_find
1 -> fd_reserve
1 <- fd_reserve
1 <- ufalloc_file
1 <- ufalloc
1 -> kmem_cache_alloc
1 <- kmem_cache_alloc
1 -> crhold

542

DTrace 15

1 <- crhold
1 <- falloc

. . .

This simple example can yield great insight into what an application is doing, without requiring
any real coding, and illustrates the power of even simple D programs.

Types and variables
In D programs, variables do not have to be declared before being used. The first time a variable
is used, it takes the type of the value assigned. You cannot assign different types to the same
variable, so once the variable has a type, subsequent assignments must be of the same type. The
supported types are the same as in C: char, int, short, long, and long long. DTrace also
supports strings as fixed-size character arrays, similar to C, but instead of declaring a character
array, DTrace uses an explicit string type. You can cast an expression to type string or use
the stringof operator. The boolean operators work as expected on strings, just as they do on
other types. For example, the equivalence operator == does a byte-wise comparison of strings.

Within DTrace programs, you can use typedefs, structures, unions, and enumerations, just as
you would in a C program. You can also add the -C option to the dtrace command so that the
C preprocessor is run against your D programs, expanding included header files appropriately.
In this way sophisticated programs can easily access kernel data structures and variables while
tracing.

A set of predefined variables is maintained by DTrace itself. You have already seen examples of
three of these — pid, probefunc, and execname. Table 15-2 describes the commonly used
built-in variables.

Other, less commonly used, built-in variables are described in the DTrace documentation.

In addition to the standard, built-in variables, you can access kernel data that is not defined
in your program. This capability is described in detail in the DTrace manual, but the general
technique is to use the backtick (`) to refer to a kernel variable. For example, as the manual
describes, you can access the kernel kmem_flags variable in this way:

`kmem_flags

See Chapter 24 for more information on kmem_flags.

By default, variables are global to your entire program. The first time a variable is used in an
action, its type is set and the variable’s value will then be accessible in any clause. Although you
don’t have to declare variables in D, you can achieve a similar effect by initializing them in your
BEGIN clause, if necessary.

In addition to the program’s global variables, you can use the thread-local storage that was
demonstrated in the earlier examples. As previously described, the self variable refers to the
current thread. You can dynamically create new variables that will be thread-specific, just as you

543

Part IV OpenSolaris Reliability, Availability, and Serviceability

do with global variables. That is, the first reference to a thread-local variable will cause it to be
created on the thread with the appropriate type.

TABLE 15-2

Predefined DTrace Variables

Variable Description

arg0-arg9 For entry probes, the first 10 arguments to the function being traced. Each is a
64-bit integer. For return probes, arg1 holds the return value.

errno Error number from the last system call

execname Name of the process

pid ID of the process

probefunc Function name of the current probe

probemod Module name of the current probe

probename Name of the current probe

probeprov Provider name of the current probe

self Refers to the current thread. Used for thread-local variables as described in this
section.

this Refers to the current clause. Used for clause-local variables as described in this
section.

tid Thread ID

timestamp A nanosecond timestamp. This should only be used for relative comparisons to
earlier timestamps in the trace.

Thread-local variables are for use by DTrace itself. That is, this data does not have
any relationship to the running thread. Setting a thread-local variable in DTrace

has no impact on the actual program data used during the execution of the thread itself. These
thread-local variables are only used to store data related to the tracing of the specific thread.

Thread-local variables are used to keep track of tracing data for the thread so that it can be used
later in a clause. One common usage is as a boolean that is used to trigger tracing in another
clause’s predicate. The following example, which is similar to the example in the introduction,
shows how a thread-local variable is used to enable tracing of all function calls made during the
execution of the open system call:

syscall::open:entry
{

self->t = 1;
}

544

DTrace 15

syscall::open:return
{

self->t = 0;
}

fbt:::entry
/self->t/
{

printf("%s enter\n", probefunc);
}

fbt:::return
/self->t/
{

printf("%s return\n", probefunc);
}

You can see the thread-local variable t is used in the predicates on the fbt clauses. The other
key point is that the variable is cleared when the open system call returns. If that were not
done, tracing would continue on all functions after the first open system call was made by the
thread. Of course, you do not need to restrict yourself to using thread-local variables in this
way. You can use them to store any tracing data that is thread-specific.

In addition to global variables and thread-local variables, you can also use clause-local variables.
The syntax for these is similar to thread-local variables except that you use this instead of
self. Clause-local variables persist across all of the clauses for the same probe, so you can set a
variable in one clause and reference its value in another, as this contrived example shows:

syscall::open:entry
/execname == "myapp"/
{

self->t = 1;
this->myvar = 5;

}

syscall::open:return
/self->t/
{

self->t = 0;
printf("open return %d\n", this->myvar);

}

Running this program always prints 5 for the value of myvar when the open returns.

In addition to simple scalar variables, DTrace also supports other types such as pointers, scalar
arrays, and associative arrays.

545

Part IV OpenSolaris Reliability, Availability, and Serviceability

Pointers
In D, pointers have a similar syntax to C. That is, an asterisk (*) is used for indirect references
through the pointer. Unlike C, pointer usage within a D program is safe. You cannot crash the
system you are tracing through an invalid pointer reference. Instead, DTrace will detect this sit-
uation and print an error. This simple example attempts to reference through a NULL pointer
named nullptr when a system call is entered:

dtrace:::BEGIN
{

nullptr = (int *)NULL;
}

syscall:::entry
{

printf("%d\n", *nullptr);
}

Running this program will quickly return many error messages similar to the following output:

dtrace: error on enabled probe ID 186 (ID 77491: syscall::ioctl:entry): invalid
address (0x0) in action #1 at DIF offset 4

This error shows DTrace detecting the runtime error and printing the diagnostic error message,
but no other ill effect.

Scalar arrays
Scalar arrays in D are similar to arrays in C. They are indexed numerically, with multi-
dimensional arrays using multiple brackets to denote each dimension. As in C, the first element
begins at 0. This example assigns an integer element in a two-dimensional array:

x[1][2] = 5;

Associative arrays
If you are not familiar with associative arrays, instead of accessing array elements by a simple
numeric index, as you do with scalar arrays, you access the elements by a key. While the key
can certainly be a simple integer, it can also be a more complex value. When you specify an
expression for an associative array element, the expression forms a key. Any expression that
evaluates to that key will refer to the same element. A simple but powerful technique is to
use a string as the key. The following example counts all of the system calls made by each
running process and then prints the number of system calls made by the Xorg process when the
program ends:

syscall:::entry
{

calls[execname]++;

546

DTrace 15

}

dtrace:::END
{

printf("%d\n", calls["Xorg"]);
}

Elements in the associative array named calls are accessed by a string instead of the numeric
index you might be used to. In the example, the value of execname is used as the index.
Although this example shows a simple key, you can use multiple expressions, each of which can
be a different type.

Macros

In addition to the built-in variables described earlier, DTrace also provides a set of built-in
macros. These are similar to the built-in variables, but their values are defined once, when your
program begins to run. An example is the pid macro, which will have the value of the process
ID for the running D program. Macros are specified using a dollar sign ($) prefix. Table 15-3
describes the built-in macros.

TABLE 15-3

Built-in DTrace Macros

Macro Description

$[0-9]+ Arguments. See description in the ‘‘Macro arguments’’ section following this
table.

$egid Effective group ID

$euid Effective user ID

$gid Real group ID

$pid Process ID

$pgid Process group ID

$ppid Parent process ID

$projid Project ID

$sid Session ID

$target Target process ID. See description in the ‘‘Target process ID’’ section.

$taskid Task ID

$uid Real user ID

547

Part IV OpenSolaris Reliability, Availability, and Serviceability

Macro arguments
Macro arguments are any additional arguments passed along to your program that you specify
when you invoke dtrace. For example, the following standalone D program takes the name of
a running process as a parameter and traces all system calls made by that process:

#!/usr/sbin/dtrace -s
#pragma D option quiet

syscall:::
/execname == $1/
{

printf("%d %s\n", pid, probefunc);
}

You can see the $1 macro used in the predicate on the clause. The first line of the program is
explained later in the ‘‘Standalone programs’’ section. The pragma sets the quiet, or -q, option
for the program.

A pragma is a command to the D compiler instead of a D program statement. These
can appear anywhere in your program. By using pragma, your program will always

use the specified runtime options without you having to remember to run DTrace with specific
arguments.

Running this with "Xorg" as the argument results in the following output:

./ex17.d ‘"Xorg"’
1938 setitimer
1938 setitimer
1938 read
1938 read
1938 read
1938 read
1938 pollsys
. . .

In this example the process name string, "Xorg", is quoted with additional single-quotes so that
the shell does not interpret the double quotes.

Target process ID
This macro refers to the specific process ID against which the dtrace program is run. The fol-
lowing example is similar to the previous example but uses the $target macro in the predicate:

#!/usr/sbin/dtrace -s
#pragma D option quiet

548

DTrace 15

syscall:::
/pid == $target/
{

printf("%s %s\n", probefunc, execname);
}

Instead of specifying a process name, a PID is passed to dtrace using the -p option:

./ex18.d -p 1938

The $target macro is filled in with either the -p option for an existing process or the -c
option if dtrace is used to invoke the command.

Simple expressions
Within a clause, the actions are a sequence of expressions that are executed in order, just as in a
typical program. Each expression is a simple statement or a function call. As already described,
there are no if-then-else or loop statements, although the ?: conditional operator is sup-
ported. The syntax for a simple statement follows the C language syntax, with each statement
terminated by a semicolon (;).

Table 15-4 summarizes the various operators.

Consult the DTrace manual if you are not familiar with the syntax of the various C operators or
their precedence. As in C, parentheses can be used to force a specific precedence.

Built-in functions
Many of the built-in functions record data related to the activity being traced. Details about how
tracing data is actually recorded are described in the ‘‘Buffering’’ section later in this chapter. In
the examples, you have seen the use of the printf function. Table 15-5 lists the built-in data
recording functions and provides a brief description of each. The DTrace manual provides full
details on the behavior and arguments for each function.

In addition to the data recording functions, Table 15-6 describes a set of general-purpose
functions.

Finally, in addition to these functions, DTrace includes a set of destructive functions. Ordinarily
tracing is not allowed to have any adverse side-effects on the system, and the DTrace infrastruc-
ture is rigorous in enforcing this restriction. Because of this constraint, you can be confident
when tracing on a live, production system. However, in some cases it is beneficial to actually
modify or impact the system in some way during tracing. Referred to as destructive tracing, this
must be explicitly enabled with the -w command-line option when you run dtrace. When
doing destructive tracing, the functions described in Table 15-7 are available.

549

Part IV OpenSolaris Reliability, Availability, and Serviceability

TABLE 15-4

Operators

Category Operator Description

Arithmetic

+ addition

++ increment

- subtraction

-- decrement

* multiplication

/ division

% modulus

Relational

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal

!= not equal

Logical

&& AND

|| OR

ˆ ˆ XOR

Bitwise

& AND

| OR

ˆ XOR

<< shift left

>> shift right

Assignment

= assign

550

DTrace 15

TABLE 15-4 (continued)

Category Operator Description

+= increment and assign

-= decrement and assign

*= multiply and assign

/= divide and assign

%= modulo and assign

|= OR and assign

&= AND and assign

ˆ = XOR and assign

<<= shift left and assign

>>= shift right and assign

Pointer

& address of

* dereference a pointer

-> structure member with pointer

. structure member

Other

offsetof offset of a member

sizeof the size of the object

stringof convert to string

xlate translate data type

Aggregations

DTrace includes support for a data type and a set of functions that enable you to aggregate data
during tracing. That is, aggregation enables you to combine data from different entities into a
new, higher-level entity. Aggregation during tracing has a couple of advantages:

■ All of the data does not need to be maintained. Instead, when a new entity is aggregated,
the aggregation function is applied, after which the new entity is no longer needed and
can be discarded.

■ Scaling problems are minimized because entities can be aggregated per-CPU, and then
aggregated again when the final data is needed.

551

Part IV OpenSolaris Reliability, Availability, and Serviceability

TABLE 15-5

Built-in Data Recording Functions

Function Description

jstack An alias for the ustack function. Used for printing Java stack frames.

printa Similar to printf but used for printing aggregations. See the ‘‘Aggregation’’
section later in the chapter for more details.

printf Used for formatting and printing variables. Similar to the C printf function.

stack Prints a kernel stack trace. See ustack for printing user-level stack traces.

trace Prints the given expression

tracemem Prints the memory at the given address

ustack Prints a user-level stack trace. See stack for printing kernel stack traces.

Within a D program, an aggregation data type is used to store the result of an aggregation func-
tion. The aggregation data type is similar to the associative array type described earlier; it looks
like an array that is indexed by keys. To distinguish the two, the aggregation is prefixed by an
ampersand (@), as shown in the examples following Table 15-8. Values are set within an aggre-
gation using one of the aggregating functions listed in Table 15-8.

Because aggregations are such a powerful tool for analyzing the behavior of the system, a num-
ber of examples are shown illustrating their use. The first example aggregates the number of sys-
tem calls by the running process:

syscall:::entry
{

@syscalls[execname] = count();
}

In the preceding example, the aggregation is named syscalls, is indexed by execname, and
uses the count aggregation function. This syntax may seem a bit confusing. With aggregations
there are always two components — the aggregation where the data is stored and the aggrega-
tion function itself, which dictates how the data is aggregated. Once an aggregation is defined
to be a specific type, based on the function used, then the type is set. You cannot use different
aggregation functions to store data into the same aggregation. You would need a second aggre-
gation to store data from a different function. Also, you can only assign the result of an aggrega-
tion function to an aggregation. Attempting to assign the result of some other type of expression
to an aggregation is an error.

552

DTrace 15

TABLE 15-6

General-Purpose Functions

Function Description

alloca Allocates a given number of bytes

basename Substring of the given string, with any prefix ending in / removed

bcopy Copies bytes from source to destination

cleanpath Removes redundant elements from the given path string

copyin Copies the number of bytes from the given user address into a scratch
buffer

copyinstr Copies a null-terminated string from the given user address into a
scratch buffer

copyinto Copies the number of bytes from the given user address into the given
buffer

dirname Substring of the given path name string, with the last level removed

exit Stops tracing and ends

msgdsize See the msgdsize(9) man page.

msgsize The number of bytes in the message. See the msgdsize(9) man
page.

mutex_owned See the mutex_owned(9) man page.

mutex_owner Gets the thread of the current owner of the given mutex

mutex_type_adaptive Returns true if the given mutex is of type MUTEX_ADAPTIVE. See the
mutex_init(9F) man page.

progenyof Returns true if the current process is in the progeny of the given PID

rand Returns a weak random integer

rw_iswriter Returns true if the given lock is held or needed by a writer

rw_write_held Returns true if the given lock is held by a writer

speculation Reserves a buffer for speculative tracing. See the ‘‘Speculative
Tracing’’ section later in the chapter for more information.

strjoin Concatenates two strings

strlen Returns the length of the given string

553

Part IV OpenSolaris Reliability, Availability, and Serviceability

TABLE 15-7

Destructive Tracing Functions

Function Description

breakpoint Stops the kernel and transfers to the kernel debugger

chill Causes DTrace to pause for the given number of nanoseconds. This is useful for
inducing timing-related issues.

copyout Copies the source buffer to the destination buffer in the current process’
user-level address space.

copyoutstr Copies the source string to the destination string in the current process’
user-level address space

panic Panics the system

raise Sends the given signal to the current process

stop Stops the current process when it exits the kernel

system Runs the given program. Similar to the system(3c) function.

TABLE 15-8

Aggregating Functions

Function Description

avg Average of the given expressions

count The number of times the function has been called

lquantize A linear frequency distribution of the given expressions

max The maximum value in the given expressions

min The minimum value in the given expressions

quantize A power of two frequency distribution of the given expressions

sum The sum of the given expressions

Running the preceding example for a short time, and then ending the trace, yields the following
output:

svc.configd 1
svc.startd 1
fmd 2
gnome-volume-man 2

554

DTrace 15

inetd 2
utmpd 2
gconfd-2 3
mapping-daemon 4
ssh-agent 12

. . .

metacity 6638
firefox-bin 18607
Xorg 90280

DTrace automatically prints the aggregation when it ends. With this simple program you can
instantly see which processes are causing the most system call activity during the trace. In this
case, the Xorg process dominates all other processes. What if you wanted to see which system
calls within all of the processes were the most heavily used? A small change to the previous pro-
gram enables you to determine that:

syscall:::entry
{

@syscalls[execname, probefunc] = count();
}

This just changes the aggregation so that the key is both the process name and the system call
that is being probed. Running this program for a short period yields the following result:

. . .

thunderbird-bin write 3678
thunderbird-bin pollsys 4390
thunderbird-bin lseek 4841
dtrace ioctl 4930
thunderbird-bin llseek 7139
Xorg writev 7144
Xorg pollsys 7703
thunderbird-bin read 10282
Xorg read 11579
Xorg clock_gettime 35985

Here, the Xorg process still performs the most system calls but now you can also see that the
clock_gettime system call is the one most heavily used. You can also see that there is some
data from DTrace itself within the output and that the output is not formatted very well. You
can improve the program by filtering out the DTrace process and adding your own printing
code:

syscall:::entry
/pid != $pid/
{

@syscalls[execname, probefunc] = count();
}

dtrace:::END

555

Part IV OpenSolaris Reliability, Availability, and Serviceability

{
printa("%15s %15s %@7u\n", @syscalls);

}

The preceding program yields the following output, which is easier to read due to the
formatting:

. . .

Xorg writev 5169
Xorg pollsys 5322

thunderbird-bin read 5473
Xorg read 8558
Xorg clock_gettime 28726

The predicate on the syscall probe uses a style that you haven’t seen before. The $pid macro
represents the PID of the process that enabled the probes. By filtering this against the built-in
pid variable, you can eliminate tracing the actions of the program itself. Thus, even if you didn’t
invoke this using the dtrace program, the activity will be filtered out. This technique will be
useful later when you see how to build commands that are actually DTrace scripts.

This is also the first example you have seen using the printa function for formatting an aggre-
gation. Note that the keys for the aggregation are the first two items printed. Those correspond
to the first two formatting directives. The @ formatting character on the third formatting direc-
tive is special; it denotes that the value of the aggregation itself should be used.

Now that you can see which system calls are being heavily used, you are probably thinking that
it would be more useful to see which ones are actually taking the most time. You can change the
program to aggregate on the average amount of time spent in each system call:

syscall:::entry
/pid != $pid/
{

self->t = timestamp;
}

syscall:::return
/self->t/
{

@systime[execname, probefunc] = avg(timestamp - self->t);
self->t = 0;

}

dtrace:::END
{

printa("%15s %15s %@15u\n", @systime);
}

556

DTrace 15

This program keeps track of the time when the system call was entered by using a thread-local
variable named t. It also uses the built-in timestamp variable already described. When the sys-
tem call returns, the program aggregates the average time spent by taking the difference of the
current timestamp to the entry timestamp. The program output shows the following:

. . .

xscreensaver pollsys 105489062
rcapd rusagesys 216732902

multiload-applet pollsys 252354894
java lwp_cond_wait 420329502

gnome-settings-d pollsys 659260503
xntpd sigsuspend 999925478
httpd pollsys 1009968617

gam_server nanosleep 1509901404
devfsadm lwp_park 1999974184

mapping-daemon pollsys 5009862515

Note that there is a completely different set of processes and system calls high on the list. If you
are surprised to see so much time in the pollsys system call at the top of the list, you can con-
tinue to refine your program to get a better understanding of what is happening. This last aggre-
gation example uses the quantize function to show distribution of time spent in pollsys:

syscall::pollsys:entry
/pid != $pid/
{

self->t = timestamp;
}

syscall::pollsys:return
/self->t/
{

@dist[execname] = quantize(timestamp - self->t);
self->t = 0;

}

As you can see, the probes have been changed so that only time spent in the pollsys system
call is being tracked. Given that, the aggregation has also been changed to only key off of the
execname. This produces the following output:

. . .

evince
value ------------- Distribution ------------- count
1024 | 0
2048 |@@@@@@@ 142
4096 | 7
8192 | 6
16384 |@@@@@@ 129

557

Part IV OpenSolaris Reliability, Availability, and Serviceability

32768 |@@@@@@@@@@@@@@@@@@ 366
65536 |@ 23

131072 |@@ 38
262144 |@@ 34
524288 | 5

1048576 | 9
2097152 | 5
4194304 |@@ 38
8388608 | 7
16777216 | 0
33554432 | 2
67108864 | 1

134217728 | 1
268435456 | 1
536870912 | 2

1073741824 | 2
2147483648 | 0

Xorg
value ------------- Distribution ------------- count
1024 | 0
2048 |@@@@@@@@@ 928
4096 |@@@@@ 508
8192 |@@ 231
16384 |@@@@@@@ 699
32768 |@@@@ 374
65536 |@@ 224

131072 |@@@ 304
262144 |@ 152
524288 |@ 101

1048576 |@ 71
2097152 |@ 92
4194304 |@@@@ 382
8388608 | 46
16777216 | 36
33554432 | 6
67108864 | 6

134217728 | 3
268435456 | 1
536870912 | 0

DTrace automatically prints the frequency distribution histograms for the dist aggregation
when the program ends. This output is much longer because each entry in the aggregation
prints many lines of output. Seeing the data graphed in this way, which collects groups of values
along with their counts, may provide more insight or new ideas for further exploration.

This discussion only scratches the surface of the analysis that can be done using aggregations.
The DTrace manual includes an extensive discussion of tracing with the various aggregation
functions.

558

DTrace 15

The dtrace Command
The dtrace command is the way you typically run your tracing. This command supports many
options, only a few of which are described here. You should see the man page for a complete
description of each option.

The most common usage of this command is to run your D program using the -s option, as
you have seen in previous examples. The quiet option (-q) is also frequently used to suppress
the various messages that dtrace normally produces. This was the usage shown with the first
example in the chapter:

dtrace -q -s ex1.d

You have also seen examples of the -l option for listing probes. As mentioned earlier, you can
use the C preprocessor with your programs. This is enabled with the -C option. If your program
contains destructive actions, you must use the -w option to enable destructive tracing. The -F
option, shown in a previous example, is useful for formatting function and entry return data into
easy to read output, as shown in the following example:

CPU FUNCTION
1 -> open32
1 -> copen
1 -> falloc
1 -> ufalloc
1 -> ufalloc_file
1 -> fd_find
1 <- fd_find

. . .

Although the discussion up to this point has focused on writing D programs, you can perform
basic tracing without writing any program, by specifying probes to the dtrace command on the
command line. You can also specify predicates and actions on the command line, although this
quickly gets unwieldy for anything more than simple tracing:

dtrace -n syscall::read:entry’/pid != $pid/{trace (execname)}’

This example enables the probe for entry on the read system call, specifying a predicate and
a simple action. Note that there is no space between the probe specification and the predicate
and that the predicate and action are quoted so that the shell does not try to interpret any of the
special characters.

The dtrace command accepts a variety of options for tuning the behavior of the running pro-
gram. Some of these options are described later in the ‘‘Buffering’’ section. For a complete list of
options, see the manual.

559

Part IV OpenSolaris Reliability, Availability, and Serviceability

Advanced Tracing
In addition to the tracing capabilities already described, DTrace includes support for even more
sophisticated tracing to handle complex scenarios.

Tracing during boot
DTrace supports the capability to trace during boot through what is known as anonymous trac-
ing. Anonymous tracing means that there is no consumer of the tracing data while the tracing
is taking place. Any DTrace program can be run anonymously, but only one anonymous trace
can be enabled at a time. You use the -A option to the dtrace command to enable an anony-
mous trace. This sets up the dtrace kernel driver to load as early as possible during boot, and
the driver’s conf file to configure the tracing. Here is an example of the command:

dtrace -As ex20.d

Once you reboot the system, your tracing will take place. Because there is no consumer of the
trace data, it is stored in the kernel. After the system boots, you then read the trace data using
the -a option. The data can only be read once and the in-kernel storage space is reclaimed after
the command is run, so it is a good idea to save the results to a file in case there is more output
than expected. The following example shows reading the trace data after the reboot:

dtrace -aeo results.txt

The -e option on the command instructs dtrace to exit after completing the request. Once the
reboot is done, you disable the anonymous trace using the -A option with no arguments:

dtrace -A

Buffering
All tracing output is recorded into a buffer from which the data is later consumed. By default,
the data is recorded into the principal buffer. The section ‘‘Speculative tracing’’ describes how to
record data into speculative buffers. A variety of options are used to tune how DTrace will buffer
data. Each DTrace program, or consumer, can tune the buffering as appropriate for its behavior.

Principal buffers are allocated per-CPU. Because of the variety of situations in which DTrace can
be used, it might not always be possible for the kernel to allocate memory for buffering. In fact,
it is always possible that there might not be space for recording trace data. You can tune the
policy for handling this situation, based on what you are trying to accomplish. DTrace supports
three different policies for buffering: switch, fill, and ring.

switch
The switch policy is the default. With this policy, two buffers are allocated per CPU. Data
is recorded into the active buffer until the consumer is ready to read the data. At that point,

560

DTrace 15

DTrace switches the buffers so that data can be read from the originally active buffer while new
trace data is recorded into the newly active buffer. The switching is done using a technique that
ensures that no trace data is lost while switching or that the system is paused for any reason.
This also ensures that the data being read is always in a consistent state. If the active buffer
fills before the consumer is ready to read data, then data is dropped. DTrace will increment
a counter each time data is dropped and print a message telling you how many times this
occurred.

To reduce the chances of dropped data, you can use the switchrate option to tune how often
your program will consume the data, and the bufsize option to change the size of the primary
buffers. The default switchrate is one second and the default buffer size is 4MB.

In this example, the switchrate is set to cycle twice per second and the buffer size is set
to 8 MB:

dtrace -x bufsize=8m -x switchrate=2hz . . .

You can specify the units for the switchrate in Hz or seconds. You can also set these options
within your D program using a pragma, as this example shows:

#pragma D option bufsize=8m
#pragma D option switchrate=2hz

fill
The fill policy enables you to allocate one buffer per CPU and trace until one of the buffers is
full. At that point, all of the recorded data is processed and dtrace will exit. You can use the
bufpolicy option to set the buffer policy, and you can use the bufsize option to set the size
of the buffer:

dtrace -x bufpolicy=fill -x bufsize=2m . . .

You can also set the buffering policy using a pragma. DTrace will take special care to reserve
space for recording any END probe actions when using the fill policy.

ring
The ring policy is used to record data into a ring buffer so that older data is discarded and
only the most recent data is kept. This is similar to a flight data recorder on an airplane and
is useful for diagnosing intermittent problems that might take days to occur. To use the ring
policy, set the bufpolicy using either the command-line option or a pragma, as shown earlier.

With the ring policy, no data is processed until your D program ends. At that point, each
per-CPU buffer is processed in CPU order.

Additional buffer tuning
In addition to the principal buffers, there are buffers for aggregations and speculative tracing,
which is described in the following section. As with principal buffers, the default size is 4MB.

561

Part IV OpenSolaris Reliability, Availability, and Serviceability

These can be tuned using the aggsize or specsize options in the same way that the bufsize
is tuned. The number of speculative buffers can be tuned using the nspec option. The default
value is 1.

You can also tune the buffer’s behavior if the system is not able to allocate memory for the
requested buffer size. The default policy is auto, which means that the requested size is
repeatedly cut in half until the allocation succeeds. As an alternative, you can set the policy to
manual, which means the program will not run if the requested size cannot be met. This policy
is tuned through the bufresize option.

Speculative tracing
In some cases it is useful to trace activity and then decide later whether the data should be kept
or discarded. Within DTrace this is known as speculative tracing. This is in contrast to predicates,
which filter tracing activity before any actions are run. With speculative tracing, the actions are
run, but the decision to keep the data is made later, although you can still also use predicates
with speculative tracing.

DTrace provides the functions described in Table 15-9 to support speculative tracing.

TABLE 15-9

Speculative Tracing Functions

Function Description

commit Records the data that has been speculatively traced

discard Discards the data that has been speculatively traced

speculate Switches the behavior of the rest of the clause so that all tracing is recorded
into the given speculation buffer

speculation Creates a new buffer for recording speculative trace data

To use speculative tracing, you create a new buffer for recording the trace data, and then use the
speculate function in the appropriate clauses to record the trace data into the buffer. Finally,
at the appropriate point, you can decide if the data should be kept or discarded. The following
example illustrates tracing all of the functions called during a write system call, and then only
recording the trace data if the write fails:

syscall::write:entry
{

self->t = speculation();
}

562

DTrace 15

fbt:::
/self->t/
{

speculate(self->t);
trace(probefunc);

}

syscall::write:return
/self->t && errno != 0/
{

speculate(self->t);
printf("write failed %d\n", errno);
commit(self->t);
self->t = 0;

}

syscall::write:return
/self->t && errno == 0/
{

discard(self->t);
self->t = 0;

}

Note that a new buffer is created when the write system call is entered. In the fbt probes, the
trace data is recorded into the buffer. Finally, when the write system call returns, the predi-
cates on each of the two clauses determine whether the data is kept or discarded.

During speculative tracing, it is possible that no new buffers are available for tracing or that a
buffer fills up. You will notice warning messages from dtrace is these cases. You can use the
specsize and nspec options, described earlier in the ‘‘Buffering’’ section, to reduce the chances
of losing data.

It is also possible for a speculation buffer to be unavailable because it has not yet been com-
mitted on all CPUs. To reduce the chances of this, you can increase the rate at which CPUs are
cleaned using the cleanrate option, which defaults to 101 Hz.

Postmortem tracing
If the system crashes while you are tracing, you can use DTrace to extract the trace data from
the crash dump. This might enable you to determine the cause of the crash, particularly if you
were using the ring buffering policy described earlier.

To access DTrace data from within a crash dump, you use the modular debugger mdb
command.

The modular debugger is described in Chapter 24.

563

Part IV OpenSolaris Reliability, Availability, and Serviceability

Within mdb, the dtrace_state command shows all of the consumers running when the sys-
tem crashed. Use the dtrace_state command to get the address of the state for a given con-
sumer, and then the dtrace dcmd can be used to dump the buffers.

Standalone programs
Up to now, the examples have used the dtrace command to run the sample D programs. How-
ever, you can write standalone D programs that run on their own by specifying dtrace as the
command interpreter, just as you do when writing a shell script. The first line of your program
must begin like this example:

#!/usr/sbin/dtrace -s

You can specify additional dtrace options besides just the -s option, such as -q, or -b. See
the dtrace(1M) man page for details on which options make sense in this context. Once you
make the file executable, you can run it as you would any other command.

There is a C library, libdtrace, but the interfaces within the library are not currently public,
so a script file is the preferred solution for creating standalone programs.

User-Level and High-Level Language
Tracing
Up to this point the discussion has focused primarily on systemwide tracing or tracing the activ-
ity of process within the kernel. However, you can use the capabilities provided by DTrace to
achieve the same insight into user-level application code as well.

The pid provider
The pid provider enables you to trace function calls within user-level code, just as the fbt
provider enables you to trace function calls within the kernel.

The pid provider actually represents a class of providers, as each running process can have its
own pid provider. The following example illustrates tracing all function entry points in the pro-
cess with Process ID 1938:

pid1938:::entry
{

printf("%s %s\n", probefunc, execname);
}

564

DTrace 15

For pid probes, the module portion of the probe specification refers to the shared object
loaded into the process’ address space. The pldd command is one way to see which objects are
mapped in:

pldd 1938
1938: /usr/X11/bin/Xorg :0 -depth 24 -nobanner -auth
/var/dt/A:0-zdaWsb
/lib/amd64/libc.so.1
/usr/X11/lib/X11/xserver/amd64/libXfont.so.1
/lib/amd64/libsocket.so.1
/lib/amd64/libnsl.so.1
/usr/X11/lib/amd64/libXdmcp.so.6
. . .

Within the probe specification, you use the base name of the object as the module name — for
example, libc.so.1. The .so.1 suffix is optional, so you can also just specify libc.

You can use macros in your D program to make it general-purpose, as shown in this probe
specification, which uses the $target macro to dynamically obtain the process ID:

pid$target:::entry

As previously mentioned, the pid provider also enables you to probe specific instructions. To
trace a specific instruction, you specify its offset as the name in the probe specification. The fol-
lowing example prints a user-level stack trace when the instruction ‘‘at offset 8 bytes within the
z function’’ is probed. This enables you to see the function call path that led to this instruction:

pid$target:a.out:z:8
{

ustack();
}

It is also possible to trace every instruction within a function by omitting the probe name field,
as the following probe specification illustrates:

pid$target:a.out:z:

This can be combined with speculative tracing so that only the code paths that turn out to be
relevant are actually reported.

The sdt provider
The statically defined tracing (sdt) provider enables you to manually add probes into your appli-
cations at points in the code where you know you want to trace. Using the sdt provider is sim-
ilar to traditional tracing systems, but with all of the advantages of DTrace, such as zero probe

565

Part IV OpenSolaris Reliability, Availability, and Serviceability

effect when the probes are not enabled and the sophisticated programmatic tools within the
D language.

Developers within the kernel, such as those writing device drivers, can add explicit probes using
DTRACE_PROBE macros as described in the DTrace manual.

More commonly, you will want to add explicit probes into user-level application code. This
enables you to provide probes at points where there is a specific meaning that is useful to
the user tracing the code. In this way, users can trace by something meaningful within the
application instead of simply at the low-level function entry and exit points offered by the pid
provider.

When adding probes to an application, you define the probes in a .d file that is used when com-
piling the application. The following example walks through adding two probes to an applica-
tion named myapp. This simple application has two functions into which sdt probes will be
added: start_job and join_job. The start_job function takes one argument, the name of
the job to run, and returns a job identifier. Within the function it performs various bookkeeping
and administrative operations before forking the job. The join_job function also does book-
keeping, waits for a job to complete, and returns the job identifier that actually completed.

Start by creating the myprobes.d file with the following contents. For your application, you can
name this file anything you want:

provider myapp
{

probe start_job(string, int);
probe join_job(int);

};

#pragma D attributes Evolving/Evolving/Common provider myapp provider
#pragma D attributes Evolving/Evolving/Common provider myapp module
#pragma D attributes Evolving/Evolving/Common provider myapp function
#pragma D attributes Evolving/Evolving/Common provider myapp name
#pragma D attributes Evolving/Evolving/Common provider myapp args

Within the file, you can see that a provider is defined, which matches the name of the applica-
tion. Within the provider definition are the declarations for the two probes whose names will
match the functionality described earlier. You can also see that these declarations include the
arguments that the probes will use.

The rest of this file consists of a set of pragmas that define the stability of the various compo-
nents of the probes. Defining the stability levels informs users of these probes how likely it
is that the implementation will change. This is not unique to your new sdt probes; all of the
probes in DTrace have stability levels associated with them. Probe stability is discussed in greater
depth in the DTrace manual.

You can use the dtrace -v option to print a report of the stability levels of the
probes used in any of your D programs.

566

DTrace 15

Now that you have written the definition for your new probes, you must modify the application
source files in which the probes will be added. First, you must include the following header file:

#include <sys/sdt.h>

Next you add the probes into the code itself. The following abbreviated code snippet shows the
two probes within the two functions described earlier:

pid_t
start_job(char *cmd)
{
. . .

if ((id = vfork()) == 0) {
(void) execl("/bin/sh", "sh", "-c", cmd,

(char *)NULL);
}

DTRACE_PROBE2(myapp, start_job, cmd, id);

. . .

}

pid_t
join_job()
{
. . .

while ((pid = waitpid(-1, &status, 0)) && pid != -1)
;

DTRACE_PROBE1(myapp, join_job, pid);
. . .

}

You can see the new DTRACE_PROBE macros in the existing code. The number on each macro
indicates how many additional arguments are used by the probe. The first two arguments
are required: the provider and name fields of the probe. These match the definitions spec-
ified in the myprobes.d file. In the first case, the two additional arguments, as specified in
myprobes.d, are also specified, while in the second case only the single additional argument is
passed.

Finally, you compile the application. Either the cc or gcc compiler can be used for this step:

$ cc -c myapp.c
$ dtrace -G -32 -s myprobes.d myapp.o
$ cc -o myapp myprobes.o myapp.o

The first line simply builds the existing application source file. The second line uses the dtrace
command with the -G option to generate the ELF file with the new probes. This yields the
myprobes.o file. Finally, the last line links the application with the new probe file. These new
build rules can easily be added to your existing make files.

567

Part IV OpenSolaris Reliability, Availability, and Serviceability

You can now use these probes in a D program, just as you have with any other probe. The
following simple D program uses an aggregation to count the number of times each probe fired.
The probe name is myapp, as you defined in the myprobes.d file. These sdt probes are similar
to pid probes in that each process can have its own sdt providers, so you append the process
ID, just as you did with the pid probes. You can also see that the action on the start_job
clause uses printf to display the two arguments defined for the probe. Arguments on sdt
probes are referenced using the arg0-arg9 convention described earlier.

myapp$target:::start_job
{

printf("start_job ‘%s’ %d\n", copyinstr(arg0), arg1);
@cnt[probefunc] = count();

}

myapp$target:::join_job
{

@cnt[probefunc] = count();
}

User-level data
DTrace includes support for accessing both stack and register data in user-level code.

User-level stack
The ustack function, shown in the pid provider example, is a powerful tool for seeing how
a particular point in the code was reached. This function accepts two optional parameters:
nframes, the number of stack frames, or stack depth, to record, and strsize, the amount
of string space to use for address-to-symbol translation. This second option is only used with
Java Virtual Machines and is discussed in the following section, ‘‘Tracing Java Programs.’’ The
ustackframes dtrace option specifies the number of stack frames to record if nframes is
omitted.

When the user-level stack data from ustack is being formatted, it is possible that dtrace will
not be able to map the program addresses to the function symbol names. This happens if the
process exits before the formatting takes place. In this case, the output will show the addresses
only. If you run the program directly using the dtrace -p or -c options, then this situation
does not occur. Otherwise, you can use dtrace to stop the process whose stack data you need,
as the process is exiting. A procedure for handling this situation is described in the DTrace
manual.

User-level registers
DTrace provides the uregs array, which can be used to access user-level register data. The ele-
ments in the array vary according to the hardware architecture of the system on which tracing is
taking place. The DTrace manual lists the various elements by architecture.

568

DTrace 15

Tracing Java programs
DTrace enables excellent observability into applications implemented in Java.

The jstack function
The ustack function can be used for tracing Java programs, but the jstack function, which is
an alias to ustack, provides better results because the jstack function uses reasonable defaults
for the nframes and strsize parameters. The strsize option is used to record the strings of
the Java class and method names so that those symbolic names appear in the stack trace instead
of the program addresses. This example shows a simple Java stack trace when the write system
call is probed:

syscall::write:entry
/pid == $target/
{

jstack();
exit(0);

}

Running this to print the Java version string shows the stack trace:

dtrace -s ex23.d -c "java -version"
dtrace: description ‘syscall::write:entry’ matched 1 probe
. . .

dtrace: pid 7596 has exited
dtrace: 1 jstack()/ustack() string table overflow
CPU ID FUNCTION:NAME

1 34 write:entry
libc.so.1`__write+0x7
libjvm.so`__1cDhpiFwrite6FipkvI_I_+0xa0
libjvm.so`JVM_Write+0x36
libjava.so`writeBytes+0x154
libjava.so`Java_java_io_FileOutputStream_writeBytes+0x3f
java/io/FileOutputStream.writeBytes([BII)V
java/io/FileOutputStream.write([BII)V
java/io/BufferedOutputStream.flushBuffer()V
java/io/BufferedOutputStream.flush()V
java/io/PrintStream.write([BII)V
sun/nio/cs/StreamEncoder.writeBytes()V
sun/nio/cs/StreamEncoder.implFlushBuffer()V
sun/nio/cs/StreamEncoder.flushBuffer()V
java/io/OutputStreamWriter.flushBuffer()V
java/io/PrintStream.write(Ljava/lang/String;)V
java/io/PrintStream.print(Ljava/lang/String;)V
java/io/PrintStream.println(Ljava/lang/String;)V
sun
0xfb202f0d
0xfb200244

569

Part IV OpenSolaris Reliability, Availability, and Serviceability

libjvm.so`__1cJJavaCallsLcall_helper6FpnJJavaValue
_pnMmethodHandle_pnRJavaCallArguments_pnGThread__v_+0x1a3

libjvm.so`__1cCosUos_exception_wrapper6FpFpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_pnGThread__v2468_v_+0x27

libjvm.so`__1cJJavaCallsEcall6FpnJJavaValue_
nMmethodHandle_pnRJavaCallArguments_pnGThread__v_+0x2f

libjvm.so`__1cRjni_invoke_static6FpnHJNIEnv__
pnJJavaValue_pnI_jobject_nLJNICallType_pnK_jmethodID_pnSJNI_
ArgumentPusher_pnGThread__v_+0x1df

libjvm.so`jni_CallStaticVoidMethod+0x154
java`JavaMain+0x1d9
libc.so.1`_thr_setup+0x70
libc.so.1`_lwp_start

You might notice the ‘‘string table overflow’’ error message in this example. It means that the
default strsize parameter to jstack did not provide enough space to record all of the sym-
bolic names. Note also that some of the stack frames are only printed as hexadecimal addresses.
This is due to the missing symbolic names. Passing an explicit strsize to jstack, as in the
following example, enables the full stack to print, with all of the stack frames resolved to their
Java class and method names:

jstack(50, 1000);

Depending on the complexity of your Java program, you may need to experiment with reason-
able values for these parameters so that all of the stack data can be mapped.

hotspot probes
With Java 1.6 or later, DTrace probes have been integrated into the HotSpot Virtual Machine
(VM). The hotspot provider includes probes for observing the VM itself, threads, class loading,
garbage collection, method compilation, monitors, method execution, object allocation, and
JNI calls. In all, there are approximately 500 probes delivered by the provider at the time of
this writing. Because the monitor and method execution probes currently have an effect on the
VM performance, these probes must be enabled with the ExtendedDTraceProbes flag on
the VM. The rest of the probes do not require a runtime flag to be enabled. If needed, you can
either start the VM with this flag or dynamically enable it on a running application using the
/usr/java/bin/jinfo command.

To see the full list of hotspot probes, run the following command while a Java program is
running so that the probes are loaded:

dtrace -ln ‘hotspot*:::’
ID PROVIDER MODULE FUNCTION NAME

13152 hotspot29124 libjvm.so __1cTClassLoadingServiceTnotify_class_loade
d6FpnNinstanceKlass_b_v_ class-loaded
13153 hotspot29124 libjvm.so __1cTClassLoadingServiceVnotify_class_unloa
ded6FpnNinstanceKlass__v_ class-unloaded
13154 hotspot29124 libjvm.so __1cHnmethodbFpost_compiled_method_load_eve
nt6M_v_ compiled-method-load
. . .

570

DTrace 15

For the method entry and return probes, Table 15-10 shows their argument values.

TABLE 15-10

Method Probe Arguments

Argument Description

0 Java thread ID

1 Name of the method’s class

2 Length of the class name, in bytes

3 Method name

4 Length of the method name, in bytes

5 String representing the method signature

6 Length of the signature, in bytes

The following simple D program uses the method-entry and method-return probes, along
with the arguments from Table 15-10, to show how to trace Java method entry and return:

hotspot*:::method-entry
{

printf("enter %4s.%s\n", stringof(copyin(arg1, arg2)),
stringof(copyin(arg3, arg4)));

}

hotspot*:::method-return
{

printf("return %4s.%s\n", stringof(copyin(arg1, arg2)),
stringof(copyin(arg3, arg4)));

}

Running this program against a simple Java demo gives the following results:

dtrace -qs ex27.d -c "java -XX:+ExtendedDTraceProbes demo"
got 9
enter java/lang/ref/Reference$ReferenceHandler.run
enter java/lang/ref/Reference.access$100
return java/lang/ref/Reference.access$100
enter java/lang/ref/Reference.access$200
return java/lang/ref/Reference.access$200
...

571

Part IV OpenSolaris Reliability, Availability, and Serviceability

The example shows how the ExtendedDTraceProbes flag is passed to the VM so that the
method entry and return probes are available. Using more sophisticated DTrace programs, you
can gain a deep insight into the behavior of your Java applications.

For a complete list of the hotspot probes, along with their arguments, see http://java.sun
.com/javase/6/docs/technotes/guides/vm/dtrace.html.

Tracing programs in other languages
One of the advantages of the open source nature of OpenSolaris is that other projects can extend
and incorporate the code with their projects. This has been particularly true for DTrace, which
has been extended to enable tracing of applications written in a variety of high-level languages.
Using DTrace with these providers enables visibility into the software stack from the lowest to
the highest levels.

Perl
Alan Burlison prototyped a provider for Perl. This is described at http://xray.mpe.mpg.de/
mailing-lists/perl5-porters/2005-08/msg00140.html and at http://blogs.sun
.com/alanbur/entry/dtrace and perl. Richard Dawe then built on this work and pro-
vided a Perl patch at http://rich.phekda.org/perl-dtrace. The probes are sub-entry
and sub-return.

PHP
Wez Furlong implemented a provider for PHP as a pluggable extension. This work is described
in Bryan Cantrill’s blog at http://blogs.sun.com/bmc/entry/dtrace and php and
http://blogs.sun.com/bmc/entry/dtrace and php demonstrated. The probes are
function-entry and function-return.

Python
John Levon added function entry and return tracing for Python. This work is described in his
blog at http://blogs.sun.com/levon/entry/python and dtrace in build. The probes
are function-entry and function-return. He also extended the ustack code so that
user-level stack traces print correctly. This enhancement is integrated into the Python shipped
with OpenSolaris.

Ruby and Ruby on Rails
Joyent has extended Ruby with probes. The project website is at https://dtrace
.joyent.com. The following Ruby probes have been implemented: function-entry,
function-return, raise, rescue, line, gc-begin, gc-end, object-create-start,
object-create-done, object-free, and ruby-probe.

The following Rails probes have also been implemented: request-start, request-done,
query-start, query-done, render-start, render-done, db-start, and db-done. The
website provides downloads and documentation.

572

DTrace 15

Others
There is a variety of other activity, including providers for JavaScript, the Bourne shell, and
TCL. The DTrace unconference website at http://wikis.sun.com/display/DTrace/
dtrace.conf provides an overview of some of the people and projects working with DTrace.

Resources
The DTrace community is at http://opensolaris.org/os/community/dtrace. This
includes links to various projects, documentation, and discussions. DTrace is one of the
most widely discussed components within OpenSolaris and many additional resources are
available on the net. Bryan Cantrill, one of the creators of DTrace, has an active blog at
http://blogs.sun.com/bmc. A simple search will also turn up many other good discussions
and pages related to DTrace.

Bryan Cantrill, one of the authors of DTrace, has an excellent discussion of DTrace safety and
the safety of system instrumentation in general on his blog, at http://blogs.sun.com/bmc/
entry/dtrace safety.

Within the source tree, the dtrace command is under usr/src/cmd/dtrace, and the
libraries are under usr/src/lib/libdtrace and usr/src/lib/libdtrace.jni.
The generic kernel components are under usr/src/uts/common/sys/dtrace.h,
usr/src/uts/common/sys/dtrace_impl.h, usr/src/uts/common/os/dtrace_subr.c,
usr/src/common/dtrace, and usr/src/common/xen/dtrace.

Platform-specific kernel components are under usr/src/uts/sparc/dtrace, usr/src/uts/
sun4/os/dtrace_subr.c, usr/src/uts/intel/dtrace, and usr/src/uts/i86pc/
os/dtrace_subr.c. The fbt.c function under the sparc or intel subdirectories contains the
code for instrumenting kernel function boundary tracing.

The DTrace toolkit at http://opensolaris.org/os/community/dtrace/dtracetoolkit
is an excellent resource that provides a large number of pre-built D programs that can be
used to observe a variety of system behavior, including CPU, disk I/O, network I/O, memory,
system analysis, and zones tracing. It also includes high-level language examples for Java,
JavaScript, Perl, PHP, Python, Ruby, and TCL, as well as a variety of other examples. Extensive
documentation is provided. These tools are not only useful in their own right, but also provide
a good starting point for learning more about DTrace programming and for building your own
programs. This toolkit is included as part of a standard OpenSolaris installation.

The Chime project at http://opensolaris.org/os/project/dtrace-chime has imple-
mented a GUI for visualizing DTrace aggregations.

Solaris Performance and Tools by Richard McDougall, Jim Mauro, and Brendan Gregg (Prentice
Hall, 2006) includes a discussion of DTrace.

573

Part IV OpenSolaris Reliability, Availability, and Serviceability

Summary
This chapter provided an overview of the DTrace subsystem. DTrace is one of the key innova-
tions in OpenSolaris. It enables you to achieve unprecedented insight into both systemwide and
application-specific behavior. The basic syntax of DTrace programs was introduced, along with
the dtrace command itself. Various examples illustrating how to refine your tracing to focus on
specific issues were presented. Advanced techniques for speculative tracing, tracing during boot,
and postmortem tracing were also introduced. Finally, an overview of the various capabilities for
high-level language tracing was presented.

574

Clustering OpenSolaris
for High Availability

IN THIS CHAPTER
Introduction to
high-availability clusters

Overview of Open High
Availability Cluster

Setting up a cluster

Using a cluster

Advanced cluster
administration

Making custom services highly
available

Disaster recovery with Open
High Availability Cluster

OpenSolaris is a solid, highly robust operating system. As described
in Chapters 12 and 13, OpenSolaris contains considerable built-in
support for reliability and availability in the form of predictive

self-healing. Because of hardware and software failures, however, there are
limits to the level of availability that a single physical machine can pro-
vide, regardless of the robustness of the underlying operating system. To
increase the availability of your system beyond the capabilities of a sin-
gle machine, you can cluster two or more machines together. This chapter
describes the Open High Availability Cluster software that you can use to
tightly couple multiple machines running OpenSolaris for augmented avail-
ability of the system as a whole.

Introduction to High-Availability
Clusters
Before delving into the details of the Open High Availability (HA) Cluster
software, it’s helpful to understand why high availability is important, and
why it sometimes makes sense to cluster for high availability.

First, downtime is costly. If you’re using OpenSolaris only as a desktop
or laptop operating system, you probably aren’t too concerned with occa-
sional downtime; but if you’re using OpenSolaris to host services such as a
web server, a database, or any other service to which clients connect, then
obtaining as close as possible to 100 percent uptime is important. Even
seconds of downtime are seconds during which no potential clients can

575

Part IV OpenSolaris Reliability, Availability, and Serviceability

access your services. For example, suppose you are running a website based on advertising
revenue — when your site is down, no one is clicking on your ads, and you’re not making any
money.

Second, failures in computer systems are inevitable. In addition to the hardware and software
failures discussed in Chapters 12 and 13, there are many other possibilities for failure, from a
human tripping over a power cord or flipping the wrong switch, to a natural disaster such as a
hurricane or earthquake, to terrorism. With a single physical system, most single points of fail-
ure are catastrophic. If your system loses power, its network card fails, or the operating system
panics, then your services are no longer accessible. Many larger systems have redundancy in the
form of multiple CPUs, multiple network adapters, and other redundant hardware components,
but they still have many potential single points of failure — from the motherboard to the single
operating system kernel.

High-availability clusters take hardware redundancy to the extreme by providing two or more
completely redundant systems, thus avoiding any single points of failure. Cluster software
monitors the system and automatically recovers from inevitable failures, minimizing downtime
and cost.

Categories of Computer Clusters

Open HA Cluster is a high-availability cluster, which is a specific type of computer cluster. Other
common types of computer clusters with which you might be familiar include grid clusters

and high-performance computing clusters. Grid clusters, or parallel computing clusters, such as
Sun Grid Engine and Beowulf, implement efficient batch queuing systems by distributing the work
across many physical nodes. High-performance computing (HPC) clusters are a group of tightly
coupled physical systems that work in tandem to provide supercomputing levels of throughput.

Overview of Open High Availability Cluster
Open HA Cluster is the open source code base for the Solaris Cluster enterprise product from
Sun Microsystems. The source code and development community are hosted in the HA Clusters
community group on OpenSolaris. The Open HA Cluster software tightly couples one or more
physical machines running OpenSolaris to provide high availability for server applications.
The software itself is tightly integrated with OpenSolaris, with about half the code running
in the kernel and half in userland. The cluster uses off-the-shelf hardware; no specialized
disks, interconnects, or other hardware is required. Figure 16-1 illustrates a typical cluster
architecture.

576

Clustering OpenSolaris for High Availability 16

FIGURE 16-1

A typical cluster architecture consists of two physical nodes with a private cluster interconnect and
shared storage.

Public Network

Distinct Physical
Nodes

Redundant
Shared
Storage

Cluster
Private
Network

Cluster infrastructure
The Open HA Cluster infrastructure provides many capabilities for monitoring hardware
and software components, detecting failures, and taking corrective action, including the
following:

■ Frequent messages, called heartbeats, between machines to track the nodes currently
participating in the cluster, called cluster membership, and to detect complete physical
machine failures

■ Membership algorithm based on the concept of quorum to prevent a split-brain scenario,
in which a network partition leaves two groups of cluster nodes up but unable to com-
municate with each other. With correctly configured quorum, only one of the partitions
is allowed to continue as the ‘‘real’’ cluster; the machines in the other partition halt
themselves.

■ Support for UFS and ZFS as failover file systems, whereby the file system is automatically
mounted, or the zpool imported, on the node where it is needed

■ A cluster file system to provide POSIX-compliant access to shared data on a UFS file system
simultaneously from multiple nodes of the cluster, even if the nodes are not physically
connected to the storage device

■ Disk fencing to prevent machines from accessing shared storage after leaving the
cluster

577

Part IV OpenSolaris Reliability, Availability, and Serviceability

■ Highly available network addresses, which are automatically configured on the host where
they are needed so that the details of the cluster are transparent to the clients of the ser-
vices that the cluster is hosting

■ Support for volume management with Solaris Volume Manager (SVM) or ZFS

■ Integration with OpenSolaris IP Network Multipathing (IPMP) to monitor network
addresses and take corrective action when needed

■ Disk path monitoring for detection of storage path failures

■ Intelligent application monitoring through application-specific monitors

■ Disaster recovery with Open HA Cluster Geographic Edition, which provides for a backup
cluster at a great physical distance from the primary cluster

Chapter 7 describes general storage concepts, UFS, and SVM. Chapter 8 covers ZFS.
Chapter 9 describes IPMP.

With these capabilities, the cluster is able to quickly detect and recover from any single points
of failure, and some double failures, at any of the hardware, operating system, application, and
network levels.

Cluster agents
Open HA Cluster provides a general-purpose platform for making OpenSolaris applications
highly available, but the cluster software itself is unaware of the specifics of the services it hosts.
The cluster provides an abstraction for running a service, treating each specific service as a black
box. The intelligence for each specific service takes the form of a cluster agent, also called a data
service. An agent is the ‘‘glue’’ code between the cluster software and the application. The agent
knows how to start, stop, and monitor the applications, as well as how to communicate with
the cluster — for example, to order a service failover to another machine if a problem with the
application is detected.

Highly available applications can run on the cluster in one of two modes: failover or scalable. A
failover service runs on only one machine at a time. If that machine fails for any reason, the ser-
vice is automatically started on a different machine of the cluster, as shown in Figure 16-2.

Conversely, a scalable service runs simultaneously on more than one node at a time, providing
greater throughput for servicing client requests. The cluster software serves as a software load
balancer between the hosts. If one of the nodes hosting the service fails, client traffic is automati-
cally distributed among the remaining nodes, as shown in Figure 16-3.

Open HA Cluster includes agents for a variety of popular open-source services, including Apache
Web Server, Apache Tomcat, PostgreSQL, MySQL, NFS, DNS, Grid Engine, Samba, DHCP, and
Kerberos. You can also easily create an agent for other applications using one of several tech-
niques described later in the section ‘‘Making Custom Services Highly Available.’’

578

Clustering OpenSolaris for High Availability 16

FIGURE 16-2

A failover cluster service runs on one machine at a time.

Public Network

Service fails over
to second
machine

First
machine
fails

FIGURE 16-3

A scalable cluster service can run on more than one machine simultaneously.

Public Network

Machines access
shared storage
through global
file system

Scalable
service
runs on all
machines

Setting Up a Cluster
Broadly speaking, there are two steps to setting up a cluster: configuring the hardware and
installing the software.

Hardware requirements and configuration
Although it uses off-the-shelf hardware, Open HA Cluster has certain specific hardware require-
ments to provide high availability.

To avoid complex hardware configuration, such as shared storage, quorum devices,
and cluster interconnects, start with a single-node cluster and use zones to emulate

579

Part IV OpenSolaris Reliability, Availability, and Serviceability

physical nodes. While a single-node cluster won’t provide high availability, it will help you gain
familiarity with the cluster software. See the section ‘‘Zones as logical nodes’’ later in this chapter
for details.

Nodes
A cluster consists of one or more physical machines, called cluster nodes, each with its own CPU,
memory, local storage, and operating system kernel. The cluster supports up to 16 physical
nodes and unlimited logical nodes.

Cluster nodes must be homogenous in their architecture and OS version. That is,
you can’t create a cluster consisting of one x86 node and one SPARC node, or one

machine running OpenSolaris and another running Solaris 10. Also, builds and patch levels should
be the same, although the cluster software doesn’t enforce that restriction.

Shared storage
Most server applications use data from disk storage. When running on a cluster, the application
needs access to the storage from the node on which it’s currently running. Thus, in addition to
local storage for each node, your cluster will probably require shared storage accessible from
any node. Because the global file system can make storage available even to nodes not directly
connected to the storage device, you don’t need your disk to be connected to each node of the
cluster. However, you should use multihost disk devices, if possible, to connect any storage
devices to at least two nodes. Otherwise, the single node to which your disk is connected is a
single point of failure for that storage.

Quorum devices, described in the next section, must be directly connected to two or
more nodes.

Furthermore, to protect against disk failures, use multiple disk devices to mirror your data,
either with hardware RAID, Solaris Volume Manager (SVM), or RAID Z with ZFS.

In addition to directly connected SCSI devices, you can use storage area networks (SANs) or
network-attached storage (NAS) devices with Open HA Cluster.

Devices, SVM, and SAN are described in Chapter 7. ZFS is covered in Chapter 8.

Quorum device
Open HA Cluster uses the concept of quorum to continue running after node failures. As an
example of quorum, consider a three-node cluster in which each node gets one vote. Quorum
for this cluster would be two votes, so if any one node goes down, the other two nodes could
continue to operate. However, this scheme breaks down with a two-node cluster. If each node in
a two-node cluster gets one vote and two votes are required for quorum, then the cluster can’t
survive the loss of one of the nodes. That pretty much defeats the purpose of having a cluster.

580

Clustering OpenSolaris for High Availability 16

If you are wondering why the cluster couldn’t require a quorum of just one vote, the answer is
that a network partition that left each node up but unable to communicate with the other node
would allow each node individually to keep running as a cluster, possibly accessing the shared
storage, not knowing the other node was doing the same. In a database application, that could
cause severe data corruption.

The solution is to configure a third quorum vote from outside the cluster. Traditionally, in Open
HA Cluster you do this with a SCSI device connected to both nodes of the cluster. This quorum
device is given a tie-breaker vote. In a network partition, whichever node gets to the quorum
device first gets the vote and excludes, or fences out, the other node by writing a reservation to
the device.

An active OpenSolaris effort called Project Colorado will, among other features,
allow a two-node cluster to run in a weak membership mode without a quorum

device. The weak membership will tolerate a network partition by allowing both partitions to
remain operational. As of this writing, project Colorado is not complete.

An alternative to a physical quorum device is to use a software quorum server running on a third
host outside the cluster.

Quorum devices are not restricted to two-node clusters. You can use them in larger clusters to
provide higher availability in the case of multiple node failures. Consult the documentation for
details.

Improper use of quorum devices can actually lead to lower availability. Make sure
you follow recommended quorum guidelines.

Private cluster interconnect
Open HA Cluster requires dedicated interconnects between cluster nodes. Each cluster node
must have at least one direct connection to each other cluster node. These interconnects require
dedicated network adapters because they must not go through the public network. Interconnects
are generally configured with switches to reduce the number of adapters and cables required.

Project Colorado, mentioned earlier, will also permit private cluster traffic over the
public network. Thus, a dedicated private physical interconnect will no longer be

required, although it will still be recommended for higher performance and availability.

Although not required, it’s highly recommended to configure redundant interconnects between
nodes. Otherwise, the network adapter, switch, and cable are all potential single points of
failure.

Public network
To provide any sort of useful service, the cluster nodes must be accessible from the public
network as well. Each adapter providing service on the public network must be part of an IPMP

581

Part IV OpenSolaris Reliability, Availability, and Serviceability

group, but the IPMP group may contain only a single adapter if that’s all you have available.
However, multiple adapters in the IPMP group are recommended so that each adapter is not a
potential single point of failure.

IPMP is covered in Chapter 9.

Local disk file system and partitioning
Beyond the disk space requirements for OpenSolaris, you need approximately 300MB of extra
space in your root file system. If you configure /var, /usr, and /opt as separate file systems,
you’ll need approximately an additional 100MB in root, 100MB in /var, 50MB in /usr, and
50MB in /opt.

You also have the option of creating a separate disk partition for the cluster global devices. To
do that, you must create a separate UFS file system of at least 512MB on each node mounted in
/globaldevices before you install the cluster software. If you don’t create this separate file sys-
tem, Open HA Cluster will use lofi to mount global devices instead of a separate partition. The
only downside of the lofi approach is slightly slower booting.

Here are example cluster-ready partitions using UFS, including a separate partition for the global
devices, on a Sun Fire V240 (SPARC) node before the clustering software has been installed:

cat /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
fd - /dev/fd fd - no -
/proc - /proc proc - no -
/dev/dsk/c1t0d0s1 - - swap - no -
/dev/dsk/c1t0d0s0 /dev/rdsk/c1t0d0s0 / ufs 1 no -
/dev/dsk/c1t0d0s3 /dev/rdsk/c1t0d0s3 /globaldevices ufs 2 yes -
/devices - /devices devfs - no -
sharefs - /etc/dfs/sharetab sharefs - no -
ctfs - /system/contract ctfs - no -
objfs - /system/object objfs - no -
swap - /tmp tmpfs - yes -
df -hl
Filesystem size used avail capacity Mounted on
/dev/dsk/c1t0d0s0 62G 5.0G 57G 9% /
/devices 0K 0K 0K 0% /devices
/dev 0K 0K 0K 0% /dev
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 4.5G 1.7M 4.5G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
sharefs 0K 0K 0K 0% /etc/dfs/sharetab

582

Clustering OpenSolaris for High Availability 16

/platform/sun4u-us3/lib/libc_psr/libc_psr_hwcap1.so.1
62G 5.0G 57G 9% /platform/sun4u-us3/lib

/libc_psr.so.1
/platform/sun4u-us3/lib/sparcv9/libc_psr/libc_psr_hwcap1.so.1

62G 5.0G 57G 9% /platform/sun4u-us3/lib
/sparcv9/libc_psr.so.1
fd 0K 0K 0K 0% /dev/fd
swap 5.2G 744M 4.5G 14% /tmp
swap 4.5G 88K 4.5G 1% /var/run
/dev/dsk/c1t0d0s3 997M 1.0M 936M 1% /globaldevices

Consult Chapter 7 for details on file systems and disk partitioning.

Installing the cluster software
As of this writing, the only binary release of Open HA Cluster is Solaris Cluster Express (SCX),
which runs on Solaris Express. Project Colorado, mentioned earlier, will provide a binary
distribution of Open HA Cluster on the OpenSolaris binary distribution; as of this writing, the
results of that project are not yet available. Thus, this section explains how to install SCX on
Solaris Express. The rest of this chapter, including configuring the cluster, applies to both SCX
and Project Colorado.

To check whether Open HA Cluster packages are available for the OpenSolaris binary
distribution, use the pkg search -r command described in Chapters 3 and 6 to

search for clrg.

Before installing SCX, you must download Solaris Express from the Sun Download Center
(http://sun.com/download/index.jsp) and install it on each node of the hardware you set
up in the previous section. (See Chapter 2 for details on Solaris Express).

Each release of Solaris Cluster Express runs only on specific releases of Solaris
Express. Check the documentation for the latest SCX to ensure that you install the

correct Solaris Express release.

After installing Solaris Express on each node of your cluster, download Solaris Cluster Express
from the Sun Download Center (http://sun.com/download/index.jsp) and unzip it some-
where handy, such as a network-mounted path accessible from all nodes, or in /tmp on each
node of the cluster.

Run the interactive installer script in the Solaris_<platform> subdirectory of the unzipped
installation image, where <platform> is either sparc or x86.

To run the installer, your working directory must be the directory in which the
installer program lives:

unzip –q clusterexpress-20080916-sparc.zip
cd Solaris_sparc
./installer

583

Part IV OpenSolaris Reliability, Availability, and Serviceability

Due to its length, the output from the installer is not shown. When you install the software
yourself, simply answer the questions as you are prompted. It’s easiest to install everything,
including upgrading all the shared components.

Configuring the cluster
Once you’ve installed the cluster packages, you need to configure the software and set up a clus-
ter. The following example shows the interactive use of the scinstall command to configure
a two-node cluster of Sun Fire V240 (SPARC) nodes with SAN storage. The procedure is similar
for x86 nodes and other forms of storage. Comments and explanations are interspersed.

Run scinstall from one of your cluster nodes only. This example runs it from the machine
named dizzy:

/usr/cluster/bin/scinstall

*** Main Menu ***

Please select from one of the following (*) options:

* 1) Create a new cluster or add a cluster node
2) Configure a cluster to be JumpStarted from this install server
3) Manage a dual-partition upgrade
4) Upgrade this cluster node
5) Print release information for this cluster node

* ?) Help with menu options
* q) Quit

Option: 1

*** New Cluster and Cluster Node Menu ***

Please select from any one of the following options:

1) Create a new cluster
2) Create just the first node of a new cluster on this machine
3) Add this machine as a node in an existing cluster

?) Help with menu options
q) Return to the Main Menu

Option: 1

*** Create a New Cluster ***

This option creates and configures a new cluster.

584

Clustering OpenSolaris for High Availability 16

You must use the Java Enterprise System (JES) installer to install the
Sun Cluster framework software on each machine in the new cluster
before you select this option.

If the "remote configuration" option is unselected from the JES
installer when you install the Sun Cluster framework on any of the new
nodes, then you must configure either the remote shell (see rsh(1)) or
the secure shell (see ssh(1)) before you select this option. If rsh or
ssh is used, you must enable root access to all of the new member
nodes from this node.

Press Control-d at any time to return to the Main Menu.

Do you want to continue (yes/no) [yes]? yes

To use the default remote configuration option, you must configure rpcbind on each
node to allow remote connections. See Chapter 11 for details on how to do that.

Alternatively, you can configure rsh or ssh on each node to allow root logins from the primary
node (the one on which you run the scinstall command). See Chapter 11 for details on ssh
configuration.

>>> Typical or Custom Mode <<<

This tool supports two modes of operation, Typical mode and Custom.
For most clusters, you can use Typical mode. However, you might need
to select the Custom mode option if not all of the Typical defaults
can be applied to your cluster.

For more information about the differences between Typical and Custom
modes, select the Help option from the menu.

Please select from one of the following options:

1) Typical
2) Custom

?) Help
q) Return to the Main Menu

Option [1]: <enter>

>>> Cluster Name <<<

Each cluster has a name assigned to it. The name can be made up of any
characters other than whitespace. Each cluster name should be unique
within the namespace of your enterprise.

What is the name of the cluster you want to establish? jazz

585

Part IV OpenSolaris Reliability, Availability, and Serviceability

>>> Cluster Nodes <<<

This Sun Cluster release supports a total of up to 16 nodes.

Please list the names of the other nodes planned for the initial
cluster configuration. List one node name per line. When finished,
type Control-D:

Node name (Control-D to finish): bird
Node name (Control-D to finish): ^D

This is the complete list of nodes:

dizzy
bird

Is it correct (yes/no) [yes]? <enter>

Attempting to contact "bird" ... done

Searching for a remote configuration method ... done

The Sun Cluster framework is able to complete the configuration
process without remote shell access.

Press Enter to continue: <enter>

>>> Cluster Transport Adapters and Cables <<<

You must identify the cluster transport adapters which attach this
node to the private cluster interconnect.

Select the first cluster transport adapter for "dizzy":

1) bge1
2) bge2
3) bge3
4) ce0
5) ce1
6) ce2
7) ce3
8) Other

Option: 1

Will this be a dedicated cluster transport adapter (yes/no) [yes]? <enter>

586

Clustering OpenSolaris for High Availability 16

Searching for any unexpected network traffic on "bge1" ... done
Verification completed. No traffic was detected over a 10 second
sample period.

Select the second cluster transport adapter for "dizzy":

1) bge1
2) bge2
3) bge3
4) ce0
5) ce1
6) ce2
7) ce3
8) Other

Option: 5

Will this be a dedicated cluster transport adapter (yes/no) [yes]? <enter>

Searching for any unexpected network traffic on "ce1" ... done
Verification completed. No traffic was detected over a 10 second
sample period.

Plumbing network address 172.16.0.0 on adapter bge1 >> NOT DUPLICATE ... done
Plumbing network address 172.16.0.0 on adapter ce1 >> NOT DUPLICATE ... done

The cluster host IP address itself is configured on bge0, so that does not appear as an option for
the private interconnect. Note that the cluster automatically detects the switches and adapters on
the second node to which the adapters on the first node are cabled.

>>> Quorum Configuration <<<

Every two-node cluster requires at least one quorum device. By
default, scinstall selects and configures a shared disk quorum device
for you.

This screen allows you to disable the automatic selection and
configuration of a quorum device.

You have chosen to turn on the global fencing. If your shared storage
devices do not support SCSI, such as Serial Advanced Technology
Attachment (SATA) disks, or if your shared disks do not support
SCSI-2, you must disable this feature.

If you disable automatic quorum device selection now, or if you intend
to use a quorum device that is not a shared disk, you must instead use

587

Part IV OpenSolaris Reliability, Availability, and Serviceability

clsetup(1M) to manually configure quorum once both nodes have joined
the cluster for the first time.

Do you want to disable automatic quorum device selection (yes/no) [no]? <enter>

In addition to SCSI disks, you can use a software quorum server and some NAS devices for
quorum.

Is it okay to create the new cluster (yes/no) [yes]? <enter>

During the cluster creation process, sccheck is run on each of the new
cluster nodes. If sccheck detects problems, you can either interrupt
the process or check the log files after the cluster has been
established.

Interrupt cluster creation for sccheck errors (yes/no) [no]? <enter>

The sccheck command is described in more detail later, in the section ‘‘Advanced Cluster
Administration.’’

Cluster Creation

Log file - /var/cluster/logs/install/scinstall.log.7865

Testing for "/globaldevices" on "dizzy" ... done
Testing for "/globaldevices" on "bird" ... done

Starting discovery of the cluster transport configuration.

The following connections were discovered:

dizzy:bge1 switch1 bird:bge1
dizzy:ce1 switch2 bird:ce1

Completed discovery of the cluster transport configuration.

Started sccheck on "dizzy".
Started sccheck on "bird".

sccheck completed with no errors or warnings for "dizzy".
sccheck completed with no errors or warnings for "bird".

Configuring "bird" ... done
Rebooting "bird" ... done

Configuring "dizzy" ... done
Rebooting "dizzy" ...

588

Clustering OpenSolaris for High Availability 16

Log file - /var/cluster/logs/install/scinstall.log.7865

Rebooting ...

After completing the configuration, scinstall automatically reboots both of the cluster nodes,
which reboot in cluster mode and form a cluster.

You can also use Solaris JumpStart to install and configure a cluster. See the Sun
Cluster Installation Guide listed in the ‘‘Resources’’ section for details.

Using the Cluster
The purpose of a high-availability cluster is to provide just that: high availability of services,
such as Apache, DNS, NFS, MySQL, or any other service to which clients can connect. As
mentioned earlier, Open HA Cluster contains built-in support for many common services. The
best way to become familiar with the capabilities of the cluster software is to dive in with some
examples.

The first example shows how to make Apache Web Server highly available (HA) in failover
mode using a ZFS failover file system to provide access to the data to be served from any of the
nodes in the cluster.

Apache Web Server can also be hosted in a scalable mode. The second example shows Apache
in scalable mode using the global file system to provide simultaneous access to the shared data
from all nodes in the cluster.

Managing services
Before diving into the examples, however, you should understand the concepts that Open HA
Cluster uses to manage services. This section provides an overview of service management; more
details can be found in the ‘‘Advanced Cluster Administration’’ section later in the chapter.

Every service that the cluster manages is called a resource. A resource can be an application, such
as Apache Web Server, a network address, a file system, or anything else that can be started and
stopped (loosely speaking) on a cluster node.

The concept of a ‘‘resource’’ in Open HA Cluster is unrelated to the Resource Man-
agement features described in Chapter 18.

Each resource on the cluster is managed by a cluster agent, also called a data service. The agent is
responsible for several tasks:

■ Starting the resource: For an application, this usually means running a start script or start-
ing a daemon directly.

589

Part IV OpenSolaris Reliability, Availability, and Serviceability

■ Stopping the resource

■ Monitoring the resource: The monitoring is specific to the resource. For example, the
Apache monitor periodically connects to the port on which the Apache Web Server is
listening and issues an HTTP request to verify that Apache is functioning correctly.

■ Storing properties of the resource

This agent is represented in the cluster as a resource type. Each resource is an instantiation of a
resource type. You can have more than one resource of the same resource type simultaneously.
If you’re familiar with object-oriented programming, think of the resource type as the class, and
the resource as the object instantiated from that class.

The resource type in Open HA Cluster is similar to an SMF manifest, in that it
defines the service. Although the two are not related, you can make an SMF service

highly available with the SMF Proxy Resource Type described later in this chapter in the section
‘‘Making Custom Services Highly Available.’’

Resources are grouped together in resource groups, which are the basic unit of failover on the
cluster. Resource groups, rather than individual resources, are brought online and offline on
various nodes. A resource group that is online on a node is providing services on that node.
Usually, when a resource group is online, resources inside that group are online. However, if a
resource inside that group is disabled, its dependencies are not met, or it experiences a failure,
then it could be offline or faulted while its containing resource group is online.

Failover services are run in failover resource groups. A failover resource group is configured with
a list of possible hosts in its nodelist property. If the node on which it is running fails or a
resource within the resource group fails, the resource group can be stopped on that node and
started on a different node in the nodelist. You specify the nodes that can host the service in
order in the nodelist. For a failover service, the first node is the primary, and others are secon-
daries, or spares.

A scalable service runs in a scalable resource group, which runs on one or more nodes in its
nodelist simultaneously.

Making Apache highly available
Now that you’ve installed and configured your cluster and learned how the cluster manages
services, it’s finally time to run a service. The Apache web server is a good service to start with
because of its ubiquity and simplicity. Apache basically serves files to clients that connect using
the Hypertext Transfer Protocol (HTTP), usually from a web browser such as Mozilla Firefox.

Chapter 23 describes Apache configuration on OpenSolaris in more detail.

Making Apache HA requires three steps: configuring storage, configuring networking, and con-
figuring Apache itself.

590

Clustering OpenSolaris for High Availability 16

Configuring failover storage
The Apache service must have access to the files that it’s serving from any node on which it’s
running. You have several options for the type of file system to use. This example demonstrates
how to make a ZFS zpool highly available. First, configure a ZFS failover zpool for the files that
Apache will serve. The zpool should be on a device or devices accessible from both nodes. You
can put the zpool under cluster control as an Open HA Cluster resource so that it will be avail-
able on whatever node Apache is running.

Creating a zpool
Open HA Cluster needs a consistent way to refer to devices across different nodes, but because
multihost devices can show up with different names on different nodes of the cluster to which
they are connected, the local names, such as c1t2d3s4, cannot be used. Instead, the cluster
manages shared devices with a Device ID (DID) pseudo-device driver, automatically assigning
clusterwide unique IDs to each device path.

ZFS zpools are covered in Chapter 8. Device IDs are described in Chapter 7.
Pseudo-device drivers are introduced in Chapter 5.

These IDs can be found in /dev/did/dsk and /dev/did/rdsk on each cluster node, or listed
with the /usr/cluster/bin/cldevice command. Use these IDs instead of the ones in
/dev/dsk and /dev/rdsk, respectively, when creating failover file systems.

ZFS import can find zpools even if the device names are different on different nodes,
so when using ZFS for failover file systems, you don’t technically need to refer to the

devices using the /dev/did namespace. However, this example uses /dev/did for consistency.

First, use the cldevice command on any node of the cluster to find a device:

/usr/cluster/bin/cldevice list -v
DID Device Full Device Path
---------- ----------------
d1 bird:/dev/rdsk/c1t1d0
d2 bird:/dev/rdsk/c1t0d0
d3 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F9607d0
d3 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F9607d0
d4 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F9608d0
d4 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F9608d0
d5 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F9609d0
d5 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F9609d0
d6 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Ad0
d6 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Ad0
d7 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Bd0
d7 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Bd0
d8 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Cd0
d8 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Cd0
d9 bird:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Dd0
d9 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF2DEE5F960Dd0

591

Part IV OpenSolaris Reliability, Availability, and Serviceability

d10 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D707d0
d10 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D707d0
d11 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D708d0
d11 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D708d0
d12 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D709d0
d12 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D709d0
d13 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Ad0
d13 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Ad0
d14 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Bd0
d14 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Bd0
d15 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Cd0
d15 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Cd0
d16 bird:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Dd0
d16 dizzy:/dev/rdsk/c4t600C0FF000000000092AFF00C5B5D70Dd0
d17 dizzy:/dev/rdsk/c1t1d0
d18 dizzy:/dev/rdsk/c1t0d0

Don’t create a zpool using a configured quorum disk because ZFS will relabel the
quorum disk with EFI labeling, destroying the quorum information.

To find out which devices (and nodes) are used for quorum, run the /usr/cluster/
bin/clquorum command on any node of the cluster:

/usr/cluster/bin/clquorum list
d3
bird
dizzy

For the zpool, this example uses the pseudo-device d14, which corresponds to /dev/
rdsk/c4t600C0FF000000000092AFF00C5B5D70Bd0.

Finally, create the zpool using the block device from the DID pseudo-device driver. Run this
command on any one node of the cluster to which the shared storage is connected:

zpool create azp /dev/did/dsk/d14

For greater availability, use a RAID Z zpool or mirror your zpool across at least two
devices to avoid a single point of storage failure. See Chapter 8 for details on RAID Z

and ZFS mirroring.

Making the zpool highly available
Next, configure the cluster to manage the azp zpool as a resource using the HAStoragePlus
resource type. This resource type will import the zpool on whichever node it is online, thus
making it available for the Apache service on that node. Run the commands in this section on
only one node of the cluster.

592

Clustering OpenSolaris for High Availability 16

First, create the resource group that will contain the failover file system resource (and later the
Apache resource as well). clrg is a shorthand form of the clresourcegroup command:

/usr/cluster/bin/clrg create apache-rg

The Open HA Cluster commands are in the /usr/cluster/bin directory. You may
want to add that directory to your path.

Next, register the HAStoragePlus resource type and create a resource of that type named
azp-rs, specifying one property: the zpool you created in the previous section (the Zpools
property):

/usr/cluster/bin/clrt register HAStoragePlus
/usr/cluster/bin/clrs create -g apache-rg -t HAStoragePlus -p Zpools=azp\
azp-rs

Now you can bring the resource group online and check its status:

/usr/cluster/bin/clrg online -M apache-rg
/usr/cluster/bin/clrg status

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-rg bird No Online

dizzy No Offline

Note that the resource group is online on node bird, and offline on node dizzy. Thus, you
should be able to access the zpool from bird, but not from dizzy:

bird# hostname
bird
bird# zpool status
pool: azp
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
azp ONLINE 0 0 0
c4t600C0FF000000000092AFF00C5B5D70Bd0 ONLINE 0 0 0

errors: No known data errors

So far, so good. Now try it from the other node:

dizzy# hostname
dizzy

593

Part IV OpenSolaris Reliability, Availability, and Serviceability

dizzy# zpool status
no pools available

As expected, you can’t access it from dizzy. If you switch the resource group to dizzy, you
can then access the file system from that node. To switch the resource group, use the switch
-n option to /usr/cluster/bin/clrg:

/usr/cluster/bin/clrg switch -n dizzy apache-rg
/usr/cluster/bin/clrg status

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-rg bird No Offline

dizzy No Online

dizzy# hostname
dizzy
dizzy# zpool status
pool: azp
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
azp ONLINE 0 0 0
c4t600C0FF000000000092AFF00C5B5D70Bd0 ONLINE 0 0 0

errors: No known data errors

Configuring Apache to use the highly available zpool
Now that your failover file system is working, you need to create your htdocs directory on it
and tell Apache to look there instead of its default location.

First, create a new ZFS file system for htdocs and populate it with some test data. Run these
commands on the node of the cluster that is currently hosting the storage resource you created
in the previous section:

zfs create azp/htdocs
echo "hello, world" > /azp/htdocs/index.html
chgrp bin /azp/htdocs/index.html

Now, on each node of the cluster, change the Apache configuration file, /etc/apache2/
2.2/httpd.conf, to look for htdocs in /azp. The DocumentRoot entry in the file should
look like this:

DocumentRoot "/azp/htdocs"

594

Clustering OpenSolaris for High Availability 16

The first line of the Directory entry should look like this:

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "/azp/htdocs">

If you use CGI scripts, you need to change the ScriptAlias entry in httpd.conf as well.

To avoid keeping redundant copies of the httpd.conf file on each node, you could
put one copy on the failover file system and tell Apache to look there. However, that

requires modifying the apachectl script, so this example avoids it.

You could also put the Apache binaries themselves on the failover file system instead of storing
them on the local file system of each node, but because they’re installed by default on OpenSo-
laris, you might as well use the local copies.

Test the configuration on the node of the cluster that is currently hosting the apache-rg
resource group, so that Apache has access to the zpool. First, make sure Apache starts:

pgrep http
/usr/apache2/2.2/bin/apachectl start
pgrep http
2880
2882
2881
2883
2884
2885
2886

You can test it using the wget utility. By default, the httpd.conf file specifies that Apache
should bind to the localhost address, so you need to test it from the local node (in this case,
dizzy):

dizzy$ /usr/sfw/bin/wget -q localhost
dizzy$ cat index.html
hello, world

Remember to stop Apache after you’ve tested it:

/usr/apache2/2.2/bin/apachectl stop

Now you can switch over the apache-rg resource group to bird so that the zpool is imported
on that node and tested on bird. Use the switch -n option to /usr/cluster/bin/clrg:

/usr/cluster/bin/clrg switch -n bird apache-rg

If you try to run Apache with this configuration on a node that’s not hosting apache-rg, you’ll
see the following error:

/usr/apache2/2.2/bin/apachectl start

595

Part IV OpenSolaris Reliability, Availability, and Serviceability

Syntax error on line 106 of /etc/apache2/2.2/httpd.conf:
DocumentRoot must be a directory

Configuring logical hostname networking
In order for clients to access the Apache service, it must be available at a specific hostname,
which maps to a specific IP address. Clients should be able to use a single hostname regardless
of the node in the cluster on which Apache is running at any given time.

Open HA Cluster implements this requirement with a logical hostname. The hostname is man-
aged as a cluster resource, and the IP address to which it maps is automatically configured on
the node on which the resource is online. This way, the cluster details are hidden from clients,
and the cluster appears to clients as a single system. Regardless of the node on which the service
is running, clients can connect to the service via the logical hostname.

When configuring your services on the cluster, publicize only the logical hostname,
not the physical hostnames of the machines. If clients connect to a physical

hostname, they won’t be able to access the service if it fails over to another node.

To configure a logical hostname, first pick a hostname and IP address and add it to your DNS
mappings. This example uses coltrane, which maps to IP address 10.11.157.87. Note that
the IP address must be in a subnet that is configured on an existing IPMP group on your cluster
nodes.

Next, use the clreslogicalhostname command to add a logical hostname resource in the
apache-rg resource group that you created in the previous section:

/usr/cluster/bin/clreslogicalhostname create -g apache-rg –h coltrane\
coltrane-rs

You might see warnings like the following from clreslogicalhostname if you
haven’t added coltrane to your local network mappings:

bird - Could not find a mapping for coltrane in /etc/inet/ipnodes or
/etc/inet/hosts. It is recommended that a mapping for coltrane be
added to /etc/inet/ipnodes.

dizzy - Could not find a mapping for coltrane in /etc/inet/ipnodes or
/etc/inet/hosts. It is recommended that a mapping for coltrane be
added to /etc/inet/ipnodes.

You should add the hostname/IP information in /etc/inet/hosts in case DNS is down, and con-
figure the subnet in /etc/inet/netmasks.

Because you added the new resource to a resource group that was already online, it immediately
starts up. You can see the result using ifconfig on the node hosting the resource group:

ifconfig -a
...

596

Clustering OpenSolaris for High Availability 16

bge0: flags=209000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,NOFAILOVER,CoS>
mtu 1500 index 2

inet 10.11.157.82 netmask ffffff00 broadcast 10.11.157.255
groupname sc_ipmp0
ether 0:14:4f:4d:58:e5

bge0:1: flags=201040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4,CoS>
mtu 1500 index 2

inet 10.11.157.87 netmask ffffff00 broadcast 10.11.157.255
...

As you can see, the logical hostname resource has configured IP address 10.11.157.87
(coltrane) as a logical interface on the bge0 adapter to add a separate flow on the physical
adapter.

Chapter 9 covers networking, including interfaces, adapters, DNS, and
ifconfig.

One convenient feature of Open HA Cluster logical hostnames is that they automatically con-
figure IPMP, if possible. As shown in the preceding ifconfig output, there’s an IPMP group
configured for bge0. The cluster software configured this group at configuration time. You can
see the details with scstat -i:

/usr/cluster/bin/scstat -i

-- IPMP Groups --

Node Name Group Status Adapter Status
--------- ----- ------ ------- ------

IPMP Group: bird sc_ipmp0 Online bge0 Online

IPMP Group: dizzy sc_ipmp0 Online bge0 Online

Because there was only one adapter in this subnet, the IPMP group contains only the bge0
adapter. If there were other adapters in the subnet, the cluster software would have added those
to the group.

When you create a logical hostname, the cluster software puts it in whatever IPMP group is
available — in this case, sc_ipmp0.

The final change you need to make to use the logical hostname is to change the ServerName to
coltrane in the /etc/apache2/2.2/httpd.conf file on each node:

grep ServerName httpd.conf
ServerName gives the name and port that the server uses to identify itself.
ServerName coltrane

597

Part IV OpenSolaris Reliability, Availability, and Serviceability

Configuring failover Apache
Now that you’ve set up the storage and networking, adding the Apache resource itself is the easy
part. First, register the resource type:

/usr/cluster/bin/clrt register apache

Next, create the apache resource. You must specify a few properties with -p, including the
directory containing the Apache binaries and the port on which it will listen. You also need
to specify that the apache resource depends on both the HAStoragePlus resource, azp-rs,
and the logical hostname resource, coltrane-rs. The HAStoragePlus dependency ensures
that the cluster framework will always import the zpool on a node before starting the Apache
daemon, and will always stop the Apache daemon before exporting the zpool. Similarly, the
logical hostname dependency tells the cluster framework that this apache resource depends
on the coltrane-rs logical hostname. Thus, the cluster will always configure the interface
on a node before starting the Apache daemon, and will always stop the Apache daemon before
unconfiguring the logical hostname:

/usr/cluster/bin/clrs create -g apache-rg -t apache -p Bin_dir=/usr/apache2/2.2/bin\
-p Port_list=80/tcp -p Resource_dependencies=azp-rs,coltrane-rs apache-rs

Because the apache-rg resource group is already online, the apache resource that you create
will start automatically. When the apache resource comes online, it starts the Apache daemon.

Because of the dependency of the apache-rs resource on the azp-rs HAStoragePlus
failover file system resource, the apache resource type attempts to validate that the

file system is really available. Thus, the azp-rs resource must be online on one of the nodes when
you create the apache-rs resource.

Verify the status with clrg and clrs:

/usr/cluster/bin/clrg status

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-rg bird No Online

dizzy No Offline

/usr/cluster/bin/clrs status

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
azp-rs bird Online Online

dizzy Offline Offline

598

Clustering OpenSolaris for High Availability 16

coltrane-rs bird Online Online - LogicalHostname online.
dizzy Offline Offline

apache-rs bird Online Online - Completed successfully.
dizzy Offline Offline

/usr/cluster/bin/clrs show

=== Resources ===

Resource: azp-rs
Type: SUNW.HAStoragePlus:6
Type_version: 6
Group: apache-rg
R_description:
Resource_project_name: default
Enabled{bird}: True
Enabled{dizzy}: True
Monitored{bird}: True
Monitored{dizzy}: True

Resource: coltrane-rs
Type: SUNW.LogicalHostname:2
Type_version: 2
Group: apache-rg
R_description:
Resource_project_name: default
Enabled{bird}: True
Enabled{dizzy}: True
Monitored{bird}: True
Monitored{dizzy}: True

Resource: apache-rs
Type: SUNW.apache:4.1
Type_version: 4.1
Group: apache-rg
R_description:
Resource_project_name: default
Enabled{bird}: True
Enabled{dizzy}: True
Monitored{bird}: True
Monitored{dizzy}: True

Now the Apache daemon is running on node bird. You can verify it with wget from any
machine that can resolve the coltrane hostname:

$ /usr/sfw/bin/wget -q coltrane

599

Part IV OpenSolaris Reliability, Availability, and Serviceability

$ more index.html
hello, world

The apache resource type monitors the Apache daemon at the process level, the logical
hostname resource type monitors the network, the HAStoragePlus resource type monitors
the storage, and the cluster infrastructure tracks the health of the node as a whole. You might
want to try out various failure scenarios, such as killing the httpd processes, unplugging
the public network cable, and halting the entire node. The cluster can recover from all those
failures and quickly bring the service back online on the same node or on the other node in the
cluster.

Making Apache scalable
The previous example showed how you can make the Apache web server highly available on
Open HA Cluster. In that example, Apache ran on only one node at a time, but there’s usually
no reason why Apache can’t run on multiple nodes simultaneously to increase the throughput.

Recall that configuring a service to run in scalable mode consists of three steps: configuring stor-
age, configuring networking, and configuring Apache itself.

If you created a failover apache resource group in the previous example, disable
and unmanage it before proceeding with this example:

/usr/cluster/bin/clrs list
azp-rs
coltrane-rs
apache-rs
/usr/cluster/bin/clrs disable azp-rs coltrane-rs apache-rs
/usr/cluster/bin/clrg offline apache-rg
/usr/cluster/bin/clrg unmanage apache-rg

Configuring global storage
Because scalable Apache will run on both nodes of the cluster simultaneously, both nodes must
have access at all times to the htdocs directory. Thus, you can’t use the same failover file sys-
tem as in the previous example. Instead, you can use the cluster file system (CFS), also called the
global file system (GFS) or the proxy file system (PxFS).

Because NFS, described in Chapter 10, is a network file system, you might be won-
dering why you can’t use it instead of the cluster file system. The answer is that NFS

was not designed as a cluster file system, and its implementation exhibits problems when the same
machine is both a client and a server of the same file system.

Creating a global file system
As the name proxy file system implies, the cluster file system is layered on top of a local file
system such as UFS. (Note that the cluster file system cannot run on top of ZFS.) Therefore, to
use the cluster file system, you first create a standard UFS file system on a device in the global

600

Clustering OpenSolaris for High Availability 16

namespace. The global namespace, found in /dev/global/dsk and /dev/global/rdsk,
includes the DID pseudo-device names discussed earlier, plus any volumes created on top
of those pseudo-devices. The main difference between the /dev/global namespace and the
/dev/did namespace is that the global names are valid on any node of the cluster, even on
hosts to which the storage is not directly connected.

/dev/global is actually a symbolic link to /global/.devices/node@<node
number>/dev/global.

Your first step in configuring a cluster file system is to create a new file system on one of the
devices in /dev/global:

newfs /dev/global/rdsk/d15
newfs: construct a new file system /dev/global/rdsk/d15: (y/n)? y
/dev/global/rdsk/d15: 12288 sectors in 2 cylinders of 48 tracks, 128 sectors

6.0MB in 1 cyl groups (13 c/g, 39.00MB/g, 18624 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
32,

Note again that you specify the device using /dev/global/rdsk, rather than /dev/rdsk or
/dev/did/rdsk.

For increased availability, use the Solaris Volume Manager (SVM) with redundancy
across multiple physical devices underneath the file system. For simplicity, this

example omits the Volume Manager.

On each node in the cluster, create the mount point. It’s customary to mount global file systems
in /global:

mkdir -p /global/adata

Next, add the following entry to /etc/vfstab on each node so that the file system is mounted
automatically at boot time. Note the global option, and the use of /dev/global for the
devices:

/dev/global/dsk/d15 /dev/global/rdsk/d15 /global/adata ufs 2 yes
global,logging

Finally, on one of the nodes, issue a mount command to mount the file system. You can omit
the device and global option in the mount command because of the /etc/vfstab entry:

mount /global/adata

Running the mount on any cluster node mounts the file system on all nodes of the cluster.

Configuring Apache to use the cluster file system
Now that you have a file system accessible from all nodes of the cluster simultaneously, you
need to set up your htdocs directory and configure Apache to use it.

601

Part IV OpenSolaris Reliability, Availability, and Serviceability

On one node of the cluster, create the directory and populate it:

mkdir /global/adata/htdocs
chgrp bin /global/adata/htdocs
echo "hello, world, from cluster file system" >\
/global/adata/htdocs/index.html

chgrp bin /global/adata/htdocs/index.html

On each node of the cluster, change the htdocs entry in /etc/apache2/2.2/httpd.conf to
point to the htdocs directory on the global file system:

DocumentRoot "/global/adata/htdocs"

Don’t forget to change the Directory entry in /etc/apache2/2.2/httpd.conf as well:

<Directory "/global/adata/htdocs">

Finally, for testing purposes, change the ServerName back to localhost:

ServerName gives the name and port that the server uses to identify itself.
ServerName 127.0.0.1

Verify that Apache can start and serve files from the global file system:

pgrep http
/usr/apache2/2.2/bin/apachectl start
pgrep http
29273
29276
29275
29274
29277
29278
29279
dizzy$ /usr/sfw/bin/wget -q localhost
dizzy$ cat index.html
hello, world, from cluster file system

Don’t forget to stop Apache when you’ve completed your tests:

/usr/apache2/2.2/bin/apachectl stop

Repeat the test on the second node of the cluster. Unlike the previous example, there’s no need
to switch over a resource group to test the second node.

Configuring scalable networking
With failover Apache, the service was online on only one node at a time, and all network traf-
fic from clients could be directed to that one node. With scalable Apache, however, you want

602

Clustering OpenSolaris for High Availability 16

traffic to be load-balanced across all the nodes hosting the service. Open HA Cluster provides
this functionality with a shared address. The shared address manages a hostname as a resource.
When the resource starts on a node, the address is configured on an adapter on that node, just
like a logical hostname. However, the cluster networking kernel module intercepts traffic to this
IP address and distributes it around the cluster based on the load-balancing policy in effect. In
order for applications on the other nodes to bind to that address, the address is configured on
the loopback adapter of those nodes.

Loopback adapters and other networking topics are covered in Chapter 9.

To create a shared address resource, you again need to find a hostname registered with DNS.
This example uses miles, which maps to IP address 10.11.157.85.

First, create a resource group to hold the shared address. Unlike with failover Apache, the net-
work resource will go in a different resource group than the Apache resource itself because the
network resource needs to run on only one node at a time, whereas the Apache service will run
on all nodes simultaneously:

/usr/cluster/bin/clrg create apache-sa

Next, add the shared address resource:

/usr/cluster/bin/clressharedaddress create -g apache-sa –h miles miles-rs

Finally, bring the resource group online and verify its status:

/usr/cluster/bin/clrg online -M apache-sa
/usr/cluster/bin/clrg status apache-sa

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-sa bird No Online

dizzy No Offline

The resource group is online on node bird. As shown in the ifconfig output on that node,
the address is configured as a logical interface on the bge0 adapter:

ifconfig -a
...
bge0: flags=209000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,NOFAILOVER,CoS>
mtu 1500 index 2

inet 10.11.157.82 netmask ffffff00 broadcast 10.11.157.255
groupname sc_ipmp0
ether 0:14:4f:4d:58:e5

bge0:1: flags=201040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4,CoS>
mtu 1500 index 2

inet 10.11.157.85 netmask ffffff00 broadcast 10.11.157.255
...

603

Part IV OpenSolaris Reliability, Availability, and Serviceability

As with the logical hostname described earlier, the IPMP configuration occurs automatically
behind the scenes.

On node dizzy, on which the resource group is offline, the IP address is configured on the
loopback adapter lo0:

ifconfig -a
lo0: flags=20010008c9<UP,LOOPBACK,RUNNING,NOARP,MULTICAST,IPv4,VIRTUAL>
mtu 8232 index 1

inet 127.0.0.1 netmask ff000000
lo0:1: flags=20010088c9<UP,LOOPBACK,RUNNING,NOARP,MULTICAST,PRIVATE,IPv4,
VIRTUAL> mtu 8232 index 1

inet 10.11.157.85 netmask ffffffff
...

Your final step to configure the shared address networking is to change the ServerName in the
/etc/apache2/2.2/httpd.conf file on each node to use miles:

grep ServerName /etc/apache2/2.2/httpd.conf
ServerName gives the name and port that the server uses to identify itself.
ServerName miles

Configuring scalable Apache
Now that you have global storage and scalable networking configured, you need to add
the actual Apache service. First, create the resource group. This command sets the maxi-
mum_primaries and desired_primaries properties to 2, to specify that the resource group
should run on two nodes (‘‘primaries’’) simultaneously:

/usr/cluster/bin/clrg create -p Maximum_primaries=2 –p\
Desired_primaries=2 apache-scal-rg

Now add the Apache resource. As in the failover example, you specify several resource proper-
ties, including the directory of the binaries, the port to use, and the resource dependencies. This
time you also specify the scalable property as true, indicating that Apache should be config-
ured in scalable mode:

/usr/cluster/bin/clrs create -g apache-scal-rg -t apache –p\
Bin_dir=/usr/apache2/2.2/bin -p Resource_dependencies=miles-rs –p\
scalable=true -p port_list=80/tcp apache-scal-rs

Finally, bring the resource group online and verify its status:

/usr/cluster/bin/clrg online -M apache-scal-rg
/usr/cluster/bin/clrg status apache-scal-rg

604

Clustering OpenSolaris for High Availability 16

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-scal-rg bird No Online

dizzy No Online

/usr/cluster/bin/clrg show apache-scal-rg

=== Resource Groups and Resources ===

Resource Group: apache-scal-rg
RG_description: <NULL>

RG_mode: Scalable
RG_state: Managed
Failback: False
Nodelist: bird dizzy

--- Resources for Group apache-scal-rg ---

Resource: apache-scal-rs
Type: SUNW.apache:4.1
Type_version: 4.1
Group: apache-scal-rg
R_description:
Resource_project_name: default
Enabled{bird}: True
Enabled{dizzy}: True
Monitored{bird}: True
Monitored{dizzy}: True

/usr/cluster/bin/clrs status apache-scal-rs

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
apache-scal-rs bird Online Online - Completed successfully.
dizzy Online Online – Completed successfully.

Now you can test it from any machine that can resolve the miles hostname:

$ /usr/sfw/bin/wget -q miles
$ cat index.html
hello, world, from cluster file system

605

Part IV OpenSolaris Reliability, Availability, and Serviceability

Advanced Cluster Administration
The previous examples have given you a taste of the capabilities of Open HA Cluster, but they
barely scratch the surface of this powerful software. This section introduces some advanced
administration topics.

The cluster commands are located in /usr/cluster/bin, and their man pages
in /usr/cluster/man. The commands beginning in cl are described in the 1CL

section of the man pages. For an overview of this cluster command set, run the following:

man -M /usr/cluster/man -s 1CL intro

Shutting down the cluster
To safely shut down the entire cluster, use the cluster shutdown command:

/usr/cluster/bin/cluster shutdown -g0 -y

To shut down or reboot a single node, first evacuate all services from the node, which moves
them to other nodes of the cluster, and then use the OpenSolaris shutdown command. The fol-
lowing example safely powers off the bird node:

/usr/cluster/bin/clnode evacuate bird
shutdown -g 0 -y -i 5

Shutdown started. Thu Oct 16 14:39:18 PDT 2008

Changing to init state 5 - please wait
Broadcast Message from root (pts/1) on bird Thu Oct 16 14:39:18...
THE SYSTEM bird IS BEING SHUT DOWN NOW ! ! !
Log off now or risk your files being damaged

The reboot and init commands are not safe for shutting down or rebooting cluster
nodes; they can lead to node panics. See Chapter 3 for a discussion of the shut-

down, reboot, and init commands.

Service management
As introduced earlier in this chapter, Open HA Cluster service management is built around three
service objects: resource types, resource groups, and resources. The previous Apache examples
demonstrated these objects in action. Now it’s time to delve into the advanced administration
details.

Resource types
A resource type is defined in a Resource Type Registration (RTR) file. The RTR file is similar to
the SMF manifest discussed in Chapter 13 but uses a different format and syntax. RTR files are
usually installed in /opt/cluster/lib/rgm/rtreg/ or /usr/cluster/lib/rgm/rtreg.

606

Clustering OpenSolaris for High Availability 16

The RTR file specifies two primary things: the paths for callback methods and the resource prop-
erties.

The callback methods are binaries or scripts that implement a specific functionality such as start-
ing or stopping the service. For example, the START method should start the service, the STOP
method should stop the service, the MONITOR_START method should start a monitor daemon to
monitor the service, and so on.

The rt_callbacks(1HA) man page describes the various callback methods.

The RTR file also specifies properties of the resource, including their minimum, maximum, and
default values, and when they can be tuned or modified.

A complete resource type name consists of a company symbol, such as SUNW, the service name,
such as apache, and the resource type version. For example, the complete Apache name is
SUNW.apache:4.1. If there is no ambiguity, then you can use just the service name to refer to
the resource type.

A complete resource type implementation consists of the RTR file, the callback method binaries,
and the monitor, which is usually a long-running daemon started by the MONITOR_START call-
back and stopped by the MONITOR_STOP callback.

The /usr/cluster/bin/clresourcetype, abbreviated /usr/cluster/bin/clrt, manages
resource types on the cluster. You’ll generally use this command only to register and unregister
resource types. You’ve already seen an example of this command to register resource types:

/usr/cluster/bin/clrt register HAStoragePlus

When registering resource types, clrt looks in the two default paths for RTR files. If the file
you want to register is in a nonstandard path, then express the path explicitly with the -f
option.

Resource types also have properties. Note that the properties defined in the RTR file apply
to resources instantiated from that resource type, not the resource type itself. The resource
type properties are a predefined set, most of which is not tunable except in the RTR file itself.
Table 16-1 describes the resource type properties.

The rt_properties(5)man page describes the resource type properties.

You can view various levels of detail about the resource types on your system with clrt list
and clrt show:

/usr/cluster/bin/clrt list
SUNW.LogicalHostname:2
SUNW.SharedAddress:2
SUNW.HAStoragePlus:6
SUNW.apache:4.1
/usr/cluster/bin/clrt show apache

607

Part IV OpenSolaris Reliability, Availability, and Serviceability

=== Registered Resource Types ===

Resource Type: SUNW.apache:4.1
RT_description: Apache Web Server on Sun Cluster
RT_version: 4.1
API_version: 2
RT_basedir: /opt/SUNWscapc/bin
Single_instance: False
Proxy: False
Init_nodes: All potential masters
Installed_nodes: <All>

Failover: False
Pkglist: SUNWscapc
RT_system: False
Global_zone: False

You can obtain just a list of properties with clrt list-props or modify a property of a
resource type with clrt set. The following example sets the RT_system property of the
Apache resource type to true:

/usr/cluster/bin/clrt set -p RT_system=true apache
/usr/cluster/bin/clrt show apache | grep RT_system
RT_system: True

Resource groups
A resource group (RG) is a logical container for resources, and is the unit of failover and
switchover between nodes in Open HA Cluster. Resource groups do not manage services
directly; they are merely a container for resources, which are described below.

You use the /usr/cluster/bin/clresroucegroup command, abbreviated /usr/cluster/
bin/clrg, to manage RGs. For example, you can list the RGs on your system with
clrg list:

/usr/cluster/bin/clrg list
apache-sa
apache-scal-rg
apache-rg

Resource group life cycles
You create an RG with clrg create:

/usr/cluster/bin/clrg create test-rg

Use clrg status to see the RG’s status. An RG starts in the unmanaged state, which means the
cluster basically ignores it:

/usr/cluster/bin/clrg status test-rg

608

Clustering OpenSolaris for High Availability 16

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Unmanaged

dizzy No Unmanaged

TABLE 16-1

Resource Type Properties

Name Value Meaning

RT_description String Read-only description of the resource type

RT_basedir Directory path Read-only path to the location of the callback
methods

Single_
instance

true or false Indicates whether more than one resource of this
type can exist simultaneously

Init_nodes RG_primaries or
RT_installed_
nodes

The list of nodes on which the INIT, FINI, and
BOOT methods for resources of this type should
be run; either the nodes in the containing
resource group’s nodelist, or all nodes on which
the resource type is allowed to run

Installed_
nodes

List of nodes, or all All the nodes on which the resource type can
run; the default is all nodes

Failover true or false Indicates whether resources of this type can ever
be scalable

API_version Integer Read-only; the minimum version of the cluster
API required by the resource type

RT_version String Read-only; the version of the resource type

Pkglist List of packages in
which this resource
type implementation
is shipped

Read-only

Global_zone true or false Indicates whether resources of this type run
methods in the global zone even if the resource
is instantiated in nonglobal zones. Required for
some resource types that require global zone
privileges in order to perform certain operations.

RT_system true or false If true, this resource type cannot be modified or
taken offline.

609

Part IV OpenSolaris Reliability, Availability, and Serviceability

You manage an RG with clrg manage, which moves it to the offline state:

/usr/cluster/bin/clrg manage test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Offline

dizzy No Offline

In the offline state, the resource group is not providing service, but is under cluster control.
Upon certain events, such as a node joining the cluster, or other resource groups coming online,
the cluster will try to bring a managed resource group online on one node (if it’s a failover
service) or on several nodes (if it’s a scalable service). You can also order the cluster to bring it
online with clrg online:

/usr/cluster/bin/clrg online test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Online

dizzy No Offline

Here, the cluster chose a node on which to bring the resource group online. If the resource
group fails to start on the first node, usually because one of its resources fails to start, then the
cluster automatically tries it on the remaining candidate nodes.

You can combine the manage and online steps with clrg online -M.

You can switch the resource group to a specific node with clrg switch:

/usr/cluster/bin/clrg switch -n dizzy test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Offline

dizzy No Online

610

Clustering OpenSolaris for High Availability 16

To restart a resource group, use clrg restart. This command restarts all the resources within
the group:

/usr/cluster/bin/clrg restart test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Offline

dizzy No Online

You can bring a resource group offline with clrg offline, unmanage it with clrg unmanage,
and remove it with clrg delete:

/usr/cluster/bin/clrg offline test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Offline

dizzy No Offline

/usr/cluster/bin/clrg unmanage test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg bird No Unmanaged

dizzy No Unmanaged

/usr/cluster/bin/clrg delete test-rg
/usr/cluster/bin/clrg status test-rg
invalid resource group
clrg: (C711394) Failed to access information for resource group "test-rg".

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------

611

Part IV OpenSolaris Reliability, Availability, and Serviceability

Other useful resource group operations include suspending the group, with clrg suspend,
which leaves it in its current state but tells the cluster not to perform any automatic recovery
actions on it. Use clrg resume to unsuspend it.

clrg evacuate brings all resource groups offline on a specified node, attempting to bring them
online on different nodes to maintain service availability.

Finally, clrg quiesce can ‘‘quiesce’’ a resource group that is failing to start but is taking a
long time to completely fail, usually because the cluster is trying to start it on several nodes
sequentially. The quiesce option will bring the resource group to a quiescent state. The
resource group will probably not end up online and providing service.

Resource group properties
Resource groups contain both properties and resources. The properties are described in
Table 16-2.

The rg_properties(5) man page describes the resource group properties.

You can view the properties and resources of a resource group with clrg show:

/usr/cluster/bin/clrg show -v test-rg

=== Resource Groups and Resources ===

Resource Group: test-rg
RG_description: <NULL>

RG_mode: Failover
RG_state: Unmanaged
RG_project_name: default
RG_affinities: <NULL>

RG_SLM_type: manual
Auto_start_on_new_cluster: True
Failback: False
Nodelist: bird dizzy
Maximum_primaries: 1
Desired_primaries: 1
RG_dependencies: <NULL>

Implicit_network_dependencies: True
Global_resources_used: <All>

Pingpong_interval: 3600
Pathprefix: <NULL>

RG_System: False
Suspend_automatic_recovery: False

This resource group has no resources, so you view only the properties.

612

Clustering OpenSolaris for High Availability 16

TABLE 16-2

Resource Group Properties

Property Value Description

RG_Description String Human-readable description; unused
by the cluster software

RG_mode Failover or
Scalable

Indicates whether the resource group
is failover or scalable. Cannot be
changed after resource group
creation.

RG_state Managed or
Unmanaged

Read-only. Indicates whether the RG
is currently managed.

RG_project_name String The OpenSolaris resource
management project in which the
processes under control of this
resource group should run. See
Chapter 18 for details about
OpenSolaris resource management.

RG_affinities Other resource
groups with affinity
modifiers +, ++,
+++, -, or --.

Specifies other resource groups for
which this group has positive or
negative affinities. See below for
details.

RG_dependencies Other resource
groups

Specifies other resource groups for
which this group has a dependency.
Unofficially deprecated in favor of
resource dependencies.

RG_SLM_type Manual or
Automated

Indicates whether this resource group
should use Open HA Cluster
service-level management. If this
property is set to automated, several
other SLM-related properties become
available. Service-level management
is beyond the scope of this book;
consult the official documentation for
details.

Auto_start_on_new_
cluster

True or False Indicates whether the resource group
should be brought online on a new
cluster

Failback True or False Indicates whether the resource group
should be switched from a less
preferred node to a more preferred
node if one joins the cluster

613

Part IV OpenSolaris Reliability, Availability, and Serviceability

TABLE 16-2 (continued)

Property Value Description

Nodelist Node names The list of nodes on which this RG
can run, in preference order

Maximum_primaries
Desired_primaries

A number The desired and maximum number of
nodes on which the RG should run
simultaneously. See below for details.

Implicit_network_
dependencies

True or False If a resource specifies
network_resources_used, the
cluster can treat those as implicit
strong dependencies, depending on
the setting of this property.

Global_resources_used * or ‘‘" (empty
string)

A * indicates that resources in the
resource group use the global file
system.

Pingpong_interval A number, in
seconds

The cluster will refrain from
attempting to start the resource group
on a node within
Pingpong_interval seconds after
a failure to start on that node.

RG_system True or False If true, this resource group can’t be
brought offline or modified.

Pathprefix A string A directory for administrative files.
Used only for resource groups
containing NFS resources.

Suspend_automatic_
recovery

True or False Read-only reflection of the current
state of the resource group set with
the clrg suspend command

One of the most important purposes of these properties is to control on which and how many
nodes the cluster attempts to bring the resource group online. The nodelist property spec-
ifies the nodes, in preference order, on which the resource group should attempt to run. You
can change this order at any time, but you can’t remove a node from the nodelist on which the
resource group is currently running. For example, you can change the order of the nodelist on
test-rg to put dizzy first, using the clrg set command:

/usr/cluster/bin/clrg set -p nodelist=dizzy,bird test-rg
/usr/cluster/bin/clrg show -v test-rg

=== Resource Groups and Resources ===

614

Clustering OpenSolaris for High Availability 16

Resource Group: test-rg
RG_description: <NULL>

RG_mode: Failover
RG_state: Managed
RG_project_name: default
RG_affinities: <NULL>

RG_SLM_type: manual
Auto_start_on_new_cluster: True
Failback: False
Nodelist: dizzy bird
Maximum_primaries: 1
Desired_primaries: 1
RG_dependencies: <NULL>

Implicit_network_dependencies: True
Global_resources_used: <All>

Pingpong_interval: 3600
Pathprefix: <NULL>

RG_System: False
Suspend_automatic_recovery: False

Now when you bring the resource group online, it starts on node dizzy instead of bird,
because the cluster brings it online on the first node in the nodelist, if possible:

/usr/cluster/bin/clrg online -M test-rg
/usr/cluster/bin/clrg status test-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg dizzy No Online

bird No Offline

After changing the nodelist order, run clrg remaster to move the resource group
to its preferred node or nodes.

The maximum_primaries and desired_primaries properties specify the number of
nodes, or primaries, on which the resource group should run simultaneously. These values
are constrained by the rg_mode property, which is read-only after resource group creation. If
rg_mode is failover, then maximum_primaries and desired_primaries cannot be set
to anything other than 1. However, you can set these values at resource group creation time to
create a scalable resource group:

/usr/cluster/bin/clrg set -p maximum_primaries=2 test-rg
clrg: (C337559) test-rg: Maximum_Primaries must be 1 for a Failover type
resource group

/usr/cluster/bin/clrg create -p maximum_primaries=2 –p\
desired_primaries=2 test-scal-rg

615

Part IV OpenSolaris Reliability, Availability, and Serviceability

/usr/cluster/bin/clrg show -v test-scal-rg

=== Resource Groups and Resources ===

Resource Group: test-scal-rg
RG_description: <NULL>

RG_mode: Scalable
RG_state: Unmanaged
RG_project_name: default
RG_affinities: <NULL>

RG_SLM_type: manual
Auto_start_on_new_cluster: True
Failback: False
Nodelist: bird dizzy
Maximum_primaries: 2
Desired_primaries: 2
RG_dependencies: <NULL>

Implicit_network_dependencies: True
Global_resources_used: <All>

Pingpong_interval: 3600
Pathprefix: <NULL>

RG_System: False
Suspend_automatic_recovery: False

Resource type, resource group, and resource property names are not case
sensitive.

Another useful resource group property is RG_affinities. You can specify that a resource
group has either a positive affinity or a negative affinity for one or more resource groups. A
positive affinity means that it likes to run on the same node. A negative affinity means it likes to
run on a different node. A strong affinity makes this desire a requirement, while a weak affinity
requests ‘‘best effort.’’ Use + for a weak positive affinity, ++ for strong positive, - for weak
negative and -- for strong negative. For example, to set a strong positive affinity of test-rg on
test-rg-1, use the following command:

/usr/cluster/bin/clrg set -p rg_affinities=++test-rg-1 test-rg

With the affinity setting, test-rg cannot come online on a node unless test-rg-1 is online
on that node:

/usr/cluster/bin/clrg online test-rg
clrg: (C135343) No primary node could be found for resource group test-rg; it
remains offline

/usr/cluster/bin/clrg online test-rg-1
/usr/cluster/bin/clrg status test-rg test-rg-1

=== Cluster Resource Groups ===

616

Clustering OpenSolaris for High Availability 16

Group Name Node Name Suspended Status
---------- --------- --------- ------
test-rg dizzy No Offline

bird No Online

test-rg-1 bird No Online
dizzy No Offline

/usr/cluster/bin/clrg switch -n dizzy test-rg
clrg: (C406107) Cannot switch resource group test-rg online on node dizzy
because it has strong positive affinities for resource group(s) {test-rg-1},
which are not online on that node.

Negative affinities can be useful for a rudimentary load-balancing of services on different nodes
of the cluster. For example, if you have one service that’s much more important than another
service, the less important service can declare a strong negative affinity for the more important
service, ensuring that the more important one can always get a node to itself.

Resources
A resource represents an individual service on the cluster, such as the Apache web server, a
highly available file system, or a logical hostname. Resources are always created inside a resource
group, and are attached to that resource group for their lifetime. Resources must always be
instantiated from a specific resource type.

You can manage resources on the cluster with the /usr/cluster/bin/clresource com-
mand, abbreviated /usr/cluster/bin/clrs. For example, you can view a list of the resources
with clrs list:

/usr/cluster/bin/clrs list
miles-rs
apache-scal-rs
azp-rs
coltrane-rs
apache-rs

Resource life cycles

Like resource groups, resources go through a life cycle. You can create a resource with clrs
create, specifying the resource type to use as a template, the resource group that it lives in,
and zero or more property values:

/usr/cluster/bin/clrs create -g apache-scal-rg -t apache –p\
Bin_dir=usr/apache2/2.2/bin -p Resource_dependencies=miles-rs –p\
scalable=true -p port_list=80/tcp apache-scal-rs

617

Part IV OpenSolaris Reliability, Availability, and Serviceability

A resource is created in the enabled mode, which means that it attempts to come online on any
node on which its containing resource group is online. For example, because apache-scal-rg
was already online, you can see that apache-scal-rs goes online as well:

/usr/cluster/bin/clrs status apache-scal-rs

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
apache-scal-rs bird Online Online - Completed successfully.

dizzy Online Online - Completed successfully.

You can’t bring the resource offline directly without bringing the whole resource group offline,
but you can disable the resource, which forces it offline and sets it such that it won’t be brought
online, even if its containing resource group goes online. You can disable the resource with
clrs disable:

/usr/cluster/bin/clrs disable apache-scal-rs
/usr/cluster/bin/clrs status apache-scal-rs

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
apache-scal-rs bird Offline Offline - Successfully stopped
Apache Web Server.

dizzy Offline Offline - Successfully stopped
Apache Web Server.

/usr/cluster/bin/clrg status apache-scal-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-scal-rg bird No Online

dizzy No Online

Resource properties
Like resource groups, resources have properties. Resource properties, however, are more com-
plicated. There are two types of resource properties: standard properties, which are the same for
each resource, and extension properties, which are defined in the RTR file of the resource type.
Table 16-3 lists the resource standard properties.

The r_properties(5) man page describes the resource properties.

618

Clustering OpenSolaris for High Availability 16

TABLE 16-3

Standard Resource Properties

Property Values Description

Retry_interval Retry_count
Thorough_probe_interval
Cheap_probe_interval

Integers Resource monitor
settings, specifying the
number of restarts to
attempt on a failed
resource within a specific
interval before failing
over the resource group
to another node, and the
amount of time between
monitor probes

Load_balancing_weights
Load_balancing_policy
Affinity_timeout UDP_affinity
Weak_affinity Generic_affinity
Round_robin

Various Network load balancing
for scalable services. See
the section on ‘‘Network
load balancing’’ later in
this Chapter for details.

Start_timeout Stop_timeout etc. Integers, in seconds Timeout values for the
callback methods. If the
method doesn’t complete
in that amount of time,
the cluster infrastructure
kills it and considers it a
failure.

Port_list Comma-separated
list of
<port number>/
protocol

List of ports on which
the service listens

Scalable true or false Indicates whether the
resource is scalable or
failover

Network_resources_used List of resource names Specifies logical
hostname or shared
address resources on
which this resource
depends

Failover_mode NONE, SOFT, HARD,
RESTART_ONLY,
LOG_ONLY

Specifies the behavior on
start and stop failures of
the resource. Consult the
documentation for
details.

619

Part IV OpenSolaris Reliability, Availability, and Serviceability

TABLE 16-3 (continued)

Property Values Description

R_description string Human-readable
description of the
resource. Ignored by the
cluster.

Resource_dependencies
Resource_dependencies_weak
Resource_dependencies_restart
Resource_dependencies_offline_
restart

Lists of other
resources

Specifies dependencies of
this resource on other
resources.

Resource_project_name String The OpenSolaris resource
management project in
which the processes
under control of this
resource should run. See
Chapter 18 for details
about OpenSolaris
resource management.

Type String Resource type

Type_version String Version of the resource
type. Can be set to
upgrade a resource to a
new version of the
resource type.

In addition to the standard properties, each resource type defines extension properties. You can
view the properties of a resource with clrs show:

/usr/cluster/bin/clrs show -v apache-scal-rs

=== Resources ===

Resource: apache-scal-rs
Type: SUNW.apache:4.1
Type_version: 4.1
Group: apache-scal-rg
R_description:
Resource_project_name: default
Enabled{bird}: False
Enabled{dizzy}: False
Monitored{bird}: True
Monitored{dizzy}: True

620

Clustering OpenSolaris for High Availability 16

Resource_dependencies: miles-rs
Resource_dependencies_weak: <NULL>

Resource_dependencies_restart: <NULL>

Resource_dependencies_offline_restart: <NULL>

--- Standard and extension properties ---

Monitor_Uri_List: <NULL>

Class: extension
Description: URI(s) that will be

monitored by the agent probe
Per-node: False
Type: stringarray

Probe_timeout: 90
Class: extension
Description: Time out value for the

probe (seconds)
Per-node: False
Type: int

...

Resource dependencies are some of the most interesting resource properties. With resource
dependencies, you can specify that a resource depends on one or more other resources.
The dependent resource will always start after, and stop before, the resource on which it
depends. If the resource on which it depends is not online, the resource will not go online.
Resource_dependencies_weak allows a weaker form of dependency in which the ordering
is enforced only if both resources start simultaneously. This type of dependency is useful
only for resources in the same resource group. The two forms of restart dependencies,
resource_dependencies_restart, and resource_dependencies_offline_restart,
enable a dependent resource to be restarted whenever a resource it depends on is restarted. To
set resource dependencies, use clrs set:

/usr/cluster/bin/clrs set -p Resource_dependencies=miles-rs apache-scal-rs

With this dependency, the apache-scal-rs resource cannot start unless the miles-rs
resource is online. For example, if you disable miles-rs and then enable apache-scal-rs,
apache-scal-rs will fail to go online. This leaves its containing resource group,
apache-scal-rg in the PENDING_ONLINE_BLOCKED state, meaning that one or more of
its resources (in this case, apache-scal-rs) is blocked, waiting for dependencies to be
fulfilled:

/usr/cluster/bin/clrs disable miles-rs
/usr/cluster/bin/clrs enable apache-scal-rs
(C814348) WARNING: on node bird, resource group apache-scal-rg is in
PENDING_ONLINE_BLOCKED state

(C814348) WARNING: on node dizzy, resource group apache-scal-rg is in
PENDING_ONLINE_BLOCKED state

621

Part IV OpenSolaris Reliability, Availability, and Serviceability

/usr/cluster/bin/clrs status apache-scal-rs

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
apache-scal-rs bird Offline Offline - Successfully stopped
Apache Web Server.

dizzy Offline Offline - Successfully stopped
Apache Web Server.

Now if you enable miles-rs, apache-scal-rs will automatically come online because its
dependency is fulfilled:

/usr/cluster/bin/clrs enable miles-rs
/usr/cluster/bin/clrs status apache-scal-rs

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
apache-scal-rs bird Online Online - Completed successfully.

dizzy Online Online - Completed successfully.

Volume management
The examples so far in this chapter have used either UFS on raw devices or ZFS. However,
Open HA Cluster also supports volume management with the Solaris Volume Manager. You
can create disk sets on shared storage and register them as device groups with Open HA Cluster
using the metaset command. A device group is a highly available disk set that can be accessed
from any node of the cluster and is automatically failed over to a different node if its current
master dies.

The Solaris Volume Manager is discussed in Chapter 7.

You can create a global file system on top of a device group, rather than raw devices, to get
the benefits of volume management. See the Open HA Cluster/Sun Cluster documentation for
details.

Zones As Logical Nodes
Open HA Cluster provides two mechanisms for running services in OpenSolaris zones. The first
approach, failover zones, treats zones as a logical resource, just as storage is a logical resource
managed by the HAStoragePlus data service and IP addresses are logical resources managed by
the Logical Hostname and Shared Address data services. Zones are managed by the Solaris Con-
tainers data service. This approach treats the zones as black boxes, starting or stopping an entire

622

Clustering OpenSolaris for High Availability 16

zone on the nodes on which it should run, similar to the way storage is mounted or network
addresses are configured on nodes on which they are needed. The services that run in the zones
are managed by separate resources with dependencies on the Solaris Containers resource. The
main benefit of this approach is that it can be used with branded zones, such as zones running
Linux. Thus, you can essentially create a virtual cluster of Linux nodes on top of an OpenSolaris
installation. Consult the Solaris Containers Data Service documentation for details.

Zones, including branded zones, are discussed in Chapter 19.

The second approach treats zones as logical nodes, enabling you to specify the zones themselves
in resource group nodelists. Although this approach can’t support branded zones, it has the
benefit of working with standard data services without modification. This feature is particularly
useful for prototyping and testing on a single-node cluster.

As an example of the ‘‘zones as logical nodes’’ approach, suppose you want to run Apache in
failover mode between zone mingus on node dizzy and zone brubeck on node bird.

You can use a configuration similar to that described previously in the section ‘‘Making Apache
highly available.’’ This configuration consists of a single failover resource group containing a
logical hostname resource, an HAStoragePlus failover ZFS zpool resource, and the Apache
resource itself. The principal difference is that the resource group specifies nonglobal zones in its
nodelist, rather than physical nodes.

This example starts from scratch. If you configured the failover or scalable Apache
as described earlier in this chapter, then first disable those resources, unmanage the

resource groups, and destroy the zpool so they don’t interfere with failover Apache:

/usr/cluster/bin/clrg offline apache-scal-rg apache-sa
/usr/cluster/bin/clrs disable miles-rs apache-scal-rs
/usr/cluster/bin/clrg unmanage apache-scal-rg apache-sa
/usr/cluster/bin/clrg offline apache-rg
/usr/cluster/bin/clrs disable apache-rs azp-rs coltrane-rs
/usr/cluster/bin/clrs delete apache-rs azp-rs coltrane-rs
zpool destroy azp
/usr/cluster/bin/clrg delete apache-rg

The HAStoragePlus resource is deleted before removing the zpool; and the logical hostname
resource must be deleted to reuse the network address in the next example. Thus, the whole
apache-rg is cleaned up.

Configuring failover storage
You configure failover storage for nonglobal zones similarly to configuring it for global zones.
First, create the zpool:

zpool create azpng /dev/did/dsk/d14
zpool status

623

Part IV OpenSolaris Reliability, Availability, and Serviceability

pool: azpng
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
azpng ONLINE 0 0 0
/dev/did/dsk/d14 ONLINE 0 0 0

errors: No known data errors

Next, create the resource group that will contain the Apache, HAStoragePlus, and logical host-
name resources:

/usr/cluster/bin/clrg create -n dizzy:mingus,bird:brubeck apache-ngz-rg

Note the <nodename>:<zonename> syntax for specifying nonglobal zones as logical nodes.

Nonglobal zones allow restricted access to some of the cluster administrative com-
mands, but you should generally administer your cluster from the global zones so

that you don’t run into unexpected problems.

Now register the HAStoragePlus resource type and create the HAStoragePlus resource to
manage the zpool:

/usr/cluster/bin/clrt register HAStoragePlus
/usr/cluster/bin/clrs create -g apache-ngz-rg -t HAStoragePlus –p\
Zpools=azpng azp-ngz-rs

Bring the resource group online with clrg online:

/usr/cluster/bin/clrg online -M apache-ngz-rg
/usr/cluster/bin/clrg status apache-ngz-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-ngz-rg dizzy:mingus No Online

bird:brubeck No Offline

You can now verify that the cluster framework is importing the zpool on the physical node
dizzy and making it available inside the nonglobal zone mingus on which the resource group
is online. In the global zone on dizzy, you can see the zpool, but the azpng ZFS file system is
not mounted in the usual place:

dizzy# hostname
dizzy
dizzy# zpool status

624

Clustering OpenSolaris for High Availability 16

pool: azp
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
azp ONLINE 0 0 0
c4t600C0FF000000000092AFF00C5B5D70Bd0 ONLINE 0 0 0

errors: No known data errors
dizzy# ls /azpng
/azpng: No such file or directory

In fact, the file system is mounted in the nonglobal zone’s root path, so it is accessible from the
nonglobal zone:

mingus# hostname
mingus
mingus# ls /azpng
mingus#

Note that you don’t need to do anything special to make the file system available in the non-
global zone other than specify nonglobal zones in the resource group’s nodelist. When bringing
the resource group online on a logical node, the cluster framework automatically imports the
zpool with an alternate root to make it available inside the nonglobal zone.

ZFS, including importing zpools with alternate roots, is discussed in Chapter 8.

Now that the failover storage is working, create your htdocs directory on it and configure
Apache’s DocumentRoot. First, create the htdocs and a dummy index.html. From the global
zone on the node on which the zpool is imported, create the file system:

dizzy# zfs create azpng/htdocs

From the nonglobal zone, create index.html:

mingus# echo "hello, world, from ngzone" > /azpng/htdocs/index.html
mingus# chgrp bin /azpng/htdocs/index.html

Still in the nonglobal zone, change /etc/apache2/2.2/httpd.conf so that DocumentRoot
points to the failover file system:

mingus# grep htdocs httpd.conf
DocumentRoot "/azpng/htdocs"
<Directory "/azpng/htdocs">

At this point, you should verify that Apache starts up and functions properly in the nonglobal
zone mingus. See the instructions in the section ‘‘Making Apache highly available’’ earlier in the
chapter.

625

Part IV OpenSolaris Reliability, Availability, and Serviceability

Finally, on the second zone, brubeck, repeat the steps to configure httpd.conf and to test
that Apache works. You can switch the resource group to that zone with clrg switch and the
<nodename>:<zonename> notation:

/usr/cluster/bin/clrg switch -n bird:brubeck apache-ngz-rg

Configuring logical hostname networking
Configuring networking for nonglobal zones is identical to configuring it for physical nodes. The
cluster software takes care of the details of making the IP address accessible to processes run-
ning inside the zone. Simply create the logical hostname resource in the resource group as usual,
from the global zone:

/usr/cluster/bin/clrslh create -g apache-ngz-rg –h coltrane coltrane-rs

In each nonglobal zone, change the ServerName entry in /etc/apache2/2.2/httpd.conf:

grep ServerName httpd.conf
ServerName gives the name and port that the server uses to identify itself.
ServerName coltrane

Configuring failover Apache
The final step is to configure the Apache service itself. Once you’ve set up httpd.conf properly
in each nonglobal zone, this step is identical to the physical node case:

/usr/cluster/bin/clrt register apache
/usr/cluster/bin/clrs create -g apache-ngz-rg -t apache –p\
Bin_dir=/usr/apache2/2.2/bin -p Port_list=80/tcp –p\
Resource_dependencies=azp-ngz-rs,coltrane-rs apache-ngz-rs

/usr/cluster/bin/clrg status apache-ngz-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
apache-ngz-rg dizzy:mingus No Offline

bird:brubeck No Online

/usr/cluster/bin/clrs status apache-ngz-rs

=== Cluster Resources ===

Resource Name Node Name State Status Message
------------- --------- ----- --------------
apache-ngz-rs dizzy:mingus Offline Offline

bird:brubeck Online Online - Completed successfully.

626

Clustering OpenSolaris for High Availability 16

Now that the service is configured and online, test it from any machine that can resolve
coltrane through DNS:

$ /usr/sfw/bin/wget -q coltrane.sfbay
$ more index.html
hello, world, from ngzone

Network load balancing
When Open HA Cluster runs a service in scalable mode, it functions as a software load balancer,
distributing network requests across the different nodes hosting the service. The scalable Apache
example earlier in this chapter demonstrated how to set up a scalable service. This section shows
how to tune the load balancing settings.

The Load_balancing_policy resource property determines the load balancing settings.
The default value is LB_WEIGHTED, which distributes incoming network requests to the nodes
hosting the service according to the Load_balancing_weights property. The default value for
Load_balancing_weights is NULL, which means that requests are evenly distributed across
the nodes:

/usr/cluster/bin/clrs show -p Load_balancing_policy apache-scal-rs

=== Resources ===

Resource: apache-scal-rs

--- Standard and extension properties ---

Load_balancing_policy: LB_WEIGHTED
Class: standard
Description: Determines how the load is balanced across different nodes.
Type: string

/usr/cluster/bin/clrs show -p Load_balancing_weights apache-scal-rs

=== Resources ===

Resource: apache-scal-rs

--- Standard and extension properties ---

Load_balancing_weights: <NULL>

Class: standard
Description: Indicates the weights taken by different nodes for balancing
the load.

Type: stringarray

627

Part IV OpenSolaris Reliability, Availability, and Serviceability

You can set the Load_balancing_weights property by specifying a weight for each node. The
percentage of incoming requests directed to that node is the weight for that node divided by the
total weights for all nodes:

/usr/cluster/bin/clrs set -p Load_balancing_weights=1@dizzy,3@bird\
apache-scal-rs

/usr/cluster/bin/clrs show -p Load_balancing_weights apache-scal-rs
=== Resources ===

Resource: apache-scal-rs

--- Standard and extension properties ---

Load_balancing_weights: 1@dizzy 3@bird
Class: standard
Description: Indicates the weights taken by different nodes for balancing
the load.

Type: stringarray

With these weight settings, node dizzy will get 1 divided by 4, or 25% of the network
requests, and node bird will get 3 divided by 4, or 75% of the incoming requests. Note
that you set the Load_balancing_policy and Load_balancing_weights on the Apache
resource itself, not on the shared address network resource.

A weighted distribution policy is fine for simple services, but if your services have any sort of
session state, client requests from the same IP address must be directed to the same physical
host. You can set this sticky load balancing policy with the LB_STICKY policy.

The Load_balancing_policy is set at resource creation time, and cannot be subse-
quently changed:

/usr/cluster/bin/clrs create -g apache-scal-rg -t apache –p\
Bin_dir=/usr/apache2/2.2/bin -p Resource_dependencies=miles-rs –p\
scalable=true -p Load_balancing_policy=Lb_sticky -p port_list=80/tcp apache-scal-rs

With this setting, incoming requests from the same client are directed to the same physical
server.

Other cluster commands
Several other cluster commands, not yet mentioned in this chapter, can come in handy. In addi-
tion to the option to shut down the cluster, the /usr/cluster/bin/cluster command pro-
vides a summary of information about the cluster and its various subcomponents, with either the
show or status options. Here’s an example:

/usr/cluster/bin/cluster show

=== Cluster ===

628

Clustering OpenSolaris for High Availability 16

Cluster Name: jazz
clusterid: 0x480D02B8
installmode: disabled
heartbeat_timeout: 10000
heartbeat_quantum: 1000
private_netaddr: 172.16.0.0
private_netmask: 255.255.248.0
max_nodes: 64
max_privatenets: 10
udp_session_timeout: 480
global_fencing: pathcount
Node List: bird, dizzy

=== Host Access Control ===

Cluster name: jazz
Allowed hosts: None
Authentication Protocol: sys

...

Much of the information about specific components can be obtained with the command for that
area. For example, in addition to evacuating a node, the /usr/cluster/bin/clnode com-
mand provides information about cluster nodes with the show or status options, and can be
used to add a node to or remove a node from a cluster:

/usr/cluster/bin/clnode status

=== Cluster Nodes ===

--- Node Status ---

Node Name Status
--------- ------
bird Online
dizzy Online

The /usr/cluster/bin/clquorum command provides information about and manages quo-
rum devices:

/usr/cluster/bin/clquorum list
d3
bird
dizzy
/usr/cluster/bin/clquorum add d4
/usr/cluster/bin/clquorum list
d3
d4
bird
dizzy

629

Part IV OpenSolaris Reliability, Availability, and Serviceability

/usr/cluster/bin/clquorum status

=== Cluster Quorum ===

--- Quorum Votes Summary ---

Needed Present Possible
------ ------- --------
3 4 4

--- Quorum Votes by Node ---

Node Name Present Possible Status
--------- ------- -------- ------
bird 1 1 Online
dizzy 1 1 Online

--- Quorum Votes by Device ---

Device Name Present Possible Status
----------- ------- -------- ------
d3 1 1 Online
d4 1 1 Online

/usr/cluster/bin/clquorum remove d4

Use the /usr/cluster/bin/clinterconnect command to obtain information about and
manage the private interconnects:

/usr/cluster/bin/clinterconnect show

=== Transport Cables ===

Transport Cable: bird:ce1,switch2@1
Endpoint1: bird:ce1
Endpoint2: switch2@1
State: Enabled

Transport Cable: bird:bge1,switch1@1
Endpoint1: bird:bge1
Endpoint2: switch1@1
State: Enabled

Transport Cable: dizzy:bge1,switch1@2
Endpoint1: dizzy:bge1
Endpoint2: switch1@2
State: Enabled

630

Clustering OpenSolaris for High Availability 16

Transport Cable: dizzy:ce1,switch2@2
Endpoint1: dizzy:ce1
Endpoint2: switch2@2
State: Enabled

...

In addition to providing information about devices, the /usr/cluster/bin/cldevice com-
mand can manage the devices, including enabling and disabling monitoring of the disk paths.
Monitoring is enabled by default, but you can disable it if you want.

Finally, the /usr/cluster/bin/sccheck command checks a multitude of configuration set-
tings on the cluster and reports any possible misconfigurations.

Making Custom Services Highly Available
Because Open HA Cluster is an application-agnostic platform for high availability, you can make
almost any off-the-shelf application highly available, even if there’s no prebuilt data service for
that application. If SMF is already managing your service, then you can use the SMF Proxy data
service. Otherwise, you can use the generic data service (GDS).

Open HA Cluster does not provide session state failover, so interactive applications
such as telnet or ssh are generally not good candidates for high availability on

this platform. The Solaris Cluster Data Service Developers Guide listed in the ‘‘Resources’’ section
at the end of this chapter contains a complete list of requirements that an application must meet
in order to qualify for high availability with Open HA Cluster.

SMF Proxy
If SMF is already managing your service on a single node basis, then you can use an SMF Proxy
to turn it into a highly available service on the cluster by specifying only the Fault Managed
Resource Identifier (FMRI) of the service and the path to its manifest. For example, suppose you
have an application, myservice, that listens on port 1234, and is managed as an SMF service
on each node of your cluster:

svcs myservice
STATE STIME FMRI
online 16:37:24 svc:/myservice:default

To turn this single-node service into a multi-node service, first create a text file listing the service
FMRI and the path to its manifest file:

cat /opt/cluster/test/bin/psi
<svc:/myservice:default>,</opt/cluster/test/bin/myservice.xml>

631

Part IV OpenSolaris Reliability, Availability, and Serviceability

FMRIs and SMF are covered in Chapters 12 and 13, respectively.

Now you run just five cluster commands. First, create the resource group and network address
resource:

clrg create myservice-proxy-rg
clrslh create -g myservice-proxy-rg -h coltrane coltrane-rs

Register the Proxy_SMF_failover resource type:

clrt register Proxy_SMF_failover

There are actually three different SMF proxy resource types: Proxy_SMF_Failover,
Proxy_SMF_Multimaster, and Proxy_SMF_Scalable, which turn an SMF service into

an HA failover service, a multimaster service (running on more than one node simultaneously), or
a network load-balanced service, respectively.

Finally, create the proxy resource that will manage the SMF service, specifying the path to the
file containing the FMRI and manifest as the proxied_service_instances property:

/usr/cluster/bin/clrs create -g myservice-proxy-rg -t Proxy_SMF_failover\
-p proxied_service_instances=/opt/cluster/test/bin/psi –p\
Resource_dependencies=coltrane-rs myservice-proxy-rs

Now you can bring the resource group online and verify its status:

clrg online -M myservice-proxy-rg
clrg status myservice-proxy-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
myservice-proxy-rg bird No Online

dizzy No Offline

Because the resource group is running on node bird, you expect the underlying SMF service to
be online on that node:

bird# hostname
bird
bird# svcs myservice
STATE STIME FMRI
online 16:45:28 svc:/myservice:default

The SMF service should be offline on the other node:

dizzy# hostname
dizzy

632

Clustering OpenSolaris for High Availability 16

dizzy# svcs myservice
STATE STIME FMRI
offline 16:45:22 svc:/myservice:default

If you switch the resource group to dizzy, the underlying SMF service goes offline on bird
and online on dizzy:

clrg switch -n dizzy myservice-proxy-rg
clrg status myservice-proxy-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
myservice-proxy-rg bird No Offline

dizzy No Online
dizzy# hostname
dizzy
dizzy# svcs myservice
STATE STIME FMRI
online 16:46:41 svc:/myservice:default
bird# hostname
bird
bird# svcs myservice
STATE STIME FMRI
offline 16:46:40 svc:/myservice:default

Generic data service
The simplest way to make an application not managed by SMF highly available is to use
the generic data service (GDS). This resource type provides a generic interface for managing
applications as resources. At a minimum, you provide only a start command and listening port
for your application. The GDS takes care of starting the application on the node(s) where it
should run, stopping it with signals, and even monitoring it by attempting to connect to the
listening port.

For example, suppose the myservice application introduced earlier was not being man-
aged already by SMF. You can make this service highly available with only five cluster
commands.

First, ensure that you’ve installed the application on both nodes of the cluster. In this example,
the daemon lives in /opt/cluster/test/bin/.

Next, register the GDS resource type:

/usr/cluster/bin/clrt register gds

633

Part IV OpenSolaris Reliability, Availability, and Serviceability

Then create a resource group and a network address resource:

/usr/cluster/bin/clrg create myservice-rg
/usr/cluster/bin/clrslh create -g myservice-rg –h coltrane coltrane-rs

Add a resource of type generic data service, specifying the start command (simply the path to
the daemon in this case), the listening port, the signal to be used to stop the daemon, and the
network resources used:

/usr/cluster/bin/clrs create -g myservice-rg -t gds –p\
Start_command=/opt/cluster/test/bin/myservice –p\
Resource_dependencies=coltrane-rs -p Stop_signal=15 -p port_list=1234/tcp\
myservice-rs

Finally, bring the service online and verify its status:

/usr/cluster/bin/clrg online -M myservice-rg
/usr/cluster/bin/clrg status myservice-rg

=== Cluster Resource Groups ===

Group Name Node Name Suspended Status
---------- --------- --------- ------
myservice-rg bird No Online

dizzy No Offline

If you want more control over how the cluster manages your service, GDS enables you to specify
additional information, including a stop command (if you don’t want to use signals), a vali-
date command, a probe command for application-specific monitoring, and other settings.

Disaster Recovery with Open High
Availability Cluster
As described earlier, the principal reason to consider using the Open High Availability Cluster
software is to keep your business running, even in the face of a major catastrophe. The term
business continuity derives from this requirement. Recovery from localized equipment failures can
be handled by automatically failing over services to redundant systems in the same datacenter
using the Open HA Cluster features described so far in this chapter. However, failing over to
another machine in the same room is insufficient in the face of more widespread disasters,
such as the floods that caused so much havoc in New Orleans after hurricane Katrina in
2005.

Recovering from disasters of that magnitude requires advance planning and a backup infrastruc-
ture at a geographic distance from the primary site. The Open HA Cluster Geographic Edition
framework can provide a key part of the disaster recovery infrastructure and plan that you need.

634

Clustering OpenSolaris for High Availability 16

FIGURE 16-4

RPO and RTO are objectives that address data loss and recovery time in a business continuity
plan.

Moment of
disaster

RTORPO

Last good checkpoint Service restored

Time

Terminology
Before looking at the Geographic Edition in detail, you should understand two common terms
used in the context of business continuity: recovery point objective (RPO) and recovery time objec-
tive (RTO). These concepts are illustrated in Figure 16-4.

Recovery Point Objective
Put simply, RPO can be defined as ‘‘how much data can you afford to lose?’’ Your system must
make regular copies of operating data in a safe place. If the primary data is lost, it will be neces-
sary to restore from the most recent copy. The maximum permissible time between the time of
the last copy and the time disaster strikes is the RPO.

Recovery Time Objective
The simple definition of RTO is ‘‘how long can you afford to be offline?’’ If the disaster is of
such magnitude that the whole primary site is lost, what is the maximum time it will it take to
get the data restored and made available from a secondary site elsewhere? That is the RTO.

Note that both RPO and RTO are objectives. After being defined in the plan, the system must be
configured to achieve them. A common mistake is to start with the technology and then try to
make the plan fit it. For a successful disaster recovery installation, the need for top-down design
cannot be overstressed. Don’t start with the software and then figure out what to do with it. Plan
your disaster response, and let that guide the design of the Open HA Cluster installation.

Open HA Cluster Geographic Edition
In the past, a common approach to disaster recovery was to make regular backups onto tape and
to store those at a remote site. This kind of backup is still important for archival purposes, but if
such backups are made daily, then an RPO of less than 24 hours cannot be guaranteed, and the
need to obtain new equipment prior to restoring the tapes could result in RTO measured in days
or weeks. That might be acceptable for back-office operations such as payroll processing, but it

635

Part IV OpenSolaris Reliability, Availability, and Serviceability

is not suitable for online services such as banking and vending. For such services, RPO is often
measured in minutes, and RTO in hours.

The solution to this problem is continuous replication of modified data to a remote site, man-
aged together with the applications that use the data. By managing both data and application
together in one framework, you can ensure continuous availability of the service offered by the
application. Open HA Cluster Geographic Edition provides that coordinated management.

Don’t succumb to the temptation of specifying RPO as zero, which implies that data
at the primary and secondary sites must always be identical in all circumstances. If

the secondary site is unavailable, perhaps for maintenance or as a result of a network outage, then
an RPO of zero could be achieved only if the primary site stopped writing to local storage. That
would make the secondary site a single point of failure, which is unlikely to be what is required.

Setting up a Geographic Edition configuration
A single cluster, as described earlier in this chapter, provides a high degree of data integrity
and availability through tight integration between servers and storage. As the distance between
cluster components increases, however, the additional network delays involved can create
performance problems. To protect against a citywide disaster, a redundant copy of data must
be several hundred kilometers away, but the round-trip delay for a packet of data on a 100-km
path is approximately 1 millisecond. Such a delay will severely slow down writes to storage.
Stretching a single cluster between a primary and backup site over such a distance soon
becomes impractical when good performance is required.

Open HA Cluster Geographic Edition combines two clusters, one at each location. These could
be single-node clusters, although to provide maximum availability in normal operation it is
advisable to use at least a two-node cluster at the primary site.

Application management
Both clusters are configured with the standard Open HA Cluster software to provide local appli-
cation and storage management, as described earlier.

Heartbeat
Each cluster in a partnership monitors the connection to its partner by means of a heartbeat. By
default, the standard configuration uses TCP/UDP messages, but you can add custom heartbeat
modules for other network types.

Data replication
To provide rapid, continuous transfer of data changes from the primary site to the secondary
site, you can use one of several kinds of data replication software. Some are commercial and
others are available as open source. Open HA Cluster Geographic Edition supports a number of
these products, and you can develop control modules for others.

636

Clustering OpenSolaris for High Availability 16

Supplied replication control modules
Open HA Cluster Geographic Edition provides plug-ins for several implementations of data
replication software. Many of these, such as StorageTek TrueCopy, Symmetrix Remote Data
Replicator, and Oracle DataGuard, are commercial proprietary products. However, StorageTek
Availability Suite (AVS) is open-source software available with OpenSolaris. AVS contains two
software components: the StorageTek Network Data Replicator (SNDR) and Instant Image (II),
a point-in-time snapshot utility. SNDR, which runs on one of the OpenSolaris cluster systems,
intercepts writes to a local storage volume. It copies the writes across the network to a partner at
the remote site, where they are applied to a storage volume. The two volumes are therefore kept
in step at the block level. AVS does not require any specific storage hardware: It works with all
local storage supported by Open Solaris.

Custom mechanisms
You can add support for other replication software by writing a Java MBean plug-in and associ-
ated control programs to control configuration, monitoring, and switchover of data replication.

An Open HA Cluster project is in progress to simplify this process through the use of the
generic Script-Based Plug-in (SBP). Developers will be able to use the SBP to add support for
other replication types, including custom one-off designs, by writing scripts in a manner similar
to the GDS agent for Open HA Cluster described earlier in this chapter. It is not necessary to
develop a new Java MBean if the SBP is used.

Topology and architecture
There are two principal ways to configure clusters for geographic protection: as an active-active
pair, in which each site replicates to the other, or as a star, in which one or more remote sites
replicate to a central disaster recovery location. The two topologies are shown in Figures 16-5
and 16-6, respectively.

FIGURE 16-5

In an active-active topology, each site replicates to the other.

New York

Active-Active Topology

Paris

637

Part IV OpenSolaris Reliability, Availability, and Serviceability

FIGURE 16-6

In a star topology, remote sites replicate to a central disaster recovery location.

RomeGeneva

London

Star Topology

Madrid

The Geographic Edition architecture maintains the hierarchical model of Open HA Cluster and
extends it vertically. Just as a single-site configuration will group servers and storage into a clus-
ter, a Geographic Edition configuration will group a pair of clusters into a partnership. One clus-
ter can be a member of multiple partnerships, as shown in the star configuration.

Within each partnership, you define one or more protection groups, each of which contains cluster
resource groups and data replication resources.

Installing and configuring Geographic Edition
Install Geographic Edition from the same medium from which you installed the main cluster
software. If you’re using Solaris Cluster Express (SCX), run the interactive installer script in the
Solaris_<platform> subdirectory of the unzipped installation image, where <platform> is
either sparc or x86:

./installer

Follow the onscreen instructions to select the following products from the Open High Availabil-
ity Cluster Geographic Edition submenu:

■ Open High Availability Cluster Geographic Edition

638

Clustering OpenSolaris for High Availability 16

■ The data replication software you want to use

■ (Optional) Open High Availability Cluster Geographic Edition Manager

You can install the software at the same time you install the main cluster software, but you must
configure and create both clusters before activating the Geographic Edition software. The two
clusters that make up a partnership must have compatible configurations. They don’t need to be
identical, but key managed resources, such as the names of application resource groups that are
to be protected by the Geographic Edition, must be the same on both clusters.

The Geographic Edition software has been designed so that it can be added to a run-
ning cluster with no disruption to applications that are running on the cluster. If this

is a requirement, refer to the full Solaris Cluster Geographic Edition documentation for detailed
information on how to do this safely.

Cluster names
The names of the clusters in a partnership are used to derive the network hostnames for the
clusters. This means that the names chosen for the clusters must correspond to the conventions
for Internet hostnames as described in RFC952. Specifically, do not use the underscore (_) and
period (.) characters. If you use invalid names, the Geographic Edition software displays an error
and will not start.

Configuring a partnership
This section provides an example of the basic configuration steps for two clusters named
newyork and paris. The first step is to start the framework on each cluster.

Starting the framework
Ensure that all the nodes are online and part of the cluster. To view the current status of the
cluster, run the following command from any node:

/usr/cluster/bin/cluster status

Then, on each cluster node, start the common agent container as root:

/usr/sbin/cacaoadm enable
/usr/sbin/cacaoadm start

On one node of each cluster, start the Geographic Edition framework with the following
command:

/usr/cluster/bin/geoadm start

Configuring trust between clusters
Communication between the clusters in a partnership must be secure. This requirement is par-
ticularly important when the two clusters are connected via a public network. The link between

639

Part IV OpenSolaris Reliability, Availability, and Serviceability

the clusters uses public key encryption to ensure this security, and the clusters must exchange
public keys as part of the initial configuration.

On one node of one cluster, use the following command to import the keys from the remote
cluster (paris in this example):

/usr/cluster/bin/geops add-trust -c paris

Repeat this process on a node of the other cluster. You can confirm that the key import has
been performed correctly by using the verify command:

/usr/cluster/bin/geops verify-trust -c paris

Creating the partnership
After the framework is started on both clusters and trust has been established between them,
create a partnership. A partnership is created on one cluster and then joined from the other
cluster, using the geops command. In the example, the partnership is called ny-paris and is
initially created from cluster newyork:

/usr/cluster/bin/geops create -c paris –p\
Notification_emailaddrs=admin@company.com ny-paris

This form of the command will use the default heartbeat to monitor the link between the clus-
ters, and will send an e-mail message to the address admin@company.com if the connection is
lost.

The partnership should then be joined from cluster paris:

/usr/cluster/bin/geops join-partnership –c newyork ny-paris

Configuring a protection group
After the two clusters have been linked in a partnership, you can create one or more protection
groups to manage applications and data replication. The following example creates a protection
group for an Apache web server whose data is replicated using AVS. The data volumes used are
managed by the Solaris Volume Manager, and must already exist. The example assumes that the
resource group for the web server is initially offline.

You must define all required resources, such as logical hostnames used for replication, on both
clusters before creating the protection group.

Creating the protection group
On one node of the cluster that will be the primary site, become superuser and create the
protection group with the geopg command. In this example, the protection group is called
apache-pg:

/usr/cluster/bin/geopg create –s ny-paris –d avs –o primary apache-pg

640

Clustering OpenSolaris for High Availability 16

Adding an AVS device group to the protection group
Before you add a device group to the protection group, use the geopg list command to ensure
that the protection group is offline, and that the Nodelist property of the protection group has
the same entries, in the same order, as the Nodelist property of the device group. If necessary,
change one or both nodelists to ensure that this condition is met.

Create the file /var/cluster/geo/avs/<dgname>-volset.ini, where <dgname> is
replaced by the name of the device group you are adding. This file must contain a valid SNDR
volume set definition. The following example shows such a file entry for a Solaris Volume
Manager volume named avsset. The entry must be on one line (ignore the line breaks in the
example, which result from the page size for this book):

lh-paris-1 /dev/md/avsset/rdsk/d100 /dev/md/avsset/rdsk/d101 lh-newyork-1
/dev/md/avsset/rdsk/d100 /dev/md/avsset/rdsk/d101 ip async C avsset

Add the device group to the protection group. This example adds a device group named
apache-ds to the protection group apache-pg:

/usr/cluster/bin/geopg add-device-group -p local_logical_host=lh-paris-1\
-p remote_logical_host=lh-newyork-1 -p Enable_volume_set=True apache-ds apache-pg

The Enable_volume_set=True property instructs the command to use the volset.ini file
that you created earlier, and automatically sets up replication of the volumes as defined in that
file. Replication is configured between the logical hostname lh-paris-1 on the local cluster to
lh-newyork-1 on the remote cluster.

Adding an application resource group to the protection group
Before you add an application resource group to the protection group, ensure that it exists on
both clusters and that the Auto_start_on_new_cluster property of the resource group is set
to False. In this example, the resource group name is apache-rg:

/usr/cluster/bin/clrg show -p auto_start_on_new_cluster apache-rg

Setting the Auto_start_on_new_cluster property to False ensures that the Geographic Edi-
tion framework will not attempt to start the resource group automatically.

Add the application resource group to the protection group:

/usr/cluster/bin/geopg add-resource-group apache-rg apache-pg

Copying the protection group information to the remote cluster
After creating the protection group on one cluster of the partnership, you must replicate it to
the other cluster. On one node of the other cluster, become superuser and use the geopg get
command:

/usr/cluster/bin/geopg get -s ny-paris apache-pg

641

Part IV OpenSolaris Reliability, Availability, and Serviceability

Activating the protection group
You can activate a protection group on only one cluster for maintenance purposes, but normally
you will activate it on both clusters of a partnership:

/usr/cluster/bin/geopg start -e global apache-pg

This will start the protection group and the data replication. The application resource group will
be brought online on the cluster designated as the primary site.

Geographic Edition operations
After a partnership has been created, the two clusters use a heartbeat to monitor each other and
the connection between them. If one site stops responding, the other will alert an administrator.
This alert can be an e-mail message as described in the preceding example, or it can result in the
execution of an arbitrary script. This script could, for example, trigger a pager message.

If the primary site is lost, then the secondary site will not automatically take over. This is
intentional, as the recovery of the computer infrastructure should be just a part of a much larger
reaction specified by the business continuity plan. Depending on the nature of the outage, other
tasks may need to be performed first, or it may be preferable to repair the outage rather than
experience the disruption of a transfer to a remote site. Consider, for example, a failure of a UPS
protecting the primary site power supply. Bypassing the faulty unit and restarting the systems
may be a preferable and more rapid solution to the outage.

If a transfer to the secondary site is required, two options are possible: switchover or takeover.
These are performed at the protection-group level; it is not necessary to operate on all protection
groups in a partnership together.

Switchover
A switchover is a managed swap of the roles within a protection group. The switchover
operation is fully automated after it has been initiated by user command. The replicated copies
of the data are synchronized and the replication is stopped. The cluster that was primary for
the protection group is reconfigured as secondary, and the previous secondary is made primary.
The replication is then restarted in the reverse direction, and the application resource group is
brought online on the new primary. This operation can be performed to enable maintenance and
upgrades on one cluster.

Takeover
A takeover is a unilateral promotion of the protection group secondary to the role of primary.
Replication is stopped, and if the existing primary can be reached it is placed offline. The storage
volumes are brought online on the new primary, and the application resource groups are started.

This is the emergency operation, normally used only when the primary site is no longer reach-
able and the secondary site must take over. It is not possible to guarantee that no data will be

642

Clustering OpenSolaris for High Availability 16

lost, because some replication updates may have been buffered for transmission at the primary
site, and they will be lost. It is in this scenario that the designated RPO becomes significant.

Because this action is performed automatically, it can be designed and tested in advance. If a
major disaster occurs, you don’t need experts for the replication and application software on
standby or have to worry about human error due to stress. A single command is sufficient to
provide a managed transition to the secure remote site:

/usr/cluster/bin/geopg takeover apache-pg

Customizing changeover functionality
You can specify a role-change action script as a property of a protection group. This script is
executed when the primary or secondary role of a protection group changes. It can be used to
update external services — for example, to remap entries in a naming service such as DNS so
that client systems are redirected to the new primary site:

/usr/cluster/bin/geopg set-prop -p RoleChange_ActionCmd=<script>\
-p RoleChange_ActionArgs=<arguments>

Monitoring the framework
Use the following to check the status of all the entities within an Open HA Cluster Geographic
Edition partnership:

/usr/cluster/bin/geoadm status
/usr/cluster/bin/geops list ny-paris
/usr/cluster/bin/geopg list apache-pg

Resources
The first place to look for information on Open HA Cluster is the HA Clusters community group
on OpenSolaris.org: http://opensolaris.org/os/community/ha-clusters. The com-
munity page contains links to all the active projects, documentation, presentations, an FAQ, and
more.

Details of Project Colorado, the effort to run Open HA Cluster on the OpenSolaris binary dis-
tribution and to minimize the hardware requirements, can be found on the project web page at
http://opensolaris.org/os/project/colorado.

For detailed instructions on using the cluster, consult the Solaris Cluster documentation from
Sun. Although written for the enterprise product, the information is mostly applicable to Open
HA Cluster, and provides the most detailed information available. The complete Sun Cluster
Software Collection is available at http://docs.sun.com/app/docs/coll/1124.6. Some
specific books of interest include the following:

■ Sun Cluster Concepts Guide: Provides an overview of the software and various concepts
(http://docs.sun.com/app/docs/doc/820-2554).

643

Part IV OpenSolaris Reliability, Availability, and Serviceability

■ Sun Cluster Software Installation Guide: How to install and configure the cluster
(http://docs.sun.com/app/docs/doc/820-2555).

■ Sun Cluster System Administration Guide: Covers administration of most aspects of
the cluster other than service management (http://docs.sun.com/app/docs/
doc/820-2558).

■ Sun Cluster Data Services Planning and Administration Guide: The service management side
of administration (http://docs.sun.com/app/docs/doc/820-2561).

■ Sun Cluster Data Service Developers Guide: Everything you need to know to write your own
agent (http://docs.sun.com/app/docs/doc/820-2559).

Sun also provides guidebooks specific to each data service. The x86 versions can be found at
http://docs.sun.com/app/docs/coll/1573.1. Some books from this collection of partic-
ular interest include the following:

■ Sun Cluster Data Service for Apache: Details on both failover and scalable Apache configu-
rations (http://docs.sun.com/app/docs/doc/819-2975).

■ Sun Cluster Data Service for Solaris Containers: Guidebook for using the HA Containers
agent for failing over Zones as a black-box resource (http://docs.sun.com/app/
docs/doc/819-3069).

A handy two-page quick reference guide to the Sun Cluster commands can be found at
http://dlc.sun.com/pdf/819-6811/819-6811.pdf.

The Sun Cluster Geographic Edition documentation is a separate set, found at http://
docs.sun.com/app/docs/coll/1191.4.

There are also two books on Sun Cluster 3.x:

■ Sun Cluster 3 Programming by Joseph Bianco, Peter Lees, and Kevin Rabito (Prentice Hall,
2004).

■ Designing Enterprise Solutions with Sun Cluster 3.0 by Richard Elling and Tim Read (Prentice
Hall, 2001).

The Sun Cluster Oasis group blog at http://blogs.sun.com/SC/ contains many practical
articles on various aspects of Sun Cluster and Open HA Cluster, mostly written by the engineers
directly working on the code.

The Sun Cluster wiki also provides a wealth of information about Sun Cluster and Open HA
Cluster: http://wikis.sun.com/display/SunCluster/Home.

Finally, you can browse the source code for Open HA Cluster at http://src.opensolaris
.org/source/xref/ohac, which includes subdirectories for Agents, Geographic Edition, and
Core.

644

Clustering OpenSolaris for High Availability 16

Summary
This chapter introduced the concept of high-availability clusters and introduced the Open High
Availability Cluster software that can cluster multiple physical machines running OpenSolaris.
You learned how to configure hardware for a cluster, how to install and configure the cluster
software, and how to make Apache HTTP Server highly available in both failover and scalable
mode. By reading this chapter, you also learned some advanced cluster administration, including
details of resources, resource types, and resource groups. Also included were details about mak-
ing your own custom services highly available with the generic data service and the SMF proxy,
and you were introduced to Open HA Cluster Geographic Edition business continuity software.

This chapter concludes Part IV of this book. Part V switches gears to the important topic of vir-
tualization. Chapter 17 provides an overview of the various virtualization technologies available
on OpenSolaris, and the remaining chapters in the section delve into resource management,
zones, xVM, LDoms, and VirtualBox.

645

OpenSolaris
Virtualization

IN THIS PART

Chapter 17
Virtualization Overview

Chapter 18
Resource Management

Chapter 19
Zones

Chapter 20
xVM Hypervisor

Chapter 21
Logical Domains (LDoms)

Chapter 22
VirtualBox

Virtualization Overview

IN THIS CHAPTER
Benefits of virtualization

Types of virtualization

Comparison of virtualization
solutions

Virtualization and a graphical
display

Virtualization administration

Running many applications and users on a single system has long
been a common practice, particularly when computers were quite
expensive. More recently, as the cost of a standalone system has

fallen, it has become common to deploy each application stack on a ded-
icated machine, even though a majority of these systems are underutilized.
In large enterprises, this has led to server-sprawl, with thousands of lightly
used systems each running its own software stack. However, as other costs,
such as space, power, and cooling, become more significant, this trend is
reversing. This has led to a resurgence of interest in virtualization as a solu-
tion to consolidating these standalone applications onto shared machines.

Virtualization is a technique long used by operating systems to provide the
illusion of exclusive access to shared system resources. For example, when
running multiple processes on a single CPU, the operating system uses a
form of virtualization to share the CPU among each process. A time-shared
machine with multiple users provides another form of virtualization.
These simple forms of virtualization are familiar, and largely taken for
granted because an operating system such as OpenSolaris is inherently
multi-tasking and multi-user. When you start to consolidate workloads
and users onto a shared system this way, though, you soon find that, at
a minimum, some form of resource management is necessary to provide
control over the behavior of these competing consumers.

Running multiple applications and users on the same operating
system is a familiar use of virtualization, however more sophis-
ticated virtualization techniques provide additional isolation, up
to the point of concurrently running multiple different oper-
ating systems on the same hardware. Simultaneously running

649

Part V OpenSolaris Virtualization

multiple operating systems has been used for decades, particularly on mainframes, but is now
commonly used on all classes of machines.

In addition to resource management, OpenSolaris supports a variety of other virtualization tech-
niques that enable greater isolation and flexibility. These techniques include operating-system-level
virtualization, whereby the machine is still running a single OpenSolaris kernel, but the OS
makes it appear as though multiple instances are running. OpenSolaris also provides support
for simultaneously running more than one operating system. This is commonly called full
virtualization. These different forms of virtualization are explained in more detail in this chapter.

OpenSolaris provides a range of virtualization solutions, each with advantages and disadvantages.
Having a choice enables you to pick the best tool for the job at hand. In fact, these approaches
are not mutually exclusive — it is possible to combine them to solve even more complex
problems.

Benefits of Virtualization
In general, virtualization enables you to run multiple workloads on the same hardware in a pre-
dictable, secure, and isolated way. Depending on which virtualization solution you choose, there
are different benefits, including the following:

■ Higher utilization of the machine is possible through sharing of the system.

■ Application stacks are completely isolated from each other.

■ Misbehaving processes or malicious users in one instance cannot interfere with activities
in another instance.

■ Faults are isolated. This can include isolation of a complete crash of the operating system.

■ Name conflicts, such as simultaneous use of a TCP port, are avoided.

■ Security is improved. If the operating system instance is compromised, then only that
instance is affected while the rest of the system remains secure.

■ Administration can be delegated. The administrator for the specific instance can configure
it as necessary and boot or reboot without affecting other instances.

■ Cross-platform applications can be developed and tested on the same hardware, such as a
developer’s laptop.

■ Consolidation is simplified. With the current focus on non-hardware related costs of run-
ning a machine, such as power or the high cost of expanding a datacenter, it makes eco-
nomic sense to consolidate lightly used systems into fewer, better utilized machines.

The different virtualization solutions provided on OpenSolaris offer these benefits to vary-
ing degrees. The next section explains the different forms of virtualization, and later in the
chapter you’ll see a more detailed comparison of the strengths and weaknesses of the various
alternatives.

650

Virtualization Overview 17

Types of Virtualization
As previously described, OpenSolaris supports three primary types of virtualization: resource
management, operating-system-level virtualization, and full virtualization.

Resource management
Once you start consolidating applications onto the same system, it’s quickly apparent that you
need some way to ensure that the appropriate resources are provided for each workload. You
don’t want a low-priority workload consuming most of the system’s memory or CPU, starving
a high-priority workload. Because this is a general problem, all forms of virtualization provide
some way to control how resources are allocated to the different virtual machines. In this book,
however, the term ‘‘resource management’’ is used specifically to describe OpenSolaris features
that can be used to manage different workloads running directly on the same OS.

The OpenSolaris resource management capabilities provide a rich feature set that enables you to
define workloads and then set limits and guarantees on the availability of the system’s resources
for each workload. Because these capabilities are built in to OpenSolaris itself, they are very
lightweight.

Resource management is the focus of Chapter 18.

Operating-system-level virtualization
Although running multiple workloads on the same OS is very efficient and provides the best
possible performance for each workload, there is only minimal isolation of each workload,
even when using resource management. For example, when two applications need to use the
same network port, or a common configuration file needs to be set up differently for each
workload, a namespace conflict results. Another limitation is that it is difficult to safely delegate
administration of each workload. In many cases, privileges are required, but handing out those
privileges allows access to other workloads that are owned by different users.

These sorts of problems are the reason why many sites originally deployed each workload on its
own machine. In general, resource management, by itself, is insufficient in a complex environ-
ment. That’s where operating-system-level virtualization comes in.

With operating-system-level virtualization, there is still only a single underlying operating sys-
tem kernel, but on top of it you can create an environment for a workload that looks very much
like its own standalone OS. On OpenSolaris this environment is called a zone. A zone provides a
secure, isolated environment for running a workload. A zone boots and halts much like a stan-
dalone system, although these actions happen very quickly. Within the zone is a root user who
can administer the zone, but that root user is distinct from the root user outside the zone. The
root user inside the zone cannot see or affect anything outside of the zone. Within a zone, only
processes running in the zone are visible. The zone provides a distinct namespace, so there are

651

Part V OpenSolaris Virtualization

no conflicts on files or ports. For example, if an application opens port 80 in the zone, another
application in a different zone can also open port 80.

Zones are the focus of Chapter 19.

All of a zone’s capabilities are inherently provided by the single, running version of OpenSolaris,
so zones are very lightweight. There is no overhead for running inside a zone, meaning that
application performance is just as fast as normal. In addition, the OpenSolaris resource manage-
ment features should be applied to a zone, providing bounds for zone resource consumption. A
zone and resource management used together is called a container.

Although having a single underlying kernel is a strength when it comes to performance, it can
also be a limitation for zones. When the system reboots, all of the zones are also rebooted.
Updating software on the system also has implications for the zones because some parts of the
kernel and user-level libraries must stay in sync. Zones include the capability to run non-native
environments, such as Linux, through the use of branded zones, but there is always only the
single OpenSolaris kernel running on the machine.

Full virtualization
When you need more isolation and flexibility than zones provide, full virtualization is the next
step. With full virtualization, multiple operating systems are actually running on the machine,
with a thin layer underneath, the hypervisor, managing the system’s physical resources. Each of
the environments running a guest OS is called a virtual machine, or domain. These two terms
basically mean the same thing, and which one is used tends to vary based on the specific
hypervisor being used. With full virtualization, you can simultaneously run multiple instances of
the same operating system or different operating systems.

The hypervisor is a software or firmware layer that sits underneath the operating sys-
tem and manages access to the hardware. It acts like a simplified OS. It performs

hardware resource allocation tasks similar to those performed by the guest operating system for
processes. Instead of allocating the hardware resources to a process, the hypervisor allocates them
to a virtual machine, and the guest OS in that virtual machine then allocates them to processes,
just as it does when running on bare metal.

Types of hypervisors
Hypervisors are classified as either type 1 or type 2. A type 1 hypervisor runs directly on the
bare hardware; a type 2 hypervisor runs on top of an underlying host operating system. The
guest operating system then runs above the hypervisor. A type 2 hypervisor is different from
operating-system-level virtualization. With a type 2 hypervisor, the base operating system does
not know about the hypervisor and guest operating systems running above it — those simply
appear as layered application software to the base operating system. With operating-system-level
virtualization, the base OS inherently understands and manages the containers running within
the OS.

652

Virtualization Overview 17

OpenSolaris provides type 1 hypervisor virtualization through xVM Hypervisor on x86 hardware
and Logical Domains (LDoms) on SPARC hardware. Type 2 hypervisor virtualization is provided
through VirtualBox. Because they are just applications, other type 2 hypervisors can also run on
OpenSolaris.

xVM Hypervisor is the name given to the port of the open source Xen project to run
on OpenSolaris. In this book, xVM Hypervisor is usually shortened to xVM, unless

the full name must be used to avoid confusion. Logical Domains is usually shortened to LDoms.

Although a type 1 hypervisor controls access to the hardware, it does not normally include sup-
port for the drivers for all of the devices supported by a full OS. Instead, the hypervisor works
in conjunction with an OS running in a control domain to transform virtual I/O from a guest
domain into physical I/O in the control domain. Both xVM and LDoms support this concept. A
type 2 hypervisor just uses the I/O services of the underlying base OS.

Fully virtualized operating systems versus paravirtualization

The operating system running in a domain on top of a hypervisor can be categorized as either
fully virtualized or paravirtualized.

A fully virtualized OS is completely unmodified and does not know that it is running on
top of a hypervisor. Because of this, the OS assumes it can access hardware in a way that is
incompatible with running in a virtualized environment. The underlying hypervisor software
must be capable of detecting this, by either dynamically trapping into code to handle the access,
or rewriting the guest OS code. In either case the hypervisor must manage these accesses in
a way that is transparent to the running OS. This causes extra complexity in the hypervisor
and extra overhead at runtime. A fully virtualized OS running on top of a hypervisor performs
noticeably slower than if it were running on bare hardware. Depending on the processor
architecture, supporting a fully virtualized OS within the hypervisor can be quite difficult.
Newer processors include extensions, such as Intel VT-x or AMD-V, which provide hardware
support to a hypervisor for managing a fully virtualized OS, but significant overhead still exists.

A paravirtualized OS has been modified to know when it is running on top of a hypervisor.
When the OS detects this, it makes calls to the hypervisor instead of attempting to access
the hardware directly. This is much more efficient in a virtual environment than running an
unmodified OS, but it’s also less flexible because the OS must be explicitly modified to work in
conjunction with the specific hypervisor.

An alternative to these two options is a fully virtualized OS that is running with paravirtualized
drivers. Device drivers are completely modular in a modern OS, making it possible to plug
new drivers in to an otherwise unmodified OS. The new, paravirtualized drivers then interface
with the hypervisor. This yields the I/O performance benefits of a paravirtualized OS, even
though the rest of the OS is not hypervisor-aware. However, other hardware accesses, such as
to the memory management unit (MMU), by the OS will still be slower compared to a fully
paravirtualized OS.

653

Part V OpenSolaris Virtualization

The xVM Hypervisor is capable of running fully virtualized guest operating systems as long as
the underlying processor includes support for virtualization extensions. It can also run paravir-
tualized guest operating systems and fully virtualized operating systems with paravirtualized
drivers. LDoms only supports paravirtualized guest operating systems. OpenSolaris has been
paravirtualized to run as a guest OS on top of both the xVM and LDoms hypervisors. It has also
been enhanced to run as a control domain for both hypervisors. Operating systems running on
top of VirtualBox always run as fully virtualized guests.

Comparison of virtualization layers
This discussion of the different types of virtualization may seem a bit daunting, as there are
many new terms and several different layers with the various solutions. Figure 17-1 provides
a side-by-side comparison of where the different components and layers exist in the different
solutions.

FIGURE 17-1

Compare the different virtualization layers.

Resource
Management (RM) Zones

application application

application

application

Hardware Hardware Hardware

Control
Domain Guest OS

Guest OS

OSHypervisor

Hypervisor

Zone

OS + RM OS + RM

Type 1 Hypervisor Type 2 Hypervisor

Hardware

The first stack on the left, showing resource management, should look the most familiar.
It is the typical configuration of an application running on the OS, which sits directly on bare
metal. The key addition here is the use of resource management within the OS to set various
limits on the application.

The Zones stack is very similar to the resource management case, except that zones provide an
isolation boundary around the application environment. The zone is a boundary, not a layer.

In the type 1 hypervisor stack, the hypervisor acts as a layer between the guest OS and the
hardware. The OS no longer directly manages the hardware, but works through the hypervisor.
Alongside the guest OS is another OS instance, acting as the control domain for the system.

654

Virtualization Overview 17

Finally, in the type 2 hypervisor stack you see that the hypervisor is really just an application
running on the OS. Within that application is a running guest OS that in turn runs the
application.

Study the layers with these different solutions and you can see how it is possible to mix and
match various combinations. In the most extreme case, you could use a zone on a guest
OpenSolaris instance running in a type 2 hypervisor such as VirtualBox on an OS running on a
type 1 hypervisor such as xVM. Another possibility would be to run a type 2 hypervisor such
as VirtualBox inside of a zone running on OpenSolaris on a type 1 hypervisor. Although such
configurations are possible, they are virtualization overkill. Typically, you use only one type of
virtualization or at most a combination of one of the hypervisors with zones.

Other virtualization solutions
QEMU is an open source type 2 hypervisor. OpenSolaris.org hosts a project to improve the sup-
port for OpenSolaris as both host and guest in that environment.

In addition to the open source hypervisors provided with OpenSolaris, several similar propri-
etary solutions are available from other vendors. Microsoft delivers its Hyper-V software, and
VMware offers a suite of products in this area. VMware ESX Server is a type 1 hypervisor, and
the low-end products, VMware Server and VMware Workstation, are type 2 hypervisors. Because
VMware Server is both well established and freeware, it is a commonly deployed solution for
users who want to run multiple virtual machines. OpenSolaris can run as a guest in this envi-
ronment, but not as the host because this software is proprietary and VMware has not ported
it to OpenSolaris. There are also a variety of other third-party, closed-source virtualization
products from different sources. Because they aren’t part of OpenSolaris, they aren’t discussed in
this book.

Chapter 2 describes how to install OpenSolaris under VMware Workstation.

Comparing Virtualization Solutions
Each of the virtualization solutions described here has various strengths and weaknesses. It is
not always easy or obvious to determine which solution to use. This section provides a rough
comparison between the various solutions to help you get a better sense of when it is appropri-
ate to use one or the other.

From a performance perspective, both resource management and zones are built into Open-
Solaris, so there is no additional layering that applications have to go through. Using either of
these, or a combination of both, normally provides full performance. In addition, the degree of
scaling will be higher than is possible with a hypervisor because the overhead of the hypervisor
is not present. In general, a type 1 hypervisor should provide better performance than a type 2
hypervisor, although both solutions impart a performance hit compared to running OpenSolaris

655

Part V OpenSolaris Virtualization

on bare metal. The kinds of performance impact seen when running on a hypervisor vary
according to which hypervisor is used, the domain configuration, how I/O is set up, and
whether the guest is paravirtualized or has to run in a fully virtualized domain.

Beyond the performance and overhead implications of using virtualization, other important fac-
tors include the level of isolation and the flexibility that is provided. For this, you are typically
looking at either zones or one of the hypervisors, as resource management by itself doesn’t pro-
vide much isolation.

Zones provide excellent isolation, as long as the single underlying kernel is not a limitation.
Because some amount of code has to be in sync between the kernel and the user level, software
management operations such as upgrading the base OS can impact all zones. With a hypervisor,
each domain is running its own kernel, so software management can happen independently. In
addition, if the kernel crashes, all zones stop running, but a kernel crash in a guest domain on
a hypervisor is restricted to that domain. However, because the hypervisor is a small kernel in
its own right, any problem in the hypervisor can still affect all domains. Likewise, domains on
a hypervisor typically use I/O services from some other domain, so a disruption in that domain
also causes problems. These factors are frequently overlooked with a hypervisor, but real-world
examples are easy to find.

Flexibility can mean various things. A hypervisor provides the most flexibility for each domain
because each is running its own, standalone operating system. This flexibility extends to
concurrently running, dramatically different kernels such as Windows, Linux, and OpenSolaris.
The Zones feature does provide the flexibility to run different user-level environments inside the
zone using branded zones. Sun Microsystems provides Solaris 8 and Solaris 9 branded zones
and OpenSolaris includes support for the lx brand, which runs a Linux user-level environment.

In terms of portability, because zones are part of OpenSolaris, they run anywhere that Open-
Solaris runs. Type 1 hypervisors tend to be more platform-specific and there are various
limitations on where they can be used. For example, xVM only supports x86-based systems
and requires certain hardware to support fully virtualized domains, whereas LDoms only runs
on certain variants of the SPARC platform. A type 2 hypervisor such as VirtualBox is the most
portable because it is primarily application software and runs on a wide variety of host operating
systems, although it does not currently run on SPARC hardware.

Another important factor is how easy the different solutions are to set up, use, and manage.
On its own, OpenSolaris resource management can actually be quite difficult to use, but when
used in conjunction with zones, it is very easy. Setting up a zone is easier than one of the type 1
hypervisors, although setting up VirtualBox is probably the easiest of all because of its excellent
GUI-based tools. Ease of use and manageability are two very active areas of development across
the entire virtualization spectrum, so you should expect to see significant improvements in this
area for all solutions.

Table 17-1 summarizes all these factors for the various solutions.

As you can see, one size does not fit all, so it may take some experimentation to determine
which solution is best for your problem.

656

Virtualization Overview 17

TABLE 17-1

Solution Factors

Factor Resource
Management

Zones xVM LDoms VirtualBox

Performance High High Medium Medium Low

Efficiency High High Medium Medium Low

Scalability High High Medium Medium Low

Isolation Low Medium High High High

Flexibility Low Medium High High High

Portability Medium Medium Low Low High

Ease of Use Low Medium Low Low High

Virtualization and a Graphical Display
If you are used to working on a laptop or workstation running a window system, you might
be wondering how to use the window system of the various domains once each is consolidated
onto the same system. For some configurations this won’t be an issue if you are simply running
a non-graphics based workload in the domain. However, in some cases it is important to run a
particular graphical application, or perhaps you want to run an entire guest window system in
the domain.

The techniques to run graphical applications vary with each virtualization solution. VirtualBox
automatically provides a complete window environment for the guest OS, whereas the other
solutions require some additional work. The steps to set up graphical access for either a zone or
a guest instance of OpenSolaris running in a type 1 hypervisor domain are similar.

If you need only the capability to run specific graphical applications, the easiest solution is to
leverage the capabilities of X11, the underlying window system technology on OpenSolaris, com-
bined with ssh, the secure shell, to forward the application to your native display. That’s done
using the ssh -X command.

X11 forwarding using ssh -X is covered in Chapter 11.

If you want to run the entire window system remotely displayed onto your native display, Open-
Solaris enables this with support for VNC, the Virtual Network Computing protocol. Using a
VNC client, such as vncviewer included in OpenSolaris, or a client for some other OS, you can
display the entire desktop that is running in the zone or domain.

657

Part V OpenSolaris Virtualization

See Chapter 4 for more information about setting up and using VNC on the desktop.
Follow the steps provided to set up the zone or domain for remote display.

Virtualization Administration
When using virtualization to consolidate many systems into one, management problems typi-
cally do not diminish. Under a hypervisor approach, each virtual machine is administered like a
standalone system, so the total number of entities to manage has not decreased. In addition, the
hypervisor and control domain must be managed. With zones, there is only a single operating
system to administer but each zone still requires a certain amount of management, so the overall
level of work might still be comparable to a collection of standalone systems. In general, virtual-
ization does not reduce the systems administration burden and might even increase it. A variety
of open source projects and proprietary solutions are attempting to address this problem.

One project specifically targeting OpenSolaris, and working to address management issues with
a focus on virtualization, is the xVM Ops Center. This project is still in the early stages but is
targeted toward managing all aspects of virtualization on OpenSolaris, including zones, xVM
Server, and LDoms.

xVM Hypervisor and xVM Ops Center are two different projects related to virtualiza-
tion that share the xVM name. The umbrella xVM site is at http://openxvm.org/.

Summary
This chapter provided an overview of basic virtualization concepts, including resource manage-
ment, operating-system-level virtualization using zones, and hypervisor-level virtualization with
xVM, LDoms, or VirtualBox. Type 1 and 2 hypervisors, as well as paravirtualization and full vir-
tualization, were explained. This chapter also compared the different virtualization solutions pro-
vided by OpenSolaris.

658

Resource Management

IN THIS CHAPTER
Introduction to resource
management

Projects and tasks

Resource controls

Resource caps

Resource pools

Processor sets

Scheduling

Accounting

Resource Management is the collection of facilities in OpenSolaris
that are used to configure, monitor, and control the system’s
resource allocation to running processes. In the context of this

chapter, resources are predominantly CPU or memory. Using resource
management to constrain multiple workloads running on the same system
is the most basic form of virtualization available on OpenSolaris.

Introduction to Resource
Management
When multiple users or software application stacks are sharing the
same machine, it is possible for one of them to monopolize the system’s
resources. The resource management capabilities in OpenSolaris provide
a variety of ways to specify how these resources should be allocated so
that the system’s overall objectives are met. For example, if the system
runs a specific, business-critical application, along with other, less critical,
applications, then the resource management capabilities can be used to
ensure that the business-critical application always has the resources it
needs when it is ready to run. The resource management features can be
used to provide minimum or maximum guarantees for resource utilization
as well as to partition those resources between consumers.

OpenSolaris resource management is not one single feature. Instead, it
is a collection of different capabilities within the operating system. As
such, resource management can seem confusing because some features are

659

Part V OpenSolaris Virtualization

independent of the others. This chapter describes each of these individual capabilities and
explains when they can be used on their own or combined with one of the other features.

Resource management encompasses the following individual OpenSolaris features:

■ Projects and Tasks

■ Resource Controls

■ Resource Caps

■ Resource Pools

■ Processor Sets

■ Scheduling

■ Accounting

In addition to these facilities, OpenSolaris includes an operating system virtualization feature
called Zones. Zones are discussed in detail in Chapter 19, but it is worth noting that they
leverage, and are integrated with, many of the resource management features described in this
chapter. In fact, zones provide a simplified and unified way to use many of the OpenSolaris
resource management features without the need for some of the administrative complexity you’ll
see in this chapter.

Projects and Tasks
Projects and tasks are the mechanisms used to organize processes so that resource management
settings can easily be applied to logical groups of processes. Every process running on the sys-
tem is assigned to both a project and a task. This can be seen using the ps command with the
options to display the project and task data:

$ ps -eo user,pid,project,taskid,args
USER PID PROJECT TASKID COMMAND
root 0 system 0 sched
root 1 system 1 /sbin/init

...
sarah 3068 group.staff 82 -bash

...

Here, the first processes on the system, sched and init, are assigned to both the system
project and their own tasks. The bash process for user sarah is in the group.staff project
and task 82.

The id command can also show the current project:

$ id -p
uid=100(sarah) gid=10(staff) projid=10(group.staff)

660

Resource Management 18

A project within OpenSolaris is much like the corresponding concept in the real world. It has a
name and it has certain attributes associated with it. Tasks are part of a project and inherit those
attributes. Processes running on the system are always part of a task, so they are also part of a
project. Each process can be associated with only a single task, which is, in turn, associated with
a single project. However, there can be many tasks within a project and many processes within a
task. Whenever a process forks, it inherits its project and task from the parent. This relationship
is illustrated in Figure 18-1.

FIGURE 18-1

The relationship between processes, tasks, and projects

Project 0 Project 1 Project n

Task 1Task 0

Process

Process Process Process. . .

. . .

. . .

Task n

The project database
Projects are defined in the project database. This can be the /etc/project file on the local sys-
tem or stored in a name service such as NIS or LDAP. Access to the project database is config-
ured using the name service switch.

NIS, LDAP, and the name service switch are described in Chapter 10 on network file
systems and directory servers.

The format of the project database is described briefly here, and in full detail on the
project(4) man page. The /etc/project file defines one project per line with a set of
colon-delimited fields:

name:id:comment:user_list:group_list:attributes

661

Part V OpenSolaris Virtualization

The project name is the first field; the project ID is the second field, and so on. The user list,
group list, and attributes are described later in this chapter, along with the commands used to
manipulate the database.

Determining the default project
When a user logs in to the system, a default project must be assigned to the initial process for
that user. The following procedure, which is documented on the getprojent(3PROJECT) man
page, is used to assign the user’s initial process to a project.

The getdefaultproj() function is used to determine the default project for a process. This
function goes through the following steps:

1. Look for the project attribute for the user in the user_attr database. If the attribute
is in the user_attr database, then the function will try to look up the project name in
the project database. If the project is not found or the user is not a member of the project,
then go to the next step.

The user_attr database is briefly described in Chapter 11, ‘‘Security.’’

2. Search the project database for the project user.{username}. For example, the project name
field in the database for user name smith would be user.smith. If this project is not
found or the user is excluded from that project, then go to the next step.

3. Using the user’s default group ID, which is assigned in his or her passwd entry, search the
project database for the project group.groupname. For example, if the user’s default group
ID were 10 and the group database mapped 10 to the staff group, the project name field
would be group.staff. If no match is found or the user is excluded from that project,
then go to the next step.

4. Use the project named default unless the user is excluded from that project, as
described later in the ‘‘Configuring projects’’ section.

If a default project cannot be assigned, then the user cannot log in to the system. Once a project
has been assigned, any subsequent processes created as children of the initial process will inherit
that project, unless the project is changed using the procedures described later in this section.

Many of the basic system processes are started when the machine boots. These processes are not
associated with a user login. Instead, there is a special project with ID 0, the system project,
which is the project with which these processes are associated. You can see a few of those in
the ps example earlier. If you look at the /etc/project file, you’ll also notice that there is a
project named user.root that is used for the system administrator. When you log in, or su,
to root, the user.root project is the one that those processes will use. You can see how this
default project is assigned to root based on step 2, as just described.

662

Resource Management 18

Changing tasks
Although your initial process is assigned to a default project and a new task when you log in, it
is possible to change the task and project. The newtask command is used to start a process in a
new task and project or to change the project of an existing process.

If you are allowed to join a project, described in the next section, then you can use the new-
task command to start a new task in a different project, as this simple example using mypro-
ject shows:

$ id -p
uid=100(sarah) gid=10(staff) projid=10(group.staff)
$ newtask -p myproject id -p
uid=100(sarah) gid=10(staff) projid=100(myproject)

In this example, the newtask command is used just to run the id command in myproject. Of
course, in normal usage the command would probably start a new stack of software running. If
you need to change the project of a running process, you can also use the newtask command
by specifying the pid of the process with the -c option:

$ newtask -c 5039 -p myproject

In addition to the id command, which shows the current project, the projects command
shows all of the projects of which you are a member:

$ projects
default group.staff myproject

Configuring projects
Setting up membership in a project and defining the project’s attributes are the two main config-
uration tasks.

Project membership
To join a project other than your default project, you must be configured as a member of that
project. As previously described, the format of a project entry is as follows:

name:id:comment:user_list:group_list:attributes

The user_list or group_list fields are used to specify a list of users or groups that are
members of the project. These are simple comma-delimited lists. You can also use an asterisk (*)
as a wildcard, indicating any user or group is allowed, or an exclamation (!), indicating that the
named user or group is not allowed.

663

Part V OpenSolaris Virtualization

Instead of directly editing the project database, the projmod command is used to make updates
to existing projects, projadd adds a new project, and projdel deletes an existing project. The
man pages for these commands describe the options in detail. The following example adds a
user named sarah to an existing project named myproject:

projmod -a -U sarah myproject

The next example defines a new project named build with a user named sarah as a member:

projadd -U sarah build

Because an explicit project ID was not specified, one is automatically assigned. The projects
command can be used to display the database:

$ projects -l
system

projid : 0
comment: ""
users : (none)
groups : (none)
attribs:

user.root
projid : 1
comment: ""
users : (none)
groups : (none)
attribs:

...
build

projid : 100
comment: ""
users : sarah
groups : (none)
attribs:

Project attributes
So far, you have seen the basics of projects, but until some attributes are defined for a project,
it is only minimally useful. The project attributes actually specify the resource management
settings that will be applied to processes in that project. The next few sections describe these
resource management capabilities in more detail, so this example simply illustrates how to set
some attributes on the build project you just created:

projmod -K "rcap.max-rss=10000000" \
-K "project.max-lwps=(privileged,100,none)" build

This example defines two different attribute/value pairs for the project, replacing any attributes
that had been defined. It is also possible to add or remove individual attributes using the -a or

664

Resource Management 18

-r options, respectively. These new resource management settings will be applied to any new
tasks in that project. You can also cause these new settings to be applied to existing tasks in the
project with the -A option.

The project attributes can be project-level resource controls, described in the ‘‘Resource
Controls’’ section, a resource cap, described in the ‘‘Resource Caps’’ section, or a pool binding,
described in the ‘‘Resource Pools’’ section.

Managing by project and task
In addition to the ps command, shown earlier, several other commands are project and task
aware. The prstat command summarizes project information with the -J option:

$ prstat -J
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
...
PROJID NPROC SWAP RSS MEMORY TIME CPU PROJECT

10 70 1110M 1063M 52% 5:43:02 2.8% group.staff
1 2 572K 3408K 0.2% 0:00:00 0.0% user.root
0 51 87M 39M 1.9% 0:07:14 0.0% system

Total: 123 processes, 359 lwps, load averages: 0.07, 0.05, 0.04

Likewise, the -T option summarizes by task. The prstat command can also be used with the
-j projectname option to monitor processes within the specified project, or the -k taskid
option to monitor processes in the specified task.

The pgrep and pkill proc tools also accept -J and -T options so that they can be used for
projects or tasks.

The proc tools are described in more detail in Chapter 14.

Using these commands, you can easily monitor and manage a collection of processes by project
or task.

Resource Controls
Resource controls, or rctls, is the mechanism used within OpenSolaris to configure limits for
processes, tasks, projects, or zones. Resource controls are values set within the kernel and
applied to the associated object at runtime, controlling the behavior of that object. Rctls have
replaced most of the configuration that used to be done in the /etc/system file in earlier
releases of Solaris. Using rctls enables dynamic management of the system’s limits, instead of
the static boot-time configuration provided by /etc/system. In addition, rctls are always
used within the kernel instead of the traditional limits managed by the setrlimit system call.
Although the setrlimit and getrlimit system calls, as well as the plimit command, are

665

Part V OpenSolaris Virtualization

still available for backward compatibility, rctls are the preferred interface for managing system
limits.

Zones and their interaction with rctls are explained in Chapter 19. The basic resource
control concepts described here also apply to zone rctls.

Using rctls
OpenSolaris provides a broad range of rctls, which are described shortly. This example illustrates
one rctl: process.max-file-descriptor. This rctl sets the upper limit for the number of
open file descriptors that a process can have. The prctl command is the CLI that is used to
view and modify rctl settings. It is used for managing all types of rctls — process, task, project,
or zone. By default, it is directed against a process. Using the pid for your login shell, you can
see all of the rctl settings for that process:

$ prctl 11609
process: 11609: bash
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
...
process.max-file-descriptor

basic 256 - deny 11609
privileged 65.5K - deny -
system 2.15G max deny -

...

This indicates that the current basic value for the process.max-file-descriptor rctl is 256,
which means that the process can have 256 open file descriptors. If it tried to open more than
that, it would receive an error. Note that privilege levels, flags, and actions are associated with
the rctl. Those are explained in the next section.

Instead of looking up a process with ps and then using the pid, you can use $$,
which the shell expands to your current pid, to see the rctl values for your process.

Instead of looking at a single process, you can view the rctl settings for a specific project:

$ prctl -i project group.staff
project: 10: group.staff
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
...
project.max-lwps

system 2.15G max deny -
...

There is no max-file-descriptor rctl for a project, so this example was trimmed to show
the project.max-lwps rctl instead. It also shows how to use the -i option with prctl to
specify what you are interested in. The -i option accepts process, task, project, or zone as
a parameter and defaults to process.

666

Resource Management 18

Some rctls can be specified at more than one level, with the system using the order process,
task, project, and then zone, and the most constrained limit being applied.

The full rctl syntax is complex. It is explained in more detail in the next section, but this
example shows how to set a new value for the process.max-file-descriptor rctl on
process 11609:

$ prctl -r -n process.max-file-descriptor -v 512 11609
$ prctl -n process.max-file-descriptor 11609
process: 11609: bash
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
process.max-file-descriptor

basic 512 - deny 11609
privileged 65.5K - deny -
system 2.15G max deny -

The -r option means replace the current value with the new value, the -n option specifies the
rctl name, and the -v option specifies a new value. This process will now be allowed to have
512 open file descriptors before receiving an error.

rctl Syntax
The preceding prctl output shows that an rctl can have multiple privileges, as well as a flag
and action associated with each privilege level.

The PRIVILEGE specifies the value for the three possible levels:

Privilege Definition

basic The user can modify the value.

privileged The superuser can modify the value.

system The systems absolute limit

The basic value cannot exceed the privileged value, and the privileged value cannot
exceed the system value.

The ACTION shows what action will be taken when the value is reached:

Action Description

none No action is taken. This can used to monitor when a value is exceeded.

deny The request for more resources is denied.

signal= The specified signal is sent to the process that exceeded the limit. The valid
signals are SIGBART, SIGXRES, SIGHUP, SIGSTOP, SIGTERM, and SIGKILL.

667

Part V OpenSolaris Virtualization

The FLAG column can be either max, if the value represents the system’s upper limit, or inf, if
the value represents no limit. Otherwise, the field contains a dash (-) as a placeholder.

The prctl command can be used to set both the value and the action for a specific privilege
level, as this example setting a task rctl shows:

prctl -t basic -n task.max-lwps -v 25 -e signal=SIGXRES \
-p 11609 -i task 79

prctl -n task.max-lwps -i task 79
task: 79
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
task.max-lwps

basic 25 - signal=XRES 11609
system 2.15G max deny -

The preceding example shows that the task ID, 79, was specified using the -i option, but a pid
within the task must also be specified using -p. A pid must always be provided when setting an
rctl. You can also use the command to delete specific rctl values:

prctl -t basic -n task.max-lwps -d signal -p 11609 -i task 79

The rctladm command is used to administer the global rctl facility. Use this command to set
the logging behavior for a specific rctl or to enable and disable rctls. The -l option displays the
current global configuration:

rctladm -l
process.max-port-events syslog=off [deny count]
process.max-msg-messages syslog=off [deny count]
process.max-msg-qbytes syslog=off [deny bytes]
process.max-sem-ops syslog=off [deny count]
...

You may want to enable system logging for the rctls that you want to monitor. See the
rctladm(1M) man page for more details if necessary.

rctl list
Table 18-1 briefly describes each of the current set of rctls in OpenSolaris. The name of the rctl
indicates whether it specifies per-process, per-project, per-task, or per-zone limits.

Project rctls
Although resource controls can be set on a process dynamically, they are more useful when
specified on a project. That way, all processes in the project use the specified rctls. This example
sets both the task.max-lwps and project.max-lwps rctls for the build project:

projmod -K "task.max-lwps=(basic,100,deny)" \
-K "project.max-lwps=(privileged,500,deny)" build

668

Resource Management 18

TABLE 18-1

Current OpenSolaris rctls

rctl Definition

process.max-
address-space

Maximum address space for a process, in bytes

process.max-
core-size

Maximum size of a core dump file, in bytes

process.max-
cpu-time

Maximum CPU time, in seconds

process.max-
data-size

Maximum heap size, in bytes

process.max-
file-descriptor

Maximum number of file descriptors

process.max-
file-size

Maximum file offset for writing, in bytes

process.max-
msg-messages

Maximum number of messages in a message queue (see the
msg.h(3HEAD) man page)

process.max-
msg-qbytes

Maximum number of bytes in a message queue (see the
msg.h(3HEAD) man page)

process.max-
port-events

Maximum number of events per event port (see the
port_create(3C) man page)

process.max-
sem-nsems

Maximum number of semaphores per set (see the
semaphore(3C) man page)

process.max-
sem-ops

Maximum number of semaphore operations per semop() call (see
the semaphore(3C) man page)

process.max-
stack-size

Maximum stack size, in bytes

project.cpu-cap Described in detail in the ‘‘CPU caps’’ section later in this chapter

project.cpu-shares Described in detail in the ‘‘Fair Share Scheduler’’ section later in
this chapter

project.max-
contracts

Maximum number of contracts (see the contract(4) man page)

project.max-
crypto-memory

Maximum amount of kernel memory that can be used for crypto
operations

project.max-
locked-memory

Maximum amount of physical memory that can be locked, in
bytes

continued

669

Part V OpenSolaris Virtualization

TABLE 18-1 (continued)

rctl Definition

project.max-lwps Maximum number of lightweight processes. Each running
process accounts for one or more LWPs.

project.max-
msg-ids

Maximum number of message queue IDs (see the
msg.h(3HEAD) man page)

project.max-
port-ids

Maximum number of event ports (see the port_create(3C)
man page)

project.max-
sem-ids

Maximum number of semaphore IDs (see the semaphore(3C)
man page)

project.max-
shm-ids

Maximum number of shared memory IDs (see the shmop(2)
man page)

project.max-
shm-memory

Maximum amount of shared memory, in bytes (see the
shmop(2) man page)

project.max-tasks Maximum number of tasks

task.max-
cpu-time

Maximum CPU time for all processes in the task, in seconds

task.max-lwps Maximum number of lightweight processes for all processes in
the task

zone.cpu-cap CPU caps are described in detail in the ‘‘Scheduling’’ section,
later in this chapter. That section applies to zones as well as to
projects.

zone.cpu-shares CPU shares are described in detail in the section ‘‘Fair Share
Scheduler,’’ later in this chapter. That section applies to zones
as well as to projects.

zone.max-
locked-memory

Maximum amount of physical memory that can be locked, in
bytes

zone.max-lwps Maximum number of lightweight processes. Each running
process accounts for one or more LWPs.

zone.max-
msg-ids

Maximum number of message queue IDs (see the
msg.h(3HEAD) man page)

zone.max-
sem-ids

Maximum number of semaphore IDs (see the semaphore(3C)
man page)

zone.max-
shm-ids

Maximum number of shared memory IDs (see the shmop(2)
man page)

zone.max-
shm-memory

Maximum amount of shared memory, in bytes (see the
shmop(2) man page)

zone.max-swap Maximum amount of swap space, in bytes

670

Resource Management 18

The projmod example and the values for these rctls should make more sense now. Tasks within
the project will be limited to 100 lightweight processes, and the overall project is limited to 500.
You can use multiple -K options to specify more than one rctl, and you can add, remove, or
replace individual rctls on a project. The projmod(1M) man page describes all of the options
in detail.

Resource Caps
Resource caps are another facility to control processes within OpenSolaris. Although the name
makes it sound similar to rctls, this facility is actually quite different. Resource caps specify a
soft limit on the amount of physical memory that can be used by a project or a zone. This is
different from the max-locked-memory rctls because it relates to the total amount of physical
memory a process should be allowed to use. You might have noticed that there is no rctl to set
this kind of limit. Providing such an rctl is actually quite difficult with the current virtual memory
implementation in OpenSolaris. Instead, the resource cap facility was created to solve this problem.
Although the name sounds like a general-purpose subsystem, and it was probably intended that
way when it was first designed, in reality its only use is to limit physical memory consumption.

Resource caps are implemented by a user-level daemon, rcapd, which will scan all processes
in a project or zone that have a memory limit and attempt to page out pages from physical
memory when the project or zone is over its limit. That is why this is a soft limit — the rcapd
doesn’t start working until the collection is over its limit, and it can take some time before it can
bring the collection back under the limit.

The limit is configured for a project using the standard projmod syntax you have already seen,
using the rcap.max-rss attribute:

projmod -K "rcap.max-rss=10000000" build

In addition to configuring the limit for the project, you must also ensure that the SMF service
that implements resource caps, svc:/system/rcap, is enabled.

Configuring the limit for a zone is described in Chapter 19. SMF is described in
Chapter 13. When used with zones, the SMF service does not need to be manually

enabled; the zone’s infrastructure does that automatically. The rcap service in the global zone will
cap any nonglobal zones that have a physical memory limit, along with any projects running in
the global zone. If memory limits are configured on projects within a nonglobal zone, then that
zone needs to run its own instance of the rcap service.

The rcapstat command is used to monitor the behavior of the rcap service:

rcapstat
id project nproc vm rss cap at avgat pg avgpg

100 myproject - 0K 0K 20K 0K 0K 0K 0K
102 build - 456K 3232K 9766K 0K 0K 0K 0K
id project nproc vm rss cap at avgat pg avgpg

100 myproject - 0K 0K 20K 0K 0K 0K 0K
102 build - 456K 3232K 9766K 0K 0K 0K 0K

671

Part V OpenSolaris Virtualization

By default, the command outputs updated information every five seconds, although that can
be changed by specifying the interval as a command-line argument. As shown in the example,
the build project is using only 3,232KB, well under its 9,766KB limit. If the project exceeds
its limit, the other statistics in the output will be updated as the rcap service starts scanning
processes in the project and paging out memory. You can also use the -z option to monitor the
behavior for nonglobal zones.

The rcapadm command is used to configure the behavior of the rcap service. You can set the
scan parameters and minimum memory utilization, as well as dynamically change limits for
zones. The rcapadm(1M) man page describes all of the options.

Resource Pools
Resource Pools enable you to partition a subset of the system’s CPUs into processor sets and assign
those pools to projects or zones. This setting restricts those projects or zones to using only
the processors assigned to the pool. In this way, you can explicitly control and guarantee that
specific processors will only be available for exclusive use by the specified workloads. Although
pools currently work with only processor sets, the framework is extensible so that other types of
sets, such as memory sets, can be added later.

Configuring a pool
Because the CLI syntax is complex, the procedures to configure a pool are fairly difficult and
error-prone. This example walks through the basic steps to set up a pool and processor set
with a range of 1–8 CPUs assigned to it. Start by enabling pools and discovering the current
configuration:

pooladm -e
pooladm -s

You can now see the default pool configuration using the pooladm command:

pooladm
system default

string system.comment
int system.version 1
boolean system.bind-default true
string system.poold.objectives wt-load

pool pool_default
int pool.sys_id 0
boolean pool.active true
boolean pool.default true
int pool.importance 1
string pool.comment
pset pset_default

672

Resource Management 18

pset pset_default
int pset.sys_id -1
boolean pset.default true
uint pset.min 1
uint pset.max 65536
string pset.units population
uint pset.load 22
uint pset.size 20
string pset.comment

cpu
int cpu.sys_id 17
string cpu.comment
string cpu.status on-line

cpu
int cpu.sys_id 16
string cpu.comment
string cpu.status on-line

...
cpu

int cpu.sys_id 10
string cpu.comment
string cpu.status on-line

This output is explained in more detail later, but note a few items. There is one pool,
pool_default, and one processor set, pset_default, which is associated with the default
pool. You can see this binding with the pset property on the default pool. The default proces-
sor set shows that the system has a total of 20 CPUs (the pset_size property). Also note that
the CPUs do not print out in any particular order. The other properties are explained later in
this section.

Now you can create a new processor set and pool:

poolcfg -c ‘create pset mypset (uint pset.min=1; uint pset.max=8)’
poolcfg -c ‘create pool mypool’
poolcfg -c ‘associate pool mypool (pset mypset)’
pooladm -c

This creates a pool named mypool and a processor set named mypset with a range of 1–8
CPUs. The -c option to poolcfg indicates that the argument is a command. Note that the
command must be in quotes so that it is passed as a single argument, and that each parameter
within the command has an explicit type associated with it. The poolcfg command syntax and
parameters are explained in more detail next. The final pooladm -c command instantiates the
configuration into the kernel, a process also explained below.

Although it is possible to associate a pset with more than one pool, it is usually sim-
pler to have a one-to-one mapping. Sharing psets could be more useful in the future

if memory sets are added.

673

Part V OpenSolaris Virtualization

You can see the new configuration using pooladm:

pooladm
system default

string system.comment
int system.version 1
boolean system.bind-default true
string system.poold.objectives wt-load

pool mypool
int pool.sys_id 1
boolean pool.active true
boolean pool.default false
int pool.importance 1
string pool.comment
pset mypset

pool pool_default
int pool.sys_id 0
boolean pool.active true
boolean pool.default true
int pool.importance 1
string pool.comment
pset pset_default

pset mypset
int pset.sys_id 1
boolean pset.default false
uint pset.min 1
uint pset.max 8
string pset.units population
uint pset.load 29
uint pset.size 8
string pset.comment

cpu
int cpu.sys_id 5
string cpu.comment
string cpu.status on-line

...
cpu

int cpu.sys_id 2
string cpu.comment
string cpu.status on-line

pset pset_default
int pset.sys_id -1
boolean pset.default true
uint pset.min 1
uint pset.max 65536
string pset.units population

674

Resource Management 18

uint pset.load 19
uint pset.size 12
string pset.comment
cpu

int cpu.sys_id 17
string cpu.comment
string cpu.status on-line

...
cpu

int cpu.sys_id 10
string cpu.comment
string cpu.status on-line

This output indicates that all eight CPUs were assigned to mypset. This is not guaranteed.
When you specify a range of CPUs and instantiate the configuration, some number of CPUs
within the range will be assigned, based on what is available in the default processor set and
what can be taken from other processor sets. If the configuration cannot be instantiated, you will
receive an error.

Binding a pool to a project
Now that you have configured a basic pool and processor set, you can update your project defi-
nition so that all of the new tasks in the project are bound to the pool:

projmod -a -K project.pool=mypool build
projects -l
...
build

projid : 100
comment: ""
users : sarah
groups : (none)
attribs: project.max-lwps=(privileged,100,none)

project.pool=mypool
rcap.max-rss=10000000

The project.pool attribute is used to specify a pool for the project.

Dynamically binding to a pool
The poolbind command is used to query pool bindings and to dynamically bind processes,
tasks, projects, or zones to a pool. You can query the pool binding of a process using the -q
option, and the resource, or pset, bindings using the -Q option:

$ newtask -p build
$ poolbind -q $$
4734 mypool
$ poolbind -Q $$
4734 pset mypset

675

Part V OpenSolaris Virtualization

Here the shell variable $$, which represents the pid of the current process, is used to show the
pool binding and processor set resource binding.

If you have administrative privileges, you can bind a running process to a pool using the -p
option:

poolbind -p mypool 4707
poolbind -q 4707
4707 mypool

By default, poolbind works with processes, but you can also dynamically bind tasks, projects,
or zones by specifying the type of object using the -i option. This example dynamically binds
task 143 to mypool:

poolbind -p mypool -i taskid 143

In addition, individual programs can be run within a pool using the -e option to poolbind:

poolbind -p mypool -e make

Monitoring pools
The poolstat command displays the configured pools and the usage of the processor sets
bound to the pool:

$ poolstat
pset

id pool size used load
1 mypool 8 0.00 0.00
0 pool_default 12 0.00 0.02

The poolstat command includes several options to display various parts of the pool configu-
ration as well as options to continuously display updated statistics. See its man page for further
details.

Advanced pool configuration
Once you are familiar with the basic usage of pools, there are a variety of advanced features you
may want to use.

Static versus dynamic configuration
The system’s default pool configuration is stored in the /etc/pooladm.conf file. When the
system boots, it reads this file to instantiate the pool configuration. The system also maintains
the current dynamic configuration within the kernel. When you first set up the pool, the pool-
cfg commands committed the configuration to the pooladm.conf file, and then you instanti-
ated the dynamic configuration using the following command:

pooladm -c

676

Resource Management 18

You can dynamically change the current runtime configuration without saving the changes to the
persistent configuration file by using the -d option on the poolcfg commands. This changes
the kernel’s pool configuration, but those changes will be lost when the system reboots. The
pooladm -s command saves the current in-kernel configuration out to the default configuration
file, making the current configuration persistent.

Modifying the configuration

The poolcfg command supports a variety of subcommands that are used to define or modify
the pool configuration. In the original example, you used the create subcommand to define a
pool and pset, then the associate subcommand to tie the two together. The poolcfg com-
mand also supports the info, destroy, modify, and transfer subcommands. This example
modifies the configuration for mypset to use up to four CPUs instead of the range it was origi-
nally defined to use:

poolcfg -c ‘modify pset mypset (uint pset.min=1; uint pset.max=4)’
pooladm -c

You can use the poolcfg -c info subcommand, pooladm, or the poolstat command to
view the new configuration:

poolstat -r pset
id pool type rid rset min max size used load
1 mypool pset 1 mypset 1 4 4 0.00 0.00
0 pool_default pset -1 pset_default 1 66K 16 0.00 0.01

There are various ways to move CPUs from one pset to another. This example transfers three
CPUs from mypset back to the default processor set within the kernel pool configuration, leav-
ing a single CPU in mypset:

poolcfg -c ‘transfer 3 from pset mypset to pset_default’ -d
poolstat -r pset
id pool type rid rset min max size used load
1 mypool pset 1 mypset 1 4 1 0.00 0.00
0 pool_default pset -1 pset_default 1 66K 19 0.00 0.01

Pool properties

In the pooladm output, you saw a variety of objects with different properties listed for each
instance. The pools framework supports four different types of objects: system, pool, pset, and
cpu. The properties are named after the associated object. Table 18-2 lists each property, its
associated type, whether the user can set the property, and a brief definition. The full definition
of each property is described on the libpool(3LIB) man page. The meaning of most of these
properties is straightforward, but a few require further explanation. Many of them are specific to
the dynamic pool daemon, poold, which is described in more detail in the next section.

677

Part V OpenSolaris Virtualization

TABLE 18-2

Pool Property Descriptions

Property Type Edit Definition

system.allocate-method string yes Method to allocate CPUs to psets. See
explanation below for details.

system.bind-default bool yes If the specified pool is not found,
bind to the pool named
pool.default. Defaults to true.

system.comment string yes User-supplied comment

system.name string yes User-supplied name

system.poold.history-
file

string yes Poold decision history file used for
tracking rebalancing decisions

system.poold.log-level string yes Poold logging level. Values are
ALERT, CRIT, ERR, WARNING,
NOTICE, INFO, and DEBUG.

system.poold.log-
location

string yes Poold logging location

system.poold.monitor-
interval

uint64 yes Poold monitoring sample interval, in
milliseconds. Defaults to 15 seconds.

system.poold,objectives string yes Poold objective for rebalancing. The
value wt-load is the only valid
objective for the system.

system.version int64 no libpool version required to
manipulate the configuration

pool.active bool yes Marks the pool as active

pool.comment string yes User-supplied comment

pool.default bool no The default pool

pool.importance int64 yes Pool importance for poold

pool.name string yes User-supplied name

pool.scheduler string yes Scheduling class for processes bound
to the pool

pool.sys_id int64 no Pool ID

pool.temporary bool no Pool definition exists only in-kernel;
cannot be persistently saved

pset.comment string yes User-supplied comment

678

Resource Management 18

TABLE 18-2 (continued)

Property Type Edit Definition

pset.default bool no The default pset

pset.load uint64 no The number of processes in the run
queue for this pset

pset.max uint64 yes Maximum number of CPUs in the set

pset.min uint64 yes Minimum number of CPUs in the set

pset.name string yes User-supplied name

pset.poold.objectives string yes Pset objectives for poold

pset.size uint64 no Number of CPUs assigned to the pset

pset.sys_id int64 no Pset ID

pset.temporary bool no Pset definition exists only in-kernel;
cannot be persistently saved

pset.type string no Type of resource. pset is the only
valid value.

pset.units string no Meaning of the size value. The only
valid value is population.

cpu.comment string yes User-supplied comment

cpu.pinned bool yes CPU pinned to pset

cpu.status string yes CPU status: online, offline, or
no-intr

cpu.sys_id int64 no CPU ID

The system.allocate-method property is used to specify how CPUs are allocated across
psets when a configuration is instantiated or updated. This property applies to psets only when a
range is specified with the pset.min and pset.max properties. If the two properties have the
same value, then the specified number of CPUs must be allocated to the pset. However, when a
range is specified, the system must decide how CPUs should be allocated.

There are two valid values for the system.allocate-method property: importance based
and surplus to default. The default is importance based, which means that pools
with higher importance are favored when CPUs are allocated to psets. When surplus to
default is used, only the minimum number of CPUs is allocated to each pset, and the rest
are assigned to the default pset. As mentioned earlier, CPUs are only assigned to psets when a
configuration is instantiated. It is up to the dynamic pool daemon (poold) to reassign CPUs
after that.

679

Part V OpenSolaris Virtualization

A scheduling class can be assigned to a pool. That way, processes bound to the pool are
scheduled using the pool’s class, instead of the system’s default scheduling class. The various
OpenSolaris scheduling classes are described later in this chapter, but the following example
demonstrates setting the Fair Share Scheduler (FSS) class on the pool:

poolcfg -c ‘modify pool mypool (string pool.scheduler="FSS")’
pooladm -c

The cpu properties configure specific CPUs. This example shows pinning CPU 0 and configuring
it so that it won’t process interrupts:

poolcfg -c ‘modify cpu 0 (boolean cpu.pinned=true)’
poolcfg -c ‘modify cpu 0 (string cpu.status="no-intr")’
pooladm -c

Here, CPU 0, which was already associated with mypset, will not be removed from the pset by
the dynamic pool daemon, and will never be used for interrupt handling.

Although it is possible to configure pools very specifically, as the example shows, it is
rarely necessary. Normally, simply setting the pset processor range and pool impor-

tance, while leaving the rest of the configuration up to the system to manage, yields good results.

The dynamic pool daemon
As shown in the previous section, many of the pool properties are used to configure the behav-
ior of the dynamic pool daemon (poold). The poold runs as a separate SMF service that mon-
itors utilization of all of the psets and periodically rebalances CPUs between psets based on the
configuration.

Use the following to enable poold:

svcadm enable system/pools/dynamic

Enabling the base pools service (system/pools) does not automatically enable the
poold service (system/pools/dynamic). You must explicitly enable this service or

there will be no dynamic rebalancing of CPUs between psets.

The utilization of a pset is defined as a percentage between 0 and 100. The poold implements
a fairly sophisticated control program that uses feedback from the past utilization of each pset,
as well as the history of reallocations, to determine how CPUs should be allocated. A brief
spike in the utilization of a pset does not mean that CPUs are automatically moved to that
pset. However, a sustained high utilization of a pset can cause CPUs to be moved, within the
constraints imposed by the rest of the configuration. This becomes complicated when the sum
of the pset maximums exceeds the number of CPUs available on the system. The sum of the

680

Resource Management 18

pset minimums must be greater than or equal to the number of CPUs on the system or the
configuration cannot be instantiated. In some cases, poold temporarily reallocates CPUs in such
a way that utilization is reduced or objectives aren’t actually being met, but through its history
mechanism, it tracks those decisions as feedback for future reallocations.

The system.poold.objectives property is one input to the algorithm that poold uses to
reassign CPUs. Only two values are valid: Either nothing is set or wt-load is used, which is
also the default. The wt-load objective means that the system tries to reassign CPUs to pools
that have a higher overall utilization.

The pool.importance property is another input to the poold algorithm. This property is used
to specify the relative importance of the various pools.

The pset.poold.objectives property is yet another input. There are two valid values for
this property: locality and utilization. The locality property means that poold will
use locality group data, described in the liblgrp(3LIB) man page, as input. This can be spec-
ified as tight, loose, or none. The following example shows setting a locality to tight,
which can improve the performance of some applications in the pset, but limits the ability of the
poold to move CPUs around:

poolcfg -c \
’modify pset mypset (string pset.poold.objectives="locality tight")’

The utilization property means that poold will try to match the CPUs to the utilization
within the pset. This can be specified using the greater than (>) or less than (<) relational
operators, as well as the approximate (∼) operator, which means that utilization can fluctuate
around the target value. This example sets the utilization objective to a range greater than
50% and less than 75%:

poolcfg -c ‘modify pset mypset
(string pset.poold.objectives="utilization > 50; utilization < 75")’

You can also specify an importance for specific objectives. This example combines both the
locality and utilization objectives, with the utilization being five times as important
as the locality:

poolcfg -c ‘modify pset mypset
(string pset.poold.objectives="locality tight; 5:utilization < 75")’

In most cases, you don’t need to set pset objectives. It is usually sufficient to sim-
ply set the pool importance and let poold reallocate CPUs based on the system’s

wt-load objective.

The default poold log file is /var/log/pool/poold. You can check this file to understand the
daemon’s behavior and the decisions it makes.

681

Part V OpenSolaris Virtualization

Processor Sets
OpenSolaris includes another facility named processor sets. Although the name is the same as
the one used within resource pools, this is actually a separate facility and is incompatible with
resource pools. You must disable resource pools to use standalone processor sets.

The basic concept of processor sets is similar to that of the psets described within resource
pools. This facility enables you to bind processes to a group of processors, and processors within
the set can only run processes bound to that set. Because these two capabilities are so similar,
they may be unified into one underlying implementation in the future.

In general, the processor set concept provided by the resource pools facility is more
flexible and is usually preferable to using the standalone processor sets described in

this section.

Processor sets are managed using the psrset command. You define a new processor set using
the c option, specifying a list of processor IDs to assign to the set. The psrinfo command can
be used to list the processor IDs for all of the processors on the system. This example creates a
new set with processor IDs 6, 7, and 8 assigned:

psrset -c 6 7 8
created processor set 1
processor 6: was not assigned, now 1
processor 7: was not assigned, now 1
processor 8: was not assigned, now 1
psrset
user processor set 1: processors 6 7 8

Here, the new processor set ID — in this case, 1 — is printed when the set is created. You can
use the psrset command with no options to list the sets. Note that processor set definitions are
not persistent across reboots, and there is no way to associate a processor set with a project or
task.

You can execute a command within a processor set using the -e option, as this example running
make in set 1 shows:

psrset -e 1 make

The psrset command also includes various options for displaying process to set bindings
and for rebinding running processes to a set. The psrset(1M) man page describes all of the
options.

Scheduling
Scheduling is the algorithm used by the kernel to determine which processes to run and for how
long. OpenSolaris implements an extensible scheduling framework so that different algorithms,
called scheduling classes, can be provided, and different groups of processes can be scheduled
using these different classes.

682

Resource Management 18

The following classes are provided in OpenSolaris:

Abbreviation Name

FSS Fair Share Scheduler

FX Fixed Priority

IA Interactive

RT Real Time

SYS System

TS Time Share

The Time Share (TS) class is the system’s default class. This class provides the traditional Unix
time-shared behavior in which all processes that are eligible to run are treated equally, and
no single process will starve other runnable processes. The system time-slices across all of the
runnable processes so that they all get a chance to run. The process’ nice value is also used
as an input into these scheduling decisions. See the nice(1) man page for more information.
Based on various inputs, such as the nice value and the amount of recent CPU usage, the
process priority is calculated to determine when it should run.

The Interactive (IA) class is a variation of the TS class. This class is used by processes running
in the window system to give them a priority boost, in order to improve the user’s interactive
experience.

The System (SYS) class is a special class used only for kernel threads, which are allowed to run
until they have finished their work. These processes have a higher priority range than processes
in the FSS, FX, IA, or TS classes.

The Fixed Priority (FX) class overlaps the same overall priority range as processes in the FSS, IA,
or TS classes, but processes in this class are assigned a priority that never changes, unlike pro-
cesses in TS or IA. The FX class also has a priority range that exceeds FSS, IA, or TS by one, so
processes in this class are ensured that they are always slightly higher in priority than processes
in the other three classes.

The Real Time (RT) class is also a fixed-priority class, but the priority range is higher than the
SYS class. That is, processes in this class will even preempt kernel threads.

You can use ps with the -c option to see the scheduling class that each process is using. On a
typical desktop computer, you will normally observe a mix of FX, IA, SYS, and TS classes in the
CLS column, and you might even notice the occasional RT class, as the example shows. You can
also see the process’ current priority in the PRI column:

$ ps -ecf
UID PID PPID CLS PRI STIME TTY TIME CMD
root 0 0 SYS 96 Mar 03 ? 0:04 sched
root 1 0 TS 59 Mar 03 ? 0:20 /sbin/init

683

Part V OpenSolaris Virtualization

root 2 0 SYS 98 Mar 03 ? 0:07 pageout
root 3 0 SYS 60 Mar 03 ? 193:22 fsflush
root 149 1 TS 59 Mar 03 ? 0:00 /usr/lib/power/powerd
root 7 1 TS 59 Mar 03 ? 0:22 /lib/svc/bin/svc.startd

...
root 13531 1 RT 100 09:41:15 ? 0:01 /usr/lib/inet/xntpd

daemon 595 1 FX 60 Mar 03 ? 0:00 /usr/lib/nfs/lockd
sarah 2932 2930 IA 59 Mar 03 ? 142:15 /usr/X11/bin/Xorg :0

The Fair Share Scheduler
The final scheduling class is the Fair Share Scheduler (FSS). This class is more complex than the
others and requires more explanation. Although this class shares the same priority range as the
FX, IA, and TS classes, the way that processes are scheduled is calculated differently.

The FSS class enables you to configure the scheduling of CPU time to groups of processes based
on their relative importance. This is configured through the use of projects or zones by defining
the cpu-shares resource control (rctl). The cpu-shares setting defines the relative impor-
tance of the project or zone as compared to the other projects or zones. This section focuses on
configuring projects; configuring zones is described in Chapter 19.

As described earlier, a project is used to group a collection of processes together and apply
resource management settings to that group. The project.cpu-shares rctl enables you
to specify the relative importance of the project compared to other projects. This example
configures settings on two different projects:

projmod -K "project.cpu-shares=(privileged,2,none)" myproject
projmod -K "project.cpu-shares=(privileged,5,none)" build

Based on the relative numbers, you can see that the build project is more than twice as impor-
tant as myproject.

The FSS uses these numbers to determine how processes in different projects should be sched-
uled. This calculation occurs only when there are more runnable processes than CPU resources.
That is, if there are only a few runnable processes and many free CPUs, then all of the processes
can be scheduled; but if there are more processes than available CPU time, then the FSS will
allocate CPU resources across projects based on the share allotted to each project.

The allocation of CPU resources to a project is calculated as the number of shares for the project
divided by the total number of shares among all active projects. Thus, as runnable processes
appear within projects or as projects are created and destroyed, the total number of shares will
change, affecting the allocation for each individual project.

This is easier to understand with an example. Assume there are four projects, A, B, C, and D,
with the following shares, and each project has at least one runnable process:

A 1
B 1

684

Resource Management 18

C 2
D 5

Nine shares are allocated, so project A will get 11% (one-ninth) of the CPU resources, while
project D will get 56% (five-ninths). If there were no runnable processes in project B, then it
would not factor in to the calculation, so project A would get 13% (one-eighth) and project
D would get 63% (five-eighths) of the CPU resources. Note that the total number of runnable
processes within each project is not a factor, as long as there is at least one runnable process in
each project.

There are a few special cases to consider as well. For example, on a two-processor system,
if there are two projects, each with one runnable process, then the number of shares does
not matter because each process can run on only one processor. There is a 1-to-1 mapping.
However, if there is only one active project with many runnable processes, then it is free to use
all of the available CPU resources. If a project is assigned 0 shares, the processes in the project
will run only when there is no other work to do. If shares are combined with resource pools to
partition workloads, the calculation is restricted to the set of projects assigned to each processor
set. When zones are in use, the CPU allocation is first calculated for each zone, and then a
second calculation is made across projects within each zone.

It is worth comparing the overall behavior of FSS to the TS class. For example, if there are two
projects, each with an equal number of shares, the first with 99 runnable processes and the sec-
ond with one runnable process, then the TS class would allocate only 1% of the CPU resources
to the process in the second project (1/100). However, the FSS class would allocate 50% to the
process in the second project (one-half). The cpu-shares indicate the relative importance of
the collection of processes in each project, whereas the TS class simply treats all processes as
equal. Using FSS means that a project with many active processes cannot hog the system’s CPUs
but is instead scheduled based on project priority, expressed through its cpu-shares, as com-
pared with the other active projects on the system — hence, the name ‘‘Fair Share Scheduler.’’

Because the FSS class shares the same priority range with the FX, IA, and TS classes, you should
not mix FSS processes with processes from these other classes. This can lead to unexpected
scheduling decisions. There are two different ways to address this. One option is to use FSS for
everything by setting it as the default system scheduling class, as described in the next section.
The other option is to use resource pools to partition projects so that projects with shares are
run in a different processor set from the rest of the processes. This example configures a project
with shares in an explicit pool and pset:

projmod -K \
"project.pool=mypool;project.cpu-shares=(privileged,5,none)" build
newtask -p build bash
ps -eo user,pid,project,taskid,class,args

USER PID PROJECT TASKID CLS COMMAND
...

sarah 910 build 81 FSS bash
poolbind -Q $$
910 pset mypset

685

Part V OpenSolaris Virtualization

When processes are run in a project that has an explicit cpu-shares setting, the FSS class is
automatically used. Thus, this configuration ensures that the project’s processes are not mixed in
with the rest of the processes on the system, which are running in the default pool and proces-
sor set.

Managing scheduling classes
The dispadmin command is used to manage the system’s scheduling classes. You can use the
-l option to see the available classes on the system:

dispadmin -l
CONFIGURED CLASSES
==================
SYS (System Class)
TS (Time Sharing)
IA (Interactive)
RT (Real Time)
FX (Fixed Priority)
FSS (Fair Share)

The -d option is used to view or set the system’s default scheduling class. This example sets it
to FSS and then displays the default:

dispadmin -d FSS
dispadmin -d
FSS (Fair Share)

When the system boots, this class will be used by default for all processes, unless an application
explicitly sets its class to some other value (which requires administrative privileges).

You can also use the dispadmin command to view or change the class-specific options,
although that is not normally done.

The priocntl command is used to dynamically change the scheduling parameters of a process
or group of processes. This example moves pid 968 into the IA class:

priocntl -s -c IA 968

The next example moves all of the processes in the build project, with project ID 100, to the
RT class:

priocntl -s -c RT -i projid 100

You can query a collection’s scheduling parameters using the -d option:

priocntl -d -i projid 100
REAL TIME PROCESSES:

PID RTPRI TQNTM TQSIG
975 0 1000 0

686

Resource Management 18

You can also use priocntl to run a process in a specific class and to configure various schedul-
ing parameters. The priocntl(1) man page provides details on all of the parameters, as well as
a detailed explanation of each class and its class-specific options.

For more information on the implementation and overhead of the various scheduling classes, see
Solaris Internals by Richard McDougall and Jim Mauro (Prentice Hall, 2006).

CPU caps
OpenSolaris includes one more scheduling-related feature that can be used to manage process
scheduling: the cpu-cap resource control. The overall resource control capability was described
earlier in this chapter.

The cpu-cap rctl enables you to set an upper limit on how much CPU can be used by
processes within a project or zone. This limit should be set if you want to cap the amount of
CPU being used even if the system has additional free CPU cycles. This is useful in certain
cases, such as an environment in which users purchase a fixed amount of CPU, or if you want
to set expectations such that users don’t get used to better performance when the system is
lightly loaded, and then complain later when more load is added. Think of the cpu-cap rctl as
the opposite of the cpu-shares rctl used with FSS. While CPU shares guarantee a minimum
amount of CPU when the system is heavily loaded, CPU caps guarantee a maximum amount of
CPU, even when the system is lightly loaded.

The cpu-cap value is specified as a percentage of one CPU, so you can limit CPU usage in frac-
tions of a CPU. This example sets the project cpu-cap to 150, which represents 100% of one
CPU and 50% of a second CPU:

projmod -a -K "project.cpu-cap=(privileged,150,deny)" myproject

The limit is calculated by keeping track of the CPU usage for all of the threads in the project
over a short time interval, using the OpenSolaris micro-state accounting feature. When the cap is
reached, the threads are not scheduled to run again until the limit calculation once again drops
below the cap. CPU caps are not enforced for processes in the real-time scheduling class.

Accounting
OpenSolaris includes both a legacy and an extended accounting capability. Accounting can be
used to maintain a historical record of resource usage, which is useful for basic record-keeping,
capacity planning, or for usage charging. Both accounting facilities can be used at the same time.

Legacy accounting
The legacy accounting features in OpenSolaris are provided using a traditional implementation
with a predefined accounting record that is written when a process terminates. The accounting

687

Part V OpenSolaris Virtualization

records are stored in the /var/adm/pacct file. Legacy accounting can be used to record activ-
ity only at the user and process level.

Accounting can be enabled with the following command:

/usr/lib/acct/startup

An SMF service for accounting has not yet been created, so you must manually set up a legacy
rc script to cause accounting to be enabled when the system boots. You can do so as follows:

cd /etc/rc2.d
ln -s ../init.d/acct S15acct

The lastcomm command can be used to read the accounting data and print an abbreviated list
of commands that have been executed on the system — in reverse order, with the most recent
command first. This command will automatically work with either legacy or extended account-
ing records:

lastcomm
who root pts/1 0.01 secs Sun Mar 30 15:04
ps root pts/1 0.03 secs Sun Mar 30 15:02
...

The lastcomm command prints the command, the user who executed the command, his or her
terminal, the amount of CPU time used by the process, and the timestamp when the process ter-
minated. You can also use various options to filter the data by terminal, command, or user. See
the lastcomm(1) man page for more information.

The acctcom command prints accounting records in more detail but works only with the legacy
accounting system. It prints the commands in order, so the most recent command is last. This
command has a variety of options, described on the acctcom(1) man page:

acctcom
COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
...
date sarah pts/2 16:05:06 16:05:06 0.01 0.01 3048.00
ls sarah pts/2 16:05:08 16:05:08 0.06 0.01 6936.00

You can use a variety of commands to prepare daily or monthly reports and to maintain the
accounting files. To enable reporting, you need to set up a variety of cron jobs. The full
procedure is described in the chapter ‘‘Managing System Accounting’’ in the System Adminis-
tration Guide: Advanced Administration. You can also get more information on the acctsh(1M)
man page.

Extended accounting
The extended accounting feature in OpenSolaris is much more flexible than legacy accounting.
With extended accounting, activity can be tracked at the user, group, task, project, and zone

688

Resource Management 18

levels. In addition, it provides both an extensible file format and an API that enables applications
to generate interim, application-specific accounting data along with the default data collected
when a process or task completes. The API is also used to read the accounting data for pro-
cessing. The collected data can be configured to track activity at both the process level and the
task level.

The acctadm command is used to manage the extended accounting subsystem. You must
enable accounting for the resources you are interested in tracking. The -r option displays the
valid resources by type: process, task, or flow:

acctadm -r
process:
extended pid,uid,gid,cpu,time,command,tty,projid,taskid,ancpid,
wait-status,zone,flag,memory,mstate
basic pid,uid,gid,cpu,time,command,tty,flag
task:
extended taskid,projid,cpu,time,host,mstate,anctaskid,zone
basic taskid,projid,cpu,time
flow:
extended saddr,daddr,sport,dport,proto,dsfield,nbytes,npkts,action,
ctime,lseen,projid,uid
basic saddr,daddr,sport,dport,proto,nbytes,npkts,action

The resources represent the specific data elements that can be stored in an accounting record.
For convenience, these resources are grouped into basic and extended groups, or you can
explicitly specify which pieces of data you want to record. Use the -e option to enable account-
ing for the specified resources and type of object:

acctadm -e extended -f /var/adm/exacct/task task
acctadm -e pid,uid,time,command,mstate -f /var/adm/exacct/proc \

process

Here, the task-level accounting resource was specified using the extended group, which
records all of the individual data elements contained in that group. You can also see that the
process-level accounting was explicitly configured with a list of resources. The -f option spec-
ifies the file where the accounting data is stored. Looking at the various accounting resources,
you can see how activity can be tracked at the user, group, task, project, or zone levels.

When you enable extended accounting using the acctadm command, the following SMF
services are automatically enabled as well: svc:/system/extended-accounting:task,
svc:/system/extended-accounting:process, and svc:/system/extended-
accounting:flow.

The acctadm command with no argument shows the current accounting configuration:

acctadm
Task accounting: active

Task accounting file: /var/adm/exacct/task

689

Part V OpenSolaris Virtualization

Tracked task resources: extended
Untracked task resources: none

Process accounting: active
Process accounting file: /var/adm/exacct/proc

Tracked process resources: pid,uid,time,command,mstate
Untracked process resources:gid,projid,taskid,cpu,tty,host,flag,
ancpid,wait-status,zone,memory

Flow accounting: inactive
Flow accounting file: none

Tracked flow resources: none
Untracked flow resources: extended

The accounting records can be summarized using the lastcomm command or accessed using
the API described in the libexacct(3LIB) man page. There is also a demo program, delivered
by the SUNWosdem package, that can be used to dump the accounting records. This program is
installed in the /usr/demo/libexacct directory and must first be compiled. Once built, you
can use it to display the accounting records, as this example shows:

./exdump /var/adm/exacct/task
101 group-task [group of 25 object(s)]

2000 taskid 91
2001 projid 100
2009 cpu-sys-sec 0
200a cpu-sys-nsec 402654256
2007 cpu-user-sec 0
2008 cpu-user-nsec 514332004
2003 start-sec 1206905248
2004 start-nsec 505367312
2005 finish-sec 1206905801
2006 finish-nsec 884819412
2002 hostname "myhost"
200b faults-major 7
200c faults-minor 0
200e msgs-snd 0
200d msgs-recv 0
200f blocks-in 8
2010 blocks-out 11
2011 chars-rdwr 1021984
2012 ctxt-vol 575
2013 ctxt-inv 193
2014 signals 0
2015 swaps 0
2016 syscalls 9481
2018 anctaskid 90
2019 zone "global"

Here, there is one task accounting record, consisting of 25 data elements. The number of
elements in each record varies according to the resources you configured using acctadm.
This demo program is not meant as a production-level accounting tool. Instead, use it as a

690

Resource Management 18

starting point for creating your own accounting tools or you can use add-on software to process
the accounting data. There is also a Perl module for accessing the accounting data. See the
Exacct(3PERL), Project(3PERL), and Task(3PERL) man pages for more details.

You can use the wracct command to cause a partial or interval accounting record to be
written for a long-running process or task that has not yet completed. This example causes a
partial record to be written for the process with pid 857:

wracct -i 857 -t partial process

These accounting records are tagged so that a program that is processing the accounting data
can distinguish between a full record and a partial or interval record.

Resources
The Resource Management project, which encompasses most of the material in this chapter, is at
http://opensolaris.org/os/project/rm.

If you are interested in the architecture and design of the various resource manage-
ment subsystems, you can access the ARC cases on the ARC community website at
http://opensolaris.org/os/community/arc/. In particular, the following cases are
the most fundamental for resource management:

PSARC/1999/119 Tasks, projects, and extended accounting
PSARC/2000/136 Administrative support for processor sets and

extensions
PSARC 2000/137 Resource Controls
PSARC/2000/452 Revised Share Scheduler
PSARC/2002/287 Dynamic Resource Pools
PSARC/2002/519 rcapd(1MSRM): resource capping daemon
PSARC/2004/402 CPU Caps

If you are interested in the implementation of resource management, source code for the various
components is spread out between the kernel, libraries, and commands.

For projects and tasks, the main header is usr/src/uts/common/sys/project.h. The pri-
mary kernel code is in usr/src/uts/common/os/project.c, which includes detailed com-
ments. The library is under usr/src/lib/libproject. The user-level commands are under
usr/src/cmd/projadd and usr/src/cmd/projects.

For resource controls, the main header is usr/src/uts/common/sys/rctl.h. The primary
kernel code is in usr/src/uts/common/os/rctl.c, which includes a detailed comment. The
process (proc) library interface is in usr/src/lib/libproc/common/pr_getrctl.c. The
user-level commands are under usr/src/cmd/prctl.

The resource capping daemon is under usr/src/cmd/rcap.

691

Part V OpenSolaris Virtualization

For pools, the main header is usr/src/uts/common/sys/pool.h. The primary kernel code is
in usr/src/uts/common/os/pool.c, which includes detailed comments. The library is under
usr/src/lib/libpool. The user-level commands are under usr/src/cmd/pools.

The dynamic pool daemon source code is under usr/src/cmd/pools/poold. This
daemon is a mix of C and Java source, with most of the logic implemented in Java. The
usr/src/cmd/pools/poold/com/sun/solaris/domain/pools/Poold.java file includes
a detailed comment and is a good starting point.

The kernel scheduling code and various scheduling classes are under usr/src/uts/
common/disp. The dispadmin command is under usr/src/cmd/dispadmin.

The legacy accounting header is usr/src/uts/common/sys/acct.h. The primary
kernel code is in usr/src/uts/common/os/acct.c. The commands are under
usr/src/cmd/acct and usr/src/cmd/lastcomm. The extended accounting header is
in usr/src/uts/common/sys/exacct.h. The primary kernel code is in usr/src/uts/
common/os/exacct.c. The library is under usr/src/lib/libexacct. The acctadm
command is under usr/src/cmd/acctadm.

Solaris Internals by Richard McDougall and Jim Mauro (Prentice Hall, 2006) includes a discus-
sion of scheduling in Solaris.

Summary
This chapter described the various mechanisms within OpenSolaris that can be used to control
and monitor the system’s resources. These resources are primarily the system’s CPU and
memory. Projects and tasks were described as a grouping mechanism to manage related work-
loads. The various system controls, including resource controls, resource caps, resource pools,
processors sets, and scheduling, were covered, along with the ways to tie those capabilities into
projects. The accounting facilities, which enable you to monitor overall usage of the system,
were also described.

692

Zones

IN THIS CHAPTER
Introduction to Zones

Getting started with Zones

Advanced Zones configuration

Advanced zoneadm features

Ongoing Zones administration

Limitations to Zones

Branded Zones

As described in Chapter 17, zones are the operating system-level
virtualization capability provided by OpenSolaris. This chapter
focuses on zones and explains how resource management fea-

tures, covered in Chapter 18, are used in conjunction with them. The
combination of zones and resource management is called containers.

Introduction to Zones
The OpenSolaris zones capability is used to create a virtualized environ-
ment for running software in a secure and isolated way. Within the zone,
it appears to users and applications that they are running on a standalone
system. Users and processes outside of the zone cannot be seen or affected,
there are no name conflicts on files or ports, and the behavior of software
within the zone is contained to that zone. Because there are no name con-
flicts across zones, each zone has a unique user-ID namespace and its own
root user. Administration within the zone is delegated to that zone’s root
user, who can configure and manage the zone almost as he or she sees fit.
The various limitations are discussed in this chapter.

Although each zone appears as a standalone operating system from inside
the zone, in reality there is a single instance of an OpenSolaris kernel
running on the hardware. This kernel is inherently aware of zones and
actively manages the containment of processes and actions within the
zone. As described in Chapter 17, this type of virtualization is known as
operating-system-level virtualization. Because the OS is actively involved
in managing the containment of processes within the zone, the behavior

693

Part V OpenSolaris Virtualization

and I/O of those processes does not go through an additional virtualization layer. Zones are very
lightweight: All processes on the system are always executing within a zone and those processes
always run at full speed. Because of this, you can run many zones on a single system, and you
can realize all of the performance of the system, even when explicitly running in a zone.

The base operating system that is installed and running on the hardware is called the global zone.
Additional instances of zones are called non-global zones. The global zone root user has ultimate
authority and administrative control over all zones on the system. He or she can configure, cre-
ate, destroy, and manage all aspects of each zone. Administrative actions within the global zone
can impact the non-global zones. Actions within a non-global zone do not impact other zones.

Uses of Zones
Zones are an ideal solution for consolidating many standalone systems onto a single machine.
This can increase the utilization of the hardware and decrease the number of physical systems
to install, maintain, and manage. Because each zone is an isolated environment, the actions and
configuration in one zone do not affect the other zones.

Another use for zones is to provide encapsulation of the application stack. Within the zone,
modifications can be made without affecting the rest of the system. Once everything is com-
pletely set up, the zone can be treated as a container that can be cloned, used to provision other
zones, and migrated from system to system. Even on a system that runs only a single application
stack, installing and provisioning within a zone enables that environment to be virtualized away
from the base system and treated as an independent entity. It also provides an extra level of
security without imposing any overhead on performance.

Zones can also be used when there is a need to delegate administration to another user who
should not have management access to the primary system. By giving that user a zone, he or
she can perform their own system configuration and management in that zone without affecting
other users or the global zone.

Getting Started with Zones
OpenSolaris provides three primary commands to administer zones: zonecfg, zoneadm, and
zlogin. zonecfg is used to configure a zone. zoneadm is used for ongoing administration
such as installation, booting, or halting the zone. zlogin is used to log in to the zone, including
logging in to the zone’s console.

Configuring a zone
The first step in setting up a new non-global zone is to configure it using the zonecfg com-
mand. You must be root or have root privileges in the global zone to configure and administer

694

Zones 19

zones. To avoid having to be root, the Zone Management RBAC profile can be assigned to a
user. This same RBAC profile is also used for the other management tasks related to zones.

See Chapter 11, which discusses OpenSolaris security, for information on using
RBAC.

The following example steps through the configuration, installation, and booting of a new zone
named myzone:

zonecfg -z myzone
myzone: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:myzone> create
zonecfg:myzone> set zonepath=/pl/zones/myzone
zonecfg:myzone> add net
zonecfg:myzone:net> set physical=bge0
zonecfg:myzone:net> set address=192.168.0.92
zonecfg:myzone:net> end
zonecfg:myzone> exit

zonecfg provides an interactive command-line environment to configure a zone. To invoke
the command, specify the zone name with the -z option. Because the zone does not yet exist,
zonecfg tells you to create it, which is done with the create subcommand.

Next, a value for the zonepath property is specified using the set subcommand. This defines
where in the file system the root directory tree for the zone will be placed. Each zone must
have its own unique zonepath. In this example, myzone’s root directory tree will reside under
/pl/zones/myzone.

Each zone’s root directory tree resides someplace in the file system of the global
zone. Within this tree is a parallel installation of the system software that is unique

to the zone. In this way, the zone has its own private copies of all system files and configuration
data. The zonepath specifies where in the global zone’s file system tree the non-global zone’s root
will live. On SXCE, it is common to configure the zone so that it shares most of the read-only
portions of its file system with the global zone. This is described in the ‘‘Sparse root versus whole
root’’ section later in this chapter. Depending on how the zone is configured, its root directory
tree can consume a few tens of megabytes up to several gigabytes within the global zone’s
file system. The SXCE distribution is described in Chapter 2. Many of the SXCE-related topics
described in this chapter are applicable to the Solaris 10 release.

Next, a net resource is added using the add subcommand. The net resource has two prop-
erties: physical and address. The physical property specifies the name of the network
interface that will be virtualized for the zone. For now you can use the same primary NIC
that is configured in the global zone. The address property specifies the IP address for the
zone. Each zone should be assigned a unique IP address, just as you would with individual
standalone systems. In this example, the bge0 network interface is used with an IP address of
192.168.0.92. You can specify the IP address as an IPv4 address, IPv6 address, literal address, or
hostname.

695

Part V OpenSolaris Virtualization

You can view all of the network interfaces configured in the global zone by running
the ifconfig -a command in your shell in the global zone. Network commands are

described in more detail in Chapter 9.

Finally, the end subcommand is used to finish the net resource you added and the exit sub-
command is used to exit the zonecfg command itself.

At this point you have completed creating the new zone named myzone. The zone is configured
but it is not yet installed. To see all zones and their states, use the zoneadm command:

$ zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
- myzone configured /pl/zones/myzone native shared

The zoneadm command supports several subcommands, which are discussed throughout this
chapter. The example here uses the list subcommand. After a zone has been configured
using zonecfg, you’ll primarily use the zoneadm command for ongoing administration of the
zone. For the zoneadm list subcommand, the -c option means to show all zones, not just
running zones, and the -v option means verbose output. You can see the zone named myzone
that you just created. It is in the configured state, which means it has been defined but not
yet installed. You can also see where in the file system the zone will live, the zonepath that
you specified in zonecfg. The Brand and IP columns are discussed later in the chapter. In
this example, you can also see that the global zone is running. The global zone refers to the
environment of the base operating system, which is itself a zone, and is always running. Each
running zone has an ID assigned to it and the global zone always has zone ID 0. You can use
the zone ID or zone name within various commands to get more information about the specific
zone, as discussed later.

Installing a zone
After a zone has been configured, the next step is to install it. Installation will populate the
zonepath with the operating system files, similar to installing a standalone system. Once again,
you use the zoneadm command but this time with the install subcommand:

zoneadm -z myzone install
A ZFS file system has been created for this zone.
Preparing to install zone <myzone>.
Creating list of files to copy from the global zone.
Copying <12458> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <1194> packages on the zone.
Initialized <1194> packages on zone.
Zone <myzone> is initialized.

The file </pl/zones/myzone/root/var/sadm/system/logs/install_log>

contains a log of the zone installation.

696

Zones 19

The output from the zoneadm install subcommand shows the progress as the zone is
installed. Depending on how the zone is configured, it can take several minutes or more to
install the zone because it’s essentially a second installation of OpenSolaris.

Note that the first output line says that a ZFS file system was created. In this example, assuming
the zonepath, /pl/zones/myzone, resides within a ZFS file system, the zone installation pro-
cess automatically creates a new ZFS file system for the zone, as shown here. This enables you
to leverage the capabilities of ZFS for the zone as well as the integration between zones and ZFS,
which is discussed further later in this chapter.

The innovative features of the ZFS file system are discussed in detail in Chapter 8.

Now that the zone has been installed, you can check the status again using zoneadm:

$ zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
- myzone installed /pl/zones/myzone native shared

Note that listing zones does not require root privileges, but other zoneadm subcommands, such
as booting or halting a zone, do require root privileges.

You can see the zone’s status has changed from configured to installed.

Booting a zone
Once the zone has been installed, it can then be booted. A zone can boot, halt, and reboot
much like a standalone system but the zoneadm command is used to initiate those tasks for the
zone. To boot the zone, use the zoneadm command with the boot subcommand. Privileged
users within a zone can reboot or halt only that zone.

You might want to read ahead to the next section, which describes logging in to the
zone’s console, and do that in a second terminal window while booting the zone so

that you can see the zone’s console output as it boots.

zoneadm -z myzone boot

As you work with zones, you’ll notice that booting a zone takes only a few seconds, although
the first boot takes longer due to the system configuration and SMF initialization process. Once
you are logged into the zone, you halt or reboot the zone using the same commands you would
use to manage the global zone (shutdown, halt, and reboot, for instance).

Check the zone’s status and you can see it is now running:

$ zoneadm list -v
ID NAME STATUS PATH BRAND IP
0 global running / native shared
1 myzone running /pl/zones/myzone native shared

697

Part V OpenSolaris Virtualization

The -c option isn’t needed in this case because you are only looking at running zones. The zone
has been assigned a zone ID of 1. A new ID is assigned each time a zone boots.

Logging in to a zone
Once a zone has been installed, you can use the zlogin command to log in to the zone. During
the first boot of a zone, it must be configured with a host name, time zone, root password, and
so on, just as with a standalone system.

A common mistake is to omit this step, which leaves your zone running but because
it hasn’t been configured yet, it is mostly unusable. For example, you can’t log in to

the zone over the network until you have completed configuration of the zone. For this reason, it
is a good idea to log in to the zone’s console while it is booting for the first time so that you can
complete the steps to configure the zone. A technique to bypass this step is described later in the
chapter.

To log in to the zone’s console, use the -C option:

zlogin -C myzone
[Connected to zone ‘myzone’ console]

At this point the command will just sit there until the zone is booted in another window. Once
that is done, you’ll start to see console output, just as you would on a standalone system:

[NOTICE: Zone booting up]

SunOS Release 5.11 Version snv_82 64-bit
Copyright 1983-2007 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Hostname: myzone
Loading smf(5) service descriptions: 148/148
...

Eventually the zone will finish initializing and, because this is the first boot, you’ll see the
system configuration prompts, as shown on a standalone system the first time it boots. Similarly,
after you complete system configuration, the zone will reboot and you’ll be presented with a
login prompt:

myzone console login:

To drop off the zone console, type a ∼. escape sequence, which returns you to your
shell prompt in the global zone. This has no effect on the state of the zone, which

continues to run.

The zlogin command can also be used to run commands within the zone without actually log-
ging in to an interactive shell:

zlogin myzone uptime
5:24pm up 1 min(s), 0 users, load average: 0.38, 0.22, 0.14

698

Zones 19

Halting a zone
Use the zoneadm halt subcommand to halt a running zone, and the reboot subcommand to
reboot the zone:

zoneadm -z myzone halt

The root user within a non-global zone can also halt or reboot the zone at any time using the
standard system commands such as halt, shutdown, or reboot. These commands executed in
non-global zones have no effect on the global zone.

Advanced Zone Configuration
zonecfg provides many additional capabilities to configure a zone.

Any changes you make through zonecfg for a running zone will not take effect until
the zone reboots. Techniques to dynamically change the configuration of a zone,

without rebooting, are described later in the chapter.

Within the zonecfg command, the attributes for the zone are specified using a combination of
properties and resources. Properties are simple attributes for the zone. Resources represent a col-
lection of properties that define an instance of a resource. You can specify one or more instances
of most resources. You set the value of a property and you add an instance of a resource. In the
previous example, you set the value of the zonepath property and you added one instance of
the net resource. Within that instance of the net resource, you set the value of the two prop-
erties defined for that resource. As shown in this section, you can add additional instances of a
specific resource. For example, you could add another instance of the net resource to the previ-
ous configuration if you wanted that zone to have two network interfaces defined.

Don’t confuse the zonecfg resources with resource management. Although they have
the same name, these are two different concepts. The zonecfg resources are used

to specify a zone’s configuration. Resource management is the collection of features used by the
OS to define how the system’s resources are allocated and controlled. Resource controls is yet
another feature that uses the ‘‘resource’’ name, but it is also different. Resource controls are one
component of resource management.

Resource management
The zone you set up in the previous example did not include any resource management settings,
but it is critical to configure a zone with the correct resource management settings or the zone
could disrupt the functioning of the entire system.

The OpenSolaris resource management features are discussed in Chapter 18. These
features have specific capabilities applicable to zones.

699

Part V OpenSolaris Virtualization

Resource controls
The kernel implements a set of zone-specific resource controls. The syntax for fully specifying a
resource control within zonecfg is complex, so zonecfg allows these values to be set as simple
properties, as Table 19-1 shows.

TABLE 19-1

Resource Control Properties

Property Full Resource Control Name

cpu-shares zone.cpu-shares

max-lwps zone.max-lwps

max-msg-ids zone.max-msg-ids

max-sem-ids zone.max-sem-ids

max-shm-ids zone.max-shm-ids

max-shm-memory zone.max-shm-memory

This example shows how to set the resource control as a simple property:

zonecfg:myzone> set max-lwps=1000

The following shows how to set the same resource control using the fully specified syntax by
adding an instance of the zonecfg rctl resource:

zonecfg:myzone> add rctl
zonecfg:myzone:rctl> set name=zone.max-lwps
zonecfg:myzone:rctl> add value (priv=privileged,limit=1000,action=deny)
zonecfg:myzone:rctl> end

The simplified syntax is preferable unless you need the capability to construct a complex
resource control configuration.

This example is another case demonstrating that it is easy to confuse the zonecfg
resource with the resource control. Remember that these are two different concepts

with the same name.

At a minimum, set max-lwps so that a malicious or compromised zone cannot consume all of
the processes on the system. The cpu-shares resource control is described in the next section.
The rest of the resource controls in Table 19-1 are used to set limits on the System V shared
memory usage within the zone.

The fair share scheduler
Unless the zone is assigned to a pool, which is described later, it shares CPUs with the global
zone and all other zones that are not assigned to a pool. Without the proper configuration, this

700

Zones 19

sharing would allow a zone to monopolize the CPU cycles of the system. OpenSolaris includes
the Fair Share Scheduling (FSS) class, which prevents this behavior. The FSS class ensures
that all processes are given the proper share of CPU cycles, based upon the number of shares
assigned. FSS comes into play only when the system is fully loaded. That is, if a single zone
is busy with work but the rest of the zones are not doing anything, the busy zone is allowed
to use all of the CPU cycles. However, if multiple zones have more work than available CPU
cycles, the FSS allocates the CPU fairly, according to the number of CPU shares assigned to
each zone.

This behavior is in contrast to the behavior of the default Time Sharing class (TS). The TS class
attempts to ensure that all processes, independent of the zone they are in, are given a fair share
of the system. If one zone has 100 processes that can run and another zone only has one pro-
cess that can run, the first zone would get 100 times more CPU cycles than the second zone if
the TS class were in use. This behavior can be prevented with FSS.

With FSS, each zone has a CPU share value assigned to it. As described in the previous section,
the cpu-shares setting is a resource control that can be set as a simple property. By default,
each zone has one share assigned, so if the FSS is in use and the cpu-shares resource control
is not explicitly set, the zone still has one share.

The simplest way to understand shares is through an example. Assume you have three
non-global zones, each with one share, and a global zone with one share. If all of the zones
are busy with work, each zone gets an equal 25% of the CPU resources (1 share divided by 4
total shares). However, the cpu-shares setting is not an explicit percentage because the total
number of outstanding shares can change dynamically. If another zone boots up and is also busy
with work, then each zone now gets only 20% of the CPU resources because there are now five
outstanding shares. If the fifth zone had 3 cpu-shares assigned instead of just 1, that fifth
zone would get 43% of the CPU resource (3 shares divided by 7 total shares) and the other four
zones would each get 14% (1 share divided by 7 total shares). If these five zones are running
but only two of those zones, each with one share, are actually busy doing work, then only those
two zones are competing for CPU cycles and each would get 50%.

The key point is that when the system is completely busy, each zone still gets its fair share of
CPU resources if it has some work to do, no matter how many processes are runnable within
each zone. Using FSS enables the system to be safely overprovisioned. A busy zone can use all
of the available CPU resources to do work; but when other zones have work to do, they still get
their share.

If the zones are not assigned to pools, as described in the next section, always use
FSS to ensure that a single misbehaving or busy zone does not starve the other zones

on the system. This is also critical for performing administration in the global zone because oth-
erwise, a completely busy zone could significantly impact the capability to run processes in the
global zone.

701

Part V OpenSolaris Virtualization

Explicitly setting a cpu-share on a zone does not automatically cause the system to use FSS
as the default scheduling class. In almost every case it is best to set up the system with FSS as
the default scheduling class when zones are in use. Use the dispadmin command in the global
zone to set the class:

dispadmin -d FSS

If cpu-shares is explicitly set but FSS is not the default scheduling class, a warning appears
when the zone boots.

Pools
The zonecfg command enables you to set the pool property, which causes the zone to be
bound to the specified pool when the zone boots. As shown in Chapter 18, setting up and
managing a pool can be complex. A simpler alternative is to use the zonecfg dedicated-cpu
resource:

zonecfg:myzone> add dedicated-cpu
zonecfg:myzone:dedicated-cpu> set ncpus=1-4
zonecfg:myzone:dedicated-cpu> set importance=5
zonecfg:myzone:dedicated-cpu> end

When a zone is configured this way, a pool is automatically created with the specified
number or range of CPUs assigned to the pool when the zone boots. If necessary, the
svc:/system/pools service in the global zone is also enabled. In this example, the number of
CPUs assigned to the pool is a range of 1–4 and the importance property is set, although it is
not required. If it’s set, the property is used as input to the dynamic pool daemon (poold). The
poold dynamically reallocates CPUs to different pools based on the ranges specified for each
pool, how busy each pool is, and the pool importance.

As the dedicated-cpu resource name implies, the pool is dedicated to the zone. It is created
when the zone boots, only that zone is assigned to the pool, and the pool is destroyed when the
zone halts. This is in contrast to the behavior when a pool is assigned via the pool property.
When you use the pool property, you must explicitly set up the pool, but you also have more
control over how zones are allocated to a pool. For example, you could create a pool and assign
more than one zone to it.

The procedures to manually configure a pool are described in Chapter 18.

Pools are particularly useful when a zone should be restricted to a subset of the total number
of CPUs on the system. For example, if you have an application that is licensed to run on only
two CPUs, you could run it on a 32-way machine using a dedicated-cpu configuration with
ncpus set as 1–2. This would ensure that the zone can never see more than two CPUs, keep-
ing the application within its license agreement. If this zone were not very busy, then it could
actually be allocated only one CPU, as a range of 1–2 was specified.

When zones are configured to use pools, you can use the poolstat command in the global
zone to monitor the pools. Pools that are dynamically created for zones with dedicated-cpu

702

Zones 19

settings are named with the SUNWtmp_ prefix and the zone name, so that it is easy to correlate
the pool to the zone:

$ poolstat
pset

id pool size used load
0 pool_default 2 0.00 0.03
2 SUNWtmp_myzone 2 0.00 0.83

The poolstat output is described in Chapter 18.

When using pools, enable the dynamic pool daemon poold whenever possible so that it can
dynamically rebalance CPUs across pools:

svcadm enable system/pools/dynamic

This service is not enabled by default because the daemon is written in Java and some systems
may not have Java installed. If poold is not enabled and you are using a pool configuration
with a range of CPUs, the CPUs are not rebalanced after the zone boots. CPUs are assigned or
moved around when the zone boots but not after. Thus, poold should always be enabled when
using ranges to yield the expected behavior.

With respect to pools, two different SMF services are involved: the base pools service
and the dynamic pools service, as described in Chapter 18.

The cpu-shares resource control cannot be used when a dedicated-cpu resource is set up
because that configuration does not make sense. With a dedicated-cpu configuration, there is
no possible CPU sharing among zones for FSS to manage.

Capped CPU usage
CPU caps are another feature that can be used to control how CPU resources are allocated to
a zone. A CPU cap sets an upper limit on the amount of CPUs used by the zone, no matter
how much work the zone has. That is, even if the system is idle except for the one zone, when
the zone hits its CPU cap, it is not allowed to use more CPU cycles. CPU caps are useful in a
charge-back environment where the user is only paying for so many CPUs. With a cap, users
can’t use more CPUs than they have paid for. Another use would be to set user expectations.
For example, if the system only has a few zones and is lightly loaded but you know that more
zones will be added later, you can use a CPU cap so that users don’t complain later when there
are fewer free CPU cycles.

CPU caps also can be used as an alternative to FSS if you know in advance how many zones
you will have and you carve up all of the CPU cycles among those zones so that the total is
less than or equal to the number of available cycles. For example, if you have seven non-global
zones and eight CPUs, you could set a CPU cap of one CPU per zone, as described below,
leaving one CPU free for the global zone. This way, a single zone could never monopolize

703

Part V OpenSolaris Virtualization

the CPU cycles on the system, although neither could it use excess CPU cycles, as it could
with the FSS.

A CPU cap can be specified using the capped-cpu resource within zonecfg. This resource is
similar to, but mutually exclusive with, the dedicated-cpu resource described earlier because
it doesn’t make sense to use both on the same zone. However, different zones can use one or the
other with no problem. This example sets a cap to 25% of one CPU:

zonecfg:myzone> add capped-cpu
zonecfg:myzone:capped-cpu> set ncpus=.25
zonecfg:myzone:capped-cpu> end

There is no importance property with the capped-cpu resource because that applies only to
poold rebalancing CPUs across pools. Likewise, the ncpus property cannot be specified as a
range for the same reason. However, unlike the dedicated-cpu resource, which must work in
units of whole CPUs, in the capped-cpu resource you can set the ncpus property to a fraction,
indicating that the zone is capped to a fraction of a CPU. In this example, the zone is limited to
using 25% of a single CPU. If ncpus were set to 4.5, the zone would be limited to using four
full CPUs and 50% of a fifth CPU.

Because CPU caps are implemented in the kernel as a resource control, an alternative to using
the capped-cpu resource is to specify the cap using the full resource control syntax within
zonecfg, although as described earlier, the simplified syntax is usually preferable. Here’s the
full syntax:

zonecfg:myzone> add rctl
zonecfg:myzone:rctl> set name=zone.cpu-cap
zonecfg:myzone:rctl> add value (priv=privileged,limit=25,action=deny)
zonecfg:myzone:rctl> end

This example also sets a limit of 25% of a CPU.

As described in Chapter 18, explicit resource controls use integer values, so the
cpu-cap limit is interpreted as a percent of CPU.

Although the capped-cpu and dedicated-cpu resources are mutually exclusive, you can
use the capped-cpu resource with a cpu-shares setting for FSS. In this configuration, the
FSS ensures a minimum allocation of the system when it is completely busy; and the CPU cap
ensures a maximum allocation of the system even if it is idle. This enables you to overprovision
the system with charge-back zones under the assumption that most of the time the zones will
not be using all of their available CPU cycles, but if a zone is busy it will use only what was
paid for.

Capped memory
As with CPU resource management, you should also configure limits on the memory that can
be consumed by the zone. The zonecfg capped-memory resource is the simplest way to set
memory limits:

zonecfg:myzone> add capped-memory

704

Zones 19

zonecfg:myzone:capped-memory> set physical=512m
zonecfg:myzone:capped-memory> set swap=1g
zonecfg:myzone:capped-memory> set locked=10m
zonecfg:myzone:capped-memory> end

This example limits the amount of physical memory that the zone can use to 512MB, the
amount of swap space to 1GB, and the amount of physical memory that the zone can lock
to 10MB. As the resource name implies, these are caps on, or upper limits to, the amount of
memory that can be used.

As with the resource controls described earlier, the swap and locked properties are actually
simplified names for the zone.max-swap and zone.max-locked-memory resource controls.
You could set these limits using the full resource control syntax although that’s rarely required.

As described in Chapter 18, rcapd limits the amount of physical memory used by
the zone.

Setting the physical property configures the rcapd in the global zone. When the physical
property is set and the zone boots, the system/rcap service is automatically enabled in the
global zone, if it is not already enabled. Unlike with projects, the rcapd running in the global
zone caps the memory used by each of the non-global zones. You could also run an rcapd
within the zone to cap projects defined within the zone.

Resource management example
This complete example shows how you can modify the zone you first created to add a useful
resource management configuration to the zone:

zonecfg -z myzone
zonecfg:myzone> set max-lwps=1000
zonecfg:myzone> set cpu-shares=1
zonecfg:myzone> add capped-memory
zonecfg:myzone:capped-memory> set physical=512m
zonecfg:myzone:capped-memory> set swap=1g
zonecfg:myzone:capped-memory> set locked=10m
zonecfg:myzone:capped-memory> end
zonecfg:myzone> exit

Use zonecfg to configure resource management-related settings for the global
zone, too. Run zonecfg -z global to customize the global zone. Most of the

non-resource management-related settings are invalid for the global zone, and you will get an
error if you try to set any of those.

Networking
Along with a good resource management configuration, almost every zone needs access to a net-
work. Without a network configured, the zone behaves as an isolated, standalone system that

705

Part V OpenSolaris Virtualization

can be logged into only from the global zone using the zlogin command by a user with root
privileges. Thus, networking is fundamental to a typical zone configuration.

Zones support two different networking configuration models. The default model is a shared
Internet Protocol (IP) stack; the alternative is an exclusive IP stack. In the zoneadm list
output, the IP stack type for the zone is listed in the last column:

zoneadm list -v
ID NAME STATUS PATH BRAND IP
0 global running / native shared
1 myzone running /pl/zones/myzone native shared

With a shared IP stack, the global zone manages the network configuration on behalf of the
non-global zone. A physical network interface can be shared by the global zone and any number
of non-global zones. The zone’s IP address is defined in the zone configuration and cannot be
changed within the non-global zone. The non-global zone cannot use the ifconfig command
to modify any settings on the network interface assigned to the zone, and all routing is managed
by the global zone. Within the kernel is a single IP software stack that is shared by the global
zone and all non-global zones configured with shared stacks. As a result, any packets sent
between these zones are completely routed within the kernel and never leave the system.

With an exclusive IP stack, there is literally a complete IP software stack in the kernel dedicated
to the zone. The zone is assigned a dedicated network interface, which is completely managed
by the non-global zone. The zone sets its own IP address and manages its own routing. Any
packets sent from this zone to the global zone or other non-global zones on the system must
leave the machine to be routed externally. An exclusive stack zone behaves just like a standalone
machine as far as networking is concerned.

There are various advantages and disadvantages to each approach:

■ With a shared stack, many zones can share a single physical interface, which is then virtu-
alized to each zone.

■ With a shared stack, the global zone administrator controls the network configuration,
which cannot be changed in the non-global zone by a malicious administrator or anyone
else.

■ With a shared stack, network traffic between zones on the same machine never leaves the
system and runs at kernel speed. However, because of the complexity of the IP network
stack, it is virtually impossible to guarantee that zones will not be able to see traffic that
they should not see.

■ With a shared stack, you can’t plumb the same IP address on the loopback interface of
different zones, a capability that is required in order to support the cluster scalable services
feature described in Chapter 16.

■ With an exclusive stack, the zone must have a dedicated physical interface or VLAN.

706

Zones 19

■ With an exclusive stack, network traffic is guaranteed to be isolated because the entire
stack is dedicated to a single zone and all packets leave the machine for external routing.
This guarantee is critical when a secure network configuration is required.

The following example shows how to configure the network for the default shared stack zone:

zonecfg:myzone> add net
zonecfg:myzone:net> set physical=bge0
zonecfg:myzone:net> set address=192.168.0.92
zonecfg:myzone:net> end

This configuration is identical to the one you set up in the initial example. Because net is a
zonecfg resource, you can add additional network interfaces if needed. The following adds a
second network interface to the same zone:

zonecfg:myzone> add net
zonecfg:myzone:net> set physical=bge1
zonecfg:myzone:net> set address=192.168.1.92
zonecfg:myzone:net> end

The physical network interface is virtualized when the zone boots. When the zone is running,
you can see this using the ifconfig command in the global zone:

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL>

mtu 8232 index 1
inet 127.0.0.1 netmask ff000000

lo0:1: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL>

mtu 8232 index 1
zone myzone
inet 127.0.0.1 netmask ff000000

bge0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS>

mtu 1500 index 2
inet 192.168.0.14 netmask ffffff00 broadcast 192.168.0.255
ether 0:a:e4:30:6e:bb

bge0:1: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS>

mtu 1500 index 2
zone myzone
inet 192.168.0.92 netmask ffffff00 broadcast 192.168.0.255

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL>

mtu 8252 index 1
inet6 ::1/128

Note that bge0:1 is the virtualized network interface, with the zone attribute set to myzone. In
the non-global zone, you would see only the network interface that was configured on the zone:

myzone# ifconfig -a
lo0:1: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL>
mtu 8232 index 1

707

Part V OpenSolaris Virtualization

inet 127.0.0.1 netmask ff000000
bge0:1: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS>
mtu 1500 index 2

inet 192.168.0.92 netmask ffffff00 broadcast 192.168.0.255

This example shows how to configure an exclusive stack zone:

zonecfg:myzone> set ip-type=exclusive
zonecfg:myzone> add net
zonecfg:myzone:net> set physical=bge1
zonecfg:myzone:net> end
zonecfg:myzone> exit

You must first set the ip-type property for the zone. A zone ip-type can either be shared or
exclusive. Within the same zone, you cannot have some interfaces shared and others exclusive.
Additionally, the net resource only specifies the physical interface that is dedicated to the zone.
You don’t specify an IP address because that is managed within the zone itself. If you set up
multiple exclusive IP stack zones to use the same physical NIC, the first zone that boots ‘‘owns’’
the NIC, and the other zones are denied access.

The procedures described in Chapter 9 to configure networking for a standalone
system are also used to configure the network within an exclusive IP stack zone. To

use an exclusive stack without dedicating a NIC to the zone, you can configure a VLAN on the
NIC and then use that in the zone configuration. The steps to set up a VLAN are also described in
Chapter 9.

Sparse root versus whole root
Non-global zones support the capability to share system software by sharing a portion of their
file system with the global zone. The capability to configure a zone this way is directly related
to how software is managed for both the global and non-global zone. This configuration is used
when you want to ensure that a subset of the global zone’s system software is kept in sync with
the non-global zone. To simply share file system space with the zone, without consideration
for software management within that space, use the fs resource, which is described in the
Resources section later in this chapter.

Sparse and whole-root zones is a topic that highlights significant differences between the SXCE
and OpenSolaris distributions. This section describes the concept of a sparse-root zone versus a
whole-root zone. The Software management and Brand sections later in this chapter provide more
information about those topics and how they relate to a sparse or whole-root zone.

As you have seen, the zonecfg command has an interactive interface for configuring a zone,
but the subcommands can also be used directly on the command line. The info subcommand
can be used interactively or as a subcommand at the shell prompt to print the configuration of
the zone, as the following example shows:.

$ zonecfg -z myzone info

708

Zones 19

zonename: myzone
zonepath: /pl/zones/myzone
brand: native
autoboot: false
bootargs:
pool:
limitpriv:
scheduling-class:
ip-type: shared
inherit-pkg-dir:

dir: /lib
inherit-pkg-dir:

dir: /platform
inherit-pkg-dir:

dir: /sbin
inherit-pkg-dir:

dir: /usr
net:

address: 192.168.0.92
physical: bge0

Note in this output the four inherit-pkg-dir resources. By default, on SXCE or Solaris 10, a
native-branded zone is configured with these four inherit-pkg-dir entries. A zone configured
with any inherit-pkg-dir resources is called a sparse-root zone. These global zone directories
are loopback mounted read-only within the zone when it boots, reducing the space overhead
within the file system for the zone.

The loopback file system, lofs, is described in Chapter 7. The native brand, and
branded zones in general, are discussed in the ‘‘Branded Zones’’ section later in this

chapter.

In addition to saving file system space, sparse-root zones have another advantage: The memory
needed to run common programs can be shared among all zones. Because a common set of sys-
tem processes is typically running in both the global zone and all sparse-root zones, only a sin-
gle image of each program binary is paged in to memory, reducing the overall working set of the
system.

Software installed into an inherit-pkg-dir must be managed from the global zone. It cannot
be modified within a non-global zone; these directories are read-only in the non-global zone.
When a new version of the software is installed in the global zone, each zone that inherits one
of these directories has its package metadata updated. Likewise, if a patch is applied to this
software in the global zone, the patch metadata for these non-global zones is also updated.
Because the software is being managed in the global zone, no actual software installation takes
place inside of the non-global zone. Instead, only the metadata that describes the software has to
be updated.

A limitation of sparse-root zones is that the non-global zone administrator cannot install
any additional software into these directories because they are mounted read-only within

709

Part V OpenSolaris Virtualization

the zone. In some cases, add-on software needs to be installed into only one of these
directories — typically, /usr. One alternative to address this problem is to create a whole-root
zone. A whole-root zone is configured with no inherit-pkg-dirs. You can do this
when creating the zone by using the zonecfg remove subcommand to delete all of the
inherit-pkg-dir entries:

zonecfg:myzone> remove inherit-pkg-dir
Are you sure you want to remove ALL ‘inherit-pkg-dir’ resources (y/[n])?

Another way to set up a whole-root zone is to create it using the blank template:

zonecfg:myzone> create -t SUNWblank

A template is simply another zone configuration that is used as the starting point to
create a new zone configuration. Any zone can be used as a template. A few special

templates, such as SUNWblank, are predefined with the zones software.

Because the inherit-pkg-dir settings are fundamental to the way that software within the
zone is installed, these settings cannot be modified on the zone after it has been installed.

If the zone needs limited write access to an inherited directory but you don’t want to incur the
overhead of a whole-root zone, an alternative is to configure a sparse-root zone with a writable
file system mounted under the inherited directory. One common example is to set up a writable
/usr/local directory for a sparse-root zone. Configuring these additional file systems into
zones is described later in this chapter.

Not all types of brands support sparse-root zones. Some brands require the zone to
be a whole-root zone because it doesn’t make sense to share the system software and

packaging information between the global and non-global zone.

Other zonecfg features
The preceding examples used many of the most common zonecfg capabilities. This section
provides an overview of the remaining zonecfg features.

Editing properties and resources
You have seen and used several zonecfg resources so far, including net, rctl, inherit-
pkg-dir, and capped-memory. Within zonecfg, resources are a group of simple properties.
For example, the net resource includes two properties: physical and address. In general,
you can have more than one instance of a resource, but within a resource, each property is
unique. Thus, the default native zone configuration has four inherit-pkg-dir resource
instances. There are a few exceptions, though. Specifically, the dedicated-cpu, capped-cpu,
and capped-memory resources may have only a single instance. The dedicated-cpu and
capped-cpu resources are also mutually exclusive. Aside from these restrictions, the other
resources can have multiple instances and there are no mutual exclusion rules.

710

Zones 19

The zonecfg interactive user interface provides the capability to select a specific resource
instance for modification. This is done by specifying enough properties and their values to
unambiguously identify the specific instance to modify:

zonecfg:myzone> select net physical=bge0

This example shows how to select the net resource you created earlier. Once selected, you can
then modify the property values for that resource.

Similarly, you can delete a specific resource instance by specifying it with the properties and
their values:

zonecfg:myzone> remove net physical=bge0

You also can remove all of the instances of a specific resource by omitting any properties:

zonecfg:myzone> remove inherit-pkg-dir
Are you sure you want to remove ALL ‘inherit-pkg-dir’ resources (y/[n])?

To change a property’s value, simply set a new value. Use the clear subcommand to remove a
property’s value altogether:

zonecfg:myzone> clear ip-type

This causes the property to either have no value or revert to its default value. In this example,
the ip-type property reverted to the default shared stack value. Not all properties can be
cleared; many of them are required. For example, in the net resource, the physical property
requires a value, and attempting to clear it results in an error. In these cases, you can either set a
new value for the property or remove the entire resource instance.

The zonecfg interactive environment offers a few additional capabilities that make it easier to
configure zones. You can use tab-completion to avoid having to fully type out subcommands
and properties. The environment maintains a command history, so you can use the up arrow
on your keyboard to move to a previous command, and the left and right arrows to position the
cursor for editing. You can also use help to see information about subcommands and proper-
ties, as shown here:

zonecfg:myzone> add capped-memory
zonecfg:myzone:capped-memory> help
The ‘capped-memory’ resource scope is used to set an upper limit (a cap) on the
amount of physical memory, swap space and locked memory that can be used by
this zone.
Valid commands:

set physical=<qualified unsigned decimal>
set swap=<qualified unsigned decimal>
set locked=<qualified unsigned decimal>

And from any resource scope, you can:
end (to conclude this operation)
cancel (to cancel this operation)

711

Part V OpenSolaris Virtualization

exit (to exit the zonecfg utility)
zonecfg:myzone:capped-memory>

Additional properties and resources
Other zonecfg global properties and resources that have not yet been covered include the
autoboot, bootargs, limitpriv, and scheduling-class properties, as well as the attr,
dataset, device, and fs, resources. The brand property is discussed later in the chapter.

Global properties
The zone’s autoboot property indicates whether the zone should boot automatically when the
system boots. It is false by default. If you want the zone to automatically boot, set the prop-
erty to true:

zonecfg:myzone> set autoboot=true

The bootargs property persistently configures a set of boot arguments to be passed to the zone
when it boots. This property is rarely set; but as an example, if you wanted the zone to always
boot to a specific SMF milestone, you could set the bootargs to indicate that:

zonecfg:myzone> set bootargs="-m milestone=none"

SMF milestones are described in Chapter 13.

In addition, a set of boot arguments can be passed to the zone through the zoneadm boot sub-
command when you boot the zone, although those arguments only apply to that boot. You can
boot the zone to single-user with the following zoneadm command:

zoneadm -z myzone boot -- -s

The limitpriv property modifies the set of privileges available within the zone. This is another
property that you will rarely change. By default, zones are restricted to a safe subset of the
system privileges. The root user in a non-global zone has fewer privileges than the root user in
the global zone, which prevents the zone’s root user from modifying the system in potentially
damaging ways. In some cases you may want to give additional or fewer privileges to a specific
zone. You use the limitpriv property to specify that. There are currently about 70 different
privileges in the system. Only a subset of them can be added to a non-global zone because the
others would completely violate the containment that zones provide. Consult the zones manual
for a complete list of privileges and a description of which ones can be added to a zone. One
set of privileges that might be useful to add to zones in which users are doing development are
the ones to enable DTrace. Users inside a zone cannot DTrace within the kernel because that
requires the dtrace_kernel privilege, which cannot be granted to a zone for security reasons.
However, with the dtrace_user and dtrace_proc privileges, they can DTrace user-level
activity. This example adds the user-level DTrace privileges:

zonecfg:myzone> set limitpriv="default,dtrace_user,dtrace_proc"

712

Zones 19

When the keyword default is used as the first privilege, this implies a standard set of safe,
default privileges. You can remove privileges from this set by preceding them with an exclama-
tion point (!) or a minus sign (-). This example shows how to remove the proc_lock_memory
privilege, which is required for processes to be able to lock memory within a zone:

zonecfg:myzone> set limitpriv="default,-proc_lock_memory"

Another global property is scheduling-class. You rarely need to set this property. Normally
the zone simply uses the system’s default scheduling class. However, one case where it is useful
to set the zone’s scheduling class is when the global zone is not using FSS but you’d like to use
FSS for projects within the zone. In that case you would set the scheduling-class property:

zonecfg:myzone> set scheduling-class=FSS

The zonename is also a global property. You can set this property to rename the zone. The zone
must not be running when you set this property. Here’s an example:

zonecfg:myzone> set zonename=myzone2
zonecfg:myzone2> exit
zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
- myzone2 installed /pl/zones/myzone native shared

Resources
There are four resources yet to be discussed: attr, dataset, device, and fs.

attr
The attr resource can be used to add arbitrary attributes to a zone. The zones themselves do
not generally use this information, but it could be useful to the zone administrator. One scenario
might be to keep track of the person who has been granted root access within the zone:

zonecfg:myzone> add attr
zonecfg:myzone:attr> set name=root
zonecfg:myzone:attr> set type=string
zonecfg:myzone:attr> set value="Sarah Smith"
zonecfg:myzone:attr> end
zonecfg:myzone> add attr
zonecfg:myzone:attr> set name=phone
zonecfg:myzone:attr> set type=string
zonecfg:myzone:attr> set value=54321
zonecfg:myzone:attr> end

Using zone attributes enables you to keep track of any relevant information as part of the zone
configuration.

dataset
Use the dataset resource to delegate administrative control of a ZFS dataset to a zone. Delegat-
ing a ZFS dataset is one way to add additional file system space to the zone, and it enables the

713

Part V OpenSolaris Virtualization

administrator within the zone to perform her own management on the dataset. For example, she
could create additional datasets within the delegated dataset, take her own snapshots, or make
her own clones. Once a dataset has been delegated, the global zone can no longer mount the
dataset. The ZFS zoned property is automatically set on delegated datasets. As the global zone
administrator, be careful not to reset that property or try to mount any delegated datasets unless
you know that the non-global zone has been deleted and is no longer using the dataset. To
ensure that the non-global zone does not consume all of the space in the ZFS pool, set a quota
on the delegated dataset. The following example shows how to set a 512MB quota on a dataset
and delegate it to a zone:

zfs set quota=512m pl/space/myzone
zonecfg -z myzone
zonecfg:myzone> add dataset
zonecfg:myzone:dataset> set name=pl/space/myzone
zonecfg:myzone:dataset> end

ZFS is covered in depth in Chapter 8.

device
The device resource can be used to add device access to a zone. Normally a zone has access
only to a limited set of safe pseudo-devices such as /dev/null, /dev/zero, and so on.
Look under /dev/dsk within a zone and you won’t see anything there. In some cases it is
useful to add a device, such as a disk slice, to a zone. One case where that is common is
with databases that need access to a raw disk partition. Another case is when you want the
non-global zone administrator to be able to create and maintain his own file system on a disk
partition. The following example adds both the block and raw /dev/dsk/c0t0d0s7 and
/dev/rdsk/c0t0d0s7 partitions to the zone:

zonecfg:myzone> add device
zonecfg:myzone:device> set match=/dev/*dsk/c0t0d0s7
zonecfg:myzone:device> end

Here, a wildcard was used to match both dsk and rdsk. You can use wildcards anywhere
in the match value, so to add all slices of a disk to a zone you would use something like
/dev/dsk/c0t1d0s*. You can also add multiple device resources if the match property can’t
completely specify which devices you want to add. For instance, you might want to add access
to both a disk slice and the audio device to a zone. (Disk slices are described in Chapter 7.)

Note that adding devices to zones represents a security hole. If a malicious user has
root access to a device, even within a non-global zone, he could cause corruption,

which might panic the system. In general, it is preferable to avoid adding disk devices to zones
unless absolutely required. Instead, you can usually meet the storage needs of a zone by using the
fs or dataset resources. Because file systems and datasets are managed outside of the zone,
there is no way for a malicious user to cause a problem.

714

Zones 19

fs
The fs resource is used to add additional file systems to a zone. It is an alternative to the
dataset resource as a way to add additional file system space to a zone. The fs resource can
be used with a variety of file systems, whereas the dataset resource is used exclusively to
delegate a ZFS dataset to a zone.

The various OpenSolaris file systems are covered in Chapter 7, with the exception of
ZFS, which is covered in Chapter 8.

A key difference between fs and inherit-pkg-dir resources is that the file systems mounted
using the fs resource can be either read-only or read-write. In addition, inherit-pkg-dir
resources explicitly require that the software installed in those directories be managed and main-
tained consistently across zones by the global zone administrator. There is no such requirement
for software installed into file system space that is added using the fs resource.

The most common technique to add a file system to a zone is to use the lofs file system to
loop-back mount a directory from the global zone into the non-global zone. When using lofs,
an entire global zone file system does not have to be mounted into the zone; any subdirectory
will work. In addition, when using lofs, the same directory can be safely mounted into multiple
zones because there is only a single underlying file system that the kernel is managing. The
following sets up a lofs mount:

zonecfg:myzone> add fs
zonecfg:myzone:fs> set dir=/export/projects
zonecfg:myzone:fs> set special=/pl/space/myzone
zonecfg:myzone:fs> set type=lofs
zonecfg:myzone:fs> end

Here, the dir property specifies where in the zone the file system should be mounted; the
special property specifies the directory from the global zone that will be mounted into the
zone; and the type property indicates that this is a lofs mount into the zone. This is a zonecfg
resource, so you can set up as many additional fs mounts into the zone as needed.

As mentioned earlier, sometimes you want to make a subdirectory within an inherit-pkg-dir
writable. This is easy to do by using a lofs mount of a writable file system under the read-only
inherit-pkg-dir, as this example setting up /usr/local shows:

zonecfg:myzone> add fs
zonecfg:myzone:fs> set dir=/usr/local
zonecfg:myzone:fs> set special=/pl/space/myzone
zonecfg:myzone:fs> set type=lofs
zonecfg:myzone:fs> end

Using this configuration, any changes made to /usr/local within the zone will appear in the
/pl/space/myzone subdirectory in the global zone.

The fs resource includes an additional property named raw and a nested resource named
options. You use the options resource to specify the mount options for the file system

715

Part V OpenSolaris Virtualization

that will be used when mounting into the zone. These options are file system specific and
are the same options described in Chapter 7. You could change the first example so that
/pl/space/myzone was read-only within the zone by adding the ro option to that instance:

zonecfg:myzone> select fs dir=/export/projects
zonecfg:myzone:fs> add options ro
zonecfg:myzone:fs> end

As with a top-level resource, you can add as many options resources as needed to specify all of
the mount options for the file system.

The raw property is used when adding other file system types, such as UFS, to the zone. Other
file systems don’t have the same flexibility as lofs. In most cases you must dedicate those file sys-
tems to a specific zone and no sharing is allowed. That’s because in most cases a file system can
be mounted only once on the system. For some of those file systems you also need to set the
raw property, which is used when the zone boots, so that the file system can be verified with
fsck. This example shows adding a UFS file system to a zone:

zonecfg:myzone> add fs
zonecfg:myzone:fs> set dir=/export
zonecfg:myzone:fs> set special=/dev/dsk/c0d1s7
zonecfg:myzone:fs> set raw=/dev/rdsk/c0d1s7
zonecfg:myzone:fs> set type=ufs
zonecfg:myzone:fs> add options nodevices
zonecfg:myzone:fs> add options noatime
zonecfg:myzone:fs> end

You can see that the raw device is specified using the raw property, and you can see another
example of adding mount options. File systems added to the zone using an fs resource are
managed by the global zone when it boots the non-global zone. There is no entry for these
file systems in the zone’s vfstab. As an alternative, you could use the device resource to add
/dev/*dsk/c0d1s7 to the zone, although that has the drawbacks mentioned earlier. With the
device added this way, a UFS file system could be created on that slice and a vfstab entry made
for the file system by the administrator within the zone.

One final example shows adding a ZFS file system using the fs resource. In the global zone you
first create the ZFS dataset, and then add it in zonecfg:

zfs create pl/sp/myzone
zfs set mountpoint=legacy pl/sp/myzone
zonecfg -z myzone
zonecfg:myzone> add fs
zonecfg:myzone:fs> set dir=/space
zonecfg:myzone:fs> set special=pl/sp/myzone
zonecfg:myzone:fs> set type=zfs
zonecfg:myzone:fs> end
zonecfg:myzone> exit

Note a few interesting points in this example. First, you must set the ZFS mountpoint property
to legacy so that it is not automatically mounted in the global zone. This is required because

716

Zones 19

a file system can be mounted only once and the global zone mounts the file system for the
non-global zone when it boots. Second, the special property specifies the ZFS dataset name,
unlike with UFS, for which a disk slice name is used. Finally, there is no raw property because
ZFS file systems are not fsck-ed when mounted. Now you’ve seen three different ways that ZFS
storage can be made available to a zone. The first, using delegated datasets, is useful when the
non-global zone administrator needs control over his own dataset. The second, using lofs, is the
most common approach when you just want to make some space available to a zone. That space
can also be shared with other zones because there is only one underlying file system mount. The
final example would not be commonly used but it illustrates the flexibility of the fs resource.

Summary of all zonecfg properties and resources
The zonecfg help subcommand can print a list of all the zonecfg properties and resources:

zonecfg:myzone> help set
usage:
set <property-name>=<property-value>

Sets property values.

For resource type ... there are property types ...:
(global) zonename
(global) zonepath
(global) brand
(global) autoboot
(global) bootargs
(global) pool
(global) limitpriv
(global) scheduling-class
(global) ip-type
(global) max-lwps
(global) max-shm-memory
(global) max-shm-ids
(global) max-msg-ids
(global) max-sem-ids
(global) cpu-shares
fs dir, special, raw, type
inherit-pkg-dir dir
net address, physical
device match
rctl name, value
attr name, type, value
dataset name
dedicated-cpu ncpus, importance
capped-cpu ncpus

Additional zonecfg subcommands
A few additional zonecfg subcommands and options haven’t been covered yet. When creating
a zone, you can use the -t option on the create subcommand to specify the name of another

717

Part V OpenSolaris Virtualization

existing zone to use as a template. This enables you to reuse one zone configuration when creat-
ing another:

zonecfg -z myzone2
myzone2: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:myzone2> create -t myzone

This example creates myzone2 with the same configuration as myzone, except that the
zonepath is not set.

You can also use the export subcommand to output a zone configuration to a file and then cre-
ate a new zone configuration from that file:

zonecfg -z myzone export -f /tmp/config
cat /tmp/config
create -b
set zonepath=/pl/zones/myzone
set autoboot=false
set ip-type=shared
add inherit-pkg-dir
set dir=/lib
end
add inherit-pkg-dir
set dir=/platform
end
add inherit-pkg-dir
set dir=/sbin
end
add inherit-pkg-dir
set dir=/usr
end

The output is simply the sequence of commands used to create the configuration. You could
edit this file, update the zonepath, and create a new zone from the resulting command file, as
shown in this example:

zonecfg -z myzone2 </tmp/config
myzone2: No such zone configured
Use ‘create’ to begin configuring a new zone.
zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
- myzone installed /pl/zones/myzone native shared
- myzone2 configured /pl/zones/myzone2 native shared

You can redirect any set of zonecfg commands from an input file if you need to modify a zone
in an automated fashion.

718

Zones 19

Finally, the delete subcommand is used to delete a zone configuration:

zonecfg -z myzone2 delete -F

The -F option forces the deletion; otherwise, you are prompted to confirm that you really want
to delete the configuration. After a zone has been installed, it cannot be deleted until it is first
uninstalled.

Using the -F option uninstalls or deletes the zone with no confirmation. After
these operations, there is no way to undo them, so be sure you want to do this when

using -F.

Advanced zoneadm Features
You have already seen the zoneadm install, boot, halt, and reboot subcommands. This
section describes the remaining subcommands.

Moving a zone on the same machine
Once a zone has been installed it may become necessary to relocate the zone within the local file
system. This is accomplished with the zoneadm move subcommand:

zoneadm -z myzone move /newpool/zones/myzone

The zone must be halted before it can be moved.

This command causes the contents of the zonepath to be relocated to the new location.
Depending on file system boundaries, this might be simply a rename or it could require actually
transferring the contents of the zonepath from one file system to another. The zoneadm com-
mand handles both cases correctly. When the execution is complete, the zonepath property is
updated to the new location. If the command fails for some reason, such as insufficient space in
the new location, then the zone configuration is left as it was with the original zonepath.

Moving a zone from one machine to another
It is also possible to move a zone from one system to another. This is called zone migration, and
is done in four steps:

1. Prepare the zone for migration by detaching it from the source system.

2. Physically move the zone data from the source to the destination system.

3. Configure the zone on the destination system.

4. Attach the zone on the destination system.

The zone cannot be running when it is migrated, unlike the xVM domains described in the next
chapter.

It is important to remember that the zone depends on the operating system software installed in
the global zone. This dependency is clearer with a sparse-root zone, but even a whole-root zone

719

Part V OpenSolaris Virtualization

must have the correct version of the system libraries that interact with the kernel running on the
machine. If these are out of sync, then applications running in the zone could exhibit incorrect
behavior and obscure bugs. As a result, the attach process validates that the system software on
the destination is an exact match for the system software on the original source system. If this is
not the case, then the attach fails and an error list of out-of-sync software is output.

In the following example, the hostnames src and dst are used in the command prompts to
make it clear where each step is performed:

src# zoneadm -z myzone halt
src# zoneadm -z myzone detach

The detach subcommand prepares the zone for migration. Once a zone has been detached, it is
no longer in the installed state. It still exists on the source system but is now in the configured
state:

src# zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
- myzone configured /pl/zones/myzone native shared

The next step is to move the zone data from the source system to the destination. This step
is deliberately left up to the system administrator because there are many different ways to
relocate the zone. It could be copied using a tar or cpio archive, it could be written to tape
and mailed to a remote site, or it might not move at all if the zone resides on a SAN that will be
reconfigured such that the destination host can access the storage. This example creates a cpio
archive which you can transfer to the destination host; just remember that this step can be done
in many different ways:

src# cd /pl/zones
src# find myzone -depth | cpio -oP@O myzone.cpio
1189888 blocks

The myzone.cpio archive now contains the complete image of the zone. You must now trans-
fer this archive to the destination system. All further commands in this example are on the desti-
nation. The example also assumes that the zonepath will reside in /export/zones on the desti-
nation host, which is a different location from what was on the source system:

dst# cd /export/zones
dst# cpio -idmP@ <myzone.cpio
1189664 blocks
dst# rm myzone.cpio

Now that the zone data resides on the destination, the next step is to recreate the zone’s config-
uration. This is done using the zonecfg create subcommand with the -a option, indicating
that the creation is to be done using zone data that is being attached:

dst# zonecfg -z myzone
myzone: No such zone configured

720

Zones 19

Use ‘create’ to begin configuring a new zone.
zonecfg:myzone> create -a /export/zones/myzone
zonecfg:myzone> info
zonename: myzone
zonepath: /export/zones/myzone
brand: native
autoboot: false
bootargs:
pool:
limitpriv:
scheduling-class:
ip-type: shared
inherit-pkg-dir:

dir: /lib
inherit-pkg-dir:

dir: /platform
inherit-pkg-dir:

dir: /sbin
inherit-pkg-dir:

dir: /usr
net:

address: 192.168.0.92
physical: beg0

zonecfg:myzone> exit

The -a option on the create subcommand specifies the path where the zone data was installed
on the destination host. The zonecfg command recreates the original zone configuration from
that data, although the zonepath is modified to use the new location on the destination. It
may be necessary to customize other parts of the configuration before the zone can be used.
For example, the net resource still has the original physical NIC configured. If the destination
has a different NIC, you might need to update that property. Likewise for the IP address, if the
host was moved to a new subnet, or any other parts of the configuration that depended on the
specifics of the source system.

When you use the create -a option to attach the configuration, check whether any-
thing needs to be changed while you’re still in the zonecfg session.

You can now see that the zone is configured on the new host:

dst# zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
- myzone configured /export/zones/myzone native shared

The final step in the migration is to attach the zone to the new host:

dst# zoneadm -z myzone attach
dst# zoneadm list -cv
ID NAME STATUS PATH BRAND IP

721

Part V OpenSolaris Virtualization

0 global running / native shared
- myzone installed /export/zones/myzone native shared

Attaching the zone changes the state from configured to installed, and the zone can now be
booted on the new host.

As previously mentioned, the attach process validates that the system software on the destination
is an exact match for the system software on the original source system. You can use the dry-run
options to the detach and attach subcommands to validate that a new machine can host the
zone before you attempt to migrate it:

src# zoneadm -z myzone detach -n | ssh dst zoneadm attach -n -

With the attach dry-run option, the zone does not yet have to be configured on the destina-
tion machine.

If the destination is running newer software than the source, then it is possible to update the
system software in the zone to match the system software on the new host using the -u option
to attach:

dst# zoneadm -z myzone attach -u

This can be done only if all of the system software is newer. If the destination is running older
system software or a mixture of older and newer software, the attach update will fail with
an error. The process updates only the system software within the zone that must be in sync
with the global zone. Other software within the zone is left alone. (The ‘‘Software management’’
section later in the chapter has more details about which software must remain in sync.)

If the source system dies but the storage on which the zone resides is still accessible, perhaps
because it is on a SAN or the disks were recabled to a new host, it is possible to attach the zone
to the new host without first detaching it. You cannot use the zonecfg create -a option
described earlier because the zone metadata generated by the detach process does not exist.
You have to manually recreate the zone configuration using zonecfg. However, once that’s
done, you can run the attach subcommand; the software validation takes place just as if the
zone had been detached, and any inconsistencies are reported. If there are no inconsistencies
or if you update the zone’s software with the -u option, the zone is fully usable on the
new host.

The multi-step zone migration enables different capabilities beyond simply migrating a zone
from one host to another. Note that in this example the original source system still has all of
the zone data available. There is nothing to prevent you from reattaching the zone to the source
system. As long as there is no conflict with the networking or services provided by the zones
on the source and destination hosts, this is an easy way to duplicate a zone configuration from
one system to another. You can use the attach -u option to perform rolling upgrades of the
zone by moving it from one machine to another, after you have validated the operating system
release on the new host and are ready to run the zone there. You can archive a zone to tape and
reattach it to the machine if you need to reactivate the zone for some reason.

722

Zones 19

Cloning a zone
The zoneadm command can be used to clone one zone installation to another. This capability is
useful if you create a master zone with all of the add-on application software installed and con-
figured that will be needed for another zone. After the second zone has been configured using
zonecfg, you can use the zoneadm clone subcommand as an alternative to simply installing
the zone:

zoneadm -z myzone2 clone myzone
Cloning snapshot pl/zones/myzone@SUNWzone1
Instead of copying, a ZFS clone has been created for this zone.
sys-unconfig started Sat Feb 09 15:48:09 2008
sys-unconfig completed Sat Feb 09 15:48:09 2008

In this example you can see that both zones are installed on ZFS, so instead of having to make
a full copy of the zone, the zoneadm command automatically creates a ZFS snapshot and ZFS
clone that are used to install the second zone. This enables the second zone to be installed
almost instantly. If both zones do not reside in the same ZFS zpool, or if they are not on ZFS
at all, then a full copy of the zone’s contents is made to install the second zone. This is still
much faster than installing a fresh zone because all of the software metadata and customization
is already complete. Depending on the hardware and whether the zone is sparse-root or
whole-root, the full copy still only takes between a few seconds and a few minutes. The source
zone must be halted when cloning, which ensures that the zone’s files are in a consistent and
stable state.

When using ZFS, in addition to speed, another advantage of cloning is that the space consumed
by the ZFS clone is a fraction of the space needed for the original:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
...
pl 61.2G 12.4G 23K /pl
pl/zones 2.63G 12.4G 26K /pl/zones
pl/zones/myzone 632M 12.4G 632M /pl/zones/myzone
pl/zones/myzone@SUNWzone1 133K - 632M -
pl/zones/myzone2 240K 12.4G 632M /pl/zones/myzone2

Note that the original zone, myzone, consumed 632MB of space in the pool, but the cloned
zone consumes less than 256KB. As changes are made in the second zone, it’s natural that
the amount of space consumed increases because of the copy-on-write nature of ZFS, but
there’s almost always a significant amount of space that is common between the two zones
and thus shared. The other interesting thing to note in the zfs list output is the snapshot,
pl/zones/myzone@SUNWzone1, which was automatically created when the zone was cloned.
Each time you clone a zone when using ZFS, a new snapshot is automatically created for the
new clone. You can also reuse a snapshot from an earlier zone clone by using the -s option to
the clone subcommand, like this:

zoneadm -z myzone3 clone -s pl/zones/myzone@SUNWzone1 myzone

723

Part V OpenSolaris Virtualization

When attempting to reuse a snapshot, it is possible that the snapshot was taken before an
update to the operating system software. If that is the case, the snapshot is out of date with
respect to the current system and is no longer a valid starting point for installing a new zone.
Before using an existing snapshot, the zoneadm command automatically validates that the
system software in the snapshot is still current, similar to what is done when migrating a zone
to a new host; and if the snapshot is out of date, zoneadm prevents you from reusing it. By
default, when a snapshot is not explicitly specified on the command line, a new snapshot is
taken each time you clone from a zone. If you specify a snapshot and it is out of date, you can
simply omit the -s option and a new snapshot will be taken.

The final thing to notice in the example is that after the zone is cloned, it is unconfigured. This
means that the zone’s basic identity — hostname, nameservice configuration, root password, and
so on — is cleared. This way, the new zone goes through the normal system configuration steps
on the first boot, just as it would if it were freshly installed.

Uninstalling a zone
The zoneadm uninstall subcommand is used to remove the software from a zone in prepara-
tion for deleting the zone:

zoneadm -z myzone2 uninstall -F
The ZFS file system for this zone has been destroyed.
zonecfg -z myzone2 delete -F

If the zone was installed on ZFS, then the ZFS dataset that was automatically created when the
zone was installed is now automatically destroyed. Otherwise, the zoneadm command removes
all of the software that is installed. Once a zone is uninstalled, it is back in the configured state,
and the zonecfg command can be used to delete the configuration.

Ongoing Zones Administration
So far, this chapter has focused on configuring a zone with zonecfg and the various features of
the zoneadm command. This section covers the various aspects of managing a zone once it is
installed and running.

Preconfiguring system identity
When a zone boots for the first time, it goes through the system configuration process, just as a
freshly installed system does. This interactive process establishes the zone’s identity, such as its
hostname, time zone, and root password. When you first boot a zone, you must zlogin to the
zone’s console to answer these interactive questions. Omitting this step is a common mistake;
and as a result, not all of the zone’s SMF services will start correctly, leaving the zone in a state
in which it appears to be running but the zone isn’t usable.

It is possible to preconfigure the zone’s identity so that the zone skips this interactive process
and completely boots the first time. To do so, place a sysidcfg file in the zone’s etc directory,

724

Zones 19

which contains all of the system configuration information. See the sysidcfg(4) man page for
a complete description of this file. The following shows an example for myzone:

cat sysidcfg
system_locale=C
terminal=xterms
network_interface=primary {

hostname=myzone
}
nfs4_domain=dynamic
security_policy=NONE
name_service=NONE
timezone=US/Mountain
root_password=fknhJhXYmdeKE

This file would be placed in the zone’s /etc directory before the first boot so that none of the
system identification questions are asked during the initial boot, as shown in this example:

cp sysidcfg /pl/zones/myzone/root/etc

Zones-related processes
Once your zones are running, you may notice some extra processes associated with them.
In particular, there are two administrative processes for each running zone: zoneadmd and
zsched. The zoneadmd process runs in the global zone and is responsible for setting up
the virtual platform for the zone. It also manages connections to the zone from zlogin. The
zsched process runs within the zone and provides some of the same services to the zone that
process 0 — the sched process — does in the global zone. Specifically, kernel threads for the
zone are owned by the zsched process.

The zoneadmd and zsched processes are managed automatically by the system and
should not be run by hand or killed.

Accessing a zone
After a zone has been booted for the first time, do not attempt to access files under the zonepath
from the global zone. That’s because it is possible for the zone’s root to deliberately modify the
zone’s file system to leave Trojan horses for the superuser accessing the files from the global
zone. A simple example is if the zone’s /etc/passwd file were replaced with a symlink to
/etc/passwd. The global zone administrator might attempt to edit this file, thinking she was
modifying the zone’s /etc/passwd, when in reality she would be editing the global zone’s
/etc/passwd. This is because the symlink is resolved in the context of the zone in which the
command is running. If the edit were made in the non-global zone, the symlink would point to
itself and there would be no way to harm the global zone.

This example is a simple one, but there are various other ways in which the zone’s file systems
could be corrupted by a zone administrator attempting to compromise the global zone. Even

725

Part V OpenSolaris Virtualization

if you trust the non-global zone root user, it’s still possible for the zone to be hacked by an
attacker who could then lay a trap. This is only an issue for the root user in the global zone
because only the root user can attempt to access the zone’s file systems from the global zone.
The permissions on the zonepath prevent a regular user from accessing the zone’s file systems.

The key thing to remember is that the non-global zone administrator has root privileges within
the zone, so she can make changes in the zone that a non-privileged user could never make.
As a result, do not trust the contents of a zone once it has been booted. Instead, if you need
to access files within the zone, do so using the zlogin command. The zlogin command
runs your programs within the zone context and is safe. The software management commands
that run in the global zone to access the non-global zone file systems also use specific, safe
techniques to access the zone so that the global zone cannot be hacked by a compromised
non-global zone.

Monitoring
There are a variety of tools you can use to monitor the status of zones, including zoneadm, vari-
ous commands running in the global zone, and DTrace.

Zone states
The zoneadm list subcommand is one of the first commands to turn to when checking the
status of a zone. As shown earlier, once a zone is created with zonecfg, it is in the configured
state; after the zone is installed with the zoneadm install subcommand, it is in the installed
state; and after the zone is booted, it is in the running state. In addition to these three states,
zones can also be in the incomplete, ready, shutting down, or down states.

The incomplete state is used during zone installation. If the installation fails for any reason, then
the zone is left in the incomplete state and must be uninstalled to return it to the configured
state. The ready state is a transitional state during zone boot. In the ready state, the zone’s vir-
tual environment has been created but no processes are running in the zone. It is possible to
put the zone into the ready state, although that is not common. The shutting down and down
states are also transitional states when a zone is halting. A zone would not normally be in either
of these states for very long, unless there is a bug in the system that prevents the zones from
completely shutting down. Once a zone has been halted, it transitions through these states back
to the installed state. If a zone is stuck in the down state, a bug somewhere in the system is pre-
venting one or more processes in the zone from terminating.

If a zone is stuck in the down state and you are feeling adventurous, you might want
to try some of the debugging techniques described in Chapter 24 to determine the

problem.

When a zone is booted, it quickly transitions to the running state. Just because a zone shows
up in the running state in the zoneadm list output doesn’t mean that all of your applications
are running in the zone. The zone running state does not correlate to the status of the software
in the zone. Just as with a standalone system, the system is booted and some of the user-level

726

Zones 19

system processes are running, but other processes might not be started yet because all of their
SMF dependencies haven’t been met or because the zone itself was booted to an SMF milestone
where the applications won’t be started. To monitor the status of processes within the zone,
you’ll use some of the techniques described in the next section.

Tools
This section discusses techniques you can use from the global zone to monitor the non-global
zones.

To monitor behavior within the zone, you can use many of the standard OpenSolaris
tools described in Chapter 14.

The zlogin command can be used to run an application within the zone to check the zone’s
status. For example, after the zone has booted, you can check the status of SMF within the zone
using the svcs command:

zlogin myzone svcs -xv
svc:/system/avahi-bridge-dsd:default (Avahi Daemon Bridge to Bonjour)
State: maintenance since Sat Feb 09 17:23:30 2008

Reason: Start method failed repeatedly, last exited with status 1.
See: http://sun.com/msg/SMF-8000-KS
See: man -M /usr/man -s 1M avahi-daemon-bridge-dsd
See: /var/svc/log/system-avahi-bridge-dsd:default.log

Impact: This service is not running.

Many commands also have a zone option that enables you to target that command to a specific
zone. In the global zone, the ps -e command lists all of the processes running on the system,
including those in every zone. You can use the -Z option so that an extra column with the
zonename is printed for each process, or you can use the -o option to customize the fields in
which you are interested. To see what processes are running within a specific zone, use the -z
option:

ps -fz myzone
UID PID PPID C STIME TTY TIME CMD

root 14827 1 0 17:23:27 ? 0:01 /usr/sbin/nscd
root 14926 1 0 17:23:29 ? 0:00 /usr/lib/utmpd

...

In addition to the ps command, the ipcrm, ipcs, pgrep, pkill, prstat, ptree, and pkill
commands accept a -z option to target a specific zone.

The prstat command with the -Z option reports a summary of all zone activity and is a useful
tool to monitor the overall status of all the zones. This command clears the screen and produces
a display like the following that updates every five seconds by default:

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
387 daemon 8160K 824K sleep 59 0 3:13:22 0.8% rcapd/1

727

Part V OpenSolaris Virtualization

15832 root 4720K 3036K cpu1 59 0 0:00:00 0.3% prstat/1
...
ZONEID NPROC SWAP RSS MEMORY TIME CPU ZONE

0 128 1122M 592M 29% 5:32:55 2.4% global
14 23 31M 29M 1.4% 0:00:08 0.0% myzone

Total: 151 processes, 467 lwps, load averages: 0.06, 0.07, 0.13

The summary at the end of the screen lists the running zones, the number of processes, memory
consumption, and CPU usage. With this overview you can quickly see if a zone is misbehaving
and target that zone to determine the specific problem. The df and ipcs commands also accept
a — Z option.

If a zone has a physical memory-cap set, it is enforced by the rcapd running in the global zone.
You can monitor rcapd statistics for zones using the rcapstat -z option:

rcapstat -z
id zone nproc vm rss cap at avgat pg avgpg
16 myzone - 30M 37M 512M 0K 0K 0K 0K

This command lists each zone with a physical memory cap, the resident set size for the zone,
and the current cap. If the zone is over its cap and rcapd is actively working to bring the zone
back under the cap, additional statistics are printed; otherwise, those are 0.

If the zone is assigned to a pool, either explicitly with the pool property or implicitly with a
dedicated-cpu resource, then poolstat can be used to monitor the pools. Recall that the
dedicated-cpu’s pool is named after the zone, so it is easy to see which pool is associated
with which zone:

poolstat
pset

id pool size used load
0 pool_default 2 0.00 0.02
3 SUNWtmp_myzone 2 0.00 0.21

You can also customize the poolstat output if you want to see the current min and max set-
tings along with the size:

poolstat -o pool,size,min,max,load -r all
pool size min max load
pool_default 2 1 66K 0.01
SUNWtmp_myzone 2 1 4 0.00

Instead of a -z or -Z option, some commands accept an -i option indicating the type of object
to which the command applies. The renice command is one of these. When used with the -i
zoneid option, you can adjust the priority of all processes within a specific zone:

renice -n 19 -i zoneid myzone

728

Zones 19

This example sets the priority of all the processes in myzone as low as possible so that they run
only when there is nothing else to do on the system.

You can see the current resource control settings for a zone using the -i option on the prctl
command:

prctl -i zone myzone
zone: 16: myzone
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
zone.max-swap

privileged 1.00GB - deny -
system 16.0EB max deny -

zone.max-locked-memory
privileged 10.0MB - deny -
system 16.0EB max deny -

...

Other commands that accept a -i option are described later in the section ‘‘Dynamically recon-
figuring a zone.’’

DTrace
When using DTrace to monitor zones, it is often useful to limit the tracing to a specific zone
using the curpsinfo->pr_zoneid member of the psinfo_t structure. This simple example
uses pr_zoneid in the DTrace predicate to trace all of the system call entries from zoneid 14:

syscall:::entry
/curpsinfo->pr_zoneid == 14/
{

printf("%s\n", probefunc);
}

An alternative is to check that the pr_zoneid is not 0, which would trace all system calls in all
non-global zones because the global zone always has zoneid 0.

Chapter 15 is devoted to the DTrace facility.

Dynamically reconfiguring a zone
In some cases it is desirable to update a running zone’s configuration without rebooting the
zone. Changes made using zonecfg don’t take effect until the next time the zone boots. Not
every attribute can be dynamically changed, but it is possible to update parts of the zone’s state
by using various system commands.

Any changes made via system commands are only temporary and will be lost the
next time the zone boots, unless the change is also made to the zone’s configuration

through zonecfg.

729

Part V OpenSolaris Virtualization

To add additional file system space to a zone, you can simply run the mount command to add
the mount within the zone’s root. First be sure to create the mount point in the zone, as this
example using lofs shows:

zlogin myzone mkdir /space
mount -F lofs /pl/sp/myzone /pl/zones/myzone/root/space
zlogin myzone df -hl
Filesystem size used avail capacity Mounted on
...
/space 33G 20G 12G 63% /space

You can dynamically add a network interface using the zone option to ifconfig:

ifconfig bge0 addif 192.168.0.92 netmask 255.255.255.0 zone myzone
Created new logical interface bge0:1

The -zone option to ifconfig can be used to remove an interface from a zone.

A zone’s pool binding can be changed using the poolbind command with the -i option:

poolbind -p newpool -i zoneid myzone

If the pool does not already exist, you have to create it first using the pool
commands described in Chapter 18.

You can dynamically change the scheduling class for processes within a zone using the prioc-
ntl command. The following sets the zone to use the FSS class:

priocntl -s -c FSS -i zoneid 18

Note that the priocntl command does not accept the zonename as the argument for the -i
zoneid option, so you must use the zoneid, which you can obtain using the zoneadm list
subcommand.

Likewise, a zone’s resource control settings can be dynamically adjusted using the prctl com-
mand with the -i option. This example modifies the max-lwps resource control to 2000:

prctl -r -n zone.max-lwps -v 2000 -i zone myzone

Because you are using the command line interface, the full resource control name,
zone.max-lwps, must be spelled out. A resource control can also be removed with the
prctl command:

prctl -n zone.max-lwps -x -i zone myzone

To change the amount of physical memory that rcapd is capping for the zone, use the rcapadm
command with the -z option. This example sets the new physical cap to 256MB:

rcapadm -z myzone -m 256m

730

Zones 19

If you are monitoring a zone’s physical caps using rcapstat -z, you might notice that it takes
a few iterations of output before the new cap is updated. That’s because the rcapd only updates
its limits periodically.

SMF
The SMF service svc:/system/zones is used to boot zones whose autoboot property is set
to true when the system boots. It also does an orderly shutdown of running zones when the
system performs an orderly shutdown. This service must always be enabled in order for these
two capabilities to work correctly. Other than knowing what it does, you won’t normally have to
do anything with this service.

See Chapter 13 for more information on SMF.

Backup and restore
The actual details of the backup commands vary according to the software being used, so this
section focuses on general issues. Because non-global zones fundamentally depend on the global
zone and are part of the overall system configuration, they should be backed up from the global
zone as part of the normal system backup strategy. This is straightforward because zones simply
reside in the local file systems. You may need to take additional steps if you have added a raw
device to a zone that it is using for data. In that case, be sure to back up the contents of those
devices as well.

In some cases, the non-global zone administrator may want to run her own backups within the
zone. This may be due to different backup policies between the global and non-global zone or
because the file system paths appear differently between the two, or because the non-global zone
has been changed by the zone administrator and she wants a new backup. Backing up in this
situation can be more complex:

■ If you’re backing up to a local device, such as a tape drive, then it must be made available
to the zone.

■ If a network backup tool is being used, then the server must be accessible from the zone.
This can be an issue if an exclusive IP stack zone is used and the networking in the zone is
configured differently from the global zone.

■ Not all file systems should be backed up because there is no way to restore them from the
non-global zone. Any inherit-pkg-dirs or lofs mounts should be skipped because
that data is backed up strictly from the global zone.

■ Not all third-party backup tools are zone aware, so they might not work correctly in a
zone. However, some tools have been enhanced to understand zones and work fine when
run within a non-global zone.

It is best to check the capabilities of the tool you are using when you first deploy your zones so
that you understand how the zones will interact with the backup strategy.

731

Part V OpenSolaris Virtualization

Because delegated ZFS datasets cannot be mounted in the global zone, either back up these
datasets from within the non-global zone or use the ZFS send and receive subcommands in
the global zone to back up and restore snapshots of these datasets. This example shows the use
of the send subcommand to make a backup of a delegated dataset snapshot:

zfs send rpool/export/zones/myds@mysnap1 >/export/sp/mydump

Software management
Software management on OpenSolaris is a rapidly evolving technology and it differs from earlier
releases of Solaris. Basic software management for OpenSolaris uses the IPS system, described in
Chapter 6, while the SXCE distribution uses the traditional SVR4 packaging system. These differ-
ences affect how software is managed for zones.

As mentioned earlier with respect to sparse-root zones and whole-root zones, the
inherit-pkg-dir concept is fundamentally related to how software is managed between
the global and non-global zones. In addition, the concept of a zone’s brand, which is described
further in the ‘‘Branded Zones’’ section later in this chapter, also affects how software is
managed.

On systems running SXCE, for native-branded zones, the SVR4 packages are tagged with infor-
mation that indicates whether the package must be the same for both the global and non-global
zones. This information, in conjunction with the zone’s inherit-pkg-dir configuration, is
used to determine which software must stay in sync with the global zone. As you add packages,
upgrade the system, or perform patching operations in the global zone, the system ensures that
both the software and the information related to the installation of that software are maintained
correctly inside the non-global zone as well. These concepts are applicable to OpenSolaris as
well, but because OpenSolaris uses the IPS packaging system, the traditional SVR4 packaging,
patching, and how this relates to zones are not discussed further here. If you need more
information about SVR4 packaging, consult the legacy Solaris documentation.

Although system software is managed using the IPS packaging system on OpenSolaris, you can
still install add-on software using the SVR4 system. Currently, IPS support for zones is under
development, and support for zones is in transition to the new model. To support zones dur-
ing this transition, a new brand, ipkg, has been defined. (See the ‘‘Branded Zones’’ section later
in this chapter for more background on how branded zones work.) On OpenSolaris, newly cre-
ated zones default to using the ipkg brand, which provides support for installing software into
the zone using IPS. Only the whole-root model is supported because IPS does not yet support
installing software using the sparse-root model in which only the package metadata is updated.

In addition, IPS does not yet have a mechanism to indicate that system software must be kept
in sync between the global and non-global zones. Given that, when using zones on OpenSolaris,
you must manually ensure that the system software stays in sync. More specifically, even though
it is possible to install one version of OpenSolaris in the global zone and a different build in a
non-global zone, be careful not to do this because it can easily lead to obscure failures that are
difficult to diagnose.

732

Zones 19

All of these limitations are well understood and simply reflect the developmental state of IPS at
the time of this writing. These limitations are being addressed and may very well be fixed by the
time you read this. Check the documentation for the current release of OpenSolaris that you are
using to determine exactly how zones behave with respect to software management using IPS. It
is expected that the need for the ipkg brand will eventually disappear as IPS support for zones
matures. When that happens, native-branded zones will simply use IPS on OpenSolaris, just as
native-branded zones today use SVR4 on SXCE.

In addition to using IPS, ipkg-branded zones also use a ZFS root file system that is based
on the ZFS-root model used in the global zone. This enables the dataset cloning and software
backout capabilities that are provided by software management in the global zone. When the
global zone is updated to a new boot environment using pkg image-update, a new ZFS clone
for each zone is created at the same time. That way, each boot environment has the appropriate
zone datasets associated with it and you can easily switch from one boot environment to
another.

Other tools
This chapter has focused on the core system tools for configuring and managing zones, but
other open source projects provide tools related to zones. Once you are familiar with the core
tools, you might want to investigate some of these other projects:

■ The webmin project is a popular tool for system management. It includes support for
managing zones.

■ The Zone Manager project on OpenSolaris.org attempts to simplify zone creation and
management with a single non-interactive command line tool.

■ As mentioned in the chapter introduction, the xVM OpsCenter project is working to pro-
vide a simplified and unified view of system management with a focus on virtualization.

Limitations to Zones
Because zones are an operating-system-level virtualization solution, they have certain limitations
that other virtualization solutions don’t have. There are also certain limitations with the current
implementation that might change in the future.

There is a single kernel for the whole system, so non-global zones are not allowed to inspect
data within the kernel. That would violate the encapsulation that zones provide. Nor are zones
allowed to change data in the kernel. This includes actions such as installing a new driver or
changing a kernel setting. In many cases this limitation can be worked around by installing
the driver from the global zone or by making a global change to a system setting and using
resource controls to limit individual zones. In general, zones cannot run different operating
systems because there is only a single underlying kernel, but zones can run different user-level
environments, as described in the following section.

733

Part V OpenSolaris Virtualization

As discussed earlier, processes within zones do not have all of the privileges that are available
in the global zone. Some privileges simply cannot be given to a process within a zone. If those
privileges are needed for some reason, then that application is unsuitable to run within a zone.
For similar reasons, some commands do not work in a zone; and if an application depends on
running one of those commands, it won’t work.

You have already seen techniques to work around applications that need to access devices or
write to file systems that might not normally be writable within a zone by configuring the zone
to use either the device or fs resources.

Zones cannot currently be NFS servers for file systems within the zone, and zonepaths cannot
reside on an NFS mounted file system. Because of the way that NFS and local file systems
interact, zones should not be NFS clients of the global zone. Normally, when an NFS mount is
attempted on the same system, the automounter detects this and transparently uses a lofs mount
instead. The automounter cannot detect this within a zone because it appears that two different
systems are involved. If a zone needs access to file systems from the global zone, an explicit lofs
mount in the zone configuration should be used instead. Aside from that, there are no other
limitations of zones as NFS clients.

In addition, there are the limitations described throughout this chapter and which typically
relate to the zone configuration itself. For instance, as mentioned earlier, when using a
sparse-root zone, those directories are not writable within the zone. Software installed in those
directories must be managed by the global zone. Another example is the use of a shared IP stack
zone, where the zone itself cannot reconfigure the network or use the network in an insecure
way. These types of configuration limitations can also be viewed as a strength because the limits
are often used to provide extra security beyond what is normally possible inside the zone.

Branded Zones
All zones have a brand associated with them. A zone’s brand dictates the user-level environment
installed and running within that zone.

Brands are a fundamental part of the zone infrastructure. Within the zone’s implementation are a
variety of hooks and mechanisms to modify the behavior of the zone so that it can be used with
a different user-level environment. The amount of interpositioning delivered by a brand varies
from simple to complex. A specific brand might hook into the zone’s infrastructure at only a
few points, perhaps by providing extensions for installing or booting the zone. Another brand
might use a more sophisticated interpositioning mechanism whereby it intercepts system calls
and modifies its behavior to emulate a completely different operating system within the zone.
This type of brand has more overhead than a native zone because of the system call interpo-
sitioning, but this overhead is still usually much less than what is seen with hypervisor-based
virtualization, so the scalability advantage of zones remains. Using this support, it is possible to
run unmodified binaries that were built for another operating system, assuming the appropriate
brand module has been implemented.

734

Zones 19

With the brand capability, zones can provide support for complex non-native environments and
still maintain the advantage of low overhead and the simplicity of running a single kernel in the
global zone.

In zonecfg you probably noticed the brand property, which you have also seen in the zoneadm
list output:

$ zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
25 myzone running /export/zones/myzone ipkg shared

The ipkg brand
Until now the chapter has focused primarily on the native brand, although the ipkg brand was
discussed earlier in the ‘‘Software management’’ section. On SXCE, the native brand uses the
same system software environment as the global zone. That is, native-branded zones use the
same release of SXCE that’s installed in the global zone. Likewise, the ipkg brand represents
the same version of OpenSolaris system software that’s installed in the global zone. There is no
system call interpositioning associated with this brand. Instead, the brand is used only to deliver
the IPS support for the software management operations for zones, such as install, clone, or
uninstall. As previously mentioned, this support is currently in transition, and the details of this
brand will change in a future release — or it may disappear altogether.

The lx brand
The lx brand was the first non-native brand provided with zones. It provides an environment to
execute an unmodified CentOS 3. x or Red Hat Enterprise Linux 3.x 32-bit distribution within
the zone. This brand is delivered only for the x86 architecture.

To use the brand, you first configure the zone as an lx-branded zone. It is simplest to create the
zone using the SUNWlx zone template provided with the brand:

zonecfg -z mycentos
mycentos: No such zone configured
Use ‘create’ to begin configuring a new zone.
zonecfg:mycentos> create -t SUNWlx
zonecfg:mycentos> set zonepath=/pl/zones/mycentos
zonecfg:mycentos> add net
zonecfg:mycentos:net> set physical=bge0
zonecfg:mycentos:net> set address=192.168.0.95
zonecfg:mycentos:net> end
zonecfg:mycentos> add capped-memory
zonecfg:mycentos:capped-memory> set physical=512m
zonecfg:mycentos:capped-memory> set swap=1g
zonecfg:mycentos:capped-memory> set locked=0
zonecfg:mycentos> set max-lwps=1000
zonecfg:mycentos> set cpu-shares=1

735

Part V OpenSolaris Virtualization

zonecfg:mycentos> info
zonename: mycentos
zonepath: /pl/zones/mycentos
brand: lx
autoboot: false
bootargs:
pool:
limitpriv:
scheduling-class:
ip-type: shared
[max-lwps: 1000]
[cpu-shares: 1]
net:

address: 192.168.0.95
physical: bge0

capped-memory:
physical: 512M
[swap: 1G]
[locked: 0]

rctl:
name: zone.max-swap
value: (priv=privileged,limit=1073741824,action=deny)

rctl:
name: zone.max-locked-memory
value: (priv=privileged,limit=0,action=deny)

rctl:
name: zone.max-lwps
value: (priv=privileged,limit=1000,action=deny)

rctl:
name: zone.cpu-shares
value: (priv=privileged,limit=1,action=none)

zonecfg:mycentos> exit

Creating the zone with the SUNWlx template sets the brand property to lx and excludes any
inherit-pkg-dirs because those don’t make sense in this case. Many non-native brands are
whole-root zones. As shown in the example, most of the standard zonecfg properties and
resources work just like they do with a native branded zone. Set the resource management
capabilities, networking, and so on just as you normally would. The global zone manages these
capabilities, so it doesn’t matter what environment is running in the non-global zone. You can’t
delegate a ZFS dataset because this release of Linux doesn’t know how to manage ZFS, but
you can place the zone itself on ZFS or add a file system with the fs resource using lofs. For
devices, such as the NIC assigned to the zone, it doesn’t matter whether Linux has a driver for
the device because the driver is actually running in the OpenSolaris kernel and is virtualized
into the zone. The lx brand does not support exclusive stack zones.

Once the lx-branded zone has been created, you install it using the zoneadm command. The
brand delivers hooks to enable installation from an ISO image of the CentOS or RedHat distri-

736

Zones 19

bution. Alternatively, you can download a CentOS 3.x tarball linked off the BrandZ project page
on OpenSolaris.org and install from that. This example installs the zone using that tarball:

zoneadm -z mycentos install -d ∼/zones/centos_fs_image.tar.bz2
A ZFS file system has been created for this zone.
Installing zone ‘mycentos’ at root directory ‘/pl/zones/mycentos’
from archive ‘/home/myhome/zones/centos_fs_image.tar.bz2’

This process may take several minutes.

Setting up the initial lx brand environment.
System configuration modifications complete.
Setting up the initial lx brand environment.
System configuration modifications complete.

Installation of zone ‘mycentos’ completed successfully.

Details saved to log file:
"/pl/zones/mycentos/root/var/log/mycentos.install.23743.log"

As shown in this example, because the zonepath resides on ZFS, a ZFS dataset is automatically
created, just as with native zones. Other zone features such as cloning or migration also work
just as they do with a native zone. Once you are familiar with managing native zones, there is
very little additional brand-specific information you need to learn.

Using the zoneadm list subcommand, you can see this zone is configured with the lx brand:

zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / native shared
25 myzone running /pl/zones/myzone ipkg shared
- mycentos installed /pl/zones/mycentos lx shared

Once a zone has been installed, you cannot change its brand.

Now that the zone has been installed, you can boot and zlogin just as you normally would.
Use the zoneadm command to boot the zone:

zoneadm -z mycentos boot

In another window, log in to the zone’s console and watch it boot:

zlogin -C mycentos
[Connected to zone ‘mycentos’ console]
[NOTICE: Zone booting up]
INIT: version 2.85 booting

Welcome to CentOS
Press ‘I’ to enter interactive startup.

Configuring kernel parameters: [OK]

737

Part V OpenSolaris Virtualization

Setting hostname mycentos: [OK]
Checking root filesystem
[OK]
...
CentOS release 3.7 (Final)
Kernel 2.4.21 on an i686

mycentos login: root
Password:
...
-bash-2.05b# uname -a
Linux mycentos 2.4.21 BrandZ fake linux i686 athlon i386 GNU/Linux
-bash-2.05b# ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
xfs 26009 0.0 0.2 8320 4244 ? S Feb20 0:00 xfs -droppriv -da
daemon 26019 0.0 0.0 4636 1732 ? S Feb20 0:00 /usr/sbin/atd
root 26074 0.0 0.1 5568 2484 ? R Feb20 0:00 ps -aux
root 1 0.0 0.1 4244 2148 ? S Feb20 0:00 /sbin/init
...

The zone runs through the normal Linux boot processing much like a standalone system would.
All of the user-level processes are run in the normal sequence. Once you log in, you can see that
the native Linux commands and environment are present.

Using the lx brand enables you to download Linux binary applications, built for Cen-
tOS 3.x or related distributions, and immediately run them with no additional work.

Experimental Linux 2.6 support
The lx brand has been extended to provide support for running a Linux 2.6-based distribution,
although there is still additional work to do to complete that brand. To enable this support, con-
figure an lx-branded zone as previously described. Add the following attribute to turn on the
experimental 2.6 support:

zonecfg:mycentos5> add attr
zonecfg:mycentos5:attr> set name="kernel-version"
zonecfg:mycentos5:attr> set type=string
zonecfg:mycentos5:attr> set value="2.6"
zonecfg:mycentos5:attr> end

Now you can install the zone from a CentOS 5.x-based tarball. The zone will be bootable
although there are certain known issues with the experimental support. A few applications
are known not to work or have not been tested. Check the BrandZ community pages on
opensolaris.org to determine the current status of this brand.

Other brands
In addition to the lx brand, the Open HA Cluster software uses parts of the brand infrastructure
to hook into zones for failover. However, no system call interpositioning is needed for that

738

Zones 19

brand. Sun Microsystems also offers solaris8 and solaris9 branded zones running on
Solaris 10 for the SPARC architecture. Because those brands and operating system versions are
not open source and don’t run on OpenSolaris at this time, they are not described here.

Implementation
If a brand delivers system call interpositioning, the brand module installs into the kernel and
dynamically enables interpositioning on a per-system-call basis. Thus, if a specific brand were to
only interpose on a few system calls, the rest would still run at full speed. On the x86 architec-
ture, interpositioning is enabled on a per-process basis, so only processes running in a branded
zone incur any overhead for the brand’s interpositioning. On the SPARC architecture, interpo-
sitioning is enabled when a branded zone boots, so there is some additional overhead when a
branded zone is running, but typically only around 1–2%.

When a branded program that uses system call interpositioning runs, it is transparently linked
with its brand library in addition to its other dependencies. Thus, each branded process has a
copy of the brand library linked in. If the system call is interposed on, then when a system call
is made, the kernel immediately redirects execution back out to the brand library in the pro-
cess within its user-level code. The brand library then provides whatever behavior is needed to
emulate the brand’s environment. In complex cases this might entail making one or more native
system calls and adjusting the results to correspond to what processes in the brand expect. In
simple cases the brand library might return a result with no additional system call. Most of the
emulation work is handled within the brand library in user-level code; the kernel module pri-
marily redirects execution back out of the kernel when needed.

A brand can also provide other complex emulation if needed. For example, a non-native version
of procfs can be emulated by a brand.

Resources

■ The zones community is at http://opensolaris.org/os/community/zones. On
the zones community page you can find links to an extensive FAQ, to project documents
and plans, and to the Zones discussion where community members ask and answer ques-
tions.

■ The Resource Management project is at http://opensolaris.org/os/project/rm.

■ The BrandZ community is at http://opensolaris.org/os/community/brandz.

■ The CentOS project is at http://centos.org.

■ The sample CentOS 3.x tarball can be downloaded from http://dlc.sun.com/osol/
brandz/downloads/centos fs image.tar.bz2.

■ The experimental Linux 2.6 brand support is described at http://opensolaris.org/
os/community/brandz/todo/linux 2 6.

739

Part V OpenSolaris Virtualization

Some of the other projects that work with zones are as follows:

■ The zone manager project at http://opensolaris.org/os/project/zonemgr

■ The webmin project at http://webmin.com

■ The xVM OpsCenter project at https://openxvm.dev.java.net

If you are interested in the architecture and design of zones, BrandZ, and the lx brand, the ARC
cases are available on the ARC community at http://opensolaris.org/os/community/
arc. In particular, the following two cases are the most fundamental:

PSARC/2002/174 Virtualization and Namespace Isolation in Solaris
PSARC/2005/471 BrandZ: Support for non-native zones

However, there are many smaller zones-related cases, subsequent to the original 2002/174 case,
that document the architecture of specific enhancements.

If you are interested in the implementation of zones, BrandZ, and the lx brand, the zones
source code is spread out among the kernel, libraries, and commands. Within the source tree,
the primary kernel module is at usr/src/uts/common/os/zone.c. This file begins with
an extensive comment that explains many of the fundamentals of the zone implementation.
Although the file contains much of the zones-related kernel code, the kernel fundamen-
tally understands zones and there are various bits of zones-related checking throughout
the kernel. The main zone header file is at usr/src/head/libzonecfg.h and the pri-
mary library source is under usr/src/lib/libzonecfg. The main zone commands are
under usr/src/cmd/zoneadm, usr/src/cmd/zoneadmd, usr/src/cmd/zonecfg, and
usr/src/cmd/zlogin. The BrandZ kernel code is primarily in usr/src/uts/common/os/
brand.c and the library code is under usr/src/lib/libbrand. The lx brand kernel
code is under usr/src/uts/common/brand/lx and the lx brand user-level code is under
usr/src/lib/brand/lx.

Summary
This chapter described Zones, the OpenSolaris operating-system-level virtualization feature, and
how it is integrated with resource management. The benefits, features, and management of zones
were explored. Because zones are so lightweight, they are good choice for encapsulating or con-
solidating workloads onto a system where scalability or performance is critical. The limitations
of the single kernel were explained, although through the use of branded zones, there is more
flexibility than the single kernel might imply.

740

xVM Hypervisor

IN THIS CHAPTER
xVM concepts

Getting started with xVM

Advanced xVM administration

Live migration

Virtual devices

xVM troubleshooting

The xVM hypervisor is the type 1 hypervisor virtualization solution
provided in OpenSolaris for the x86 hardware architecture. Using
xVM, system resources can be shared among domains, each of

which is an isolated environment that runs a standalone operating system.
The OpenSolaris xVM hypervisor is based on the Xen open source project.

The xVM name is used on a variety of
OpenSolaris-related software components that

work with virtualization. In this chapter, xVM is used specifically to refer
to the hypervisor based on the Xen project. Sun Microsystems also offers
their xVM Server product, which is a self-contained virtualization appliance
built around the hypervisor and the xVM Ops Center management tools.
This chapter focuses on interacting with the hypervisor directly, not as an
appliance as offered by the xVM Server product.

xVM runs both paravirtualized and fully virtualized guest operating
systems. OpenSolaris has been paravirtualized to run on the hypervisor as
either the control domain or a guest OS. This paravirtualization provides
better performance when interacting with the hypervisor than a domain
running a fully virtualized OS.

In addition to the standard virtualization benefits provided by running an
OS on a hypervisor, xVM offers features such as the capability to suspend
and resume a running domain, as well as live migration of a running
domain from one host to another.

Chapter 17 describes the benefits of virtualization and
basic virtualization concepts such as a hypervisor, full

virtualization, and paravirtualization. If you are unfamiliar with these con-
cepts, refer to Chapter 17 before proceeding.

741

Part V OpenSolaris Virtualization

The xVM hypervisor is one of the fastest evolving technologies within OpenSolaris. By the time
you read this, there will likely be new features and enhancements that were unavailable at the
time this chapter was written, but the material here will get you started with xVM, and you can
consult the documentation for your specific release of OpenSolaris to learn more about any addi-
tional features that might be available.

xVM Concepts
xVM introduces a variety of new concepts and terms that you’ll encounter as you configure and
manage domains. This section explains some of these concepts.

A new platform has been defined for OpenSolaris running in a paravirtualized domain on xVM:
i86xpv. You will see this in the uname output:

$ uname -i
i86xpv

Although you have seen the uname command in Chapters 3 and 14, the -i option
has not been discussed. This option prints the system’s platform name. The platform

is used by the OpenSolaris kernel to determine which hardware-specific module the kernel will
use to interact with the underlying system hardware. Previously, x86 systems didn’t have multiple
platforms because x86 hardware is fairly generic. However, on SPARC systems, a variety of plat-
forms provide modules for the kernel, which enables the OS to use the hardware features prop-
erly and more efficiently.

For running on the xVM hypervisor, OpenSolaris delivers the i86xpv platform module. When
OpenSolaris is booted on the hypervisor, or when OpenSolaris is running in a paravirtualized
domain, the system platform is reported as i86xpv, causing that platform module to be used
by the kernel. Instead of directly accessing the hardware, such as the Memory Management Unit
(MMU), the i86xpv-specific portions of the kernel make explicit hypercalls to the xVM hyper-
visor. Because the platform-specific portion of the kernel is optimized to work directly with the
hypervisor, paravirtualized domains are much more efficient than fully virtualized domains, in
which the hypervisor must trap and manage every hardware access.

With xVM the control domain is called dom0. This is the domain that initially boots the host
OS, which is used to configure and manage other domains, as well as to provide virtual I/O
services. There is only one dom0 running on a system at a time. Within the various tools, dom0
is named Domain-0. The host OS running in dom0 must be paravirtualized to run on top of
the xVM hypervisor. Because the OS must be modified to run as a paravirtualized OS, currently,
only open source systems, such as OpenSolaris, Linux, or BSD, have been modified to run
as dom0.

A domain that runs a guest OS is called a domU. Multiple domUs can be running at any
time, each running a different installation of a guest OS. The number of domUs that can run

742

xVM Hypervisor 20

concurrently is limited by the overall hardware resources available on the system, and the load
in each domU.

This chapter focuses on using OpenSolaris as both the host OS in dom0 and as a guest OS
in a domU, although some examples of running other operating systems in a domU are also
provided.

xVM supports both paravirtualized and fully virtualized guest operating systems in a domU. As
described in Chapter 17, a fully virtualized OS does not know it is running on a hypervisor.
In xVM, a fully virtualized domU is also called a hardware-assisted virtual machine (HVM). xVM
depends on the hardware virtualization features provided by the CPU, through either the Intel
VT-x or AMD-V extensions, to run a fully virtualized guest domain. If your system’s CPU does
not include those extensions, then you will only be able to run paravirtualized guests. With xVM
it is also possible to run an HVM domain that is set up to use paravirtualized drivers. This is
sometimes known as HVM+PV. This configuration improves I/O performance over a standard
HVM domain, although the rest of the guest OS kernel that interacts with the hardware will still
not perform as well as a fully paravirtualized OS.

Some systems require the CPU virtualization extensions to be enabled in the BIOS.
If you think your system has a CPU that supports these extensions but xVM won’t let

you install a fully virtualized domain, then first check your BIOS to determine whether this is con-
figurable. Because each BIOS differs in how this is determined, consult your system documentation
for specific instructions.

When running a paravirtualized domain, the I/O devices are virtualized using drivers that split
the functionality between the guest OS and the host OS running in dom0. A frontend driver
is used in the domU. This driver communicates, using shared memory, with a backend driver
in dom0. The backend driver then talks to the physical device, which is accessible only from
dom0. This structure, along with the various logical components and domains used in xVM,
is shown in Figure 20-1. For example, the xdf driver is the frontend disk driver and the xdb
driver is the backend disk driver — likewise for networking with the xnf and xnb drivers.

When running a fully virtualized domain, the hypervisor must trap any read or write operation,
as well as any direct memory access (DMA) operation, to a physical device. The hypervisor then
forwards those requests to a QEMU process running in dom0. QEMU is used to emulate devices
at the physical layer and, in turn, talks to the real device drivers in dom0. This adds significant
overhead to an HVM domain, causing it to be noticeably slower, because there are several
expensive transitions between the domU, the dom0, the hypervisor, and the various subsystems,
for each device access.

The full set of QEMU software is a type 2 hypervisor in its own right, but in the
context of xVM only a subset of QEMU is used to emulate physical devices for HVM

domains.

Because the domUs depend on dom0 for I/O services, it is recommended that you avoid running
applications in dom0. In general, when using xVM, it is best to only use dom0 for management,

743

Part V OpenSolaris Virtualization

and I/O for domUs, because any disruption in dom0, such as a kernel panic, will bring down all
of the domains. A kernel panic in a domU will bring down only that domU.

FIGURE 20-1

The relationship between hardware, hypervisor, domains, and drivers looks complicated.

PV domU
Guest
Domain xdf

xnf

xdb

dom0-Control Domain HVM domU
Guest
Domain

xnb

Net
Driver

Disk
Driver

DiskNet

Driver

Qemu

CPUsCPUs CPUs MemoryMemoryMemory Device

Hypervisor
VCPUs VMem VCPUs VMem VCPUs VMem

Driver

Although not shown in Figure 20-1, domain consoles are also virtualized through the xencon-
soled daemon running in dom0.

Getting Started with xVM
This section focuses on the basics of getting a domU up and running. The xVM virt-manager
GUI provides an easy way to create and manage domUs. Subsequent sections discuss many of
the concepts introduced here in more detail, along with various command line interfaces (CLIs)
that provide additional control over domU management.

Installing the xVM software and booting under the
hypervisor
If you don’t already have the xVM packages installed, the following command installs all of the
necessary xVM packages:

pkg install SUNWxvm SUNWlibvirt SUNWxvmdom SUNWxvmhvm \
SUNWvirt-manager SUNWvirtinst SUNWvdisk SUNWurlgrabber

If you intend to access a domain’s graphical display, you need the SUNWvncviewer package,
which is included in the default OpenSolaris installation. Once the packages are installed, update

744

xVM Hypervisor 20

the GRUB menu to add the xVM hypervisor as a boot option:

/boot/solaris/bin/update_grub

Use the bootadm command to manage your boot environments. To set up the system so that
it always boots the xVM hypervisor, set your default GRUB entry as shown here. First, list your
GRUB menu so that you can see which entry is the hypervisor:

bootadm list-menu
The location for the active GRUB menu is: /rpool/boot/grub/menu.lst
default 6
timeout 10
0 OpenSolaris 2008.05 snv_86_rc3 X86
1 opensolaris-2
2 opensolaris-3
3 Solaris 2008.11 snv_91 X86
4 Solaris xVM
5 opensolaris-4
6 opensolaris-5

Here, the hypervisor is entry number 4, Solaris xVM. Use the bootadm set-menu subcom-
mand to configure this as the default:

bootadm set-menu default=4

Reboot the system so your OpenSolaris installation is running as dom0 on top of the hypervisor.
After the system reboots, you can verify that you are running on the hypervisor, because your
system should now be using the paravirtualized x86 platform kernel module:

$ uname -i
i86xpv

The last step before setting up domains is to enable the xVM SMF services:

svcadm enable -r xvm/domains xvm/virtd

You may also need to enable the sysevent handling for xVM. To determine whether
the sysevent handler is already set up, use the following command:

syseventadm list -c EC_xendev

If you don’t see any output, use the following commands to install the sysevent handler:

syseventadm add -c EC_xendev \
/usr/lib/xen/scripts/xpvd-event ‘action=$subclass’ \
’domain=$domain’ ‘vdev=$vdev’ ‘device=$device’ \
’devclass=$devclass’ ‘febe=$fob’

syseventadm restart

745

Part V OpenSolaris Virtualization

Configuring and installing a guest domain
The virt-manager GUI enables you to quickly configure a new domU:

virt-manager &

Alternately, you can select the System Tools�Virtual Machine Manager menu option.
Figure 20-2 shows the initial dialog that you see when you start the GUI. In the future this
window will allow you to select which system you want to manage, but for now you can just
click the Connect button, which allows you to manage domains on the local host.

FIGURE 20-2

Click Connect in the Open Connection dialog.

This brings up the main virt-manager window, shown in Figure 20-3.

FIGURE 20-3

Use the main Virtual Machine Manager window to monitor and manage domains.

746

xVM Hypervisor 20

Select the New button to start a wizard that walks you through the steps to create a new domU.
The GUI and its wizards are easy to use and understand, so each step is only summarized here.
You create each new domU using a similar sequence.

First, you name the domU. In this example it is named mydomu. Next, you choose the virtual-
ization method for the domain; this can be either paravirtualized or fully virtualized. You must
make this choice based on what guest OS you intend to run in the domain and whether it has
been paravirtualized. If you will be installing OpenSolaris as the guest, choose a paravirtualized
domain.

For this example you install the Solaris Express Community Edition (SXCE) distribu-
tion as a paravirtualized domain because at the time of this writing, paravirtualized

OpenSolaris domains do not support a graphical console, and the OpenSolaris distribution pro-
vides only a GUI-based installer. Instructions for configuring a GUI display for this domain once
it has been installed, a discussion of GUI-based HVM installs, and a more complex procedure to
install the OpenSolaris distribution as a paravirtualized domain are described later in the chapter.
(See Chapter 2 for information about SXCE.)

The next step is to specify the location of the install media. You can enter either a URL that
refers to the install media, or a Kickstart URL, which is a tool specific to installing Red Hat
Linux. A technique to install SXCE using JumpStart is described later in this chapter. Enter the
path to your SXCE ISO image.

On the next screen, assign disk storage space to the domain. You can use either a physical
device, such as a free disk slice or ZFS zvol, or a simple file in the host file system that is used
to emulate a disk drive for the VM. Because of the simplicity and generality of using a file, the
initial examples in this chapter use a file; but for better performance, a physical device is the
preferred option. If you choose a file, you must also specify the total size, in MB, and whether
the file should be fully allocated up front. You don’t need to allocate all of the space in advance,
as long as you know there will be enough space should the virtual disk require it. This way,
only the space that is actually needed by the domain will be used.

Most systems do not normally have a free physical disk slice, but with ZFS, setting up
a physical device as a zvol is easy, flexible, and provides the performance benefits of

a physical device. Using a zvol is the recommended configuration for virtual disks.

Chapter 7 provides more information on OpenSolaris partitions and slices. Using a ZFS zvol for
the virtual disk is described later in this chapter in the section ‘‘Virtual disks.’’

Next, specify how the domain connects to the network. You can choose a virtual network or a
shared physical device. The shared physical device allows the domain to use the same network
interface as the dom0. Currently, the virtual network option is not available and is grayed out.

Finally, allocate the memory and virtual CPUs available to the domain. For memory you can
specify both the amount of memory available when the domain starts, as well as the maximum
amount of memory the domain can use. One virtual CPU is allocated to the domain by default,
but you can increase that if necessary. Memory and Virtual CPUs are discussed in more detail
later in this chapter.

747

Part V OpenSolaris Virtualization

FIGURE 20-4

The virt-manager window shows both a dom0 and a domU.

Review your configuration on the final screen and click Finish to create the new domain and
bring up a text-based console window. At this point, you can respond to any prompts during
the SXCE installation, and watch the installation of the guest OS. After you have completed the
installation, the main virt-manager window will look similar to Figure 20-4.

Logging in to a guest domain
During domain installation, you interacted with the domU on its text-based console. You dis-
connect from the console using the Ctrl+] key combination. Within virt-manager, after you
select a domU, the Open button will be enabled. This button brings up a console window for
the domain.

In addition to accessing the domain on its console, you can always ssh into the domain, just as
you would a standalone system. Using the ssh -X option enables you to run X11-based graphi-
cal applications remotely, assuming the guest OS supports ssh and X11.

Currently, creating a new domain within virt-manager does not set up a graphical display for
the domain. Setting up a graphical display is described later in this chapter.

Basic management of a guest domain
The main window in virt-manager enables you to monitor and control the state and basic
resource utilization of each domain.

748

xVM Hypervisor 20

In Figure 20-4 you can see the main window with the menu bar across the top, the domain
display in the center, and various control buttons across the bottom. The center pane pro-
vides information about each domain, including its status, CPU, and memory utilization. In
Figure 20-4, the status of mydomu is Running. If the domain were not running, the status
would be Shutdown.

At the top of the window are File, Edit, View, and Help menus. The File menu items are Close,
Quit, and the following three options:

File Menu Item Description

New Machine Same as the New button on the main window, which you used when you
created the domain earlier

Restore Saved
Machine

Brings up a file browser that you use to select a file that holds the state of
a previously running domain. That will restart the domain at the point at
which it was saved. Saving a domain’s state into a file is described later.

Open Connection Brings up the same window that you see when you first start
virt-manager

Here are descriptions of the Edit menu items:

Edit Menu Item Description

Host Details
Machine Details

These options bring up the same window as the Details button at the
bottom of the screen, depending on your selection of dom0 or one of the
domUs.

Delete Machine Same as the Delete button at the bottom of the screen. It’s used to delete
a domain. This option is grayed out if you have selected a running
domain. Otherwise, if the domain is shut down, you can delete it.

Preferences Enables you to configure the status update interval for the main window,
as well as console behavior for a domain

The View menu enables you to select which domain attributes are displayed in the main
window.

The four buttons on the bottom of the main window are Delete, New, Details, and Open.
The first three have been described already. The Details button brings up a Virtual Machine
Details window that provides additional information and controls for the selected domain
(see Figure 20-5).

At the top of this window are Virtual Machine, View, and Help menus. The toolbar at the top
of the main window has Run, Pause, and Shutdown buttons. The main body of the window
has tabs that show either an overview of the domain or details about the domain’s hardware
configuration.

749

Part V OpenSolaris Virtualization

FIGURE 20-5

The Details window for this domU shows performance information as well as basic details.

The Virtual Machine menu has options for Run, Pause, Shutdown, Save, Destroy, and Close.
The Run, Pause, and Shutdown options provide the same functionality as the buttons with the
same name in the toolbar at the top of the main window. They enable you to manage the state
of the domain. If the domain is currently shut down, then Run is enabled, and you can start the
domain. The other options are grayed out until the domain is running. Once the domain is run-
ning, Shutdown, Save, and Destroy are enabled, while Run is grayed out. The Shutdown option
initiates a graceful shutdown of the running domain. The Save option brings up a file browser
that enables you to specify a file, and then saves the state of the domain into the file. You can
later use the Restore Saved Machine option, described earlier, to restart the domain at the saved
point. The Destroy option immediately stops the running domain, although using Shutdown is
the preferred way to stop a domain. Currently, the Pause option is always grayed out.

The View menu items are Graphical Console, Serial Console, and Toolbar. The two console
options bring up the appropriate console window for the domain; Toolbar enables or disables
the toolbar on the main window.

The main body of the window has Overview and Hardware tabs. The Overview tab shows per-
formance graphs for CPU and memory usage over time. The Hardware tab’s left pane enables
selection of the processor, memory, disk, or NIC configuration for the domain. The right pane
shows current settings for the selected item and, in the case of processor or memory, enables
you to customize the setting.

750

xVM Hypervisor 20

Advanced xVM Administration
The previous section provided a quick overview of setting up a dom0 and a domU. As you
saw, the virt-manager GUI provides an easy-to-use interface for basic management and mon-
itoring of domains; but to perform more advanced administration tasks, you need the various
xVM CLIs.

Command line interfaces
The CLIs provided with xVM are virt-install, virsh, and xm. The virt-install CLI can
be used as an alternative to the virt-manager GUI for installing a domain. The virsh com-
mand is the preferred and primary CLI for ongoing management of your domains, but in some
cases there are features still available only in the legacy xm CLI. An xm feature is described here
only when there is no corresponding feature in virsh.

As its name implies, you can use the virsh command as an interactive shell. This chapter
focuses on using virsh as a true CLI in its non-interactive mode, but see the virsh(1M) man
page and experiment with the command to learn more about using it as a shell.

Installation
A variety of techniques can be used to install a domU, depending on which guest OS you are
installing, whether the guest is paravirtualized or fully virtualized, and the requirements of the
guest OS installation program.

Basic installation
The virt-install command first creates a new domain and then installs it, all from a single
invocation. This CLI is useful if you want to automatically create domains from a script or you
need to specify more information than the GUI supports. The following command performs the
same installation that was done in the GUI example earlier:

virt-install -p --nographics -n mydomu -f /xvm/mydomu.img \
-r 1024 -s 10 -l /export/iso/sxce.iso

The -p option indicates that virt-install should create a paravirtualized domain. The sec-
ond option, --nographics, means that no graphical console will be used for the domain. Cur-
rently, paravirtualized domains do not support running with a graphical console, so this option
must be used for these domains. A fully virtualized domain can use a graphical console. Creating
and installing an HVM domain is shown in an example below. The -f option specifies the name
of the domain’s virtual disk file. The -r option specifies the amount of memory for the domain,
in megabytes. The -s option specifies the size of the disk file, in gigabytes. The -l option spec-
ifies the URL of the ISO image to use to install the paravirtualized domain. This option is only
used for paravirtualized domains.

751

Part V OpenSolaris Virtualization

An additional option that is useful for installing SXCE in a paravirtualized domain is --autocf,
which specifies the path to a directory containing configuration data for sysidtool(1M)and
a JumpStart profile. Using this enables you to configure a completely hands-off installation of
SXCE in the domain.

If you need to install a domain that requires a graphical display during the installation, such as
Windows, then you must install a fully virtualized domain, although a workaround for installing
the OpenSolaris distribution into a paravirtualized domain, using the GUI, is described below.

The virt-install command can also be used to determine whether your system supports
fully virtualized domains. When run without arguments, the command prompts for the input
needed to create and install the domain. The first prompt gives an indication of whether the
system supports HVM domains:

virt-install
What is the name of your virtual machine?

The preceding prompt means that your system hardware is not capable of running a fully virtu-
alized guest; but if you see the following, then it can:

virt-install
Would you like a fully virtualized guest (yes or no)? This will
allow you to run unmodified operating systems

The following example shows how to install OpenSolaris in an HVM domain, using a graphical
console:

virt-install -v --vnc -n osoldomu -f /xvm/osoldomu.img \
-r 1024 -s 10 -c /export/iso/osol.iso --os-type=solaris \
--os-variant=opensolaris

The first option, -v, indicates that virt-install should create an HVM domain. The second
option indicates that a graphical console, using VNC, should be configured. Note that the option
specifying the path to the ISO, -c, is also different from the earlier example. The -c option
specifies the virtual CD-ROM device for the domain. Use this option as an alternative to -l
when installing HVM domains. The --os-type and --os-variant options enable you to
specify which OS is installed in the domain. These options are only used for HVM domains
and should always be specified in this case. They provide information that is used to optimize
the device emulation for the given OS. Possible values for os-type are solaris, unix,
linux, windows, or other. The possible os-variant values depend on the os-type. See the
virt-install(1M) man page for a complete list.

Because the OpenSolaris distribution requires a graphical display to install, using an HVM
domain is one option for getting OpenSolaris up and running within a domain, although
performance will suffer. Another option is described later.

You can find more information about using VNC in Chapter 4, in the virtualization
overview in Chapter 17, and later in this chapter.

752

xVM Hypervisor 20

Once virt-install creates the new domain, it opens a VNC console window on the domain,
and you will see the normal screen output for the guest OS you are installing. You can then fol-
low the procedures outlined in Chapter 2 to install OpenSolaris in the domain.

When using a VNC console for the domain, you must be logged in on the dom0
graphical console, or be configured to use a remote display, so that the VNC window

displays properly; otherwise, you will receive and error indicating that the window cannot be
displayed.

You would use a similar virt-install invocation, specifying a different ISO, to install a differ-
ent guest OS into an HVM domain. For example, the following installs Windows XP:

virt-install -v --vnc -n winxpdomu -f /xvm/xp.img \
-r 1024 -s 10 -c /export/iso/winxp.iso --os-type=windows \
--os-variant=winxp

The virt-install command supports a variety of additional options that can be used when
creating new domains. The --vcpus=N option enables you to specify the number of virtual
CPUs to allocate to the domain. Use the -b ifname option to explicitly control which dom0
network interface to use for the domain’s network traffic. In addition to these commonly used
options, there are many others. The virt-install(1M) man page describes each option in
detail.

Installing OpenSolaris in a paravirtualized domain
Although virt-install is the preferred CLI for installing domains, it cannot be used to install
the OpenSolaris distribution in a paravirtualized domain, due to the lack of graphics support for
paravirtualized domains. There is also a second limitation with virt-install: It always sets
up the domain to use SATA-style disks, but as of this writing, the OpenSolaris Live CD can only
run off of IDE-style virtual disks. In cases like this, you can use the legacy xm create subcom-
mand to work around some of the virt-install limitations.

John Levon’s blog at http://blogs.sun.com/levon/entry/opensolaris_
2008_11_as_a describes an alternative technique to install OpenSolaris in a paravir-

tualized domain.

To install using xm create, you must create a python definition file that specifies the configura-
tion of your new domain:

name="mydomu5"
vcpus=1
memory="1024"
bootloader="/usr/lib/xen/bin/pygrub"
kernel="/platform/i86xpv/kernel/amd64/unix"
ramdisk="/boot/x86.microroot"
extra="/platform/i86xpv/kernel/amd64/unix -B console=ttya,livemode=text"
disk=[’file:/export/iso/osol.iso,6:cdrom,r’,
’file:/xvm/disk1,0,w’]
vif=[’’]

753

Part V OpenSolaris Virtualization

on_shutdown="destroy"
on_reboot="destroy"
on_crash="destroy"

Most of the entries in this file are either self-explanatory or don’t need modification, but a
few might not be obvious. The extra entry specifies additional boot arguments used to boot
OpenSolaris for installation. It shows the correct boot arguments for the OpenSolaris distribution
to boot to a text console. The disk entry specifies two disks. The order of these disks matters
because the system will boot off of the first disk. In this example, the first disk refers to the ISO
file that is used as the domain’s virtual CD-ROM. You must set up your disk entry to refer to
both the OpenSolaris ISO image and the virtual disk you want to install onto. The vif entry
specifies the virtual network interface for the domain. If you leave this blank, the system uses
the appropriate default. The on_reboot entry might not be obvious either. In this definition it
is set to destroy, which means that once the domain installation is complete and the domain
issues a reboot, the domain is left shut down. Otherwise, it would simply reboot back into the
installation program again.

When you use xm create to install this image, OpenSolaris will boot from the Live CD image
and present the initial prompts on the text-based console:

xm create -c mydomu5.py
Using config file "./mydomu5.py".
Started domain mydomu5

v3.1.4-xvm chgset ‘Mon Jul 07 23:58:09 2008
-0700 15878:0caafd8ebef9’

SunOS Release 5.11 Version snv_86 64-bit
Copyright 1983-2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Hostname: opensolaris
Remounting root read/write
Probing for device nodes ...
Preparing live image for use
Done mounting Live image
USB keyboard
...
opensolaris console login: jack
Password:

At the login prompt, enter jack for the username, and enter jack again at the password
prompt. You can now get the DHCP address on your domain’s network using the ifconfig
command, and, if necessary, enable the sshd service. From a different window in dom0, ssh
with X redirection into the domain’s IP address with the login jack:

% ssh -X jack@192.168.0.80

Once you have logged into the domain, you can start the graphical installer, which displays back
onto the dom0 console:

jack@opensolaris:∼$ pfexec gui-install

754

xVM Hypervisor 20

You can use a similar technique to install the SXCE distribution using its GUI
installer, although you first need to set up a login because SXCE does not include the

predefined jack login.

Once the installation has finished and the domain shuts down, note that it doesn’t appear in the
virsh list output anymore. The last step is to redefine the domain using a modified version
of the earlier python definition:

name="mydomu5"
memory="1024"
disk=[’file:/xvm/disk1,0,w’]
vif=[’’]
on_shutdown="destroy"
on_reboot="restart"
on_crash="destroy"

In this definition you have removed the kernel, ramdisk, and extra properties because the
system is able to boot from the installed virtual disk. The disk entry is also modified to remove
the CD-ROM ISO file, and the on_reboot entry is modified to restart the domain. You can
then define this domain using the xm new subcommand:

xm new mydomu5 -f mydomu5.py

After you have done that, you can use the normal virsh commands to manage the domain.

OpenSolaris places its root file system on ZFS. A dom0 running OpenSolaris already
knows how to boot a domU with a ZFS root file system, but a dom0 running a differ-

ent OS might not have that capability. In that case, you need to specify an additional boot argu-
ment for the domU, as in the following example:

<bootloader_args>--args="zfs-bootfs=rpool/ROOT/opensolaris"
</bootloader_args>

See the ‘‘Boot arguments” section later in the chapter for details on how to set this up.

Although it isn’t the preferred way to install a domain, xm create is still useful in complex
cases such as this. Another example would be if you need to install a domain onto multiple
disks. With virt-install, you can only specify a single disk, so you would have to add the
additional disks after the domain was installed. With xm create you can install the domain
with all of the disks at once.

Cloning a domain

Once you have a domain configured, installed, and customized the way you like, you might
want to clone that domain, rather than start from scratch on a new domain.

755

Part V OpenSolaris Virtualization

To create a new domain based on the configuration of an existing domain, you must first dump
the domain’s configuration. To do so, use the virsh dumpxml subcommand:

virsh dumpxml mydomu >spec.xml

This creates a file containing an XML specification for mydomu. This is what the file looks like
for the first domain you created:

cat spec.xml
<domain type=’xen’ id=’-1’>

<name>mydomu</name>

<uuid>62939af0-be9c-36bf-1d0c-4b54b725e3b6</uuid>

<bootloader>/usr/lib/xen/bin/pygrub</bootloader>

<os>

<type>linux</type>

</os>

<memory>1048576</memory>

<vcpu>1</vcpu>

<on_poweroff>destroy</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>restart</on_crash>

<devices>

<interface type=’bridge’>

<target dev=’vif-1.0’/>

<mac address=’00:16:3e:08:bb:3d’/>

<script path=’vif-vnic’/>

</interface>

<disk type=’file’ device=’disk’>

<driver name=’file’/>

<source file=’/xvm/mydomu.img’/>

<target dev=’xvda’/>

</disk>

</devices>

</domain>

To create a new domain from this file, edit the file to change various fields for the new domain.
Update the <name> field with the name of the new domain and update the <source file>

field to refer to the virtual disk file for the new domain. Then delete the <uuid> and <mac
address> lines, which causes virsh to generate new values for these properties of the new
domain.

Finally, use the define subcommand to create the new domain from the updated domain
specification:

virsh define spec.xml

Now that you have created the new domain, you need to copy the virtual disk from the origi-
nal domain. The new virtual disk should be named with the same value used in the <source
file> field in the XML file. If your virtual disks are ZFS zvols or are in their own ZFS datasets,

756

xVM Hypervisor 20

then you can simply use zfs clone to instantaneously make a copy of the disk. Otherwise, you
must fully copy the file.

ZFS is discussed in Chapter 8.

The virsh create subcommand is similar to the define subcommand, except that the
domain is started after being created. To use this subcommand, you need to ensure that the
virtual disk was copied before creating the new domain.

The cloned domain will have the same identity — such as hostname, IP address,
name service configuration, and other attributes — as the original domain. You

can run the sys-unconfig(1M) command after the new domain first boots or on the original
domain before cloning. This clears the system identity properties from the domain and halts it.
When you reboot the domain, you are prompted for new system identity information on the
domain console.

When you are done with a domain, you can use the virsh undefine subcommand to delete
an inactive domain.

The undefine subcommand deletes a domain with no confirmation, so be sure
that is what you want before running it. The undefine subcommand does not delete

the domain’s virtual disk file, so you should clean that up manually. If you accidentally undefine
a domain but have a backup copy of the domain’s XML definition, then you can just recreate the
domain from the XML file, and the data will still be available on the virtual disk.

Monitoring
The virsh command provides a variety of subcommands for displaying data about domains.
The nodeinfo subcommand provides basic CPU and memory information about the system.
This can be used to help with capacity planning when determining how many domUs to con-
figure on the host:

virsh nodeinfo
CPU model: i86pc
CPU(s): 4
CPU frequency: 2792 MHz
CPU socket(s): 2
Core(s) per socket: 2
Thread(s) per core: 1
NUMA cell(s): 1
Memory size: 8387584 kB

The list subcommand prints a list of domains and their states:

virsh list
Id Name State

0 Domain-0 running
3 mydomu running

757

Part V OpenSolaris Virtualization

The possible states are described in Table 20-1.

TABLE 20-1

Domain States

State Description

blocked The domain is blocked. This is a normal state for an active domain if
the guest OS is waiting on I/O.

crashed The domain crashed and is not configured to restart.

in shutdown This is a transition state while shutting down (xm calls this state
dying).

paused The domain has been paused by the virsh suspend command.

running The domain is running on a CPU.

shut off The domain is shut off.

Use the domstate subcommand to get the state of a specific domain:

virsh domstate mydomu
running

The dominfo subcommand displays information about the domain:

virsh dominfo mydomu
Id: 3
Name: mydomu
UUID: 21c6e7d5-45e7-6a72-8e21-03d1bc41a641
OS Type: linux
State: blocked
CPU(s): 1
CPU time: 102.4s
Max memory: 1048576 kB
Used memory: 1048576 kB

In this example, note that the OS Type shows linux even though OpenSolaris was installed in
the domain. Calling this linux here is misleading because this field actually indicates whether
the domain is paravirtualized or HVM. The value linux means this is a paravirtualized domain.
An HVM domain would show the value as hvm.

You can use some of the virsh subcommands, such as dominfo, on dom0 too. Use
Domain-0 as the domain name.

There is no subcommand to display the full domain configuration with user-friendly output. You
can use the virsh dumpxml command, shown earlier, to see most of the configuration details in

758

xVM Hypervisor 20

XML format. If you compare the XML output of a paravirtualized domain to an HVM domain,
you will notice several key differences.

For a paravirtualized domain, you will see the following:

<bootloader>/usr/lib/xen/bin/pygrub</bootloader>

For an HVM domain, you will see entries similar to this in the XML output:

<os>

<type>hvm</type>

<loader>/usr/lib/xen/boot/hvmloader</loader>

<boot dev=’hd’/>

</os>

<emulator>/usr/lib/xen/bin/qemu-dm</emulator>

<disk type=’file’ device=’disk’>

<driver name=’file’/>

<source file=’/export/xvm/osol.img’/>

<target dev=’hda’/>

</disk>

The <type>hvm</type> entry tells you this is an HVM domain. Note also that qemu-dm is
used for device emulation. This is only the case in HVM domains. One other key difference is
in the <disk> entry. For an HVM domain, <target dev> uses a different naming scheme
from a paravirtualized domain. This is important to remember if you later want to add an addi-
tional disk device to an HVM domain. Adding disk devices is described in more detail in the
next section.

The xm list subcommand provides even more data:

xm list -l mydomu
(domain

(on_crash restart)
(uuid 21c6e7d5-45e7-6a72-8e21-03d1bc41a641)
(bootloader_args)
(vcpus 1)
(name mydomu)
(on_poweroff destroy)
(on_reboot restart)
(bootloader /usr/lib/xen/bin/pygrub)
(maxmem 1024)
(memory 1024)
(shadow_memory 0)
(cpu_weight 256)
(cpu_cap 0)
(features)
(on_xend_start ignore)
(on_xend_stop shutdown)
(start_time 1216677066.27)

759

Part V OpenSolaris Virtualization

(cpu_time 25.562737138)
(online_vcpus 1)

...

A monitoring feature, unavailable in virsh, is provided by the xentop command. Like the
traditional top command, it shows a continuously updated, terminal-based display of domain
activity:

xentop
xentop - 08:46:57 Xen 3.1.4-xvm
2 domains: 2 running, 0 blocked, 0 paused, 0 crashed, 0 dying, 0 shutdown
Mem: 8388148k total, 7338708k used, 1049440k free CPUs: 4 @ 2792MHz

NAME STATE CPU(sec) CPU(%) MEM(k) MEM(%) MAXMEM(k) MAXMEM(%) VCPUS
NETS NETTX(k) NETRX(k) VBDS VBD_OO VBD_RD VBD_WR SSID
Domain-0 -----r 14649 94.3 6170624 73.6 no limit n/a 4
0 0 0 0 0 0 0 0
mydomu -----r 1512 74.9 1035264 12.3 1035264 12.3 1
1 187 13757 1 0 1 297 0

Delay Networks vBds VCPUs Repeat header Sort order Quit

The first line of output shows the system uptime and xVM version information. Line two shows
the number of active domains and the number in each state. Line three shows overall memory
statistics and CPU information. Lines four and five are header information for the domain statis-
tics. These lines are followed by the data for each domain, with two lines of output per domain.
The first line corresponds to the first line of the header; the second line corresponds to the sec-
ond line. This example shows two domains, dom0 and mydomu.

The first status line for mydomu shows the state, the various fields for both CPU and memory
utilization, and finally the number of virtual CPUs allocated to the domain.

The state column has six positions, with a letter or dash in each one. Each letter denotes one
of the possible states for the domain: r is running, b is blocked, p is paused, s is shut down, c
is crashed, and d is dying. The dying state is the same as the in shutdown state shown by the
virsh list subcommand.

The second line of output for mydomu shows network and virtual block device (VBD) data.
The network and disk I/O numbers will fluctuate, as there is I/O activity in the domain
during the update interval. The first column (NETS) indicates there is one virtual network
interface for the domain. The next two columns, NETTX(k) and NETRX(k), show network
transmit and receive statistics, in kilobytes, that have occurred during the update interval. The
(VBDS) column indicates there is a single virtual block device configured for the domain. The
next column (VBD_OO) is the ‘‘out of order’’ statistic, which is not used on OpenSolaris. This
column is always 0. This is followed by virtual block device read and write (VBD_RD, VBD_WR)

760

xVM Hypervisor 20

statistics showing the virtual disk I/O that has occurred during the update interval. The last
field (SSID) is the domain’s security ID. This is set as part of labeled domains, which use access
control, and is currently unused on OpenSolaris. This column is always 0.

The bottom line shows the runtime options for changing the displayed data. Each highlighted
letter toggles either display or customization of the associated data. The domains can be sorted
by each field. The sort field is highlighted and you can toggle through which field to sort using
the S key (Sort order) key.

The xentop command also includes various options that you can specify on the command line
to customize the display. See the xentop(1M) man page for details on the options.

Ongoing management
The virsh CLI is frequently used as an alternative to the virt-manager GUI because it pro-
vides more capabilities for managing a domain than the GUI.

Reconfiguration

Table 20-2 lists the virsh subcommands that are used to modify a domain’s configuration.

TABLE 20-2

virsh Configuration Subcommands

Subcommand Description

attach-device Adds a device specified by an XML file to the domain. As of this writing,
attaching an arbitrary device to a domain is not possible.

attach-disk Adds a disk to the domain

attach-
interface

Adds a network interface to the domain

detach-device Removes a device specified by an XML file from the domain. As of this
writing, detaching an arbitrary device from a domain is not possible.

detach-disk Removes a disk from the domain.

detach-
interface

Removes a network interface from the domain.

setmem Changes the memory reservation for the domain. The value is in KB.

setmaxmem Changes the maximum memory limit for the domain. The value is in KB.

setvcpus Changes the number of virtual CPUs for the domain.

761

Part V OpenSolaris Virtualization

The following example illustrates creating a new virtual disk file and adding it to mydomu:

mkfile 1g /xvm/disk2
virsh attach-disk mydomu /xvm/disk2 xvdb --driver file

After the domain name, the next parameter is the path to either the virtual disk file or the
physical device that you are attaching. In this case, a virtual disk file path, /xvm/disk2, is used.
The following parameter, xvdb in this example, is the name of the target disk for the domain.
The last two parameters specify that a virtual disk file is being configured for the domain. If you
were adding a physical device, the --driver parameter would specify phy.

For a domain running OpenSolaris, the target disk name can be either a number or an xvd-style
virtual disk name. Using either a number or an xvd name dictates whether the virtual disk will
be treated as an IDE/ATA disk or as a SATA disk, respectively. If the target disk name on the
attach-disk subcommand uses a number, then the numbers 0, 1, and 2 correspond to the
IDE/ATA disk names /dev/dsk/c0d0, /dev/dsk/c0d1, and /dev/dsk/c0d2 in the OpenSo-
laris guest. When using an xvd-style target name, the names xvda, xvdb, and xvdc correspond
to the SATA disk names /dev/dsk/c0t0d0, /dev/dsk/c0t1d0, and /dev/dsk/c0t2d0 in
the OpenSolaris guest.

Use the xvd-style names so that the virtual disk is treated as a SATA device. This will
provide a noticeable performance improvement.

For domains that are not running OpenSolaris, the target disk name syntax varies, although a
Linux domain also supports xvd-style naming.

The target naming for an HVM domain follows a different convention. Instead of the targets
using numbers or xvd-style names, they are named hda, hdb, hdc, and so on. Using the earlier
example, if mydomu were an HVM domain instead of a paravirtualized domain, you would use
the following command to attach the virtual disk:

virsh attach-disk mydomu /xvm/disk2 hdb --driver file

Within an HVM domain, the disks follow the OpenSolaris IDE/ATA naming convention just
described.

See Chapter 7 for more information on OpenSolaris disks and the commands you use
within the domain to manage the new disks assigned to the domain.

To remove a disk from mydomu, specify the target name:

virsh detach-disk mydomu xvdb

To add a new virtual network interface to mydomu, use the attach-interface sub-
command:

virsh attach-interface mydomu bridge e1000g0

762

xVM Hypervisor 20

The detach-interface subcommand removes the network interface from the domain.

This example sets the number of virtual CPUs for mydomu to 2 and changes the memory reser-
vation to 786MB:

virsh setvcpus mydomu 2
virsh setmem mydomu 786432

You can increase the number of virtual CPUs and the memory reservation while the
domain is shut down; but once the domain is active, you can only decrease these

settings below the initial value that was in effect when the domain started. After decreasing the
value, you can increase the setting up to the initial value, but not above the initial value. If you
plan to dynamically adjust the number of virtual CPUs or the memory reservation for an active
domain, start the domain with the largest initial values that you expect to need, and then adjust
these settings down once the domain is running. You can then increase the settings later, up to the
initial values. Any changes you make this way while the domain is running are in effect only while
the domain is active.

Virtual CPUs, memory, and managing the various devices for a domain are discussed in more
detail later in this chapter.

Starting and stopping a domain
Table 20-3 lists the virsh subcommands that are used to manage the running state of a
domain.

TABLE 20-3

virsh State Management Subcommands

Subcommand Description

destroy Immediately halts an active domain. The shutdown subcommand is
generally a better alternative to the destroy subcommand.

reboot Performs an orderly shutdown of an active domain, followed by
restarting the domain

restore Restores the domain from a saved state file

resume Starts scheduling a suspended domain

save Saves the domain state to a file. The domain is shut down once this
command completes.

shutdown Performs an orderly shutdown of an active domain

start Starts running an inactive domain

suspend Stops an active domain from being scheduled to run

763

Part V OpenSolaris Virtualization

The start and shutdown subcommands are used most often because they start an inactive
domain and shut down an active domain:

virsh start mydomu
virsh shutdown mydomu

The destroy subcommand can be used instead of shutdown. This immediately brings the
domain to the shut off state:

virsh destroy mydomu

The destroy subcommand is similar to a physical system losing power and may
cause data loss or corruption within the domain.

The suspend subcommand will stop an active domain from being scheduled to run on the sys-
tem, but any resources, such as memory, that have been allocated to the domain will remain in
use by the domain. This moves the domain to the paused state:

virsh suspend mydomu
virsh list
Id Name State

0 Domain-0 running
28 mydomu paused

The resume subcommand is used on a suspended domain to make it eligible for scheduling
again:

virsh resume mydomu
virsh list
Id Name State

0 Domain-0 running
28 mydomu blocked

The save subcommand saves a snapshot of an active domain into a file. After the image has
been saved, the domain will be in the shut off state and all of the resources it was consuming
are freed:

virsh save mydomu /xvm/mysnapshot
Domain mydomu saved to /xvm/mysnapshot
virsh list
Id Name State

0 Domain-0 running
- mydomu shut off

764

xVM Hypervisor 20

The restore subcommand takes a preexisting domain snapshot and restores the state of the
domain:

virsh restore /xvm/mysnapshot

Because the save subcommand creates a snapshot of the full virtual machine state of the
domain, the guest OS does not go through its normal shutdown procedures. For this reason,
always use the restore subcommand to pick up where the guest OS left off. If you simply use
the start subcommand, it is probable that the guest OS file system data won’t be flushed to
disk. This can lead to file system corruption or data loss in some cases. Likewise, if you restore
the domain, run for a while, but then decide later to restore from the snapshot, the snapshot
will probably again be out of sync with the file system, leading to the same problems. If you
always save and restore the domain, then there is no issue. If you think you might want to
revert to a saved snapshot later, save a copy of the virtual disk image that corresponds to the
snapshot. This is particularly easy if you are using ZFS because you can take a ZFS snapshot of
the virtual disk file that corresponds to the snapshot of the domain state.

Automatically starting and stopping a domain
For production domains, you will usually want the domUs to start automatically when the dom0
boots. Unfortunately, at the time of this writing, configuring this behavior is slightly complex
because you must dump the configuration, edit it, and reload it. Recall that the xm list output
shown earlier contained the following property;

(on_xend_start ignore)

The property controls the behavior of the domain when the svc:/system/xvm/domains SMF
service starts.

SMF is described in Chapter 13. The xVM-specific SMF services are described in the
section ‘‘SMF services’’ later in this chapter.

The on_xend_start property defaults to ignore, which means the domain will not auto-
matically start when the dom0 boots. Setting this value to start causes the domain to automat-
ically boot. To change this value, use the xm command to dump the domain configuration to
a file, edit the file to change the value, and then reload the file. This is shown in the following
example:

xm list -l mydomu > /tmp/mydomu.txt

Edit the /tmp/mydomu.txt file and change the (on_xend_start ignore) property to
(on_xend_start start). Now reload the domain configuration:

xm new -F /tmp/mydomu.txt

In the xm list output you’ll also see the following property:

(on_xend_stop shutdown)

765

Part V OpenSolaris Virtualization

This means that as the svc:/system/xvm/domains SMF service in dom0 is stopping, it will
perform an orderly shutdown of any active domain. This is generally the desired behavior and
normally you shouldn’t need to change the value.

Boot arguments
Currently, xVM uses the pygrub bootloader to boot the guest OS in a paravirtualized domain.
On OpenSolaris, pygrub does not use the GRUB menu.lst file from within the domain, so you
need to modify the domain configuration if you wish to pass boot parameters into a paravirtual-
ized domain.

The following procedure shows how to modify the pygrub parameters to pass boot options into
the domain. In this example, the domain is booted with the -k option, which causes the kernel
debugger, kmdb, to be loaded before the OpenSolaris kernel is loaded.

See Chapter 24 for more information on kmdb.

First, dump the XML domain definition to a file:

virsh dumpxml mydomu >mydomu.xml

Within this file you should see the following line:

<bootloader>/usr/lib/xen/bin/pygrub</bootloader>

Edit the XML file, adding the following line immediately after the <bootloader> line:

<bootloader_args>--args="-k"</bootloader_args>

Use the XML file to update the domain definition:

virsh define mydomu.xml

Now, when you start the domain, pygrub will first load kmdb.

You can also set xVM-related, dom0 boot arguments by modifying the GRUB menu.lst entry
used when booting the system under the hypervisor. Update the GRUB entry so that the ker-
nel$ line includes the dom0 arguments:

kernel$ /boot/$ISADIR/xen.gz dom0_mem=1G dom0_max_vcpus=1 dom0_vcpus
_pin=true

This example shows setting all three possible dom0 boot arguments. The meaning of these
arguments is explained later in the ‘‘Virtual Devices’’ section. To modify the GRUB entry, use
the bootadm list-menu subcommand to get the location of the GRUB menu. As of this
writing, it is at /rpool/boot/grub/menu.lst. Edit this file, updating the kernel$ line on
the appropriate menu entry. These settings will be in effect the next time the system boots.

766

xVM Hypervisor 20

Domain console
The domain’s console provides access to the guest OS for system installation or administrative
tasks, even when the guest OS is not accepting network connections.

Paravirtualized domain console access
As stated earlier, paravirtualized domains currently do not support installation using a graphical
console. The virsh console subcommand is used to connect to the domain’s text-based con-
sole. The Ctrl+] key combination will disconnect from the console. The --verbose option
shows any console output that would have been displayed before you ran the command:

virsh console --verbose mydomu
mydomu console login: ˆ]
#

Once OpenSolaris is installed in the domain, you can configure graphical access to the domain
using VNC.

Configuring and using VNC is described in Chapter 4, as well as in the introductory
virtualization material in Chapter 17.

Once you have set up the VNC server in the domain, you should be able to run the vncviewer
on a client system and see the normal OpenSolaris graphical login within the VNC window:

% vncviewer mydomu:0 &

HVM domain console access
Unlike paravirtualized domains, HVM domains can be configured and installed with a graphical
console from the start. The previous HVM installation examples used the virt-install --vnc
option to configure those domains using VNC for the display. When installing a domain, you
can also provide the --vncport option to specify the VNC port number for the display.

Use the virsh vncdisplay subcommand to get the VNC port number for a domain:

virsh vncdisplay osoldomu
:0

Unlike the guest OS-specific VNC configuration you set up for a paravirtualized domain,
the VNC console for an HVM domain is virtualized and managed by xVM itself, through the
qemu-dm process associated with that domain. When connecting to the domain console from a
window on dom0’s graphical console, you can simply connect to the local host and port:

vncviewer :0 &

If you are not running vncviewer locally in dom0, you must configure the xend vnc-listen
property to allow remote system access. By default, vnc-listen is set to 127.0.0.1, which
restricts VNC access to the local host. Setting this to 0.0.0.0 allows any VNC client to connect

767

Part V OpenSolaris Virtualization

to the HVM domU console, which might present a security issue that you should consider
before enabling this access. You can set the config/vncpasswd property as well, although that
doesn’t provide true security because any user can view the SMF properties:

svccfg -s xvm/xend setprop config/vnc-listen="0.0.0.0"
svcadm refresh xvm/xend
svcadm restart xvm/xend

You should make this change before starting the HVM domain because this setting is passed to
the qemu-dm process and the service change doesn’t propagate to running qemu-dm processes.

SMF services
The following SMF services run in dom0 and are used to manage xVM:

svc:/system/xvm/console:default
svc:/system/xvm/domains:default
svc:/system/xvm/store:default
svc:/system/xvm/virtd:default
svc:/system/xvm/xend:default

When setting up xVM in dom0, ensure that these services are enabled and online. Beyond that,
there is little you need to do to configure these services, with the exception of the xend service,
described shortly.

The svc:/system/xvm/console service manages the xenconsoled(1M). This is the daemon
that coordinates domain console accesses made using the virsh console subcommand.

The svc:/system/xvm/domains service boots domains when the dom0 boots, and shuts
down active domains when dom0 is shutting down.

The svc:/system/xvm/store service manages the xenstored(1M) daemon. This is the dae-
mon that manages the domain configuration data.

The svc:/system/xvm/virtd service manages the libvirtd daemon. This daemon provides
services for the libvirt library, used by the virsh command.

The svc:/system/xvm/xend service manages the xend(1M) daemon. This is the administra-
tive daemon that manages xVM and domains on the system. Table 20-4 describes its properties.

These properties are described in more detail on the xend(1M) man page. The following
example illustrates setting the default-nic property to use the network interface named nge0:

svccfg -s svc:/system/xvm/xend setprop config/default-nic=nge0
svcadm refresh svc:/system/xvm/xend
svcadm restart svc:/system/xvm/xend

With this configuration, domU networking will run over the nge0 NIC unless the domain was
explicitly configured to use a different dom0 NIC as its backend device.

768

xVM Hypervisor 20

TABLE 20-4

xend Service Properties

Property Description

config/default-nic Specifies the default dom0 network interface that domains use for
networking. This is useful when the system has multiple NICs and
you want to constrain domains to use a specific NIC by default.

config/dom0-cpus The number of physical CPUs used by dom0. This property is
discussed in more detail later.

config/dom0-min-
mem

The minimum amount of memory for dom0, in MB. Defaults to 196.

config/enable-dump Enables domain core dumps in /var/xen/dump. Defaults to true.

config/vnc-listen Address to listen on for HVM domain console VNC sessions.
Defaults to 127.0.0.1, which means only connections from the local
host are allowed.

config/vncpasswd Password used for connecting to HVM domain console VNC
sessions. Defaults to an empty string, which means no password is
required. VNC passwords are not secure and do not provide security
over domain consoles.

config/xend-
relocation-address

The address to listen on for domain migration requests. Defaults to
127.0.01.

config/xend-
relocation-
hosts-allow

Hosts allowed to make domain migration requests. Defaults to
localhost.

config/xend-
relocation-server

Enables live migration. Defaults to true.

config/xend-
unix-server

Enables the legacy HTTP server interface. Defaults to true.

Restarting the xend service will drop any open paravirtualized domain console
sessions.

Live Migration
One of the compelling features of xVM, compared to many other virtualization solutions for
OpenSolaris, is the capability to perform live migration of a running domain. This is useful
if you need to dynamically rebalance workloads among systems, or you need to perform
maintenance on a host system without disrupting the applications running in the domUs.

769

Part V OpenSolaris Virtualization

Enabling live migration
Before you can migrate a machine to a new host, that host must be configured to accept the
migration of a domain. As mentioned earlier, the following SMF xvm/xend service properties
are used to configure the system as the target of a migration:

config/xend-relocation-address 127.0.0.1
config/xend-relocation-hosts-allow ˆ localhost$
config/xend-relocation-server true

With these default property settings, even though xend-relocation-server is true, the
host will not accept migration requests from any other system because it is configured to
accept requests only from itself. You must update the other two properties to specify which
hosts are allowed to migrate domains to this system. Setting xend-relocation-address
to be blank means the host will listen for requests on all of the system’s network inter-
faces. The xend-relocation-hosts-allow property specifies a space-separated list of
machines that are allowed to initiate a migration to this host. The property value contains
regular expressions for pattern matching on a variety of hostnames. The carrot (ˆ) and
dollar sign ($) are pattern-matching characters to ensure that the entire hostname matches
exactly.

The following example configures the xend SMF service on a target machine to accept migra-
tions from the system named myhost, on any network interface:

svccfg -s svc:system/xvm/xend setprop config/xend-relocation-address=‘""’
svccfg -s svc:system/xvm/xend setprop config/xend-relocation-hosts-allow=\
’"^myhost$ ^localhost$"’
svcadm refresh svc:system/xvm/xend:default
svcadm restart svc:system/xvm/xend:default

In addition to configuring the target system to accept migrations, you must also configure the
domain that you want to migrate so that the domain’s storage is accessible from both the target
and the host. The easiest way to do this is to configure the domain with its virtual disk as a file,
owned by the xvm user, that is stored on an NFS server that both hosts can access. Alternatively,
you can install the domain on an iSCSI initiator that you can configure on both hosts. The fol-
lowing example shows a virt-install command in which the domain’s virtual disk is an NFS
file accessed through the automounter:

virt-install --nographics -n mydomu2 -p \
-f /net/myhost/xvm/mydomu2.img -r 1024 -s 10 -l /export/iso/sxce.iso

You can specify the disk path this way even though the file lives on the local host. That way,
the domain will be ready to migrate, even if you intend to run it locally most of the time. If you
have already set up your domain without specifying the virtual disk file path this way, you can
dump the definition to an XML file, update the file path, and redefine the domain, as described

770

xVM Hypervisor 20

earlier. You must also ensure that xvm-user access to the file from the remote host is properly
configured.

NFS access control and management, as well as the automounter, are covered in
Chapter 10. iSCSI is covered in Chapter 7, and configuring a virtual disk on an iSCSI

initiator is covered later in this chapter.

Finally, a few basic conditions should be true for a successful migration. Both the host and the
target should be on the same subnet in order for the domain’s network connections to continue
working correctly, and host and target should have similar CPUs. That is, migrating from a sys-
tem with AMD CPUs to one with Intel CPUs can be problematic. Both systems should be run-
ning the same version of xVM, and there should be enough CPU and memory resources on the
target system to host the domain.

Migrating a domain
Once everything is properly configured, migrating a running domain is straightforward, requir-
ing only a single command, as the following example shows. The prompts indicate which sys-
tem each command is run on. The example migrates the running domain from a system named
myhost to a system named targethost. The xm -l flag indicates that a live migration should
be performed:

myhost# virsh list
Id Name State

0 Domain-0 running
9 mydomu blocked

myhost# xm migrate -l mydomu targethost

The migration command takes a few moments to run as the domain state is transferred to
targethost. If you watch the domain status on both machines during the migration, you’ll see
something like the following. Initially, the target system only has dom0 defined and running:

targethost# virsh list
Id Name State

0 Domain-0 running

Once the migration has been initiated and is underway, you will see the following status on the
target system:

targethost# virsh list
Id Name State

0 Domain-0 running
1 mydomu no state

771

Part V OpenSolaris Virtualization

You can see that the target system now knows about mydomu, but the domain has no state yet.
On the source system, the domain will transition to the shut off state:

myhost# virsh list
Id Name State

0 Domain-0 running
- mydomu shut off

Once the migration has completed, the target system will show the domain in its normal state,
either running or blocked:

targethost# virsh list
Id Name State

0 Domain-0 running
1 mydomu blocked

If you used the virsh console command to connect to the domain console on the original
system, you would see the following console message:

Aug 1 18:47:19 mydomu genunix: NOTICE: Domain suspending for save/migrate

The console session is eventually dropped on the source system as the domain shuts down, but
if you connect to the console on the target system, you will see the following message:

Aug 1 18:47:53 mydomu unix: NOTICE: domain restore/migrate completed

Later, you can live-migrate the domain back to the original system or to yet a third machine.
Once the domain is shut down or has been migrated off of the target system, the domain is no
longer defined or visible there. The domain remains defined on the original host where it was
created.

Virtual Devices
With xVM, the various physical system resources, such as CPUs, memory, disks, and NICs, are
virtualized so they can be shared among domains.

CPUs
When running on the xVM hypervisor, CPUs are allocated and managed as virtual CPUs.
A virtual CPU holds the state that is associated with a physical CPU, including the physical
CPU registers, its flags, and so on. The xVM hypervisor manages virtual CPUs much like a
traditional time-share OS schedules processes; when the hypervisor schedules a virtual CPU to
run, the CPU state is loaded and runs on a physical CPU. The guest OS running in the domain
associated with the virtual processor then does its own scheduling of that processor, just as it
would when running on bare metal.

When configuring a domain, you specify the number of virtual CPUs allocated to that domain.
With virt-install this is specified using the --vcpus=N option. The default is to assign one

772

xVM Hypervisor 20

virtual CPU to the domain. The --check-cpu option checks whether the specified number of
virtual CPUs exceeds the number of physical CPUs, printing a warning if that is the case.

As described earlier, the virsh setvcpus subcommand is used to assign a new number of vir-
tual CPUs for a domain.

Monitoring
The virsh vcpuinfo subcommand prints status information about each of the virtual CPUs
assigned to a domain. The following example shows the status with two virtual CPUs assigned
to mydomu:

virsh vcpuinfo mydomu
VCPU: 0
CPU: 0
State: running
CPU time: 7.8s
CPU Affinity: yyyy

VCPU: 1
CPU: 3
State: blocked
CPU time: 7.3s
CPU Affinity: yyyy

The VCPU and CPU fields print the ID of the associated CPU. The State field shows the same
state, as described previously. The CPU time field shows the amount of time actually used by
the virtual CPU. The CPU Affinity field uses a single letter, y, to show the affinity for each
physical CPU on the system. Because this example was run on a four-processor system, four let-
ters appear in the output. CPU affinity is described in more detail in the CPU affinity section.

The xm vcpu-list subcommand also shows similar information, but for all active domains:

xm vcpu-list
Name ID VCPU CPU State Time(s) CPU Affinity
Domain-0 0 0 1 -b- 846.5 any cpu
Domain-0 0 1 2 -b- 342.0 any cpu
Domain-0 0 2 0 -b- 369.5 any cpu
Domain-0 0 3 3 r-- 389.8 any cpu
mydomu 2 0 3 -b- 24.9 any cpu
mydomu 2 1 1 -b- 20.9 any cpu

Scheduling
The virsh schedinfo subcommand prints information about the xVM hypervisor scheduling
configuration for a domain:

virsh schedinfo mydomu
Scheduler : credit

773

Part V OpenSolaris Virtualization

weight : 256
cap : 0

The default scheduler used by the xVM hypervisor is the credit scheduler. Other legacy sched-
ulers are available with xVM, but because they are being phased out, only the credit scheduler
is described here.

The xm sched-credit subcommand displays the credit scheduler parameters for all domains:

xm sched-credit
Name ID Weight Cap
Domain-0 0 256 0
mydomu 2 256 0

The credit scheduler is a fair-share scheduler that allocates virtual CPUs to physical CPUs based
on the workload in each domain. If a domain has a runnable virtual CPU and a physical CPU
is idle, then the domain’s virtual CPU is allocated to a physical CPU; but if all of the physical
CPUs are busy and other virtual CPUs are runnable, then the scheduler ensures that virtual
CPUs are allocated to physical CPUs across domains so that each domain gets a fair share of the
physical CPU resources.

The schedinfo example shows the configurable inputs to the credit scheduler. The weight
sets the domain’s importance relative to other domains. If a second domain had weight 128,
then it would get half the physical CPU resources of mydomu, which has a weight of 256, when
there are more runnable virtual CPUs than there are physical CPUs. The proportion of physical
CPU resources that a domain receives is calculated across all of the active domains. The default
domain weight is 256, and the value can be set in the range 1 to 65535.

In addition to configuring the fair-share weight of a domain, you can set a limit on CPU usage,
as shown in the cap field of the schedinfo output. The default of 0 means there is no cap.
When a cap is set and a domain reaches it, its virtual CPUs won’t be scheduled to run even if
there are idle physical CPUs. The cap value is set as a percentage of a CPU. A value of 100 rep-
resents 1 full CPU, 50 represents half of a CPU, and 200 represents two full CPUs. The usage
against the cap is calculated over the fixed, 30-ms scheduling interval in the hypervisor.

The virsh sched-info subcommand is also used to configure the credit scheduler parameters
for a domain. The following example sets the weight for mydomu to 512, which means that if
both dom0 and mydomu need more physical CPU resources than are available, mydomu would
get twice the CPU that dom0 would get:

virsh schedinfo --weight 512 mydomu
xm sched-credit
Name ID Weight Cap
Domain-0 0 256 0
mydomu 2 512 0

You can read more about the credit scheduler at http://wiki.xensource.com/xenwiki/
CreditScheduler.

774

xVM Hypervisor 20

CPU affinity
Configuring CPU affinity enables you to control on which physical CPUs a domain is scheduled.
That may be useful in some cases, such as on a NUMA system, where the workload running in
a domain performs noticeably better when all of the execution takes place on a specific subset of
CPUs. By default, any virtual CPU can be scheduled to run on any physical CPU, as illustrated
in the vcpuinfo example. Once you configure CPU affinity for a virtual CPU, it is only sched-
uled on the specified physical CPUs. The virsh vcpupin subcommand sets the CPU affinity for
a virtual CPU in a domain.

You can use the lgrpinfo command to view CPU topology, and then use specific
CPU IDs reported by lgrpinfo as physical CPU ID inputs for the vcpupin subcom-

mand. See Chapter 14 for more information on the lgrpinfo command.

The next example sets the affinity for both of the virtual CPUs, 0 and 1, that are allocated to
mydomu, so that they use only physical CPUs 2 and 3:

virsh vcpupin mydomu 0 2,3
virsh vcpupin mydomu 1 2,3

You can now see this affinity in the vcpuinfo subcommand:

virsh vcpuinfo mydomu
VCPU: 0
CPU: 2
State: blocked
CPU time: 56.1s
CPU Affinity: --yy

VCPU: 1
CPU: 3
State: blocked
CPU time: 32.9s
CPU Affinity: --yy

The CPU Affinity field indicates that each virtual CPU will not use physical CPUs 0 or 1, indi-
cated by the dash (-) in the first and second character, but that they will use physical CPUs 2 or
3, indicated by the y in the third and fourth characters.

The xm vcpu-list subcommand shows the same CPU affinity data alongside the other
domains:

xm vcpu-list
Name ID VCPU CPU State Time(s) CPU Affinity
Domain-0 0 0 3 r-- 923.2 any cpu
Domain-0 0 1 2 -b- 378.0 any cpu
Domain-0 0 2 0 -b- 402.4 any cpu
Domain-0 0 3 1 -b- 426.9 any cpu
mydomu 2 0 2 -b- 91.9 2-3
mydomu 2 1 3 -b- 45.2 2-3

775

Part V OpenSolaris Virtualization

To clear the CPU affinity setting, specify all of the CPUs:

virsh vcpupin mydomu 0 0,1,2,3
virsh vcpupin mydomu 1 0,1,2,3
xm vcpu-list
Name ID VCPU CPU State Time(s) CPU Affinity
Domain-0 0 0 2 -b- 927.6 any cpu
Domain-0 0 1 1 -b- 380.2 any cpu
Domain-0 0 2 3 r-- 403.7 any cpu
Domain-0 0 3 0 -b- 428.8 any cpu
mydomu 2 0 0 -b- 95.7 any cpu
mydomu 2 1 1 -b- 46.0 any cpu

Dom0 CPUs
As described earlier, the xend service property config/dom0-cpus enables you to configure
the number of physical CPUs that are allocated to virtual CPUs for use by dom0. This property
defaults to 0, which means that each virtual CPU will be allocated to a physical CPU if possi-
ble. Setting this to a non-zero value does not mean that physical CPUs are exclusively allocated
to dom0; the physical CPUs can still also be used by virtual CPUs from another domain, unless
you configured CPU affinity to prevent this, as described earlier. However, this does enable you
to ensure that dom0 does not run on CPUs that you want only domU domains to use.

Memory
Recall that you can configure both the amount of memory reserved for a domain and the max-
imum amount of memory that a domain can use. virt-install does not allow setting these
values separately; the -r option specifies both the reserved and maximum amount of memory.
These two settings can be changed using the virsh setmem and setmaxmem subcommands.

virsh setmem reserves the given minimum amount of memory for the domain. This value can-
not be greater than the value specified with the setmaxmem subcommand. As its name implies,
setmaxmem specifies the largest amount of memory a domain can use. In this example, the max-
imum is set to 4GB, and 2GB is reserved:

virsh setmaxmem mydomu 4194304
virsh setmem mydomu 2097152

Changing the amount of memory available to the domain uses the balloon driver, which manages
increasing or decreasing the domain’s memory, much like a balloon can increase or decrease
in size.

Currently, if you attempt to increase the amount of memory beyond the initial reservation set
when the domain starts, the new reservation does not take effect, and you will see a warning
similar to the following on the domain console:

Jul 29 18:49:54 mydomu unix: WARNING: New balloon target (0x80000
pages) is larger than original memory size (0x3f300 pages).
Ballooning beyond original memory size is not allowed.

776

xVM Hypervisor 20

The general way to handle this is to start the domain with the largest reservation of memory
you expect the domain will need, and then reduce the reservation once the domain has started.
Later, if necessary, you can increase the size anywhere in the range up to the value that was in
effect when the domain started.

When the system initially boots, a small amount of memory is used by the hypervisor and the
rest is available to dom0. As domUs start, they take their reserved amount of memory from the
memory available to dom0. You can see this using the dominfo subcommand on dom0, after
mydomu is running with a 2GB reservation. This system has 8GB of memory:

virsh dominfo Domain-0
Id: 0
Name: Domain-0
UUID: 00000000-0000-0000-0000-000000000000
OS Type: linux
State: running
CPU(s): 4
CPU time: 2397.9s
Max memory: no limit
Used memory: 6151168 kB

Here, about 6GB remains available to dom0. The other 2GB is used by mydomu, with a small
amount used by the hypervisor. Once memory has been taken from the dom0 pool, it is not
automatically returned to dom0 when the domain shuts down or its reservation is reduced,
although this free memory is available for use by other domains. To reclaim this memory for
dom0, use setmem:

virsh setmem Domain-0 9000000

You can provide a large value for the amount of memory and dom0 will recover as
much memory as possible, up to the amount you specified or up to the amount avail-

able, whichever is less.

Because domUs take memory from the total that dom0 initially starts with, ensure that
dom0 retains enough memory for itself. As described earlier, you tune this with the
config/dom0-min-mem property on the xvm/xend service. The property defaults to
196MB, so it should be tuned up to at least 1GB.

Although you can allow domains to take memory from dom0 as needed, losing
memory can adversely affect the performance of software running in dom0. This

is a particular problem if you are using ZFS in dom0 to provide storage services for the other
domains. In this case, it is better to run dom0 with a fixed amount of memory that doesn’t
shrink. When using ZFS, a recommended minimum for dom0 is 2GB, although more is generally
better. You can configure this by setting a memory value for dom0 at boot time and configuring
dom0-min-mem as well. Set the dom0_mem boot argument in GRUB, as shown in the following
example:

kernel$ /boot/$ISADIR/xen.gz dom0_mem=2G

777

Part V OpenSolaris Virtualization

Set the dom0-min-mem SMF property, as shown in this example:

svccfg -s svc:/system/xvm/xend setprop \
config/dom0-min-mem=2000

Virtual disks
Up to this point, the example domains have been configured using a file to represent the virtual
disk device for the domain. A file is the most flexible because the space is easily allocated in
the dom0 file system. A file is also the easiest solution for domain migration because it can
be accessed over NFS from each of the dom0s that will host the domU. However, you can
also directly use block devices for virtual disks. Using an iSCSI initiator as the block device is
another alternative that works with domain migration.

With ZFS, you can create a zvol in your zpool that can then be used as a block device for your
domain.

ZFS zvols are described in Chapter 8, and iSCSI is described in Chapter 7.

This example shows how to set up a 10GB zvol and install a domain using that block device:

zfs create -V 10g rpool/export/myzvol
virt-install -p --nographics -n mydomu3 \
-f /dev/zvol/dsk/rpool/export/myzvol -r 1024 -l /export/sp/nvdvd.iso

You still use the -f option to specify the file path for the domain, but this is now actually
a device path. There is no -s option specifying the file size because the device size is used
implicitly.

If you compare this domain’s definition with the definition of a domain created using a simple
file, you will see that this domain’s virtual disk is configured as a physical device:

virsh dumpxml mydomu3
...

<disk type=’block’ device=’disk’>

<driver name=’phy’/>

<source dev=’/dev/zvol/dsk/rpool/export/myzvol’/>

<target dev=’xvda’/>

</disk>

...

Whether you use a simple file in its own ZFS dataset or a zvol, ZFS makes cloning domains
fast because you can use the built-in clone capabilities provided by ZFS to instantly provision
another virtual disk for a new domain.

This abbreviated example sets up dom0 and installs a domain onto an iSCSI initiator, using the
iSCSI target configured in Chapter 7:

iscsiadm add discovery-address 192.168.0.1

778

xVM Hypervisor 20

iscsiadm modify discovery -t enable
virt-install --nographics -n mydomu4 -p \
-f /dev/dsk/c1t01000003BA4E5E2000002A0047FA3E22d0s2 -r 1024 \
-l /export/sp/nvdvd.iso

The virsh attach-disk subcommand is used to attach an additional storage device to a
domain. This subcommand accepts --driver, --subdriver, --type, and --mode param-
eters. The driver parameter arguments can be file, tap, or phy. The type parameter
arguments can be disk, floppy, or cdrom. The mode parameter arguments can be readonly
or shareable.

The attach-disk examples used so far have only shown the --driver file option. In addi-
tion to the raw file-based virtual disks seen so far, xVM also supports VMware vmdk format files
and VirtualBox vdi format files. You can either use a preexisting virtual disk file created by one
of those applications or you can create the file directly using the vdiskadm command. The fol-
lowing example creates a 10GB sparse vmdk formatted virtual disk file.

vdiskadm create -t vmdk:sparse -s 10g /xvm/mydisk

The -t option specifies one of vmdk:sparse, vmdk:fixed, vdi:sparse, vdi:fixed, or raw.

The tap driver type is used to access these virtual disk files. This example attaches the vmdk file
just created using the SATA style xvdb name.

virsh attach-disk mydomu /xvm/mydisk xvdb --driver tap \
--subdriver vdisk

The following example adds a physical CD-ROM device to a domain:

virsh attach-disk mydomu /dev/dsk/c6t0d0s2 2 \
--driver phy --type cdrom --mode readonly

Within the domain, you can now mount this device using the /dev/dsk/c0d2 name:

mount -F hsfs /dev/dsk/c0d2s2 /mnt

You can use the xm block-list subcommand to display information about the block devices
configured on a domain, but most of the output is useful only for low-level xVM debugging. In
general, the virsh dumpxml subcommand is better for viewing the block devices configured for
a domain:

virsh dumpxml xpdom
<domain type=’xen’ id=’19’>

<name>xpdom</name>

...
<disk type=’file’ device=’disk’>

<driver name=’file’/>

<source file=’/export/xvm/winxp’/>

<target dev=’hda’/>

779

Part V OpenSolaris Virtualization

</disk>

<disk type=’file’ device=’cdrom’>

<driver name=’file’/>

<source file=’/export/sp/winxp_sp2.iso’/>

<target dev=’hdc’/>

<readonly/>

</disk>

...

To provide storage redundancy to a domain, you can set up a redundant disk configuration
within either the domain or dom0. To set this up, simply allocate multiple virtual disks to the
domain, and then it is up to the domain to install and configure the guest OS storage so that it
is redundant. For OpenSolaris, this involves setting up a ZFS mirror or RAID Z configuration
within the domain. Ensure that the devices you allocate to the domU do not have a single
point of failure in dom0. For example, allocating two virtual disk files, both on the same
physical disk in dom0, to the domU will not allow the domU to create a truly redundant storage
configuration, although it might appear redundant from within the domain.

A better alternative is to configure storage redundancy in dom0 where you have full visibility
over the physical storage configuration. For example, if you use ZFS and configure a redundant
zpool using either mirroring or RAID Z, then you can allocate a single virtual disk file from that
storage into the domU and it will automatically benefit from all of the ZFS features, including
redundancy. In this way, guest operating systems that don’t support ZFS can still transparently
realize the benefits that ZFS provides.

Networking
Paravirtualized domains use the xnb backend driver in dom0 to communicate with a physical
network interface.

Each network interface in a domU causes the dynamic creation of an xnb device instance
and a virtual NIC (VNIC) in dom0. The VNICs are then layered on top of the physical NICs,
which enables many domUs to share network access over a single physical NIC. Use the dladm
command to monitor the VNICs in dom0. In this example, two VNICs are allocated to domains.
Both of the VNICs are layered on top of the same physical e1000g0 NIC:

dladm show-link
LINK CLASS MTU STATE OVER
e1000g0 phys 1500 up --
vnic8 vnic 1500 unknown e1000g0
vnic9 vnic 1500 unknown e1000g0
dladm show-link -s
LINK IPACKETS RBYTES IERRORS OPACKETS OBYTES OERRORS
e1000g0 3836794 4504511779 0 1848376 252952540 0
vnic8 5343 332430 0 140 5912 0
vnic9 905 55884 0 1 14 0

780

xVM Hypervisor 20

You can use the virsh dumpxml output to correlate an active domain’s network interface with
the VNIC assigned to the domain:

virsh dumpxml mydomu
...

<interface type=’bridge’>

<source bridge=’e1000g0 ‘/>

<target dev=’vif9.0’/>

<mac address=’00:16:3e:1f:a0:8f’/>

<script path=’vif-vnic’/>

</interface>

...

The <target dev> entry indicates that the network is using virtual interface 9, which
corresponds to vnic9 in dom0. You can also use the XML output to obtain the MAC address
assigned to the interface.

The xm network-list subcommand can be used to display information about the network
interfaces configured on a domain, but like the block-list subcommand, most of the output
is useful only for low-level xVM debugging.

The virsh attach-interface subcommand is used to add network interfaces to a domain.
This subcommand takes a type parameter of either network or bridge, although on OpenSo-
laris, bridge is the only valid value at this time.

To provide network redundancy to a domain, set up link aggregation in dom0, and then config-
ure the domU network interfaces on top of that device:

dladm create-aggr -l e1000g0 -l e1000g1 myaggr0

Next, plumb and configure the aggregation.

You can find the complete procedure for setting up link aggregation in Chapter 9.

Once the aggregation is set up, you can configure a domain’s virtual network on top of the
aggregation:

virsh attach-interface mydomu bridge myaggr0

As an alternative to using link aggregation in dom0, you could configure IP multipathing
in the domU, as long as you set up the domU with multiple NICs. This moves the net-
work management from dom0 into the domU. (The IPMP procedures are described in
Chapter 9.)

781

Part V OpenSolaris Virtualization

Other devices
Currently, configuring other system hardware, such as USB, into a domain is not possible,
although xVM is evolving rapidly in this area and this capability might exist by the time you
read this. Check the xVM documentation for the OpenSolaris release you’re running.

Devices in HVM domains
As noted earlier, HVM domains use a subset of QEMU, called qemu-dm, to provide device emu-
lation for the domain. You saw qemu-dm in the example XML output for an HVM domain; there
is also a qemu-dm process running in dom0 for each active HVM domain. This device emula-
tion is used for both I/O devices and platform-specific hardware access. Every time the guest OS
in an HVM domain attempts to access hardware, the hypervisor traps that access and forwards
the request to the qemu-dm process in dom0. This accounts for the high overhead of an HVM
domain as compared to a paravirtualized domain. For an HVM domain, QEMU is configured to
emulate an Intel PIIX3 IDE chip set and a Realtek 8139 NIC. Thus, as described earlier, disks
appear as IDE/ATA devices, and the network emulation provides very poor performance. Using
paravirtualized device drivers in an HVM domain improves I/O performance, although all other
low-level hardware access must still be emulated. As of this writing, you cannot tune the config-
uration of qemu-dm beyond using the os-type and os-varient options when installing the
domain.

Because of the performance impact of fully emulated I/O, using paravirtualized drivers in an
HVM domain is a necessity for a production system. OpenSolaris includes paravirtualized drivers
for use in an HVM domain. Those drivers have been back-ported to the Solaris 10 release of the
OS, which is not fully virtualized, and thus must run in an HVM domain. Sun also provides
paravirtualized drivers for Windows at the Sun Download Center (www.sun.com/download),
although these drivers are not open source. Configuring and managing these closed source
operating systems is one of the many strengths of the xVM Server appliance.

Troubleshooting
A variety of tools — such as log files, core dumps, and DTrace — are available to assist in trou-
bleshooting xVM-related problems.

Logs
The xVM log files are saved in the /var/log/xen directory. There are log files for xend,
qemu-dm, and others. Although these logs are most useful for developers working on xVM, you
might be able to spot an issue in the log file, or you might need to provide the logs to help in
diagnosing a bug. You can also use the xm dmesg subcommand to print recent messages logged
to the xVM message buffer:

xm dmesg
xVM version 3.1.4-xvm

782

xVM Hypervisor 20

(xVM) Command line:
(xVM) Video information:
(xVM) VGA is text mode 80x25, font 8x16
(xVM) VBE/DDC methods: none; EDID transfer time: 2 seconds
(xVM) EDID info not retrieved because no DDC retrieval method detected
(xVM) Disc information:
(xVM) Found 2 MBR signatures
(xVM) Found 2 EDD information structures
...
(xVM) Xen is relinquishing VGA console.
(xVM) *** Serial input -> DOM0 (type ‘CTRL-a’ three times to switch input
to Xen).

(xVM) Freed 128kB init memory.

(xVM) Xen trace buffers: initialized

DomU core dumps
If a running OpenSolaris domU panics, it will dump core, just as it would on a standalone
system. You can also take a core dump from dom0 using the virsh dump subcommand. The
domU remains active after the dump is taken, so you can analyze the state of the domain while
it continues to provide service. The dump directory must be world-writable or not owned
by root:

virsh dump mydomu /export/sp/mydump
Domain mydomu dumpd to /export/sp/mydump
mdb /export/sp/mydump
> ::status
debugging domain crash dump /export/sp/mydump (64-bit) from mydomu
operating system: 5.11 snv_95 (i86pc)
>

Alternatively, you can use the xm dump-core subcommand, which has an option to crash the
domain after the dump has been taken.

If the domU is paravirtualized, is running OpenSolaris, and was booted under kmdb, then you
can use the xm sysrq subcommand in dom0 to force the domain to break into kmdb:

xm sysrq mydomu b

If the domain was not booted under kmdb, then you will see a notice on the domain console but
nothing else will happen:

External debug event received
evtchn_pending [0 0 0 0 0 0 0 0]
evtchn_mask [ffffffffffffff81 ffffffffffffffff ffffffffffffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

783

Part V OpenSolaris Virtualization

ffffffffffffffff]
CPU0 pending 0 mask 0 sel 0

Configuring an OpenSolaris domain to boot under kmdb was described in the section
‘‘Boot arguments’’ earlier in the chapter.

On the domain console you would see the following:

mydomu console login:
External debug event received

Welcome to kmdb
Loaded modules: [scsi_vhci crypto neti ptm xpv_psm ufs unix zfs krtld s1394
sppp nca uhci hook lofs genunix ip usba specfs random sctp arp xpv_uppc]
[0]> $C
ffffff00018d1b50 kmdb_enter+0xb()
ffffff00018d1b80 debug_enter+0x37(fffffffffbc0dd98)
ffffff00018d1bc0 xen_debug_handler+0x1f(0)
ffffff00018d1c20 xen_sysrq_handler+0xa6(fffffffffbc415d0, ffffff00a83bb9a8, 2)
ffffff00018d1c60 xenwatch_thread+0xa8()
ffffff00018d1c70 thread_start+8()
[0]>

Dom0 core dump
Although the running dom0 cannot access the state of the hypervisor, when the hypervisor
panics, the dom0 core dump includes the hypervisor state within the core file, as if the
hypervisor were just another OpenSolaris kernel module. This module is named xpv. If the
panic occurs in OpenSolaris itself, then the hypervisor state is not included in the dump.
Debugging the hypervisor is outside of the scope of this book, but Nils Nieuwejaar’s blog at
http://blogs.sun.com/nilsn/entry/debugging an xvm panic has an example of
debugging a crash dump into the hypervisor.

DTrace
Although you cannot trace into the hypervisor code itself, the xpv provider can be used to trace
the hypercalls between dom0 and the hypervisor. The details of these calls are primarily use-
ful for developers working on xVM, but this provider does enable you to get an overview of the
interaction of the OS with the hypervisor.

Chapter 15 covers DTrace.

784

xVM Hypervisor 20

Resources
The xVM hypervisor community is at http://opensolaris.org/os/community/xen. Here
you can find links to download the software, articles, and documentation, as well as a link to
the xVM discussion, where community members ask and answer questions. OpenSolaris also
hosts a QEMU project at http://opensolaris.org/os/project/qemu.

Because xVM is based on the open source Xen project, the Xen site at http://xen.org is also
a good resource for general Xen-related information.

Within the ON source tree, the hypervisor source is under usr/src/uts/common/xen. The
i86xpv drivers are under usr/src/uts/i86xpv. The OpenSolaris paravirtualized drivers for
use in an HVM domain are under usr/src/uts/i86pc/i86hvm. The user-level source code
for the various commands can be downloaded from the xen.org website.

The initial ARC case for the xVM hypervisor is PSARC 2006/260 Solaris on Xen, although cur-
rently the case had not been opened. The case for paravirtualized drivers in HVM domains is at
http://opensolaris.org/os/community/arc/caselog/2007/664.

The http://wikis.sun.com/display/xVM/Sun+xVM site provides information about
both the xVM hypervisor and the xVM Ops Center management tools project, as does the
http://openxvm.org website. You can also find other useful information, such as xVM
Blueprints, on the wikis.sun.com website.

Professional Xen Virtualization by William von Hagen (Wrox, 2008) might be useful for general
Xen background material, particularly if you are running Xen on a dom0 that is not running
OpenSolaris.

Finally, xVM, and Xen in general, are very active areas of development and deployment, so you
can find a lot of useful sites and blogs by searching on these topics.

Summary
This chapter described the xVM hypervisor, the OpenSolaris hypervisor-level virtualization
feature for x86-based systems. Using the xVM hypervisor enables you to create isolated,
independent domains and run different guest operating systems within each one, while sharing
the underlying hardware resources. It also examined the features, configuration, and ongoing
management of xVM.

785

Logical Domains
(LDoms)

IN THIS CHAPTER
Introduction to LDoms

LDoms concepts

Getting started

Monitoring

Virtual services

Migration

Logical Domains (LDoms) are the hypervisor-based virtualization
solution provided on the Chip Multi-Threading (CMT) versions of
the SPARC hardware architecture. LDoms can be used to partition

system resources into domains, each of which is an isolated environment
that can run a standalone OS. This provides virtualization capabilities
for SPARC similar to those described in the last chapter for the x86
architecture using the xVM hypervisor.

Introduction to LDoms

LDoms provide a type 1 hypervisor that is designed into the architecture
of the SPARC microprocessor itself. The hypervisor is implemented as a
firmware layer that supports running paravirtualized operating systems.
It does not allow running fully virtualized operating systems. LDoms are
supported on the CMT versions of the SPARC microprocessor, including
the T1, T2, and T2 Plus processors, which support 32 or 64 threads per
chip (the M-class SPARC machines do not support LDoms). This version of
the SPARC architecture is reported as sun4v by the uname -m command.
Earlier versions of SPARC processors, such as the common sun4u architec-
ture, do not support LDoms. Because the hypervisor is part of the system
firmware and is closely tied to the CMT version of SPARC, this chapter is
more hardware specific than much of the rest of the material in this book.

See Chapter 17 for background material on virtuali-
zation.

787

Part V OpenSolaris Virtualization

OpenSolaris has been paravirtualized to run on the sun4v architecture. Instead of accessing the
hardware directly, the sun4v-specific portions of the kernel make explicit calls to the hypervisor
in the system firmware. Like the paravirtualization support in xVM, this paravirtualization simul-
taneously abstracts the OS away from the physical hardware and provides better performance
when interacting with the hypervisor, as compared to a fully virtualized OS. Because LDoms
only support paravirtualized operating systems, earlier versions of Solaris — or other operating
systems that run on SPARC — won’t run on this hardware without first being ported to sun4v.

Currently, the OpenSolaris distribution has not been released on SPARC. Work is
underway on that project, however, and it will likely be complete by the time you

read this. The examples in this chapter use the SXCE distribution, but there is very little in this
chapter that is specific to either of these distributions.

LDoms enable the system’s physical hardware to be partitioned into separate domains, each of
which can run a standalone operating system. Physical I/O devices are assigned to individual
domains but LDoms also support virtual I/O from one domain to another, which transforms
the virtual request into physical I/O. Although this enables physical I/O devices to be shared
between domains, other hardware — such as CPUs or memory — is physically partitioned and
allocated to a single domain.

LDom Concepts
The capabilities of LDoms are similar to xVM but the terminology differs. This section covers the
concepts and terminology unique to LDoms.

Types of domains
LDoms support four different types of domains, defined by the roles that each domain can per-
form. Each domain is installed with a standalone operating system and acts as an independent
entity on the system:

■ The control domain manages all other domains and is the one in which the LDom Manager
runs. This tool is used to create, configure, start, and stop the other domains. There can
only be one control domain on the system. The initial installation of OpenSolaris becomes
the first domain once you start using LDoms and it will be the control domain. This is
similar to the xVM dom0 described in the previous chapter, but there is less dependence
on the control domain with LDoms. For example, with LDoms you can reboot the control
domain and the other domains will continue to run, which is not the case with xVM.

■ An I/O domain has direct physical access to devices. The control domain is typically an I/O
domain. The number of I/O domains on the system is limited by the number of system
buses. For example, the T1000 system can split its bus into two, so it supports two I/O
domains. Because an I/O domain has direct access to devices, its I/O can be faster than if it
had to do virtual I/O. In most cases an I/O domain acts as a service domain as well.

788

Logical Domains (LDoms) 21

■ A service domain has physical access to devices, so it is usually also an I/O domain, and it
thus provides virtual I/O services to other domains. Because the number of I/O domains is
limited, most domains are configured with virtual devices using the services provided by a
service domain.

■ A guest domain uses services from a service domain but provides no services to any other
domains on the system.

The number of configurable domains is limited by the number of threads on the processor, but
there can be other platform-specific limitations as well. For example, the T5440 uses the T2
Plus processor and supports a total of 256 threads, but that system supports only 128 domains.
Check the specifications for your system for any limitations related to the number of domains.
Each domain must have at least one hardware thread bound to it, although it is common to
allocate more. Configuring an entire CPU core’s threads to a domain usually gives the best
performance to software running in that domain, but allocating that many threads to each
domain severely limits the total number of domains that can be used.

A typical, simple configuration consists of the control domain, which also acts as a service
domain, providing virtual I/O services to all other domains on the system (guest domains).
However, more complex configurations can be created to spread the I/O load among domains
and provide redundancy. Although each domain is independent, a reboot of a service domain
can affect the I/O of guest domains using those services. Configurations to avoid this single point
of failure are described later in the chapter.

Types of services and devices
Because the number of I/O domains is limited, most domains will not have access to physical
devices. Instead, guest domains will use virtual I/O services provided by a service domain. The
virtual I/O includes support for storage, networking, and a system console. The following termi-
nology and abbreviations are used to describe these virtual services and devices:

■ A Logical Domain Channel (LDC) is a communication channel between a domain and the
hypervisor. LDCs are also used for communication between a service domain and a guest
domain, as well as to communicate system information such as FMA events or dynamic
reconfiguration events to a domain.

■ The Virtual Disk Service (VDS) provides virtual storage services from a service domain to
guest domains. The Virtual Disk Service Device (VDSDEV) represents physical storage that
is associated with a VDS instance in a service domain. A Virtual Disk (VDISK) in a guest
domain connects to the VDS and maps to a VDSDEV instance in a service domain.

■ The Virtual Switch Service (VSW) provides virtual network services from a service domain
to guest domains. This service acts just like a physical, layer 2 network switch, also some-
times known as a bridge. Networking can be completely self-contained within the virtual
switch or an external network can be configured to provide connectivity outside of the
switch. A Virtual Network (VNET) is a network interface in a guest domain that connects
to the VSW in a service domain.

789

Part V OpenSolaris Virtualization

■ The Virtual Console Concentrator Service (VCC) provides a virtual console service from the
service domain to each guest domain. The Virtual Console (VCONS) in a guest domain
connects to the VCC service in the control domain.

■ A Virtual CPU (VCPU) represents a hardware thread on the processor. The current gener-
ation of systems provides 32, 64, or 256 hardware threads, each of which can be bound to
a VCPU. Each domain must have at least one VCPU assigned to it.

Depending on the processor, several Cryptographic Mathematical Arithmetic Units (MAUs) are
available for use with encryption and decryption. The MAU is a special-purpose mathematical
device that can be used to accelerate cryptographic processing. On the T1 processor, each core
has an associated MAU, for a total of eight MAUs on that system. If the applications running
within a domain will use this hardware, 0 or more MAUs can be bound to the domain as
needed.

In addition to these virtual services and devices, each guest domain has access to virtual memory
and its own instance of the OpenBoot PROM (OBP), provided by the hypervisor.

The OBP is the firmware on SPARC systems. It initializes the hardware and boots
the OS. If you are familiar with x86-based systems, the OBP provides functionality

similar to the BIOS on x86, but with additional capabilities. In addition to its use on Sun SPARC
platforms, OBP was standardized as IEEE 1275-1994 and is used on a variety of other systems.

To use LDoms, you define instances of the VDS, VSW, and VCC services in a service domain.
For each guest domain, you define the VCPU, MAU, Memory, VDSDEV, VDISK, VNET,
VCONS, and OBP resources.

Figure 21-1 shows the basic relationship between the physical hardware, the services running in
the control domain, and the client devices in a guest domain. In all cases, the hypervisor medi-
ates and manages the physical hardware used by each domain.

FIGURE 21-1

The relationship between hardware, hypervisor, domains, and services.

Control Domain Guest Domain

VCC VDS VSW VNET VDISK VCONS

CPUsCPUs MemoryMemory Net

Hypervisor

Disk

790

Logical Domains (LDoms) 21

Getting Started with LDoms
The procedures and commands to administer LDoms are fairly complex. Layered tools, such as
xVM Ops Center, will eventually simplify this process but this chapter presents the low-level
CLIs you can use to administer LDoms. This section focuses on getting domains up and run-
ning. Subsequent sections discuss many of the concepts introduced here in more detail.

This chapter is based on the LDoms 1.0.3 software, but new versions are released regularly so
check the LDoms community page at www.opensolaris.org to determine the latest version.

Checking the firmware
Because the hypervisor is part of the system firmware, make sure you have the latest firmware
installed before configuring logical domains. Download the latest firmware patch for your hard-
ware from the SunSolve website (sunsolve.sun.com) and follow the instructions to determine
whether you already have the latest firmware installed. If you don’t, you will be guided through
the hardware-specific procedure to update the firmware.

If you have to install new firmware, carefully follow the instructions included with
the firmware patch. It is best to be physically present at the machine in case you

need to take administrative steps to reset the system controller.

The examples in this chapter use a T1000 running the LDoms 1.0.3 software. Some of the
hardware-specific commands might differ across machines, so check the release notes and
instructions for your specific platform.

First, connect to the system controller and check the firmware version:

sc> showhost version -v
Sun-Fire-T1000 System Firmware 6.6.1 2008/02/11 15:54

Host flash versions:
OBP 4.28.1 2008/02/11 13:04
Hypervisor 1.6.1 2008/02/11 12:15
POST 4.28.1 2008/02/11 13:29

Here, the firmware release is 6.6.1, which is a valid version for the LDoms 1.0.3 software, so no
further action is required. The following table shows the required firmware versions for use with
LDoms 1.0.3, based on the system’s processor.

Processor Firmware Version

UltraSPARC T2 Plus 7.1.x

UltraSPARC T2 7.1.x

UltraSPARC T1 6.6.x

791

Part V OpenSolaris Virtualization

Installing the management software
The LDoms Manager software is currently delivered in the SVR4 SUNWldm package. The Logical
Domains community on OpenSolaris.org has a link to the location to download this package
(currently http://sun.com/servers/coolthreads/ldoms/get.jsp). The software installs
into the /opt/SUNWldm/bin directory, so for simplicity you might want to add this directory
to the path of the system administrator. The rest of the examples assume this directory is
in the path. The download includes its own installer or you can simply add the package as
follows:

pkgadd -d . SUNWldm.v

If you don’t use the installer, you need to manually enable the svc:/ldoms/ldmd
SMF service before you can use LDoms. See Chapter 13 for more information on

SMF. This example enables the service:

svcadm enable svc:/ldoms/ldmd

Administrative privileges
You must be root or have root privileges in the control domain to configure and administer
domains. To avoid having to be root, the LDoms Management or LDoms Review rights profile
can be assigned to a user. The LDoms Review profile enables a user to view the configurations
but not to modify them.

See Chapter 11, which discusses OpenSolaris security, for information on configuring
rights profiles.

Configuring the control domain
The initial installation of OpenSolaris running on the system becomes the control domain once
you have installed the domain manager and started to configure LDoms. Each domain can be
given a name. The name primary is automatically used for the control domain.

The ldm command is used to manage LDoms. It has a variety of subcommands. Start by verify-
ing that the domain state is active using the list subcommand. The active states means the
domain is up and running. Other domain states and details of the list output are described in
detail later in the chapter:

ldm list

--
Notice: the LDom Manager is running in configuration mode. Configuration and
resource information is displayed for the configuration under construction;

792

Logical Domains (LDoms) 21

not the current active configuration. The configuration being constructed
will only take effect after it is downloaded to the system controller and
the host is reset.
--
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-c- SP 32 8064M 0.7% 23m

The primary domain initially has all of the system resources allocated to it. You need to
de-allocate some of those resources from the primary domain so that they can be allocated to
other domains. The following example allocates four hardware threads to the primary domain.
It also allocates 4100MB — slightly more than half of the physical memory — to the primary
domain. The rest of the system’s hardware threads, memory, and MAU support will be available
to allocate to other domains.

You cannot dynamically reconfigure CPUs on the control domain if you have any
MAUs assigned to it. If you don’t need cryptographic units in the control domain,

remove them:

ldm set-mau 0 primary
--
Notice: the LDom Manager is running in configuration mode. Any configuration
changes made will only take effect after the machine configuration is
downloaded to the system controller and the host is reset.
--

ldm set-vcpu 4 primary
ldm set-memory 4100M primary

For most of the ldm subcommands, the last parameter (primary in this example) is the name
of the domain to which the command applies. After each set subcommand you will see the
reconfiguration warning, indicating that your changes won’t take effect until the domain reboots.
It is omitted in the example here, after the first command, for brevity.

Next, create the three services needed to support guest domains:

ldm add-vds primary-vds0 primary
ldm add-vsw net-dev=bge0 primary-vsw0 primary
ldm add-vcc port-range=5000-5100 primary-vcc0 primary

The add-vds subcommand creates a Virtual Disk Service; add-vsw creates a Virtual Switch Ser-
vice; and add-vcc creates a Virtual Console Concentrator service. The names of each of these
services are primary-vds0, primary-vsw0, and primary-vcc0, respectively. The bge0 net-
work interface is set as the physical NIC to use for external connectivity on the virtual switch
using the net-dev option to the add-vsw subcommand. The port range 5000-5100 is set for
virtual consoles as an option on the add-vcc subcommand.

Here, the services are named after the domain providing the service (the primary
domain) and the type of service, but you can name the services anything you like.

793

Part V OpenSolaris Virtualization

As shown after each command, the notice indicates that the primary domain has a reconfigura-
tion in progress:

ldm list

--
Notice: the LDom Manager is running in configuration mode. Configuration and
resource information is displayed for the configuration under construction;
not the current active configuration. The configuration being constructed
will only take effect after it is downloaded to the system controller and
the host is reset.
--
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.0% 42m

Now that the control domain has been reconfigured, save this configuration to the system con-
troller. This example saves the new configuration using the name myconfig:

ldm add-config myconfig

Finally, enable the virtual network terminal server daemon (vntsd). This daemon provides
console services to all but the control domain and is not enabled by default. This SMF service
should be enabled after you configure the virtual console service:

svcadm enable svc:/ldoms/vntsd:default

See Chapter 13 for more information on SMF.

Now reboot the control domain to activate the new configuration:

init 6

After the system reboots, log in and view the new configuration:

ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.0% 2m

ldm list -l
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 2.6% 2m

SOFTSTATE
Solaris running

VCPU
VID PID UTIL STRAND
0 0 0.0% 100%
1 1 0.0% 100%
2 2 0.0% 100%
3 3 0.0% 100%

794

Logical Domains (LDoms) 21

MEMORY
RA PA SIZE
0x8000000 0x8000000 4100M

VARIABLES
auto-boot?=false
diag-switch?=true
keyboard-layout=US-English

IO
DEVICE PSEUDONYM OPTIONS
pci@780 bus_a
pci@7c0 bus_b

VCC
NAME PORT-RANGE
primary-vcc0 5000-5100

VSW
NAME MAC NET-DEV DEVICE MODE
primary-vsw0 00:14:4f:fb:fc:58 bge0 switch@0

VDS
NAME VOLUME OPTIONS DEVICE
primary-vds0

VCONS
NAME SERVICE PORT
SP

Note some key points in the detailed output:

■ Four CPUs are now assigned to the control domain, and 4100MB of memory.

■ The three services you configured, with their names and properties, are indicated.

■ The virtual switch was automatically assigned a MAC address.

■ A few additional properties and services — VARIABLES, IO, and VCONS — are listed that
you didn’t configure. Those are discussed later in the chapter.

■ SOFTSTATE shows that the operating system is running in the control domain.

Configuring a guest domain
Now that some system resources have been freed up, you can configure a guest domain. In this
example, the name of the domain is mydomain:

ldm add-domain mydomain
ldm set-vcpu 4 mydomain

795

Part V OpenSolaris Virtualization

ldm set-memory 2048M mydomain
ldm set-mau 0 mydomain

This assigns four virtual CPUs, 2GB of memory, and no MAUs to the new domain.

The next step is to assign a disk to the new domain. This example shows how you can leverage
ZFS to create a file that you then use as a boot disk for the domain. The other options,
using physical disks, is described later in the chapter. One of those options might be a better
choice, depending on your configuration, but using ZFS files as virtual disks offers the most
flexibility.

Fully configuring ZFS is described in detail in Chapter 8.

The following example creates a ZFS dataset, and then a 10GB file within the dataset to use as
the boot disk for the domain. As this example shows, you must physically allocate a file to use it
as a boot disk for a domain:

zfs create pl/myldom
mkfile 10g /pl/myldom/zdisk

Now you can configure this file as a virtual disk for the domain:

ldm add-vdsdev /pl/myldom/zdisk vol1@primary-vds0
ldm add-vdisk vdisk1 vol1@primary-vds0 mydomain

A Virtual Disk Service Device (VDSDEV) named vol1 is defined for the zdisk file and is asso-
ciated with the primary-vds0 service. Then a virtual disk named vdisk1 that uses the VDS-
DEV is defined for mydomain.

Because systems supporting LDoms are servers that are usually managed remotely, you
typically install the domain using an ISO image file of the install media, or over the net-
work. This example uses an ISO image file, which enables the installation to be performed
without anyone being physically present at the machine. Installing from a physical CD-ROM
or DVD is described later in this chapter. To install from an ISO file, configure the file as
another virtual disk for the domain, as shown in this example where the ISO file is named
/pl/iso/solarisdvd.iso:

ldm add-vdsdev /pl/iso/solarisdvd.iso solarisdvd@primary-vds0
ldm add-vdisk dvd solarisdvd@primary-vds0 mydomain

See your distribution’s documentation for the procedures to set up and use a network install
server instead of a local ISO file.

Next, define a virtual network interface for the domain:

ldm add-vnet vnet0 primary-vsw0 mydomain

796

Logical Domains (LDoms) 21

Notice that this network interface uses the primary-vsw0 virtual switch service that you cre-
ated when you defined your control domain.

Finally, define some OBP settings for the domain:

ldm set-var auto-boot\?=false mydomain

Here you set the auto-boot property to false, which means the domain won’t automatically
boot once it is started.

That completes the basic configuration of the guest domain. If you look at the configuration you
can see that it is defined and in the inactive state:

ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.3% 1d 1h 6m
mydomain inactive ----- 4 2G

The bind command allocates, or binds, the specified resources to the new domain:

ldm bind mydomain

Until that is done, the resources are available to be bound to other domains. You can use the
list command to see the configuration of this new domain:

ldm list -l mydomain
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
mydomain bound ----- 5000 4 2G

VCPU
VID PID UTIL STRAND
0 4 100%
1 5 100%
2 6 100%
3 7 100%

MEMORY
RA PA SIZE
0x8800000 0x108800000 2G

VARIABLES
auto-boot?=false

NETWORK
NAME SERVICE DEVICE MAC
vnet0 primary-vsw0@primary network@0 00:14:4f:fb:4d:cc

DISK
NAME VOLUME TOUT DEVICE SERVER

797

Part V OpenSolaris Virtualization

vdisk1 vol1@primary-vds0 disk@0 primary
dvd solarisdvd@primary-vds0 disk@1 primary

VCONS
NAME SERVICE PORT
mydomain primary-vcc0@primary 5000

Note two things in this output. First, because you didn’t specify a MAC address when you cre-
ated the virtual network interface, one was automatically assigned. Similarly, you didn’t config-
ure a virtual console, so one was created and a port was also automatically assigned within the
range you specified.

Logging in to a guest domain
Now that the guest domain has been defined, you can connect to its virtual console. Do this in a
different window so you can watch the guest domain’s console while you boot the domain. Use
the port that was automatically assigned to this domain, shown in the preceding list output. You
must do this from the control domain because this is a local connection:

telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘ ˆ]’.

Connecting to console "mydomain" in group "mydomain"
Press ∼? for control options ..

Nothing happens on the console at this point because the guest domain isn’t running yet.

Booting and installing a guest domain
Back in the control domain, you can now start the guest domain:

ldm start mydomain
LDom mydomain started
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.6% 1d 1h 55m
mydomain active -t--- 5000 4 2G 0.0% 1s

The list output indicates that the guest domain is now active. If you watch the window on
the guest domain’s console, you’ll see something like the following output (it will vary slightly
depending on your hardware):

Sun Fire(TM) T1000, No Keyboard
Copyright 2008 Sun Microsystems, Inc. All rights reserved.

OpenBoot 4.28.1, 2048 MB memory available, Serial #66625424.

798

Logical Domains (LDoms) 21

Ethernet address 0:14:4f:fb:ae:c9, Host ID: 83fbaec9.

{0} ok

On the guest domain console you are now sitting at the OBP prompt, just as you would be on a
standalone SPARC system that was just powered on. Because you configured the domain with its
OBP auto-boot as false, the domain did not try to boot. The OBP reports the amount of mem-
ory you configured for the domain, but it also reports the system’s MAC address, not the MAC
address that was previously shown in the ldm list output.

LDoms automatically sets up OBP device aliases for the domain. You can see this using the
devalias command at the OBP prompt:

{0} ok devalias
dvd /virtual-devices@100/channel-devices@200/disk@1
vdisk1 /virtual-devices@100/channel-devices@200/disk@0
vnet0 /virtual-devices@100/channel-devices@200/network@0
net /virtual-devices@100/channel-devices@200/network@0
disk /virtual-devices@100/channel-devices@200/disk@0
virtual-console /virtual-devices/console@1
name aliases

This shows that the logical names you used when you configured the virtual disks, vdisk1 and
dvd, have been aliased to the full device path. You can use the path for the DVD to boot and
install the domain from the ISO image file:

{0} ok boot /virtual-devices@100/channel-devices@200/disk@1
Boot device: /virtual-devices@100/channel-devices@200/disk@1 File
and args:

SunOS Release 5.11 Version snv_100 64-bit
Copyright 1983-2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Configuring /dev
...

After the system boots from the ISO image, you can manually answer the questions about
installing SXCE and the installation will begin. Once the domain has finished installing, you can
log in on the console or over the network and run various commands to observe some of the
LDoms-specific services and devices within the domain. This example uses ifconfig to show
the network interface:

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1

inet 127.0.0.1 netmask ff000000
vnet0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2

799

Part V OpenSolaris Virtualization

inet 10.4.235.46 netmask ffffff00 broadcast 10.4.235.255
ether 0:14:4f:fb:4d:cc

You can see the virtual network interface in the ifconfig output. Use the format command to
see the virtual disk:

format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
0. c0d0 <SUN-DiskImage-10GB cyl 34950 alt 2 hd 1 sec 600>

/virtual-devices@100/channel-devices@200/disk@0
Specify disk (enter its number):

Within the guest domain, you boot, reboot, or halt the domain just as you would a standalone
system. From the control domain, you can also use the ldm command stop to halt the guest
domain:

ldm stop mydomain
LDom mydomain stopped
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 2.0% 1d 2h 4m
mydomain bound ----- 5000 4 2G

The guest domain is no longer active at this point.

Shutting down the domain with ldm stop causes an orderly shutdown, but ldm
stop -f is like turning off the power to a standalone system. Because the OS does

not have a chance to do an orderly shutdown, file system corruption or data loss can occur within
the guest domain.

Advanced LDom Administration
The ldm command is the primary CLI for configuring and managing domains. This section pro-
vides details about the various ldm subcommands and how to create more sophisticated domain
configurations.

Monitoring
There are several ldm subcommands to display various parts of the domain configurations. You
used the list subcommand, for instance, in earlier examples. The -l option provides a long

800

Logical Domains (LDoms) 21

listing with most of the relevant information. You can see information on all of the domains or
provide the name of a specific LDom to only see information about that domain.

The ls-bindings subcommand lists the resources that have been bound to the domains.
This information is a subset of the list -l output. The ls-services subcommand lists the
services that have been defined, and the ls-constraints subcommand lists the definition of
domains that act as constraints for the creation of a new domain. The ls-devices command
is one of the more useful variations because it shows what devices have not been allocated to a
domain and are therefore available for the creation of a new domain. Here’s an example:

ldm ls-devices
VCPU

PID %FREE
8 100
9 100

...
30 100
31 100

MAU

ID CPUSET
0 (0, 1, 2, 3)
1 (4, 5, 6, 7)
2 (8, 9, 10, 11)
3 (12, 13, 14, 15)
4 (16, 17, 18, 19)
5 (20, 21, 22, 23)
6 (24, 24, 26, 27)
7 (28, 29, 30, 31)

MEMORY
PA SIZE
0x108400000 4M
0x188800000 1912M

ldm list output
The ldm list output provides a lot of information about a domain. Here is an example listing
for the two domains you created:

ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.3% 2d 45m
mydomain active -n--- 5000 4 2G 0.2% 9h 36m

This section covers most of the values, beginning with states and flags.

801

Part V OpenSolaris Virtualization

Domain states and flags
The possible values for the STATE are described in the following table.

Value Description

active The domain is running.

binding Transition state while resources are being bound

bound Resources are bound to the domain. It is not running.

inactive Domain is being configured but resources are not yet bound

starting Transition state while domain is starting

stopping Transition state while domain is stopping

unbinding Transition state while resources are being unbound

FLAGS are reported in five columns within the field. A dash (-) is used as a placeholder if the
flag in that column is not set:

Column 1 Column 2 Column 3 Column 4 Column 5
s n, t d c v

The following table describes each flag.

Flag Description

s Starting or stopping

n Normal — OS has booted

t Transition — Domain started but OS has not yet booted

d Delayed reconfiguration in progress

c Control domain

v Virtual I/O service domain

UTIL and UPTIME
The UTIL column reports on utilization of the virtual CPUs assigned to the domain. It can be
used to monitor how busy the domain is, so that CPUs can be added or removed if necessary.
This value is the percentage of time that the virtual CPUs assigned to the domain have spent
running code in the domain. When the OS in the domain calls into the hypervisor, that time is
not included in the utilization calculation. If the OS is mostly idle, perhaps because it is waiting
for input, then that time is spent in the hypervisor and not counted in the utilization. This
column is blank when the domain is not active.

802

Logical Domains (LDoms) 21

Utilization will be high when the domain is in transition at the OBP prompt. Once
the OS within the domain boots, the utilization should track the activity within the

domain.

The UPTIME column shows the amount of time that the domain has been active. When the OS
within the domain reboots, this value resets.

MIB
The LDoms software includes an SNMP agent that can be run in the control domain to provide
status information to an SNMP management application. The agent is delivered in the SUNWld-
mib.v package, which is included as part of the download of the domain manager. The MIB for
the agent provides information on each domain, including configuration and status. The full MIB
is documented in the manual Logical Domains (LDoms) MIB 1.0.3 Administration Guide: For the
Control Domain, which, along with other LDoms documentation, is linked from the LDoms com-
munity page on opensolaris.org.

Because there are no notification events from the domain manager, the agent polls the manager
to update status. As a result, there can be a slight delay in the data provided by the agent. Most
of the information provided by the agent is read-only, but domains can be started and stopped
by setting a value in the ldomAdminState property within the ldomTable . SNMP traps can
be sent when domains are created or destroyed, a configuration change is made, or a domain
changes state.

See Chapter 14 for more information on SNMP.

ldmd daemon
The Logical Domains Manager Daemon (ldmd) is part of the domain management infrastruc-
ture in the control domain. When you install the LDoms software, the svc:/ldoms/ldmd SMF
service is installed and enabled. The daemon is required to manage domains from the control
domain.

Delayed reconfiguration
With the exception of CPUs, dynamically changing other resources of an active domain is
considered a delayed reconfiguration operation. The changes do not take effect until a reboot of
the domain being reconfigured. A delayed reconfiguration operation also restricts configuration
changes to other domains. The following changes the domain’s amount of memory from
2GB to 3GB:

ldm set-memory 3000m mydomain
Initiating delayed reconfigure operation on LDom mydomain. All configuration
changes for other LDoms are disabled until the LDom reboots, at which time

803

Part V OpenSolaris Virtualization

the new configuration for LDom mydomain will also take effect.
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.3% 2d 1h 33m
mydomain active -nd-- 5000 4 3000M 0.2% 10h 24m

If the domain is not active, you can change its configuration without causing a delayed reconfig-
uration to occur. Adding or removing CPUs from an active domain is not a delayed reconfigura-
tion operation and happens immediately.

You might need to cancel a reconfiguration if it is blocking another more urgent reconfigura-
tion on a different domain, or if the need for the new configuration changed before you had a
chance to apply it. You can cancel delayed reconfiguration operations if necessary, as shown in
this example:

ldm rm-reconf mydomain

Virtual I/O services
The three virtual services that can be provided by a service domain — Virtual Disk Service
(VDS), Virtual Switch Service (VSW), and Virtual Console Concentrator Service (VCC) — were
briefly described earlier in this chapter. This section provides details about these services and
their capabilities.

Here are the subcommands you initially used to create the services when setting up the control
domain:

ldm add-vds primary-vds0 primary
ldm add-vsw net-dev=bge0 primary-vsw0 primary
ldm add-vcc port-range=5000-5100 primary-vcc0 primary

The set-vsw and set-vcc subcommands can be used to modify the options on an existing
service. (There is no set-vds subcommand because the VDS has no options.) For example, to
narrow the range of ports configured on the primary-vcc0 service you could do the following:

ldm set-vcc port-range=5000-5050 primary-vcc0

The rm-vds, rm-vsw, and rm-vcc subcommands remove the corresponding service.

The Virtual Disk Service
The VDS accepts disk I/O requests from virtual disk clients and passes them to the physical stor-
age configured within the service domain.

When you set up the initial services and the guest domain, you configured a disk file within
ZFS to use as a boot disk. It was added to the VDS service configuration using the following
command:

ldm add-vdsdev /pl/myldom/zdisk vol1@primary-vds0

804

Logical Domains (LDoms) 21

The add-vdsdev subcommand is used to add a storage device to a VDS. Initially you used a
file, but this can be a full disk, a disk slice, or a volume (that is, from a volume manager such
as SVM or a ZFS zvol). You can add more storage to the service at any time. The following uses
a disk slice to create a virtual disk device:

ldm add-vdsdev /dev/dsk/c0t0d0s6 slice6@primary-vds0
ldm list -l primary
...
VDS

NAME VOLUME OPTIONS DEVICE
primary-vds0 slice6 /dev/rdsk/c0t0d0s6

vol1 /pl/myldom/zdisk

...

In the add-vdsdev command, the new volume was given a different name, slice6, from
the volume that was already configured, vol1. Note that the name on the command line is
composed of two components: the volume name itself and the VDS name. The volume name is
slice6, and you are adding it to the VDS named primary-vds0. To add an entire disk, you
would specify slice 2, which is partitioned across the whole disk by default.

Virtual disks can be configured in a domain so that they appear as either a full disk, supporting
the standard eight slices, or as a single-slice disk. There are some limitations to virtual devices
that can be used as boot disks within a domain. A file, volume, or full disk that was configured
as a full disk can be partitioned within the domain and can be used as a boot disk. A single-slice
disk cannot be partitioned within the domain. It appears as a single partition and cannot be
used as a boot disk. Files, volumes, or entire disks are configured in a domain as full disks by
default, although the slice option can be used on the add-vdsdev command to force them
to appear as a single slice. A physical disk slice configured into a domain always appears as a
single slice.

Chapter 7 has more information about disk slices and how they are named.

Although there is more than one storage device in the service, this storage is not shared in a
pool such as occurs with a ZFS pool. Instead, when you create a virtual disk for your guest
domain, you specify which volume is associated with it. This command adds the virtual disk
you just created to mydomain:

ldm add-vdisk timeout=15 vdisk2 slice6@primary-vds0 mydomain

This virtual disk, named vdisk2, was associated with the slice6 volume in the
primary-vds0 VDS. Although you may have configured only a single VDS, there can be
many volumes within that service, each of which is associated with a virtual disk for a guest
domain. Notice that this example specified an optional timeout property, which is the number
of seconds before an error is returned if a connection cannot be established with the VDS. If no

805

Part V OpenSolaris Virtualization

timeout is specified, the disk waits indefinitely to connect to the service. This value is displayed
in the TOUT column in the list output:

ldm list -l mydomain
...
DISK

NAME VOLUME TOUT DEVICE SERVER
vdisk1 vol1@primary-vds0 disk@0 primary
vdisk2 slice6@primary-vds0 15 disk@1 primary

...

Once mydomain is rebooted, the new disk is available.

To remove a volume from the virtual disk service, use the rm-vdsdev subcommand:

ldm rm-vdsdev vol2@primary-vds0

The volume cannot be in use when you attempt to remove it.

The initial volume you created was backed by a fully allocated file within a ZFS dataset. You
created that file using the mkfile command, which physically allocated 10GB of space. As
mentioned previously, a fully allocated file or full disk is required when you want to use the
device as a boot disk. You can also add a ZFS volume, or zvol, to the VDS. The following
commands create a ZFS volume that is 5GB in size and add it to the existing VDS with the
name extraspace:

zfs create -V 5G pl/ldomspace/mydomain
ldm add-vdsdev /dev/zvol/rdsk/pl/ldomspace/mydomain extraspace@primary-vds0
ldm list -l primary
...
VDS

NAME VOLUME OPTIONS DEVICE
primary-vds0 extraspace /dev/zvol/rdsk/pl/ldomspace/mydomain

vol1 /pl/myldom/zdisk
...

The new volume can now be associated with a virtual disk in mydomain:

ldm add-vdisk vdisk3 extraspace@primary-vds0 mydomain

To add a CD-ROM or DVD to a domain, you configure it just like a regular VDSDEV, specify-
ing the whole disk using the device name for slice 2. That way, a CD-ROM or DVD drive can be
used to install OpenSolaris, or another supported OS, from physical media.

The Virtual Switch Service
The VSW passes packets back and forth from the virtual network clients in the guest domains
to the physical network interfaces. It also acts as a simple layer-2 switch, or bridge, for network
traffic between domains.

806

Logical Domains (LDoms) 21

For the add-vsw subcommand, you can specify a MAC address for the switch using the
mac-addr parameter. This parameter is optional; if you do not specify a MAC address for the
switch, one is automatically allocated from the range used by LDoms. The net-dev parameter is
also optional. If you do not specify a physical NIC, the virtual switch only passes traffic between
domains that are configured to use the switch. None of that network traffic leaves the system.

You can define more than one instance of these services so that you can assign different services
to different domains. For example, you might want some domains to share one virtual switch
with a physical NIC and another set of domains to share a different virtual switch with a differ-
ent NIC. To create a new switch, simply define one with a different name:

ldm add-vsw net-dev=bge1 primary-vsw1 primary
ldm list -l primary
...
VSW

NAME MAC NET-DEV DEVICE MODE
primary-vsw0 00:14:4f:fb:fa:49 bge0 switch@0 prog,promisc
primary-vsw1 00:14:39:eb:fc:58 bge1 switch@1 prog,promisc

...

This new virtual switch is named primary-vsw1.

The Virtual Console Concentrator Service
The VCC service communicates with the virtual network terminal server daemon (vntsd) and
handles all of the console I/O. The vntsd is managed by the svc:/ldoms/vntsd SMF service
and is documented in the vntsd(1M) man page.

Create the VCC service before enabling the vntsd SMF service so that once the
vntsd service starts, it can find the VCC service in the domain.

When you create a VCC service you must specify the port range to use — that’s the range of
TCP ports to use for the console connections. The ldm list subcommand shows which port is
assigned to the console of each domain in the CONS column:

ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 1.0% 17h 4m
mydomain active -t--v 5000 6 3000M 0.0% 4s

In this case the primary domain’s console server is the service processor (SP), and mydomain’s
console is on port 5000, so you access its console using telnet to that port:

telnet localhost 5000

You can also connect to domain consoles over the network if access is configured in the vntsd
SMF manifest.

807

Part V OpenSolaris Virtualization

The vntsd service defaults to listening for connections on localhost (IP address
127.0.0.1), so you can only access domain consoles from the control domain by tel-
net to localhost. However, by changing the service configuration you can enable remote
access. This example reconfigures the console service for remote access:

svccfg
svc:> select ldoms/vntsd
svc:/ldoms/vntsd> listprop
vntsd application
vntsd/timeout_minutes integer 0
vntsd/vcc_device astring virtual-console-concentrator@0
vntsd/listen_addr astring localhost
...
svc:/ldoms/vntsd> setprop vntsd/listen_addr = 192.168.0.21
svc:/ldoms/vntsd> exit
svcadm refresh ldoms/vntsd
svcadm restart ldoms/vntsd

You can now access domain consoles from a different machine by telnet-ing to the specified
host, like this:

% telnet 192.168.0.21 5000

A hostname can also be used instead of an IP address.

The vntsd service also include two other properties: timeout_minutes and vcc_device.
timeout_minutes controls how long a connection can be inactive before it is closed. A value
of 0 means no timeout. The vcc_device property specifies which instance of the VCC service
to use.

Physical I/O
When you initially set up the control domain you also configured it as an I/O and service
domain. Until now you have only used the virtual I/O services provided by that single domain,
but the PCI Express (PCI-E) bus on a T1000 server has two ports with different leaf nodes.
These ports are named pci@780 (bus_a) and pci@7c0 (bus_b). The PCI-E bus can be
configured to assign each leaf to a different domain. This enables you to have two domains with
direct access to physical devices, as an alternative to using virtual I/O. The ldm list output
shows the bus configuration in the IO section, as shown here:

ldm list -l primary
...
IO

DEVICE PSEUDONYM OPTIONS
pci@780 bus_a
pci@7c0 bus_b

...

808

Logical Domains (LDoms) 21

The number of buses, and thus the number of I/O domains, varies by hardware platform.
The procedure to configure a split PCI-E bus varies depending on the hardware so follow the
procedure in the documentation for your specific hardware. The example in this section is for a
T1000.

It is critical that you keep the system boot disk in the primary domain; otherwise, the system
won’t boot. First determine which leaf of the PCI-E bus the boot disk is on. The system used in
the example booted from disk c0t0d0. You can use ls to look at the dev tree and determine
which bus the boot disk is on, as shown in this example:

ls -l /dev/dsk/c0t0d0s0
lrwxrwxrwx 1 root root 49 Jan 7 11:55 /dev/dsk/c0t0d0s0 ->
../../devices/pci@7c0/pci@0/pci@8/scsi@2/sd@0,0:a

You can see from the device path that this disk is on the pci@7c0, or bus_b, leaf. Thus, bus_b
must remain configured in the primary domain, but bus_a can be configured into a different
domain. Now that you know which side of the bus the boot disk is on, you can remove the
other side of the bus from the primary-domain:

ldm rm-io pci@780 primary

At this point, save this new configuration to the system controller:

ldm add-config split-bus
ldm ls-config
factory-default
myconfig [current]
split-bus [next]

The add-config and ls-config subcommands are described in more detail in the section
‘‘Managing configurations on the system controller’’ later in this chapter.

Once the system has rebooted, you can observe the change to the I/O resource in the primary
domain. Now, the other side of the bus is available to add to a different domain. In this
example, only bus_b is currently configured in the primary domain, and bus_a is free for use
in another domain:

ldm ls -l primary
...
IO

DEVICE PSEUDONYM OPTIONS
pci@7c0 bus_b

...
ldm ls-devices
...
IO

DEVICE PSEUDONYM
pci@780 bus_a

809

Part V OpenSolaris Virtualization

You can now add this bus to a different domain using the add-io subcommand:

ldm add-io pci@780 mydomain
Initiating delayed reconfigure operation on LDom mydomain. All configuration
changes for other LDoms are disabled until the LDom reboots, at which time
the new configuration for LDom mydomain will also take effect.
ldm list -l mydomain
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
mydomain active -nd-- 5000 6 3000M 0.1% 6h 51m
...
IO

DEVICE PSEUDONYM OPTIONS
pci@780 bus_a

...

After rebooting mydomain to activate the configuration change, mydomain has physical access
to the I/O devices on the bus. This domain is now considered an I/O domain and could also
act as a service domain, providing virtual I/O services, to other domains, just as the primary
domain does. Any NICs or HBAs on the bus are directly accessible, as shown with the primary
domain.

Creating services in a different domain
Creating a service in a different domain causes that domain to assume the role of a service
domain. This example adds a new instance of the Virtual Switch Service to mydomain:

ldm add-vsw alternate-vsw0 mydomain
Initiating delayed reconfigure operation on LDom mydomain. All configuration
changes for other LDoms are disabled until the LDom reboots, at which time
the new configuration for LDom mydomain will also take effect.
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.3% 11h 28m
mydomain active -nd-v 5000 6 3000M 0.1% 11h 25m

This defined an instance of a virtual switch service in mydomain. You can see that it is now a
service domain by the v flag in the list output. Other guest domains can be configured to use
that switch service instead of the switch service configured in the primary domain. Configuring
services in different domains is useful if that domain has alternate physical devices configured, if
you want to spread the service load for a fully virtual service, or if you want to provide redun-
dancy in case one of the service domains reboots.

CPU, memory, and MAU
You set values for CPU and memory in the initial example using the set-vcpu and
set-memory subcommands. There is also a set-mau subcommand to set the number of

810

Logical Domains (LDoms) 21

MAUs assigned to the domain. The add-vcpu, add-memory, and add-mau subcommands
enable you to increment these settings. The rm-vcpu, rm-memory, and rm-mau subcommands
are used to remove these resources from the domain. Here, two virtual CPUs are removed from
mydomain:

ldm rm-vcpu 2 mydomain

The number of virtual CPUs that can be bound at any one time is limited by the number of
hardware threads on the processor. You can allocate more virtual CPUs than there are threads,
but you won’t be able to bind all of the domains at the same time. To dynamically add or
remove CPUs from a domain, the svc:/platform/sun4v/drd SMF service must be enabled
within the domain. The following example enables the service:

svcadm enable svc:/platform/sun4v/drd

The number of hardware threads in each core varies by processor model. When
you bind virtual CPUs to hardware threads, the hypervisor assigns threads in order.

That is, if you bind four threads to a domain, then those four threads would be on the same
core, assuming that the core supports at least four threads and no other domain is bound. This
has implications for how the common resources within a core, such as caches, are shared. Over
time, if you reallocate virtual CPUs across domains, any sharing of the L1 cache within a core
can be lost. This might affect the performance of the OS and applications running within a
domain.

Memory can be assigned in units of bytes, kilobytes (k), megabytes (m) or gigabytes, with a
granularity of 8KB.

While CPUs and memory are commonplace, the MAU is a device you might not be familiar
with. The sun4v version of the SPARC architecture supports a special-purpose mathematical
unit that is used to accelerate cryptographic processing. This is increasingly important for secure
networked applications. Within the T1 processor, each CPU core also includes an MAU. The
flexibility to configure the MAUs is limited by the hardware. While the T1 processor supports
32 threads, it only supports eight MAUs, one per CPU core. Other SPARC processors might
have different limitations. Because of the hardware design regarding how the threads interact
with the MAU, when an MAU is bound to a domain, at least one thread from the corresponding
core must also be bound to that domain. This imposes some limitations on how virtual CPUs,
which correspond to hardware threads, can be bound to domains because you must ensure
that a thread from the core is bound to each domain that also has an MAU allocated. This
complexity means that it’s best not to allocate an MAU to a domain unless it is actually needed.
As with threads, MAUs are allocated by the hypervisor, in order, as you bind domains. For
simplicity when allocating an MAU to a domain, it is usually best to allocate all of the threads
from the core to the domain as well.

The floating-point units (FPUs) on the system are handled differently and do not have the same
limitations as the MAU.

811

Part V OpenSolaris Virtualization

Virtual Disks
Recall that virtual disks are added to a guest domain using the add-vdisk subcommand. Here’s
the command you used to add the virtual disk when you first configured mydomain:

ldm add-vdisk vdisk1 vol1@primary-vds0 mydomain

The add-visk subcommand simply maps a virtual disk for the guest domain into a VDSDEV
configured in the virtual disk service. Here the virtual disk is named vdisk1 and the VDSDEV
in the primary-vds0 service is vol1. This command also accepts one option, a timeout:

ldm add-vdisk timeout=10 vdisk2 vol2@primary-vds0 mydomain

The timeout specifies the number of seconds before the virtual disk times out if it cannot estab-
lish a connection to the associated virtual disk service. After the timeout, the application receives
a disk error. Without a specific timeout, the virtual disk will not return an error to the applica-
tion and waits forever. The timeout is shown in the TOUT column of the list -l subcommand
output:

ldm list -l mydomain
...
DISK

NAME VOLUME TOUT DEVICE SERVER
vdisk1 vol1@primary-vds0 disk@0 primary
vdisk2 vol2@primary-vds0 10 disk@1 primary

...

Within the domain the virtual disks are assigned logical disk names in the order that they are
configured:

format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
0. c0d0 <SUN-DiskImage-10GB cyl 34950 alt 2 hd 1 sec 600>

/virtual-devices@100/channel-devices@200/disk@0
1. c0d1 <SUN-DiskImage-10GB cyl 34950 alt 2 hd 1 sec 600>

/virtual-devices@100/channel-devices@200/disk@1

The disk names are listed in the ldm list output under the DEVICE column and you can see
how those map to the device path in the guest domain. Here the c0d0 disk maps to vol1, with
the device name disk@0, and c0d1 maps to vol2, with the device name disk@1.

Each virtual disk has a cndn style name. Virtual disks that support partitioning, such as a whole
disk or a disk file, will have the full set of disk slices named within the domain. Virtual disks
that only support a single slice, such as a corresponding physical slice, only have one slice
named in devfs within the domain.

812

Logical Domains (LDoms) 21

The rm-vdisk subcommand removes a virtual disk from the domain:

ldm rm-vdisk vdisk2 mydomain

Disk Redundancy

Recall that if the service domain goes down or reboots, any virtual disk I/O using that domain
pauses until the service is restored. This is much like a storage area network (SAN), where any

interruption within the SAN affects the disk I/O. You can avoid the problem by configuring two
service domains and a redundant disk service. Simply configure two virtual disks into the domain,
each of which is bound to a different service domain, and then mirror the disks within the domain
by using ZFS or SVM. A disk mirror is the simplest configuration, but more complex redundant
configurations are possible.

See Chapter 7 for information on SVM, and Chapter 8 for information on ZFS.

Networking
Virtual network interfaces are configured for a guest domain using the add-vnet subcommand,
as shown in the initial example using this command:

ldm add-vnet vnet0 primary-vsw0 mydomain

This virtual network interface is bound to the primary-vsw0 virtual switch, and within the
guest domain it has the name vnet0. The add-vnet subcommand takes one optional argument
that enables you to specify a MAC address for the interface. If you don’t explicitly set the MAC
address, one is automatically assigned. This example explicitly sets a MAC address on the
interface:

ldm add-vnet mac-addr=80:00:33:55:22:66 vnet0 primary-vsw0 mydomain

The ldm list subcommand shows the MAC address that was assigned:

ldm list -l mydomain
...
NETWORK

NAME SERVICE DEVICE MAC
vnet0 primary-vsw0@primary network@0 80:00:33:55:22:66

...

The DEVICE column shows the name in the device tree within the domain. You can see this by
looking at the device tree with ls, as shown here:

ls -l /devices/virtual-devices\@100/channel-devices\@200
...
drwxr-xr-x 2 root sys 512 Feb 20 07:57 network@0

813

Part V OpenSolaris Virtualization

crw-rw-rw- 1 root sys 289, 1 Feb 22 15:31 network@0:vnet0
...

Use the set-vnet subcommand to change the MAC address of an existing VNET, and the
rm-vnet subcommand to remove the VNET:

ldm rm-vnet vnet0 mydomain

Network Redundancy

As with virtual disks, virtual network interfaces depend on their service domain, and connectivity
is interrupted if the service domain is unavailable. However, you can configure a redundant

configuration, much like you did with virtual disks, by adding two different VNETs into the domain,
each of which is provided by a different service domain, and then configuring those interfaces into
an IP multi-pathing (IPMP) group.

See Chapter 9 for information on IPMP.

Console
For the initial example you created a virtual console concentrator (VCC) service in the primary
domain but you never configured a console for the guest domain. Virtual consoles are made
available over TCP using the port range specified when you configured the VCC. As you saw,
if no console was explicitly configured for a domain, one is automatically allocated when the
domain is started. The port number is shown in the ldm list output.

You can explicitly set a console port number for a domain using the set-vcons subcommand.
This subcommand can be used only if the domain is not already bound to its resources. To
change the console settings for an existing domain, first unbind it:

ldm stop mydomain
LDom mydomain stopped
ldm unbind mydomain
ldm set-vcons port=5010 mydomain
ldm bind mydomain
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.5% 17h 18m
mydomain bound ----- 5010 6 3000M

The list output indicates in the CONS column that the domain is now using port 5010. The
long listing shows the port, along with the VCC service that the domain’s console is using:

ldm list -l mydomain
...
VCONS

814

Logical Domains (LDoms) 21

NAME SERVICE PORT
mydomain primary-vcc0@primary 5010

The primary domain’s console is provided by the system’s service processor (SP), as shown in
the VCONS section of the list output for the primary domain:

ldm list -l primary
...
VCONS

NAME SERVICE PORT
SP

The set-vcons subcommand also enables you to set other options for the console. To specify
a specific VCC, use the service option. If you had configured a second VCC service named
alt-vcc, you could associate the domain’s console to that service like this:

ldm set-vcons service=alt-vcc mydomain

You can group more than one domain’s console onto a single port using the group option:

ldm set-vcons group=grp1 mydomain
ldm list -l mydomain
...
VCONS

NAME SERVICE PORT
grp1 primary-vcc0@primary 5010

The NAME for the virtual console is now the group name you assigned instead of the domain
name. The vntsd, described earlier, manages the connections to the domain consoles. If there
is only a single console in the group, the vntsd simply connects the telnet command to the
console. However, if there is more than one console in the group, as the following example
shows, you are prompted for the console to connect to:

ldm set-vcons port=5010 group=grp1 mydomain2
ldm bind mydomain2
telnet localhost 5010
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘ ˆ]’.

myhost-vnts-grp1: h, l, c{id}, n{name}, q: nmydomain
Connecting to console "mydomain" in group "grp1"
Press ∼? for control options ..

Here you bound a second domain to the same group and port. When you connect to the port,
the vntsd prompts you to choose the domain you want to connect to. The example used the n
option to specify mydomain. The l option shows a list of domains:

myhost-vnts-grp1: h, l, c{id}, n{name}, q:l

815

Part V OpenSolaris Virtualization

DOMAIN ID DOMAIN NAME DOMAIN STATE
0 mydomain online
1 mydomain2 online

The c option can be used instead of the n option if you want to specify the domain ID. The
DOMAIN STATE column shows the status of the console. When the console is not in use, the
state is online. If another user is already connected to the console, the state is connected. In
the following example the c option is used to select the console for domain 0:

myhost-vnts-grp1: h, l, c{id}, n{name}, q:l
DOMAIN ID DOMAIN NAME DOMAIN STATE
0 mydomain connected
1 mydomain2 online

myhost-vnts-grp1: h, l, c{id}, n{name}, q: c0
Connecting to console "mydomain" in group "grp1"
Press ∼? for control options ..
You do not have write access

More than one user can connect to a domain’s console but only the first user to connect is given
write access. Subsequent users connect read-only, as in the previous example. When the first
user drops off the console, the next user in line is given write access. If necessary, you can use
the ∼w command as the first input on a line to force write-access, as shown here:

∼w
Warning: another user currently has write permission
to this console and forcibly removing him/her will terminate
any current write action and all work will be lost.
Would you like to continue?[y/n] y

This action forces the original console connection that had read-write access into read-only
mode.

You can use the special ∼p or ∼n commands to toggle to the previous or next con-
sole in the group. The ∼# command sends a break to the domain, and ∼. drops the

connection.

Variables
You configure OBP variables for the domain using the add-var or set-var subcommands.
These commands are essentially equivalent, although you can use the set-var subcommand
to clear a variable’s value by not providing a value for the variable. This is the setting you
configured in the initial example:

ldm set-var auto-boot\?=false mydomain

Use the rm-var subcommand to remove a variable from the configuration.

816

Logical Domains (LDoms) 21

Other administrative subcommands
The previous sections described the various subcommands for creating and modifying the
configuration of your domains. The final subcommand for managing the configuration is the
destroy subcommand, which deletes a domain definition. You must first unbind the domain
from its resources before you can destroy it:

ldm unbind mydomain
ldm destroy mydomain
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.3% 36m

In addition to the subcommands used for configuration, there are subcommands to manage the
state of the domains themselves. You have used the bind, start, and stop subcommands in
the examples. The start and stop commands take a -a option that applies the command to
all domains:

ldm stop -a

You do not specify a domain name in this case. You use the unbind command to detach a
domain from its resources. You can also use the panic subcommand to cause a domain to
panic and generate a crash dump:

ldm panic mydomain

On the console of mydomain you would see the following.

#
panic[cpu0]/thread=2a10001fca0: Panic - Generated at user request

000002a10001f6a0 unix:process_nonresumable_error+2f8 (2a10001f890, 5, 40, 40,
1, 100000000)
%l0-3: 000000000180c5f0 0000000000000000 0000000000000000 000000000000ffff
%l4-7: 0000000003000000 0000000000000000 0000000000000000 0000000000000000

000002a10001f7e0 unix:ktl0+64 (0, 3f, 185d4d0, 3c, 0, 12)
%l0-3: 000000000180c000 0000000000000000 0000000000001406 0000000001026d0c
%l4-7: 0000000000000000 0000000000000000 0000000000000000 000002a10001f890

000002a10001f930 unix:cpu_halt+130 (0, 1, 180c000, 1875fd8, 0, 1)
%l0-3: 000000000186faf4 0000000000000000 0000000000000000 000000000185d4d0
%l4-7: 0000000000000000 0000000000000000 0000000000000016 0000000000000001

000002a10001f9e0 unix:idle+120 (30003dfcb60, 6, 180c000, ffffffffffffffff, 1,
1829400)
%l0-3: 000000000186fad0 000000000000001b ffffffffffffffff 0000000000000000
%l4-7: 0000000000000000 0000000000000000 000000000103f6b8 000000000182a800

syncing file systems... 5 3 done
dumping to /dev/dsk/c0d0s1, offset 107413504, content: kernel
100% done: 55424 pages dumped, compression ratio 10.36, dump succeeded
rebooting...

817

Part V OpenSolaris Virtualization

Managing configurations on the system controller
When you set up the first example and when you created the split bus configuration, you saved
those configurations to the system’s service processor. On a T1000, the service processor can
save eight different configurations. The capabilities vary by platform, so check the system doc-
umentation for your specific hardware. Each configuration represents the complete state for all
of the domains when the configuration was saved, so you can easily revert to an earlier configu-
ration or switch from one set of domain configurations to another.

The ls-config subcommand shows the set of configurations that have been defined:

ldm ls-config
factory-default
myconfig
split-bus [current]

Here you see the two configurations that have been defined in the examples, along with
the factory-default configuration, which represents the base system configuration
with no domains defined and can be used to revert the machine to its initial state. The
factory-default configuration does not count as one of the eight you can save. The
split-bus configuration, defined earlier, is the current configuration and is used when the
system boots. Use the set-config subcommand to switch to a different configuration:

ldm set-config myconfig
ldm ls-config
factory-default
myconfig [next]
split-bus [current]

The myconfig configuration will be the active one on the next boot.

After the control domain reboots, the new configuration will be in effect, although
the ls-config command will not show the correct data until the system has been

powered off and on from the service processor.

Use the add-config subcommand to save the current configuration to the service processor;
the rm-config subcommand deletes a configuration. This example deletes the split-bus con-
figuration you created earlier:

ldm rm-config split-bus

Migrating a domain from one machine to another
LDoms can be migrated between machines, but as of this writing the domain cannot be running
when it is moved, unlike xVM, which supports hot migration. Start by saving the domain con-
figuration to a file using the ls-constraints subcommand with the -x option, which creates
an XML description of the domain.

818

Logical Domains (LDoms) 21

Use the ls-constraints subcommand to save a backup of the domain definition at
any time.

In the following example, the command prompts src# or dst# are used to indicate on which
machine the command is being executed:

src# ldm ls-constraints -x mydomain >/domains/mydomain
src# cat /domains/mydomain

<?xml version="1.0"?>

<LDM_interface version="1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema
-instance" xsi:noNamespaceSchemaLocation="./schemas/combined-v3.xsd"
xmlns:ovf="./schemas/envelope" xmlns:rasd="./schemas/CIM

_ResourceAllocationSettingData" xmlns:vssd="./schemas/CIM
_VirtualSystemSettingData" xmlns:gprop="./schemas/GenericProperty"
xmlns:bind="./schemas/Binding">
<data version="3.0">

<Envelope>

<References/>

<Content xsi:type="ovf:VirtualSystem_Type" ovf:id="mydomain">
<Section xsi:type="ovf:ResourceAllocationSection_Type">

<Item>

<rasd:OtherResourceType>ldom_info</rasd:OtherResourceType>
<rasd:Address>auto-allocated</rasd:Address>

</Item>

...
</LDM_interface>

Now you must copy this file to the new host and recreate the domain on that system. If the new
host is not already set up to support guest domains, free resources and create the required ser-
vices, just as you did in the initial example when you set up the control domain, and as shown
here on the dst system:

dst# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 32 8000M 0.1% 36m

dst# ldm set-mau 0 primary
dst# ldm set-vcpu 8 primary
dst# ldm add-vds primary-vds0 primary
dst# ldm add-vsw net-dev=bge0 primary-vsw0 primary
dst# ldm add-vcc port-range=5000-5100 primary-vcc0 primary
dst# ldm add-vdsdev /pl/myldom/zdisk vol1@primary-vds0
dst# ldm add-config myconfig

After rebooting to activate the new configuration, you can enable the vntsd service and com-
plete the setup for the guest domain:

dst# svcadm enable svc:/ldoms/vntsd:default

819

Part V OpenSolaris Virtualization

Make sure a copy of the disk image is available on the new host. Because the original domain
simply used a file for the boot disk, you can copy that file to the new host, as shown here:

dst# cd /pl/myldom
dst# scp src:/pl/myldom/zdisk .
...
dst# chmod 1600 zdisk

For a physical disk slice or disk, you may need to copy the data from one disk to another, phys-
ically recable the disk to the new host, or perhaps reconfigure your SAN. The exact procedure
varies depending on how the storage is configured between the two machines.

Now create the domain from the XML file that you copied from the source system:

dst# ldm create -i /tmp/mydomain
dst# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 4 4100M 0.5% 17m
mydomain inactive ----- 4 2G

Here you use the -i option on the create subcommand to define the domain using the XML
specification that was saved on the first machine. Depending on the configuration of the virtual
services on the new host, you may need to make adjustments to the new guest domain configu-
ration. Check the service names and the associations between the guest domain and the control
domain to ensure that all of the virtual services that the guest is defined to use are correctly set
up in the control domain.

Finally, you can bind the domain to its resources and start it:

dst# ldm bind mydomain
dst# ldm start mydomain

Hardening the control domain
Because the control domain has complete administrative control over all domains on the sys-
tem, it is important to limit access and lock down the security of the control domain. The LDom
management software that you downloaded includes plug-ins for the Solaris Security Toolkit,
delivered in the SUNWjass package. Because that software is not part of OpenSolaris, it is not
discussed in detail here, but you should consider consulting the LDoms Administration Guide for
information on using that toolkit with LDoms. In addition, Chapter 11 describes OpenSolaris
security in detail, explaining how to configure and improve the security of OpenSolaris.

Resources
The LDoms community is at http://opensolaris.org/os/community/ldoms. On the
LDoms community page are links to download the hypervisor firmware, management software,

820

Logical Domains (LDoms) 21

articles, and documentation, as well as a link to the LDoms discussion where community
members ask and answer questions.

The Solaris Security Toolkit can be downloaded at http://sun.com/download.

The SPARC architecture and processor definitions that support the sun4v hypervisor have been
open-sourced under the GPLv2 license. The documentation and specifications can be found at
www.opensparc.net.

One of the other projects that works with LDoms is the xVM OpsCenter project at
openxvm.org and xvmserver.org.

If you are interested in the architecture and design of LDoms, the ARC cases are available on the
ARC community at http://opensolaris.org/os/community/arc, although not all of the
cases have been opened up yet. In particular, the umbrella case for LDoms is FWARC/2005/633
LDoms: Project Q Logial Domaining Umbrella (sun4v/hypervisor/LDoms).

However, there are many other LDom-related cases, subsequent to the original 2005/633 case,
that document the architecture of specific subsystems.

If you are interested in the source code, the paravirtualization of OpenSolaris to work with
LDoms is in the platform-specific kernel modules, and the code is under usr/src/uts/sun4v.
The vntsd daemon is under usr/src/cmd/vntsd.

Summary
This chapter explored LDoms, the OpenSolaris type 1 hypervisor virtualization feature for
SPARC. Using LDoms enables you to create isolated, independent environments and run
different operating systems in each one, while sharing the same underlying hardware resources.
The features, configuration, and management of LDoms were detailed.

821

VirtualBox

IN THIS CHAPTER
Getting started

Managing VirtualBox

Guest additions

The command line interface

Networking

Storage

Remote access

Using VirtualBox within a zone

V irtualBox is an open source type 2 hypervisor that can be used
on OpenSolaris and a variety of other systems. As described in
Chapter 17, a type 2 hypervisor runs on top of the host operating

system, so it is extremely easy to install, set up, and use. However,
performance is usually not as good as with a type 1 hypervisor. Given
these trade-offs, VirtualBox is an excellent solution for users, such as
software developers, who need the capability to easily and concurrently
run different operating systems, but it might not be the right solution for
deploying a production system.

One of the advantages of VirtualBox is that it runs on many different host
operating systems, including OpenSolaris, Mac OS, Windows, and various
distributions of Linux, such as Debian, Fedora, Red Hat, SUSE, Ubuntu,
and others. Because of this, it provides an attractive way to start using
OpenSolaris, even if your system has no free partition to install and run on
bare metal.

To run VirtualBox, you need an x86-based system running one of the
supported host operating systems, and you should have enough extra
memory and disk space, and a fairly powerful CPU to support running the
hypervisor.

As shown in this chapter, a VirtualBox virtual machine (VM) can be
configured to emulate many different facets of a modern x86-based PC.
This enables a wide variety of guest operating systems to run, including
DOS, many flavors of Windows, from 3.1 through Vista, different versions
of Linux, different versions of BSD, Netware, and, of course, OpenSolaris.

823

Part V OpenSolaris Virtualization

This chapter focuses primarily on using OpenSolaris as both the host OS and guest OS, but you
can consult the VirtualBox manual for specifics on using different operating systems as either the
host or the guest.

Getting Started
Download and install the VirtualBox software from the Downloads link at http://
virtualbox.org. You can choose prebuilt software for the host operating system you
are using. For OpenSolaris, there is both a 32-bit and a 64-bit download, so be sure to select
the correct one based on which kernel you are running. If you are running a different host OS,
select the appropriate download and, if necessary, read the manual for details on installing and
using the software on your system.

You can also download the source code and build it yourself, if you prefer. The
source download links are also on the virtualbox.org web page.

After the software has been downloaded and unpacked, install the package. As of this writing,
only traditional SVR4 packages are available.

This example installs VirtualBox 2.0.4, although new versions are released regularly, and there
will certainly be a newer version available by the time you read this:

pkgadd -d VirtualBox-2.0.4-SunOS-amd64-r36488.pkg

Also available is a second package that delivers an OpenSolaris kernel driver, which
provides an abstraction layer for the kernel services used by VirtualBox. Newer

versions of OpenSolaris already include the driver, but you need to install it on older versions.
The ReadMe.txt file included with the download explains how to determine whether your system
needs the extra package.

Configuring and installing a virtual machine
Once VirtualBox is installed, a nonprivileged user can start it and manage his or her personal
VMs. The following command starts VirtualBox (or you can use the Gnome menu System
Tools� Sun xVM VirtualBox):

$ VirtualBox &

VirtualBox provides a simple, easy-to-use GUI that enables you to create and manage your VMs.
Figure 22-1 shows the first VirtualBox window you’ll see.

This is the primary management window for your VMs. It is mostly empty because you don’t
have any VMs yet; when you create a new VM, it will show up in the panel on the left. The
panel on the right shows information about the selected VM, and the controls across the top
enable you to manage the VM.

824

VirtualBox 22

FIGURE 22-1

Main VirtualBox window

As the GUI instructs, click the New button to create a new VM. This brings up a wizard that
walks you through the steps to create the VM. The GUI and its wizards are easy to use and
understand, so each step is only summarized here. You create each new VM using a similar
sequence.

1. Name the VM and choose what guest OS will run in the VM. In this example, the VM is
named myvb and the guest OS is OpenSolaris.

2. Pick the base memory size for the VM. This can range from 4MB to 2GB. You can always
change this later, so don’t worry too much about what value you choose now. For run-
ning OpenSolaris, 1GB is a reasonable value. 512MB is the minimum required to install
OpenSolaris.

3. Set up a virtual hard disk for the VM. This will be a file on the host OS that is used to emu-
late a disk drive for the VM. You can create a new virtual disk file or use an existing one.
Because this is the first VM you’re creating, choose New. That brings up a second wizard
to help you create the disk file. You can choose a dynamically expanding or fixed-size file.
Dynamically expanding is usually a good choice because only the space that is actually
needed is used. Specify a filename and location in the file system. The default location is
in your home directory under .VirtualBox/VDI, but you can place the file anywhere.
You also need to set a size limit — anywhere from 4MB to 2TB — for the file. For this
example, use 10GB, which is more than enough to install OpenSolaris and store additional

825

Part V OpenSolaris Virtualization

data files. A minimum of 4GB is recommended for an OpenSolaris guest. This completes
the steps in the virtual disk wizard.

Now you’re back in the VM creation wizard and are ready to finish. The wizard shows a sum-
mary screen and if everything looks correct, you can complete creating the VM.

Figure 22-2 shows the main window once the VM has been created.

FIGURE 22-2

Updated main window

The new VM appears in the left panel, and details about its configuration are in the right panel.
When multiple VMs are configured, details for the selected VM are displayed on the right. The
newly enabled buttons across the top enable you to modify the selected VM configuration, delete
the selected VM, or start it.

Booting and installing the guest OS
The next step is to boot the new VM and install the guest OS. To boot the VM, click the Start
button. The first time you boot a new VM, VirtualBox opens the First Run Wizard. This wizard
sets up the VM so that it is easy to install the guest OS. Within the wizard, you select the instal-
lation media, which can be a physical CD-ROM/DVD in the host’s drive, or an ISO image file. In
this example, you can install from the same ISO image file described in Chapter 2 — the Open-
Solaris distribution image that you can download from OpenSolaris.com. If you are installing

826

VirtualBox 22

a different open source guest OS, you can usually download an ISO image from the site host-
ing that project. If you have physical media containing the guest OS, you could choose to install
using the host system’s CD-ROM/DVD drive, or, if you are running OpenSolaris, you can make
an ISO file from the media by using the dd command, described in Chapter 7. This frees up the
host’s CD-ROM/DVD drive and enables you to keep the image file online for use in subsequent
installs.

With the install media selected, finish the wizard and the VM will boot from that media. Dur-
ing the boot, a terminal console pops up and you get the grub menu, just as you would on a
standalone system (and as described in Chapter 2). When the default grub entry starts to boot,
VirtualBox switches from using a terminal-based console to running the guest OS window sys-
tem embedded within a window on the host OS window system (see Figure 22-3).

FIGURE 22-3

OpenSolaris VM running within a window

827

Part V OpenSolaris Virtualization

You can also find guest OS images for VirtualBox on the web. These VirtualBox disk
images are pre-installed with a guest OS and therefore ready to run. One site hosting

a variety of images is http://virtualbox.wordpress.com, although you can easily find
others by searching for ‘‘vitualbox images.’’ Instructions for installing these images are available
on the various download sites, or you can usually just set up the virtual disk as described in the
‘‘Storage’’ section later in this chapter, which also explains how you can directly use VMware
VMDK images.

If you have already installed OpenSolaris on a standalone system, this screen will look familiar
because the VM window is the same screen you saw when you booted the Live CD to perform
the installation. To proceed with installing OpenSolaris in the VM at this point, simply follow
the procedures outlined in Chapter 2.

If you have never used a VM before, this window may seem a little strange. When
your focus is outside of the window, you are interacting with your host OS window

system. However, when your focus shifts inside of the window, you are interacting with the guest
OS window system running inside the window. This can be a big adjustment when you are run-
ning a different OS as the host and guest because the behavior changes based on the window sys-
tem that has the focus.

Look closely at Figure 22-3 to see the window border with the usual Gnome window controls.
(The window border will have the normal controls for the specific host OS that you’re running.)
Immediately within the Gnome window border you can see the VirtualBox menus in the
control bar at the top, and various informative icons in the strip along the bottom. These are
described in greater detail in the next section. Finally, the guest OS occupies the body of the
window.

Once your mouse focus is captured in the VirtualBox window, the physical mouse will control
the mouse cursor for the guest OS and you won’t be able to use the mouse for the host OS win-
dow system. This normally happens once you click within the window. VirtualBox uses a special
key — the Host Key — to release the mouse from the guest OS window system back to the host
OS. This key is shown in bottom, right corner of the VirtualBox icon strip at the bottom of the
window. By default, the Host Key is the right Ctrl key, but in Figure 22-4 you can see that the
Host Key is currently configured to be F10. Before running a VM, either confirm that the right
Ctrl key exists on your keyboard or change the setting to use a different key. Configuring the
Host Key is described in the next section.

FIGURE 22-4

Host Key location

Host Key

828

VirtualBox 22

You used the VirtualBox First Run Wizard to temporarily configure the VM to boot
from the OpenSolaris ISO image. If you stop the VM before installing OpenSolaris,

the next time you try to start the VM, there won’t be any installed OS for the VM to run. The
next section describes how you can manually configure the VM to boot from the ISO image.

Managing VirtualBox
The basic controls for managing an individual VM are available on the running VM window, and
the management GUI enables you to manage all of the virtual machines.

The running VM window
Each running VM appears in its own window (refer to Figure 22-3). This window includes a
variety of controls and status indicators.

Menus
Figure 22-5 shows the VirtualBox top-level menus across the top of the guest OS window.

FIGURE 22-5

VirtualBox top-level menus

The Machine menu enables you to control the size of the window, disable the mouse, insert
special key sequences such as Ctrl+Alt+Delete, take a snapshot, and control the VM. With a
snapshot, you can save the state of the VM so that it can be restored to the same point the next
time you start it. The VM controls enable you to reset the running VM, just as if you had reset a
physical system, pause the VM so that it is not consuming any CPU resources on the host OS,
and issue an ACPI (Advanced Configuration and Power Interface) shutdown. This is the same
as pressing the power button on a physical system. The guest OS detects this and normally
performs an orderly shutdown. If you select the Close option, you can choose to save the VM
state, send the ACPI shutdown, or simply power off the VM.

Advanced Configuration and Power Interface (ACPI) is an industry standard interface
used on modern x86-based hardware.

The Devices menu enables you to control the devices available to the running VM. You can
mount or unmount CD/DVD or floppy drives, choose a network adapter, configure USB drives,
configure shared folders, set up a remote display, or install VirtualBox guest additions. Shared
folders require the guest additions, described later in the ‘‘Advanced Features’’ section. The
remote display option enables the VirtualBox VRDP server so that you can connect to the VM
from a remote machine, as discussed in more detail later in this chapter.

829

Part V OpenSolaris Virtualization

VRDP is the VirtualBox implementation of RDP, the Remote Desktop Protocol. RDP
enables clients to connect to a system running Microsoft Terminal Services and

remotely use the graphical user interface. VirtualBox implements the VRDP server so that you can
remotely access the VM using any RDP client.

The Help menu provides help and other information about VirtualBox.

Icons
Figure 22-6 points out the VirtualBox status icons across the bottom-right of the guest OS win-
dow. These icons show the status of the Virtual Disks, CD/DVD, Floppy, Network, USB, Shared
Folders, Mouse, and Host Key. If the corresponding device is not configured for the VM, the
icon is grayed out. The disk or CD icons blink as the underlying device is being accessed in the
VM. You can mouse-over each icon to see a pop-up showing more information about how that
item is configured.

FIGURE 22-6

VirtualBox status icons

Host Key

MouseNetwork

Virtual Disks

CD/DVD USB Shared Folders

Floppy

The VirtualBox management GUI
Across the top of the VirtualBox primary management GUI are the File, Machine, and Help
menus. This is the GUI that enables you to create a new VM and manage existing VMs.

The File menu enables you to manage various properties of VirtualBox as a whole. It includes
the Virtual Disk Manager and Preferences items. You can use the Virtual Disk Manager to
browse, create, and delete your virtual disks, CD/DVD images, and floppy images. Using
Preferences, you can configure the default location for various files, enable VT-x/AMD-V support,
set the Host Key, and set the language in which the GUI will display.

VT-x/AMD-V support enables use of the hardware virtualization features available on
newer x86 CPUs. Normally you leave this disabled because VirtualBox uses fast soft-

ware techniques to provide virtualization. However, you need to enable this feature to run 64-bit
guest operating systems. OpenSolaris automatically runs in either 32-bit or 64-bit mode, depend-
ing on the hardware, so you don’t need a CPU with virtualization support to run OpenSolaris as
a guest. See the VirtualBox manual for recommendations on other situations in which to use this
feature. On OpenSolaris, the manual is installed at /opt/VirtualBox/UserManual.pdf.

830

VirtualBox 22

The Machine menu includes the same five controls that are displayed in the main window: New,
Settings, Delete, Start, and Discard. It also has a Pause item that you use to pause the selected
VM when it is running, and a Show Log item you can use to view the VirtualBox log file.

The Help menu offers the same help options as the Help menu on the running VM window.

Recall that the left pane in the main window lists your VMs. When you select one of those VMs,
data about it is displayed in the right pane, which has three tabs:

■ Details — Displays information about the VM configuration

■ Snap — Lists the snapshots for the VM

■ Description — Shows your description of the VM

As previously mentioned, snapshots are used to save the state of a VM so that you can restart
the VM at the same point. Because the complete state of the VM is saved, all of the running pro-
cesses within it, along with their data, including the state of persistent data on the virtual disks,
are saved. When you close a VM, one option is to save its state as a snapshot. You can also take
a snapshot of the VM while it is running.

See the ‘‘Storage’’ section later in this chapter for details on how to configure virtual
disks so that persistent data is not lost if you roll back to an earlier snapshot.

If you take a snapshot when you shut down the VM, restarting the VM will resume at the same
point; but if you take a snapshot while the VM is running, the VM state changes immediately as
the guest continues to run. This changed status is displayed in the Snapshot pane. When taking
a snapshot of a running VM, you can specify a name for the snapshot and provide a description
of the VM’s state, which is useful if you need to revert to the snapshot later. As you continue to
take snapshots of the running VM, you can see your tree of named snapshots within the Snap-
shot pane.

If you took a snapshot of the VM while it was running and later shut down the VM, restarting
the VM can’t use that snapshot because the state changed. To address this situation, you can
either take a final snapshot before closing the VM, or use the management GUI to revert to an
earlier snapshot. You use the Revert to Current Snapshot button in the Snapshot pane to cause
the VM to start with the latest snapshot. Deleting the latest snapshot with the Discard Current
Snapshot and State button enables you to restart using the previous snapshot in the tree. Each
time you do this, you step back earlier in the history of your VM execution.

The VM status in the left pane shows Saved if the VM is powered off, but the latest snapshot
will be used to resume the VM. Otherwise, the state will be Powered Off. The Snapshots pane
also indicates whether the VM state has changed since the snapshot was taken.

You have already seen that the New button is used to create a new VM, and the Start button
is used to begin running a VM. The Delete button enables you to delete the VM. If you have a
saved snapshot, this button is grayed out. The Discard button can be used to remove the snap-
shot in this case. If the VM won’t be restarted with a snapshot, the Discard button is grayed out

831

Part V OpenSolaris Virtualization

instead. When a VM is running, the Start button is replaced by the Show button, which opens
the VM window in cases when it is not currently displayed.

The last major control button is Settings (see Figure 22-7). This button is grayed out when the
VM is running or will be restarted from a snapshot. If neither of these conditions holds, then the
button is enabled and you can change the configuration of the VM.

FIGURE 22-7

The Settings button

FIGURE 22-8

Settings control panel

Figure 22-8 shows the Settings control panel. The various options in this control panel enable
you to customize the system emulation provided by the VM. In most cases you won’t need to
change the settings because the defaults are appropriate for running most guests.

832

VirtualBox 22

The different groups of settings that can be configured are listed in the left pane; select one and
the options for that group are shown in the right pane. Most of the settings are either obvious
or not typically changed, so only some of them are described here. The built-in help, which
appears at the bottom of the right pane as you mouse over the controls, describes each control,
or the VirtualBox manual can be used if you need more information.

In the General section’s Advanced tab, you can select the devices that appear in the VM and
change the boot order. This is similar to setting the device boot order in a standalone machine
BIOS. The First Boot Wizard temporarily sets up the VM to boot from your install media, but if
you later need to boot from the CD/DVD, you can set that here. You can also enable use of the
VT-x/AMD-V hardware virtualization settings for the VM if you are running a 64-bit guest OS.
VirtualBox requires all running VMs to use the same VT-x/AMD-V setting, so the setting for the
first VM you start will dictate the behavior for any other running VMs.

In the Hard Disks settings, you can add or delete virtual disks. You can also configure the disk
as the IDE primary master, IDE primary slave, or IDE secondary slave. The CD/DVD-ROM set-
tings enable you to configure the virtual CD/DVD drive to use either the physical system drive
or an ISO file. The Floppy settings provide the same capability for the virtual floppy drive.

In the Network settings you configure networking for the VM. You can configure up to four
NICs for the VM. By default, a newly created VM has one NIC configured. In most cases you
won’t need to modify the network configuration, but networking is described in more detail
later in the chapter. You can also configure the VM to emulate several different popular NIC
types, in case your guest OS only has drivers for a certain NIC.

The Shared Folders and Remote Display settings are described in more detail in the following
section. The Audio, Serial Ports, and USB settings are self-explanatory.

Advanced Features
VirtualBox includes several advanced features that improve the ease of use and flexibility of vir-
tual machines.

Guest additions
The VirtualBox guest additions are a set of enhancements that can be installed in a guest OS to
provide better integration between it and the host OS. The guest additions are device drivers
and other applications that improve the behavior of the guest when running under VirtualBox.
Guest additions are currently available for OpenSolaris, Windows, and Linux guests. It is gener-
ally recommended that you install the guest additions if you are going to be using the guest for
any serious work.

833

Part V OpenSolaris Virtualization

TABLE 22-1

Guest Addition Features

Feature Description

Mouse Pointer Integration The mouse is no longer captured when you click in the guest OS
window. Instead, the mouse works on windows in the guest OS
when over the window.

Video Support Window resizing works automatically. A full-screen guest OS
window assumes the full resolution of the host OS window. More
generally, resizing the guest OS window automatically changes the
screen resolution for the guest OS.

Seamless Windows The guest OS window background is removed and the display is
enlarged to full-screen. This enables the guest windows to be
displayed on the host OS desktop side by side with the host
windows. You toggle this mode by pressing the Host Key + L.

Shared Clipboard Enables copy/paste operations between host and guest. Once the
guest additions are installed, this is configured under the Advanced
tab in General Settings.

Time Synchronization Enables VirtualBox to keep the VM time in sync with the actual
time maintained by the host

Shared Folders Enables sharing of files between the host and the guest. As of this
writing, this feature is not yet implemented in the OpenSolaris
guest additions.

Automated Login for
Windows Guests

See the VirtualBox manual for details.

Table 22-1 describes these features.

The following procedure installs the guest additions for an OpenSolaris guest OS:

1. Use the GUI to configure the VM CD/DVD to use the ISO image for the guest
additions. On an OpenSolaris host the default location for the VirtualBox
software installation is /opt/VirtualBox and the guest additions ISO is
/opt/VirtualBox/additions/VBoxGuestAdditions.iso. The location will
vary if the host is running a different OS. Alternatively, in a running VM you can select
Devices� Install Guest Additions to immediately mount the ISO. On some guests, but not
OpenSolaris, this also starts the installation of the guest additions.

2. Boot the VM and install the package in the guest OS using the following command. For
OpenSolaris, the CD media will be mounted at /media:

pkgadd -d /media/VBOXADDITIONS_2.0.4_38405/VBoxSolarisAdditions.pkg

3. Restart the guest OS window system to activate the new features.

834

VirtualBox 22

See the VirtualBox manual for procedures on installing the additions on a different guest OS.

Although Shared Folders are not currently available in the OpenSolaris guest additions, you can
use Shared Folders in other guest operating systems that are hosted on both OpenSolaris as well
as other host operating systems.

Within the Settings control panel, under Shared Folders, you can select a directory on the
host OS that should be shared into the VM. You also specify a name for the shared folder and
whether it should be read-only. Using a shared folder varies based upon the guest OS. For
example, in a Windows-based VM file browser, you can find shared folders under My Network
Places� Entire Network�VirtualBox Shared Folder. You can also use the Windows command
prompt to set up access to the folder as follows:

> net use d: \\vboxsvr\myshare

Replace the myshare string with the name you assigned to the share in the VM configuration.
For a Linux-based VM, the following example sets up access to a shared folder:

mount -t vboxsf myshare /mnt

The management CLI
Until now, you’ve used the GUI to configure and manage your VMs. However, some of the
advanced features in VirtualBox can only be configured using the command line interface (CLI).
In addition, the CLI is useful for various tasks, such as scripting, which cannot be performed
using a GUI. VBoxManage is the CLI and you can see its various subcommands in the following
example running on the host OS:

$ VBoxManage -\?
VirtualBox Command Line Management Interface Version 2.0.4
(C) 2005-2008 Sun Microsystems, Inc.
All rights reserved.

Usage:
VBoxManage [-v|-version] print version number and exit
VBoxManage -nologo ... suppress the logo
VBoxManage -convertSettings ... allow to auto-convert settings files
VBoxManage -convertSettingsBackup ... allow to auto-convert settings files

but create backup copies before
...
VBoxManage vmstatistics <vmname>|<uuid> [-reset]

[-pattern <pattern>] [-descriptions]

The list vms subcommand lists each VM and its configuration data:

$ VBoxManage list vms
VirtualBox Command Line Management Interface Version 2.0.4
(C) 2005-2008 Sun Microsystems, Inc.
All rights reserved.

835

Part V OpenSolaris Virtualization

Name: myvb
Guest OS: OpenSolaris
UUID: 62652c41-1a7d-4cb6-71a8-15c33b4830f9
Config file: /home/sarah/.VirtualBox/Machines/myvb/myvb.xml
Memory size: 1024MB
VRAM size: 64MB
...

You can use the modifyvm subcommand to change a VM configuration, the startvm sub-
command to start a VM, and so on. Each VBoxManage subcommand and its options are fully
described in the VirtualBox user manual.

Networking
VM network configuration was briefly described earlier in the chapter. By default, VirtualBox
configures Network Address Translation (NAT) for a VM. This is the simplest form of network
configuration and it usually works well between the VM and host OS. With this configuration,
VirtualBox behaves like a router and automatically translates network packets between the
virtual network used by the VM and the physical network configured on the host OS. The NAT
configuration is a good solution if applications running in the VM only initiate access to the
Internet, but it is not a good solution if you want to run a server, such as a web server, in the
VM. In that case, connections must be initiated externally, but because of the NAT the server in
the VM will be invisible to the outside world.

If you need to run an externally visible server within the VM, you can still use NAT, but you
need to configure the network to use port forwarding for the VM. That enables VirtualBox to
monitor the specified ports on the host OS side and pass that traffic along to the VM. One draw-
back with this configuration is that it is no longer possible to run the same service, on the same
ports, in the host OS, because that would result in a port conflict.

The following example forwards ssh traffic between host port 2048 and VM port 22 (the default
ssh port):

$ VBoxManage setextradata myvb \
‘‘VBoxInternal/Devices/pcnet/0/LUN#0/Config/myforward/Protocol’’ TCP

$ VBoxManage setextradata myvb \
‘‘VBoxInternal/Devices/pcnet/0/LUN#0/Config/myforward/GuestPort’’ 22

$ VBoxManage setextradata myvb \
‘‘VBoxInternal/Devices/pcnet/0/LUN#0/Config/myforward/HostPort’’ 2048

With this configuration, you can ssh from the host OS into the guest OS, as shown here.

$ ssh -p 2048 localhost

This configuration also allows you to scp files between the host OS and the guest OS.

The ssh and scp commands are described in Chapter 11.

836

VirtualBox 22

The setextradata subcommand enables you to associate arbitrary key/value pairs with a VM.
In the previous example, the key is a special string that corresponds to the name of the network
interface configured on the VM. That setting works if the VM is configured with either the
PCnet-PCI II or PCnet-Fast III adapter emulation. If the VM is configured to use the Intel PRO
adapters, then the e1000 name is used instead of pcnet, as the following commands illustrate:

$ VBoxManage setextradata myvb \
‘‘VBoxInternal/Devices/e1000/0/LUN#0/Config/myforward/Protocol’’ TCP

$ VBoxManage setextradata myvb \
‘‘VBoxInternal/Devices/e1000/0/LUN#0/Config/myforward/GuestPort’’ 22

$ VBoxManage setextradata myvb \
‘‘VBoxInternal/Devices/e1000/0/LUN#0/Config/myforward/HostPort’’ 2048

The myforward portion of the name is an arbitrary string that you can choose to name the con-
figuration.

Host ports lower than 1024 are privileged on OpenSolaris, so forwarding any of those ports
requires that root run the VM. Various other limitations with using NAT and port forwarding
with VirtualBox are described in the manual.

To clear these settings, simply rerun the three commands without the final parameter.

In addition to NAT, you can configure the VM to use either Host Interface networking or Inter-
nal networking. With Host Interface networking, VirtualBox uses a virtual NIC configured in
the host OS to provide network access to the VM. Configuring Host Interface networking varies
according to the host OS, and the steps can be complex. For more details consult the VirtualBox
manual. With Internal networking, VirtualBox creates a virtual network within the host OS. VMs
can communicate with each other over the virtual network, but no network traffic ever leaves
the host. You can configure Internal networking in the GUI under Network settings.

Storage
When you first installed the VM, you used the New Virtual Disk wizard to set up on the host
OS a file that is used to emulate a disk drive for the VM. These files are called Virtual Disk
Image (VDI) files. In the Hard Disks settings, you can bring up the Virtual Disk Manager (see
Figure 22-9) to create, manage, and delete VDI files for your VMs. The New button enables you
to define a new virtual disk, bringing up the same New Virtual Disk wizard that you used when
you created the first virtual disk for the VM. Once the virtual disk has been defined, it can be
associated with a specific VM. You can also release virtual disks from one VM and then reuse
them later on a different VM.

VDI files are the most common way to provide storage to the VM, although shared folders,
described earlier in the chapter, are also used.

VirtualBox supports using VDI files as normal images, immutable images, or write-through images.
A normal image is the default. It can only be used by a single VM at any one time, and when
you snapshot the VM, the image is also snapshotted, so that it reverts if you revert the VM

837

Part V OpenSolaris Virtualization

to the snapshot. Immutable images are essentially read-only and can be shared by multiple
VMs. VirtualBox does allow you to write to an immutable image, but all changes are tracked
separately for each VM using the image, and are discarded when the VM shuts down. Because
modifications are not persistent, you must start with a normal image and switch it to immutable
once it is in the desired state. You cannot currently change the type on a registered image, so
you must first remove it from the VM, unregister the image, re-register it as immutable, and
then reattach it to the VM.

FIGURE 22-9

Virtual Disk Manager

The following example shows the necessary commands to change the type on an image:

$ VBoxManage unregisterimage disk ∼/.VirtualBox/VDI/disk2.vdi
$ VBoxManage registerimage disk ∼/.VirtualBox/VDI/disk2.vdi -type immutable

A write-through image is similar to a normal image except that the state is not saved when you
snapshot, so the disk does not revert if you go back to an earlier snapshot. This is useful for
application data that you don’t want to lose. You can set up an existing disk as write-through
using the same sequence described in the previous example, but with -type writethrough.
To create a disk as write-through from the beginning, use the createvdi subcommand, as the
following example, which creates a 1GB sparse image, shows:

$ VBoxManage createvdi -filename ∼/.VirtualBox/VDI/disk4.vdi \
-size 1000 -register -type writethrough

Virtual disks can be configured to appear connected to the VM using either a traditional IDE
disk controller or a more modern Serial ATA (SATA) controller. The VirtualBox SATA emulation
is faster and more lightweight than the IDE emulation, but not every guest OS supports SATA,

838

VirtualBox 22

or it might support SATA, but not support booting from a SATA disk. In addition, IDE supports
a maximum of three virtual disks, whereas the SATA emulation supports up to 30. By default,
the first disk set up for a VM is configured to appear as the IDE master. To configure the VM to
use the disk as a SATA device, change the VM configuration before you first boot and install the
guest in the VM.

By default, the SATA emulation presents the first four SATA ports in IDE compatibility mode.
This improves the chance that the guest OS can boot from the disk. OpenSolaris falls into this
category; for the VirtualBox SATA emulation, you can configure the VM so the first disk is a
SATA disk, but leave it in IDE compatibility mode so that OpenSolaris can boot from the disk.
Depending on your hardware, OpenSolaris can boot from some physical SATA disks when run
on bare metal.

The following command remaps the SATA IDE compatibility mode from the first port
to the last port:

$ VBoxManage modifyvm myvb -sataideemulation1 30

This causes the VM to present the disk on the first port as a native SATA device. Do this only if
your VM is not booting from the disk or you are sure that the guest OS will boot correctly from a
SATA disk.

VirtualBox supports cloning of VDI disks using the following command:

$ VBoxManage clonevdi myvb.vdi disk2.vdi

This enables you to quickly create a copy of a virtual disk for a second VM. Once the cloned
disk has been created, you can use the Existing button when creating a new VM to configure it
to use the clone. Always use the clonevdi command instead of simply copying the file because
VirtualBox keeps track of VDIs using a unique identifier and it won’t run if two VDIs have the
same ID.

In addition to VDI files, you can configure the VM to either use iSCSI disks or directly access a
local, physical disk.

See Chapter 7 for information on iSCSI and an example showing how to set up an
iSCSI target under OpenSolaris.

While you could configure an iSCSI initiator under OpenSolaris, set up a file system on the tar-
get, and then use that file system to hold VDI files, VirtualBox includes a built-in iSCSI initiator
that can be used to directly access iSCSI targets as virtual disks. You can configure it within Vir-
tualBox using the following command, which uses the iSCSI target created in Chapter 7:

$ VBoxManage addiscsidisk -server 192.168.0.1 \
-target iqn.1986-03.com.sun:02:8f23a58f-337f-6989-d09f-d4fb7bb3dfae.mytarget

The target value is the iSCSI Name printed by the OpenSolaris iscsitadm command when
you list the targets that are configured. Other operating systems have different ways to configure
a target and get this data.

839

Part V OpenSolaris Virtualization

Additional options to the addiscsidisk subcommand, such as a port or a password, can also
be used for more advanced iSCSI configurations. Once the iSCSI disk has been defined, you can
use the Virtual Disk Manager to configure the disk in a VM.

The VBoxManage unregisterimage disk subcommand can be used to delete the iSCSI disk
from VirtualBox, although it will still exist as a valid target on the server.

In addition to supporting VDI files for virtual disks, VirtualBox also supports Virtual Machine
DisK (VMDK) files.

VMDK is the disk format defined and used by the popular VMware virtual machine
software. VMware has opened this file format and it appears to be turning into a de

facto standard for virtual disk images.

You can add existing VMDK files to a VM using the Virtual Disk Manager. Note that when using
VMDK files, VirtualBox currently cannot create snapshots and will only write-through to the
image.

Finally, VirtualBox enables you to allocate an entire raw disk or raw disk partition to a VM but
because the configuration procedure is complex, there are security implications associated with
accessing a raw disk. A misconfiguration could corrupt the entire system, so carefully read the
manual to be sure you fully understand the procedures before attempting to use raw disks with
VirtualBox. In most cases, using standard VDI files or iSCSI suffices.

Remote access
As previously mentioned, VirtualBox includes a built-in RDP server that enables you to remotely
connect to a VM’s window. When running a VM on a server with no local display, you can ssh
into the system, and use either the VirtualBox GUI with remote display or the VBoxManage CLI
to fully configure the VM. Then you can use the VBoxHeadless command to start the VM with
the VDRP server enabled and with no local window.

On the server, run the following:

myhost$ VBoxHeadless -startvm myvb
VirtualBox Headless Interface 2.0.4
(C) 2008 Sun Microsystems, Inc.
All rights reserved

Listening on port 3389

The -vrdpport option enables you to specify a different port. Additional options are available
for recording data and specifying screen properties.

OpenSolaris includes an RDP client, although you may need to first install it:

pkg install SUNWrdesktop

840

VirtualBox 22

Then you can connect to the server and you should see the initial screen for the VM:

$ rdesktop myhost

You don’t have to start the VM using VBoxHeadless. You can start it under the normal GUI
and use the Devices�Remote Display control to enable remote access. In this case, the VM
window is usable on both the server and client. That can be useful if you want to concurrently
share access to the VM between two machines for some reason, such as troubleshooting.

The VRDP server can also be enabled under the Settings�Remote Display control so that you
don’t have to enable it every time the VM starts; and you can use this control to change some of
the RDP properties, such as the port or authentication method, if necessary. The authentication
method settings are described in the VirtualBox manual. Only the Null authentication setting is
currently supported on OpenSolaris, although the other settings work on other host operating
systems.

Running with the Remote Display option enabled and the Null authentication setting
enables any client to connect to the VM. This may pose a security risk. It is recom-

mended that you only enable the VRDP server if necessary.

Programmatic interfaces
This book does not focus on programming, but it is worth noting that VirtualBox includes a
public API that you can use to write your own interface. In most cases, the GUI or VBoxManage
CLI is sufficient, but the API is described in the VirtualBox manual if needed.

Running within a zone
VirtualBox can be combined with another OpenSolaris virtualization feature — zones — to
provide enhanced capabilities. Because there is essentially no overhead associated with running
applications in a zone, you can run a VM within a zone with no additional performance penalty.
The benefit of running a VM inside a zone is the additional encapsulation the zone provides. For
example, you can configure the zone to use OpenSolaris resource management features so that
the VM only uses the configured resources. One possibility is to set up the zone in conjunction
with the Fair Share Scheduler so that VMs running in different zones don’t starve each other
or any other applications on the system. Another benefit is use of the migration capabilities
provided by zones.

Resource management is described in Chapter 18. Zones, and configuring zones to
use resource management, are described in Chapter 19.

To configure a zone so that it can run VirtualBox, the zone configuration should include the
vboxdrv device:

zonecfg:myzone> add device
zonecfg:myzone:device> set match=/dev/vboxdrv
zonecfg:myzone:device> end

841

Part V OpenSolaris Virtualization

Once a zone is installed, install the VirtualBox packages, as described earlier. After the zone is
properly set up, you can either create VMs within the zone or, if file system sharing is properly
configured between the global and nonglobal zone, run a VM from inside the zone that was
originally configured in the global zone.

This example shows logging in to a zone named myzone and running VirtualBox inside the
zone:

$ ssh -X myzone
Password:
Last login: Wed Jun 25 18:35:47 2008 from 192.168.0.11
Sun Microsystems Inc. SunOS 5.11 snv_91 January 2008
myzone$ VirtualBox&

If you are running VirtualBox from within a zone using a shared directory with the
global zone, make sure you don’t try to also run VirtualBox from the global zone.

VirtualBox cannot track the status of each VM in this case because it looks like you are running
on two different systems. You could corrupt your configuration or data if you change the configu-
ration or run the same VM multiple times.

Resources
The VirtualBox home page (http://virtualbox.org) is the primary starting point for
more information about VirtualBox. The left column links to end-user documentation, which
includes the manual, FAQs, and various tutorials. The technical documentation describes the
implementation and source code. The Downloads link leads to prebuilt binaries as well as a link
to the source code. Finally, the Community link leads to user forums, mailing lists, IRC, and
bug reporting.

Summary
This chapter provided an introduction to VirtualBox, a popular open source type 2 hypervisor
for x86-based systems running OpenSolaris or many other host operating systems. Setting up
and managing VirtualBox is easy using the simple GUI features provided by the software. Vir-
tualBox provides a good virtualization solution when you need to run different operating sys-
tems for various tasks such as software development or testing. With the guest additions, you
can achieve seamless integration between applications concurrently running on a variety of guest
operating systems, as well as the host operating system.

842

Deploying and
Developing on
OpenSolaris

IN THIS PART

Chapter 23
Deploying a Web Stack on
OpenSolaris

Chapter 24
Developing on OpenSolaris

Deploying a Web Stack
on OpenSolaris

IN THIS CHAPTER
Apache HTTP Server

PHP

MySQL

WordPress

Sun Java System Web Server

PostgreSQL

Apache Tomcat

Apache Roller

GlassFish Application Server

I t almost goes without saying that contemporary computer use revolves
around the World Wide Web. From games, social networking, and
blogs to news and e-commerce, web-based services are indispensable.

Each of those services, from your friend’s personal blog to your favorite
online vendor, is running on one or more servers called a web server. If
you are considering deploying a web server, whether you’re starting a
personal web page or blog or setting up a multimillion-dollar e-commerce
site, the OpenSolaris operating system is a great choice to run it. Open-
Solaris is also an excellent platform for developing web-based applications.
This chapter describes how to deploy a web stack on OpenSolaris;
Chapter 24 covers developing on OpenSolaris.

The Web Stack on OpenSolaris
The traditional web stack consists of a web server frontend and a database
backend, connected with a scripting language. One of the most popular
combinations of these three components, the Apache HTTP server, the
MySQL database, and the PHP scripting language, are together referred to
by their acronym: the AMP stack.

Although the Apache HTTP Server is not the only
application from Apache, it is often called just

‘‘Apache.’’ This book follows that usage.

Because the AMP stack is so popular, many platforms are optimized for
that configuration, even giving it a customized name. For example, when

845

Part VI Deploying and Developing on OpenSolaris

running on Linux, the AMP stack is expanded as LAMP. When running on Windows, it’s called
WAMP. On Solaris or OpenSolaris, it’s the SAMP stack.

There are, of course, many variations on the AMP stack. For example, the PostgreSQL database
can be used instead of MySQL, and some web applications are written in Ruby, Python, Java, or
Perl instead of PHP. Furthermore, most Java-based applications require an additional servlet con-
tainer. Apache Tomcat is probably the best-known example of a servlet container.

Another popular form of web services software is the application server. An application server
combines the web server, servlet container, and business logic (usually in the form of Enterprise
JavaBeans) into one integrated environment. Two examples of application servers are GlassFish
and JBoss.

This chapter first walks you through the steps to install and configure a basic AMP stack on
OpenSolaris. Then it describes how to substitute various components, such as PostgreSQL and
the Sun Java System Web Server in place of MySQL and the Apache HTTP Server, respectively.
Finally, it explains how to run Java-based web applications with Apache Tomcat and the
GlassFish application server.

HTTP Servers, Servlet Containers, and Application Servers:
What’s Right for You?

I f you’re new to web stacks and web services, you might be confused by the various options. In
brief, an HTTP server provides web pages to web browsers, such as Mozilla Firefox. The network

communication between the browser and the server uses the Hypertext Transfer Protocol (HTTP).
A web server can serve static Hypertext Markup Language (HTML) pages or it can run scripts in
PHP, Perl, or other languages, to generate dynamic content. An HTTP server can also serve different
kinds of content, such as flash applications.

A web application is generally a collection of scripts that the HTTP server runs to generate dynamic
content. The scripts usually interact with a database backend, so if you just want to set up a
blog, wiki, or similar script-based web application, you can probably use a standard HTTP server.
Common examples of these kinds of web applications include WordPress and MediaWiki. One
caveat, however, is that Java-based web applications generally require a slightly different kind of
HTTP server called a servlet container. A servlet container, or servlet engine, is an HTTP server that
knows how to run special Java programs called servlets. A popular Java-based web application is
the Apache Roller blogging software.

An application server is sort of a combination of a full-fledged software application and an HTTP
server. An application server can provide the business logic, such as implementing a shopping cart
for an online vendor, along with the web-based user interaction provided by the HTTP server. An

continued

846

Deploying a Web Stack on OpenSolaris 23

continued
application server usually includes capabilities to run Java servlets and Enterprise JavaBeans. These
application servers are generally useful for sophisticated web applications that have many users. If
you haven’t heard of an application server before now, you probably don’t need to use one.

The AMP Stack
The OpenSolaris Web Stack project has made the AMP stack trivially easy to install and use.

Installing the AMP stack
The OpenSolaris binary distribution doesn’t include the AMP stack components on the Live
CD, but they are easy to obtain from the package repositories. The default repository at
pkg.opensolaris.org/release contains most of the components. The additional Web
Stack repository, pkg.opensolaris.org/webstack, contains some software not in the
core repository, such as phpMyAdmin and Drupal, as well as early access to newer versions
of components. For example, as of this writing, pkg.opensolaris.org/release contains
MySQL server version 5.0.45, whereas pkg.opensolaris.org/webstack contains MySQL
server version 5.1.25. Unless otherwise stated, the examples in this chapter use the release
repository as the source for the packages.

The simplest way to get the AMP stack on your system is to install the amp-dev group package,
which provides Apache, MySQL, and PHP, among other components. Note that the versions of
Apache, MySQL, and PHP installed by amp-dev are expected to change over time:

pkg install amp-dev

Installing amp-dev provides hundreds of megabytes of software, including the following:

■ Apache HTTP Server, including the Tomcat connector plug-in, the PHP5 module, and
other extensions

■ MySQL

■ PHP, including PHP modules for MySQL and PostgreSQL

■ Python (another scripting language)

■ Apache Tomcat

■ The NetBeans Integrated Development Environment

■ The web stack GUI (a graphical interface for managing web stack components)

■ Squid Web Proxy Cache (proxy server and web cache daemon for improving web server
performance)

847

Part VI Deploying and Developing on OpenSolaris

■ memcached (memory caching system for improving performance)

■ Subversion, Mercurial, and CVS version control systems

Chapters 3 and 6 cover the Image Packaging System (IPS), package installation, and
network package repositories. See Chapter 24 for a discussion of the OpenSolaris

development tools and languages, including Python, NetBeans, Subversion, Mercurial, and CVS.

If you’re short on disk space, you may want to install only Apache, MySQL, and PHP. As the
following example shows, several packages are involved in installing Apache and PHP (note that
the output from pkg install is omitted for brevity):

pkg install SUNWapch22 SUNWapch22m-jk SUNWapch22m-security SUNWapch22d\
SUNWapch22m-php5 SUNWapch22m-fcgid SUNWapch22m-dtrace
pkg install SUNWmysql5
pkg install SUNWphp524 SUNWphp524doc SUNWphp524man SUNWphp524-pgsql\
SUNWphp524-mysql

Now that the packages are installed, you can configure the applications. If you installed the
webstackui package, which is part of the amp-dev package, you can configure the appli-
cations from the Applications�Developer Tools menu option. Alternatively, you can use the
command line. The examples in this chapter use the command line.

Web Services in Zones

Apache HTTP Server, Apache Tomcat, GlassFish, and the rest of the servers discussed in this
chapter can run in nonglobal zones as well as the global zone. In fact, combining nonglobal

zones with resource management features such as resource caps, resource pools, and CPU caps
gives you multiple virtual hosts in which to run a web stack. This configuration can be useful for
both prototyping and deploying. For example, zones give you a convenient way to experiment with
different web stacks without worrying about port binding conflicts. For deployment, zones enable
you to run several unrelated web services on the same physical machine, or even to set up a web
hosting service to provide dedicated virtual servers for clients. Resource management is described
in Chapter 18, and zones are covered in Chapter 19.

Configuring Apache
OpenSolaris runs Apache as a service under SMF, which means that instead of running the
apachectl script directly to start, stop, or restart Apache, you use SMF commands such as
svcadm.

SMF and its commands, such as svcadm, are described in Chapter 13.

To configure Apache, simply enable the Apache service:

/usr/sbin/svcadm enable network/http:apache22

848

Deploying a Web Stack on OpenSolaris 23

svcs apache22
STATE STIME FMRI
online 15:16:45 svc:/network/http:apache22

You can test that Apache is up and running by opening a web browser on the local machine and
navigating to http://localhost. You should see something like Figure 23-1.

FIGURE 23-1

The default web page after starting Apache on your system.

To finish a simple configuration for one domain name, set the ServerAdmin and ServerName
properties in /etc/apache2/2.2/httpd.conf to your e-mail address and to the domain
name, respectively.

You then need to restart Apache:

svcadm restart apache22

In order for clients to access the domain name served by Apache, that domain name
must be resolvable by DNS or some other mechanism from those client machines.

Most domain name registrars, such as GoDaddy.com, provide DNS services free. Contact your
registrar for more information. DNS is covered in Chapter 9.

849

Part VI Deploying and Developing on OpenSolaris

Advanced Apache configuration is the same as on other platforms. Consult the ‘‘Resources’’
section later in this chapter for more details.

Configuring PHP
If you’ve installed the SUNWapch22-php5 package or the amp-dev group package, OpenSo-
laris requires no additional steps to configure PHP to work with Apache. You can test your
Apache/PHP configuration by creating a test script in /var/apache2/2.2/htdocs, such as:

cat /var/apache2/2.2/htdocs/test.php
<?php

phpinfo();
?>

After pointing your browser from the local machine to http://localhost/test.php, you
should see something like what is shown in Figure 23-2.

FIGURE 23-2

The PHP test page verifies that your Apache and PHP configurations are correct.

850

Deploying a Web Stack on OpenSolaris 23

Configuring MySQL
Like Apache, MySQL is a service managed by SMF. To configure MySQL, just enable the
service:

svcadm enable mysql
svcs mysql
STATE STIME FMRI
online 15:49:06 svc:/application/database/mysql:version_50

That’s it! MySQL is now ready to use.

By default, MySQL has no root password. You should set a password immediately, as
described below.

Installing phpMyAdmin
MySQL comes with a command-line client, /usr/mysql/bin/mysql. If you prefer using a
graphical user interface to administer your databases, you can install a GUI client. One of the
most popular GUI administrative software for MySQL is phpMyAdmin, which is available from
the Web Stack repository. To install it, first add the webstack repository as an authority, if you
haven’t already done so:

pkg set-authority -O http://pkg.opensolaris.org:80/webstack webstack
pkg authority
AUTHORITY URL
webstack http://pkg.opensolaris.org:80/webstack/
opensolaris.org (preferred) http://pkg.opensolaris.org/release/

Next, install the phpmyadmin package (output omitted for brevity):

pkg install phpmyadmin

Finally, copy the configuration file from the samples-conf.d directory to the conf.d direc-
tory and restart Apache:

cp /etc/apache2/2.2/samples-conf.d/phpmyadmin.conf /etc/apache2/2.2/conf.d
svcadm restart apache22

Now you can use phpMyAdmin by pointing your browser at http://localhost/phpmyadmin.
Once logged in, you will see something similar to what is shown in Figure 23-3.

Remember to log in to phpMyAdmin with your MySQL root account, not your
machine root account.

Subsequent examples in this chapter use the mysql command-line client but if you install php-
MyAdmin, you can use that instead.

851

Part VI Deploying and Developing on OpenSolaris

FIGURE 23-3

phpMyAdmin provides a graphical user interface for managing MySQL.

Changing the root password
The first thing you should do once the MySQL service is enabled is set a root password:

/usr/mysql/bin/mysql –u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.0.45 Source distribution

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

Mysql> SET PASSWORD FOR root@localhost=PASSWORD(’goodpass’);
Query OK, 0 rows affected (0.01 sec)

mysql> quit
Bye
#

The password in this example is ‘‘goodpass,’’ but you should choose a more secure password.
Once you have a root password, run mysql with the –p option:

/usr/mysql/bin/mysql –u root –p
Enter password: <password>

Welcome to the MySQL monitor. Commands end with ; or \g.

852

Deploying a Web Stack on OpenSolaris 23

Your MySQL connection id is 5
Server version: 5.0.45 Source distribution

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

Mysql>

Beyond setting the password and installing phpMyAdmin, advanced MySQL configuration is
the same as on other platforms. See the ‘‘Resources’’ section at the end of the chapter for more
details.

Web applications
Now that you have a working AMP stack, you can install open-source or proprietary web appli-
cations or write your own. This section demonstrates how to install and configure WordPress,
the popular open source blogging software. Most web applications have similar steps.

To develop your own web applications on OpenSolaris, consult Chapter 24 for details
on the OpenSolaris Development Platform.

To install WordPress, follow these steps:

1. Download the WordPress zip file from http://wordpress.org. This example installs
version 2.6.2, which is the latest version as of this writing.

2. Unzip and untar the file under the /var/apache2/2.2/htdocs directory. The contents
are put in a wordpress subdirectory.

cd <directory where wordpress was downloaded>

mv wordpress-2.6.2.tar.gz /var/apache2/2.2/htdocs
cd /var/apache2/2.2/htdocs
tar –xzf wordpress-2.6.2.tar.gz
ls –d wordpress
wordpress
rm wordpress-2.6.2.tar.gz

3. Create a database and user for WordPress in MySQL:

/usr/mysql/bin/mysql –u root –p
Enter password: <password>

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.0.45 Source distribution

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

Mysql> CREATE DATABASE wordpress;
Query OK, 1 row affected (0.00 sec)
mysql> GRANT ALL PRIVILEGES ON wordpress.* TO "wordpress"@"localhost"
IDENTIFIED BY "insecurepassword";

853

Part VI Deploying and Developing on OpenSolaris

Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.06 sec)

mysql> quit
Bye
#

4. Rename wp-config-sample.php to wp-config.php:

cd /var/apache2/2.2/htdocs/wordpress
mv wp-config-sample.php wp-config.php

5. Edit wp-config.php to set the DB_NAME, DB_USER, and DB_PASSWORD you created in
step 3. The settings should look something like this:

cat wp-config.php
...
define(’DB_NAME’, ‘wordpress’); // The name of the database
define(’DB_USER’, ‘wordpress’); // Your MySQL username
define(’DB_PASSWORD’, ‘insecurepassword’); // ...and password
...

6. Run the WordPress install script from your web browser by navigating to
http://<yourdomain>/wordpress/wp-admin/install.php. This is a
one-step process. On the first screen, which looks something like Figure 23-4, enter the
requested information.

You’ll then see the result screen, shown in Figure 23-5.

That’s it! To use your blog, navigate to http://yourdomain/wordpress.

Alternatives to Apache, MySQL, and PHP
Although Apache, MySQL, and PHP make up the ‘‘official’’ AMP stack, you may prefer to sub-
stitute one or more components. The Sun Java System Web Server and the PostgreSQL database
are popular alternatives for the Apache HTTP Server and MySQL database, respectively.

Sun Java System Web Server
The Sun Java System Web Server from Sun Microsystems is an alternative to the Apache HTTP
Server. One benefit of the Sun Java System Web Server over Apache is that it’s also a servlet
container, eliminating the need for a separate application such as Apache Tomcat. Servlet
containers are described in more detail later in this chapter.

The Sun Java System Web Server is available from the webstack repository in the
sun-webserver7 package. If you haven’t already added a webstack authority, you must

854

Deploying a Web Stack on OpenSolaris 23

FIGURE 23-4

The WordPress installation requires only two pieces of information.

do that before installing the web server. As usual, the example omits the output from pkg
install:

pkg set-authority -O http://pkg.opensolaris.org:80/webstack webstack
pkg install sun-webserver7

The web server is installed into /opt/webserver7. Before starting the web server, you need to
set up a default webserver instance by running the configureServer command (output is
omitted for brevity):

cd /opt/webserver7
./lib/configureServer -i ./setup/configureServer.properties

You now have a webserver instance configured in /var/opt/webserver7/https-
localhost.

Before starting the Sun Java System Web Server, disable the Apache HTTP Server so
that they don’t interfere with each other:

svcadm disable apache22

855

Part VI Deploying and Developing on OpenSolaris

The web server is not managed by SMF, so you need to start it manually by running the
startserv command:

/var/opt/webserver7/https-localhost/bin/startserv
Sun Java System Web Server 7.0U3 B06/16/2008 10:24
info: CORE5076: Using [Java HotSpot(TM) Server VM, Version 1.6.0_07]
from [Sun Microsystems Inc.]
info: HTTP3072: http-listener-1: http://localhost:8080 ready to accept requests
info: CORE3274: successful server startup

FIGURE 23-5

The installation result screen confirms that the blog has been created.

Your web server is now running and ready to serve pages on port 8080. When you connect to
port 8080 on your machine, your screen will be similar to the one shown in Figure 23-6.

By default, static web pages are served out of the
/var/opt/webserver-7/https-localhost/docs
directory. You can shut down the web server with
/var/opt/webserver7/https-localhost/bin/stopserv.

PostgreSQL
The open source PostgreSQL database, also available on OpenSolaris, is a popular alternative
to MySQL. As of this writing, there is no group package for PostgreSQL. Instead, you need to

856

Deploying a Web Stack on OpenSolaris 23

explicitly install all eight packages. This example installs version 8.3, which is the latest version
available as of this writing:

pkg install SUNWpostgr-83-libs SUNWpostgr-83-devel SUNWpostgr-83-docs
SUNWpostgr-83-tcl SUNWpostgr-83-pl SUNWpostgr-83-client SUNWpostgr-83

-contrib SUNWpostgr-83-server

To find later versions of PostgreSQL, use pkg search –r to find packages contain-
ing ‘‘postgres.’’

Because the PostgreSQL database administration uses RBAC, it must be administered by the
postgres role or by someone with the ‘‘Postgres Administration’’ profile, both of which are
created at OpenSolaris installation time. Give the postgres role a password and assign it to at
least one user, as shown here:

passwd postgres
New Password:
Re-enter new Password:
passwd: password successfully changed for postgres
usermod -R postgres test

FIGURE 23-6

The Sun Java System Web Server default page confirms that the server is configured properly.

857

Part VI Deploying and Developing on OpenSolaris

Role-based access control (RBAC) is discussed in Chapter 11.

Now the user — in this case, test — who has been assigned the postgres role can assume it
and initialize the server. As of this writing, the postgres role is assigned a non-existent shell:
pfksh. Change the shell to something else before assuming the postgres role. See Chapter 3
for instructions on switching shells.

$ su postgres
Password:
$ /usr/postgres/8.3/bin/initdb /var/postgres/8.3/data
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale en_US.UTF-8.
The default database encoding has accordingly been set to UTF8.
The default text search configuration will be set to "english".

fixing permissions on existing directory /var/postgres/8.3/data ... ok
creating subdirectories ... ok
selecting default max_connections ... 100
selecting default shared_buffers/max_fsm_pages ... 32MB/204800
creating configuration files ... ok
creating template1 database in /var/postgres/8.3/data/base/1 ... ok
initializing pg_authid ... ok
initializing dependencies ... ok
creating system views ... ok
loading system objects’ descriptions ... ok
creating conversions ... ok
creating dictionaries ... ok
setting privileges on built-in objects ... ok
creating information schema ... ok
vacuuming database template1 ... ok
copying template1 to template0 ... ok
copying template1 to postgres ... ok

WARNING: enabling "trust" authentication for local connections
You can change this by editing pg_hba.conf or using the -A option the
next time you run initdb.

Success. You can now start the database server using:

/usr/postgres/8.3/bin/postgres -D /var/postgres/8.3/data
or

/usr/postgres/8.3/bin/pg_ctl -D /var/postgres/8.3/data -l logfile start

Ignore the output from initdb about starting the database server with a command from
/usr/postgres/8.3/bin. Because PostgreSQL is managed by SMF on OpenSolaris, you
simply need to enable the service. The PostgreSQL 8.3 manifest defines two different postgres
instances for 32-bit and 64-bit; enable only one of those instances depending on the architecture

858

Deploying a Web Stack on OpenSolaris 23

of your platform. This example enables the 32-bit instance because it is run on a 32-bit
platform:

$ svcs postgresql_83
STATE STIME FMRI
disabled 6:40:35 svc:/application/database/postgresql_83:default_64bit
disabled 6:40:35 svc:/application/database/postgresql_83:default_32bit
$ svcadm enable postgresql_83:default_32bit
$ svcs postgresql_83
STATE STIME FMRI
disabled 6:40:35 svc:/application/database/postgresql_83:default_64bit
online 6:54:22 svc:/application/database/postgresql_83:default_32bit

PostgreSQL is now ready to use.

Languages other than PHP
You can, of course, use and write web applications that use languages other than PHP. If
you installed the amp-dev package, you already have PHP and Python. To install a different
language, find the package in the repository and install it. This example installs Ruby:

pkg install SUNWruby18

With Ruby installed, you can use web applications that depend on Ruby. One of the most popu-
lar languages for web services is, of course, Java. Java-based web services are covered in detail in
the next section.

Java-based Web Services
Java-based web services deserve special attention because they generally require a Java servlet
engine, such as Apache Tomcat, or an integrated application server, such as GlassFish. As
described earlier, the Sun Java System Web Server has a built-in servlet engine.

Apache Tomcat
Apache Tomcat is a servlet container, or servlet engine, that enables you to run Java Servlet or
Java Server Pages (JSPs). Many popular web applications, such as the Apache Roller blogging
software, use these technologies. It’s also a popular development environment.

You can run Tomcat in standalone mode, in which it handles all incoming HTTP requests, or
you can connect it through the Apache HTTP Server, such that the HTTP server triages incom-
ing HTTP requests and directs a subset of those requests to Tomcat. This book explains how to
configure Tomcat in standalone mode on OpenSolaris. To connect it through Apache, consult
the Apache HTTP Server and Apache Tomcat references listed in the ‘‘Resources’’ section at the
end of this chapter.

859

Part VI Deploying and Developing on OpenSolaris

Installing Apache Tomcat
If you installed the amp-dev package, you already have the SUNWtcat package installed. Other-
wise, you need to install the SUNWtcat package explicitly:

pkg install SUNWtcat

As of this writing, this package contains Apache Tomcat 5.5.26.

Configuring Apache Tomcat in stand-alone mode
You can get Apache Tomcat up and running in two simple steps after installing the package.
First, copy the server.xml-example file to server.xml in /var/apache/tomcat/conf:

cp /var/apache/tomcat/conf/server.xml-example /var/apache/tomcat/conf/server.xml

Before starting Tomcat, stop the Apache HTTP Server and the Sun Java System Web
Server so they won’t interfere with Tomcat.

svcadm disable apache22
/var/opt/webserver7/https-localhost/bin/stopserv

Now you can start Tomcat by running the startup.sh script:

/usr/apache/tomcat/bin/startup.sh
Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java

Tomcat should now be up and running, listening on port 8080. If you point your web browser
at that port on the domain, you should see something similar to Figure 23-7.

Unfortunately, Tomcat on OpenSolaris doesn’t run as an SMF service by default, which means
it won’t start automatically when the system boots, won’t be restarted if it encounters a failure,
and won’t receive any of the other benefits of being under SMF control. Consider doing a web
search for a Tomcat SMF service, or writing an SMF service yourself for Tomcat if you intend to
deploy it.

To deploy Java-based web applications on Tomcat that use MySQL, you need the
MySQL JDBC driver. Download the latest version of Connector/J from the MySQL
website: http://dev.mysql.com/downloads/connector/j/5.1.html. Next,
untar/unzip the download file and copy mysql-connector-java-5.1.7-bin.jar to
/usr/apache/tomcat/common/lib:

cd <download directory>

tar -xzf mysql-connector-java-5.1.7.tar.gz

860

Deploying a Web Stack on OpenSolaris 23

cp mysql-connector-java-5.1.7/mysql-connector-java-5.1.7-bin.jar\
/usr/apache/tomcat/common/lib

FIGURE 23-7

The Apache Tomcat default page confirms that Tomcat is configured correctly.

Some applications also need the Java Mail API. You can download it from http://java
.sun.com/products/javamail. After unzipping the download file, copy mail.jar to
/usr/apache/tomcat/common/lib:

cd <download directory>

unzip -q javamail-1_4_1.zip
cp javamail-1.4.1/mail.jar /usr/apache/tomcat/common/lib

You need to restart Tomcat in order for it to use the new jar files you installed. Run
the shutdown.sh script followed by the startup.sh script:

/usr/apache/tomcat/bin/shutdown.sh
Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java
/usr/apache/tomcat/bin/startup.sh

861

Part VI Deploying and Developing on OpenSolaris

Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java

Example: Apache Roller
Now that you have Tomcat running, you can install Java-based web applications such as the
Apache Roller blogging software web application. This example requires MySQL and the MySQL
JDBC driver, as well as the Java Mail API:

1. Create a database for Roller:

/usr/mysql/bin/mysql -u root -p
Enter password: <password>

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.0.45 Source distribution

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> CREATE DATABASE roller;
Query OK, 1 row affected (0.01 sec)

mysql> GRANT ALL on roller.* to roller@localhost IDENTIFIED by
‘rollerpass’;

Query OK, 0 rows affected (0.33 sec)

mysql> quit
Bye

2. Create a properties file, roller-custom.properties, in /usr/apache/tomcat/
common/classes, with the following entries (substituting your database username and
password, and your mail hostname, username, and password):

cat /usr/apache/tomcat/common/classes/roller-custom.properties
installation.type=auto
database.configurationType=jdbc
database.jdbc.driverClass=com.mysql.jdbc.Driver
database.jdbc.connectionURL=jdbc:mysql://localhost:3306/roller
database.jdbc.username=roller
database.jdbc.password=rollerpass
mail.configurationType=properties
mail.hostname=smtp-server.example.com
mail.username=nsolter
mail.password=nick

3. Download Apache Roller from http://roller.apache.org.

4. Unzip the downloaded zip file and deploy the Roller web application. This example sim-
ply copies the entire roller directory as is to /var/apache/tomcat/webapps. If you

862

Deploying a Web Stack on OpenSolaris 23

prefer using WAR files, then create a WAR file from the Roller directory and let Tomcat
explode it:

cd <download directory>

unzip -q apache-roller-4.0.zip
cp -r apache-roller-4.0/webapp/roller /var/apache/tomcat/webapps

5. Restart Tomcat:

/usr/apache/tomcat/bin/shutdown.sh
Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java
/usr/apache/tomcat/bin/startup.sh
Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java

6. Point your browser at http://<yourdomain>:8080/roller. You should see some-
thing similar to Figure 23-8.

7. Follow the instructions to create the tables and complete the installation process. Then
you can follow the onscreen instructions to create users and weblogs. Happy blogging!

FIGURE 23-8

The Apache Roller initial page prompts you to create the database tables.

863

Part VI Deploying and Developing on OpenSolaris

GlassFish Application Server
For more complicated Java web applications, you can run a full-fledged application server
instead of a servlet engine. GlassFish is an open-source application server that can
run Java-based web applications. You can find it in the glassfishv2 package in the
pkg.opensolaris.org/release repository. To run GlassFish on your system, first install
the glassfishv2 package. Note that it includes several other packages on which it depends,
including the JavaDB database:

pkg install glassfishv2

Now that the packages are installed, you can configure and start the GlassFish server.

If you installed and configured Apache Tomcat on your system, shut it down before
trying to start GlassFish because they bind to the same port by default:

/usr/apache/tomcat/bin/shutdown.sh

As of this writing, installing the IPS version of GlassFish does not create any administrative
domains. A domain is the administrative boundary in GlassFish, and at least one is required to
run the server. See the GlassFish documentation for more details on administrative domains.
You can create a domain manually with the asadmin create-domain command:

/usr/appserver/bin/asadmin create-domain --adminport 4848 mydomain
Please enter the admin user name>nsolter
Please enter the admin password>mynewpassword
Please enter the admin password again>mynewpassword
Please enter the master password [Enter to accept the default]:>masterpass
Please enter the master password again [Enter to accept the default]:>masterpass
Using port 4848 for Admin.
Using default port 8080 for HTTP Instance.
Using default port 7676 for JMS.
Using default port 3700 for IIOP.
Using default port 8181 for HTTP_SSL.
Using default port 3820 for IIOP_SSL.
Using default port 3920 for IIOP_MUTUALAUTH.
Using default port 8686 for JMX_ADMIN.
Domain being created with profile:developer, as specified by variable
AS_ADMIN_PROFILE in configuration file.

Security Store uses: JKS
Domain mydomain created.

Now you can start the application server in that domain:

/usr/appserver/bin/asadmin start-domain mydomain
Starting Domain mydomain, please wait.
Log redirected to /var/appserver/domains/mydomain/logs/server.log.
Please enter the master password>masterpass
Redirecting output to /var/appserver/domains/mydomain/logs/server.log
Domain mydomain is ready to receive client requests. Additional services are

864

Deploying a Web Stack on OpenSolaris 23

being started in background.
Domain [mydomain] is running [Sun Java System Application Server 9.1_01 (build
b09d-fcs)] with its configuration and logs at: [/var/appserver/domains].

Admin Console is available at [http://localhost:4848].
Use the same port [4848] for "asadmin" commands.
User web applications are available at these URLs:
[http://localhost:8080 https://localhost:8181].
Following web-contexts are available:
[/web1 /__wstx-services].
Standard JMX Clients (like JConsole) can connect to JMXServiceURL:
[service:jmx:rmi:///jndi/rmi://OS0805:8686/jmxrmi] for domain management
purposes.

Domain listens on at least following ports for connections:
[8080 8181 4848 3700 3820 3920 8686].
Domain does not support application server clusters and other standalone
instances.

Now GlassFish is running on port 8080. When you connect your browser to that port, you
should see something similar to Figure 23-9.

At this point, you can deploy Java-based web applications, such as Apache Roller.

FIGURE 23-9

The GlassFish default page confirms that your domain is configured correctly.

865

Part VI Deploying and Developing on OpenSolaris

Resources
Resources for general web stack information on OpenSolaris include the following:

■ The OpenSolaris Web Stack project: http://opensolaris.org/os/project/
webstack.

■ Web Stack Getting Started Guide: http://dlc.sun.com/osol/docs/content/
WEBSTACK/webstackgsg.html.

■ OpenSolaris 2008.05 Development Environment: http://dlc.sun.com/osol/docs/
content/OSDEV/chapterid.html.

There is a plethora of online documentation about Apache, but, surprisingly, not a lot of
books. The best place to start is with the Apache HTTP Server project at apache.org:
http://httpd.apache.org. For specific configuration information, your best bet is to do a
web search on the area of interest and explore the many tutorials, forums, and other pages that
come up.

PHP and MySQL have more books written about them, including Beginning PHP 5 and MySQL:
From Novice to Professional, by W. Jason Gilmore (Apress, 2004). This book is a great starting
point for PHP and MySQL in general.

The best place to look for documentation about the Sun Java System Web Server is Sun’s official
docs: http://docs.sun.com/app/docs/coll/1653.2.

For PostgreSQL on OpenSolaris, consult the article ‘‘PostgreSQL in the OpenSolaris OS’’
by Zdenek Kotala at http://sun.com/bigadmin/features/articles/postgresql
opensolaris.jsp.

For Java-based web services, Apache Tomcat, and GlassFish, consult the following:

■ Core Servlets and JavaServer Pages Volume 1: Core Technologies, by Marty Hall and Larry
Brown (Prentice Hall, 2003).

■ Head First Servlets and JSP, by Bryan Basham, Kathy Sierra, and Bert Bates (O’Reilly, 2004).

■ Professional Apache Tomcat 5, by Vivek Chopra, et al. (Wrox, 2004).

■ https://glassfish.dev.java.net.

To learn more about WordPress and Roller, start with their websites, http://wordpress.org
and http://roller.apache.org, respectively.

Summary
This chapter described how to install and configure the basic AMP stack on OpenSolaris,
consisting of the Apache HTTP Server, MySQL, and PHP, and how to deploy web applications,

866

Deploying a Web Stack on OpenSolaris 23

such as WordPress, using the AMP stack. You learned how to substitute the Sun Java System
Web Server for the Apache HTTP Server, PostgreSQL for MySQL, and other scripting languages,
such as Ruby, for PHP. Finally, you learned how to install and configure Apache Tomcat and
the GlassFish application server, and to deploy Java-based web applications such as Apache
Roller.

867

Developing on
OpenSolaris

IN THIS CHAPTER
Java development

C and C++ development

Perl, Python, and Ruby

PHP

Shell scripting

NetBeans

CVS

Subversion

Mercurial

Building IPS packages

Crash dumps and kernel
debugging

This book has focused on managing OpenSolaris as a day-to-day
desktop and a platform for deploying services, but it’s important
not to overlook its suitability as a development platform. Whether

you want to write web applications, enterprise systems software, scientific
programs, or desktop applications, OpenSolaris provides a complete
development environment to fit your needs. Programming language
support from C and C++ to Java to PHP, Python, and Ruby enables
you to develop, compile, and debug virtually any type of software on
OpenSolaris.

Additionally, the NetBeans Integrated Development Environment (IDE)
enables programming ease and comfort, while source code management
software such as CVS, Mercurial, and Subversion support development
teams. Finally, the Image Packaging System (IPS) enables you to easily
make your developed software available on the OpenSolaris platform.
Although most of these tools are available on other platforms too, the
wide variety of virtualization options on OpenSolaris, combined with its
sophisticated debugging and observability tools, such as DTrace and MDB,
provide a great incentive to choose OpenSolaris as your development
platform.

Java Development
Given the ties of both OpenSolaris and Java to Sun Microsystems, and the
ubiquity of Java, it should be no surprise that OpenSolaris supports Java
development quite well.

869

Part VI Deploying and Developing on OpenSolaris

Compilers and tools
OpenSolaris includes the Java 6 runtime for running Java programs but because of the Open-
Solaris philosophy to install by default only the functionality needed by most users, it doesn’t
include the Java Development Kit (JDK). To obtain the javac compiler, jar archiver, and other
utilities, you need to install the JDK. If you’re running the OpenSolaris distribution, you can
obtain the JDK by installing the SUNWj6dev (32-bit) or SUNWj6dvx (64-bit) package.

You can use the isainfo command to determine whether your system is running in
32-bit or 64-bit mode. See Chapters 3 and 14 for details.

For example, use the following on a 32-bit system:

pkg install SUNWj6dev

Although appealingly named, the java-dev group package is probably not what you
want if you’re just doing Java development because it includes a lot of extraneous

software, such as Mercurial, Subversion, MySQL, Sun Studio Express, Glassfish, CVS, NetBeans,
and Firefox.

If you’re using a different distribution of OpenSolaris that doesn’t support IPS packaging, you
can download the JDK from http://java.sun.com/javase/downloads/index.jsp.

With the JDK installed, Java development on OpenSolaris is just like Java development on
other Linux or UNIX platforms. The JDK installs the Java commands such as javac in
/usr/java/bin but puts symbolic links to them in /usr/bin, so you should find them in
your default path. For example, you can compile and run Java programs as follows:

$ cat JavaTest.java
class JavaTest
{

public static void main(String args[])
{

System.out.println("Hello, world!");
}

}
$ javac JavaTest.java
$ java JavaTest
Hello, world!

Java Development Environments

A lthough you can certainly write your Java programs with any of the text editors described in
Chapter 3, such as vim and emacs, and compile them by hand with javac, command-line Java

programming can quickly become tiresome. If you have more than a few source files to manage,

continued

870

Developing on OpenSolaris 24

continued
then you’ll probably want to work with an Integrated Development Environment (IDE), or at least
set up an automated build system with Apache Ant or Make. The NetBeans IDE, Ant, and Make are
covered later in this chapter.

Debugging with JDB
Although you’ll probably prefer to do your Java debugging through an IDE such as NetBeans,
the JDK does include a command-line symbolic debugger, the Java Debugger (JDB). JDB uses
the same commands as dbx, the symbolic debugger for C and C++ included in Sun Studio, so
if you’re familiar with dbx, you’ll be right at home with JDB.

Chapter 15 discusses the DTrace support for Java, another useful observability and
debugging tool.

Introduction to JDB
The best way to explore JDB is to jump in with an example. Suppose you want to write a sim-
ple spell-check program similar to the standard UNIX spell command. The program’s behavior
is to take words to be checked on the command line and write them out if they are misspelled.
If a word is correctly spelled, it is not written out. The program works by first importing cor-
rectly spelled words from a dictionary file and then checking each user-specified word against its
dictionary of correctly spelled words. Here’s a first stab at the program:

The following program listing is buggy!

import java.util.*;
import java.io.*;

class Spell
{

public static void main(String args[])
{

SpellChecker myChecker = null;
try {

myChecker = new SpellChecker();
} catch (Exception e) {

System.out.println(e.toString());
System.exit(1);

}

for (int i = 0; i < args.length; i++) {
if (!myChecker.checkWord(args[i])) {

System.out.println(args[i]);
}

}
}

}

871

Part VI Deploying and Developing on OpenSolaris

class SpellChecker
{

private static String dictFile = "dict.txt";
private HashSet<String> words;

SpellChecker() throws Exception
{

BufferedReader input = null;
words = new HashSet<String>();

input = new BufferedReader (new FileReader(dictFile));
if (input == null) {

throw new Exception ("Cannot open " + dictFile);
}

String line = null;
while ((line = input.readLine()) != null) {

words.add(line.toLowerCase());
}
input.close();

}

boolean checkWord(String word)
{

return (words.contains(word.toLowerCase()));
}

}

For testing, keep the dictionary file small:

aardvark
abacus
abaft
abalone
abandon
abandoned
abase
abash
abasia
abate

Now compile and test the program:

$ javac Spell.java
$ java Spell notaword
notaword

So far, so good. The program correctly printed the misspelled word, notaword. Now try a real
word:

$ java Spell abandon
abandon

872

Developing on OpenSolaris 24

That’s not right! The word is spelled correctly, so it shouldn’t be printed. Time for some
debugging. First, you need to compile your class with the -g option to javac, specifying that it
should include symbolic debugging info:

$ javac -g Spell.java

Now you can start the JDB debugger with the jdb command:

$ jdb
Initializing jdb ...
>

The debugger gives you a command prompt. Before running the program, you can set a
breakpoint near the location where you think the problem is so that the debugger stops the
program execution there, enabling you to explore. In this case, it makes sense to explore the
checkWord() method of the SpellChecker class:

> stop in SpellChecker.checkWord
Deferring breakpoint SpellChecker.checkWord.
It will be set after the class is loaded

Now you can run the program:

> run Spell abandon
run Spell abandon
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>

VM Started: Set deferred breakpoint SpellChecker.checkWord

Breakpoint hit: "thread=main", SpellChecker.checkWord(),
line=48 bci=0

48 return (words.contains(word.toLowerCase()));

main[1]

At this point, you can check out the state of the variables in the program with the print
command:

main[1] print word
word = "abandon"

main[1] print words
words = "[aardvark , abacus , abalone
, abandon , abate , abase , abandoned

, abash , abasia , abaft]"
main[1]

Evidently, the words stored in the HashMap have extra white space at the end, so the string
comparison to the entered word always fails. Trim the strings before adding them to the
HashMap:

words.add(line.trim().toLowerCase());

873

Part VI Deploying and Developing on OpenSolaris

Now the program works as expected:

$ javac Spell.java
$ java Spell abandon
$

JDB commands

Table 24-1, while not comprehensive, lists the most useful JDB commands, which enable you to
do almost all the debugging you need. For more details on JDB, see the references listed in the
‘‘Resources’’ section. These commands are all run from the JDB command prompt.

TABLE 24-1

JDB Commands

Command Behavior

help Prints a list of commands

run
<classname>

<arguments>

Runs the named class, passing it the specified command-line
arguments

stop in <class name>

.<method name>

stop at <class
name>:<line>

Sets a breakpoint to stop program execution at the specified spot

cont Runs the stopped program to the next breakpoint

step Runs the next line, stepping into function/method calls; If the next
line contains a function or method call, the debugger will stop
such that the next line to be executed is the first line of the nested
function/method.

next Runs the next line, stepping over function/method calls. The
debugger will stop such that the next line to be executed is the
subsequent line in the same function/method, having executed all
nested function/method calls in between.

clear <class name>

.<method name>

clear <class
name>:<line>

Clears the specified breakpoint

print <expr> Prints the value of an expression, such as a variable

list Shows the code at this point in the program

874

Developing on OpenSolaris 24

C and C++ Development
UNIX has a long history of supporting C and C++ programming, and OpenSolaris is no
exception. Both the Sun Studio and GNU compilers are readily accessible from the package
repository, along with all the tools you need, such as make, autoconf, flex, and bison.
In addition, the NetBeans IDE, covered later in this chapter, supports the C and C++ com-
pilers. Finally, OpenSolaris contains sophisticated C and C++ debugging tools, including
symbolic debuggers, Modular Debugger (MDB), and a memory error-detection library called
libumem.

Compilers and tools
Two popular sets of compilers and tools are available for C and C++ development: Sun Studio
and the GNU Compiler Collection (GCC).

Sun Studio
Sun Studio is a full-fledged development environment including C, C++, and Fortran compil-
ers, an IDE, a debugger, Distributed Make (dmake), a performance analyzer, and other helpful
tools. The Sun Studio compilers have better performance in many cases than do the GCC com-
pilers. As a testament to their capabilities, the Sun Studio compilers are used to compile most of
OpenSolaris itself. As of this writing, the latest product release is Sun Studio 12, available from
the Sun Download Center, http://developers.sun.com/sunstudio/.

The OpenSolaris package repository contains a version of Sun Studio called Sun Studio Express,
which is a snapshot of the ongoing Sun Studio development. This chapter shows you how to
install and use Sun Studio Express. If you would prefer the more stable Sun Studio commercial
release, simply download and install it from the Sun Download Center.

The easiest way to set up a Sun Studio Express development environment is to install the
ss-dev group package, which includes the following:

■ Sun Studio Express

■ Java Development Kit (JDK) 6 (required for the Sun Studio IDE)

■ Mercurial, Subversion, and CVS source code management

■ GNU Make, Automake, and Autoconf

■ Bison and Flex parser and lexer

■ Solaris header files

You can install the package with the following:

pkg install ss-dev

875

Part VI Deploying and Developing on OpenSolaris

Alternately, install just the sunstudioexpress package:

pkg install sunstudioexpress

Be aware that some open source projects depend on the GNU build tools even when using the
Sun Studio compiler. Now that Sun Studio Express is installed, you can compile C programs
with /opt/SunStudioExpress/bin/cc:

$ cat test.c
#include <stdio.h>

int main (int argc, char **argv)
{

printf("Hello, world\n");
return (0);

}
$ /opt/SunStudioExpress/bin/cc -o test test.c
$./test
Hello, world

When configured for Solaris or OpenSolaris, most open source projects look for the
cc compiler in your path, so to compile open source code bases (and for your own

convenience), add /opt/SunStudioExpress/bin to your path.

For a list of compiler options, run /opt/SunStudioExpress/bin/cc -flags.

If you’ve installed the Sun Studio product instead of Sun Studio Express, you’ll find
the compiler binaries in /opt/SUNWspro/bin instead of /opt/SunStudioExpress/bin.

The C++ compiler is /opt/SunStudioExpress/bin/CC:

$ cat test.cc
#include <iostream>

using namespace std;

int main(int argc, char **argv)
{
cout << "hello, world" << endl;
return (0);

}
$ /opt/SunStudioExpress/bin/CC -o testcc test.cc
$./testcc
hello, world

As with Java programming, command-line C and C++ development can quickly become tire-
some. You probably want to either use an IDE such as NetBeans, or set up build automation
with Make or GNU Make. Both of these options are explored later in this chapter.

876

Developing on OpenSolaris 24

GNU tools
If you prefer or require the GNU Compiler Collection (GCC) compiler and tools, you can install
and use those instead of Sun Studio. The easiest way to obtain GCC is to install the gcc-dev
group package, which contains the following:

■ gcc, g++, and gdb

■ Mercurial, Subversion, and CVS source code management

■ GNU Make, Automake, and Autoconf

■ Bison and Flex parser and lexer

Install the package with the following:

pkg install gcc-dev

The GNU C compiler driver, gcc, installs into /usr/sfw/bin, with symbolic links from
/usr/gnu/bin and /usr/bin. Because /usr/bin should be in your path by default, you can
use gcc without specifying the path. For example, use the following to compile the C program
listed earlier in the Sun Studio section:

$ gcc -o test test.c
$./test
Hello, world

The symbolic link to gcc in /usr/gnu/bin is named cc, not gcc.

Similarly, the GNU C++ compiler driver, g++, installs into /usr/sfw/bin, with a symbolic
link from /usr/bin. You can compile C++ programs with g++. For example, use the follow-
ing to compile the C++ program listed earlier in the Sun Studio section:

$ g++ -o testcc test.cc
$./testcc
hello, world

gcc, g++, and c++: Which binary do I use?

Both gcc and g++ are simply driver programs that call the compiler and linker for you. There is
only one compiler, which compiles both C and C++ code, so you could compile C++ code

with gcc and C code with g++. The difference is that g++ links your program with the required

continued

877

Part VI Deploying and Developing on OpenSolaris

continued
C++ libraries automatically. If you use gcc to compile C++ code, you need to link with the C++
libraries explicitly on the command line. It’s easiest to use g++ for C++ code and gcc for C code.

Confusingly, the GNU Compiler Collection also provides a binary named c++ in /usr/bin and
/usr/sfw/bin, which is a hard link to g++.

OpenSolaris C APIs
OpenSolaris contains a rich environment for programming in C. In addition to the C standard
library, OpenSolaris supports the POSIX APIs, as well as some additional functionality not part
of POSIX. In fact, most of the shell commands in OpenSolaris have C API equivalents. Details
of the various APIs are beyond the scope of this book. For that level of programming detail,
consult one of the UNIX or Solaris systems programming books listed in the ‘‘Resources’’ section.
Solaris Systems Programming by Rich Teer is a particularly good place to start. This section lists
some of the most useful application programming interfaces (APIs) that you might want to
explore further:

■ C standard library

■ Additional string manipulation

■ Low-level I/O (creat, open, close, etc.)

■ File and directory manipulations

■ File system manipulations

■ Date and time (time, etc.)

■ Users and groups (setuid, etc.)

■ Signals

■ Process control (fork, exec, etc.)

■ Networking with sockets

■ Interprocess communication (such as pipes, FIFOs, and message queues)

■ Remote procedure calls (RPC)

■ Doors

■ Threads and synchronization primitives (mutexes, semaphores, etc.)

■ Logging and events (syslog and sysevents)

Most of the C header files are in the SUNWhea package, which is not installed by
default. This package contains even the C standard library headers; without it, you

can’t do much C programming. Both ss-dev and gcc-dev are dependent on SUNWhea, so if you
install the compilers that way, you’ll get the headers; but if you install the compilers another way,
then you may need to install the SUNWhea package explicitly.

878

Developing on OpenSolaris 24

Debugging
If you’ve done any C and C++ programming, you’ve almost certainly had to do some
debugging. Sun Studio and GCC include the symbolic command-line debuggers dbx and
GDB, respectively. These are not OpenSolaris-specific. OpenSolaris also includes the Modular
Debugger (MDB), which is powerful even when symbolic information is not available, and the
memory debugging library libumem.

dbx and GDB
GDB and dbx are symbolic debuggers for the GNU Compiler Collection and Sun Studio, respec-
tively. A symbolic debugger is one that enables you to access the symbols in your program, such
as variable and class names. Let’s first look at symbolic debugging with an example, and then
examine a summary of the commands in both dbx and GDB.

Suppose you’re writing the software for an electronic voting machine in C. To keep things sim-
ple, the ballot questions are stored in a text file called ballot.txt, with each question on a
single line. All ballot questions are yes or no, so the possible answers don’t need to be stored in
the file.

For the design of the program, one approach is to store the ballot questions in a linked list
for easy iteration when presenting the ballot to voters. The first chunk of the functionality you
might choose to implement is reading the text file questions into the linked list. The following
buggy program is an attempt to perform this task:

Remember that the following program listing is buggy!

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define BALLOT_FILE "ballot.txt"

typedef struct BallotList
{

char *question;
struct BallotList *next;

} BallotList;

void readBallot(BallotList **ballot);
int main(int argc, char **argv)
{

BallotList *ballot = NULL;
readBallot(&ballot);
if (ballot == NULL) {
printf("Error reading ballot!\n");
exit(1);

}

879

Part VI Deploying and Developing on OpenSolaris

printf("Ballot read successfully\n");
}

void
readBallot(BallotList **ballot)
{
char buf[1012];
BallotList *first = NULL;
BallotList *cur = NULL;
FILE *ballotFile = NULL;

if ((ballotFile = fopen(BALLOT_FILE, "r")) == NULL) {
return;

}

while (fgets(buf, 1011, ballotFile) != NULL) {
BallotList *next = malloc(sizeof(BallotList));
next->next = NULL;
strcpy(next->question, buf);

if (first == NULL) {
first = cur = next;

} else {
cur->next = next;
cur = next;

}
}

*ballot = first;
}

As a sample ballot file, you might use something like this:

$ cat ballot.txt
Test question one?
Test question two?
Test question three?

This program compiles fine, but it doesn’t run particularly well, as shown in the following
example:

$ /opt/SunStudioExpress/bin/cc -o voting voting.c
$./voting
Segmentation Fault (core dumped)

A segmentation fault usually signals some sort of memory error, but the output doesn’t indicate
where it occurred. Time for a debugger!

dbx example
You can use dbx to debug this program.

880

Developing on OpenSolaris 24

You can use dbx to debug C and C++ programs compiled with Sun Studio or GCC.
You can use GDB to debug C and C++ programs compiled with GCC, and C pro-

grams compiled with dbx, but it might not work properly on C++ programs compiled with Sun
Studio. That’s because the C++ debugging information and Application Binary Interface (ABI) are
not standard across compilers, and GDB doesn’t understand the Sun Studio debugging information
and ABI. Sun Studio, however, understands the GCC C++ debugging information and ABI.

To take advantage of symbolic debugging, you need to compile the program with the -g flag:

$ /opt/SunStudioExpress/bin/cc -o voting -g voting.c

Now you can run it under dbx:

$ /opt/SunStudioExpress/bin/dbx voting
For information about new features see `help changes’
To remove this message, put `dbxenv suppress_startup_message 7.7’
in your .dbxrc

Reading voting
Reading ld.so.1
Reading libc.so.1
(dbx) run
Running: voting
(process id 1078)
signal SEGV (no mapping at the fault address) in strcpy at 0xd1297134
0xd1297134: strcpy+0x0024: movl %eax,(%edi)
Current function is readBallot

49 strcpy(next->question, buf);
(dbx)

In some cases, it isn’t practical to rerun the buggy program to reproduce the prob-
lem. See the ‘‘Debugging core files’’ section later in this chapter for alternatives.

You already have more information than before because you can see exactly where the SEGV
occurred. One of the first things to do is view a full stack trace using the where command:

(dbx) where
[1] strcpy(0x8050bc9, 0x6f697473), at 0xd1297134

=>[2] readBallot(ballot = 0x8047d00), line 49 in "voting.c"
[3] main(argc = 1, argv = 0x8047d38), line 19 in "voting.c"

Because you have symbolic information, you can print the contents of variables in memory. The
SEGV occurred on a strcpy, so you can start with the two arguments to that function call:

(dbx) print buf
buf = "Test question two?\n"
(dbx) print next->question
next->question = 0x6f697473 "<bad address 0x6f697473>"

881

Part VI Deploying and Developing on OpenSolaris

It looks like there’s a problem with the question field of the next struct. To see where the
problem might come from, look at the code in readBallot right before the strcpy function
call using the list - command in dbx:

(dbx) list -
31 BallotList *cur = NULL;
32 FILE *ballotFile = NULL;
33
34 if ((ballotFile = fopen(BALLOT_FILE, "r")) == NULL) {
35 return;
36 }
37
38 while (fgets(buf, 1011, ballotFile) != NULL) {
39 BallotList *next = malloc(sizeof(BallotList));
40 next->next = NULL;

It looks like space is allocated for the BallotList structure, but take another look at the struc-
ture definition:

(dbx) whatis -t struct BallotList
struct BallotList {

char *question;
struct BallotList *next;

};

It looks like there’s no space allocated for the question field of the BallotList structure. You
need to replace the strcpy with strdup(), which allocates memory appropriately:

BallotList *next = malloc(sizeof(BallotList));
next->next = NULL;
next->question = strdup(buf);

Now the program works fine:

$ /opt/SunStudioExpress/bin/cc -o voting -g voting.c
$./voting
Ballot read successfully

GDB example
Debugging the program in GDB is almost identical to debugging it in dbx:

$ gcc -o voting -g voting.c
$ gdb voting
GNU gdb 6.3.50_2004-11-23-cvs
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-pc-solaris2.11"...
(gdb) run
Starting program: /export/home/nsolter/cdbg/voting

882

Developing on OpenSolaris 24

Program received signal SIGSEGV, Segmentation fault.
0xd1297134 in store () from /lib/libc.so.1
(gdb) where
#0 0xd1297134 in store () from /lib/libc.so.1
#1 0x08047e04 in ?? ()
#2 0x08050e4c in readBallot (ballot=0x8047d88) at voting.c:41
#3 0x08050d6f in main (argc=1, argv=0x8047db4) at voting.c:18
(gdb) up
#1 0x08047e04 in ?? ()
(gdb) up
#2 0x08050e4c in readBallot (ballot=0x8047d88) at voting.c:41
41 strcpy(next->question, buf);
(gdb) print buf
$1 = "Test question two?\n", ‘\0’ <repeats 33 times>, " 1

2 ·/~N\200\202:~N\000\000
\000\000\000\000\000\000\001\000\000\000\000*%~N\000@:~N¸y\004\b 1

2 ·/~N\000*%~N\200
\202:~N\000\000\000\000\000*%~N\200\202:~N\000@:~N~O;=~N 1

2 ·/~N\20310~N\000@:~Ny\004\b
\000*%~N\000z\004\b\"10~N\000*%~NÿÿÿÿpÁ?~NÜÇ?~N$r=~N\bz\004\b®\t=~N\003\000\000\000
\030z\004\b 1

2 \004=~N\003\000\000\000ÜÇ?~N9s=~NxÁ?~NDz\004\bjx=~N\003\000\000\000xÁ
?~Nxı̂?~NÜÇ?"...
(gdb) print next->question
$2 = 0x6f697473 <Address 0x6f697473 out of bounds>

(gdb) list
36 }
37
38 while (fgets(buf, 1011, ballotFile) != NULL) {
39 BallotList *next = malloc(sizeof(BallotList));
40 next->next = NULL;
41 strcpy(next->question, buf);
42
43 if (first == NULL) {
44 first = = next;
} else {
(gdb) ptype BallotList
type = struct BallotList {

char *question;
struct BallotList *next;

}

Attaching to live processes
You can use dbx and GDB to debug a live process even if you didn’t start the process under
the debugger by attaching to the process. The only catch is that you must have access to
the executable file for the process. For example, here’s how to attach to the process named
long-running with pid 1336 and the executable in the working directory:

$ pgrep long-running
1336
$ /opt/SunStudioExpress/bin/dbx long-running 1336
For information about new features see `help changes’
To remove this message, put `dbxenv suppress_startup_message 7.7’
in your .dbxrc

883

Part VI Deploying and Developing on OpenSolaris

Reading long-running
Reading ld.so.1
Reading libc.so.1
Attached to process 1336
stopped in __nanosleep at 0xd1310ad5
0xd1310ad5: __nanosleep+0x0015: jae __nanosleep+0x23
[0xd1310ae3, .+0xe]
Current function is main

4 sleep (10);
(dbx)

After attaching to the process, you can set breakpoints, using the cont command to continue
executing the program until it hits the next one:

(dbx) stop in sleep
dbx: warning: ‘sleep’ has no debugger info -- will trigger on first
instruction

(2) stop in _sleep
(dbx) cont
stopped in _sleep at 0xd12ff932
0xd12ff932: _sleep : pushl %ebp
Current function is main
sleep (10);

Proc tools such as pstack and pflags and the truss command are also quite
useful for debugging live processes and core files. These tools are discussed in

Chapter 14.

Debugging core files
Bugs aren’t always easily reproducible. Some bugs are timing or user-input dependent. Further-
more, running through a debugger might change the behavior or timing. OpenSolaris includes
a facility that enables post mortem debugging of a process that terminated abnormally. By default,
if OpenSolaris terminates a process because of a segmentation violation or another signal with
the disposition to dump a core file, then it dumps the process’ current address space and some
extra debugging information into a core file. You can open the core file in a debugger just as you
would attach to a live process, and examine the state of its memory. If the program was com-
piled with debugging information, you need access to all the symbolic information as well. For
example, when the voting program from the previous section terminated with a SEGV, it output
this message:

$./voting
Segmentation Fault (core dumped)

The ‘‘core dumped’’ after the notification of the segmentation fault means that the process’ mem-
ory was saved to a core file. Unless you’ve configured it otherwise, the core file is named core
in the working directory. The details of core file naming and using coreadm to tune core file
settings are discussed later in this chapter. You can open the core file in GDB or dbx. Unlike
with a live process, of course, you can’t actually execute the program:

$ file core
core: ELF 32-bit LSB core file 80386 Version 1, from ‘voting’

884

Developing on OpenSolaris 24

$ gdb voting core
GNU gdb 6.3.50_2004-11-23-cvs
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-pc-solaris2.11"...
Core was generated by `./voting’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.1...done.
Loaded symbols for /lib/libc.so.1
#0 0xd1297134 in store () from /lib/libc.so.1
(gdb) where
#0 0xd1297134 in store () from /lib/libc.so.1
#1 0x08047e30 in ?? ()
#2 0x08050e4c in readBallot (ballot=0x8047db8) at voting.c:41
#3 0x08050d6f in main (argc=1, argv=0x8047de4) at voting.c:18
(gdb) up
#1 0x08047e30 in ?? ()
(gdb) up
#2 0x08050e4c in readBallot (ballot=0x8047db8) at voting.c:41
41 strcpy(next->question, buf);
(gdb) print buf
$1 = "Test question two?\n", ‘\0’ <repeats 33 times>, ‘‘ 1

2 ·/~N\200\202:~N\000\000
\000\000\000\000\000\000\001\000\000\000\000*%~N\000@:~Ney\004\b 1

2 ·/~N\000*%~N\200
\202:~N\000\000\000\000\000*%~N\200\202:~N\000@:~N~O;=~N 1

2 ·/~N\20310~N\000@:~N\034z\004\b
\000*%~N0z\004\b\"10~N\000*%~NÿÿÿÿpÁ?~NÜÇ?~N$r=~N8z\004\b®\t=~N\003\000\000\000Hz\004
\b 1

2 \004=~N\003\000\000\000ÜÇ?~N9s=~NxÁ?~Ntz\004\bjx=~N\003\000\000\000xÁ?~Nxı̂?~NÜÇ?"...
(gdb)

dbx and GDB command summary
Table 24-2 summarizes the most useful dbx and GDB commands. The dbx and GDB command
sets are quite similar, but there are some important differences.

MDB
OpenSolaris includes another debugger called Modular Debugger (MDB). Unlike GDB and dbx,
MDB is designed for low-level debugging, in which symbolic information might not be available.
This means you can run MDB on a live process, on a core file, or even on the running kernel
itself, without access to the executable files. This debugger is particularly useful for diagnosing
problems that are not easily reproducible or that have occurred outside your environment (such
as at a customer site), where only the core file is available.

To get a feel for MDB, start with a simple example. Suppose the voting program in the previous
section was compiled without debugging information and all you have is the core file. You can
still get some information with MDB:

$ mdb core
Loading modules: [libc.so.1 ld.so.1]

885

Part VI Deploying and Developing on OpenSolaris

> ::status
debugging core file of voting (32-bit) from OS0805
file: /export/home/nsolter/cdbg/voting
initial argv: ./voting
threading model: native threads
status: process terminated by SIGSEGV (Segmentation Fault)
> ::stack
libc.so.1`strcpy+0x24(8047db0, 0)
main+0x18(1, 8047de4, 8047dec, 80509cf)
_start+0x7d(1, 8047e98, 0, 8047ea1, 8047eac, 8047ebc)
> $q

$

TABLE 24-2

dbx and GDB Commands

dbx Command GDB Command Behavior

help help Displays a list of commands

where where or bt Prints a stack trace

up/down up/down Moves up or down the stack

run run Runs the program

list list Prints the lines of high-level code at the current spot

print print Prints the value of an expression, such as a variable

whatis ptype Prints the definition of a type

stop <arg> break <arg> Sets breakpoints

cont cont Continues running the program after stopping at a
breakpoint

step step Runs the next line, stepping into function/method
calls. If the next line contains a function or method
call, then the debugger will stop such that the next
line to be executed is the first line of the nested
function/method.

next next Runs the next line, stepping over function/method
calls. The debugger will stop such that the next line
to be executed is the subsequent line in the same
function/method, having executed all nested
function/method calls in between.

clear clear Clears breakpoints

886

Developing on OpenSolaris 24

The stack trace shows that it failed inside strcpy. Your next steps might be to print the vari-
ables and arguments to the functions or to disassemble the code around the problem area to try
to track down the source of the bug. (These investigations require knowledge of your target plat-
form’s assembly, register usage, and stack memory layout, and so are beyond the scope of this
book.)

As you can see, debugging a random program with MDB without symbolic information can
be somewhat painful. MDB’s built-in debugging commands are mostly limited to examining
memory and providing the basic debugging functionality for setting breakpoints and stepping
through programs; but the real power of MDB lies, as its name implies, in its modularity and
extensibility. MDB enables application and kernel developers to write commands, called dcmds
and walkers, that can utilize specific information about the application being debugged. These
custom commands can help you extract information about the program without needing to
understand the program’s memory layout. To see a list of dcmds available at any point in MDB,
run ::dcmds. To see a list of walkers, run ::walkers.

Many useful dcmds and walkers are available for kernel debugging. Using MDB for
kernel debugging is described later in this chapter.

You can write your own module for MDB, containing dcmds and walkers specific to your appli-
cation. Consult the references in the ‘‘Resources’’ section near the end of this chapter for details.

Libumem

MDB is particularly useful when combined with the userland memory allocation library
libumem. This library is a port of the kernel memory allocator, known as the slab allocator, to
userland. It interposes on the memory allocation routines such as malloc and free, providing
a safer memory allocation library than that implemented in libc. In particular, it detects
common errors such as reading previously freed memory, writing to unallocated memory, and
the like. To run a program under libumem, set the shell environment variable LD_PRELOAD to
libumem.so, and provide options to it via the UMEM_DEBUG and UMEM_LOGGING variables.

The umem_debug(3MALLOC) man page describes the various options for the
UMEM_DEBUG and UMEM_LOGGING flags.

libumem works by putting extra space and debugging information around each user-requested
allocation, and by setting the uninitialized memory to recognizable byte patterns. Specifically,
each memory allocation starts with eight bytes of metadata, followed by the user data, then
the redzone and some debug metadata. Because libumem uses caches of pre-allocated memory
chunks, the user data is a chunk of memory that is at least as large as requested by the
user. The portion of memory that the user can use ends with the 0xbb value. Each word of
uninitialized memory in the user allocation is set to 0xbaddcafe. The redzone marks the end
of the user-allocated chunk, and is marked with the 0xfeedface indicator. For the purposes
of this example, that’s all you need to know. For details, see the references in the ‘‘Resources’’
section.

887

Part VI Deploying and Developing on OpenSolaris

For example, consider this trivial program that overflows a memory allocation in the heap:

$ cat mem-error.c
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char **argv)
{

char *ptr;
ptr = (char *)malloc(10);
strcpy(ptr, "Hello, world!");

printf("%s", ptr);
free(ptr);

}

When you run it under libumem, libumem detects the memory error and aborts the program to
generate a core file:

$ LD_PRELOAD=libumem.so UMEM_DEBUG=default UMEM_LOGGING=transaction,contents,fail\
./mem-error

Abort (core dumped)

Now you can examine this core file with MDB, or one of the other debuggers described
previously:

$ mdb core
Loading modules: [libumem.so.1 libc.so.1 ld.so.1]

Note that the libumem MDB module is loaded because the program was run with libumem. As
usual, first check the status, although in this case it doesn’t tell you anything you don’t already
know:

> ::status
debugging core file of mem-error (32-bit) from OS0805
file: /export/home/nsolter/cdbg/mem-error
initial argv: ./mem-error
threading model: native threads
status: process terminated by SIGABRT (Abort)

Next, find all the dcmds and walkers in the libumem module:

> ::dmods -l libumem.so.1

libumem.so.1
dcmd allocdby - given a thread, print its allocated buffers
dcmd bufctl - print or filter a bufctl
dcmd bufctl_audit - print a bufctl_audit

888

Developing on OpenSolaris 24

dcmd findleaks - search for potential memory leaks
dcmd freedby - given a thread, print its freed buffers
dcmd ugrep - search user address space for a pointer
dcmd umalog - display umem transaction log and stack traces
dcmd umastat - umem allocator stats
dcmd umausers -

display current medium and large users of the umem allocator
dcmd umem_cache - print a umem cache
dcmd umem_debug - toggle umem dcmd/walk debugging
dcmd umem_log - dump umem transaction log
dcmd umem_malloc_dist - report distribution of outstanding malloc()s
dcmd umem_malloc_info - report information about malloc()s by cache
dcmd umem_status - Print umem status and message buffer
dcmd umem_verify - check integrity of umem-managed memory
dcmd vmem - print a vmem_t
dcmd vmem_seg - print or filter a vmem_seg
dcmd whatis - given an address, return information
walk allocdby - given a thread, walk its allocated bufctls
walk bufctl - walk a umem cache’s bufctls
walk bufctl_history - walk the available history of a bufctl
walk freectl - walk a umem cache’s free bufctls
walk freedby - given a thread, walk its freed bufctls
walk freemem - walk a umem cache’s free memory
walk leak -

given a leak ctl, walk other leaks w/ that stacktrace
walk leakbuf -

given a leak ctl, walk addr of leaks w/ that stacktrace
walk umem - walk a umem cache
walk umem_alloc_112 - walk the umem_alloc_112 cache

...

Generally, the dcmd to start with is ::umem_status. This command returns the memory error:

> ::umem_status
Status: ready and active
Concurrency: 2
Logs: transaction=64k content=64k fail=64k (inactive)
Message buffer:
umem allocator: redzone violation: write past end of buffer
buffer=80a8fd0 bufctl=80aee30 cache: umem_alloc_24
previous transaction on buffer 80a8fd0:
thread=1 time=T-0.000055947 slab=80a9f98 cache: umem_alloc_24
libumem.so.1’umem_cache_alloc_debug+0x14f
libumem.so.1’umem_cache_alloc+0x180
libumem.so.1’umem_alloc+0xc5
libumem.so.1’malloc+0x27
mem-error’main+0xf
mem-error’_start+0x7d
umem: heap corruption detected

889

Part VI Deploying and Developing on OpenSolaris

stack trace:
libumem.so.1’umem_err_recoverable+0x39
libumem.so.1’umem_error+0x47f
libumem.so.1’umem_free+0xf7
libumem.so.1’process_free+0x55
libumem.so.1’free+0x17
mem-error’main+0x42
mem-error’_start+0x7d

Here, the detected error was a redzone violation. Based on libumem’s memory layout,
described earlier, that means the program wrote past the end of its allocated memory into
the redzone. With such a simple program, it’s immediately obvious based on the stack trace
of the buffer allocation which allocation it was (the only one in the program), but in a more
complicated program you might need to disassemble the code to figure out where the allocation
occurred:

> main+0xf::dis
main: pushl %ebp
main+1: movl %esp,%ebp
main+3: subl $0x8,%esp
main+6: pushl $0x0
main+8: pushl $0xa
main+0xa: call -0x173 <PLT=libumem.so.1`malloc>

main+0xf: addl $0x8,%esp
main+0x12: movl %eax,-0x8(%ebp)
main+0x15: pushl $0x8050af0
main+0x1a: movl -0x8(%ebp),%eax
main+0x1d: pushl %eax
main+0x1e: call -0x177 <PLT=libc.so.1`strcpy>

main+0x23: addl $0x8,%esp
main+0x26: movl -0x8(%ebp),%eax
main+0x29: pushl %eax
main+0x2a: pushl $0x8050b00
main+0x2f: call -0x178 <PLT=libc.so.1`printf>

This discussion of libumem and MDB is really just a taste of their true power. For example,
another useful libumem dcmd not demonstrated here is findleaks, which detects memory
leaks in C and C++ programs. For more details see the references listed in the ‘‘Resources’’
section. Although the overhead of learning the somewhat arcane commands and studying your
assembly and memory layout might seem prohibitive, a one-time investment can quickly pay off
with reduced debugging time.

Because libumem is implemented as an interposed memory allocator, it detects only
heap-based memory errors, not stack-based problems. To detect stack-based prob-

lems, you need to use another tool. Unfortunately, some of the best tools, such as Rational Purify,
are not open source, so you need to purchase a license to use them.

890

Developing on OpenSolaris 24

Other Languages
If Java, C, and C++ aren’t your thing, don’t worry! OpenSolaris provides development environ-
ments for almost any programming or scripting language. This section shows you how to set up
your system to code in a few of the most popular ones, including Perl, Python, Ruby, PHP, and
good old shell scripting.

Perl
The OpenSolaris default installation includes Perl in /usr/perl5. As of this writing, the exact
version is 5.8.4. /usr/bin/perl is a symbolic link to /usr/perl5/5.8.4/bin/perl, so it
should be in your default path.

For example, you can run a Perl script as follows:

$ cat test.pl
#!/usr/bin/perl

print "hello, world!\n";
$ perl test.pl
hello, world!

Use the following if the file is executable:

$./test.pl
hello, world!

Python
Like Perl, Python is also in the default OpenSolaris installation. In fact, it’s used to implement
some significant pieces of OpenSolaris such as the installer and Image Packaging System. The
command /usr/bin/python is a symbolic link to the latest version, which, as of this writing,
is 2.4.4. You can run Python scripts in the usual way:

$ cat test.py
#!/usr/bin/python

print "Hello, world!"
$ python test.py
Hello, world!

Or, if the file is executable:

$./test.py
Hello, world!

891

Part VI Deploying and Developing on OpenSolaris

Ruby on Rails
Ruby is not included by default on OpenSolaris, but it is available from the package repository.
As described in Chapter 23, you can install the SUNWruby18 package:

pkg install SUNWruby18

Alternatively, you can install the SUNWruby-dev group package:

pkg install SUNWruby-dev

In addition to Ruby itself, SUNWruby-dev pulls in the following:

■ Java Development Kit (JDK) 6

■ NetBeans IDE

■ Mercurial, Subversion, and CVS source code management

■ Firefox web browser

■ Squid and memcached (mentioned in Chapter 23).

After installation of either SUNWruby18 directly or the SUNWruby-dev group package,
/usr/bin/ruby is a symbolic link to the latest version of Ruby (1.8.6 as of this writing). You
can run Ruby scripts in the usual way:

$ cat test.rb
#!/usr/bin/ruby

puts ‘Hello, world!’
$ ruby test.rb
Hello, world!

Or, if the file is executable:

$./test.rb
Hello, world!

If you prefer JRuby, you can find it in the SUNWjruby package.

The SUNWruby18 package also includes the RubyGem package manager for Ruby in
/usr/bin/gem. You can use gem to install Rails:

gem update
Updating installed gems...
Bulk updating Gem source index for: http://gems.rubyforge.org
Gems: [] updated
gem install rails --include-dependencies
Bulk updating Gem source index for: http://gems.rubyforge.org
Successfully installed rails-2.1.0

892

Developing on OpenSolaris 24

Successfully installed rake-0.8.1
Successfully installed activesupport-2.1.0
Successfully installed activerecord-2.1.0
Successfully installed actionpack-2.1.0
Successfully installed actionmailer-2.1.0
Successfully installed activeresource-2.1.0
Installing ri documentation for rake-0.8.1...
Installing ri documentation for activesupport-2.1.0...
Installing ri documentation for activerecord-2.1.0...
Installing ri documentation for actionpack-2.1.0...
Installing ri documentation for actionmailer-2.1.0...
Installing ri documentation for activeresource-2.1.0...
Installing RDoc documentation for rake-0.8.1...
Installing RDoc documentation for activesupport-2.1.0...
Installing RDoc documentation for activerecord-2.1.0...
Installing RDoc documentation for actionpack-2.1.0...
Installing RDoc documentation for actionmailer-2.1.0...
Installing RDoc documentation for activeresource-2.1.0...

Note that Rails is installed in /usr/ruby/1.8/bin, without symbolic links in /usr/bin. For
example:

$ /usr/ruby/1.8/bin/rails myapp
create
create app/controllers
create app/helpers
create app/models

...

If you’ll be using Rails a lot, you can create your own symlink in /usr/bin. You can also
develop Ruby on Rails applications with the NetBeans IDE, described later in this chapter.

PHP
Like Ruby, PHP is not installed by default on OpenSolaris, but it is readily available from the
package repository. Because PHP is typically used as part of the Apache, MySQL, and PHP
(AMP) stack, it’s included in the amp-dev group package.

Chapter 23 describes the contents of the amp-dev package and how to install it, how
to install just the PHP packages, and how to use PHP with Apache and MySQL.

Shell scripting
As discussed in Chapter 3, OpenSolaris contains all the standard shells, including bash, csh,
and ksh. If you’re familiar with Linux, you’re probably most comfortable scripting with bash,
which is the default user shell. Many of the scripts in OpenSolaris, however, are written using
the Korn Shell.

893

Part VI Deploying and Developing on OpenSolaris

OpenSolaris includes ksh93, which is slightly different from the ksh88 that is the
default Korn shell in Solaris 10 and Solaris Express.

Build Automation
OpenSolaris supports both Apache Ant and Make for configuring an automated build environ-
ment for your software projects. Ant is available in the SUNWant package, Solaris Make is in the
SUNWsprot package, and GNU Make is in SUNWgmake. The SUNWsprot package should be
installed by default. You can install the other two as follows:

pkg install SUNWant
pkg install SUNWgmake

If you’re unfamiliar with Ant or Make, consult one of the references in the ‘‘Resources’’ section.

Solaris Make and GNU Make differ from each other and from the base System V
Make. For example, conditional or target-specific macro definitions in Solaris Make

look like this:

target := MYMACRO=myvalue

The equivalent in GNU Make looks like this:

target : MYMACRO=myvalue

Consult the documentation for whichever variant of Make you choose to ensure that you’re using
it correctly.

NetBeans
NetBeans is an open source, cross-platform integrated development environment (IDE) written
in Java. If you’re running the OpenSolaris distribution, you can obtain NetBeans from the pack-
age repository:

pkg install netbeans

If you’re using a different distribution, you can download NetBeans from www.netbeans.org/.

Once you’ve installed NetBeans, you can launch the IDE by selecting Applications�Developer
Tools�NetBeans IDE, or by running /usr/netbeans/bin/netbeans from the command line.
When the application starts, a window like the one shown in Figure 24-1 appears.

894

Developing on OpenSolaris 24

What about Eclipse?

I f you’ve done much development on Linux or other platforms, you may be more familiar with
the Eclipse IDE. You can install Eclipse from the package repository with pkg install eclipse,

then launch it by running /usr/eclipse/eclipse.

FIGURE 24-1

NetBeans is a full-featured IDE.

NetBeans overview
NetBeans provides support for several different programming languages, including Java, C/C++,
and Ruby; but before diving into the language-specific features of NetBeans, it’s useful to get an
overview of the functionality. This section uses the Java programming language, but the func-
tionality applies to projects of any type.

895

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-2

Use the New Project dialog to create a Java Application project.

If you’ve never used NetBeans, a good place to familiarize yourself with the application is a basic
console application. To create a Java console application, select File�New Project. Select Java in
the Categories list and Java Application in the Projects list (see Figure 24-2).

In the next screen, choose your project name, project location, the name of your main class, and
other settings. After you click Finish, you’ll see a window like the one shown in Figure 24-3
(minus the Output pane at the bottom).

Note that NetBeans creates a source file for you, Main.java. You can edit the file to put some
code application logic inside the main method. For example, you could add the following:

System.out.println("Hello, world");

You can then compile and run the program by selecting Run�Run Main Project. This command
compiles the program and then runs it, returning the output in an Output pane at the bottom of
the screen, as shown in Figure 24-3.

You can add more files to your project via File�New File. The pop-up window provides a
choice of file types. For basic Java console applications, you’ll probably use only Java Class
and Java Interface. When you’re done with the project, close it by selecting File�Close
<project name>.

896

Developing on OpenSolaris 24

FIGURE 24-3

Running the new Java Application project brings up an Output pane.

NetBeans for Java
Now that you’ve seen how to create, modify, and run a project in NetBeans, it’s time to step
back and get an overview of the Java development features. NetBeans comes with some sample
projects, which make it easy to explore the full capabilities and features of NetBeans Java
development. This section uses the AnagramGame sample. First, close the project you created
earlier. Then create a new AnagramGame project based on the sample by choosing File�New
Project and then selecting Samples� Java in the Categories list and Anagram Game in the
Projects list, as shown in Figure 24-4.

On the next screen, accept the defaults and click Finish. Now that you have a project open, you
can explore the Files, Navigation, Building, and Debugging features of the IDE.

Files
There are a few different ways you can explore the files in your project (see Figure 24-5). You
can open a file by selecting File�Open File, or you can click the Files tab. If the Files tab is not
visible, select Window� Files. From the Files tab you can explore the source of your project.
Double-click a file to open it in the editing pane on the right.

897

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-4

Use the New Project dialog to create an Anagram Game sample project.

In addition to editing as you would in any text editor, NetBeans provides some sophisticated
editing tools, most of which are under the Source and Refactor menus. For example, you can
select a chunk of code and then choose Refactor� Introduce Method to move it into a new
method. In addition, the editor provides suggestions for you as you type, such as for method
names that a given object could call.

You can add a new file with the File�New File menu option, which brings up a wizard to help
you choose the kind of file, such as a Java class file, a Java interface file, and so on. You can also
select the project to which the source file should be added.

To add an existing file to a project, right-click on Source Files in the Projects tab of the top, left
window and select Add Existing Item. Similarly, you can remove a file from the project or delete
it by right-clicking on it in the Source Files list and selecting Remove From Project or Delete.

Navigation
With a large project, it’s often difficult to find the specific method or class that you need. Net-
Beans provides several quick ways to jump around within the project. One of these is the Nav-
igator, which sits below the File browser (refer to Figure 24-5). If it doesn’t show up when a
file is opened, select Window�Navigating�Navigator. The Navigator shows all the definitions
in the global and class scope in the currently open file. Double-clicking on a name immediately
puts the cursor at that definition in the source file.

898

Developing on OpenSolaris 24

FIGURE 24-5

NetBeans provides tools for browsing files.

You can also use the Navigate�Go to File and Navigate�Go to Type menu options to jump to
files and type definitions.

Finally, you can right-click on any name in a file, select Navigate in the pop-up menu, and
select one of the options. For example, clicking on an object name gives you the option to jump
to the source, declaration, Super implementation, and so on. One interesting option is to Inspect
Members. Selecting this option brings up a nifty browser that enables you to explore the class
interface, as shown in Figure 24-6.

The navigation facilities work for classes in the Java libraries as well as your own
classes.

NetBeans contains other navigation features, which you can explore on your own as you start to
use it.

Building and running
From the Build menu you can build your application and change build options. When you
build a project, the build output appears in the Output pane at the bottom of the window. If the
Output pane isn’t open, select Window�Output�Output from the menu.

899

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-6

NetBeans provides a useful tool for inspecting class members.

To change build options, select File�<project name> Properties. Here you can add source files
and libraries and set other configuration options, such as whether to build a Jar file or generate
debugging information.

To run the project, select Run�Run Main Project. If the project build is not up-to-date, select-
ing the Run menu item forces the project to rebuild before running. For a command-line pro-
gram, the program output shows up in the Output pane.

Debugging
NetBeans enables you to debug Java programs directly within the IDE, providing the same func-
tionality available in JDB, but in graphical form. You can set breakpoints by clicking on the left
column of the editor. Breakpoints are designated by a red square. Figure 24-7 shows a break-
point in the one line in Main.

Once you’ve set your breakpoints, select Run�Debug Main Project. A Debugger Console
appears in the Output pane, and a debugging pane on the right shows the value of local
variables, the call stack, breakpoints, and watchpoints (watches). Figure 24-8 shows these
features.

900

Developing on OpenSolaris 24

FIGURE 24-7

You can debug Java programs with breakpoints.

Breakpoint

At this point, you can step through the program by selecting Step Over and Step Into from the
Run menu (the equivalent of step and next in JDB). You can also Continue the program to the
next breakpoint, or set breakpoints and watchpoints.

Profiling
To analyze the performance of your Java program, select Profile� Profile Main Project. The first
time you select it, you’ll be asked to enable profiling for the project. Click OK and the Profile
window pops up, providing the options shown in Figure 24-9.

Click Run and agree to let it calibrate your system. The first time you profile an application,
you need to click through a few screens before the program starts. When the application
completes, choose Yes in the pop-up window that asks whether you want to take a snapshot of
the collected results. You’ll be presented with information in the editor window, as shown in
Figure 24-10.

901

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-8

During a debugging session, a pane on the lower right provides detailed information.

As shown by the amount of data available for even a small program, profiling can be a
powerful tool.

Java GUI applications
In addition to the Java Console application projects shown earlier, NetBeans contains extensive
support for developing Java applications with graphical user interfaces. To create such a
program, select File�New Project, and then choose Java in the Categories list and Java Desktop
Application in the Projects list. The project contains a complete skeleton application using the
Swing framework. The nifty thing about using NetBeans to develop a Swing application is that
it provides a graphical editor for the GUI components. To select the graphical tool, click the
Design tab in the text editor for a class that implements a graphical object. For example, in the
skeleton project just created, the DesktopApplication1View.java class (the class name will
vary according to whatever name you gave your project) enables you to use the graphical design
tool, as shown in Figure 24-11.

You can drag and drop GUI components from the Palette on the right onto the frame in the edi-
tor window.

902

Developing on OpenSolaris 24

FIGURE 24-9

Starting a profiling session brings up this initial window.

NetBeans C and C++ development
NetBeans supports C and C++ development with either the GNU compiler set or the Sun Stu-
dio Express compiler set described earlier. You can create a C/C++ project by selecting C/C++
from the Categories list and C/C++ Application from the Projects list in the New Project dialog.
Unlike a Java project, a C/C++ project is initially empty, other than the makefile.

Files
You can create a file using File�New File. Note that you can select the project to which the file
should be added at file creation time. As with Java projects, you can add and remove files from
the project at any time. The Source and Refactor menu items can be used on C and C++ source
files as well. See the previous section for Java development.

Navigation
The navigation support for C and C++ projects is similar to that for Java projects. One useful
feature that applies only to C and C++ is the capability to view or inspect the Include Hier-
archy, available by right-clicking anywhere in the editor and selecting either Navigate�View
Includes Hierarchy or Navigate� Inspect Includes Hierarchy from the pop-up menu. That brings
up either a new window on the right or a pop-up window (see Figure 24-12) that enables you
to transitively explore the header files included in the selected source or header file.

903

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-10

The profiling results generate data in the editor window.

Building and running
By default, NetBeans uses the GNU compiler collection (GCC) if it can find it in your path. If
you’ve installed GCC as described earlier in this chapter, NetBeans should find it automatically.

You can also use the Sun Studio Express compiler collection, but you need to add it manually.
Select Tools�Options, and click the C/C++ tab (second from the right on the top panel). Click
the Add button. In the Add New Tool Collection window that appears, enter the path to the
Sun Studio Express compiler collection and select Sun Studio 12 as the Tool Collection Fam-
ily. Unfortunately, as of this writing, NetBeans doesn’t recognize the Sun Studio Express dbx
debugger.

Alternatively, Sun Studio Express comes with its own IDE, launched with
/opt/SunStudio Express/bin/sunstudio. This IDE is built on NetBeans, so it works
almost identically, but it is configured to use the Sun Studio Express compilers and debuggers.
Figure 24-13 shows the Sun Studio Express IDE.

The Sun Studio IDE also enables you to use GCC, so for C and C++ development you should
generally use the Sun Studio version of NetBeans, rather than NetBeans itself. For simplicity, the
remainder of this discussion refers to the IDE as Sun Studio.

904

Developing on OpenSolaris 24

FIGURE 24-11

Use Java’s graphical design tool to visually edit your graphical layout.

Building and running C and C++ programs in Sun Studio generally works the same for C and
C++ applications as for Java applications. As with Java projects, you can adjust the build con-
figuration through File�<project name> Properties. There you can select the compiler collec-
tion, target platform, include directories, and so on.

When running a console application, the IDE brings up a new window to show the
output, running with the working directory as the top-level directory of your project.

Therefore, that’s the place to put configuration files or any other files the program expects to find.

Debugging
Sun Studio provides a GUI interface to either GDB or dbx, depending on the compiler collec-
tion. You can run the program through the debugger just as you would a Java program, select-
ing Run�Debug Main Project. Like the graphical Java debugger, the C++ debugger brings up a
window with the local variables, call stack, breakpoints, watchpoints, and so on. For example,
Figure 24-14 shows what the IDE looks like when debugging the voting program introduced
earlier in this chapter.

905

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-12

Inspecting the include hierarchy is one of the useful navigation tools for C and C++ in NetBeans.

Profiling C and C++ programs is not supported in Sun Studio or NetBeans, so the
Sun Studio IDE omits the Profile menu altogether. However, DTrace, discussed in

Chapter 15, provides significant profiling capabilities for any application running on OpenSolaris.
In fact, there is a DTrace plug-in available for the IDE that works with both NetBeans and Sun
Studio Express. The next section has details on installing plug-ins.

NetBeans plug-ins
In addition to its core functionality, NetBeans is extensible with plug-ins. These enhancements
range from support for the Mercurial SCM and DTrace to jMaki AJAX and PHP. Some of the
plug-ins are community contributed.

To install a plug-in, select Tools� Plugins. The Plugins pop-up window opens
(see Figure 24-15).

906

Developing on OpenSolaris 24

FIGURE 24-13

The Sun Studio IDE is built on NetBeans.

You can update your already installed plug-ins from the Updates menu. The more interesting
area is the Available Plugins tab, which enables you to select and install any of the 80 or so
plug-ins available.

NetBeans web application development
In addition to supporting standalone Java, C, and C++ applications, NetBeans provides an envi-
ronment for developing various kinds of web applications.

To start a web application, create a new project and from the New Project window, select Web
as the Category and Web Application as the Project. On the next screen, select a development
server, such as GlassFish or Apache Tomcat, that is installed on your system. The examples
in this chapter use Apache Tomcat 5.5, and assume that it has already been installed and
configured.

See Chapter 23 for instructions on installing and configuring GlassFish, Tomcat, and
other web servers, servlet engines, and application servers.

907

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-14

You can debug a C project with the Sun Studio IDE.

The first time you create a web application you need to register a server with the IDE. To do so,
select the Add button to the right of the Server box. Select Tomcat 5.5 (or whichever server you
want to use). On the next screen, fill in the server details, as shown in Figure 24-16.

This screen requires the name and password of a Tomcat user in the ‘‘manager’’ role.
The option to ‘‘Create user if it does not exist’’ doesn’t seem to work, so you need

to add the user and role yourself. To do so, edit the file /var/apache/tomcat/conf/tomcat-
users.xml to add the following two lines (substituting your desired username and password):

<role rolename="manager"/>

<user username="netbeans" password="netbeans" roles="manager"/>

Then restart Tomcat:

/usr/apache/tomcat/bin/shutdown.sh
Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java
/usr/apache/tomcat/bin/startup.sh

908

Developing on OpenSolaris 24

Using CATALINA_BASE: /var/apache/tomcat
Using CATALINA_HOME: /usr/apache/tomcat
Using CATALINA_TMPDIR: /var/apache/tomcat/temp
Using JRE_HOME: /usr/java

FIGURE 24-15

Many plug-ins are available for NetBeans.

After adding the server, click Next to select frameworks such as Java Server Faces or Struts, or
click Finish if you don’t want to use any frameworks.

You can edit the Tomcat server configuration within NetBeans by selecting
Tools� Servers.

The project starts you off with a skeleton index.jsp and all the configuration files necessary
to run the service under a server such as Tomcat. Running the project from the IDE causes Net-
Beans to build a Web Archive (WAR) file, deploy it to Tomcat, and open Firefox to test the web
application (which in this case is just a Hello, World), as shown in Figure 24-17.

You can add various types of files to the project, including JSP pages and Java Servlets, HTML,
CSS, JavaScript, and many others, as shown in Figure 24-18.

909

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-16

You must specify some configuration options when adding the Apache server.

Plug-ins for web applications

Many of the available NetBeans plug-ins are for web development. For example, you can add the
GWT4NB plug-in to provide support for the Google Web Toolkit within your web applications.
Once you’ve added the plug-in, a GWT RPC Service is included as a possible file type when you
add a file.

Web application Palette

As with a Java GUI application, a web application project enables you to drag and drop HTML
and other elements from the Palette pane to your JSP, HTML, and other file types, as shown in
Figure 24-19.

Debugging and profiling web applications

You can debug web applications, which among other features enables you to place breakpoints
in servlet code and step through the application as it’s being run through Tomcat. It also places
the Tomcat logs in the Output pane, as shown in Figure 24-20.

910

Developing on OpenSolaris 24

FIGURE 24-17

Testing the web application opens the Firefox browser.

FIGURE 24-18

You can add files of many different types to a web application project.

911

Part VI Deploying and Developing on OpenSolaris

FIGURE 24-19

Use the web application Palette to edit your layout visually.

FIGURE 24-20

Debugging a web application is similar to debugging a C or Java application.

912

Developing on OpenSolaris 24

You can profile web applications as well using the Profile menu. See the NetBeans documenta-
tion for details.

More for NetBeans

In addition to the Java, C, C++, and web application development environments described
so far, NetBeans supports a wide variety of other development environments and tools. For

example, you can create Ruby, JRuby, and Ruby on Rails projects, which can integrate directly from
NetBeans with a database. NetBeans also includes support for both CVS and Subversion Source
Code Management systems. You can check out and commit files directly from the Versioning
menu. Support for Mercurial is available as a plug-in. Consult the NetBeans documentation at
http://netbeans.org for more details.

Source Code Management
Any development project involving more than one person or intended as more than a one-off
prototype needs some form of version control, also known as source code management (SCM).
SCM software supports two tasks: enabling multiple authors to work on the project simulta-
neously, and keeping revision history and versioning information about the source code files.
There are two major types of SCM software: centralized, whereby the code is kept in a central
repository, and distributed, whereby each developer has one or more copies of the complete
repository.

OpenSolaris includes several different SCM systems, including CVS, Subversion, and Mercurial,
all of which are open source. These SCMs enable concurrent editing of files by multiple
developers — resolved by merging, rather than requiring specific exclusive locking of files for
editing.

The original Source Code Control System (SCCS) is also still available in OpenSolaris,
but it’s not suitable for multi-person developer projects because it doesn’t support

concurrent editing or merging very well. Use one of the newer SCM systems instead.

CVS
The Concurrent Versions System (CVS) is an open source SCM system that has been around
since the 1980s. It’s a centralized SCM that has decreased in popularity recently in favor
of newer systems such as Subversion and Mercurial. Nonetheless, it has the benefit of
being familiar to many developers, so it might be a reasonable choice for your projects.

913

Part VI Deploying and Developing on OpenSolaris

OpenSolaris includes CVS in the SUNWcvs package. If you’ve installed java-dev, ss-dev,
gcc-dev, amp-dev, or ruby-dev, you already have it. Otherwise, you can install it as
follows:

pkg install SUNWcvs

To access all the CVS functionality, use the /usr/bin/cvs command.

Creating a repository

As a centralized SCM, CVS uses a single central repository. You should create this repository on
a server machine to which all the development machines can connect via NFS or SSH. You can
create the actual repository in a single cvs init command, which creates a CVSROOT subdirec-
tory in the specified directory containing the administrative files:

$ mkdir myproj
$ cvs -d /export/home/nsolter/myproj init
$ ls myproj
CVSROOT

Next, add at least one directory to the repository with the cvs import command:

$ mkdir devdir
$ cd devdir
$ export CVSROOT=/export/home/nsolter/myproj
$ cvs import -m "created devdir" devdir myvendortag myreleasetag

No conflicts created by this import

The strings myvendortag and myreleasetag can be set to whatever is appropriate for your
project. Now your repository is ready to use, although it doesn’t contain any source files
yet.

With the default configuration, all users who access the repository must have write
access to create lock files. If there’s a default group, such as staff, of which all

users are members, then you can give the group write access.

Checking out a repository

Never work directly in the repository. To do any development work, check out a working
copy of the repository, even if it’s on the same machine. To do so, use the cvs checkout
command.

914

Developing on OpenSolaris 24

The cvs command uses the CVSROOT environment variable to find the repository.
You can override that variable with the -d option to cvs.

For example, to check out a repository to which you have direct file system access (e.g., via
NFS), you can simply set CVSROOT to the path to the repository and issue the cvs checkout
command:

$ mkdir mycopy
$ cd mycopy
$ export CVSROOT=/export/home/nsolter/myproj
$ cvs checkout devdir
cvs checkout: Updating devdir

You now have a working copy of the devdir directory in the repository.

You can also, of course, access CVS remotely without direct file system access. See
the documentation for details.

Working with a repository

Once you’ve checked out a repository, you can create and modify files in your working direc-
tory as usual. However, those changes don’t propagate to the repository unless you specifically
commit them.

The commands in this section all use the CVSROOT environment variable. This section
assumes you’ve set that variable to point to the CVSROOT.

To add a file, use cvs add:

$ cvs add test.c
cvs add: scheduling file `test.c’ for addition
cvs add: use `cvs commit’ to add this file permanently

To check in changes (additions, deletions, and modifications), use cvs commit:

$ cvs commit
cvs commit: Examining .
/export/home/nsolter/myproj/devdir/test.c,v <-- test.c
initial revision: 1.1

cvs commit brings up your default editor, where you can add your comments for this revision.
After you exit the editor, CVS commits the changes.

915

Part VI Deploying and Developing on OpenSolaris

To refresh your working copy with the latest changes in the repository, run cvs update:

$ cvs update
cvs update: Updating .
U test2.c

As shown here, the update command lists all the files that it is updating.

There is no symmetric equivalent to the checkout subcommand, such as checkin.
Once you’ve checked out your files, you check in changes with commit and refresh

your working copy with update.

Handling conflicts
Always update your repository before committing. Otherwise, if there is a conflict, then CVS
issues an error:

$ cvs commit
cvs commit: Examining .
cvs commit: Up-to-date check failed for `test.c’
cvs [commit aborted]: correct above errors first!

The update flags files with conflicts:

$ cvs update
cvs update: Updating .
RCS file: /export/home/nsolter/myproj/devdir/test.c,v
retrieving revision 1.1
retrieving revision 1.2
Merging differences between 1.1 and 1.2 into test.c
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in test.c
C test.c

It’s your responsibility to fix the conflicts manually. When you open the merged file, you can
see that CVS has put the merge output directly in the file:

printf("Hello, world!\n");
<<<<<<< test.c

return (0);
=======

printf("And hello, universe!\n");
>>>>>>> 1.2

After fixing the file (in this case accepting both changes), you can then commit:

$ cvs commit
cvs commit: Examining .
/export/home/nsolter/myproj/devdir/test.c,v <-- test.c
new revision: 1.3; previous revision: 1.2

916

Developing on OpenSolaris 24

Viewing history

You can view the revision history of each file with cvs annotate and cvs log:

$ cvs annotate test.c

Annotations for test.c

1.1 (test 07-Jul-08): #include <stdio.h>

1.1 (test 07-Jul-08):
1.1 (test 07-Jul-08): int main(int argc, char **argv)
1.1 (test 07-Jul-08): {
1.1 (test 07-Jul-08): printf("Hello, world!\n");
1.3 (test 07-Jul-08): return (0);
1.2 (nsolter 07-Jul-08): printf("And hello, universe!\n");
1.1 (test 07-Jul-08): }
$ cvs log test.c

RCS file: /export/home/nsolter/myproj/devdir/test.c,v
Working file: test.c
head: 1.3
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:

revision 1.3
date: 2008-07-07 11:58:22 -0600; author: test; state: Exp; lines: +1 -0;
commitid: 3UbdDsW5rzpMNT9t;

Added exit and fixed merge

revision 1.2
date: 2008-07-07 11:54:25 -0600; author: nsolter; state: Exp; lines: +1 -0;
commitid: Kdnr7fOLUyVoMT9t;

Added line to test.c

revision 1.1
date: 2008-07-07 11:43:46 -0600; author: test; state: Exp; commitid:
wr3qeF5u6ccJIT9t;

Added test.c

These examples just scratch the surface of CVS. It supports more advanced features as well, such
as rolling back to previous versions of files. Consult the documentation for details.

917

Part VI Deploying and Developing on OpenSolaris

Subversion
Although historically popular, CVS is somewhat creaky. For example, it lacks file groupings
or atomic commit, treating changes to each file separately. Subversion SCM is intended to be
a replacement for CVS, and is available on OpenSolaris in the SUNWsvn package. If you’ve
installed java-dev, ss-dev, gcc-dev, amp-dev, or ruby-dev, then you have the package.
Otherwise, you can install it explicitly:

pkg install SUNWsvn

Subversion is designed to have the same look and feel as CVS, so if you’re familiar with CVS,
switching to Subversion should be fairly easy.

Creating a repository
The first thing you need to do to use Subversion is create a repository. To do so, use the
svnadmin command. Note that you do not need to create the directory beforehand:

$ svnadmin create /export/home/nsolter/mysvnproj

Next, you need to import at least one directory. This example imports the empty devdir direc-
tory from the CVS example earlier:

$ svn import devdir file:///export/home/nsolter/mysvnproj/devdirproj/
\-m "initial import"

Committed revision 1.

The first argument to svn import, devdir, is the directory to be imported, and the second
argument, file:///export/home/nsolter/mysvnproj/devdirproj/, is the path within
the repository in which to import it. Now your repository is ready to use, although it doesn’t
contain any source files yet.

Configuring a Subversion server
Subversion supports several different methods for clients to access the server, including the
lightweight Subversion server daemon, the Apache web server, SSH, and direct file system
access. The configuration for each of these is different. The examples in this book use the
svnserver daemon because it is the simplest to configure, but consider using SSH for more
security in your real deployments. Consult the documentation for details on the other methods.

To configure the Subversion server, simply run the svnserve command. You can run it as a
nonprivileged user because it listens on the nonprivileged port 3690 by default:

$ svnserve –d

The server is now ready to serve the repository to clients; but before clients
can access the repository, you need to configure the authentication. Edit the

918

Developing on OpenSolaris 24

<svnroot>/conf/svnserve.conf file to uncomment the password-db line and the
realm line. You can use a different realm name — the name is irrelevant to the authentication.
In the mysvnproj repository created in the previous section, the absolute path of this file is
/export/home/nsolter/
mysvnproj/conf/svnserver.conf. The two lines in the file should look something
like this:

password-db = passwd
...
realm = My Realm

Next, add the passwords in plaintext to the passwd file in the same directory. For the test user,
this could look like the following:

test = testpass

Checking out a repository
Never work directly in the repository. For any development work, check out a working copy of
the repository, even if it’s on the same machine. To check out a repository, use svn checkout.
For example, the following checks out the repository created in the previous section from the
same host, assuming you’ve started the Subversion server:

$ svn checkout svn://localhost/export/home/nsolter/mysvnproj/devdirproj/
Checked out revision 1.

Subversion doesn’t use an environment variable to point to the repository. Instead,
the initial checkout command takes a URL. If you’re using the Subversion server

instead of HTTP, use the svn prefix to the URL. Subsequent Subversion commands in the
working copy of the repository remember the URL of the repository, so you don’t need to specify
it again.

Checking out from a different host uses the same command but with the server hostname or IP
address in the URL instead of localhost.

You now have a working copy of the devdirproj directory in the repository. Note that Subver-
sion creates the devdirproj directory locally in your working directory:

$ ls -l devdirproj
total 0

Working with a repository
Once you’ve checked out a repository, you can create and modify files in your working direc-
tory. However, those changes don’t propagate to the repository unless you specifically commit
them.

To add a file, use svn add:

$ cd devdirproj
$ vi test.c

919

Part VI Deploying and Developing on OpenSolaris

$ svn add test.c
A test.c

To check in changes (additions, deletions, and modifications), use svn commit:

$ svn commit -m "created test.c"
Authentication realm: <svn://localhost:3690> My Realm
Password for ‘test’:
Adding test.c
Transmitting file data .
Committed revision 2.

The commit action prompts the user for a password, which you should have configured earlier.
You only need to enter the password once per login session, the first time you attempt an action
that requires write privileges.

By using -m, you avoid opening an editor during the commit operation to enter the comment.
This is useful because Subversion doesn’t use the default editor — it requires you to set the sep-
arate SVN_EDITOR environment variable.

To refresh your working copy with the latest changes in the repository, run svn update:

$ svn update
A test2.c
Updated to revision 3.

As you can see, the update command lists the files that it is updating.

There is no symmetric equivalent in Subversion to the checkout subcommand, such
as checkin. Once you’ve checked out your files, you check in changes with commit

and refresh your working copy with update.

Handling conflicts
Always update your repository before committing. If you haven’t, and there is a conflict, Subver-
sion issues an error:

$ svn commit -m "added return line"
Sending test2.c
Transmitting file data .svn: Commit failed (details follow):
svn: Out of date: ‘/devdirproj/test2.c’ in transaction ‘4-1’

An update will bring over conflicting files, but it marks them with a C in the output to indicate
that they conflict:

$ svn update
C test2.c
Updated to revision 4.

920

Developing on OpenSolaris 24

If there’s a conflict, Subversion also adds three files to your working directory:

$ ls test2.*
test2.c test2.c.mine test2.c.r3 test2.c.r4

test2.c is the file under Subversion control, with the merge output directly in the file:

printf("Hello, world!\n");
<<<<<<< .mine

return (0);
=======

printf("Hello, universe!\n");
>>>>>>> .r4

test2.c.mine is your version of the file, test2.c.r3 is the base version of the file against
which both revisions were made, and test2.c.r4 is the modified version of the file by another
commit action.

Before committing, you need to fix the test2.c file and remove the three additional files. Until
you remove the files, Subversion considers the file in conflict. You can check the status with
svn status:

$ svn status
? test2.c.r3
? test2.c.r4
? test2.c.mine
C test2.c
$ rm test2.c.mine test2.c.r3 test2.c.r4
$ svn status
M test2.c

Now you can commit:

$ svn commit -m "added return line"
Sending test2.c
Transmitting file data .
Committed revision 5.

Viewing history
The equivalent of cvs annotate is svn blame (although annotate is an alias for it):

$ svn blame test2.c
3 nsolter #include <stdio.h>

3 nsolter
3 nsolter int main(int argc, char **argv)
3 nsolter {
3 nsolter printf("Hello, world!\n");
5 test return (0);

921

Part VI Deploying and Developing on OpenSolaris

4 nsolter printf("Hello, universe!\n");
nsolter }

svn log is similar to cvs log, but note that in Subversion, the revisions are on a project basis,
not on an individual file basis:

$ svn log
--
r4 | nsolter | 2008-07-07 14:31:03 -0600 (Mon, 07 Jul 2008) | 1 line

added line
--
r3 | nsolter | 2008-07-07 14:27:12 -0600 (Mon, 07 Jul 2008) | 1 line

added test2.c
--
r2 | test | 2008-07-07 14:15:58 -0600 (Mon, 07 Jul 2008) | 1 line

created test.c
--
r1 | nsolter | 2008-07-07 12:41:44 -0600 (Mon, 07 Jul 2008) | 1 line

initial import
--

These examples have just scratched the surface of Subversion. It supports more advanced fea-
tures as well, such as rolling back to previous versions of files. Consult the documentation for
details.

Mercurial
Unlike CVS and Subversion, Mercurial is a distributed SCM. As a selling point, it’s the SCM of
choice for much of the OpenSolaris source code itself, and was used by the authors of this book
to manage the chapters and other files! If you want to use Mercurial, the first thing you need to
do is to install the SUNWmercurial package. If you’ve installed any of the java-dev, ss-dev,
gcc-dev, or ruby-dev group packages, you already have it. If not, you can install it explicitly:

pkg install SUNWmercurial

You access all the Mercurial functionality via the /usr/bin/hg command (hg being the chemi-
cal symbol for mercury).

Mercurial uses a distributed model, so conceptually it is somewhat different from CVS and
Subversion. Specifically, instead of requiring a single central repository to which all changes are
committed, every developer has a copy of the repository to which he or she commits changes.
These changes can then be pushed and pulled between repositories. Most projects, however, still
use a master repository.

922

Developing on OpenSolaris 24

Creating a repository

To kick off a project with Mercurial, create an initial repository using hg init:

$ mkdir myhgproj
$ cd myhgproj
$ hg init

The repository is now available for your project. Unlike CVS and Subversion, you don’t
need to do any extra configuration steps to enable the repository to be accessed read-only
over SSH, assuming that all users who will access it have an account on the machine.
For truly distributed work, read-only access to each repository might be sufficient; but if
you want a centralized repository, then you should provide read/write access to it. The
details are beyond the scope of this book, but the Mercurial website has a good tutorial at
http://selenic.com/mercurial/wiki/index.cgi/SharedSSH.

Cloning a repository

Each developer who wants to work on the project must make a copy or clone of the repository
with hg clone:

$ hg clone ssh://test@localhost//export/home/nsolter/myhgproj
Password:
destination directory: myhgproj
no changes found
updating working directory
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

The URL in the hg clone command deserves a bit of explication. It starts with ssh://
followed by username@hostname. This example shows the test user at localhost. To
connect to a remote host, substitute the remote host’s name or IP address. Following the URL is
the path to the repository on the remote machine. To specify an absolute path, use // between
the hostname and the path. You now have a working copy of the myhgproj directory in the
repository.

Working with a repository

Once you’ve cloned a repository, you can create and modify files in it, and you must explicitly
commit these changes for them to take effect. Unlike CVS and Subversion, however, an addi-
tional step is needed to share these changes with other developers. Because Mercurial is decen-
tralized, you must explicitly push the changes to other repositories. For example, to add a file,
use hg add:

$ cd myhgproj
$ vi test.c
$ hg add test.c

923

Part VI Deploying and Developing on OpenSolaris

This file is now added to your working directory but not to your local copy of the repository. To
add it to your clone of the repository, use hg commit:

$ hg commit
No username found, using ‘test@localhost’ instead

The commit action brings up your default editor to enter comments for this changeset, or set of
changes committed simultaneously (similar to a revision in Subversion).

You can use the -m option to hg commit to supply a comment for the changeset.

The new file is now committed to your clone of the repository, but not propagated to any other
repositories. To propagate the changes yourself, you need write access to a master repository. If
you have write access, you can use hg push:

$ hg push ssh://nsolter@localhost//export/home/nsolter/myhgproj
Password:
pushing to ssh://nsolter@localhost//export/home/nsolter/myhgproj
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

Use hg outgoing to see what changes will be pushed without actually pushing
them. Use hg incoming to see what changes will be pulled without actually pulling

them.

Alternatively, users can pull changes from other developers’ repositories to their own, without
requiring anyone to give write permission to anyone else:

$ hg pull ssh://test@localhost//export/home/nsolter/myhgproj
Password:
pulling from ssh://test@localhost//export/home/nsolter/myhgproj
requesting all changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
(run ‘hg update’ to get a working copy)
$ hg update
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

You now have a working copy of the updated file in your working directory.

If you omit the URL from an hg command, Mercurial defaults to the URL of the
repository from which you cloned your local repository.

924

Developing on OpenSolaris 24

Handling conflicts

If you’ve committed a change to your repository that conflicts with a change that you pull from
a repository, Mercurial detects and flags it:

$ hg pull
Password:
pulling from ssh://test@localhost//export/home/nsolter/myhgproj
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run ‘hg heads’ to see heads, ‘hg merge’ to merge)

Here, Mercurial is indicating that you’ve caused a branch (a head is the latest revision of a
branch). The usual action is to merge the changes:

$ hg merge
merging test.c
warning: conflicts during merge.
merging test.c failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
There are unresolved merges, you can redo the full merge using:

hg update -C 1
hg merge 2

At this point, because you haven’t specified a merge tool, Mercurial requires you to fix the con-
flicts manually. Like Subversion and CVS, Mercurial placed the diff output in the file itself:

printf("Hello, world!\n");
<<<<<<< local

printf("Hello, universe!\n");
=======

return (0);
>>>>>>> other

Mercurial has also added a file, test.c.orig, which you can delete. After fixing the file, you
need to commit your merged changes:

$ hg commit -m "merged test.c"

Mercurial enables you to specify a more sophisticated merge tool in the HGMERGE
environment variable or in your .hgrc configuration file. Consult the documentation

for details.

925

Part VI Deploying and Developing on OpenSolaris

Viewing history
Like Subversion and CVS, Mercurial supports an annotate command to see the history of a
file, as shown in this example:

$ hg annotate test.c
0: #include <stdio.h>

0:
0: int main(int argc, char **argv)
0: {
0: printf("Hello, world!\n");
1: printf("Hello, universe!\n");
2: return (0);
0: }
0:

The log command shows you the history of the changesets:

$ hg log
changeset: 3:405f51993a1b
tag: tip
parent: 1:e306ad43e764
parent: 2:4ace9f1a6f16
user: test@localhost
date: Mon Jul 07 16:42:40 2008 -0600
summary: merged test.c

changeset: 2:4ace9f1a6f16
parent: 0:06b161b135ff
user: nsolter@localhost
date: Mon Jul 07 16:32:36 2008 -0600
summary: Added return line

changeset: 1:e306ad43e764
user: test@localhost
date: Mon Jul 07 16:34:38 2008 -0600
summary: Added printf line

changeset: 0:06b161b135ff
user: nsolter@localhost
date: Mon Jul 07 16:26:59 2008 -0600
summary: Added test.c

Like the examples for CVS and Subversion, these examples just scratch the surface of Mercurial.
It supports more advanced features as well, such as rolling back to previous versions of files and
branching. Consult the documentation for details.

Building IPS Packages
As described in Chapter 6, the OpenSolaris distribution uses the new Image Packaging System
(IPS). The best way to deploy applications on OpenSolaris is to distribute them as IPS packages.

926

Developing on OpenSolaris 24

IPS actions
Recall from Chapter 6 that an IPS package is a collection of actions of different types. Unlike
with traditional System V packages, as a developer, you don’t build the package yourself.
Instead, you send the actions and data to an IPS repository. You can then install the package
from the repository, which is the only way to install an IPS package.

IPS package example
Suppose you’ve developed a new command, mycmd, that you want to make available in an IPS
package, mypkg. You want to install this command in /opt/mypkg, with a symbolic link in
/usr/bin. Your command depends on gzip to function properly.

This example assumes you have an IPS repository running on your localhost on port 1234.
(See Chapter 6 for details on setting up a repository.)

Preparing the IPS package

To send a package to an IPS repository, you need two things: the files and the actions.

Although not required, it’s generally useful to put the files in a directory tree identical to what
the directory tree of your files on the installed system will look like. This tree in your develop-
ment directory is called a proto area. For example, your proto area for the mypkg package would
consist of a single directory opt/mypkg with a single binary opt/mypkg/mycmd.

To accomplish the goals described earlier for your new package, you need four actions: a dir
action to create the /opt/mypkg directory, a file action to install mycmd in /opt/mypkg, a
link action to create the symlink in /usr/bin, and a depend action to specify the dependency
on gzip. You can collect these actions together in an IPS manifest file (not to be confused with
an SMF manifest file). The manifest file for the mypkg package looks like this:

$ cat mypkg.ips
dir mode=0755 owner=root group=bin path=/opt/mypkg
file opt/mypkg/mycmd mode=0555 owner=root group=bin path=/opt/mypkg/mycmd
link path=/usr/bin/mycmd target=/opt/mypkg/mycmd
depend type=require fmri=SUNWgzip

Each action is specified on a single line, starting with the action keyword, such as file or
path, and each action has several properties. For example, the dir action has a mode, owner,
group, and path property. Some actions, such as file, have a payload, which is sent to
the repository, and must be specified first. The file payload is the actual file path relative to
the working directory for the file that will be sent to the package repository as part of that
action.

927

Part VI Deploying and Developing on OpenSolaris

Sending the IPS package
Now that you have your files and actions ready, you send the package to the repository with a
sequence of pkgsend commands. The first task is to open the transaction, providing the name
of the package:

$ eval `pkgsend -s http://localhost:1234 open mypkg@1.0-1`

This command looks a little strange. First of all, why the eval? The reason is that the pkgsend
open command returns environment settings that can be evaluated in the shell to set up
your environment for the rest of the pkgsend commands. The -s option specifies the URL
of the repository. The final argument is the name of your package, including the version
number.

The next step is to send the actions defined in your IPS manifest file. Be sure to run this com-
mand in the root of your proto area:

$ pkgsend -s http://localhost:1234 include mypkg.ips

You can send each action individually with pkgsend add instead of collecting the
actions in a manifest, but that method is painstaking, and we do not recommend it.

Alternatively, you can use the Directory Bundle support in pkgsend import to generate file and
directory actions automatically for all files under a given directory, although this technique can’t
generate all your dependencies automatically.

Finally, close the transaction:

$ pkgsend -s http://localhost:1234 close
PUBLISHED
pkg:/mypkg@1.0,5.11-1:20081107T213417Z

Your package is now available in the local IPS repository.

Installing the package
To interact with your package in the IPS repository, first set the authority and refresh the
catalog:

pkg set-authority -O http://localhost:1234 local
pkg refresh

Now you can browse the package contents:

pkg contents -r mypkg
PATH
opt/mypkg
opt/mypkg/mycmd
usr/bin/mycmd

928

Developing on OpenSolaris 24

Finally, you can install the package and use mycmd:

pkg install mypkg
DOWNLOAD PKGS FILES XFER (MB)
Completed 1/1 1/1 0.00/0.00

PHASE ACTIONS
Install Phase 6/6
PHASE ITEMS
Reading Existing Index 9/9
Indexing Packages 1/1
which mycmd
/usr/bin/mycmd
ls -l /usr/bin/mycmd
lrwxrwxrwx 1 root root 16 2008-11-07 14:37 /usr/bin/mycmd -> /opt/mypkg/mycmd

This section provides only an introduction to building IPS packages. For details, consult the ref-
erences listed in the ”Resources” section later in this chapter.

Crash Dumps and Kernel Debugging
Crash dumps and core files are an important aspect of both process and kernel debugging. Be
sure to read the section on configuring process core files even if you’re not interested in doing
any kernel debugging yourself.

Core files and crash dumps
A core file is a snapshot of the address space of a process at a point in time. A crash dump is
the same thing but for the entire physical memory of the system. OpenSolaris enables you to
configure both process core file and kernel crash dump behavior.

Process core files
As shown in the discussion of C and C++ debugging earlier in this chapter, the default configu-
ration for process core files is to create a file named core in the working directory. This config-
uration can be set on both a global basis and a per-process basis with the coreadm command.
Only users with the sys_admin privilege can set the global configuration.

The coreadm command without any arguments lists the current settings:

$ coreadm
global core file pattern:
global core file content: default
init core file pattern: core
init core file content: default

929

Part VI Deploying and Developing on OpenSolaris

global core dumps: disabled
per-process core dumps: enabled

global setid core dumps: disabled
per-process setid core dumps: disabled

global core dump logging: disabled

A typical configuration is to save all process core files in /var/core, using the executable name
and process ID in the filename, so subsequent cores don’t clobber old ones very often. You can
use coreadm to configure core dumps with those settings:

mkdir /var/core
coreadm -g /var/core/core.%f.%p -e global
coreadm

global core file pattern: /var/core/core.%f.%p
global core file content: default

init core file pattern: core
init core file content: default

global core dumps: enabled
per-process core dumps: enabled

global setid core dumps: disabled
per-process setid core dumps: disabled

global core dump logging: disabled

Because per-process core dumps are still enabled, you now get two core files: one in the work-
ing directory and one in /var/core with 600 permissions. The global core file pattern doesn’t
apply to the core file generated in the working directory, so users might want to set their own
pattern with something like the following:

$ coreadm -p core.%f.%p

Use the gcore command to force a process to dump a core file of its current state
without killing the process. gcore uses its own naming pattern for core files, not the

pattern specified with coreadm.

Crash dumps
A crash dump is similar to a process core file, except for the system kernel itself at the time of
the dump. This way, you can get a snapshot of the kernel state and, if configured to include
it, all the process states. As mentioned in Chapters 3 and 7, crash dumps are generally saved
to a dedicated dump device or a shared swap device. After dumping the memory, the system
usually reboots. Upon reboot, you need to run the savecore utility, which extracts the
dump from the dump device, saving it on the file system in the files unix.<number> and
vmcore.<number>, where <number> is the number of the crash dump, starting with 0. You
can also configure savecore to run automatically on reboot.

930

Developing on OpenSolaris 24

You can set the crash dump configuration with dumpadm. Without any arguments, dumpadm
lists the current configuration. The dumpadm output in the following example is the default
configuration in OpenSolaris:

dumpadm
Dump content: kernel pages
Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/opensolaris99
Savecore enabled: no

As shown here, crash dumps are dumped to /dev/zvol/dsk/rpool/dump, which is
a dedicated dump device. The savecore command is not run automatically on reboot,
but when you run it by hand the crash dump is saved to /var/crash/opensolaris99.
(Note that opensolaris99 is the hostname of the machine). You need to create
the /var/crash/opensolaris99 directory by hand before running savecore the
first time.

With the dumpadm settings shown in the previous example, crash dumps are generated
automatically for any kernel panic, disk space permitting. Note that the dump content contains
kernel pages only. You can adjust these settings — to include process memory pages, for
instance — with dumpadm, but you usually won’t need to. Consult the dumpadm(1M) man page
for details.

Run reboot -d to force a crash dump of the system. If you have a dedicated dump
device configured, you can use savecore -L to generate a crash dump of the cur-

rent system without rebooting.

Kernel debugging
OpenSolaris enables you to examine a crash dump or the live kernel with Modular Debugger
(MDB), described earlier, for user processes. OpenSolaris also provides kmdb for advanced,
possibly destructive, debugging of the live system.

mdb -k
You can examine a system crash dump with mdb -k:

ls
bounds unix.0 vmcore.0
mdb -k unix.0 vmcore.0
Loading modules: [unix genunix specfs dtrace cpu.generic uppc
pcplusmp scsi_vhci zfs ip hook neti sctp arp usba uhci s1394 lofs
random audiosup sd sppp ipc ptm crypto]

>

931

Part VI Deploying and Developing on OpenSolaris

You can also attach to the live system by running mdb –k without additional arguments:

mdb -k
Loading modules: [unix genunix specfs dtrace cpu.generic uppc
pcplusmp scsi_vhci zfs ip hook neti sctp arp usba uhci s1394 lofs
random sd audiosup sppp ipc ptm crypto]

>

Once in MDB, a plethora of dcmds and walkers enable you to examine almost any aspect of the
kernel. Kernel development and debugging aren’t the focus of this book, so this section provides
only a hint of the capabilities. Consult one of the MDB references listed later in the ‘‘Resources’’
section for more detail.

You can, for example, list all the threads and processes on the system with the threadlist and
ps commands, respectively:

> ::threadlist
ADDR PROC LWP CMD/LWPID

fec1e7e0 fec1df50 fec20110 sched/1
d2bf1de0 fec1df50 0 idle()
d2beede0 fec1df50 0 thread_reaper()
d2bebde0 fec1df50 0 tq:kmem_move_taskq
d2be8de0 fec1df50 0 tq:kmem_taskq
d2be5de0 fec1df50 0 tq:pseudo_nexus_enum_tq
. . .

> ::ps
S PID PPID PGID SID UID FLAGS ADDR NAME
R 0 0 0 0 0 0x00000001 fec1df50 sched
R 3 0 0 0 0 0x00020001 d46d6338 fsflush
R 2 0 0 0 0 0x00020001 d46d6bc0 pageout
R 1 0 0 0 0 0x4a004000 d46d7448 init
R 589 1 589 589 0 0x42000000 d8f62ac8 fmd
R 561 1 558 558 0 0x4a004000 dcb67be8 intrd
R 531 1 531 531 0 0x52010000 db771ad0 sendmail
R 527 1 527 527 25 0x52010000 db76f028 sendmail
R 510 1 510 510 0 0x42000000 db772358 sshd
R 601 510 510 510 0 0x42010000 dcb66ad8 sshd
R 603 601 510 510 101 0x52010000 dcb67360 sshd
R 604 603 604 604 101 0x4a014000 dcb66250 bash
...

Using the address from a process, you can get more information about it with the ptools
dcmds. For example, using the address of the first sshd process listed:

> db772358::ptree
fec1df50 sched

d46d7448 init
db772358 sshd

dcb66ad8 sshd

932

Developing on OpenSolaris 24

dcb67360 sshd
dcb66250 bash

dcb659c8 bash
dcb58bf0 mdb

d8f70128 sshd
d67ddab8 sshd

db770138 bash

You can also examine the network activity and CPUs:

> ::netstat
TCPv4 St Local Address Remote Address Stack Zone
d3fb5980 0 192.168.1.103.22 192.168.1.105.4013 0 0
d3fb5e40 0 192.168.1.103.22 192.168.1.105.4014 0 0
TCPv6 St Local Address Remote Address Stack

Zone
UDPv4 St Local Address Remote Address Stack Zone
db64a0c0 3 0.0.0.0.514 0.0.0.0.0 0 0
db64a340 3 0.0.0.0.520 0.0.0.0.0 0 0
db64a840 3 0.0.0.0.38022 0.0.0.0.0 0 0
db64ad40 3 0.0.0.0.111 0.0.0.0.0 0 0
dc124d80 3 0.0.0.0.514 0.0.0.0.0 0 0
d795e080 3 0.0.0.0.57671 0.0.0.0.0 0 0
d795e580 3 192.168.1.103.68 0.0.0.0.0 0 0
d795e800 3 0.0.0.0.68 0.0.0.0.0 0 0
d795ea80 3 0.0.0.0.546 0.0.0.0.0 0 0
d795ed00 3 0.0.0.0.111 0.0.0.0.0 0 0
UDPv6 St Local Address Remote Address Stack

Zone
db64a0c0 3 ::.514 ::.0 0

0
d795e080 3 ::.57671 ::.0 0

0
d795ea80 3 ::.546 ::.0 0
...
> ::cpuinfo -v
ID ADDR FLG NRUN BSPL PRI RNRN KRNRN SWITCH THREAD PROC
0 fec1fa38 1b 1 0 59 no no t-0 d7961600 mdb

| |
RUNNING <--+ +--> PRI THREAD PROC
READY 59 db055e00 sshd

EXISTS
ENABLE

kmdb
kmdb provides capabilities similar to mdb -k on the live system, with the additional feature of
enabling you to actually control the live execution. You can attach to the live kernel with mdb
-K (capital K).

933

Part VI Deploying and Developing on OpenSolaris

kmdb temporarily halts the system, and is only safe to run from the console.

You can also boot with kmdb. On a GRUB-based system, you can add the -k flag to the boot
options. On a SPARC system, use boot -k from the ok prompt.

kmem_flags
Running the kernel with kmem_flags set is a great way to detect memory problems. This pro-
vides behavior in the kernel memory allocator that is similar to running with libumem in the
userland. You can set kmem_flags in /etc/system:

set kmem_flags=0xf

You need to reboot for the setting to take effect.

Running with kmem_flags has a significant impact on system performance.

Resources
The Java programming language is one of the most well-documented languages around.
Any visit to a bookstore gives you a plethora of titles from which to choose. Here are a few
suggestions:

■ Head First Java, by Kathy Sierra and Bert Bates (O’Reilly, 2005). A good choice if you’re
new to the language.

■ Professional Java JDK, Sixth Edition, by W. Clay Richardson, et al (Wrox, 2006).

■ Core Java, Volume I, Eighth Edition, by Cay S. Horstmann and Gary Cornell (Prentice Hall,
2007).

■ Core Java, Volume II, Eighth Edition, by Cay S. Horstmann and Gary Cornell (Prentice Hall,
2007).

The most useful Java information is available online at http://java.sun.com, including the
complete Java SE 6 API reference at http://java.sun.com/javase/6/docs/api.

JDB is documented at http://java.sun.com/javase/6/docs/technotes/tools/
solaris/jdb.html.

As with Java, there are a multitude of general C and C++ programming books, including the
following:

■ C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie
(Prentice Hall, 1988). Although more than 20 years old, this book is the definitive C pro-
gramming guide.

934

Developing on OpenSolaris 24

■ Professional C++, by Nicholas A. Solter and Scott J. Kleper (Wrox, 2005).

■ Effective C++, Third Edition, by Scott Meyers (Addison-Wesley, 2005).

There are also a few useful books on UNIX and Solaris systems programming in C, including
these:

■ Solaris Systems Programming, by Rich Teer (Prentice Hall, 2004).

■ UNIX Systems Programming for System VR4, by David A. Curry (O’Reilly, 1996).

■ Advanced Programming in the UNIX Environment, Second Edition, by W. Richard Stevens
and Stephen A. Rago (Addison-Wesley, 2005).

■ Unix Network Programming, Volume 1: The Sockets Networking API, Third Edition, by
W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff (Addison Wesley, 2003).

■ Unix Network Programming Volume 2: Interprocess Communication, Second Edition, by
W. Richard Stevens (Addison-Wesley, 1999) .

The Sun Studio compiler collection, including dbx, is documented extensively at
http://docs.sun.com/app/docs/coll/771.8. Additional documentation can be
found at http://developers.sun.com/sunstudio/documentation.

The GNU Compiler Collection documentation is linked off the main GCC page at
http://gcc.gnu.org.

GDB is documented at its page, http://gnu.org/software/gdb.

There are a few good references for MDB and KMDB:

■ Solaris Performance and Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris,
by Richard McDougall, Jim Mauro, and Brendan Gregg (Prentice Hall, 2006).

■ The MDB Community on OpenSolaris.org, http://opensolaris.org/os/
community/mdb.

■ The Solaris Modular Debugger Guide, http://docs.sun.com/app/docs/doc/
816-5041.

For information on libumem, consult the following:

■ ‘‘Identifying Memory Management Bugs Within Applications Using the libumem Library,’’
by Robert Benson, http://access1.sun.com/techarticles/libumem.html.

■ Jonathan Adams’ blog, http://blogs.sun.com/jwadams.

The Korn shell website contains quite a bit of information on ksh93: http://kornshell
.com/doc.

The NetBeans web page, http://netbeans.org, contains documentation, tutorials, and many
other useful resources.

935

Part VI Deploying and Developing on OpenSolaris

Resources on source code management are a bit scarcer. Here are a few useful ones:

■ ‘‘Subversion or CVS, Bazaar or Mercurial?’’ by John Ferguson Smart, http://javaworld
.com/javaworld/jw-09-2007/jw-09-versioncontrol.html?page=1. This arti-
cle is a good comparison of CVS, Subversion, and Mercurial.

■ Essential CVS, by Jennifer Vesperman (O’Reilly, 2006).

■ Version Control with Subversion, by C. Michal Pilato, Ben Collins-Sussman, and Brian W.
Fitzpatrick. Available free online at http://svnbook
.red-bean.com.

■ Distributed Revision Control with Mercurial, by Bryan O’Sullivan, http://hgbook
.red-bean.com/hgbook.html.

■ Mercurial Usage (cheat sheet), http://ivy.fr/mercurial/ref/v1.0/Mercurial-
Usage-v1.0.pdf.

■ The Mercurial page, http://selenic.com/mercurial/wiki.

Additional information on IPS can be found at the Image Packaging System project
page on OpoenSolaris.org, http://opensolaris.org/os/project/pkg, and
on the ‘‘Getting Started with the Image Packaging System’’ user documentation at
http://dlc.sun.com/osol/docs/content/IPS/ggcph.html.

Summary
This chapter examined the full-featured development and debugging environment offered by
OpenSolaris for many kinds of applications. It explored the tools available for writing code
in Java, C, C++, Perl, Python, Ruby, PHP, and shell, and described the Java and C/C++
debugging support on OpenSolaris, including the Java Debugger, the GNU Debugger, dbx, and
MDB. This chapter also presented a tutorial on using the NetBeans IDE for developing Java,
C/C++, and web applications. Additionally, the chapter covered three source code management
solutions (CVS, Subversion, and Mercurial) and provided a brief discussion of core file and crash
dump management and kernel debugging.

936

Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a
topic. Italicized page numbers indicate illustrations.

A
A (address) records, 297
ABI (Application Binary Interface),

881
absolute paths, 59
accept command, 146
access

files
with CIFS, 349–351
with NFS, 342–349

zones, 725–726
access control lists (ACLs)

UFS, 399–401
ZFS, 401–404

accounting, 687
extended, 688–691
legacy, 687–688

accounts, Kerberos, 436–437
acctadm command, 689–690
acctcom command, 688–689
ACLs (access control lists)

UFS, 399–401
ZFS, 401–404

ACPI (Advanced Configuration and
Power Interface) shutdown,
829

action_authorization property, 478
actions

DTrace, 534, 541–543
aggregations, 551–552,

554–558
built-in functions, 549,

552–554
expressions, 549–551
macros, 547–549
types and variables, 543–547

IPS packages, 168, 927
rctls, 667

activate command, 182

activating
boot environments, 182–183
protection groups, 642

active-active topology, 637, 637
active failure detection, 279,

281–282
active interface groups, 278
Active state

boot environment, 180
LDom domains, 802

Active on Reboot state, 180
active windows, switching between,

105
ad hoc networks, 299
Add Account dialog, 116, 117
add command

CVS, 915
Mercurial, 923
pools, 226, 232
routes, 314
share groups, 335
Subversion, 919–920
zones, 695

add-aggr command, 287
add-config command

control domains, 794
LDoms, 809
system controller configurations,

818
add-device-group command, 641
add-domain command, 795
add_drv command, 164
add-io command, 810
add-mau command, 810–811
add-memory command, 811
Add New Tool Collection window,

904
Add Printer Queue dialog, 137
add-resource-group command, 641
add-trust command, 640

add-var command, 816
add-vcc command

control domains, 793
LDom virtual services, 804

add-vcpu command, 811
add-vdisk command

guest domains, 796
LDom virtual services, 805–806
virtual disks, 812

add-vds command
control domains, 793
LDom virtual services, 804

add-vdsdev command
guest domains, 796
LDom virtual disks, 804–805

add-vnet command, 796, 813
add-vsw command, 807

control domains, 793
LDom physical I/O, 810
LDom virtual services, 804

addif command, 277–278
addiscsidisk command, 839–840
addition in DTrace, 550
address (A) records, 297
address of operator, 551
address property, 695
addresses

cluster, 603
IP, 706–708
MAC, 279
unicast, 299

administrative domains, 864
administrative privileges for LDoms,

792
adopted contracts, 494–495
Advanced Configuration and Power

Interface (ACPI) shutdown,
829

Advanced tab for VirtualBox, 833
advocacy-discuss list, 14

937

A Index

affinity, virtual CPUs, 775–776
agents

clusters, 578, 579, 589
FMD, 454
SNMP, 526

aggregations
DTrace, 551–552, 554–558
link, 285–287

aggsize setting, 562
aging passwords, 377–378
AHs (Authentication Headers), 413
All profile, 390
alloca function, 553
Allow Other Users To View Your

Desktop option, 108
alternative repositories, 80–82
altroot property, 238–239
AMP (Apache/MySQL/PHP) stack, 20,

845–846
Apache configuration, 848–850,

849
component alternatives, 854–859,

857
installing, 847–848
MySQL configuration, 851–853,

852
PHP configuration, 850, 850
web applications, 853–854,

855–856
amp-dev group package, 847–848
ampersands (&)

background job, 64–65
DTrace, 540, 550–552

AnagramGame project, 897–902,
898–903

AND operators in DTrace, 550–551
annotate command

CVS, 917
Mercurial, 926

anonymous FTP, 305–306
anonymous memory, 214, 216
Ant build system, 871, 894
Apache/MySQL/PHP stack. See AMP

(Apache/MySQL/PHP) stack
Apache Roller application, 862–863,

863
Apache Tomcat, 859–860

Apache Roller application,
862–863, 863

stand-alone mode, 860–862, 861
web application development,

907–908
Apache web server, 590, 845

configuration, 848–850, 849

failover, 626–627
configuration, 598–600
logical hostname networking,

596–597
storage, 591–596

scalable, 600–605
API_version property, 609
APIs (application programming

interfaces) for C, 878
appearance, desktop, 106, 107
Appearance Preferences dialog, 106,

107
appending files, 64
applets, 105
Application Binary Interface (ABI),

881
application/pkg/server service,

185–186
application programming interfaces

(APIs) for C, 878
application resource groups, 641
application servers, 846
application stack, 694
applications

cluster configuration for, 636
graphics, 122–125, 123–124
media, 119–122, 120
web

AMP stack, 853–854,
855–856

NetBeans, 907–913, 910–912
Applications menu, 48
ARC (Architecture Review

Committee), 16
architecture in data recovery,

637–638, 637–638
archive command, 489
Archive Manager, 130
archives, boot, 97–98
arg variable, 544
arguments

boot, 766
macros, 547–548

arithmetic operators in DTrace, 550
arrays

associative, 546–547
scalar, 546

asadmin create-domain command,
864

assigning
privileges, 398
rights profiles, 390–391

assignment operators
DTrace, 550–551

environment variables, 58
associative arrays, 546–547
asterisks (*)

DTrace, 550–551
pointers, 546
probes, 539
project membership, 663

asymmetric encryption, 407
at sign characters (@) for snapshots,

246
attach command, 722
attach-device command, 761
attach-disk command, 761–762, 779
attach-interface command, 761–762,

781
attack detection, 420

BART for, 422–425
logs for, 420–422
Solaris Auditing, 425–430
virus scanning, 430

attackers, 371, 384
attr resource, 713
attributes for projects, 664–665
audio

applications, 119–121, 120
support, 156

Audio Class specification, 156
audioplay utility, 156
audiorecord utility, 156
auditconfig command, 430
auditd service, 427, 429
auditing. See Solaris Auditing
auditreduce command, 427–428
authentication, 371

Kerberos. See Kerberos security
non-password-based, 408–411
PAMs, 372–374

Authentication Headers (AHs), 413
authenticity in communication, 406
authorities for IPS packages, 168–169
authority command, 80
authorization in RBAC, 386–388
auths command, 387–388
Auto Answer status, 152
Auto_start_on_new_cluster property,

613
autoboot property, 712, 731
automatic operations

command completion, 56
NFS share mounting, 344–346
printer configuration, 136, 136
recovery, 452
VirtualBox guest logins, 834

938

Index C

Automatically Remember Running
Applications When Logging
Out option, 104

automounter for NFS shares,
344–346

autopm entry, 162
autoreplace property, 237
autoS3 entry, 162
autoshutdown entry, 162
availability, clusters for. See clusters
Availability Suite (AVS), 637, 641
Available status, 152
avg function, 554
AVS (Availability Suite), 637, 641

B
backdoor access programs, 370
backend drivers, 743
background jobs, 64–65
backslashes (\) in command line, 55
backticks (`) in DTrace variables, 543
backups

datasets, 249–251
UFS, 212–213
zones, 731–732

balloon drivers, 776
ballot program, 879–883
BART (Basic Audit Reporting Tool),

422–425
bart command, 423, 425
basename function, 553
.bash_history file, 57
.bash_profile file, 66
bash shell, 54–56

customizing, 65–66
scripting, 893

.bashrc file, 58, 63, 65–66
Basic Audit Reporting Tool (BART),

422–425
Basic Security Module (BSM),

425–427
Basic Solaris User profile, 389–390
bcopy function, 553
beadm command, 97, 182–185
BEGIN probe, 539
BeleniX distribution, 22–23
Berkeley Software Distribution (BSD),

10
network printers, 143
and OpenSolaris, 13

/bin directory, 60, 95
binary distributions, 8–9
bind command

guest domains, 797
LDom console, 814

BIND DNS servers, 299
binding pools, 675–676, 730
binding state in LDom domains, 802
BIOS, 39–40
bitwise operators, 550
black-hats, 371
blame command, 921
block-list command, 779
blocked domain state, 758
blocked packets, 320–321
blocks, disk, 192
Bochnig, Martin, 24–25
Bonjour technology, 300
Boolean constructs, 540
boot arguments, 766
boot command, 697
/boot directory, 95
boot environments, 97, 180

activating and renaming,
182–183

archives, 97–98
creating, 169, 183–184
destroying, 184–185
mounting, 185
viewing, 180–182

boot loaders, 31
bootadm command, 98, 745
bootargs property, 712
bootfs command, 239
bootfs property, 182, 238
booting, 96–97

guest domains, 799–800
guest OS, 766
OpenSolaris, 30–32, 31, 33,

41–43, 42
tracing during, 560
xVM, 745
zones, 697–698

bound state, 802
Bourne-Again Shell (bash), 54–56

customizing, 65–66
scripting, 893

braces ({}) for actions, 541–543
branches

Mercurial, 925
packages, 170

branded zones, 734–739
break command, 886
breakpoint function, 554
breakpoints

Java debugger, 873
NetBeans IDE, 900, 901

Bridged Networking option, 44
bridges, network, 789
Brunette, Glen, 425
BSD (Berkeley Software Distribution),

10
network printers, 143
and OpenSolaris, 13

BSM (Basic Security Module),
425–427

bsmrecord command, 426–427
BSSID access point, 275
Buddy List window, 116–118, 117
buffering in tracing, 560–562
bufsize setting, 561–562
Build Versions, 170
building

automated, 894
C and C++, 904–905
distributions, 187–188
in NetBeans IDE, 899–900, 900

built-in DTrace functions, 549,
552–554

Burlison, Alan, 572
business continuity. See disaster

recovery
business logic, 846

C
C and C++ languages, 875

building and running, 904–905
compilers and tools, 875–878,

904
debugging, 879–890, 905, 908
files, 903
navigating, 903, 906
NetBeans IDE, 903–906,

904–908
OpenSolaris APIs, 878

cacaoadm command, 639
cachefile property, 238–239
caches

fonts, 108
name service, 354

Calc component, 52
Calculator tool, 130
calendar, 112–115, 113–116
call activity tracking, 520–521
Call menu in Ekiga, 152
callback methods for clusters, 607
cameras

digital, 153–156, 155
webcams, 150–153, 151–152

cancel command, 146

939

C Index

canmount property, 243
capability milestones, 499
caps

CPU, 687, 703–704
memory, 704–705
resource, 671–672

carrots (∧)
DTrace, 550–551
pattern matching, 770

cat utility, 66
catalogs for IPS packages, 168
CDDL (Common Development and

Distribution License), 8–9
centralized SCM software, 913
cfgadm command, 204
CFS (cluster file system), 577, 600
Challenge Handshake Authentication

Protocol (CHAP), 202
Character Map, 130
check-hostname program, 308
Check New Messages For Junk

Contents option, 114
checking out repositories

CVS, 915–916
Subversion, 919

checkout command
CVS, 915
Subversion, 919

checksums in message digests, 405
checkWord function, 872–873
chill function, 554
chmod command, 62, 401–404
chown command, 62, 397
CIFS. See Common Internet File

System (CIFS)
CLARC (Cluster Architecture Review

Committee), 16
classes, scheduling, 87, 682–683,

686–687
CLASSPATH environment variable, 66
clause-local variables, 545
cldevice command, 591, 631
cleanpath function, 553
clear command

dbx and GDB debuggers, 886
Java Debugger, 874
network zones, 711
pools, 233
svcadm, 98, 487

CLI. See command line interface (CLI)
clients

DHCP, 301–302
e-mail, 52, 112–115, 113–116
Kerberos, 434–435

LDAP, 366–367
NIS, 356–359
Pidgin, 116–119, 117–118
printer configuration, 145
VNC, 109

clinterconnect show command,
630–631

clipboard for VirtualBox guests, 834
clnode command, 629
clock_gettime system call, 555
clock skew, 306
clock synchronization, 431–433
clone command

Mercurial, 923
zones, 723–724

clones
datasets, 248–249
Mercurial repositories, 923
xVM domains, 755–757
zones, 723–724

clonevdi command, 839
clquorum command, 592, 629–630
clreslogicalhostname command, 596
clresource command, 617
clresourcegroup command, 593
clresourcetype command, 607
clresroucegroup command, 608
clressharedaddress command, 603
clrg create command, 604, 615
clrg create apache-ngz-rg command,

624
clrg create apache-rg command, 593
clrg create apache-sa command, 603
clrg create myservice-proxy-rg

command, 632
clrg create myservice-rg command,

634
clrg create test-rg command, 608
clrg delete command, 611
clrg evacuate command, 612
clrg list command, 608
clrg manage command, 610–611
clrg offline command, 600, 611
clrg online command, 632, 634
clrg online apache-ngz-rg command,

624
clrg online apache-rg command, 593
clrg online apache-sa command, 603
clrg online apache-scal-rg command,

604
clrg online myservice-proxy-rg

command, 632
clrg online myservice-rg command,

634

clrg online test-rg command, 610,
615–616

clrg quiescence command, 612
clrg remaster command, 615
clrg restart command, 611
clrg resume command, 612
clrg set command, 614–616
clrg show command, 605, 612, 614,

616, 641
clrg status command, 593–594, 598
clrg status apache-ngz-rg command,

624
clrg status apache-ngz-rs command,

626
clrg status apache-sa command, 603
clrg status apache-scal-rg command,

604
clrg status apache-scal-rs command,

618
clrg status myservice-proxy-rg

command, 632–633
clrg status myservice-rg command,

634
clrg status test-rg command, 608,

610–611, 615–616
clrg suspend command, 612
clrg switch command, 594–595, 610,

617, 626, 633
clrg unmanage command, 600, 611
clrs create apache-ngz-rg command,

624, 626
clrs create apache-rg command, 593,

598
clrs create apache-scale-rg command,

604, 617, 626
clrs create myservice-proxy-rg

command, 632
clrs create myservice-rg command,

634
clrs delete command, 623
clrs disable command, 600, 618, 621
clrs enable command, 621–622
clrs list command, 600, 617
clrs set command, 621, 628
clrs show command, 599, 620,

627–628
clrs status command, 598, 605, 618,

622, 626
clrslh command, 626, 632, 634
clrt list command, 607–608
clrt register apache command, 598,

626
clrt register gds command, 633

940

Index C

clrt register HAStoragePlus command,
593, 607, 624

clrt register Proxy_SMF_failover
command, 632

clrt set command, 608
clrt show command, 607–608
Cluster Architecture Review

Committee (CLARC), 16
cluster command, 606, 628, 639
cluster file system (CFS), 577, 600
clusters

agents, 578, 579, 589
Apache

highly available, 590–600
scalable, 600–605

branded zones, 738–739
categories, 576
configuring, 584–589
disaster recovery. See disaster

recovery
generic data service, 633–634
hardware requirements and

configuration, 579–583
infrastructure, 577–578
introduction, 575–576
miscellaneous commands,

628–631
names, 639
network load balancing, 627–628
overview, 576, 577
partnerships, 639–640
protection groups, 638, 640–642
service management, 589–590

resource groups. See resource
groups (RGs)

resource types, 606–609
resources, 617–622

shutting down, 606
SMF Proxy, 631–633
software, 583–584
volume management, 622
zones as logical nodes, 622–627

code overview, 3–4
codecs, 119
colons (:)

ACLs, 400
command paths, 59
DTrace expressions, 549
logical interfaces, 277
network printers, 143
probes, 536
project databases, 661
rights profiles, 389
user properties, 257

command line interface (CLI), 54, 66
command execution, 55–57
command redirection, 64
environment variables, 58–59
file management, 61–63
job control, 64–65
paths, 59–61
privileged commands, 68–71
shells. See shells
text editors, 66–70
users, groups, and roles

management from, 91
VirtualBox, 835–836
xVM, 751

commands
in directories, 59–60
executing, 55–57
history, 57
paths, 59–61
privileged, 68–71
redirection, 64

commit command
CVS, 915
DTrace, 562
Mercurial, 924–925
Subversion, 920

Common Development and
Distribution License
(CDDL), 8–9

Common Internet File System (CIFS),
331

advanced topics, 341–342
file access, 349–351
home directory sharing, 341
overview, 332–333
resource names and passwords,

351–352
in workgroup mode, 340–341

communication security
IPsec, 413–419
overview, 406–407
SSH, 408–413

communities, development, 4–5
compare command, 423, 425
comparing BART manifests, 423–424
comparison operators in DTrace, 550
compilers

C and C++, 875–878, 904
Java, 870

Compiz window manager, 53, 106
CompizConfig Settings Manager, 106
component versions, 170
compression, data, 256
computer names, 37

concatenating pools, 227
Concurrent Versions System (CVS),

913–914
conflicts, 916
repositories, 914–916

conditional operators, 549
confidentiality in communication, 406
config/dom0-cpus property, 776
config/dom0-min-mem property,

777–778
config/vncpasswd property, 768
configd daemon, 493–494
conflicts

CVS, 916
Mercurial, 925
Subversion, 920–921

connect-wifi command, 275–276
connections

local, 383
network, 76–78
remote, 82–83

Connector/J driver, 860
console command, 767–768
consoles

domain, 767–768
LDom, 814–816
NetBeans IDE debugger, 900, 901

consolidations, 15
consumers in DTrace, 560
cont command

dbx and GDB debuggers, 886
Java Debugger, 874

containers, 693. See also zones
resource management, 652
servlet, 846

content_root property, 186
contents command, 174
contributing to OpenSolaris, 15
control domains

LDom, 788, 790
configuring, 792–795
hardening, 820

xVM, 742
control flow in DTrace, 540
converters, USB-to-serial, 157–158
copies of dataset properties, 256
copyin function, 553
copyinstr function, 553
copyinto function, 553
copyleft licenses, 7–8
copyout function, 554
copyoutstr function, 554
core dumps

Dom0, 784

941

C Index

core dumps (continued)
DomU, 783–784

core files
debugging, 884–885
process, 929–930

coreadm command, 929–930
corruption, file system, 210
count function, 554
cpu-cap rctl, 687
cpu-shares rctl, 687, 700–704
cpu-threshold entry, 162
cpumem-retire module, 454
cpupm entry, 162
CPUs

capped usage, 687, 703–704
FSS, 701
information about, 506, 513–514
LDoms, 810–811
processor sets, 672
psets, 679–681
statistics, 519–520
virtual, 772–776
xVM domains, 747

cpustat command, 519–520
cputrack command, 519–520
crackers, 371
crash dumps, 930–931
crashed domain state, 758
create command

BART, 423
boot environment, 182–184
clusters, 593, 598, 603–604, 608,

615, 617, 624, 626, 632,
634

definition files, 753–754
Geographic Edition, 640
guest domains, 796
LDom migration, 820
pools, 226, 228, 231–232, 261,

592, 623
share groups, 335
Subversion, 918
virtual disks, 779
xVM domains, 753–754, 757
zones, 717–718, 720–721

create-aggr command, 285, 781
create-domain command, 864
create-secobj command, 276
create slave command, 445
create-vlan command, 287
createvdi command, 838
credit schedulers, 774
cron jobs for NIS maps, 364
Crossbow project, 288

crypt command, 352
crypt_unix algorithm, 376
Cryptographic Mathematical

Arithmetic Units (MAUs),
790, 810–811

csh shell scripting, 893
CShell (tcsh), 54–55
ctrun command, 493
ctstat command, 493
ctwatch command, 493
CUPS printing system, 138–139,

146, 147
curly braces ({}) for actions,

541–543
Custom option

desktop, 106
virtual machines, 44

cutting and pasting in vim, 68, 70
CVS (Concurrent Versions System),

913–914
conflicts, 916
repositories, 914–916

cvs command, 914–917
CVSROOT environment variable, 915
cylinders, disk, 192

D
\d macro, 66
data compression, 256
data-link layer, 264
data recording in DTrace, 552
data recovery. See disaster recovery
data replication

in cluster configuration, 636–637
datasets, 249–251
remote, 203

data scrubbing, 234–235
data services, 578, 589
databases

MySQL, 851–853, 852
PostgreSQL, 856–859
project, 661–662

dataset resource, 713–714
datasets, zone, 92, 224, 241

clones, 248–249
delegating control of, 713–714
encryption, 257–258
file systems, 241–243
properties, 251–257
replication and backups,

249–251
sharing, 337–338
snapshots, 245–248, 245, 732

volumes, 243–245
date command, 74
dates

locales, 74
macros, 66
settings, 36–39, 37

dbm technology, 355
dbx debugger, 871, 879–882, 886
dcmds, 887–889
dd command, 204, 249
Debugger Console, 900, 901
debugging

C and C++, 879–890, 905, 908
core files, 884–885
Java, 871–874
kernel, 931–934
NetBeans IDE, 900–901,

901–902
processes, 883–884
web applications, 910, 912, 913

declare command, 59
decrement operation in

DTrace, 551
decrypt command, 404–405
dedicated-cpu resource, 702, 704,

728
defaults

groups, 334–335
projects, 662
system locales, 74

defense in depth, 318
define command

xVM domains, 756
xVM hypervisor, 766

delayed LDom domain
reconfiguration, 803–804

delegated restarters, 491
delegation

dataset control, 713–714
ZFS administration, 258–259
zones for, 694

delegation property, 237
delete command

clusters, 611, 623
routes, 315
share groups, 335
zones, 719

delete-aggr command, 287
delete-secobj command, 276
delete-vlan command, 287
Delete Machine command, 749
deleting

ACLs, 401
panels, 105

942

Index D

projects, 664
rights profiles, 392
roles, 393
zone configurations, 719

depend action, 168
dependencies

manifest files, 474–475
resources, 621

dependents in manifest files,
475–476

dereferencing pointers, 551
derivative works, 6–7
Description tab in VirtualBox, 831
desired_primaries property, 614–615
desktop, 47–48, 48, 103

appearance, 106, 107
file and directory navigation, 50,

51
fonts, 108
GNOME interface, 27, 53
graphics applications, 122–125,

123–124
Internet, 51–52, 110–119
logging out and shutting down,

53
media applications, 119–122, 120
multimedia, 52
office suite, 52
overview, 48–49
panels, 105
printers and peripherals, 53
screen resolution, 107
sessions, 103–105
sharing, 108–110, 109
system administration tasks,

125–130, 128–129
themes, 108
troubleshooting, 131–132
windows, 49–50, 49

destroy command
boot environment, 182, 184–185
guest domains, 750
LDom domains, 817
pools, 227
xVM domains, 763–764
zones, 242, 244, 247–249

destroying
boot environments, 184–185
file systems, 242
volumes, 244

destructive functions, 549, 554
destructive tracing, 549
detach command, 720, 722
detach-device command, 761

detach-disk command, 761–762
detach-interface command, 761–763
Details tab in VirtualBox, 831
detecting attacks, 420

BART for, 422–425
logs for, 420–422
Solaris Auditing, 425–430
virus scanning, 430

/dev directory, 95
/dev/did namespace, 601
/dev/did/dsk directory, 591
/dev/did/rdsk directory, 591
/dev/dsk directory, 92, 192, 714
/dev/global directory, 601
/dev/global/dsk directory, 601
/dev/global/rdsk directory, 601
/dev/md directory, 219
/dev/rdsk directory, 92, 192
/dev/zvol/dsk/rpool/dump directory,

931
devalias command, 799
development

build automation, 894
C and C++ programming. See C

and C++ languages
core files, 929–930
crash dumps, 930–931
Image Packaging System,

926–929
Java. See Java language
kernel debugging, 931–934
NetBeans. See NetBeans IDE
OpenSolaris, 82
Perl, 891
PHP, 893
process, 15–16
Python, 891
Ruby on Rails, 892–893
shell scripting, 893–894
source code management, 913

CVS, 913–917
Mercurial, 922–926
Subversion, 918–922

development communities, 4–5
devfs (device file system), 163, 207
devfsadmd command, 207
device-dependency-property entry,

162
Device Detection Tool, 28–29
Device Driver Utility, 159
device drivers, 163–164
Device Drivers community, 164
device file system (devfs), 163, 207

Device ID (DID) pseudo-device
drivers, 591

device names for disks, 92, 192–193
Device Relocation Information, 221
device resource, 714
devices

clusters, 622
LDoms, 789–790, 790
virtual. See virtual devices

Devices menu in VirtualBox, 829
devices milestone, 499
df command, 129, 206, 350, 728
DHCP (Dynamic Host Configuration

Protocol), 75–76, 265,
300

clients, 301–302
interface configuration, 272–273
with NWAM, 269–270
servers, 302–305

dhcp command, 272–273
DHCP Manager, 302, 305
dhcp_network command, 304
dhcpagent daemon, 301
dhcpconfig command, 303, 305
dhcpinfo command, 301–302
dhcptab file, 303–305
dhtadm command, 303, 305
diagnosis engine modules, 454
DID (Device ID) pseudo-device

drivers, 591
Diffie-Hellman security, 346–349,

407
dig command, 293–294, 298–299
digital cameras, 153–156, 155
digital media codecs, 119
dir property, 715
direct memory access (DMA)

operations, 743
directories

commands, 59–60
home, 61
navigating, 50, 51
sharing, 335–337
system, 95–96
VirtualBox guests, 834–835
working, 59, 66

directory action for packages, 168
dirname function, 553
disable command

clusters, 600, 618, 621
print queue, 146
share groups, 336

disabling
GNOME Display Manager, 131

943

D Index

disabling (continued)
password aging, 379
resources, 618
services, 380–382

disaster recovery, 634–635, 635
Geographic Editions, 635–637

installing and configuration,
638–642

operations, 642–643
topology and architecture,

637–638, 637–638
terminology, 635

discard function, 562
disconnect-wifi command, 276
discussion lists, 14
disk fencing, 577
Disk screen, 34, 34
Disk Usage Analyzer tool, 127–128,

128
disks, 191–192

device names, 192–193
in file systems, 92–93
formatting, 193–196, 204
I/O multipathing, 202–203
iSCSI protocol, 199–202
labeling, 193–196
lofi driver, 198
partitioning, 34–36, 34, 193
RAM, 198
redundancy, 813
remote replication, 203
removable media, 196–197
space display, 127–128, 128
storage area networks, 198–199
swap space, 214–215
utilities, 203–204
virtual, 778–780, 804–806,

812–813
VirtualBox settings, 833
volume manager, 217–221

dispadmin command, 686, 702
distributed SCM software, 913
Distribution Constructor tools, 188
distributions, 4

BeleniX, 22–23
building, 187–188
Linux, 12
MartUX, 24–25
MilaX, 25
NexentaCore, 23–24
Schillix, 21–22
Solaris Express Community

Edition, 20–21
distro_const command, 188

division in DTrace, 550–551
dladm command, 160, 275–276,

285–287, 780–781
DMA (direct memory access)

operations, 743
dmesg command, 782
DNS. See Domain Name System

(DNS)
dns-sd command, 300
Do Not Disturb status, 152
documentation in manifest files, 479
dollar signs ($)

environment variables, 58
macros, 66, 547
pattern matching, 770
prompt, 55

dom0 domain, 742–744
core dumps, 784
virtual CPUs, 776

domain console, 767–768
domain name in NIS, 357
Domain Name System (DNS),

290–291
DHCP, 300–305
multicast, 299–300
overview, 291
resolver, 291–293
server configuration, 294–299
troubleshooting, 293–294

domainname command, 357
domains, 291

cloning, 755–757
GlassFish, 864
LDom. See LDoms (Logical

Domains)
live migration, 769–772
monitoring, 757–761
NIS, 355, 365
reconfiguration, 761–763
SMF services, 768–769
starting and stopping, 763–766
virtualization, 652
xVM. See xVM hypervisor

domains service, 768
dominfo command, 758, 777
domstate command, 758
domU domain, 742–744

core dumps, 783–784
creating, 747
installing, 751

down zone state, 726
downloading

OpenSolaris, 29–30
VirtualBox, 824

DR (dynamic reconfiguration)
capability, 204
zones, 729–731

driver action in IPS packages, 168
drivers

balloon, 776
device, 163–164
network interface, 265
paravirtualized, 782
xVM, 743

DTD files, 472
dtrace command, 559
DTrace facility, 241, 503, 529–530

actions. See actions
boot process, 560
buffering, 560–562
dtrace command, 559
examples, 530–535
high-level languages, 572–573
Java programs, 569–572
pid provider, 564–565
postmortem tracing, 563–564
predicates, 539–541
probes, 536–539, 570–572
program structure, 535
speculative tracing, 562–563
standalone programs, 564
std provider, 565–568
xVM hypervisor, 784
zones, 729

DTRACE_PROBE macros, 566–567
dtrace provider, 538–539
dtrace_state command, 564
du command, 206
Duckwater project, 356
dump command, 783
dump-core command, 783
dumpadm command, 931
dumps

crash, 930–931
domain configurations, 756
DomU, 783–784

dumpxml command
domain configuration, 756,

758–759, 766
networking devices, 781
virtual disks, 778–780

dynamic binding to pools, 675–676
dynamic configuration of pools,

676–677
Dynamic Host Configuration Protocol

(DHCP), 75–76, 265, 300
clients, 301–302
interface configuration, 272–273

944

Index E

with NWAM, 269–270
servers, 302–305

dynamic IP routing, 316
dynamic reconfiguration (DR)

capability, 204
zones, 729–731

dynamic routers, 317–318
dynamic web pages, 846

E
e-mail

clients, 52, 112–115, 113–116
mail service, 308–309

echo command, 58
Eclipse IDE, 895
EDID (Extended Display Identification

Data) settings, 131
Edit menu

Ekiga, 152
guest domains, 749

editing
command line, 56
images, 123–125, 123–124

editors, text, 66–70
edquota command, 211
education for security, 372
eeprom command, 279
effective process privilege sets, 396
EFI (Extensible Firmware Interface),

195–196
eft diagnosis engine, 454
$egid macro, 547
eject command, 196
Ekiga application, 150–153,

151–152
electronic voting machine program,

879–883
emoticons, 118
enable command

clusters, 621–622, 639
print queue, 146

enabling live migration, 770–771
Encapsulating Security Payload (ESP),

413
encrypt command, 404–405
encrypted files, 404–405
encryption

communication, 407
Kerberos, 439
NWAM, 269
passwords, 340
SSH, 409–411
ZFS datasets, 257–258

end command, 696
END probe, 539
endianness, 235
environment variables, 58–59, 73
ephemeral mapping, 342
equal signs (=) in DTrace, 550–551
Eremin, Alexander, 25
errno variable, 544
error handlers, 453
ERROR probe, 539
Esc key in vim, 68
ESP (Encapsulating Security Payload),

413
ESSID access point, 275
/etc directory, 95
/etc/apache2/2.2/httpd.conf file, 595,

626, 850
/etc/auto_direct file, 351
/etc/auto_home file, 345–346
/etc/auto_master file, 345–346, 441
/etc/default/dhcpagent file, 301
/etc/default/init file, 74
/etc/default/kbd file, 149
/etc/default/login file, 379, 421
/etc/default/nfs file, 339
/etc/default/passwd file, 376–379
/etc/defaultdomain file, 357
/etc/defaultrouter file, 316
/etc/dfs/dfstab file, 333–335
/etc/dhcp file, 273
/etc/dhcp/inittab file, 301
/etc/driver_aliases file, 163–164
/etc/ftpd/ftpaccess file, 306
/etc/gateways file, 315
/etc/group file, 90
/etc/hostname file

DHCP, 273
IPMP, 281–282
static IP, 274–275
VPNs, 289

/etc/hosts.allow file, 323
/etc/hosts.deny file, 323
/etc/inet/dhcpsvc.conf file, 303
/etc/inet/hosts file, 290–291, 357
/etc/inet/ike/config file, 414–415
/etc/inet/ipsecinit.conf file, 416, 418
/etc/inet/netmasks file, 304
/etc/inet/ntp.conf file, 307, 432–433
/etc/inet/ntp.keys file, 432
/etc/inet/secret/ike.preshared file, 415
/etc/inetd.conf file, 309–310
/etc/init.d/sshd script, 481
/etc/ipf/ipf.conf file, 319–320
/etc/ipf/ipnat.conf file, 321–322

/etc/krb5/kadm5.acl file, 443
/etc/krb5/kadm5.conf file, 444
/etc/logadm.conf file, 525
/etc/mail/cf file, 308
/etc/named.conf file, 294–297
/etc/nfssec.conf file, 441
/etc/nsswitch.conf file

LDAP, 367
multicast DNS, 300
naming services, 353–354
NIS, 357–358, 365
NWAM, 270
passwords, 375

/etc/nsswitch.dns file, 365
/etc/nsswitch.ldap file, 367
/etc/nsswitch.nis file, 358
/etc/openldap file, 366
/etc/pam.conf file

CIFS, 340
LDAP, 367, 377
PAM, 373–374, 442–443

/etc/passwd file
BART manifests, 423
NIS maps, 364
passwords, 376
roles, 90, 393
zones, 725

/etc/password file, 341
/etc/pooladm.conf file, 676
/etc/power.conf file, 161–162
/etc/printers.conf file, 140
/etc/profile file, 66
/etc/project file, 661–662
/etc/rc2.d directories, 497–498
/etc/remote file, 157–158
/etc/resolv.conf file

DHCP, 303
DNS, 291–293, 298–299
NWAM, 270

/etc/.rootkey file, 348
/etc/security/audit_class file, 426
/etc/security/audit_control file,

425–426, 429
/etc/security/audit_event file, 426
/etc/security/audit_startup file, 430
/etc/security/audit_user file, 428
/etc/security/auth_attr file, 386–387
/etc/security/auto_master file, 351
/etc/security/bsmconv script, 425
/etc/security/bsmunconv script, 430
/etc/security/exec_attr file, 351, 389,

391–392, 398
/etc/security/policy.conf file, 376, 390

945

E Index

/etc/security/prof_attr file, 389,
391–392

/etc/shadow file
BART manifests, 423
NIS maps, 364
PAMs for, 372
passwords, 376
roles, 90

/etc/sma/snmp/mibs directory, 527
/etc/sma/snmp/snmpd.conf file, 526
/etc/smbautohome file, 341
/etc/ssh/ssh_host_dsa_key.pub file,

409
/etc/ssh/ssh_known_hosts file, 409
/etc/ssh/sshd_config file

host-level authentication, 409
SMF, 468, 478
tunneling, 412–413

/etc/svc file, 494–495
/etc/svc/repository.db file, 493,

495–496
/etc/syslog.conf file, 420–421, 429
/etc/system file

rctls in place of, 665
user stack execution, 406

/etc/user_attr file, 90, 393
/etc/vfstab file

clusters, 601
devfs, 207
iSCSI disks, 201
metadevices, 219
mounts, 205
NFS shares, 343–345, 349
smbfs, 350
swap space, 214–215
zones, 716

/etc/X11/gdm/custom.conf file, 110
/etc/X11/xorg.conf file, 131
Ethernet bonding, 285
$euid macro, 547
evacuate command, 612
event classes, 426
Evince document viewer, 52
Evolution e-mail client, 52, 112–115,

113–116
exclamation points (!)

DTrace, 550
privileges, 713
project membership, 663

exclude_all dependency, 474
exec attribute, 477
execname variable, 544
execute permissions, 62–63
executing commands, 55–57

exit command
DTrace, 553
shells, 55
svccfg, 489

export command
svccfg, 489
zones, 718

/export/dhcp file, 303
/export/ftp/pub file, 306
/export/home directory, 95
/export/nismaster directory, 359, 364
expressions in DTrace, 549–551
extended accounting, 688–691
Extended Display Identification Data

(EDID) settings, 131
Extensible Firmware Interface (EFI),

195–196
extension properties, 618
Extra option in desktop, 106
Eye of GNOME (eog) image viewer,

122

F
Failback property, 613
failmode property, 238
failover

Apache, 626–627
configuration, 598–600
logical hostname networking,

596–597
storage, 591–596

cluster support, 577
services, 578, 579
zones, 622–626

Failover property, 609
Failsafe Terminal session, 132
failure, clusters for. See clusters
failure detection in IPMP, 279–280

active, 281–282
passive, 279–281

Fair Share Scheduler (FSS),
684–686, 700–702

Fair Share Scheduling (FSS) class,
701

FAT12 file system, 216
FAT16 file system, 216
FAT32 file system, 216
fault events, 453
Fault Managed Resource Identifiers

(FMRIs), 169–170,
452–453, 473, 631

fault management, 451
commands, 455–460

overview, 453–455
predictive self-healing, 451–453
vs. service management, 453
working with, 461–464

Fault Management Daemon (FMD),
453–454

fbt provider, 536, 538
fdisk command, 93, 194
features overview, 5–6
fences out process for quorums, 581
fg command, 65
Fibre Channel HBAs, 199
file action for IPS packages, 168
File menu

guest domains, 749
VirtualBox, 830

file systems, 92
clusters, 582–583
dataset properties, 253–254
layout, 95–96
local, 216–217
monitoring, 206–207
mounting and unmounting,

205–206
root pool mirroring, 93–95
and shutting down, 207
ZFS. See ZFS file system
zones, 715–717

File Transfer Protocol (FTP)
overview, 305–306
with SSH, 411–412

files
access

CIFS, 349–351
NFS, 342–349

C and C++, 903
core, 884–885, 929–930
encrypted, 404–405
log. See log files
managing, 61–63
manifest. See manifest files
navigating, 50, 51
NetBeans IDE, 897–898
sharing, 333–334

CIFS service, 340–341
packages for, 334
services, 338–340
share groups and sharemgr,

334–338
fill policy in DTrace buffering, 561
filters

IP, 318–322
packages, 171

finding software, 78–80

946

Index G

findleaks dcmd, 890
finger service, 380
Firefox web browsing, 110–112, 111
firewalls

IP filters, 318–322
purpose, 379

FireWire technology, 149
firmware for LDoms, 791
First Boot Wizard, 833
First Run Wizard, 826
fix command, 175
Fixed Priority (FX) class, 683
flags for LDom domains, 802
flexibility, virtualization for, 656
floating-point units (FPUs), 811
flow-of-control in DTrace, 540–541
Fluendo codec, 119
fmadm command, 84, 455–456
FMD (Fault Management Daemon),

453–454
fmdump command, 457–459,

462–463
FMRIs (Fault Managed Resource

Identifiers), 169–170,
452–453, 473, 631

fmstat command, 456–457
fmthard command, 204
fmtopo command, 459–460
folders. See directories
fonts, 108
foomatic-rip filter, 147
forcedirectio command, 209
foreground jobs, 65
format command, 93–94

labels, 193, 195–196
removable media, 196–197
virtual disks, 800, 812

formatting
disks, 193–196, 204
partitions, 93–94

forums, 14
Forward status in Ekiga, 152
forwarding

IP, 313–314
port, 412–413

FOSS (free and open source
software), 6

FOX (Fully Open X) project, 27
FPUs (floating-point units), 811
frameworks for clusters, 639, 643
free and open source software

(FOSS), 6
frontend drivers, 743
fs resource, 715–717

fsck command, 209–211, 716–717
FSS (Fair Share Scheduler),

684–686, 700–702
FSS (Fair Share Scheduling) class,

701
fssnap command, 212–213
fsstat command, 207
FTP (File Transfer Protocol)

overview, 305–306
with SSH, 411–412

ftp service
disabling, 380
Kerberos, 435, 438

ftpconfig command, 306
full dumps, 212
full images in IPS packages, 169
full virtualization, 652–654
Fully Open X (FOX) project, 27
function boundary tracing providers,

536
functions

DTrace, 549, 552–554
probes, 538

Furlong, Wez, 572
FUSE (file system in user space) file

system, 217
fuser command, 205
FX (Fixed Priority) class, 683

G
g++ compiler, 877–878
GCC (GNU Compiler Collection)

compiler and tools,
877–878, 904

gcc-dev package, 82, 877–878
gcore command, 930
GDB debugger, 879, 882–883, 886
gdm display manager, 110
GDS (generic data service), 633–634
general commands in vim, 67–68
general/enabled property, 499
general-purpose DTrace functions,

553
generic data service (GDS), 633–634
Generic Machine Check Architecture

project, 455
generic_open.xml profile, 500
generic.xml profile, 500
geoadm start command, 639
geoadm status command, 643
Geographic Editions, 635–637

installing and configuring,
638–642

operations, 642–643
topology and architecture,

637–638, 637–638
geopg command, 640–643
geops command, 640, 643
get command

Geographic Editions, 641
pools, 237
routes, 314–315
sharing services, 338–339

getdefaultproj function, 662
getent command, 300, 355, 359
getfacl command, 399–401
getrlimit command, 665
getXbyY calls, 353, 355
GFS (global file system), 600–601
Ghosh, Moinak, 22
$gid macro, 547
GIMP (Gnu Image Manipulation

Program), 52, 122–125
GlassFish server, 846, 864–865, 865,

907
glassfishv2 package, 864
global.db file, 496
global file system (GFS), 600–601
global namespace, 600–601
global properties in network zones,

712–713
Global_resources_used property, 614
global variables, 545
Global_zone property, 609
global zones, 694, 706
/globaldevices directory, 582
Gmail, 113
GNOME Display Manager, 131
GNOME interface, 48–49, 48–49

customizing, 53
desktop, 27
locales in, 71, 72
session startup troubleshooting,

132
GNOME Power Manager, 129–130
GNU Compiler Collection (GCC)

compiler and tools,
877–878, 904

Gnu Image Manipulation Program
(GIMP), 52, 122–125

gphoto2 command, 154
Grand Unified Bootloader (GRUB),

30–32, 97–98
graphical display in virtualization,

657–658
graphics applications, 122–125,

123–124

947

G Index

greater than signs (>)
CPU utilization, 681
DTrace, 550–551
redirection, 64

group action in IPS packages, 168
group command, 281
group packages, 170
groupadd command, 91
groupdel command, 91
grouping attribute, 474
groupmod command, 91
groups

GUI, 90, 90
locality, 507
managing, 89–92, 90, 125, 126
protection, 640–642
resource, 590, 608

life cycles, 608–612
properties, 612–617

share, 334–338
user, 14–15

growfs command, 221
GRUB (Grand Unified Bootloader),

30–32, 97–98
GRUB menu, 39–40
GStreamer framework, 119, 121
gThumb program, 123–124,

123–124, 155
gtkam interface, 154–155, 155
gtkpod program, 150
guest domains, 789

booting and installing, 798–800
configuring, 746–748, 746, 748,

795–798
logging in to, 748, 798
managing, 748–750, 750

guest OS
booting, 766
VirtualBox, 826–829, 827–828,

833–835
GUI

Java, 902
users and groups, 90, 90
virt-manager, 746–750, 746, 748
VirtualBox, 830–833, 832

gzip compression algorithm, 256
gzip-N compression algorithm, 256

H
\h macro, 66
hackers, 371
hacking, 371
halt command, 699

halting zones, 699
hard disk drives. See disks
hardened systems, 371
hardening control domains, 820
hardlink action in IPS packages, 168
hardware

cluster requirements, 579–583
fault management, 455
information on, 83–85
OpenSolaris distribution, 28–29

hardware-assisted virtual machines
(HVMs), 743

devices, 782
domain console access, 767–768
domains, 751–752

Hardware tab for guest domains, 750
hashes for message digests, 405
HAStoragePlus resource, 598, 600,

623–624
HBAs (host bus adapters), 198–199
heads, disk, 192
heartbeats, cluster, 577, 636, 642
help command

dbx and GDB debuggers, 886
Java Debugger, 874
zonecfg, 717

Help menu in VirtualBox, 831
hg command, 922–926
HGMERGE environment variable, 925
hiding panels, 105
High Availability Cluster (HA)

software. See clusters
high-level language tracing, 569–573
high-performance computing (HPC)

clusters, 576
history

commands, 57
CVS repositories, 917
Mercurial repositories, 926
OpenSolaris, 9–11, 26–27
Subversion repositories, 921–922
ZFS pools, 239

history command, 57
HISTSIZE environment variable,

57–58
home directories, 61, 341
HOME environment variable, 61
host bus adapters (HBAs), 198–199
Host Details command, 749
Host Interface networking, 837
Host Keys for VirtualBox, 828, 828
host-level authentication, 409
HOST-RESOURCES-MIB.txt file, 527
hostname networking, 596–597

hostnames
macros, 66
NIS, 357

hosts file, 290–291
hot spares, 232
hotspot probes, 570–572
HPC (high-performance computing)

clusters, 576
hpc-dev package, 170
hsfs file system, 216
HTTP (Hypertext Transport Protocol),

309, 846
http.conf file, 595, 626, 850
HVMs (hardware-assisted virtual

machines), 743
devices, 782
domain console access, 767–768
domains, 751–752

Hyper-V software, 655
hypercalls, 742
Hypertext Transport Protocol (HTTP),

309, 846
hypervisors

VirtualBox. See VirtualBox
hypervisor

virtualization, 652–656, 654
xVM. See xVM hypervisor

I
IA (Interactive) class, 683
ICANN (Internet Corporation for

Assigned Names and
Numbers), 264

icons in VirtualBox, 830, 830
id command for current project, 660
IDE (Integrated Development

Environment). See
NetBeans IDE

identity mapping, 342
idmap command, 342
IEEE 1394 technology, 149
IETF (Internet Engineering Task

Force), 264, 332
ifconfig command

cluster resource groups, 603–604
DHCP interface, 272–273
firewalls, 319
guest domains, 799–800
IP interfaces, 265–267, 272–275,

286
IPMP, 280–283
logical interfaces, 277–278, 282
network connections, 77–78

948

Index I

NWAM, 270–271
VPNs, 289
xVM domains, 754
zones, 696, 707, 730

ignore_error property, 478
II (Instant Image), 637
IKE (Internet Key Exchange) protocol,

413, 453
ikecert command, 416
IM (instant messaging), 116–119,

117–118
Image Packaging System (IPS), 12,

78, 869
concepts, 168–169
package building, 926–929
and SVR4 packaging, 176–177

image-update command, 169,
179–180, 183, 733

images
IPS packages, 169
organizing and editing, 123–125,

123–124
VDI, 837–838, 838
viewing, 122–123

IMAP settings, 114, 114
immutable images, 837–838
Implicit_network_dependencies

property, 614
import command

CVS, 914
manifests, 490, 495, 501
pools, 236–237
Subversion, 918

Impress component, 52
in.ftpd daemon, 435
in.iked daemon, 415
in.mpathd daemon, 279–281, 283
in.routed daemon, 316–318
in shutdown domain state, 758
inactive state in LDom

domains, 802
Includes Hierarchy, 903, 906
incoming command, 924
incomplete zone state, 726
incorporation of packages, 171
increment operation in DTrace,

550–551
incremental dumps, 212
indexes for packages, 169, 176
indirect references, 546
inet command, 273–275
inet6 command, 274
inetadm command, 310–313,

322–323

inetconv command, 310
inetd super-server, 309–313
info command, 79, 81, 174, 708
infrastructure for clusters, 577–578
inherit-pkg-dir resources, 709–710,

715, 731–732, 736
inheritable process privilege sets, 396
inheritance flags, 404
inherited ZFS properties, 251
init command, 96–97

with clusters, 606
CVS, 914
Mercurial, 923
milestone compatibility, 496–499

Init_nodes property, 609
init process, 490–491
initiators in iSCSI, 199–201
input languages, 74
inserting text commands in vim,

68–69
inst_root property, 186
install command

packages, 80–81, 169, 173, 176
zones, 696–697, 737

Installation screen, 38, 40
installboot command, 95, 214
Installed_nodes property, 609
installgrub command, 95, 214
installing

AMP stack, 847–848
Apache Tomcat, 860
guest domains, 798–799
OpenSolaris, 19, 33–34

BeleniX distribution, 22–23
disk partitioning, 34–36, 34
MartUX distribution, 24–25
MilaX distribution, 25
NexentaCore distribution,

23–24
Schillix distribution, 21–22
Solaris Express Community

Edition, 20–21
time, time zone, language, and

users configuration,
36–39, 37–40

troubleshooting, 39–41
on virtual machines, 43–44,

45
packages, 171–172, 172,

928–929
phpMyAdmin, 851, 852
sharing packages, 334
software, 78–80
VirtualBox, 824

WordPress, 853–854, 855–856
xVM, 744
xVM domains, 751–757
zones, 696–697

instances of services, 473
Instant Image (II), 637
instant messaging (IM), 116–119,

117–118
Integrated Development Environment

(IDE). See NetBeans IDE
integrity in communication, 406–407
Interactive (IA) class, 683
Interface Properties dialog, 76, 77
Interface Taxonomy, 479
interfaces

GNOME, 48–49, 48–49
gtkam, 154–155, 155
network. See networks and

networking
Internal networking for VirtualBox,

837
Internet, 51–52
Internet Corporation for Assigned

Names and Numbers
(ICANN), 264

Internet Engineering Task Force
(IETF), 264, 332

Internet Key Exchange (IKE) protocol,
413, 453

Internet Protocol. See IP (Internet
Protocol)

Internet services
e-mail and calendar, 112–115,

113–116
instant messaging, 116–119,

117–118
web browsing, 110–112, 111

interrupts, 521–522
intrstat command, 521–522
I/O

LDoms, 788
physical, 808–810
virtual services, 804–808

multipathing, 202–203
statistics about, 515–516

io provider, 538
io-retire module, 454
iostat command, 204, 515–516
IP (Internet Protocol)

forwarding, 313–314
interfaces

displaying, 265–267
static, 273–275

multicast packets, 299

949

I Index

IP (Internet Protocol) (continued)
multipathing. See IPMP (IP

network multipathing)
routing

dynamic, 316
static, 314–316

tunnels, 288–289
zone support, 706–707

IP addresses, 706–708
DNS. See Domain Name System

(DNS)
IPMP, 280

IP Filter feature, 318–322
IP security (IPsec), 413

configuration, 416–418
key management, 414
policies, 418–419

ip-type property, 708
ipcs command, 728
ipf command, 322
ipkg-branded zones, 732–733, 735
ipmon command, 322
IPMP (IP network multipathing), 267,

278–280
cluster support, 578
failure detection configuration

active, 281–282
passive, 280–281

groups, 814
working with, 282–285

ipnat command, 322
IPS (Image Packaging System), 12,

78, 869
concepts, 168–169
package building, 926–929
and SVR4 packaging, 176–177

IPsec (IP security), 413
configuration, 416–418
key management, 414
policies, 418–419

ipsec/policy service, 417–419
ipsecconf command, 418–419
ipseckey command, 414
IPSFWxmms package, 81
IPSgtkpod package, 150
IPv6, 265
$ISADIR token, 32
isainfo command, 84, 506–507
iSCSI protocol, 199–200

administration, 202
using disks, 201–202
initiators, 199–201
targets, 199–200

iscsiadm command, 199–201

iscsitadm command, 199–200, 839
ISO images, 29–30
isolation, virtualization for, 656

J
JAlbum tool, 156
jar archiver, 870
Java-based web services, 859

Apache Tomcat, 859–863, 861,
863

GlassFish, 864–865, 865
Java Debugger (JDB), 871–874
Java Development Kit (JDK), 870
Java language, 869

compilers and tools, 870
debugging, 871–874
GUI applications, 902
with NetBeans. See NetBeans IDE
program tracing, 569–572

Java Mail API, 861
Java Runtime Environment (JRE), 28
Java Server Pages (JSPs), 859
javac compiler, 870, 873
JavaTest class, 870
JBoss server, 846
JCL (Job Control Language), 204
JDB (Java Debugger), 871–874
JDK (Java Development Kit), 870
jinfo command, 570
Job Control Language (JCL), 204
jobs

controlling, 64–65
printer, 145–146

jobs command, 65
join_job function, 566–567
join-partnership command, 640
Join Unlisted Wireless Network

option, 269
Joy, Bill, 10, 207
JRE (Java Runtime Environment), 28
JSPs (Java Server Pages), 859
jstack function, 552, 569–570

K
kadmin command, 436–437, 440
kbd command, 149
kclient command, 434–435
kdc create master command, 445
kdcmgr command, 433–434, 445
KDCs (key distribution centers), 431,

433–434
kdestroy command, 437

Kerberos security, 346
accounts, 436–437
authentication, 372
availability, 445
clients, 434–435
clock synchronization, 431–433
key distribution centers, 433–434
logs, 444
NFS access, 439–441
overview, 431
PAMs for, 441–444
services, 435–436, 438
tickets, 437

kernel$ command, 32
kernels

debugging, 931–934
locking behavior, 522–523
statistics, 518–519
for zones, 733

key distribution centers (KDCs), 431,
433–434

keyboards
layout, 74
USB, 149

keylogin command, 348
Keyring Manager application, 127
keys

associative arrays, 546–547
Diffie-Hellman, 347–348
encryption, 258, 405, 407
IPsec, 414
Kerberos, 432–434
SSH, 409–411

keyserv service, 349
Keyspan converters, 158
Kickstart URL tool, 747
kill command, 86, 516
kinit command, 437
klist command, 437, 440–441
kmdb tool, 933–934
kmem_flags setting, 934
knowledge articles for fault

management, 454–455
Korn Shell (ksh), 54–55, 386,

893–894
kstat command, 130, 518–519

L
labels

disks, 193–196
printing, 203–204
Trusted Extensions, 446

950

Index L

LACP (Link Aggregation Control
Protocol), 285–287

LAN interfaces, 287
LANG environment variables, 73–74
languages

input, 74
installing, 75
locales, 71–74, 72
settings, 36–39, 38

last command, 92, 525
lastcomm command, 688, 690
latency, network, 325
Layered Software Architecture Review

Committee (LSARC), 16
layers

networking, 264
virtualization, 654–655, 654

LC_ environment variables, 73–74
LDAP (Lightweight Directory Access

Protocol), 332, 365–367
ldapclient utility, 366–367
LDCs (Logical Domain Channels),

789
ldm command

console, 814–816
control domains, 792–795
CPUs, memory, and MAU,

810–811
delayed reconfiguration, 803–804
domain monitoring, 800–803
guest domains, 795–798
migrating domains between

machines, 818–820
miscellaneous subcommands, 817
networking, 813–814
physical I/O, 808–810
system controller configurations,

818
virtual disks, 812–813
virtual I/O services, 804–808

ldmd (Logical Domains Manager
Daemon), 803

ldomAdminState property, 803
LDoms (Logical Domains), 653–654,

656–657, 787
administrative privileges, 792
console, 814–816
control domains

configuration, 792–795
hardening, 820

CPU, memory, and MAU,
810–811

delayed reconfiguration, 803–804
domain types, 788–789

firmware for, 791
guest domains

booting and installing,
798–800

configuration, 795–798
logins, 798

introduction, 787–788
ldmd daemon, 803
management software, 792
migrating domains between

machines, 818–820
monitoring, 800–803
networking, 813–814
physical I/O, 808–810
services and devices, 789–790,

790
services in different domains, 810
system controller configurations,

818
variables, 816
virtual disks, 812–813
virtual I/O services, 804–808

LDoms Management profile, 792
LDoms Manager software, 792
LDoms Review profile, 792
LeaseNeg option, 303
leases, DHCP, 300, 303
LeaseTim option, 303
least privilege principle, 385
legacy accounting, 687–688
legacy action in IPS packages, 168
legacy_run, 88
less than signs (<)

CPU utilization, 681
DTrace, 550–551
redirection, 64

less utility, 66
Levon, John, 572
lgrpinfo command, 507–508, 775
/lib directory, 95
/lib/svc/seed directory, 496
libdtrace library, 564
libpool command, 678
libscf daemon, 493
libumem library, 887–890
license action in IPS packages, 168
licenses

Linux kernel, 12
open source software, 7–8
OpenSolaris, 8–9

life cycles
resource groups, 608–609
resources, 617–618

Lightweight Directory Access Protocol
(LDAP), 332, 365–367

limit process privilege sets, 396
limited command, 380
limitpriv property, 712–713
line printers, 135
link action in IPS packages, 168
link aggregation, 267, 285–287
Link Aggregation Control Protocol

(LACP), 285–287
link-based failure detection, 279
link layer, 264
linked lists, 879
Linux, 11–12, 738
list command

boot environment, 180–183
branded zones, 735–737
clusters, 600, 607, 617
console, 814–815
control domains, 792–795
dbx and GDB debuggers, 886
domain migration, 771–772
domains, 759, 765
Geographic Edition, 641, 643
guest domains, 797–798
Java Debugger, 874
LDom domains, 800–803
LDom physical I/O, 809–810
LDom virtual services, 806
networking, 813
packages, 43, 173, 178
pools, 92, 224
quorums, 629
share groups, 334–336
virtual disks, 812
VirtualBox VMs, 835
xVM domains, 757, 759, 765
zones, 696, 726

list-props command, 608
lists

linked, 879
mailing, 14–15

listsnapshots property, 238
live DVDs, 21
live migration of domains, 769–772
load average, 509
load balancing, 627–628
Load_balancing_policy property,

627–628
Load_balancing_weights property,

627–628
local file systems, 216–217
local-mac-address setting, 279

951

L Index

local printer configuration, 141–143,
142

locale command, 73
Locale screen, 36, 38
locales, 71

default system, 74
in GNOME, 71, 72
terminal sessions, 73

locality groups, 507
locally attached printers, 136–137,

136
Lock Screen command, 53
locking

kernel behavior, 522–523
sessions, 104–105

lockstat command, 522–523, 538
lofi driver, 198, 717
lofs file system, 217
log_access property, 186
log command

CVS, 917
Mercurial, 926
Subversion, 922

log_errors property, 186
Log File Viewer application, 128
log files, 96

for attack detection, 420–422
installation, 39
Kerberos, 444
Log File Viewer application, 128
monitoring, 524–526
UFS, 208
X server, 131
xVM, 782–783

logadm command, 525
logging out, 53
Logical Domain Channels (LDCs),

789
Logical Domains. See LDoms (Logical

Domains)
Logical Domains (LDOMs) MIB 1.0.3

Administration Guide, 803
Logical Domains Manager Daemon

(ldmd), 803
logical hostname networking

Apache, 596–597
zones, 626

logical interfaces, 276–278
logical nodes, zones as, 622–627
logical operations in DTrace, 540,

550
login command, 352
login logs, 420–421
login screen, 41, 42

logins
CIFS, 352
guest domains, 748, 798
logs, 420–421
remote, 379
VirtualBox guests, 834
zones, 698

logout command, 55
logs. See log files
loopback interfaces, 266
losf tool, 205
lost+found directory, 210–211
lp command, 136, 141, 143–145
LP system, 139–141, 140–141

local printer configuration,
141–143, 142

network printer configuration,
143–144

print client configuration, 145
print jobs, 144
print management, 145–146
printer status, 144–145

lpadmin command, 143, 145–146
lpmove command, 146
lpq command, 136
lpr command, 136
lpstat command, 144–145
lquantize function, 554
ls command

for ACLs, 402
for permissions, 62

ls-bindings command, 801
ls-config command

LDoms physical I/O, 809
system controller configurations,

818
ls-constraints command, 818–819
ls-devices command, 801
ls-services command, 801
LSARC (Layered Software Architecture

Review Committee), 16
lsvcrun program, 498
lx-branded zones, 735–738
lzjb compression algorithm, 256

M
MAC addresses, 279
mac command, 405
Machine Check Architecture (MCA),

455
Machine Details command, 749
Machine menu for VirtualBox, 829,

831

macros
command prompt, 66
DTrace, 547–549

MACs (message authentication codes),
405

mail service, 308–309
mailing lists, 14–15
mailx client, 308
Make build system, 871, 894
make command, 356
makedbm command, 362–363
manage command, 610
management commands in SMF,

481–490
management information base (MIB),

526, 803
mandatory access control, 446
manifest files

IPS, 168, 927
SSH, 472

dependencies, 474–475
dependents, 475–476
method declarations, 476–477
property groups, 477–478
service declarations, 472–473
stability and templates,

478–479
manifest-import service, 495–496
manifests, BART, 422–424
MANPATH environment variable, 61,

65
manual operations

network configuration, 75–76,
76–77

networking interface configuration,
271–276

NFS share mounting, 342–343
printer configuration, 138

CUPS systems, 146, 147
LP systems, 140–146,

140–142
print service selection,

138–140
maps

identity, 342
netmasks, 304
NIS, 355–356, 359–361, 364

mark command, 487
MartUX distribution, 24–25
master agents in SNMP, 526
master restarters, 491
master servers in NIS, 355, 359–362
Mathematical Arithmetic Units

(MAUs), 790, 810–811

952

Index M

Mauro, Jim, 687
max function, 554
max-locked-memory rctl, 671
maximum_primaries property,

614–615
MCA (Machine Check Architecture),

455
McDougall, Richard, 687
McKusick, Marshall Kirk, 207
MD5-based authentication, 432
md5sum command, 405
MDB (Modular Debugger)

for kernel, 931–933
overview, 885–887

mdb command, 563–564, 931–933
mDNS (multicast DNS), 299–300
mdnsd command, 300
media applications, 119–122, 120
MediaWiki application, 846
membership

cluster, 577, 581
projects, 663–664

memory
anonymous, 214, 216
capped, 704–705
LDoms, 810–811
libumem library for, 887–890
virtual, 776–778
for xVM domains, 747

memory leaks, 890
Mercurial SCM, 922

conflicts, 925
repositories, 923–924

merge command, 925
message authentication codes (MACs),

405
message digests, 405
Metacity window manager, 49–50,

106
metadb command, 218
metadbs (metadevice databases), 218
metadevices, 218–219
metainit command, 219
metastat command, 219–221
metattach command, 219
method declarations in manifest files,

476–477
method scripts in SMF, 479–481
MIBs (management information

bases), 526, 803
mice, USB, 149
migrate command, 771
migration

domains between machines,
818–820

ZFS pools, 235–237
zones, 722

MilaX distribution, 25
milestone command, 487
milestones in SMF, 496–499
min function, 554
minus signs (−)

DTrace, 550–551
privileges, 713

mirrored repositories, 168
mirrors

root pool, 93–95
ZFS pools, 227–231

mkfs command, 216
mkfs_ufs command, 208
mkisofs utility, 216
modal editors, 67
modems, 159
modifyvm command, 836, 839
modinfo command, 507
Modular Debugger (MDB)

for kernel, 931–933
overview, 885–887

module$ command, 32
modules

probes, 538
stacking, 372

modulus operator in DTrace,
550–551

MONITOR_START method, 607
MONITOR_STOP method, 607
monitoring and observability, 503

CPU statistics, 519–520
file systems, 206–207
interrupts, 521–522
kernel locking, 522–523
kernel statistics, 518–519
LDoms, 800–803
logs, 524–526
NFS, 349
pools, 676
primary utilities, 509

iostat, 515–516
mpstat, 514
prstat, 510–511
ps, 509–510
uptime, 509
vmstat, 512–514

/proc system, 516–518
process call activity, 520–521
SNMP, 526–527
system activity, 523–524

system configuration information,
504–508

virtual CPUs, 773
xVM domains, 757–761
ZFS performance, 240–241
zones, 726–729

more utility, 66
mount command

boot environment, 182, 185
CIFS, 350
file systems, 205–206
iSCSI disks, 201
lofi driver, 198
NFS shares, 343
tmpfs, 217
virtual disks, 779
zones, 730

mount_hsfs command, 216
mount points in file system, 197
mount_ufs command, 209
mountall command, 344
Mounted state in boot environment,

180
mounting

boot environments, 185
file systems, 205–206
NFS shares, 342–346
UFS, 208

mountpoint properties, 243,
255–256

mouse, USB, 149
mouse pointer integration, 834
moving zones, 719–722
Mozilla Firefox web browser, 48–49,

51
Mozilla Public License (MPL), 7
Mozilla Thunderbird e-mail client, 48
MP3 players, 121, 150
MPL (Mozilla Public License), 7
mpstat command, 129, 514
msgdsize function, 553
msgsize function, 553
multi-step zone migration, 722
multicast DNS, 299–300
multimedia applications, 52
multipathing

I/O, 202–203
IP. See IPMP (IP network

multipathing)
multiplication in DTrace, 550–551
Murayama, Masayuki, 159
music players, 150
MusicBrainz database, 121

953

M Index

mutex_owned function, 553
mutex_owner function, 553
mutex_type_adaptive function, 553
MySQL configuration, 851–853, 852

N
name attribute for dependencies, 474
name-service-cache command, 354
name service switch

configuring, 358–359
overview, 353–354

name-services milestone, 499
named-checkzone command, 297
named daemon, 294
names

boot environments, 182–183
CIFS resources, 351–352
clusters, 639
computer, 37
disk devices, 192–193
disks, 92, 193
file systems, 243
network interfaces, 265
packages, 169–171
platforms, 742
pools, 237
snapshots, 246
volumes, 244
zones, 713

nameserver (NS) records, 297
nameserver statement, 292
naming services, 331, 353–355

LDAP, 365–367
NIS. See Network Information

Service (NIS)
printers, 140

NAS (network-attached storage), 199
NAT (Network Address Translation)

firewalls, 319, 321–322
virtual machines, 44
VirtualBox, 836–837
webcams, 151

native dataset properties, 253–255
Nautilus browser, 50, 51
navigating

C and C++, 903, 906
files and directories, 50, 51
NetBeans IDE, 898–899, 899
in vim, 68–69

ncpus property, 704
ndbm technology, 355
Nessus (Network Vulnerability

Scanner), 384

Net-SNMP open source project, 526
NetBeans IDE, 869, 871, 894–895,

895
building and running in,

899–900, 900
C and C++ development,

903–906, 904–908
debugging, 900–901, 901–902
development environments, 913
files, 897–898
Java GUI applications, 902
navigating, 898–899, 899
overview, 895–896, 896–897
plug-ins, 906, 909, 910
profiling, 901–902, 903–904
web application development,

907–913, 910–912
netmasks map, 304
netservices command, 380
netstat command, 129, 271,

315–316, 324–325
network adapters, 264
Network Address Translation (NAT)

firewalls, 319, 321–322
virtual machines, 44
VirtualBox, 836–837
webcams, 151

network-attached printer
configuration, 137–138,
143–144

network-attached storage (NAS), 199
Network Auto-Magic (NWAM)

technology, 265, 267
enabling, 267–268
interacting with, 268–270, 269
with IPMP, 279
overview, 75–76
troubleshooting, 270–271

Network Auto-Magic project, 356
Network File System (NFS),

331–332
file access, 342–349
Kerberos access, 439–441
monitoring and troubleshooting,

349
overview, 332
security, 346–349
zones, 734

Network Information Service (NIS),
332, 355–356

client configuration, 356–359
domains, 365
maps, 355–356, 359–361, 364

master server configuration,
359–362

slave server configuration,
362–364

network interface cards (NICs),
263–264, 288

network latency, 325
network-list command, 781
Network Mapper (Nmap) tool, 384
network milestone, 499
Network Settings dialog, 75, 76
Network Time Protocol (NTP) service

clock synchronization, 431–432
overview, 306–307

Network UPS Tools project, 163
Network Vulnerability Scanner

(Nessus), 384
Network Wizard, 305
networks and networking, 75, 263

clusters, 581–582
concepts and standards, 264
connections, 76–78
hostname, 596–597
interfaces, 159–160, 263–265

IP display, 265–267
IP tunnels, 288–289
IPMP, 278–285
link aggregation, 285–287
logical, 276–278
manual configuration,

271–276
NWAM, 267–271, 269
PPP and PPP over Ethernet,

290
virtual LANs, 287
virtual NICs, 288

LDoms, 813–814
load balancing, 627–628
manual configuration, 75–76,

76–77
redundancy, 814
routers and firewalls

firewalls, 318–322
routing, 313–318
TCP Wrappers, 322–324

SANs, 198–199
services, 290

DNS. See Domain Name
System (DNS)

FTP, 305–306
HTTP, 309
inetd, 309–313
mail, 308–309
NTP, 306–307

954

Index O

troubleshooting, 324–328
virtual devices, 780–781
VirtualBox, 833, 836–837
zones

miscellaneous commands,
717–719

overview, 705–708
properties and resources,

710–717
sparse root vs. whole root,

708–710
New Attached Printer dialog,

141–143, 142
new command, 755, 765
New Machine command, 749
New Project dialog, 896, 896, 898,

898
C and C++, 903
web application development, 907

New Virtual Machine wizard, 44
newfs command, 201, 208, 219
newkey command, 348
newtask command, 663
NexentaCore distribution, 23–24
next command

dbx and GDB debuggers, 886
Java Debugger, 874

NFS. See Network File System (NFS)
nfsmapid service, 349
nfsstat command, 349
NICs (network interface cards),

263–264, 288
Nieuwejaar, Nils, 784
NIS. See Network Information Service

(NIS)
NIS+ naming service, 353
Nmap (Network Mapper) tool, 384
nodeinfo command, 757
Nodelist property, 614
nodes

cluster, 580, 590
logical, 622–627

non-global zones, 694, 706
non-password-based authentication,

408–411
Non-Uniform Memory Access

(NUMA) hardware
characteristics, 507

nonglobal.db file, 496
normal images in VDI, 837–838
Normal option for desktop, 106
NS (nameserver) records, 297
nscd command, 354
.nsmbrc file, 351–352

NTP (Network Time Protocol) service
clock synchronization, 431–432
overview, 306–307

ntpq command, 307
NUMA (Non-Uniform Memory

Access) hardware
characteristics, 507

NWAM. See Network Auto-Magic
(NWAM) technology

nwamd command, 270

O
OBL (OpenSolaris Binary License),

8–9
OBP (OpenBoot PROM), 790

device aliases, 799
variables, 816

octal representation of permissions,
62

office suite, 52
offline command

clusters, 611
pools, 230

offsetof operator, 551
ogb-discuss list, 14
Ogg Vorbis format, 121
ON (Operating System/Networking)

consolidation, 15
online command, 593, 600,

603–604, 610, 615–616,
624, 632, 634

online operations. See networks and
networking

open command, 380
Open Connection command, 749
Open Connection dialog, 746, 746
open development, 9
Open High Availability Cluster

software. See clusters
Open Sound System (OSS)

framework, 156
Open Source Initiative (OSI), 8
open source software

basics, 6
licenses, 7–8
significance, 9

open system calls, 532
OpenBoot PROM (OBP), 790

device aliases, 799
variables, 816

OpenOffice.org suite, 52
OpenSolaris

booting, 30–32, 31, 33, 41–43,
42

and BSD, 13
components, 27–28
distributions

BeleniX, 22–23
MartUX, 24–25
MilaX, 25
NexentaCore, 23–24
Schillix, 21–22
Solaris Express Community

Edition, 20–21
downloading, 29–30
hardware for, 28–29
history, 9–11, 26–27
installing, 19, 33–34

disk partitioning, 34–36, 34
time, time zone, language, and

users configuration,
36–39, 37–40

troubleshooting, 39–41
on virtual machines, 43–44,

45
kernel, 27
licenses, 8–9
and Linux, 11–12
and Solaris, 11

opensolaris-announce list, 14
OpenSolaris Binary License (OBL),

8–9
OpenSolaris CIFS Administration

Guide, 340
opensolaris-help list, 14
opensolaris.org repository, 171, 177
operating-system-level virtualization,

651–652
Operating System/Networking (ON)

consolidation, 15
operators for DTrace, 550–551
/opt directory, 96
/opt/cluster/lib/rgm/rtreg directory,

606
optional_all dependency, 474
options, DHCP, 300
options/boot_messages property, 498
options/logging property, 499
OR operators in DTrace, 550–551
organizing images, 123–125,

123–124
OS for VirtualBox, 826–829,

827–828
OSI (Open Source Initiative), 8
OSI seven-layer model, 264
ospm-applet application, 137

955

O Index

OSS (Open Sound System)
framework, 156

Otto, Fabian, 21
outgoing command, 924
Overview tab for guest domains, 750
overwriting files, 64
owner permissions, 62

P
package authorities, 80
Package Manager, 171–172, 172
packages

installing, 171–172, 172
IPS for, 167–168, 926–929
names and versions, 169–171
overview, 167–168
removing, 172–173
repositories, 168, 185–187, 187
viewing, verifying, and searching,

173–176
Palette in web application

development, 910, 912
pam_authenticate command, 372
pam_krb5 module, 441
pam_krb5_migrate modules, 441
PAMs (Pluggable Authentication

Modules), 340
for Kerberos, 441–444
overview, 372–374

panels, desktop, 105
panic command

DTrace, 554
LDom domains, 817

paravirtualization, 741–743
domains, 753–755, 767
drivers, 782
vs. fully virtualized systems,

653–654
pargs tool, 352, 517
parity checking, 231
parted utility, 36
partial images in IPS packages, 169
partitions

clusters, 582–583
disks, 34–36, 34, 193
formatting, 93–94, 195–196
labels, 194

partnerships, 636, 638–640
passed packets, 320–321
passive failure detection, 279–281
passwd command, 91, 340, 377
passwords

aging, 377–378

in booting, 41
CIFS, 351–352
encryption, 340
/etc/passwd, 376
Kerberos, 442–443
Keyring Manager for, 127
MySQL, 852–853
overview, 375–376
PostgreSQL database, 857
strong, 376–377
Subversion, 919

PATH environment variable, 59–61,
65

Pathprefix property, 614
paths

commands, 59–61
zones, 695, 699, 721

pattern-matching in domain
migration, 770

Pause command, 750
paused domain state, 758
payloads in IPS, 927
pcfs file system, 216
pcred tool, 517
PDA Synchronization tool, 130
peers in Kerberos, 433
per-process core dumps, 929–930
per-user auditing, 428–429
percent signs (%) in DTrace,

550–551
performance

virtualization, 655–656
ZFS, 240–241

Performance Monitor, 129, 129
periods (.)

SOA records, 296
working directory, 59

peripherals, 53, 135
audio, 156
device drivers, 163–164
network interfaces, 159–160
power management, 161–163
printers. See printers and printing
scanners, 148–149
serial devices and modems,

156–159
USB devices, 149–156, 151–152,

155
Perl language, 891

accounting data, 691
tracing, 572

permissions, 62–63
permitted process privilege sets, 396
persistent state of share groups, 336

pfcsh profile shell, 386
pfexec prefix, 70, 95, 386, 391
pfiles command, 87, 517
pflags command, 87, 517, 884
pfsh profile shell, 386
$pgid macro, 547
pgrep command, 87, 89, 517, 595,

665
photos

organizing and editing, 123–125,
123–124

viewing, 122–123
PHP language

alternatives, 859
configuring, 850, 850
for development, 893
tracing, 572

phpMyAdmin, 851, 852
physical I/O for LDoms, 808–810
physical security, 372
PICL (Platform Information and

Control Library), 507
picld command, 507
Picture Transfer Protocol (PTP),

153–154
$pid macro, 547, 556
pid provider, 538, 564–565
pid variable, 544
Pidgin client, 116–119, 117–118
Pidgin Internet Messenger program,

52
PIDs (process IDs)

listing, 85
macros, 548–549
rctl, 668

ping command, 325–326
Pingpong_interval property, 614
piping command output, 64
pkg authority command, 80
pkg contents command, 174
pkg.depotd daemon, 185
pkg fix command, 175
pkg-get utility, 22
pkg image-update command, 169,

179–180, 183
pkg install command, 80–81, 169,

173, 176
pkg list command, 43, 173, 178
pkg rebuild-index command, 176
pkg refresh command, 42, 78, 80,

171, 176–177
pkg search command, 43, 78–80,

171, 175, 583
pkg set-authority command, 80, 177

956

Index P

pkg uninstall command, 79, 169,
171, 176

pkg unset-authority command, 81
pkg verify command, 175
pkgadd command, 177, 792, 824,

834
pkginfo command, 177
pkgram command, 177
pkgrecv command, 187
pkgsend command, 187, 928
pkill command, 87, 516–517, 665
pktool command, 405, 415
Places menu, 48
Platform Information and Control

Library (PICL), 507
platform names, 742
Platform Software Architecture

Review Committee
(PSARC), 16

Play Queues in Rhythmbox, 120
pldd command, 87, 517, 565
plug-ins

NetBeans, 906–907, 909
web application development, 910

Pluggable Authentication Modules
(PAMs), 340, 372–374

for Kerberos, 441–444
overview, 372–374

pluggable modules in FMD, 454
Plugins window, 906, 909
plumb command, 272, 286
plus signs (+)

DTrace, 550–551
job control, 65

pmadm command, 157
pntadm command, 304
Point-to-Point Protocol (PPP), 290
pointers

C, 546
DTrace, 551

policies
auditing, 430
IPsec, 418–419
network load balancing, 627–628

pollsys system call, 557
pooladm command, 672–674,

676–677, 680
poolbind command, 675–676, 730
poolcfg command, 673, 677,

680–681
poold daemon, 679–681, 703
pools

resource, 672
binding, 675–676, 730

configuring, 672–680
monitoring, 676
poold, 680–681
properties, 677–680
zones, 702–703

ZFS, 92, 224–225
data scrubbing, 234–235
history, 239
managing, 226–227
migrating, 235–237
mirroring, 93–95, 227–231
monitoring, 240–241
properties, 237–239
RAID Z, 231–232
spare devices, 232–234

poolstat command, 676–677, 703,
728

port forwarding, 412–413
port property, 186
port-scanning tools, 384
portability with virtualization, 656
ports, serial, 156–158
POSIX standard, 26, 54, 878
post mortem debugging, 884
post mortem tracing, 563–564
PostgreSQL database, 856–859
PostScript Printer Description (PPD)

repository, 147–148
power management

configuring, 161–163
statistics, 129–130

Power Management community, 161
PPD (PostScript Printer Description)

repository, 147–148
ppdmgr command, 148
$ppid macro, 547
PPP (Point-to-Point Protocol), 290
PPP over Ethernet, 290
ppriv command, 395–397
pragmas, 548
praudit command, 427
prctl command, 666–668,

729–730
predicates

D script, 531, 533
DTrace, 539–541
self-healing, 451–453

Preferences command, 749
preferred authorities, 169
preshared keys, 414
Presto project, 136–138, 136
Primary Administrators in profiles,

390
primary control domains, 791–792

principal buffers, 560
principals in Kerberos, 431
principle of least privilege, 385
print command

dbx and GDB debuggers, 886
Java Debugger, 874

Print Manager, 140–143, 140
print-service command, 139–140
printa function, 552
printers and printing, 53, 135–136

configuring
automatic, 136–138, 136
CUPS systems, 146, 147
LP systems, 140–146,

140–142
print service selection,

138–140
jobs submission, 144
PPD management, 147–148
VTOC labels, 203–204

printf command, 58, 552
printmgr, 140–143, 140
priocntl command, 686–687, 730
private cluster interconnects, 581
privileged commands, 68–71
privileges

DTrace, 531
LDoms, 792
network zones, 712–713
overview, 395
RBAC, 394–395
rctls, 667
viewing, 395–397
zones, 734

probe-based failure detection, 279
probe effects, 536
probefunc variable, 544
probemod variable, 544
probename variable, 544
probeprov variable, 544
probes, DTrace, 529–530,

534, 536
advanced specification, 539
hotspot, 570–572
listing, 536–537
modules and functions, 538
providers, 537–538

/proc directory, 96
proc provider, 538
/proc system, 516–518
proc tools, 87, 932

957

P Index

process IDs (PIDs)
listing, 85
macros, 548–549
rctl, 668

process.max-file-descriptor rctl,
666–667

processes
call activity tracking, 520–521
debugging, 883–884
managing, 85–87
monitoring, 509–511
/proc system, 516–518
and services, 465–466
for tasks and projects, 660–661,

661
zones-related, 725

processor sets, 672, 682
processors. See CPUs
profile provider, 538
profile shells, 386
profiles

rights, 389–392
SMF, 499–500
zones, 695

profiles command, 70, 390
profiling

NetBeans IDE, 901–902,
903–904

web applications, 910, 912, 913
progenyof function, 553
programmatic interfaces, 841
projadd command, 664
projdel command, 664
Project Colorado, 581, 583
project databases, 661–662
Project Indiana, 27
project.max-lwps rctl, 668
projects

attributes, 664–665
default, 662
membership, 663–664
pool binding to, 675
rctls, 668, 671
resource management, 660–665,

661
projects command, 663
$projid macro, 547
projmod command

CPU caps, 687
FSS, 684–685
project updates, 664
rctls, 668
resource caps, 671

promoting clone datasets, 248

prompts, 55, 66
Properties dialog, 105
property groups in manifest files,

477–478
protection groups, 638, 640–642
proto area in IPS, 927
protocols

network, 264
printers, 143–144

providers, probes, 537–538,
565–568

proxy_base property, 186
proxy file system (PxFS), 600
Proxy_SMF_Failover resource type,

632
Proxy_SMF_Multimaster resource

type, 632
Proxy_SMF_Scalable resource type,

632
prstat command, 129, 510–511

processes, 84
project and task data, 665
zones, 727–728

prtconf command, 84, 163, 193, 504
prtdiag command, 84, 504–506
prtpicl command, 507
prtvtoc command, 203
prun tool, 517
ps command, 509–510

MDB, 932
processes, 85–86
project and task data, 660
scheduling classes, 683–684
smbfs, 352
zones, 727

PSARC (Platform Software
Architecture Review
Committee), 16

psets, 679–681
psig tool, 517
psrinfo command, 84, 506, 682
psrset command, 682
pstack command, 87, 517, 884
pstop tool, 517
ptime tool, 517
ptools, 87, 932
PTP (Picture Transfer Protocol),

153–154
ptype command, 886
public-key encryption, 407
public network clusters, 581–582
pull command, 924–925
pulled repository changes, 922
push command, 924

pushed repository changes, 922
pwait tool, 517
pwd command, 61
pwdx tool, 517
PxFS (proxy file system), 600
pygrub bootloader, 766
Python language

running, 891
tracing, 572

Q
qemu-dm process, 767–768, 782
QEMU hypervisor, 655, 743
Quagga routing service, 316–318
quantize function, 554
question marks (?) in DTrace, 549
queues

printer, 145–146
run, 513

quiescence command, 612
quorums, cluster, 577, 580–581
quota command, 209, 211–212
quota property, 257
quotaon command, 211
quotas

datasets, 257
UFS, 211–212
zones, 714

R
RADIUS (Remote Authentication Dial

In User Service) protocol,
202

RAID Z, 231–232
raise function, 554
RAM disks, 198
ramdiskadm command, 198
rand function, 553
RARP (Reverse Address Resolution

Protocol), 273
RAS (reliability, availability, and

serviceability), 451
raw disk access, 192
raw property, 716–717
RBAC. See Role-Based Access Control

(RBAC)
rc2 program, 498
rcapadm command, 672, 730
rcapd daemon, 671, 728
rcapstat command, 671, 728, 731
rcp service, 436
rctladm command, 668

958

Index R

rctls (resource controls), 665–666,
700

list, 668–670
projects, 668, 671
syntax, 667–668
working with, 666–667

rdesktop client, 110
rdist service, 436
read access in NFS security, 347
read permissions, 62–63
read system calls, 539
readBallot command, 879–880
Real Time (RT) class, 683
realms in Kerberos, 431
reboot command, 96–97

with clusters, 606
for crash dumps, 931
xVM domains, 763
zones, 699

rebuild-index command, 176
rebuilding indexes, 176
receive command for zones, 731
reconfiguration

LDom domains, 803–804
xVM domains, 761–763
zones, 729–731

recovery. See disaster recovery
recovery point objectives (RPOs),

635–636
recovery time objectives (RTOs),

635–636
redirection of commands, 64
redundancy

disk, 813
domain, 780
network, 814
root pool mirroring, 93–95

Redundant Arrays of Inexpensive
Disks (RAID), 231–232

redzone, 887, 890
references, indirect, 546
refreservation property, 257
refresh command, 42, 78, 80, 171,

176–177, 487
register command, 598, 624, 626,

632–633
registerimage command, 838
registers, user-level, 568
reject command, 146
relational operators in DTrace, 550
relative paths, 59
RELEASE_ON_SIGTERM setting, 301
reliability, availability, and

serviceability (RAS), 451

rem_drv command, 164
Remember Current Running

Applications option, 104
remote access with VirtualBox,

840–841
Remote Authentication Dial In User

Service (RADIUS) protocol,
202

remote connections, 82–83
Remote Desktop Preferences dialog,

108, 109
remote logins, 379
remote replication, 203
removable media, 196–197
remove command for quorums, 630
remove-aggr command, 287
remove net command, 711
remove-share command, 336
removeif command, 278, 282
removing

packages, 172–173
volumes, 806

rename command, 182–183
renaming

boot environments, 182–183
file systems, 243
network interfaces, 265
pools, 237
snapshots, 246
volumes, 244
zones, 713

renice command, 728–729
repairing UFS, 209–211
repeating vim commands, 68
replaying packets, 406
replication

in cluster configuration, 636–637
datasets, 249–251
remote, 203

reports
accounting, 688
BART, 424–425

repositories
alternative, 80–82
CVS, 914–916
Mercurial, 922–924
packages, 168, 185–187, 187
printer, 147–148
SCM, 913
SMF, 493–495
Subversion, 918–920

repquota command, 212
requests to integrate (RTI), 16
require_any dependency, 474

reservations properties, 257
reset-linkprop command, 160
resident set size (RSS), 510
resilver operation, 94, 228
resolution, screen, 107
resolvers in DNS, 291–293
resource controls (rctls), 665–666,

700
list, 668–670
projects, 668, 671
syntax, 667–668
working with, 666–667

resource_dependencies_offline_restart
dependencies, 621

resource_dependencies_restart
dependencies, 621

Resource_dependencies_weak
dependencies, 621

resource groups (RGs), 590, 608
life cycles, 608–612
properties, 612–617

resource names, CIFS, 351–352
Resource Type Registration (RTR) file,

606–607
resources, 16–17

clusters for, 589–590
management, 617–622
resource groups. See resource

groups (RGs)
resource types, 606–609

dependencies, 621
managing, 87, 406, 659

accounting, 687–691
introduction, 659–660
pools. See pools
processor sets, 682
projects and tasks, 660–665,

661
resource caps, 671–672
resource controls. See resource

controls (rctls)
scheduling, 682–687
virtualization, 651, 654, 654,

657
zones, 699–705

restart command, 611
restarters in SMF, 490–493
restore command, 763, 765
Restore Saved Machine command,

749–750
restoring

UFS, 213–214
xVM domain states, 749–750,

763, 765

959

R Index

restoring (continued)
zones, 731–732

restricted shells, 398
resume command

cluster resource groups, 612
power management, 161
xVM domains, 763–764

Reverse Address Resolution Protocol
(RARP), 273

revision history for repositories
CVS, 917
Mercurial, 926
Subversion, 921–922

RG_ properties, 613–616
RGs (resource groups), 590, 608

life cycles, 608–612
properties, 612–617

Rhythmbox application, 119–121,
120

rights profiles, 389–392
ring buffers, 239
ring policy in DTrace buffering, 561
Ritchie, Dennis, 9
rlogin service

disabling, 380
Kerberos, 436, 439

rm-config command, 818
rm-io command, 809
rm-mau command, 811
rm-memory command, 811
rm-reconf command, 804
rm-var command, 816
rm-vcpu command, 811
rm-vdisk command, 813
rm-vdsdev command, 806
rm-vnet command, 814
rmformat command, 197
rmvolmgr service, 196–197
Role-Based Access Control (RBAC),

68, 384–385
authorization, 386–388
profiles, 258, 389–392, 695
roles, 392–394
terminology, 385
working with, 385–386
zones, 695

role-change action scripts, 643
roleadd command, 91, 392
roledel command, 91, 394
rolemod command, 393–394, 398
roles

managing, 89–92, 90
RBAC, 392–394

roles command, 70, 393

root as role, 394
root file system, 182
root kits, 370
root passwords in MySQL, 852–853
root pools

mirroring, 93–95
ZFS, 224–225

root user, 384
route command, 314–315
routeadm command, 314, 317
routers, 313, 317–318
routing, 313

dynamic IP, 316
dynamic routers, 317–318
IP forwarding, 313–314
static IP, 314–316

rpcbind service, 383
/rpool/boot/grub directory, 96
rpools, 92–94, 224–225
RPOs (recovery point objectives),

635–636
RSA algorithm, 407
rsh service, 436
RSS (resident set size), 510
rt_callbacks command, 607
RT (Real Time) class, 683
RT_ properties, 609
rt_properties command, 607
RTI (requests to integrate), 16
RTOs (recovery time objectives),

635–636
RTR (Resource Type Registration) file,

606–607
Ruby language

installing, 859
tracing, 572–573

Ruby on Rails language
tracing, 572–573
working with, 892–893

rules in BART file, 424
run command

dbx and GDB debuggers, 886
guest domains, 750
Java Debugger, 874

Run Main Project command, 896
run queues, 513
running

C and C++, 904–905
NetBeans IDE, 899–900, 900
OpenSolaris, 13
Python scripts, 891

running state
domains, 758
zones, 726

rw_iswriter function, 553
rw_write_held function, 553

S
SAM-QFS (Storage Archive

Manager/Quick File
System), 217

Samba project, 333
SANE (Scanner Access Now Easy)

project, 148
sane-find-scanner command, 148
SANs (storage area networks),

198–199
sar (system activity reporter) utility,

523–524
SAs (Security Associations), 413
SATA (Serial ATA) emulation,

838–839
save command

guest domains, 750
xVM domains, 763–765

savecore command, 930–931
SBD (Secure by Default) feature, 318,

379–384
/sbin directory, 60, 96
SBP (Script-Based Plug-in), 637
scalable Apache, 600–605
scalable services, 578, 579
scalar arrays, 546
scan-wifi command, 275
scanimage command, 148
Scanner Access Now Easy (SANE)

project, 148
scanners, 148–149, 384, 513
sccheck command, 588, 631
SCCS (Source Code Control System),

913
sch-add command, 410–411
sch-agent command, 410–411
sched-credit command, 774
schedinfo command, 773–774
scheduling, 682

classes, 87, 680, 682–683,
686–687

CPU caps, 687
FSS, 684–686, 700–702
virtual CPUs, 773–774

scheduling-class property, 713
schema in LDAP, 365–366
Schilling, Jorg, 21
Schillix distribution, 21–22
scinstall command, 584, 588

960

Index S

SCM. See source code management
(SCM)

scp command, 410
screen resolution, 107
screenshots, 122
Script-Based Plug-in (SBP), 637
scripting, shell, 893–894
scrubbing ZFS data, 234–235
scsi_vhci driver, 202–203
scstat command, 597
SCX (Solaris Cluster Express), 583,

638
sdt (statically defined tracing)

provider, 538, 565–568
seamless windows, 834
search command, 43, 78–80, 171,

175, 583
searching

packages, 78–80, 173–176
in vim, 68–69

secondary DNS servers, 299
secondary nodes, 590
secure-by-default configuration, 82
Secure by Default (SBD) feature, 318,

379–384
secure copy, 411–412
Secure Hash Algorithm (SHA) digests,

405
Secure Shell (SSH), 82–83, 408

manifest files. See manifest files
method script, 479–481
non-password-based

authentication, 408–411
with secure copy, 411–412
tunneling, 412–413

Secure Socket Layer (SSL), 407
security, 369

access control lists, 399–404
attack detection. See attack

detection
communication

IPsec, 413–419
overview, 406–407
SSH, 408–413

encrypted files, 404–405
firewalls, 379
Kerberos. See Kerberos security
message digests, 405
NFS, 346–349
overview, 369–370
PAMs, 372–374
password management. See

passwords
port-scanning tools, 384

privileges, 394–398
RBAC. See Role-Based Access

Control (RBAC)
restricted shells, 398
SBD, 379–384
terminology, 371
Trusted Extensions, 445–446
user stack execution, 406
zones and resource management,

406
Security Associations (SAs), 413
security service logs, 422
seed repositories, 496
segmentation faults, 884
Select Windows When The Mouse

Moves Over Them option,
106

self-healing, predictive, 451–453
self variable, 544
semicolons (;)

command line, 55
DTrace statements, 549

send command for zones, 731
sending IPS packages, 928
sendmail program, 308–309
Serial ATA (SATA) emulation,

838–839
serial devices, 156–159
serial ports, 156–158
Server Message Block (SMB). See

Common Internet File
System (CIFS)

servers
DHCP, 302–305
DNS, 294–299
LDAP, 366
NIS, 359–364
quorum, 581
Subversion, 918–919
VRDP, 829–830, 841
web. See web stacks

service bundles, 472
service_fmri attribute, 475
service graphs, 491–492
Service Management Facility (SMF),

88
Apache configuration, 849
customizing, 500–501
example service, 468–472
logs, 422
management commands,

481–490
manifest file, 472–479
manifest-import service, 495–496

method scripts, 479–481
milestones, 496–499
print services, 137, 139
profiles, 499–500
Proxy service, 631–633
repositories, 493–495
restarters, 490–493
service management, 466–468
vs. UNIX init, 466–468
xVM hypervisor, 768–769
zones, 731

services, 465
clusters for, 589–590

resource groups. See resource
groups (RGs)

resource types, 606–609
resources, 617–622

disabling, 380–382
Internet, 110

e-mail and calendar,
112–115, 113–116

instant messaging, 116–119,
117–118

web browsing, 110–112, 111
Kerberos, 435–436, 438
LDoms, 789–790, 790,

804–808, 810
with local connections only, 383
managing, 88–89
in manifest files, 472–473
naming, 331, 353–355
network. See networks and

networking
print, 138–140
and processes, 465–466
service management vs. fault

management, 453
sharing, 338–340
SMF. See Service Management

Facility (SMF)
servlet containers, 846
Session Initiation Protocol (SIP), 150
sessions, desktop, 103–105
Sessions dialog, 132
set action for IPS packages, 168
set command, 59

clusters, 608, 614–616,
621, 628

share groups, 347
sharing services, 339
zones, 695

set-authority command, 80, 177
set-config command, 818
set-linkprop command, 160

961

S Index

set-mau command
control domains, 793
guest domains, 796

set-memory command
control domains, 793
guest domains, 796
LDOM delayed reconfiguration,

803
set-menu command, 745
set-prop command, 643
Set User ID capability, 394
set-var command

guest domains, 797
OBP variables, 816

set-vcc command, 804
set-vcons command, 814–815
set-vcpu command, 793
set-vnet command, 814
set-vsw command, 804
setextradata command, 837
setfacl command, 399–401
setmaxmem command, 761, 776
setmem command, 761, 763,

776–777
setprop command, 489
setrlimit command, 665
Settings control panel, 832–833, 832
setuid root command, 394
setvcpus command, 761, 763, 773
sftp command, 411
SHA (Secure Hash Algorithm) digests,

405
sha1sum command, 405
share command

Kerberos, 441
limitations, 333

share groups, 334–338
shareall command, 333
sharectl command, 334, 338–340
shared addresses for clusters, 603
shared clipboards, 834
shared-key encryption, 407
shared storage for clusters, 580
sharemgr command, 334–338
sharenfs property, 338
sharing

desktop, 108–110, 109
directories, 335–337, 341,

834–835
files, 333–334

CIFS service, 340–341
packages for, 334
services, 338–340

share groups and sharemgr,
334–338

home directories, 341
NFS shares, 342–346, 349
ZFS datasets, 337–338

shells, 54–55
commands

executing, 55–57
history, 57
paths, 59–61
privileged, 68–71
redirection, 64

customizing, 65–66
environment variables, 58–59
file management, 61–63
job control, 64–65
profile, 386
restricted, 398
scripting, 893–894
text editors, 66–70

shift operators, 550–551
show command

clusters, 605, 607–608, 612, 614,
616, 620, 627–628

share groups, 335–347
show-aggr command, 286
show-link command, 272, 286–287,

780
show-linkprop command, 160
show-secobj command, 276
show-vlan command, 287
show-wifi command, 275
showhost version command, 791
showmount command, 342–343
shut off domain state, 758
shutdown command, 96–97

clusters, 606
guest domains, 750
resource groups, 606
xVM domains, 763–764
zones, 699

shutdown.sh script, 861
shutting down, 53, 96–97

clusters, 606
and file systems, 207
zones, 699, 731

shutting down zone state, 726
$sid macro, 547
side pane in Rhythmbox, 120
SIGHUP signal, 86
signals for processes, 86–87
SIGTERM signal, 86
Simple Network Management Protocol

(SNMP), 526–527

LDom domains, 803
network-attached printers,

137–138
remote systems, 328

Single_instance property, 609
SIP (Session Initiation Protocol), 150
size

resident set, 510
UFS file system, 221
virtual disks, 44

sizeof operator, 551
Skype service, 151
slab allocator, 887
slashes (/) in DTrace, 540, 550–551
slave servers

DNS, 299
NIS, 355, 362–364

slices, 93, 195–196, 203–204
SMA (system management agent), 526
sma_snmp command, 527
SMB (Server Message Block). See

Common Internet File
System (CIFS)

smbadm join command, 340
smbautohome function, 341
smbfs file system, 349–352
smbios command, 505, 508
smbstat command, 341–342
smbutil command, 341, 352
SMF. See Service Management Facility

(SMF)
SMTP protocol, 115
Snap tab in VirtualBox, 831
snapshots

datasets, 245–248, 245, 732
file system, 225
SMF, 500
UFS, 212–213
VirtualBox, 831
zones, 723–724

SNDR (StorageTek Network Data
Replicator), 637

SNMP (Simple Network Management
Protocol), 526–527

LDom domains, 803
network-attached printers,

137–138
remote systems, 328

snmp-trapgen module, 454
snmpd command, 328
SNMPv2-MIB.txt file, 527
snoop command

IPsec configuration, 417–418
traffic capture, 326–327

962

Index S

SOA (Start of Authority) records, 296
social engineering, 372
socket_timeout property, 186
softmodems, 159
software

alternative repositories, 80–82
boot environment, 180–185
clusters, 583–584
distribution building, 187–188
finding and installing, 78–80
information on, 83–85
packages. See packages
updating, 177–179, 178
zones, 732–733

Solaris and OpenSolaris, 11
Solaris Auditing, 425–427

data review, 427–428
features, 430
per-user basis, 428–429
policies, 430
syslogging audit events, 429
turning off, 430
turning on, 425–427

Solaris Cluster Express (SCX), 583,
638

Solaris Express Community Edition
(SXCE), 20–21

Solaris Express Developer Edition
(SXDE), 20

Solaris Hardware Compatibility List,
163

Solaris Internals (McDougall and
Mauro), 687

Solaris Systems Programming (Teer),
878

Solaris Volume Manager (SVM),
217–221

cluster support, 578
commands and features, 220–221
metadevice creation, 218–219
overview, 217–218

source code from open source
software, 6

Source Code Control System (SCCS),
913

source code management (SCM), 913
CVS, 913–914

conflicts, 916
repositories, 914–916

Mercurial, 922
conflicts, 925
repositories, 923–924

Subversion, 918
conflicts, 920–921

repositories, 918–920
SPARC systems, 24–25
spare devices in ZFS pools, 232–234
spare nodes, 590
sparse root zones, 708–710
sparse volumes, 244
specsize setting, 562
speculate function, 562
speculation function, 553, 562
speculative tracing, 562–563
spell-check program, 871–874
Spell class, 871
SpellChecker class, 872–873
split-brain cluster scenario, 577
ss-dev package, 875, 878
SSH. See Secure Shell (SSH)
ssh-add program, 104
ssh-agent daemon, 104
.ssh/authorized_keys file, 410
ssh command, 83

graphical display virtualization,
657

guest domains, 748
Kerberos, 436, 438
non-password-based

authentication, 408–409
tunneling, 412–413
VirtualBox, 836, 842
xVM domains, 754

ssh-keygen command, 409–410
SSIDs with NWAM, 268–269
SSL (Secure Socket Layer), 407
stability element in manifest files,

478–479
stack function, 552
stacks

execution prevention, 406
network, 706–708
user-level, 568
web

AMP. See AMP
(Apache/MySQL/PHP) stack

Java-based web services,
859–865, 861, 863, 865

overview, 845–846
standard resource properties,

618–620
standards, networking, 264
standby interface groups, 278
star topology, 637, 638
start command

clusters, 639
Geographic Edition, 642
guest domains, 798

LDoms, 817
share groups, 336
svcadm, 486
xVM domains, 763–764

start_job function, 566–567
START method, 607
Start of Authority (SOA) records, 296
startd service, 491–494
starting state for LDom domains, 802
starting xVM domains, 763–766
startserv command, 856
startup command, 688
startup.sh script, 860–861
states

boot environment, 180
domains, 758
LDom domains, 802
services, 486–487
zones, 726–727

static configuration of pools,
676–677

static IP
configuring, 273–275
routing, 314–316

static web pages, 846
statically defined tracing (sdt)

provider, 565–568
status, printer, 144–145
status command

clusters
Apache, 598, 603–604,

610–611, 626
failover storage, 624
GDS, 634
properties, 615–616
resource groups, 593–594,

608
resource life status, 618
SMF, 632–633

quorums, 630
sharing services, 338
Subversion, 921

step command
dbx and GDB debuggers, 886
Java Debugger, 874

stop command
dbx debugger, 886
DTrace, 554
guest domains, 800
Java Debugger, 874
LDom console, 814
LDoms, 817
share groups, 336
SMF, 486

963

S Index

STOP method, 607
stopping state for LDom domains,

802
stopping xVM domains, 763–766
storage

failover, 591–596, 623
file systems. See file systems
VirtualBox, 837–840, 838

Storage Archive Manager/Quick File
System (SAM-QFS), 217

storage area networks (SANs),
198–199

StorageTek Network Data Replicator
(SNDR), 637

store service, 768
strcpy command, 881–882
strdup command, 882
string type in DTrace, 543
stringof operator, 551
striping ZFS RAID, 231
strjoin function, 553
strlen function, 553
strong passwords, 376–377
subtraction in DTrace, 550
Subversion SCM, 918

conflicts, 920–921
repositories, 918–920

sudo software, 385
sum function, 554
Sun Device Detection Tool, 28–29
Sun Java System Web Server,

854–856, 857
Sun Message Identifier, 454
Sun Studio, 875–876
Sun Studio Express, 170, 875–876,

904
sun-webserver7 package, 854–855
sunstudioexpress package, 169, 876
SUNWant package, 894
SUNWbinfiles package, 302–303
SUNWcups package, 139
SUNWcvs package, 914
SUNWdhcb package, 302
SUNWdhcm package, 302
SUNWdhcs package, 302
SUNWfiles package, 302
SUNWgmake package, 894
SUNWgnome-img-editor package, 125
SUNWgnome-meeting package, 150
SUNWgnome-time-slider package,

248
SUNWgnu-emacs-gtk package, 66
SUNWgnu-emacs-nox package, 66
SUNWGtk package, 81

SUNWhea package, 878
SUNWj6dev package, 82, 870
SUNWj6dvx package, 870
SUNWjass package, 820
SUNWlang package, 75
SUNWldm package, 792
SUNWmercurial package, 922
SUNWnap package, 384
SUNWnfss package, 334
SUNWosdem package, 690
SUNWrdesktop package, 840
SUNWroute package, 316
SUNWruby18 package, 892
SUNWsamba package, 143
SUNWsane package, 148
SUNWsongbird package, 120
SUNWsprot package, 894
SUNWsudo package, 385
SUNWsvn package, 918
SUNWtcat package, 860
SUNWtcsh package, 54
SUNWtmp package, 703
SUNWvncviewer package, 744
SUNWwbsup package, 173
SUNWxchat package, 116
SUNWxvnc package, 109
SUNWzsh package, 54
superusers

privileged commands, 68
security issues, 384

Suspend_automatic_recovery property,
614

suspend command
cluster resource groups, 612
power management, 161
xVM domains, 763–764

Suspend/Resume project, 161
svcadm command

authorizations, 387
DNS, 305
service states, 481, 486–487

svcadm clear ssh command, 487
svcadm clear system/boot-archive

command, 98
svcadm disable command, 382
svcadm disable apache22 command,

855, 860
svcadm disable gdm command, 131
svcadm disable network/ftp command,

89
svcadm disable network/login

command, 436
svcadm disable network/physical

command, 76, 268, 271

svcadm disable network/shell
command, 436

svcadm disable nis/client command,
365

svcadm disable nis/server command,
365

svcadm disable ssh command, 486
svcadm disable svc command, 501
svcadm disable telnet command, 388
svcadm enable command, 745
svcadm enable application/pkg/server

command, 185
svcadm enable auditd command, 427
svcadm enable dns/server command,

298
svcadm enable ftp command, 306,

380
svcadm enable gdm command, 132
svcadm enable ike command, 415
svcadm enable ipfilter command, 322
svcadm enable mysql command, 851
svcadm enable network/dns/multicast

command, 300
svcadm enable network/ftp command,

89
svcadm enable network/http:apache22

command, 848
svcadm enable network/login

command, 436
svcadm enable network/ntp

command, 307
svcadm enable network/physical

command, 76, 268, 271
svcadm enable network/shell

command, 436
svcadm enable nfs/client command,

343–344
svcadm enable nis/client command,

358
svcadm enable postgresql_83

command, 859
svcadm enable printers command,

137
svcadm enable ssh command, 486
svcadm enable svc command, 501,

792, 794, 811, 819
svcadm enable system/pools/dynamic

command, 680, 703
svcadm enable xvnc-inetd command,

110
svcadm milestone command, 498
svcadm refresh command, 308, 490
svcadm refresh application/pkg/server

command, 186

964

Index S

svcadm refresh dns/server command,
298

svcadm refresh ike command,
415–416

svcadm refresh ipfilter command, 322
svcadm refresh ldoms/vntsd

command, 808
svcadm refresh printers command,

138
svcadm refresh ssh command, 501
svcadm refresh svc command, 768,

770
svcadm refresh system-log command,

89, 383, 421
svcadm refresh xvm/xend command,

768
svcadm restart command, 308
svcadm restart apache22 command,

849, 851
svcadm restart application/pkg/server

command, 186
svcadm restart application/print/server

command, 146
svcadm restart auditd command, 429
svcadm restart autofs command, 345
svcadm restart ftp command, 435
svcadm restart gdm command, 110
svcadm restart ike command,

415–416
svcadm restart ipsec/policy command,

417–418
svcadm restart ldoms/vntsd command,

808
svcadm restart name-service cache

command, 354
svcadm restart

network/security/kadmin
command, 443

svcadm restart network/telnet
command, 436

svcadm restart nwam command, 77,
270

svcadm restart ppd-cache-update
command, 148

svcadm restart printers command,
138

svcadm restart ssh command, 409
svcadm restart svc command, 768,

770
svcadm restart system-log command,

89, 383, 429
svccfg command

HVM domains, 768
key management, 416

live migration, 770
memory, 776
milestones, 497–498
network-attached printers, 138
network services, 383
repositories, 186
services, 89, 472, 481, 487–490
SMF services, 500–501, 768
VCC service, 808

svccfg apply command, 500
svccfg export command, 490
svccfg import command, 490, 495,

501
svcprop command

inet services, 310
milestones, 497
network services, 383
services, 88–89, 481, 490
SMF, 492, 494, 500

svcs command, 349
milestones, 496–498
services, 88–89, 481–486
SMF, 492, 631–633, 727

svcs apache22 command, 849
svcs auditd command, 427
svcs ftp command, 89, 380
svcs ike command, 415
svcs mysql command, 851
svcs name-service-cache command,

354
svcs network/nis command, 362
svcs nfs command, 349
svcs nis/server command, 359, 364
svcs nwam command, 267, 270
svcs postgresql_83 command, 859
svcs restart ssh command, 409
svcs ssh command, 408, 484–487
svcs system-log command, 88
svcs telnet, 388
SVM. See Solaris Volume Manager

(SVM)
svn command, 918–922
SVN_EDITOR environment variable,

920
svnadmin command, 918
svnserve command, 918
svnserver daemon, 918
SVR4 packaging, 26, 176–177
swap command, 214–215
swap space, 214–215
Swing applications, 902
switch command, 610, 617, 626, 633
switch policy in DTrace, 560–561

switching between active windows,
105

switchovers for protection group
roles, 642

switchrate setting, 561
SXCE (Solaris Express Community

Edition), 20–21
SXDE (Solaris Express Developer

Edition), 20
symbolic debuggers, 879
symmetric encryption, 407
synchronization

clock, 431–433
VirtualBox guests, 834

SYS (System) class, 683
SYS_MOUNT privilege, 351
sys-unconfig command, 271, 356,

365, 757
syscall provider, 537–538, 552
sysconfig milestone, 499
sysdef command, 504
sysidcfg file, 724–725
syslog command, 524–525

local connections, 383
Solaris Auditing, 429

syslog.conf file, 525
syslog-msgs module, 454
syslogd daemon, 420, 525
sysrq command, 783
system activity reporter (sar) utility,

523–524
system administration, 83

boot environment, 97
booting and shutting down,

96–97
Disk Usage Analyzer, 127–128,

128
GRUB and boot archive, 97–98
Keyring Manager, 127
Log File Viewer, 128
log files, 96
Performance Monitor, 129, 129
power management and statistics,

129–130
processes, 85–87
services, 88–89
storage and file systems, 92–96
system information, 83–85
users, groups, and roles, 89–92,

90, 125, 126
System (SYS) class, 683
system controller for LDoms, 818
system directories, 95–96
system dumps, 215

965

S Index

system/filesystem/rmvolmgr services,
196–197

system function, 554
system identity preconfiguration,

724–725
system information

configuration, 504–508
hardware and software, 83–85

system load average, 509
system-log service, 525
system logs

attack detection, 420
syslog, 524–525

system management agent (SMA), 526
System menu, 48
System Monitor, 129, 129
system tracing. See DTrace facility

T
\t macro, 66
Tab key in command line, 56
tagging virtual LANs, 287
takeover command, 643
takeovers of protection groups,

642–643
$target macro, 547–549
target process IDs for macros,

548–549
targets in iSCSI, 199–200
task.max-lwps rctl, 668
$taskid macro, 547
tasks

changing, 663
resource management, 660–665,

661
system administration, 125–129,

128–129
TCP protocol, 143
TCP Wrappers, 322–324
tcpd command, 322
Teer, Rich, 878
telnet service

disabling, 380
guest domains, 798
Kerberos, 436, 439
status, 388
VCC service, 807

templates
manifest files, 478–479
zones, 710

TERM environment variable, 67
TERM signal, 86
terminal sessions, 73

test addresses in IPMP, 280
Text Editor tool, 130
text editors, 66–70
themes, desktop, 108
this variable, 544
Thompson, Ken, 9
thread-local variables, 544–545
threadlist command, 932
threads property, 186
Thunderbird e-mail client, 52,

112–113
ticket-granting tickets (TGTs), 431
tickets, Kerberos, 431, 437
tid variable, 544
tilde characters (∼)

CPU utilization, 681
home directory, 61
vim, 67

time
macros, 66
settings, 36–39

Time Share (TS) class, 683, 701
time synchronization for VirtualBox

guests, 834
time-to-live (TTL) setting, 296
Time Zone, Date and Time screen,

36, 37
time zone settings, 36–39, 37
timeout_minutes property, 808
timeout_seconds attribute, 477
timestamps

DTrace, 544
packages, 170

tip command, 157–158
TLS (Transport Layer Security), 407
/tmp directory, 96, 216
tmpfs file system, 198, 216–217
Tomcat, 859–860

Apache Roller application,
862–863, 863

stand-alone mode, 860–862, 861
web application development,

907–908
Tools menu in Ekiga, 152
top command, 511
topology in data recovery, 637–638,

637–638
Torvalds, Linus, 11
Totem Movie Player application, 122
trace function, 552
tracemem function, 552
traceroute command, 326
tracing. See DTrace facility
tracks, disk, 192

Trademark and Branding project, 188
Trademark Policy, 17
Transport Layer Security (TLS), 407
traps, monitoring, 522
trapstat command, 522
trash can, 49
Trojan horses, 725
troubleshooting

desktop, 131–132
DNS, 293–294
installation, 39–41
name service lookups, 355
network connections, 77–78
networking, 324–328
NFS, 349
NWAM, 270–271
xVM hypervisor, 782–784

truss command, 396, 520–521, 530,
884

trust between clusters, 639–640
Trusted Extensions (TX), 445–446
TS (Time Share) class, 683, 701
TTL (time-to-live) setting, 296
tunefs command, 208
tunneling

IP, 288–289
SSH, 412–413

TX (Trusted Extensions), 445–446
type 1 hypervisors, 652–655, 654
type 2 hypervisors, 652–653, 654,

655
type attribute for dependencies,

475–476
types

DTrace actions, 543–547
resources, 590, 606–609

Typical option for virtual machines,
44

U
\u macro, 66
uberblocks, 245
UFS. See Unix File System (UFS)
ufsdump program, 212–213
ufsrestore command, 13
$uid macro, 547
umask command, 63
umasks, 63
umasktest command, 63
umount command

CIFS, 350
file systems, 205
NFS shares, 344

966

Index V

umountall command, 344
uname command, 83, 504, 742
unbind command

LDom console, 814
LDom domains, 817

unbinding state in LDom domains,
802

undefine command, 757
unicast addresses, 299
unified error-handling channels, 452
uninstall command

packages, 79, 169, 171, 176
zones, 724

uninterruptible power supplies
(UPSs), 162–163

United States Computer Emergency
Readiness Team
(US-CERT), 370

Universal Resource Identifiers (URIs),
452

Universal Serial Bus (USB)
devices, 149

digital cameras, 153–156, 155
keyboards and mice, 149
MP3 music players, 150
webcams, 150–153, 151–152

USB-to-serial converters, 157–158
Universal Unique Identifiers (UUIDs),

454, 458
Unix File System (UFS), 207

access control lists, 399–401
backups, 212–213
checking and repairing, 209–211
creating, 208
logging, 208
mount options, 208
quotas, 211–212
restoring, 213–214
size, 221

UNIX operating system, 9–10
unmanage command, 611
unmount command, 185
unmounting

boot environment, 185
file systems, 205–206
NFS shares, 344
SMB, 350

unplumb command, 286
unregisterimage command, 838, 840
unset-authority command, 81
up command

dbx and GDB debuggers, 886
logical interfaces, 277, 282

update command

CVS, 916
Subversion, 920

Update Manager, 177–178, 178
updating

plug-ins, 907
software, 177–179, 178

upgrading ZFS pools, 260–261
UPSs (uninterruptible power

supplies), 162–163
UPTIME column for LDom domains,

803
uptime command, 509
URI protocol, 143
URIs (Universal Resource Identifiers),

452
US-CERT (United States Computer

Emergency Readiness
Team), 370

USB. See Universal Serial Bus (USB)
USB Mass Storage protocol, 150,

153–154
usbvc driver, 150
Use Localhost For Printer Server

option, 140
Use PPD Files option, 140
Use the whole disk option, 35
user action in IPS packages, 168
user_attr database, 662
user education for security, 372
user file creation mode masks

(umasks), 63
user groups, 14–15
user images in IPS packages, 169
user-level tracing, 564–568
user logs, 525
user.root project, 662
user stack execution, 406
user ZFS dataset properties, 252
useradd command, 91
userdel command, 91
usermod command

delegated administration, 258
privileges, 388, 398
profiles, 390, 392
roles, 393
root, 91, 394

usernames
in booting, 41
macros, 66

users
dataset properties, 257
GUI, 90, 90
managing, 89–92, 90, 125, 126
passwords. See passwords

settings, 36–39, 37–40
Users and Groups dialog, 90, 90, 125
Users screen, 36, 39
/usr directory, 96
/usr/apache/tomcat/common/lib

directory, 860
/usr/bin directory, 60
/usr/ccs/bin directory, 60
/usr/cluster/bin directory, 606
/usr/cluster/lib/rgm/rtreg directory,

606
/usr/demo/libexacct directory, 690
/usr/gnu/bin directory, 60
/usr/lib/locale file, 73
/usr/lib/ssh/sftp-server file, 468
/usr/lib/ssh/sshd file, 468
/usr/openwin/bin directory, 60
/usr/sbin directory, 60
/usr/sfw/bin directory, 60
/usr/share/doc/openldap file, 366
/usr/ucb directory, 60
/usr/X/bin directory, 60
/usr/X11/bin directory, 60
/usr/X11/bin/scanpci command, 507
/usr/X11/xorg.conf file, 131–132, 149
/usr/X11R6/bin directory, 60
/usr/xpg4/bin directory, 60
ustack function, 552, 569
UTIL column for LDom domains,

802–803
IDs (Universal Unique

Identifiers),D
454, 458

V
/var directory, 96
/var/adm/auditlog file, 429
/var/adm/authlog file, 421
/var/adm/messages file

audio, 156
contents, 524
digital cameras, 153–154
fault management, 461
printer faults, 141
suspended system, 161
USB-to-serial converters, 157

/var/adm/pacct file, 688
/var/adm/sulog file, 421, 525
/var/adm/utmpx file, 525
/var/adm/wtmpx file, 420
/var/apache/tomcat/conf directory, 860
/var/apache2/2.2/htdocs file, 850
/var/cluster/geo/avs directory, 641
/var/core directory, 930

967

V Index

/var/crash/opensolaris99 directory, 931
/var/krb5/kdc.log file, 444
/var/krb5/krb5.log file, 422
/var/ldap directory, 367
/var/log/in.iked.log file, 422
/var/log/pool/poold file, 681
/var/log/snmpd.log file, 526
/var/log/xen directory, 782
/var/opt/webserver7/https-localhost

file, 855–856
/var/pkg directory, 169
/var/smb/smbpassword file, 341
/var/svc/log file, 89, 422
/var/svc/manifest directory, 495–496
/var/svc/profile file, 499–500
/var/svc/profile/generic_limited_net.xml

file, 384
/var/yp/Makefile file, 365
variables

DTrace actions, 543–547
environment, 58–59
LDoms, 816

VBD (virtual block device) data, 760
vboxdrv device, 841–842
VBoxHeadless commands, 840–841
VBoxManage commands, 835–840
VC (Virtual Console), 54
VCC (Virtual Console Concentrator

Service), 790
creating, 793
guest domains, 814–815
removing, 804
working with, 807–808

vcc_device property, 808
VCONS (Virtual Console), 790
vcpu-list command, 773, 775–776
vcpuinfo command, 773
vcpupin command, 775
VCPUs (Virtual CPUs), 772–773,

790
affinity, 775–776
LDoms, 811
monitoring, 773
scheduling, 773–775
xVM domains, 747

VDI (Virtual Disk Image) files, 837
vdiskadm command, 779
VDISKs (Virtual Disks), 789
VDS (Virtual Disk Service), 789,

804–806
VDSDEV (Virtual Disk Service

Device), 789, 796
verify command, 175
verify-trust command, 640

verifying packages, 173–176
version command, 791
version control. See source code

management (SCM)
versioning, ZFS, 259–261
versions, packages, 169–171
vertical bars (|)

DTrace, 540, 550–551
piping, 64

vi text editor, 66–67
video player, 122
video support in VirtualBox, 834
view command, 341
View menu

Ekiga, 152–153
guest domains, 749–750

viewing
boot environments, 180–182
images, 122–123
packages, 173–176
privileges, 395–397

vim text editor, 66–70
viral licenses, 7
virsh command line interface, 751

core dumps, 783
CPUs, 772–776
disks, 778–780
domain console, 767–768
domains

cloning, 756–757
monitoring, 757–761
reconfiguration, 761–763
starting and stopping,

763–766
memory, 776–778
networking devices, 780–781

virt-install command line interface
CPUs, 772
domain installation, 751–753
memory, 776
migration, 770

virt-manager GUI, 746–750, 746, 748
virtd service, 768
virtual block device (VBD) data, 760
Virtual Console (VC), 54
Virtual Console (VCONS), 790
Virtual Console Concentrator Service

(VCC), 790
creating, 793
guest domains, 814–815
removing, 804
working with, 807–808

virtual devices
CPUs, 772–773, 790

affinity, 775–776
LDoms, 811
monitoring, 773
scheduling, 773–775
xVM domains, 747

disks, 778–780, 812–813
formatting, 800
LDoms, 812–813
VDS, 804–806

HVM domains, 782
memory, 776–778

for processes, 510
statistics about, 512–514

networking, 780–781, 789
Virtual Disk Image (VDI) files, 837
Virtual Disk Manager, 837–838, 838
Virtual Disk Service (VDS), 789,

804–806
Virtual Disk Service Device

(VDSDEV), 789, 796
Virtual Disks (VDISKs), 789
virtual I/O services, 804–808
virtual interfaces, 266
Virtual LAN (VLAN) interfaces, 287
Virtual Machine DisK (VMDK) files,

840
Virtual Machine Manager window,

746, 746
Virtual Machine menu for guest

domains, 750
virtual machines (VMs), 570, 652

OpenSolaris installation on,
43–44, 45

VirtualBox. See VirtualBox
hypervisor

Virtual Network Computing (VNC)
protocol, 109, 657

Virtual Networks (VNETs), 789
virtual NICs (VNICs), 288, 780
virtual private networks (VPNs),

288–289
Virtual Switch Service (VSW), 789,

793, 804, 806–807
Virtual Terminal (VT), 54
VirtualBox hypervisor, 28, 656–657,

823–824
command line interface, 835–836
downloading, 824
guest OS for, 826–829, 827–828,

833–835
GUI, 830–833, 832
networking, 833, 836–837
programmatic interfaces, 841
remote access, 840–841

968

Index X

storage, 837–840, 838
VM setup for, 824–826, 825–826
VM windows for, 829–830,

829–830
zones, 841–842

virtualization, 649–650
administration, 658
benefits, 650
full, 652–654
graphical display, 657–658
hypervisors, 652–655, 654. See

also VirtualBox hypervisor;
xVM hypervisor

layers, 654–655, 654
LDoms. See LDoms (Logical

Domains)
operating-system-level, 651–652
resource management, 651
solution comparison, 655–656

virtuallm driver, 149
virus scanning, 342
VLAN (Virtual LAN) interfaces, 287
VMDK (Virtual Machine DisK) files,

840
VMs (virtual machines), 570, 652

OpenSolaris installation on,
43–44, 45

VirtualBox. See VirtualBox
hypervisor

vmstat command, 129, 512–514
VMware technology, 28, 43–44, 45,

655
VNC (Virtual Network Computing)

protocol, 109, 657
vncdisplay command, 767
vncviewer client

desktop sharing, 109–110
domain consoles, 767
remote display, 657

VNETs (Virtual Networks), 789
VNICs (virtual NICs), 288, 780
vntsd daemon, 807–808, 819
volcheck command, 196
volume manager, 217–221
Volume Table of Contents (VTOC)

slices, 93, 195–196,
203–204

volumes
datasets, 224, 243–245
managing, 622
properties, 254–255

voting machine program, 879–883
VPNs (virtual private networks),

288–289

VRDP servers, 829–830, 841
vscanadm command, 342, 430
vscand command, 342, 430
VSW (Virtual Switch Service), 789,

793, 804, 806–807
VT (Virtual Terminal), 54
VTOC (Volume Table of Contents)

slices, 93, 195–196,
203–204

W
w command, 91, 525
\w macro, 66
wait service, 492
waitpid service, 492
walkers, 887–888
WAR (Web Archive) files, 909
watchpoints, 900
weak membership cluster mode, 581
web applications

AMP stack, 853–854, 855–856
NetBeans, 907–913, 910–912

Web Archive (WAR) files, 909
web browsing with Firefox,

110–112, 111
web servers, 845
web services in zones, 848
web stacks

AMP. See AMP
(Apache/MySQL/PHP) stack

Java-based web services,
859–865, 861, 863, 865

overview, 845–846
webcams, 150–153, 151–152
webmin project tool, 733
WEP (Wired Equivalent Privacy), 269
whatis command, 886
where command, 881, 886
which command, 59
who command, 91, 525
whole root zones, 708–710
Wi-Fi interface, 275–276
Wi-Fi Protected Access (WPA), 269
wildcards

devices, 714
probes, 539
project membership, 663

window managers, 106
windows

managing, 49–50, 49, 106
VM, 829–830, 829–830

Winmodems, 159
Wired Equivalent Privacy (WEP), 269

Wireless Wide Area Network project,
159

WordPress application, 846,
853–854, 855–856

workgroup mode for CIFS, 340–341
working directories, 59, 66
workspaces, 50
WPA (Wi-Fi Protected Access), 269
wracct command, 691
wrapped encryption keys, 258
wrappers, TCP, 322–324
write access, 347
write execute permissions, 62–63
write system calls, 539
write-through images, 837–838
Writer component, 52
WU-FTP daemon, 305

X
X.500 Directory Access Protocol,

365
X server

local connections, 383
screen resolution, 107
startup troubleshooting, 131–132

X11 forwarding, 412–413
xenconsoled command, 768
xend-relocation-address property, 770
xend-relocation-hosts-allow property,

770
xend-relocation-server property, 770
xend service, 768–769
xend vnc-listen property, 767
xentop command, 760–761
xlate operator, 551
xm command line interface, 751

core dumps, 783
definition files, 753–754
domains, 755, 759, 765
logs, 782
migration, 771
networking devices, 781
scheduling, 774
virtual CPUs, 773, 775–776
virtual disks, 779

xmms command, 81
xnb device instances, 780
xntpd command, 307
XOR operator in DTrace, 550–551
xpv module, 784
xrandr command, 107
xscreensaver command, 104–105
.xsession-errors file, 132

969

X Index

xVM hypervisor, 741–742
boot arguments, 766
booting, 745
command line interfaces, 751
concepts, 742–744, 744
domains

cloning, 755–757
console, 767–768
guest, 746–750, 746, 748,

750
installation, 751–757
live migration, 769–772
monitoring, 757–761
reconfiguration, 761–763
starting and stopping,

763–766
installing, 744
SMF services, 768–769
troubleshooting, 782–784
virtual devices. See virtual devices

xVM OpsCenter project, 733
Xvnc server, 109

Y
ypcat command, 362
ypinit command, 357–358, 361–363
ypservers file, 362
ypwhich command, 358, 362

Z
Z Shell (zsh), 54
zfs allow command, 258–259
ZFS Best Practices Guide, 232
zfs clone command, 248–249, 723,

757
zfs create azp/htdocs command, 594
zfs create azpng/htdocs command,

625
zfs create ldomspace/mydomain

command, 806
zfs create pl/mldom command, 796
zfs create pl/sp/myzone command,

716
zfs create rpool command, 295, 303,

306, 359, 778
zfs create tank/fish command, 242
zfs create tank/test command, 252
zfs create tank/testvol command, 244
zfs destroy command, 242, 244,

247–249
zfs enabled command, 335–336
ZFS file system, 23–24, 223–224

access control lists, 401–404
basics, 224–225
boot support, 32
datasets. See datasets, zone
delegated administration,

258–259
Disk Usage Analyzer with, 128
disks in, 92–93
NIS maps, 359
partitions, 36
pools. See pools
snapshots, 723
versioning, 259–261
zones, 723, 731

zfs get command, 251
zfs get origin command, 182, 248
zfs get sharenfs command, 338
zfs get sharesmb command, 337
zfs get tank/fish command, 252
zfs get tank/prospects command, 257
zfs group command, 334
zfs inherit command, 251–252
zfs list command, 238, 723
zfs list backup/pkg command, 251
zfs list filesystem command, 181
zfs list rpool command, 92, 225, 243
zfs list tank command, 242–244,

246, 248
zfs promote command, 248
zfs receive command, 249–251, 258
zfs rename command, 243–244, 246
ZFS Retire Agent, 454
zfs-retire module, 454
zfs rollback command, 246–247, 251
zfs send command, 249–251, 258,

732
zfs set command, 251, 337
zfs set mountpoint-legacy command,

716
zfs set quota command, 714
zfs set sharesmb command, 337
zfs set tank/fish command, 252, 255
zfs set tank/prospects command, 257
zfs share command, 334
zfs show command, 337
zfs snapshot command, 245–246,

249–250
zfs unallow command, 258–259
zfs unshare command, 334
zfs upgrade command, 258, 260–261
zlogin command, 694, 698, 726–727
Zone Management profile, 390–391
Zone Manager project, 733

zone.max-locked-memory resource,
705

zone.max-swap resource, 705
zoneadm command, 694

booting zones, 697–698
branded zones, 735–738
halting zones, 699
installing zones, 696–697
logging into zones, 698
moving zones, 719–722
networks, 706

zoneadmd process, 725
zonecfg command

branded zones, 735–736
capped resources, 704–705
miscellaneous subcommands,

717–719
networks, 707–709
pools, 702
profiles, 390–391
properties and resources,

710–717
roles, 392–394
zone configuration, 694–695,

699–700
zoned property, 714
zonename property, 713
zonepath property, 695, 699
zones, 693

accessing, 725–726
backup and restore, 731–732
booting, 697–698
branded, 734–739
capped CPU usage, 703–704
capped memory, 704–705
cloning, 723–724
configuring, 694–696, 699
DNS, 295–297
dynamic reconfiguration,

729–731
failover configuration, 626–627
fair share scheduler, 700–702
halting, 699
installing, 696–697
introduction, 693–694
limitations, 733–734
logging in to, 698
logical hostname networking, 626
as logical nodes, 622–627
managing, 406
monitoring, 726–729
moving, 719–722
networking

970

Index Z

miscellaneous commands,
717–719

overview, 705–708
properties and resources,

710–717
sparse root vs. whole root,

708–710
pools, 702–703
preconfiguring system identity,

724–725
processes, 725
rctls for, 665
resource controls, 700
resource management, 660,

699–705
SMF service, 731
software management, 732–733
uninstalling, 724
uses, 694

VirtualBox, 841–842
virtualization, 651–652,

654–657, 654
web services in, 848

zpool add command, 226, 232
zpool attach command, 93,

228, 232
zpool create azp command, 592
zpool create azpng command, 623
zpool create oldtank command, 261
zpool create tank command, 226,

228, 231–233
zpool create tank/fish command, 242
zpool destroy command, 227
zpool detach command, 228,

232–233
zpool export command, 235, 237
zpool get command, 237
zpool history command, 239

zpool import command, 236–237
zpool iostat command, 240–241
zpool list command, 224
zpool list rpool command, 92
zpool offline command, 230
zpool replace command, 229
zpool scrub command, 234–235
zpool set command, 237
zpool status command, 259, 594, 623
zpool status rpool command, 93–94,

224
zpool status tank command, 226–236
zpool upgrade command, 260–261
zpools, 92

Apache failover storage,
591–596

zones failover storage, 623
zsched process, 725
zvols, 778

971

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read to succeed.

Available wherever books are sold.

0-471-78886-4
978-0-471-78886-7

0-7645-4256-7
978-0-7645-4256-5

0-470-04030-0
978-0-470-04030-0

0-470-10089-3
978-0-470-10089-9

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

26854_standard_bible_bob.indd 1 1/31/08 4:27:49 PM

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read to succeed.

Available wherever books are sold.

0-471-78886-4
978-0-471-78886-7

0-7645-4256-7
978-0-7645-4256-5

0-470-04030-0
978-0-470-04030-0

0-470-10089-3
978-0-470-10089-9

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

26854_standard_bible_bob.indd 1 1/31/08 4:27:49 PM

Solter, Jelinek,
Miner

The book you need to succeed!

Master one of the most innovative
new open source operating systems
The latest version of OpenSolaris is here—and this
comprehensive guide is your one-stop gateway to it all.
You’ll start with a basic crash course in OpenSolaris,
including command lines and shells, the GNOME
Desktop, systems administration, and other essential
topics. Later chapters focus on application development,
networking, virtualization, DTrace, and other topics
that will transform you into a power user. Find practical
tips, step-by-step tutorials, and exact command lines
and screenshots you can use right away.

Nicholas A. Solter
is an engineer at Sun Microsystems
and core contributor to the OpenSolaris
HA Clusters community group. He
is lead author of Professional C++.

Gerald Jelinek
is an engineer on the Zones team at
Sun and a core contributor to the
OpenSolaris Zones community group.

David Miner
is an engineer at Sun, a co-lead for
the OpenSolaris distribution, and
architect of the Caiman installer.

Shelving Category:
COMPUTERS / Operating Systems /
UNIX

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada

www.wiley.com/compbooks

Nicholas A. Solter, Gerald Jelinek, and David Miner

OpenSolaris™

O
p

en
S

o
laris

™

• Explore the OpenSolaris operating environment—from GNOME® to
the bash shell, vim text editor, and more

• Connect printers, USB devices, and other peripherals to your desktop

• Master systems administration, including ZFS and NFS file systems,
networking, directory services, and security

• Observe and debug the system with the innovative Dynamic Tracing
(DTrace) facility and other monitoring tools

• Share a single physical machine among multiple users and processes
with xVM, VirtualBox™, and other virtualization tools

• Deploy web services using Apache, Apache Tomcat, MySQL®, and other
open source web stack applications

• Write and debug applications in C, C++, Java®, Ruby, Python®, and
other languages

Explore the OpenSolaris
operating environment

Master networking and
systems administration

Deploy web services using
open source applications

	OpenSolaris Bible
	About the Authors
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	What’s on the Companion Website
	Minimum Requirements
	Where to Go fromHere

	Part I: Introduction to OpenSolaris
	Chapter 1: What Is OpenSolaris?
	Introduction to OpenSolaris
	OpenSolaris Features
	The ‘‘Open’’ in OpenSolaris
	The History of OpenSolaris
	Comparing OpenSolaris to Other Operating Systems
	Getting Involved in OpenSolaris
	OpenSolaris Development Process
	Resources
	Summary

	Chapter 2: Installing OpenSolaris
	Solaris Express Community Edition
	Schillix
	BeleniX
	NexentaCore
	MartUX
	MilaX
	OpenSolaris
	Resources
	Summary

	Chapter 3: OpenSolaris Crash Course
	Discovering the Desktop
	Using the Command Line
	Switching Languages and Locales
	Getting Online
	Adding Software
	Developing on OpenSolaris
	Connecting Remotely
	System Administration
	Resources
	Summary

	Part II: Using OpenSolaris
	Chapter 4: The Desktop
	Desktop Customization
	Desktop Sharing
	Internet Applications
	Media Applications
	Graphics Applications
	System Administration
	Other Applications
	Troubleshooting
	Resources
	Summary

	Chapter 5: Printers and Peripherals
	Printing
	Scanners
	USB Devices
	Audio
	Serial Devices and Modems
	Network Interfaces
	Power Management and UPSs
	Device Drivers
	Resources
	Summary

	Chapter 6: Software Management
	Package Management
	Updating Your Software
	Boot Environment Management
	Managing a Package Repository
	Building Your Own Distribution
	Resources
	Summary

	Part III: OpenSolaris File Systems, Networking, and Security
	Chapter 7: Disks, Local File Systems, and the Volume Manager
	Disks
	File System Management
	devfs
	UFS
	Swap Space
	Other Local File Systems
	The Volume Manager
	Resources
	Summary

	Chapter 8: ZFS
	ZFS Basics
	Managing ZFS Pools
	ZFS Datasets
	ZFS Delegated Administration
	ZFS Versioning
	Resources
	Summary

	Chapter 9: Networking
	Network Interfaces
	Network Services
	OpenSolaris As a Router or Firewall
	Troubleshooting
	Resources
	Summary

	Chapter 10: Network File Systems and Directory Services
	Introduction to NFS
	Introduction to CIFS
	Managing File Sharing
	Accessing Files with NFS
	Accessing Files with CIFS
	OpenSolaris Naming Services
	NIS
	LDAP
	Resources
	Summary

	Chapter 11: Security
	Security Overview
	Preventing Unauthorized Access
	Limiting the Damage
	Ensuring Secure Communication
	Detecting Attacks
	Kerberos
	Trusted Extensions
	Resources
	Summary

	Part IV: OpenSolaris Reliability, Availability, and Serviceability
	Chapter 12: Fault Management
	Predictive Self-Healing
	Fault Management Overview
	Fault Management Commands
	Using Fault Management
	Resources
	Summary

	Chapter 13: Service Management
	Processes and Services
	SMF By Example
	SMF Machinery
	Customizing SMF Services
	Resources
	Summary

	Chapter 14: Monitoring and Observability
	Getting System Configuration Information
	Primary Utilities
	/proc
	Kstats
	Other Utilities
	Logs
	SNMP
	Resources
	Summary

	Chapter 15: DTrace
	Getting Started
	Tracing Syntax
	The dtrace Command
	Advanced Tracing
	User-Level and High-Level Language Tracing
	Resources
	Summary

	Chapter 16: Clustering OpenSolaris for High Availability
	Introduction to High-Availability Clusters
	Overview of Open High Availability Cluster
	Setting Up a Cluster
	Using the Cluster
	Advanced Cluster Administration
	Making Custom Services Highly Available
	Disaster Recovery with Open High Availability Cluster
	Resources
	Summary

	Part V: OpenSolaris Virtualization
	Chapter 17: Virtualization Overview
	Benefits of Virtualization
	Types of Virtualization
	Comparing Virtualization Solutions
	Virtualization and a Graphical Display
	Virtualization Administration
	Summary

	Chapter 18: Resource Management
	Introduction to Resource Management
	Projects and Tasks
	Resource Controls
	Resource Caps
	Resource Pools
	Processor Sets
	Scheduling
	Accounting
	Resources
	Summary

	Chapter 19: Zones
	Introduction to Zones
	Uses of Zones
	Getting Started with Zones
	Advanced Zone Configuration
	Advanced zoneadm Features
	Ongoing Zones Administration
	Limitations to Zones
	Branded Zones
	Resources
	Summary

	Chapter 20: xVM Hypervisor
	xVM Concepts
	Getting Started with xVM
	Advanced xVM Administration
	Live Migration
	Virtual Devices
	Troubleshooting
	Resources
	Summary

	Chapter 21: Logical Domains (LDoms)
	Introduction to LDoms
	LDom Concepts
	Getting Started with LDoms
	Advanced LDom Administration
	Resources
	Summary

	Chapter 22: VirtualBox
	Getting Started
	Managing VirtualBox
	Advanced Features
	Resources
	Summary

	Part VI: Deploying and Developing on OpenSolaris
	Chapter 23: Deploying a Web Stack on OpenSolaris
	TheWeb Stack on OpenSolaris
	The AMP Stack
	Java-based Web Services
	Resources
	Summary

	Chapter 24: Developing on OpenSolaris
	Java Development
	C and C++ Development
	Other Languages
	Build Automation
	NetBeans
	Source Code Management
	Building IPS Packages
	Crash Dumps and Kernel Debugging
	Resources
	Summary

	Index

