WICKED COOL
PERL SCRIPTS

USEFUL PERL SCRIPTS THAT SOLVE

DIFFICULT PROBLEMS

WICKED COOL PERL SCRIPTS

WICKED COOL
PERL SCRIPTS

Uaeful Perl Scripta That
Solve Diftficult Problema

by Steve Oualline
\CE“

NO STARCH
PRESS

San Francisco

WICKED COOL PERL SCRIPTS. Copyright © 2006 by Steve Oualline.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

E o4
by Printed on recycled paper in the United States of America
1235456789 10-09 080706

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbaol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Managing Editor: Elizabeth Campbell
Cover and Interior Design: Octopod Studios
Developmental Editor: Elizabeth Zinkann
Copyeditor: Judy Flynn

Compositor: Riley Hoffman

Proofreader: Nancy Riddiough
For information on hook distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950: info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Daia

Oualline, Steve.

Wicked cool Perl scripts : useful Perl scripts that solve difficult problems / Steve Oualline.
-- 1st ed.

. am.

Includes index.

ISBN 1-59327-062-3
1. Perl (Computer program language) 2. Object-oriented programming (Computer science) I. Title.

QA76.73.P220523 2006

005.13"3--dc22

2005026999

BRIEF CONTENTS

IREFOEUCHION ©. ottt xv

Chapter 1: GeneralPurpose UHTIHEsocoviiiiie i 1

Chapfer 2: Website Management............

Chapter 3: CGI Debugginguu oo 45
Chapter 4: COlPrOGIAMScciviiieie ettt ettt ettt 57
Chapter 5: Internet Data MinNingooooeie oottt 77
Chapter é: Unix System Administration ... 21
Chapter 7: Picture UHIHEsoooiiiiie et 117
Chapter 8: Games and Learning Tools.cooiiiiii i 151
Chapter 9: Development Toolsooiiiiiiii i 183
Chapter 10 MAPPING - veeve ittt ettt ettt ettt ettt ettt e e e eee 197
Chapter 11: Regular Expression Grapher............cocoiiiiiiii i 243

CONTENTS IN DETAIL

INTRODUCTION xv

Wicked Cool Perl Programs ..
You Are Not a Dummy
Plain Old Documentation {POD)
How This Book Is Organized

1
GENERAL-PURPOSE UTILITIES 1
#1 Automatic Help Option ...]
The Code 2
Using the Module ... 2
The Results 3
How It Works . .3
#2 Finding Duplicate Files .3
The Code 3
Running the Script .. 5
The Results5
How It Works . .5
Hacking the Script . 7
#3 Checking for Changed Files .. 8
The Code 8
Running the Script .. .10
The Results10
How It Works . .10
Hacking the Scrip 12
#4 Date Reminder 12
The Code S12
Running the Script .14
The Results14
How It Works . .14
Hacking the Scrip 16
#5 Currency Converter . .16
The Code 16
Running the Script .18
The Results18
How It Works . .18
Hacking the Script .. .19

2
WEBSITE MANAGEMENT 21

#6 Website Link Checker ...

The Code
Running the Script
The Results
How It Works .
Hacking the Scrip
#7 Orphan File Checker ..
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script ..
#8 Hacker Detection
The Code
Running the Script
The Results
How It Works .
Hacking the Script
#9 Locking Out Hackers ...
The Code
Running the Script
The Results
How It Works ...
Hacking the SCriptc.oiii i

3
CGl DEBUGGING

#10 Hello World
The Code
Running the Script ..
The Results
How It Works ...
Hacking the Script ..

#11 Displaying the Error log
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script ..

#12 Printing Debugging Information
The Code e
Using the Function
The Results ...
How It Works ...
Hacking the SCriptcooiii i

Vi Cantents in Detai

#13 Debugging a CGI Program Interactively ..
The Code
Running the Script
The Results
How It Works .
Hacking the Script ..

4
CGI PROGRAMS 57
#14 Random Joke Generatorcoocooiiieoiiioiiee ettt 57

The Code
Running the Script
The Results
How It Works .
Hacking the Scrip
#15 Visitor Counter
The Code
Running the Script
The Results
How It Works .
Hacking the Script ..
#16 Guest Book
The Code
Running the Script
The Results
How It Works
Hacking the Script ..
#17 Errata Submission Form .
The Code
Running the Script
The Results
How It Works ...

Hacking the SCrpt woro.roooororvoooo oo 75
5
INTERNET DATA MINING 77
#18 Getting Stock Quotes ...

The Code
Running the Script
The Results
How It Works ...
Hacking the Script
#19 Comics Download .
The Code
Running the Scrip
The Results
How It Works ...
Hacking the SCriptcooiii i Q0

Contents in Detail

ix

6
UNIX SYSTEM ADMINISTRATION 91

#20 Fixing Bad Filenames ...
The Code
Running the Script
The Results
How It Works .
Hacking the Scrip
#21 Mass File Renaming .
The Code
Running the Script ..
The Results
How It Works ...
Hacking the Script ..
#22 Checking Symbolic Links
The Code
Running the Script
The Results
How It Works .
Hacking the Script
#23 Disk Space Alarm
The Code
Running the Script
The Results
How It Works ...
Hacking the Script
#24 Adding a User
The Code
Running the Script
The Results
How It Works .
Hacking the Script
#25 Disabling a User
The Code
Running the Script
The Results
How It Works ...
Hacking the Script
#26 Deleting a User ...
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script
#27 Killing a Stuck Process
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script ..

X Contents in Detail

7
PICTURE UTILITIES

#28 Image Information ...
The Code
Running the Script
The Results
How It Works .
Hacking the Scrip
#29 Creating a Thumbnail
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script ..
#30 Photo Gallery
The Code
Running the Script
The Results
How It Works .
Hacking the Scrip
#31 Card Maker
The Code
Running the Script
The Results
How It Works ...
Hacking the Script

8
GAMES AND LEARNING TOOLS 151

#32 Guessing Game
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script

#33 Flash Cards
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script

#34 Web-Based Quiz
The Code
Running the Script
The Results
How It Works
Hacking the SCript ..o i

Contents in Detail

xi

#35 Teaching a Toddler

The Code
Running the Script
The Results
How It Works .
Hacking the Script ..

9
DEVELOPMENT TOOLS 183
#36 Code Generator

The Code

Running the Script ..

The Results

How It Works .

#37 Dead Code Locator ..
The Code
Running the Script
The Results
How It Works .
Hacking the Scrip

#38 EOL Type Detector .
The Code
Running the Script ..
The Results
How It Works .
Hacking the Script ..

#39 EOL Converter
The Code
Running the Script
The Results ..
How It Works .
Hacking the Script

10

MAPPING

#40 Getting the Map ...
The Code
Using the Module
The Results
How It Works ...

Hacking the Script
#41 Map Generator
The Code
Running the Script ..
How It Works ...
Hacking the Script ..

Xl Contents in Detail

#42 The Location Finder ...

.. 229

The Code 229
Running the Script ...238
How It Works238
Hacking the Script .. 241

#43 Hacking the Grand Canyon 241

11
REGULAR EXPRESSION GRAPHER 243

#44 Regular Expression Parser .. 244

The Code
Executing the Module .. 246
The Results 246
How It Works 247
#45 Laying Out the Graph ... 248
The Code 248
Running the Script ... 263
How It Works 264
Hacking the Script ... 268
#46 Drawing the Image .. 268
The Code 268
Running the Script ... 285
How It Works 285

286
o8
286

Hacking the Script
#47 Regular Expression Grapher

The Code

Running the Script 294
The Results 294
How It Works 298
Hacking the Script 303

INDEX 305

Contents in Detail XH

INTRODUCTION

If you're like most people, you've felt
frustrated at one time or another because
you just couldn’t do what you wanted to do
with your computer. That one simple and

obvious utility that would make your life so much
casier was missing. Whether it was a utility to get a
stock quote, to show off your photograph collection,
or even to display your favorite comics, it just wasn’t
there.

This book is all about writing those utilities quickly and easily. Perl is the
ideal language for writing utilities. The language itself frees you from many
of the details of programming and lets you just write something useful.
The language is ideal for text manipulation, and let’s face it, most utility
programming is 95 percent text processing.

Because it is so useful, Perl has become the language of choice for utility
programmers.

xvi

Wicked Cool Perl Programs

So what makes a “wicked cool” Perl script? First, the script must be useful. It
must solve a real-world problem. Many of the scripts in this book have been
used out in the field in some form or other.

Cool scripts are ones that solve a difficult problem. Actually, the more
difficult, the better. And if the solution turns out to be simple and elegant,
well, that makes it all the cooler.

You Are Not a Dummy

For this book, it is assumed that you are not a dummy. In other words, I'm
assuming that you can think and read. You should have a working knowledge
of Perl and know how to download and install modules from CPAN (http://
cpan.perlorg).

Also, I expect that you know how to use the perldoc command to get
documentation on the various modules mentioned in the book. For that
reason, [don’t waste your time and money by reproducing parts of the
online documentation available to you.

It should be noted that although you are not a dummy, you may have to
deal with a few, and this book helps you write utilities that make that job
casier.

Plain Old Documentation (POD)

Writing a utility is one thing. Getting people to use it is another. In order for
a program to become popular, people have to know how to use the thing.

All the Perl scripts in this book have a POD section. However, because
the book also documents the scripts, the documentation has been omitted in
the print version of the scripts. The downloadable version of the scripts do
have a POD section in them.

How This Book Is Organized

Introduction

Chapter 1: General Purpose Utilities
Perlis an ideal language for the small but helpful programs for everyday
use. Chapter 1 includes scripts for tasks such as currency conversion,
generating daily reminders, and finding duplicate files.

Chapter 2: Website Management
Perl and the Web go together. This chapter contains scripts that make
web administration easier. You can use the scripts in this chapter to
check your website for integrity, check for hackers, and even throw
hackers off your system.

Chapter 3: CGI Debugging
This chapter includes a variety of techniques and tools for debugging
CGI programs.

Chapter 4: CGI Programs
Now that you know how to debug CGI programs, you can try a few. The
programs in Chapter 4 provide a Internet guest book, a visitor counter,
and a random joke generator.

Chapter 5: Internet Data Mining
There is a lot of data on the Internet. This chapter shows you ways of
extracting it. For example, you can get a daily stock quote or download
your favorite comics.

Chapter 6: Unix System Administration
Perl is an ideal language for automating system administration tasks.
This includes things like adding and deleting users as well as detecting
system hogs and throwing them off the system.

Chapter 7: Picture Utilities
The digital camera revolutionized photography, but did you ever try to
paste disk files into a photo album? Perl lets you create and edit an elec-
tronic photo album with ease.

Chapter 8: Games and Learning Tools
This chapter shows some simple teaching tools for kids who are two years
old and older.

Chapter 9: Development Tools
Perl has the ability to analyze and report on large amounts of text. This
can help you as a developer when it comes to things like figuring out the
structure of large programs or eliminating dead code.

Chapter 10: Mapping
‘What does Perl have to do with hiking the Grand Canyon (a place so
primitive that at the bottom you can't even get an Internet connection)?
The answer is that Perl can be used to download, view, and print govern-
ment topological maps and aerial photographs.

Chapter 11: Regular Expression Grapher
Perl’s regular expression language is powerful, compact, and cryptic.
Unless you present things graphically, in which case even the worst
regular expressions become simple to do.

Intraduction xvii

GENERAL-PURPOSE UTILITIES

» The Pin Perl stands for Practical. The
language was designed by Larry Wall as
a practical solution to some of the scripting
problems he was having. It turns out that because
his design was so good, the language he created not only
solved his problems, but also helped many other people
solve theirs.

Perlis ideal for creating scripts that solve the everyday problems that you
encounter in the daily use of your system.

Sa let’s take a look at some of these everyday problems and see how easy
itis for Perl to solve them.

#1 Automatic Help Option

Writing a wicked cool Perl script is nice, but it’s even better if you can get
other people to use it. One of the things most users really want is a help func-
tion. Our first wicked cool Perl script is a module to implement a --help
operation.

2

NOTE

Chaptar

Most good Perl scripts use the Plain Old Documentation (POD) feature
of Perl to describe themselves. This module intercepts the --help on the
command line and then prints out the POD for the program being run.

The official versions of the scripls in this book do contain POD. However, the docu-
mentation has been vemoved for the versions printed here to save space and eliminate
redundancy. The full versions of the scripts (with POD) can be downloaded from the
website www. nostarch. com/weps. him.

The Code

use strict;
use warnings;

1
2
3
4 INIT {

5 if (($#ARGV == 0) && ($ARGV[0] eq "--help")) {
6 system("perldoc $0");

7

8

9

exit (0);
}
}
10
1 1;
Using the Module

To use the module, simply put the following line in your code:
use help;

Here’s a small test program:

#1/usr/bin/perl

use strict;

use warnings;

=pod

=head1 NAME

Help test.

10 =head1 DESCRIPTION

12 If you read this the test worked.

14 =cut

16 use help;
17 print "You didn't put --help on the command line\n";

The Resvulis

HELP_TEST(1) User Contributed Perl Documentation HELP_TEST(1)

NAME
Help test.
DESCRIPTION
If you read this the test worked.
perl vs.8. 2004-10-10 HELP_TEST(1)
How It Works

Perl has a number of special control blocks. In this program, the INIT block
is called before the main program starts. It looks on the command line, and
if it sees --help, it prints the documentation. The printing is done using the
perldoc command, which is part of the Perl distribution.

The command looks for the program specified on the command line
(in this case, it’s the name of the program, or $0) and prints the program’s
documentation.

#2 Finding Duplicate Files

Duplicate files are a problem for me. I'll download pictures from my camera,
forget I downloaded them, and download them again. I also get a lot of audio
files from the Internet and many are duplicates of items I already have.! The
result is that there’s a lot of needless duplication on my system. So a script that
locates duplicate files can be very useful when doing spring cleaning on a
hard drive.

The Code

#!/usr/bin/perl
use strict;

use warnings;
use File::Find;
use Digest::MD5;

~ o w e wN R

' Note to the MPAA: These are old radio shows from the '30s and *40s and the copyrights have
long expired. So don’t sue me.

General-Purpose Utilites 3

8 # find dups(@dir_list) -- Return an array containing a list

9 # of duplicate files.

10 #

11 sub find_dups(@)

12 {

13 # The list of directories to search
14 my @dir_list = @_;

15

16 # If nothing there, return nothing
17 if ($#dir list < 0) {

18 return (undef);

19 }

20

21 my %files; # Files indexed by size

22

23 # Go through the file tree and find all

24 # files with a similar size

25 find(sub {

26 -f &&

27 push @{$files{(stat(_))[7]}}, $File::Find::name
28 }, @dir_list

29)i

30

31 my @result = (); # The resulting list

32

33 # Now loop through the 1list of files by size and see

34 # if the md5 is the same for any of them
35 foreach my $size (keys %files) {

36 if ($#{$files{$size}} < 1) {

37 next;

38 }

39 my #mds; # MD5 -> file name array hash
40

41 # Loop through each file of this size and

42 # compute the MD5 sum

43 foreach my $cur file (@{$files{$size}}) {

44 # Open the file. Skip the files we can't open
45 open(FILE, $cur_file) or next;

46 binmode(FILE);

47 push @{$mds{

48 Digest: :MDS->new->addfile(*FILE)->hexdigest}
49 }, $cur file;

50 close (FILE);

51 }

52 # Now check for any duplicates in the MD5 hash
53 foreach my $hash (keys #mds) {

54 if ($#{¢mds{$hash}} »>= 1) {

55 push(@result, [@{$mds{$hash}}]);

56 }

4 Chapter

58 }

59 return @result

60 }

61

62 my @dups = find_dups(@ARGY);
63

64 foreach my $cur dup (@dups) {
65 print "Duplicates\n";
66 foreach my $cur file (@$cur_dup) {

67 print "\t$cur_file\n";
68 }

69 }

Running the Script

To run the script, simply put a list of directories to be scanned on the
command line:

$ dup-files.pl /radio

The Results

Duplicates
/radio/0_and_H_48-11-07_In_A Rut.mp3
/radio/0_and H_48-11-14_The Kids Go_Away Overnight.mp3
Duplicates
/radio/Superman_-_411105 The Silver Arrow 4_o.mp3
/radio/Superman_-_411107_The_Silver_Arrow_5_o.mp3
Duplicates
/radio/3403456_Marco_Polo_-_Chapter_34_xcompletex.mp3
/radio/Marco_Polo - Chapter 34 xcompletex.mp3
Duplicates
/radio/radio.oldtime.highspeed.excluded.log
/radio/radio.oldtime.excluded. log
/radio/radio.oldtime.matched extension_no_filter.log
/radio/radio.oldtime.highspeed.matched_ext_no_filter.log
/radio/radio.oldtime.excluded.log
/radio/radio.oldtime.matched_extension_no_filter.log

How It Works

In Perl there’s a module for practically everything. By looking through CPAN
you can find the module File::Find::Duplicates. The module is quite clever.
It first checks the size of the file (a quick operation), and if it finds two files
with the same size, it does an MDb checksum of the two files.

General-Purpose Utilities 3

6

Chapter

There’s just one problem with this module—it doesn’t always work.
Sometimes it will miss duplicates. So you need to write your own duplicate
location code.

However, studying the code gives us some ideas. The code of this module
is quite clever. It first checks the size of each file (a fast operation) and then
checks for duplicates only on files of the same size. (Checking for duplicates
is a slow operation.) The problem is that the code fails if you have the follow-
ing files:

a size 1,000 bytes
a.dup size 1,000 bytes
b size 1,000 bytes
b.dup size 1,000 bytes

The code will find the duplicate pair: a and a.dup. However, it will fail to
find the other (b and b.dup). That’s because, by design, the code assumes
that for a given file size (in this example, 1,000 bytes), you'll have at most
only one duplication. (In this example, there are two.)

Soyou need to create your own duplication detection logic. The first thing
you do is use the File::Find module to locate all the files in the directories you
are searching for. You then create a hash named %files whose key is the file
size and whose value is an array containing the filenames of that size.

25 find(sub {

26 -f &&

27 push @{$files{(stat(_))[7]}}, $File::Find::name
28 }, @dir list

29)

This operation leaves us with a #files hash that looks like this:

%files = (
485 => ['single.c']
13667 => ['sample.mp3’, ‘alt sample.mp3']

Going through this hash, you can see that no file would ever match
single.c, but it is possible that sample.mp3 and alt_sample.mp3 match each
other.

The code:

35 foreach my $size (keys %files) {

goes through the list.

Next you skip any entries where there’s only one file in the name list:

36 if ($#{$files{$size}} < 1) {
37 next;
38 }

Al this point you have at least two possible duplicates. In order to tell if
they are really duplicates, you compute an MD5 hash of the files:

43 foreach my $cur file (@{$files{$size}}) {

44 # Open the file. Skip the files we can't open
45 open(FILE, $cur_file) or next;

46 binmode(FILE);

47 push @{$mds{

48 Digest: :MD5->new->addfile (*FILE)->hexdigest}
49 }s $cur_file;

50 close (FILE);

51 }

The result is a hash named %md5 whose key is made up of MD5 hashes and
whose value is an array of files with those hashes. And since you can assume
that two files that have the same MD5 hash are duplicates, any entries in this
hash with more that one value indicates a duplicate file. All you have to do is
stuff the results into a @result array:

53 foreach my $hash (keys #mds) {

54 if ($#{$mds{$hash}} »>= 1) {

55 push(@result, [@{$md5{$hash}}]);
56 }

This gives us a two-dimensional array containing the duplicate files.
The only thing left to do is print the results:

64 foreach my $cur dup (@dups) {
65 print "Duplicates\n";
66 foreach my $cur file (@$cur_dup) {

67 print "\t$cur_file\n";
68 }

69 }

Hacking the Script

Any script can be enhanced and this one’s no different. I frequently run this
script on old-time radio shows I download from the Internet. These files con-
tain a half hour of MP3 audio. Needless to say, they aren’t small. So computing
the MDb checksum for these files takes time.

General-Purpose Utilines 7

8

One way of speeding things up is to add a cache. Every time you compute
a new MD5 checksum, it’s added to the cache. When you want to get the
checksum for a file, you check the cache first and only compute the real
MD5 checksum if the file's not there.

A cache is not a complex object. It can be implemented as a hash using
the filename as the key and the MDb checksum as the value. And the Storable
module can be used to write the hash out on disk and read it back again.
Thus, with a little effort you can speed up this script greatly.

T've implemented another hack for my own site. When I download photo-
graphs from my camera, I save a backup copy of each photograph in a RAW
directory. This means that there are lots of duplicates of the form . .. /photo/
pl2345jpg and . .. / photo/raw/pl12345.jpg. In cases like this it's easy to hack
the script to ignore such duplicates.

#3 Checking for Changed Files

Sometimes it's useful to figure what files have changed on your system. For
example, you might want to know what a software upgrade actually touched.
Other times you want to make sure that files on your system don’t change.
For example, system-critical configuration files or commands should remain
intact. Changes in these files can indicate that your system has been hacked.

This script checks a filesystem and reports any changes made since the
last time it was run.

Chapter

The Code

use
use
use
use
use

B - JE Y. I VYRR NI

strict;

warnings;

File::Find;

Digest: :MD5;

Storable gw(nstore retrieve);

File in which to store the change information
my $info_file name = ".change.info";

B
[=IR=)

mds(file) -- Give a file, return the MD5 sum

oy
~

sub

{

R I R
W N RO oo AW
-

md5($)
my $cur_file = shift;

open(FILE, $cur_file) or return ("");

binmode (FILE);

my $result = Digest::MD5->new->addfile(*FILE)->hexdigest;
close (FILE);

return ($result);

24
25
26
2
2
2
30
31
32
33
34
35
36
37
38
39
40
4
4
43
4
45
46
4
4
4
50
51
52
53
54
55
5
5
5
59
60
61
62
63
64
65
66
67
68
69
70
7
T
73

0 o~

[SIr=3

=

0w

G~ o

N

Hash reference containing the existing data
key -- file name

i value -- MD5 sum

my $file info;

Hash of the "real" data

my %real info;

The list of directories to search
my @dir_list = @ARGV;

#
Check for an existing information file and
read it if there is one.
if (-f $info_file name) {
$file_info = retrieve($info_file_name);

}

If nothing there, return nothing
if ($#dir_list < o) {
print "Nething to look at\n";
exit (0);
¥
Go through the file tree and store the information on the
files.
find(sub {
-f 8% ($real_info{$File::Find::name} = mds($_));
}, @dir 1ist
)
#
Check for changed, added files

(clear any entries from the stored information for
any files we found.)
foreach my $file (sort keys %real_info) {
if (not defined($file_info-»{$file})) {
print "New file: $file\n";
} else {

if ($real_info{$file} ne $file_info->{$file}) {
print "Changed: $file\n";
}
else the same
delete $file_info->{$file};
}
}
#

All file information for existing files has been
removed from the information data. So what's
left is information on deleted files.

General-Purpose Utilities 9

74 #

75 foreach my $file (sort keys %$file info) {
76 print "Deleted: $file\n";

77 }

78

79 nstore \Xreal info, $info_file name;

Running the Script

The script is run with the command:
$ change.pl <dir> [<dir>...]

It scans the directories specified on the command line and prints out any
changes it sees.
The file .change.info is used to store the change information.

The Resulis

$ changed.pl test
Changed: test/beta
New file: test/new-file
Deleted: test/beta

How It Works

The basic operation of this script is to compute an MD5 hash of the files as
they exist on disk (called %real_info) and compare it to the information saved
the last time the script was run (contained in the hash reference $file_info).

The first step in this process is to retrieve any old information and stuff it
into $file_info. To do this, you use the Storable::xretrieve function:

35 # Check for an existing information file and
36 # read it if there is one.

37 if (-f $info_file_name) {

38 $file_info = retrieve($info_file name);
39 }

Now that you have the old state of the files, you need the current state.
You use the File::Find module to search the directory tree and compute an
MD5 checksum for each file:

47 # Go through the file tree and store the information on the
48 # files.
49 find(sub {

50 -f 8& ($real_info{$File::Find::name} = md5($_));
51 }, @dir list
52)3

This gives two hashes, the one referenced by $file_info containing the
old information and %real_info reflecting the current state of the system.
Now all you have to do is compute the difference between the two.

First you go through the %real_info hash and see if any files have been
added or changed:

58 foreach my $file (sort keys %real info) {
59 if (not defined($file_info->{$file})) {

60 print "New file: $file\n";

61 } else {

62 if ($real_info{$file} ne $file_info->{$file}) {
63 print "Changed: $file\n";

64 }

65 # else the same

66 delete $file info->{$file};

67 }

68 }

This loop also has the side effect of deleting all the entries of $file_info
that have a corresponding entry in %real_info. This means that when the loop
finishes, the only files that are left in $file_info are the files that were deleted
since the last time the program was run.

You print them out to tell the user what disappeared:

75 foreach my $file (sort keys %$file info) {
76 print "Deleted: $file\n";

77}

78

The final step is to write out the information on the existing files so that
it can be used in a later run. Again, the Storable module is used; this time the
nstore function is called to store the %real_info hash. (The nstore function
stores the data in a portable format; the store function’s data is nonportable.
Since both functions do the same thing, why not be portable and use nstore?)
Here is the code:

79 nstore \%real info, $info_file name;
Our data is safely stored, ready for the next time the script is run. This

time, however, it will be loaded into the $file_info variable and the process
will begin again.

General-Purpose Utilities 11

12

Hacking the Script

The script has a problem. The file information is stored in only one location,
the file .change.info in your current directory. This can easily be remedied
by the addition of a command-line option to specify the location of the infor-
mation file.

It should be noted that there are a number of quality, high-speed, file-
scanning programs available. They are designed to detect when someone may
be hacking your system. One of the most popular is a program called Tripwire,
which can be obtained from http://sourceforge.net/ projects/ tripwire.

However, if you need a short script to detect file changes (a script that’s
easily modified), this one will do the job.

#4 Date Reminder

Chapter 1

The commercial calendar programs out there, such as Microsoft Outlook,
do a good job of reminding you of your wife’s birthday, on her birthday, when
it’s much too late to get her a present. What's really needed is a program that
reminds you when an important date is approaching.

It would also be nice if the program could also tell you how many days
have elapsed since an important event, such as, for example, how many
days since you sent out a rebate form.

The Code

14

2 # Usage: remind.pl [<calendar-file>]

3%

4 # File format:

5% datectab>deltactab>Event

6 #

7 Date -- a date

8 # delta --

9 # -xxx -- Remind after the event for xxx days
10 # +xxx -- Remind before the event for xxx days

=
=

use strict;
use warnings;

oy
~

13 use Time::ParseDate;

14 use Date::Calc(qw(Delta_Days));

15

16

17 # time_toYMD($time) -- Convert unit time into a year, month
18 # and day. Returns an array containing these three
19 # values

20

21 sub time_to_YMD($)

22 {

23 my $time = shift; # Time to convert

26
27
28

3
31
32
33
34
35
36
37
38
3
40
41
4
4
44
45
46
47
48

s

o

W~

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

my @local = localtime($time);
return ($local[5]+1900, $local[4]+1, $locall[3]);

my $in_file = $ENV{'HOME'}."/calendar";

if ($HARGY == 0) {
$in file = $ARGV[0];
}
if ($#ARGV > 0) {
print STDERR "Usage: $0 [calendar-file]\n";
}

open IN_FILE, "<$in file" or
die("Unable to open $in_file for reading");

Today's date as days since 1970
my @today YMD = time to YMD(time());

while (<IN FILE>) {
Lines that begin with "#" are comments
if ($_ =~ /M\s+t/) {
next;
}
Blank lines don't count
if ($_ =~ /"\s*/) {
next;
}
The data on the line
my @data = split /\t+/, $_, 3;
if ($#data 1= 2) {
next; # Silently ignore bad lines
}
my $date = parsedate($data[0]);
if (not defined($date)) {
print STDERR "Can't understand date $data[o]\n";
next;
}
my @file YMD= time_to_YMD($date);
Difference between now and the date specified
my $diff = Delta_Days(@today_YMD, @file YMD);
if ($data[1] > 0) {
if (($diff »= 0) && ($diff < $data[1])) {
print "$diff $data[z2]";
}
} else {
if (($diff < 0) 8& ($diff ¢ -(3data[1]))) {

General-Purposa Utilities

13

14

Chapter 1

73 print "$diff $data[2]";
74 }

75 }

76 }

Running the Script

The script uses an input file containing a date, and a number of days. If the
number of days is positive, you will be reminded of the event before it happens.
(Wife’s birthday in 30 days, get present now!) If the number is negative, you
will be informed of the number of days which have passed since the event
occurred. (They said the rebate would come in 6 to 8 weeks. It’s been 80 days,
what’s going on?) Here’s an example:

Oct 14 -100 Rebate Seagate $10
Sept 12 -100 Rebate Costco $50
Nov 1 +30 Wife's birthday

The Resulis

$ remind.pl events.txt
-3 Rebate Seagate $10
-5 Rebate Costco $50
14 Wife's birthday

This indicates that it’s been only three days since I sent out my Seagate
rebate form and five since the Costco rebate form was sent. Nothing to worry
about there.

It’s also two weeks until my wife's birthday, so I'd better start shopping as
soon as [finish this chapter.

How It Works

For hours, minutes, and seconds you use a hexasegimal (base 60) system that
comes from the ancient Babylonians. But then you suddenly shift to base 24
for the hours in a day (or base 12 and base 2 if you wish to use AM and PM).

But things really fall apart when it comes to the number of days in a
month. You see, the Romans, specifically Julius Caesar, gave us our base for
the modern calendar. This good work was negated by the fact that the Romans
decided to name some of the months after politicians. Thus July is actually
named in honor of Julius Caesar.

The problem is that Augustus Caesar decided that his month, August, had
to be at least as grand as July and decided that his month also had to have
31 days. So he stole an extra day from February. (February was named after
a feast, Februa, so it was safe to steal days from this month.) As a result of
politics, we have the mess that is the modern day calendar.

And we haven’t even touched on some of the other problems, such as
the fact that the days from September 3 to September 13, 1752 are missing

entirely. That’s when the switch from the Julian to the Gregorian calendar
was made. Because the Julian calendar was so far off at that time, they had to
remove 11 days from it to catch up.

The good news is that as far as Perl is concerned, all this calendar insanity
is mostly hidden from you by some Perl modules. The Time: : ParseDate mod-
ule is designed to convert time/ data specifications into something usable by
a program.

This script needs to know the number of days between two dates. The
Date: :Calc module can calculate date differences for us. There’s just one
problem. Time::ParseDate returns the date/time in Unix standard format
(number of sections since January 1, 1970) and Date::Calc wants things in
Year, Month, Day.

Fortunately, the built-in function localtime splits Unix time into its com-
ponent fields. So if you combine the three fields and do a little hookkeeping,
you can perform your calculations.

You start by reading in a line from a calendar file and parsing it:

45 while (<IN_FILE>) {

46 # Lines that begin with "#" are comments
47 if (§_ =~ /M\s+it/) {

48 next;

49 }

50 # Blank lines don't count

51 if ($_ =~ /™\s*/) {

52 next;

53 }

54 # The data on the line

55 my @data = split /\t+/, $_, 3;

56 if ($#tdata 1= 2) {

57 next; # Silently ignore bad lines
58 }

59 my $date = parsedate($datafo]);

60 if (not defined($date)) {

61 print STDERR "Can't understand date $data[o]\n";
62 next;
63 }

The parsedate function returns the date in Unix format and the date
calculation module needs it as Year, Month, Day. So you convert it:

64 my @file_YMD= time_to_YMD($date);

Now you can compute the difference between the date in the file and
the current date:

65 # Difference between now and the date specified
66 my $diff = Delta_Days(@today_YMD, @file YMD);

GeneralPurpose Utilites 15

16

If you want to be reminded about an upcoming event, and the event is in
range, it’s printed:

67 if ($data[1] > 0) {

68 if (($diff >= 0) && ($diff < $data[1])) {
69 print "$diff $data[2]";
70 }

Otherwise, you want to be reminded about a past event. So if the event is
in range, it’s printed:

71 } else {

72 if (($diff < 0) && ($diff < -(sdata[1]))) {
73 print "$diff $data[2]";

74 }

75 }

76 }

Hacking the Script

The core of this script utilizes logic that lets you count up or down days to
specified dates. The script can easily be adapted for other counting tasks.
For example, you may wish to count down the number of days until a dead-
line or display the number of days your favorite politician has left in office.

Computers are good at counting, and Perl’s modules are good at hiding
the complexities of time and dates. Thus it's easy to put the two together to
perform any time-based calculations you require.

#5 Currency Converter

Chapter 1

When traveling internationally, it’s very easy to become confused by the differ-
ences between the various currencies out there. Knowing the exchange rate
is vital for international transactions.

Converting between one currency and another is a simple calculation,
providing you know the exchange rate. Since rates are continually changing,
that can prove to be a bit tricky. This script actually goes to a website main-
tained by XE.com, downloads the exchange rate, and then performs the
calculation. This means that the result will be an accurate conversion using
up-to-the-minute rates.

The Code

14

2 # Convert currency from one type to another
3#

4 # Usage: money.pl <amount><from-code> <to-code>
5#

6 # Where:

<from-code>, <to-code> -- ISO Currency codes

10 # Note: There are other currency modules out there,
11 # but this one looks like it does the most

12 #

13 # The drawback is that you must be connected to the
14 # Internet to use it.

15 use Finance::Currency::Convert::XE;

16

17 # The object for the converter

=

=

18 my $converter = new Finance::Currency::Convert::XE();
19

20 sub usage() {

21 print "Usage is $0 <amount><code> <to-code>\n";
22 exit (8);

23}

24 if (($¥ARGY == 0) &4 ($ARGV[0] eq "-1")) {

25 # Warning: This depends on the internals of the converter
26 my $info = $converter->{Currency};

27 foreach my $symbol (sort keys %$info) {

28 print "$symbol $info->{$symbol}->{name}\n";
29 }

30 exit (0);

31}

32 if ($#ARGV != 1) {
33 usage();

34 }

35

36 if ($ARGV[O] !~

37 # Ao Begin string

38 # | Hemmmmem e Optional sign

39 # [T#Hmmmmmmmmmemm i ceeen 0 or more digits
40 # [TET (decimal part)
4 [TEHT Literal "."

42 # [TEHTT Digits

43 # [T 4+ Group but no $x
44 # FETEEET T - 0 or 1 times

45 # [LEEEE TR === put in $1

46 # [IPEREPEITEEEELETT T A== - One/more non spaces
47 # FECEECEETETTTEEEE R+ [4=--- Put in $2

48 # FEEEEEEREEPETEPEEEET T [+=- - End of 1ine

49 IA([-+]0d* (2N d*)2) (ASH)$/) {

50 usage();

51}

52 my $amount = $1; # Amount to convert

53 my $from_code = $2; # Code of the original currency
54 my $to_code = $ARGV[1]; # Code we converting to

55

56 # Amount must have at least one digit in it

57 if ($amount !~ /\d/) {

GeneralPurpose Utilities 17

18

Chopter 1

58 usage();

59 }

60

61 my $new_amount = $converter->convert(

62 ‘source’ => $from_code,
63 ‘target’ => $to_code,
64 'value' => $amount,

65 ‘format' => "text'

66);

67

68 if (not defined($new_amount)) {

69 print "Could not convert: " . $converter->error . "\n";
70 exit (8);

71}

72

73 my @currencies = $converter-rcurrencies;
74

75 print "$amount $from_code => $new_amounti\n";

Running the Script

The first argument to the script is an amount to convert followed by the
currency code. For example, $1.23 in US dollars is specified as 1.23U5D.
The second argument is the currency code for the currency you want.

If you don’t know the code for your currency, you can run the program
with a single -1 parameter and list the currency codes.

The Results

$ money.pl -1

ARS Argentinian Pesos
AUD Australian Dollars
BBD Barbados Dollars
BGL Bulgarian Leva
BMD Bermuda Dollars
BRL Brazilian Real

For example, A Hong Kong shop advertises three Microsoft Windows CDs
for $7.00 (Hong Kong). What's that in US money?

$ money.pl 7.00HKD USD
7.00 HKD => 0.90 United States Dollars

How It Works

The first version of this script was designed around the Finance: :Currency::
Convert: :Yahoo module. However, it quickly became apparent that Yahoo!
has changed the format of its currency conversion web page and caused

the module to break . .. So rather than try in fix it, I went searching for
another module.

This lead me to the Finance: :Currency::Convert: :XE module. To perform
a currency conversion, all you have to do is give this module four things:

1. The amount you wish to convert.
2

The code of the currency you are converting from.

3. The currency code of the result.
4. The result format. In this case, since all you are doing is printing the
answer, the format is 'text', which makes the result look nice.

So the heart of the script is as follows:

61 my $new_amount = $converter-sconvert(

62 ‘source’ => $from_code,
63 ‘target' =» $to_code,
64 ‘value' => $amount,

65 ‘format' => 'text'

66)

=

There’s one other function that this script performs. If you use a -1
on the command line, it lists the currency codes. It does this by using an
undocumented feature of the currency converter module.

The modules stores information about each currency in an internal hash
named currency. The code list comes from the contents of this hash. The keys
of the hash are the currency codes and the value is a hash reference that con-
tains information about the currency. In particular, the name entry contains
the text name of the currency.

The code to go through this list and print the currency codes looks
like this:

25 # Warning: This depends on the internals of the converter
26 my $info = $converter->{Currency};

27 foreach my $symbol (sort keys %$info) {

28 print "$symbol $info->{$symbol}->{name}\n";

29 }

Hacking the Script

The script is currently limited to the currencies understood by XE.com.
Unfortunately, not all currencies are supported. If you need something
exotic like the Maco Pataca, you're out of luck.

One solution to this problem is to use multiple modules for conversion.
However, at the time of this writing, the Yahoo! module is not working.

The nice thing about the Internet is that there are lots of sources of
information. The nice thing about Perl is that it’s an ideal language for
grabbing information off the Internet and parsing it. By putting the two
together, you should be able to create some very wicked cool Perl scripts.

GeneralPurpose Utilites 19

WEBSITE MANAGEMENT

Managing a website is a demanding task.
You have to keep track of hundreds of details
and assure that the site runs smoothly. Part

of this task involves checking the content for con-
sistency and mistakes and analyzing log files to locate
problems.

This chapter describes some Perl tools that can automate some of a
webmaster’s routine maintenance tasks, giving them time to combat the
unexpected problems that make a webmaster’s life so exciting.

#6 Website Link Checker

One of the most vexing problems facing a webmaster is making sure that all
the links on their website are correct. Internal links are difficult to deal with.
Every time a file is added, removed, or changed on your website, there is the
possibility of generating dead links.

22

Chapter 2

but

don

The

W0~ W B W N R

A s
- R R S ¥ N =]

18
19
20
2
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

[y

External links are even worse. Not only are they not under your control,
they disappear without a moment’s notice.

What’s needed is a way of automatically checking a site for links that just
't work. That’s where Perl comes in.

Code

#

Usage: site-walk.pl <top-url>
#

use strict;

use warnings;

use HTML::SimplelLinkExtor;
use LWP::Simple;
use URI::URL;

my $top_url; # The URL at the top of the tree

Indexed by link name

Value =

Internal -- Good internal link
External -- Good External link
Broken -- Broken link

my %links;

is_ours($url) -- Check to see if a URL is part of this

website.

#

Returns

undef -- not us

1 -- URL part of this website

sub is_ours($)

{
my $url = shift; # The URL to check
if (substr($url, o, length($top url)) ne $top url) {
return (undef);
}
return (1);
}

process_url($url)

#

Read an html page and extract the tags.
#

43 # Set $links{$url} to Broken, Internal, External
44 # depending on the nature of the url

45

46 no warnings 'recursion’; # Turn off recursion warning
47

48 sub process url($); # Needed because this is recursive
49 sub process_url($)

50 {

51 my $url = shift; # The file url to process

52

53 # Did we do it already

54 if (defined($links{$url})) {

55 return;

56 }

57 # It's bad unless we know it's OK
58 $links{$url} = "Broken";

59

60 my @head info = head($url);

61 if ($#head_info == -1) {

62 return; # The link is bad
63 }

64

65 $links{$url} = "External";
66

67 # Return if it does not belong to this tree
68 if (not is_ours($url)) {

69 return;

70 }

71 $links{$url} = "Internal";

72

73 # If the document length is not defined then it's
74 # probably a CGI script

75 if (not defined($head info[1])) {

76 return;

77 }

78

79 # Is this an HTML page?

80 if ($head_info[0] !~ /*text\/html/) {

81 return;

82 }

83

84 # The parser object to extract the 1list

85 my $extractor = HTML::SimplelLinkExtor->new();
86

87 my $data = get($url);
88 if (not defined($data)) {

89 $links{$uxrl} = "Broken";
90 return;

91 }

92

Wehsite Management 23

24

Chopter 2

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
12
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

|}

w

Parse the file
$extractor->parse($data);

The list of all the links in the file
my @all_links = $extractor->links();

Check each link
foreach my $cur link (@all links) {

The page as URL object
my $page = URI::URL->new($cur_link, $url);

The absolute version of the URL
my $full = $page->abs();

Now go through he URL types we know about
and check what we can check
if ($full =~ /~ftp:/) {

next; # Ignore ftp links
} elsif ($full =~ /*mailto:/) {
next; # Ignore mailto links

} elsif ($full =~ /*http:/) {
process_url($full);

} else {
print "Strange URL: $full -- Skipped.\n";

Turn off deep recursion warning
use warnings 'recursion’';

if ($#ARGV != 0) {
print STDERR "$0 <top-urls>\n";
exit(8);

$top_url = $ARGV[0];
process_url($top_url);

my @internal; # List of internal links

my @external; # List of external links

my @broken; # List of broken links

my @strange; # List of strange links

If we get any strange links, something broke in the program

Sort the links into categories
foreach my $cur_key (keys #links) {
if ($links{$cur_key} eq "Internal") {

push(@internal, $cur_key);

} elsif ($links{$cur_key} eq "External") {

push(@external, $cur_key);

143 } elsif ($links{$cur_key} eq "Broken") {
144 push(@broken, $cur_key);

145 } else {

146 push(@strange, $cur key);

147 }

148 }

149

150 #

151 # Print the results

152 #

153 print "Internal\n";

154 foreach my $cur url (sort @internal) {
155 print "\t$cur_url\n";

156 }

157 print "Externalin";

158 foreach my $cur url (sort @external) {
159 print "\t$cur_url\n";

160 }

161 print "Broken\n";

o

162 foreach my $cur url (sort @broken) {

163 print "\t$cur_url\n";

164 }

165 if ($#strange != -1) {

166 print "Strange\n";

167 foreach my $cur_url (sort @strange) {
168 print "\t$cur url\n";

169 }

170 }

Running the Script

The script takes, one argument: the top-level URL for the website:
$ site-check.pl http://www.oualline.com

The script will check the given URL and all URLs on that site, or more
technically, the top URL and all URLs that begin with the same absolute URL
as the given one.

The Resulis

Internal
http://www.oualline.com
http://www.oualline.com/10/.vimrc
http://www.oualline.com/10/top_10.html
http://www.oualline.com/10/vimrc. html
http://www.oualline.com/cgi-bin/errata.pl?book=c
http://www.oualline.com/cgi-bin/errata.pl?book=cpp

Website Management 25

26

Chopter 2

http://www
http://www
http://www
http://www
http://www

External

http://www
http://www
http://www
http://www
http://www
http://www

Broken
http://www.amazon.com/exec/obidos/ts/book-reviews/0764531050/
thedanubetravelg/002-3438930-8810611
http://waw.newriders.com/appendix/0735710015.pdf
.newriders.com/books/title.cfm?isbn=0735710015

.oualline.
.oualline.
.oualline.
.oualline.
.oualline.

com/cgi-bin/errata.pl?book=vim
com/col/bully.html
com/col/check.html
com/col/cpm.html
com/col/excuse.html

. more links omitted . . .

.exam-ta.ac.uk/practicalc. htm

.nostarch.
.nostaxrch.

com/hownotc.htm
com/images/hownotc_cov.gif

.openoffice.org/
.powaymidlandrr.org/

.vim.org/

.oualline.
.oualline.
.oualline.
.oualline.

com/hello/hellol_pl 4.html
com/hello/hellol_pl a.html
com/ship/ins/ins.sxi
com/teach/slides/port.pdf

The process is fairly simple:

b page.

Check to make sure that all the links are correct.

http://www
http://www
http://www
http://www
http://www
How It Works
1. Readawe
2.
3.

53
54
55
56

If any link on the page is a link to this website, repeat the process for

this link.

In practice things are not quite that simple. There are about 5,000
little details to worry about. Most of the actual checking work is done in the
process_file function. Its job is to process a URL and create a hash called
#1links that contains the results of that processing. The key of %1inks is the
URL itself, and the value is Broken, External, or Internal.

The first thing the function does is check to see if it already has processed
this URL. After all, there's no reason to do the same work twice:

Did we do it already
if (defined($links{$url})) {
return;

}

You start by assuming the worst: specifically, that the link is broken. If it
later passes all tests, you'll change its status to something else:

57 # It's bad unless we know it's OK
58 $links{$url} = "Broken";

The next step is to actually check the link. For this, you use the head
function from the LWP::Simple package. This not only checks the link but
gives you some information that you use later. However, if the head function
returns nothing, the link is broken and you give up at this point (leaving
$1links{$url} set to Broken):

60 my @head info = head($url);
61 if ($#head_info == -1) {

62 return; # The link is bad
63 }

At this point, you know the URL is good, so you assume that it is an exter-
nal link and then test your assumption by calling is_ours. If the assumption is

true, you're done and no further processing is needed:

65 $links{$url} = "External”;

66

67 # Return if it does not belong to this tree
68 if (not is_ours($url)) {

69 return;

70 }

The is_ours subroutine is very simple. All it does is check to see if the
beginning of the URL matches the top web page you started with:

28 sub is_ours($)

29 {

30 my $url = shift; # The URL to check

31

32 if (substr($url, o, length($top url)) ne $top url) {
33 return (undef);

34 }

35 return (1);

36 }

Back to your process_url function: You've figured out that the URL is good
and now know that it'’s one of yours. This means that it is an internal link:

71 $links{$url} = "Internal”;
Your link-checking program now needs to go through this internal URL

and look for any links that it may have. But there are certain types of URLs
that you don’t want to check. These include dynamically generated data

Website Management 27

(i.e., CGI scripts). Because the web server does not know the length of
dynamic data, the size field of the header ($head_info[1]) is zero. If you
find such a header, you don’t process the URL:

75 if (not defined($head info[1])) {
76 return;
77 }

A website can contain a lot of different types of files, such as images, raw
text, and binary data. Only an HTML page can contain links. So you check
the header to make sure that the MIME type ($head_info[x]) is “text/html™:

79 # Is this an HTML page?

80 if ($head_info[0] !~ /*text\/html/) {
81 return;

82 }

If you get this far, then you have a internal URL of an HTML page. You
need to check every link on this page. First you grab the page using the get
function from the LWP::Simple module (if this fails, then the link suddenly
became broken between the time you called the head function and now):

87 my $data = get($url);

88 if (not defined($data)) {
89 $links{$uxrl} = "Broken";
90 return;

You've got the page: now you need the links. Perl has a module called
HTML: :SimpleLinkExtor that will parse a web page, figure out what links it con-

tains, and return them to you as an array.

84 # The parser object to extract the list

85 my $extractor = HTML::SimplelinkExtor->new();
92

93 # Parse the file

94 $extractor->parse($data);

95

96 # The list of all the links in the file
97 my @all_links = $extractor->links();

Now all you have to do is go through each one and check it:

100 foreach my $cur link (@all links) {

28 Chapter 2

Unfortunately, this is not just as simple as calling process_url on each link.
First of all, there are two flavors of links, ahsolute and relative. An absolute
link looks like this:

http: //www.oualline.com/vim_cook.html
A relative link looks like this:
check.html
Since you started on the page:
http://www.oualline.com/col
the actual absolute URL you want to use is:
http: //www.oualline.com/col/check.html
Again, there is a Perl module, URI: :URL, that can be used to take a relative
URL and turn it into an absolute one. Once you have the absolute URL, you

can it back into the process_url function for checking:

100 foreach my $cur_link (@all_links) {

101 # The page as URL object

102 my $page = URL::URL->new($cur_link, $url);
103

104 # The absolute version of the URL

105 my $full = $page->abs();

You finally have a URL that you can check. But not all URLSs are
checkable. For example, there is no way to check a mailto-type URL.
So as a final filter, you examine the URL and only check the protocols
you know about, specifically HTTP. The FTP and mailto protocols are not
checked. When we encounter a protocol we don’t know about, such as
telnet (i.e., telnet:/ /www.terminalserver.com) or ed2k (i.e., ed2k://ed2k
fileshare.com/moves/5135.ed2k), we log it. That way the user is aware that
something strange has been seen and we let him worry about it.

106

107 # Now go through the URL types we know about
108 # and check what we can check

109 if ($full =~ /~ftp:/) {

110 next; # Ignore ftp links

111 } elsif ($full =~ /*mailto:/) {

112 next; # Ignore mailto links

Website Management 29

30

Chapter 2

113 } elsif ($full =~ /ohttp:/) {

114 process_url($full);

115 } else {

116 print "Strange URL: $full -- Skipped.\n";
117 }

118 }

119 }

After process_url does its work, you have a hash called ¥1inks that contains
the results. You need to sort out the elements of this hash into something
more useful, so you go through the hash and produce the arrays @internal,
@external, and @broken. If something goes wrong with your program, you stick
any unknown hash entry in the @strange array:

137 # Sort the links into categories
138 foreach my $cur_key (keys %links) {
139 if ($links{$cur key} eq "Internal") {

140 push(@internal, $cur_key);

141 } elsif ($links{$cur key} eq "External") {
142 push(@external, $cur_key);

143 } elsif ($links{$cur_key} eq "Broken") {
144 push(@broken, $cur_key);

145 } else {

146 push(@strange, $cur_key);

147 }

148 }

‘What's left is to print the result. First you print the internal links:

153 print "Internalin";

154 foreach my $cur_url (sort @internal) {
155 print "\t$cur_url\n";

156 }

The external, broken, and strange links are printed in a similar manner.

Huacking the Script

The script does a good job of checking HTTP-type links. However, no check-
ing is done of mailto- and FTP-type links. Code could be added to verify that
the mailto links point to a valid email address. Also, it’s possible to check to
see that the server in an FTP link exists. With a little more code, you could
check the link itself.

There are other protocols that are not covered by this script, including
things like RST, telnet, and HTTPS. These can easily be added.

The basic framework is there, and with a little hacking it can easily be
expanded.

#7 Orphan File Checker

Aside from broken links, orphan pages are the biggest problem plaguing
webmasters. An orphan page is one that exists on a web server but has no

link to it. In other words, there is no way to get to it.

The previous script checks (and lists) all the links on a site. You now

need a way to compare this against the list of files on your site to make sure
that every page is visible to the outside world.

The Code

L - KT, I O VYRR NyRY

P e =
B W MR o

15
16
17
18
1
20
21
22
23
2.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ke

=

use strict;

use warnings;
use Getopt::Std;
use URI;

use File::Find ();
use vars qw/*name/; # Name of the file from find
*name = *File::Find::name;

use vars qw/$opt_s $opt w/;

List of files on the website
my @file list;

Called by find for each file
sub wanted
{
Record only files
if (-F3){
push(@file_list, $name);
}
}

getopts("siw:");
if ((not defined($opt_s)) ||
(not defined($opt_w)) ||
SHARGY 1= -1) {
print STDERR "Usage is $0 -s<site> -w<walk-filex\n";
}
if ($opt s I~ /™\//4) {
die("Path for -s must be absolute");
}
if (! -d $opt_s) {
die("$opt_s is not a directory");
}
$opt_s =~ s/N/$//;

Traverse the site
File::Find::find({wanted => \&wanted}, $opt_s);

Wehsite Management

3

32

Chopter 2

40

41 # Now create a hash key=>file, value='o'

42 my %site = map {$_, 'o'} @file_list;

43

44 # Read the walking file

45 open IN_FILE, "<$opt_w" or die("Could not open $opt w");
46

47 # Go through the list of linked pages and record them in
48 # the hash

49 <IN_FILE>; # Skip "Internal” line

50 while (<IN_FILE>) {

51 if (substr($_,0,1) ne "\t") {

52 last;

53 }

54 # The URL as parts

55 my $url = URI->new($);

56 # The path component

57 my $path = $url->path;

58

59 # Removing any trailing /

60 $path =~ s/N/$//;

61 $site{$opt_s.url->path} = 's’;

62 }

63

64 # Go through the %site list and find the orphans
65 foreach my $cur file (sort keys ¥site) {

66 if ($site{$cur_file} ne 's') {

67 print "Orphan: $cur file\n";
68 }
69 }

Running the Script

The command line for the script looks like this:
$ site-orphan.pl -w<walk-file> -sc<site-url>

The walk-file is the name of the file containing the output of the site-
orphan.pl script. The other parameter specifies the top URL for the site, as

in this example:

$ site-orphan.pl -wwalk.out -shttp://www.oualline.com

The Results

Orphan: /var/www/html/addon-modules/.htaccess
Orphan: /var/www/html/addon-modules/HOWTO_get_modules.html
Orphan: /var/www/html/errata/vim.jpg

Orphan: /var/www/html/handcar.jpg

Orphan: /var/www/html/hello.pl

Orphan: /var/www/html/index.shtml

Orphan: /var/www/html/writing.long/junk/shirt.gif
Orphan: /var/www/html/writing.long/junk/shirt.html
Orphan: /var/www/html/writing.long/junk/shirt.pnm
Orphan: /var/www/html/writing.long/junk/shirt.shtml

How It Works

The script starts by getting a list of all the files on the web server. To do this,
the File::Find module is used. Actually, the initial version of the script started
out as the result of a find2pl command:

$ find2pl find '$opt s' -type f

The results of this command were heavily edited so that the script now
finds all the files and puts them in the @file_list array:

15 # Called by find for each file
16 sub wanted

17 {

18 # Record only files

19 if (-F$){

20 push(@file_list, $name);
21 }

38 # Traverse the site
39 File::Find::find({wanted => \dwanted}, $opt s);

Next you turn the array into a hash whose key is the filename and whose
value is ‘o', indicating that this file is an orphan (assume all files are orphans
until you know otherwise):

41 # Now create a hash key=>file, value='o'
42 my ¥site = map {$_, 'o'} @file_list;

Next you read in the file produced by site-walk.pl and change all the
entries for all the files you find to 's'. Actually, it’s a little more difficult than
that. For each line, you deconstruct the URL into its components. You are
interested in the path part of the URL:

54 # The URL as parts

55 my $url = URI->new($_);
56 # The path component
57 my $path = $url->path;

Website Management 33

34

You first must normalize the path by removing any trailing /. Since the
path is relative to the top level path given by the -s option, you must also add
the missing part of the path back in when you set the value in the hash:

59 # Removing any trailing /
60 $path =~ s/\/$//;
61 $site{$opt_s.$url->path} = 's';

After you finish processing the internal section of the input file, you have
a hash whose key is the filename and whose value is 's' if there is a link to it
and 'o' if it’s an orphan. All you have to do is print the orphans:

64 # Go through the ¥site list and find the orphans
65 foreach my $cur file (sort keys ¥site) {
66 if ($site{$cur_file} ne 's') {

67 print "Orphan: $cur file\n";
68 }
69 }

Hacking the Script

The script as written prints all orphaned files. It would be nice to have an
exclude list that allows you to skip any files you don’t care about. Also, it
might be nice to integrate this functionality into the sitecheck.pl program
and have a one-stop shop for web checking.

#8 Hacker Detection

Chapter 2

There are a lot of dumb hackers and worms out there. Many of them try to
break into my weh server using old exploits that work on Microsoft systems.
Many of these exploits are used to try to access the program cmd.exe in the
WINNT directory.

Irun Linux, so I can tell you that no matter what you send to my box,
you're not going to get access to an MS-DOS command prompt.

To identify the bad guys, I created a small script that scans the Apache
error log looking for obvious hacking attempts and printing out the top
hackers.

The Code

1 #!/usr/bin/perl
20#

3 # Print out a list of who tried to hack
4 # the system.
5%

6 # Uses a simple technique to detect hacking
7 # entries, specifically

8

w

10
1
12
13
14
15
16
17
1
1
b1
21
2,
23
2
25

=

~ S w0 w

=

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

#
1) Attempts to access any URL with the word
"winnt" in it.
2) Attempts to access a cgi script which doesn't
exist.
#
Usage:
who_hacked <error_log> [<error_log> ...]
use strict;
use warnings;
use Socket; # For AF_INET
my %hackers; # Who hacked
while (<>) {
$ =~ /client ([*\]]*)\]/;
my $who = $1; # who hacked us
Did someone try to get to the NT stuff
if ($_ =~ /winnt/) {
$hackers{$who}++;
next;
}
Did someone try to exploit a bad URL
if ($_ =~ /cgi-bin/) {
$hackers{$who}++;
next;
}
Did someone try the %2E trick
if ($_ =~ /%2E/) {
$hackers{$who}++;
next;
}
}
my @hack_array; # Hackers as an array

Turn page hash into an array
foreach my $hacker (keys %hackers) {
push(@hack_array, {
hacker =» $hacker,
count => $hackers{$hacker}

1s

Get the "top" hackers

Wehsite Management 35

58 my @hack_top =

59 sort { $b->{count} <=> $a->{count} } @hack array;
60

61 for (my $i = 0; $1 < 25; ++$i) {

62 if (not defined($hack_top[$i])) {

63 last;

64 }

65 # Turn address into binary

66 my $iaddr = inet_aton($hack_top[$i]->{hacker});
67

68 # Turn address into name (and stuff)

69 my @host _info = gethostbyaddr($iaddr, AF _INET);
70

71 # Handle bad names

72 if (not defined($host_info[0])) {

73 @host_info = "--unknown--";

74 }

75 printf "%3d %-16s %s\n", $hack_top[$i]->{count},
76 $hack_top[$i]->{hacker}, $host_info[0];

77 }

Running the Script

To run the script, simply point at your Apache error logs:

$ who-hacked.pl /var/log/httpd/error_log*

The Results
561 192.168.0.30 vcr.oualline. com
16 69.46.195.55 - -unknown- -
8 66.193.160.126 --unknown--
7 208.34.72.10 - -unknown--
6 66.193.231.55 shiva.gameanon.net
5 65.207.49.69 host69.aetherquest.com
4 212.253.2.202 - -unknown--
1 67.127.197.89 ads1-67-127-197-89.ds1.1san03.pacbell.net
1 208.57.32.21 san-cust-208.57.32.21.mpowercom.net
1 218.1.164.46 - -unknown--
1 207.192.252.238 <m-207-192-252-238.stjoseph.mo.npgco.com
1 64.79.3.92 Host03. ImageSnap.Com
1 202.107.202.14 --unknown--
1 207.192.241.9 - -unknown--

This printout shows that the number-one person who tried to hack my
website, by far, is me. Me???What’s going on? Why do these results show
over 500 hacking attempts by one of my machines? Has the machine been
compromised?

36 chaprer 2

Upon closer examine of the logs, I discover that the hacking attempts all
occurred during the same hour-long period. This coincides with the time I
was running a security checker on my website. So it’s true; I hacked myself.

The other hacks look like they came from dynamically assigned host
names. It probably means that these people are either script kiddies or using
Windows machines that were infected by a worm of some sort.

How It Works

A typical error_log file looks like this:

[Sat May 01 19:14:41 2004] [error] [client 69.46.195.55] File doe
s not exist: /var/www/html/...... winnt

[Sat May 01 19:14:47 2004] [error] [client 69.46.195.55] File doe
s not exist: /var/waw/html/....

[Sat May 01 19:14:48 2004] [error] [client 69.46.195.55] File doe
s not exist: /var/www/html/....

[Sat May 01 19:14:48 2004] [error] [client 69.46.195.55] Invalid
URI in request GET //X%2E%2E/aaaaaa/../%2EX2E/. /%2E%2E/
daaadadddaadddaddaadddaddaaddaalddaadadaddaaaadaadaaaaaaaaaaa
daaadaaddaadddaddaadaddaddaaddadlddaadddalddaaaadaadaaaaaaaaaaa
aal../%2E%2EN HTTP/1.0

The script goes through the error log and first finds the address of the
host that caused the error (this is called the client in Apache terms):

25 $_ =~ /client ([MN]I*¥N1/;
26 my $who = $1; # who hacked us

Next it looks for common hacks. This includes attempts to access any-
thing in the WINNT directory:

28 # Did someone try to get to the NT stuff
29 if ($_ =~ /winnt/) {

30 $hackers{$who}++;
31 next;
32 }

Also, someone may want to see if I left any of the demo CGI scripts on my
system. These can sometimes be used to hack:

34 # Did someone try to exploit a bad URL
35 if ($_ =~ /cgi-bin/) {

36 $hackers{$who}++;
37 next;
38 }

Finally, I check to see if the hacker is trying to reference files they
shouldn’t using the %2E trick. %2E is the dot character (.) encoded in hex.
Hackers use the “.." directory (%2E%2E) in a URL in an attempt to access

Website Management 37

38

pages they shouldn’t. There’s no reason to encode the dot, so any time you
see %2E, it's probably someone hacking:

40 # Did someone try the %2E trick
41 if ($_ =~ /42E/) {

42 $hackers{$who}++;

43 next;

44 }

The result of all this checking is a hash named %hackers whose key is the
hacker’s IP address and whose value is the number of hack attempts. I now
use the same technique used in the previous script to turn this hash into a
sortable array:

47 my @hack_array; # Hackers as an array
48

49 # Turn page hash into an array

50 foreach my $hacker (keys Z%hackers) {
51 push (8hack_array, {

52 hacker => $hacker,

53 count => $hackers{$hacker}
54 N

55 }

56

57 # Get the "top" hackers
58 my @hack_top =
59 sort { $b->{count} <=> $a->{count} } @hack_array;

Next the results are printed and that’s it.

Hacking the Script

The script checks for some basic hack attempts. As a result, it only checks
for hacks that are blatant and common. Obviously there is room for more
sophisticated hack checking. But this is a good framework in which to start
analyzing your web server errors.

#9 Locking Out Hackers

Chopter 2

Finding out who's trying to hack your system is one thing. But what do you
do about it? One solution is to lock out the attacking machine from your sys-
tem for 30 minutes. This should slow down attempts by worms and script
kiddies to access your system.

The Code

1 #!/usr/bin/perl
2 # WARNING: There are many different ways to lock

W oo~ oW B W

EEE I

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
4
4
45
46
4
48
4

B &

bl

o

51
52

a system out. This script uses
/sbin/route add <ip> reject
Adjust this command to suit your system.

When someone tries to hack us, lock him out
of the system for 30 minutes.

Lockout is accomplished by setting the route
for the bad systems to an impossible value

Uses a simple technique to detect hacking
entries, specifically

1) Attempts to access any URL with the word
"winnt" in it.

2) Attempts to access a cgi script which doesn't
exist.

Note: There are better security solutions out there.
You may want to check out http://www.snort.org for
one.

R

Usage:
lock-out.pl <error log>
(Assumes that error_log is still being written)

EE

use strict;

use warnings;

use File::Tail;

use Socket; # For AF_INET

use constant JAIL_TIME => (30%60); # 30 minutes
use constant TIMEOUT =»> (30); # Check every 30 sec.

Key -> Who hacked, value => Time left in route jail
my %hackers;

#
Lock out a user by sending all his packets to nowhere
#
sub lock_out($) {
my $who = shift; # Who to lock out

Put the IP address in jail

Wehsite Management 39

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
9
100

}
#

$hackers{$who} = time() + JAIL_TIME;

my $now = localtime; # The time now
print "$now Locking out $who\n";
system("/sbin/route add $who reject");

Unlock a user by removing a lock

#

sub unlock_out($) {

}
#

my $who = shift; # Who to not lock out

my $now = localtime; # The time now
print "$now Unlocking out $who\n";
system("/sbin/route del $who reject");

Return the name of a hacker if this is a hack entry

#

sub is_hacker($)
72 {

my $line = shift; # Line from the log

$line =~ /client ([*\]]*)\]/;
my $who = $1; # who hacked us

Did someone try to get to the NT stuff
if ($line =~ /winnt/) {
return ($who);

}

Did someone try to exploit a bad URL
if ($line =~ /cgi-bin/) {
return ($who);
}
Did someone try the %2E trick
if ($line =~ /%2E/) {
return ($who);
next;
}

return (undef);

if ($#ARGV 1= 0) {

print "Usage is $0 <error-log>\n";
exit (8);

101 my $in_file = File::Tail->new(name => $ARGV[0]);

40 cChaprer 2

102

103 while (1) {

104 my $nfound; # Numbexr of FDs on which
105 # select found something
106 my $timeleft; # Time left in the timeout
107 my @pending; # File::Tail items with input pending
108

109 # Wait for I/0 from the log file, or a timeout
110 ($nfound, $timeleft, @pending) = File::Tail::select(
111 undef, undef, undef, TIMEOUT, $in_file);
112

113 if ($#pending != -1) {

114 # Read the line from the file

115 my $line = $pending[0]->read();

116

117 # Get who (if anyone) hacked us

118 my $who = is_hacker($line);

119 if (defined($who)) {

120 lock_out($who);

121 }

122 }

123 # Check to see if anyone should come back

124 foreach my $who (keys %hackers) {

125 if ($hackers{$who} < time()) {

126 unlock_out($who);

127 delete $hackers{$who};

128 }

129 }

130 }

131

Running the Script

To run the script, you must be root. That’s because the script plays with
the routing table to lock out bad people. You then point the program at the
Apache error log and wait for things to happen:

lock-out.pl /var/log/httpd/error_ log

The Resulis

Wed Oct
Wed Oct
Wed Oct
Wed Oct
Wed Oct
Wed Oct

19:04:16 2004 Locking out 202.107.202.14
19:09:16 2004 Locking out 207.192.241.9
19:14:16 2004 Locking out 207.192.252.238
19:44:40 2004 Unlocking out 202.107.202.14
19:49:40 2004 Unlocking out 207.192.241.9
19:54:40 2004 Unlocking out 207.192.252.238

Wehsite Managemant 41

42

Chapter 2

How It Works

The script makes use of the File::Tail module. This module looks at a file
and tells you when lines are added to the file. It even knows when log files are
rotated and resets itself if that happens.

So if you point it to your Apache error log, you’ll get any errors that come
as they happen.

The first step is to create the File::Tail object:

101 my $in_file = File::Tail->new(name => $ARGV[0]);

Next comes a loop where you wait for something to come in on the error
log. The wait times out after 30 seconds to give you a chance to remove the
lockout on anyone who’s been put on ice for more than 30 minutes.

The select call gets you the next line or times out. If it times out, @pending
will be empty:

109 # Wait for I/0 from the log file, or a timeout
110 ($nfound, $timeleft, @pending) = File::Tail::select(
111 undef, undef, undef, TIMEOUT, $in_file);

You now check the log file to see if anyone attempted to hack your
system. The hack detection code embedded in the function is_hacker has
been previously discussed. The interesting part of this code is the fact that if
you do find someone, you lock them out:

113 if ($#pending != -1) {

114 # Read the line from the file
115 my $line = $pending[0]->read();
116

117 # Get who (if anyone) hacked us
118 my $who = is_hacker($line);

119 if (defined($who)) {

120 lock_out($who);

121 }

122 }

Next you check to see if there is a system whose lockout time has expired.
If so, you process it and remove the lock:

123 # Check to see if anyone should come back
124 foreach my $who (keys %hackers) {

125 if ($hackers{$who} < time()) {

126 unlock_out($who);

127 delete $hackers{$who};

128 }

129 }

NOTE

Locking out a hacker is easy. All you do is change the route for their
system to “reject.” This tells the network to ignore any message to and from
this system. This is accomplished using a simple route command:

49 sub lock_out($) {

50 my $who = shift; # Who to lock out

51

52 # Put the IP address in jail

53 $hackers{$who} = time() + JAIL_TIME;

54 my $now = localtime; # The time now
55 print "$now Locking out $who\n";

56 system("/sbin/route add $who reject");

57 }

When removing a lock, you need to delete the “reject” route. Again this
is done with a simple route command:

61 sub unlock_out($) {

62 my $who = shift; # Who to not lock out
63

64 my $now = localtime; # The time now
65 print "$now Unlocking out $who\n";

66 system("/sbin/route del $who reject");

67 }

So what happens is that someone tries to hack, gets locked, gets discour-
aged, and goes somewhere else.

Hacking the Script

As an intrusion detection and prevention system, this is pretty primitive.
It only detects a limited set of obvious attacks. You can add additional tests
to detect additional types of attacks.

The lockout code is specific to Linux. There are probably better ways
of preventing hackers from getting to your system. Changing the route is
primitive, but it does work.

Also, the script locks everybody out who tries to hack. This may not be
what you want, as I discovered when I ran this script and my security scanner
at the same time. The result is that the lockout script detected the security
scan and locked me out of my own server.

So although the script does a simple job well, there’s lots of room for
improvements and enhancements.

Intrusion detection is a science. There is no beller protection for your system than to
have someone who knows what they are doing set it up and monitor it for suspicious
activity. A smart, experienced human being is still the best form of securily prolection
around.

Website Management 43

CGI DEBUGGING

Perl and the Web were made for each
other. The Perl language is ideal for
processing text in an environment where

speed does not matter. Perl can munch text and
use it to produce dynamic web pages with case.

But programming in a CGI environment is not the easiest thing in the
world. There is no built-in CGI debugger. Also, error messages and other
information can easily get lost or misplaced. In short, if your program is not
perfect, things can get a little weird.

In this chapter, I'll show you some of the Perl hacks you can use to help
debug your CGI programs.

#10 Hello World

This is the CGI version of “Hello World.” In spite of it being a very simple pro-
gram, it is extremely useful. Why? Because if you can run it, you know that
your server is properly configured to run CGI programs. And from bitter expe-
rience I can tell you that sometimes configuring the server is half the battle.

The Code

#!/usr/bin/perl -T

use strict;
use warnings;

print <<EOF
Content-type: text/html

<HEAD><TITLE>Hello</TITLE></HEAD>
10 <BODY>

11 <P>

Hello World!

13 </BODY>

oy
v}

15 EOF

Running the Script

To run the script, just point your web browser at the correct URL. If you are
using the default Apache configuration, the script resides in ~apache/cgi-bin/
hello.pl and the URL to run it is http:/ /server/cgi-bin/hello.pl.

The Resulis

£ Eile Edit View Go Bookmarks Tools Window Help

. . "
£ . = . 2 B ; ; = o
ol [@ hitpHwww oualine comycgi-binmellopl ~| o8 Search =

i ZhHome | WfBookmarks #MandrakeSoft 4 Mandrake Linux £ MandrakeStore #MandrakeExpert

Hello World!

% b <2 @ | Done B

How It Works

The script just writes out its greeting, so the script itself is very simple.
The purpose of the scriptis to help you identify all the problems outside
the script that can prevent CGI scripts from running.

46 chapter 3

Hacking the Script

In this section, I'm supposed to tell you how to enhance the script. But really,
what can you do with “Hello World!™?

I suppose you could enhance it by saying “Hello Solar System,” “Hello
Galaxy,” or “Hello Universe.” You are limited only by your imagination.

#11 Displaying the Error Log

One of the problems with developing CGI scripts is that there’s no error
displayed when you make a syntax error or other programming mistake.
All you get is a screen telling you Internal Server Exror. That tells you next
to nothing.

The real information gets redirected to the error_log file. The messages
in this file are extremely useful when it comes to debugging a program.

However, these files are normally only accessible by a few users such as
apache and root. These are privileged accounts and you don’t want to give
everybody access to them.

So we have a problem. Programmers need to see the log files, and the
system administrators want to keep the server protected. The solution is to
write a short Perl script to let a user view the last few lines of the error_log.

The Code
1 #!/usr/bin/perl -T
2 use strict;
3
4 use CGI::Thin;
5 use (GI::Carp qw(fatalsToBrowser);
6 use HTML::Entities;
7
8 use constant DISPLAY SIZE =»> 50;
9
10
11 # Call the program to print out the stuff
12 print <<EOF ;

13 Content-type: text/html
14 \n
15 <HEAD><TITLE>Error Log</TITLE></HEAD>

w

16 <BODY BGCOLOR="#FF8080">

17 <H1>Error Log</H1>

18 EOF

19

20 if (not open IN_FILE, "</var/log/httpd/error log") {
21 print "<P>Could not open error_log\n";

22 exit (0);

23}

CGl Debugging 47

24
25
26 # Lines from the file
27 my @lines = <IN_FILE>;

29 my $start = $#lines - DISPLAY SIZE + 1;
30 if ($start < 0) {

31 $start = 0;

32}

33 for (my $i = $start; $i <= $#lines; ++3i) {

34 print encode_entities($lines[$i]), "
\n";
35}

Running the Script

The script must be installed in the CGI program directory and must be
setuid to root (or some other user who has access to the error logs). It is
accessed through a web browser.

The Results

From this display you can see that the last script run was bad.pl and it errored
out because of a Premature end of script header error. (Translation: we forgot
the #!/usx/bin/perl at the top of the script.)

ile Edit View Go Bookmarks Tools Window Help

5

Print

-
4 . Fﬂiand - R:%Ed o [@ hetp-swww aualiine comycgi-binjerror_lo: = | 48 search

Home | WfBookmarks . Mandrakesoft #Mandrake Linux ¢ MandrakeStore #MandrakeExpert »

Error Log

[Wed Oct 20 20:35:35 2004] [error] [client 216.160.92.247] File does not exist:

fvarfwww/html/favicon.ico

[Wed Oct 20 20:50:15 2004] [error] [client 69.20.146.178] File does not exist:

fvarfwww/html/favicon.ico

[Wed Oct 20 20:51:52 2004] [error] [client 64.179.37.3] File does not exist:

Hvarfwww/html/favicon.ico

[Wed Oct 20 20:54:36 2004] [error] [client 202.53.35.24] File does not exist:

Svarfwww/html/favicon.ico

[Wed Oct 20 20:54:45 2004] [error] [client 202.53.35.24] File does not exist:

Jvarfwww/html/favicon.ico

[Wed Oct 20 20:55:06 2004] [error] [client 202.53.35.24] File does not exist:

fvarfwww/html/favicon.ico

[Wed Oct 20 20:55:18 2004] [error] [client 202.53.35.24] File does nol exist:

Jvarfwww/html/favicon.ico

[Wed Oct 20 20:55:41 2004] [error] [client 202.53.35.24] File does not exist:

fvarfwww/html/favicon.ico

[Wed Oct 20 21:03:49 2004] [error] [client 68.111.74.81] File does not exist:

fvarfwww/html/favicon.ico, referer: http:/fwww.oualline.com/vim-cook html

ind IDCt 20 21:27:24 2004] [error] [client 192.168.0.30] Premature end of script headers:
ad.pl

% & o2 E3 [Dpone | Fo-lr|

48 cChapter 3

How It Works

The script starts with the magic line that runs Perl with the -T flag. The -T
tells Perl to turn on {aint checks. This helps prevent malicious user input
from doing something nasty inside your program. It is a good idea to turn
on taint for any CGI program. (We’'ll discuss taint mode in more detail in
the next chapter.)

1 #!/usr/bin/perl -T

The script makes use of the CGI::Carp module. This module will catch any
fatal errors and print out an error message that is readable by the browser.
This means that error messages show up in the browser instead of going only
to the error log.

This is especially a good idea for this script. If this script errors out, you
can’t use the error log script to find out what went wrong (because this is the
error log script).

5 use CGI::Carp qu(fatalsToBrowser);

Start by outputting a page header. The background color chosen for
the errors is #FF8080, which is a sort of sick pink. It looks ugly, but the color
screams “Errors!”

12 print <<EOF ;

13 Content-type: text/html

14 \n

15 <HEAD><TITLE>Error Log</TITLE></HEAD>
16 <BODY BGCOLOR="#FF8080">

17 <H1>Error Log</H1>

18 EOF

woN

-~ o

Next, open the log file and read all lines in it:

o

Lines from the file
my @lines = <IN_FILE>;

2
2

=

Finally it’s just a matter of printing the last 50 lines. The only trick is that
you can’t print them directly (they contain text and you want HTML). So the
text is processed through the encode_entities function to turn nasty ASCII
characters into something a browser can understand.

33 for (my $i = $start; $i <= $#lines; ++$i) {

34 print encode_entities($lines[$i]), "
\n";
35}

CGI Debuggin 49
gging

How It Works

The script starts with the magic line that runs Perl with the -T flag. The -T
tells Perl to turn on {aint checks. This helps prevent malicious user input
from doing something nasty inside your program. It is a good idea to turn
on taint for any CGI program. (We’'ll discuss taint mode in more detail in
the next chapter.)

1 #!/usr/bin/perl -T

The script makes use of the CGI::Carp module. This module will catch any
fatal errors and print out an error message that is readable by the browser.
This means that error messages show up in the browser instead of going only
to the error log.

This is especially a good idea for this script. If this script errors out, you
can’t use the error log script to find out what went wrong (because this is the
error log script).

5 use CGI::Carp qu(fatalsToBrowser);

Start by outputting a page header. The background color chosen for
the errors is #FF8080, which is a sort of sick pink. It looks ugly, but the color
screams “Errors!”

12 print <<EOF ;

13 Content-type: text/html

14 \n

15 <HEAD><TITLE>Error Log</TITLE></HEAD>
16 <BODY BGCOLOR="#FF8080">

17 <H1>Error Log</H1>

18 EOF

woN

-~ o

Next, open the log file and read all lines in it:

o

Lines from the file
my @lines = <IN_FILE>;

2
2

=

Finally it’s just a matter of printing the last 50 lines. The only trick is that
you can’t print them directly (they contain text and you want HTML). So the
text is processed through the encode_entities function to turn nasty ASCII
characters into something a browser can understand.

33 for (my $i = $start; $i <= $#lines; ++$i) {

34 print encode_entities($lines[$i]), "
\n";
35}

CGI Debuggin 49
gging

27 }

28 }

29 print "<H2>Environment</H2>\n";

30 foreach my $cur_key (sort keys XENV) {

31 print "
";

32 print encode_entities($cur_key), " =",
33 encode_entities($ENV{$cur_key}), "\n";
34 }

35 }

36

37 # Call the program to print out the stuff
38 print "Content-type: text/html\n";

39 print "\n";

40 debug();

Using the Function

To use the function, simply put it in your CGI program and call it.

The Resulis

Here’s the result of running the script. The form we filled in to get to this
script took two parameters, a width and a height. From the debug output you
can see the values we filled in.

You can also see all the environment information passed to us by the CGI
system.

i Fle Edt View Go Bookmarks Tools Window Help

Eﬁ-k ok R‘?oad & [rp frwww.uualhne.ccm{cgl-bm,‘debugp_jm 'ﬂm -

i attome WfBookmarks #MandrakeSoft 2 Mandrake Linux g2 MandrakeStore 4 MandrakeExpert »
DEBUG INFORMATION

Form Information

size =47
width = 32

Enviornment

DOCUMENT ROOT = jvar/www/html
GATEWAY _INTERFACE = CGI/1.1
HTTP_ACCEPT =
text/xml,application/xml,application/xhtml+xm] rext.fhtml,q 0 9,text/plain;q=0.8,image/png,ima
HTTP_ACCEPT CHARSET = [SO-8859-1,utf-8;q=0.7 *
HTTP_ACCEPT _ENCODING = gzip, deﬂate
HTTP_ACCEPT LANGUAGE = en-us,em;q=0.5
HTTP_CONNECTION = keep-alive

HTTP_HOST = www.oualline.com

HTTP_KEEP ALIVE = 300

T

P
I
% & & @ | Done | s

CGl Debugging 31

52

Chapter 3

How It Works

The script uses the Parse_CGI function to grab all the CGI parameters. These
are stored in the hash %form_hash:

15 my %form info = Parse CGI();

The hash creates a
form_variable => value
mapping. But there is a problem. Some form elements, like a multiple-
selection list, can have more than one value. In that case the “value”
returned is not a real value but instead a reference to an array of values.

In order to print things, your code needs to know the difference between
the two. This is done using the ref function. If you have an array reference,

you print the elements. If you have something else, you just print the value:

16 foreach my $cur_key (sort keys %form_info) {

17 print "
";

18 if (ref $form_info{$cur_key}) {

19 foreach my $value (@{$form info{$cur key}}) {
20 print encode_entities($cur_key), " =",
21 encode_entities($value), "\n";
22 }

23 } else {

24 print encode_entities($cur_key), " =",

25 encode_entities(

26 $form_info{$cur_key}), "\n";

27 }

28 }

The environment is printed using a similar system. Since you don’t have
to worry about multiple values this time, the printing is a bit simpler:

30 foreach my $cur key (sort keys XENV) {

31 print "
";

32 print encode_entities($cur_key), " =",
33 encode_entities ($ENV{$cuxr_key}), "\n";
34 }

Between the environment and the CGI parameters, you've printed every
input to a CGI program.

Hacking the Script

In the field, it would be nice to be able to turn on and off the debugging out-
put at will. One technique is use a remote shell on the server to create a file
such as /tmp/cgi_debug and, if it is present, turn on the debugging.

The debug function can also be augmented to print out more information,
such as the state of program variables or the contents of information files.

Printing information to the screen is one of the more useful ways of
getting debugging information out of a CGI system.

#13 Debugging a CGl Program Interactively

NOTE

Perl comes with a good interactive debugger. There’s just one problem with
it: You have to have a terminal to use it. In the CGI programming environ-
ment, there are no terminals.

Fortunately, there is another Perl debug, ptkdb. (The module name is
Devel::ptkdb. If you install this module, you've installed the debugger.)

The ptkdb debugger requires a windowing system to run. In other words,
if the web server can contact your X server, you can do interactive debugging
of your CGI script.

The only trick is how to get things started. That’s where this debugging
script comes in.

The Code

1 #!/usr/bin/perl -T

24

3 # Allows you to debug a script by starting the
4 # interactive GUI debugger on your X screen.
5#

6 use strict;

7 use warnings;

8

9 $ENV{DISPLAY} = ":0.0"; # Set the name of the display
10 $ENV{PATH}="/bin:/usr/bin:/usr/X11R6/bin:";

11

12 system("/usxr/bin/perl -T -d:ptkdb hello.pl");

Running the Script

The first thing you need to do is edit the script and make sure that it sets the
environment variable DISPLAY to the correct value. The name of the main
screen of an X Window System is host:0.0, where host is the name of the host
running the X server. If no host is specified, then the local host is assumed.

If you are running an X Window System with wmultiple displays, the display name may
be different. Bul if you're smart enough to connect mulliple monitors to your compuler,
you're smart enough to set the display without help.

The other thing you'll need to do is to change the name of the program
being debugged. In this example, it's hello.pl, but you should use the name
of your CGI program.

CGI Debugging 33

54

Chapter 3

Once you've made these edits and copied the start-debug.pl script into
the CGI directory, point your browser at the start-debug.pl script:

$ mozilla http://localhost/cgi-bin/start-debug.pl

The Resulis

The script will start a debugging session on the script you specified.

You can now use the debugger to go through your code step by step in
order to find problems.

4 ozl

0,85

Eile Edit View Go Bookmarks Tools Window Help

.

a &

. [@ g i onali = & .
R hitp:/fww.ouall J & Search| =¥

4hHome | Wk Bookmarks ¢ MandrakeSoft ¢ Mandrake Linux 4 MandrakeStore

X hsllapl

File Control Data Stack Bookmarks Windows
stepin | Stepover | Rewm | A | RunTo | Break |
Goto | Search | Regex || Exprs | Suns | Bricers |
I\ [6B88E #1/usr/bin/perl -T Quick Expr:
00003 use strict; Enter Expr:
00004 use warnings;
58885
Content-type: text/html
66088 (HEAD><TITLE Hello< /TITLE < /HEAD>
686G <BODY>
666E: <>
86612 Hello World!
86613 </BODY>
[,
86615 EOF
/
|] =]

% B 2 @ IWainngfnrwwwﬂuailme,cnm,

Rl

How It Works

$ perl -d:ptkdb script

The simple answer is that it executes the following command:

Unfortunately, there are a few details you have to worry about. First, the
script is run with the taint option:

1 #!/usr/bin/perl -T

Taint mode turns on extra security checks which prevent a Perl program
from using user-supplied data in an insecure manner.

Next you set the display so that the debugger knows where to display its
window:

9 $ENV{DISPLAY} = ":0.0"; # Set the name of the display

Because taint checks are turned on, the systen function will not work.
That’s because the system function uses the PATH environment variable to find
commands. Since PATH comes from the outside, it’s tainted and cannot be used
for anything critical.

The solution is to reset the path in the script. Once this is done, PATH is
untainted and the system function works:

10 $ENV{PATH}="/bin:/usr/bin:/usr/X11R6/bin:";
All that's left is to run the real script with debugging enabled:

12 system("/usxr/bin/perl -T -d:ptkdb hello.pl");

Hacking the Script

This script is extremely limited. It can only debug programs named hello.pl.
With a little work, you could create a CGI interface to the front end and make
the script debug anything.

This brings us to the other problem with this script: no security. If you can
get to the program, you can get to the debugger. From the debugger, you
can do a lot of damage. It would be nice if the script let only good people
run it.

But as a debugging tool, it’s a whole lot better than the usual CGI
debugging techniques of hope, pray, and print.

CGI Debuggin 55
gging

CGI PROGRAMS

Perl powers the Web. That’s because it’s
the ideal language for writing a very
simple program that can read text input,
perform simple calculations on the data, and
write out the results. Because it is so good at this,
it’s used to power most of the CGI scripts in the world.

With Perl, it’s easy to quickly create small yet robust CGI form handlers
and thus create a wicked cool website.

#14 Random Joke Generator

The first thing you learn in public speaking is to start off with a joke. So let’s
start off with a short program that throws up a random joke every time it’s run.

The Code

1 #!/usr/bin/perl -T

2 # Random joke generator
3 use strict;

4 use warnings;

58

Chapter 4

use CGI;
use CGI::Carp qw(fatalsToBrowser);
use HTML::Entities;

5
6
7
8
9

Untaint the environment
$ENV{PATH} = "/bin:/usr/bin";

1
1
1
13

14 print <<EOF ;

15 Content-type: text/html

16

17 <HTML>

18 <HEAD>

19 <TITLE>Random Joke</title>
20 </HEAD>

21 <BODY BGCOLOR="#FFFFFF">

22 <P>

23 EOF

24

25 my @joke = "/usr/games/fortune”;
26 foreach (@joke) {

N RO

[y

delete ($ENV{qw(IFS CDPATH BASH_ENV ENV)});

27 print HTML::Entities::encode($_), "
\n";
28 }
Running the Script

Install the script joke.pl in your CGI directory and point your browser at
http:/ /hostname/ cgi-bin/joke.pl. Replace hostname with the hostname of
your web server.

EACAL)

Edit View Go Bookmarks Taols Window Help

4 =

A B | asearch] S

" fhHome | whBookmarks 2 MandrakeSoft 4 Mandrake Linux

Win98 error 007: Fatal error: unforseeable condition:
Your system has booted
without crashing. Shutting down to compensate.

% &b « E& | Done

R

NOTE

Your vesults will vary. Remember, this is a random joke generator.

How It Works

The short answer is the script takes the output of the fortune program and

puts it on the script. The longer answer is that are a few details to go through.
You start off Perl with the -T switch. This turns on taint mode, which is

always a good idea with CGI scripts (this will be discussed in more detail later):

1 #!/usr/bin/perl -T

The next line directs errors to the browser rather than hiding them in
the error logs:

7 use CGI::Carp qw(fatalsToBrowser);

You're going to use an external command, fortune, to do the dirty work.
Before you can execute the command, you need to untaint the environment.
(The environment is tainted because a malicious user could set it to some-
thing bad. If you set it with a known good set of values, it’s untainted.) Here’s
the code:

10 # Untaint the environment
11 $ENV{PATH} = "/bin:/usr/bin";
12 delete ($ENV{qw(IFS CDPATH BASH_ENV ENV)});

¥}

Next comes a little bookkeeping to print out the start of the page:

14 print <<EOF ;

15 Content-type: text/html
16
17 <HTML>
18 <HEAD>
19 <TITLE>Random Joke</title>
20 </HEAD>
21 <BODY BGCOLOR="#FFFFFF">
22 <P>
23 EOF
Use the fortune command to generate a random joke:!
25 my @joke = "/usr/games/fortune”;

' The fortune program is a semi-standard Unix and Linux command that was designed to
simulate a fortune cookie but has turned into general silliness.

CGI Programs 59

60

26
27
28

Each line in the joke is encoded (to turn nasty characters such as < into
something printable) and printed:

foreach (@joke) {
print HTML::Entities::encode($_), "
\n";

}

That’s it.

Hacking the Script

This script illustrates how you can connect a simple text-generating program
to the Web. In this example, I used a joke generator, but it can be anything,
and perhaps something more useful. But on the other hand, don’t discount
the value of a good laugh.

#15 Visitor Counter

Chopter 4

This program lets someone know how many times a web page has been visited.

The Code

W N o W N R

11
12
13
14
15
16
17
18
19
20
2
2,
2
24
25
2

wWoN e

o

#!/usr/bin/perl -T
use strict;

use warnings;

use GD;

The file containing the visitor number
my $num_file = "/var/visit/vcount.num";

Number to use for counter
my $num = 0;
if (-f $num_file) {
if (open IN_FILE, "<$num_file") {
$num = <IN_FILE>;
chomp ($num);
close(IN_FILE);

print "Content-type: image/png\n\n”;

my $font = gdGiantFont;
my $char_x = $font->width;
my $char y = $font->height;

my $picture x = (1 + $char_x) * length($num) + 1;
my $picture y = (1 + $char y);

27
2
2
3
3
32
3
34

35 print $image->png;

36 ++$num;

37 if (open OUT_FILE, ">$num_file") {
38 print OUT_FILE $num;

39 }

40 close OUT_FILE;

©

my $image = new CD::Image($picture x, $picture y);
my $background = $image->colorAllocate(0,0,0);
$image->transparent($background);

my $red = $image->colorAllocate(255,0,0);

[SER=JR-]

w

$image->string($font, 0, 0, $num ,$red);

- o

s

Running the Script

You'll need a weh page that references this CGI program as an image. Here’s

an example:

<HEAD><TITLE>Visitor Counter</TITLE></HEAD>
<BODY BGCOLOR="H#FFFFFF">
<P>
You are visitor number:

<IMG SRC="http://www.oualline.com/cgi-bin/vcount.pl"
ALT="(visitor)">

The Resvlis

jsiear Ensineer - plazilla (20 0 2004051555) Q.ER)

| Elle Edr yiew Go Bookmarks Tools winoow Help Deoug @A
|2 - = .3 & G = . [
Back ~ Forward Reload Stop 4 j 2 Serch| oy

| A Home | wpBookmarks

“You ars visitor number:
37

How It Works

It’s very difficult to create a web page that includes a directive that tells the
server to “run a CGI program and display the result here.” Also, there’s no
way of embedding a web page within another web page. (Frames split the

page up, but they don’t embed anything.)

However, HTML does have a directive that allows you to embed images.

And it’s that directive you’ll use to create your visitor counter.

CGl Pragrams

61

All you have to do is to draw your counter instead of printing it. For the
graphics, you are going to use the GD module:

4 use @D;

You are going to produce a PNG image. You need to tell the web browser
what's about to appear:

19 print "Content-type: image/png\n\n";

The GD package comes with a number of different fonts. You're going to
use the biggest one, so let’s get a reference to it

21 my $font = gdGiantFont;

The size of the character will affect how big your image is, so you extract
these metrics from the font:

22 my $char_x = $font->width;
23 my $char_y = $font->height;

Next you compute the size of the picture you are about to generate:

25 my $picture_x = (1 + $char_x) * length($num) + 1;
26 my $picture_y = (1 + $char_y);

The next step is to create a blank canvas on which you can paint your
number. You'll also set the background color to white (in RGB color space
terms this is 0,0,0):

28 my $image = new GD::Image($picture x, $picture y);
29 my $background = $image->colorAllocate(0,0,0);

30 $image->transparent($background);

Next, allocate a color for the digits. For this script, a nice red has been
selected:

31 my $red = $image->colorAllocate(255,0,0);
Now the number is drawn on the image:
33 $image-»string($font, 0, 0, $num ,$red);
The only thing left is to print the image, thus sending it to the browser:

35 print $image->png;

62 Chapter 4

And of course, there a little bookkeeping to do, but that’s it:

=

36 ++$num;

37 if (open OUT_FILE, ">$num file") {
38 print OUT_FILE $num;

39 }

40 close OUT_FILE;

pei

=]

Hacking the Script

The visitor counter tells you how many times your web page has been viewed,
not how many people viewed it. There are ways you can attempt to detect
different visitors. The simplest is to track IP addresses and not count multiple
views from the same IP address.

Or you could send the browser a cookie and refuse to increment the
counter for anyone who already has a cookie.

None of these systems is perfect, but all give you some idea of how many
times your web page has been looked at.

Another image manipulation package can be found in the Image::Magick
module. This module provides many more drawing functions, but it’s harder
Lo use.

#16 Guest Book

The visitor counter keeps track of people automatically. Another way to handle
this is to ask them to voluntarily record their name for you. The guest book
script lets people record their name and email address so you can contact
them later.

The Code

1 #!/usr/bin/perl -T

2 use strict;

3 use warnings;

4

5 use CGI;

6 use CGI::Carp qw(fatalsToBrowser);

7 use HTML::Entities;

8

9 #

10 # Configure this for your system

11 #

12 # Where the information is collected
13 my $visit_file = "/tmp/visit.list";
14

15 my $query = new CGI; # The cgi query
16

17 # The name of the user

CGIPrograms 63

[N}
w

¥
o

w
o

57
58
59
60
61
62

64 cChoptera

my $user = $query->param(“user");

The email of the user
my $email = $query->param(“email");

if (not defined($user)) {
$user = "";

}

if (not defined($email)) {
$email = "";

}

Untaint the environment
$ENV{PATH} = "/bin:/usr/bin";
delete (SENV{qw(IFS CDPATH BASH_ENV ENV)});

If there is a user defined, record it
if ($user ne "")

{
open OUT_FILE, "»>>$visit file" or
die("Could write the visitor file");

print OUT_FILE "$user\t$emailin”;
close OUT_FILE;

Turn the user into HTML
$user = HTML::Entities::encode($user);

Get the visitor number from the file
my $visitor = “wc -1 $visit_file™;

Remove leading spaces
$visitor =~ s/"\s+//;

Get the number of lines in the file
my @number = split /\s+/, $visitor;

print <<EOF ;
Content-type: text/html

<HTML>
<HEAD>

<TITLE>Guest Book</title>
</HEAD>

63 <BODY BGCOLOR="#FFFFFF">

64 <P>

65 Thank you $user. Your name has been recorded.
66 <P>

67 You are visitor number $number[o]

68 EOF

6
70 }
71
72
T
7
75

76 <HTML>

77 <HEAD>

78 <TITLE>Guest Book</title>

79 </HEAD>

80

81 <BODY BGCOLOR="#FFFFFF">

82 <P>

83 Please sign my guest book:

84 <FORM METHOD="post" ACTION="guest.pl" NAME="guest">
85 <P>Your name:

86 <INPUT TYPE="text" NAME="user">

87 LIP>

88

89 <P>Your E-Mail address:

90 <INPUT TYPE="text" NAME="email">

91 (optional).</P>

92

93 <P>

94 <INPUT TYPE="submit"

95 NAME="Submit" VALUE="Submit">

96 </P>

97 </FORM>

98 </BODY>

99 </HTML>

100 EOF

@

exit (0);

e}

w

print <<EOF;
Content-type: text/html

&

a

)

[

Running the Script

To run the script, you must point your web browser at it. The script will auto-
matically sense that you are running it for the first time and ask you for your
name. After you enter your name, the script runs again and displays a short
thank-you message.

CGl Programs 65

The Resvlis

Initial run:

et Buok - ozl

Edit view Go Bookmarks Tools Window Help

4. v - BB G et 7| g searen|

| 4htome | ‘WfBookmarks #MandrakeSoft #Mandrake Linux £ MandrokeStore 2 MandrakeExpert

Please sign my guest book:

Your name: ¢
Your E-Mail address (optional).
Submit

S &L £ E | Dune T

e

Thank-you screen:

Edit View Go Bookmarks Tools Window Help

ey

L B r rryep——— .
Back i Relogil. Sior &hnp.'mww.aualhnecomfcglr_l & _Search print

AHome | WfBookmarks #MandrakeSoft #Mandraka Linux #Mandrakestore #MandrakeExpert »

Thank you Steve Oualline. Your name has been recorded.

You are visitor number 9

% L 2 B [Done [

o

How It Works

You start by doing some initialization:

12 # Where the information is collected
13 my $visit_file = "/tmp/visit.list";

66 Chaper 4

Next, you get the CGI parameters:

15 my $query = new CGI; # The cgi query
16

17 # The name of the user

18 my $user = $query->param(“user");

19

20 # The email of the user

21 my $email = $query->param(“email");

If this is the first run, these values will not be defined. Let’s give them
default values:

23 if (not defined($user)) {

24 $user = "";

25 }

26 if (not defined($email)) {
27 $email = "";

28 }

If there is a user defined, record the information:

34 # If there is a user defined, record it
35 if ($user ne "")

36 {

37 open OUT_FILE, ">>$visit file" or

38 die("Could write the visitor file");
39

40 print OUT_FILE "$user\t$emailin”;

41

42 close OUT_FILE;
The username is encoded for printing:

44 # Turn the user into HTML
45 $user = HTML::Entities::encode($user);

You get the visitor number by counting the number of lines in the file
that holds your name list:

47 # Get the visitor number from the file
48 my $visitor = “wc -1 $visit file";

49

50 # Remove leading spaces

51 $visitor =~ s/"\s+//;

52

53 # Get the number of lines in the file
54 my @number = split /\s+/, $visitor;

CGl Programs 67

68

Chopter 4

5
58
59
6
61
[
6
64
65
66
6
68
6
70

<

=}

W

<

=

Now you print a thank-you page:

print <<EOF ;

Content-type: text/html
<HTML>
<HEAD>
<TITLE>Guest Book</title>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<P>
Thank you $user. Your name has been recorded.
<P>
You are visitor number $number[0]
EOF
exit (0);
}

The script has two modes of operation. You have just completed the part

that handles the second mode, which is the “Thank You” mode.

If the username is not defined, you'll fall into the following code to handle

the “Welcome” mode. All you do at this point is print out a welcoming page
asking the user to record their name:

7
7
75
7
77
78
7
80
8
82

£ W

a

)

[

84
85
86
87
88
89
90
91
92
93
94
95
96
97

print <<EOF;
Content-type: text/html

<HTML>
<HEAD>

<TITLE>Guest Book</title>
</HEAD>

<BODY BGCOLOR="#FFFFFF">
<P>
Please sign my guest book:
<FORM METHOD="post" ACTION="guest.pl" NAME="guest">
<P>Your name:
<INPUT TYPE="text" NAME="user">
/P>

<P>Your E-Mail address:
<INPUT TYPE="text" NAME="email">
(optional).</P>

<P>
<INPUT TYPE="submit"
NAME="Submit" VALUE="Submit">
</P>
</FORM>

98 </BODY>
99 </HTML>
100 EOF

Hacking the Script

This is a simple program that reads data from the user and writes it to a file.
In this case, the data is guest information. But the program can easily be
adapted to record all sorts of other information. In other words, this script
can serve as the design pattern for almost any CGI input program.

#17 Errata Submission Form

I'm sure that this happens to every author. You write a book, submit the final
manuscript to your publisher, and then wait. Finally, after a long time, you
get a package in the mail containing your author’s copies.

You pull out a copy of your brand-new book and just can’t wait to show it
to someone. Your wife, your friend, an innocent bystander—it doesn’t matter.
You just want someone to see it. So you hand them the book, they open it to
a random page, and then they say, “I found a mistake"

One of the worst moments in my life occurred just after I wrote the book
Perl for C Programmers. I handed my first book to my wife, who opened it up
and said testily, “Who's Karen?”

She was looking at the dedication, which began:

I dedicate this book to Karen, my wonderful wife, who has
endured eight months of watching television over the sound
of my typing...

My wife’s name is not Karen; it’s Chi. I had a lot of explaining to do.
Turns out the publisher put someone else’s dedication in my book.

After a book is published, people will find mistakes in it and send in
corrections. This script provides a way for them to do it using the Web.

The Code

1 #!/usr/bin/perl -T

2 use strict;

3 use warnings;

4

5 use CGI;

6 use CGI::Carp qw(fatalsToBrowser);

7 use HTML::Entities;

8

9 my $collector = "oualline\@www.oualline.com";
10

11 # Message to the user (will get overridden)
12 my $msg = "Internal error";

Gl Programs 69

70

Chopter 4

13
1
15
16
1
18
1
2
21
2.
2
2
25
26
27
28
29
30
31
32
33
34
35
36
37
3
39
40
4
2
43
4
45
46
4
48
49
50
5
5
53
5,
55
56
57
58
59
60
61
62

S

=)

[SIR¥=)

[N

£ W

=3

[y

=

bl

oA

B

my $query = new CGI; # The cgi query

The name of the user
my $user = $query->param(“user");

The book information from the form
my $book = $query->param(“book");

my $where = $query->param(“where");
my $what = $query->param(“what");
if (defined($query->param("SUBMIT"))) {
if (not defined($user)) {
die("Required parameter \$user missing");
}
if (not defined($book)) {
die("Required parameter \$book missing");
}
if (not defined($where)) {
die("Required parameter \$where missing");
}
if (not defined($what)) {
die("Required parameter \$what missing");

}

}

if (not defined($user)) {
$user = "";

}

if (not defined($book)) {
$book = "";

}

if (not defined($where)) {
$where = "";

}

if (not defined($what)) {
$what = "";

}

$ENV{PATH} = "/bin:/usr/bin";
delete ($ENV{qw(IFS CDPATH BASH ENV ENV)});

if (($where ne "") or ($what ne ""))
{
$book =~ /([a-z]*)/;
$book = $1;
if (not $book) {
$book = "Strange";
}

open OUT_FILE,

75

~
a

oo
[

=3
@

@0
=1

)
w

94

105

110
111
112

"|mail -s 'Errata for $hook' $collector" or
die("Could not start the mail program");

print OUT_FILE "Book: $book\n";
print OUT_FILE "User: $user\n”;
print OUT_FILE "Location: $where\n";
print OUT_FILE "Problem:\n";

print OUT_FILE "$what\n";

close OUT_FILE;

$msg = <<EOF;
<P>
Thank you for your submission. If you have another
error, fill in the form below.
EOF
}

Encode the values we are going to print
$user = HTML::Entities::encode($user);
$hook = HTML::Entities::encode($book);

print <<EOF;
Content-type: text/html

<HTML>
<HEAD>

<TITLE>Submit an Erratac/title>
</HEAD>

<BODY BGCOLOR="#FFFFFF">
$msg
<FORM METHOD="post" ACTION="sub_errata.pl" NAME="errata"»
Book:
<SELECT NAME="book">
<OPTION VALUE="vim">
Vim (Vi Improved)
</OPTION>
<OPTION VALUE="not">
How not to Program in C++
</OPTION>
<OPTION VALUE="perlc">

Perl for C Programmer
</OPTION>
<OPTION VALUE="wcp" SELECTED>
Wicked Cool Perl Scripts
</OPTION>
</SELECT>

<P>Your E-Mail address:

CGl Programs T1

72

Chapter 4

113 <INPUT TYPE="text" NAME="user" VALUE=$user>

114 (optional).</P>

115

116 <P>Location of the error:

117 <INPUT TYPE="text" NAME="where">
118 </P>

119

120 <P>Description of the problem:

121 <TEXTAREA NAME="what" COLS="75" ROWS="10">
122 </TEXTAREA>

123 </P>

124 <P>

125 <INPUT TYPE="submit"

126 NAME="Submit" VALUE="Submit">
127 </P>

128 </FORM>
129 </BODY>
130 </HTML>
131 EOF

Running the Script

As with any CGI program, you run the script by pointing a web browser at it.

The Resulis

‘When the script runs for the first time, the user gets a blank form to fill in.

2 ozl OiGiil

" Ele Edit View Go Bockmarks Tooks Window Help

4 . & .2 @ [& iy v oualine comicg- + o
Back Forward | Reload & nipiliman susline comicg’. 7| 2. saarch| Print

| 4hHome | WhBookmarks #Mandrakesoft #Mandrake Linux #Mandrakestore #Mandrakekxpert >

Internal error

Boak: | wicked Cool Perl Scripts =|
Your E-Mall address: (optional).
Location of Lhe error:

Description of the problem:

Submit

i & £ B | Done Fo-l=

After the mistake is submitted, a confirmation message appears and the
user is invited to submit another.

pozilla .85
View

Edit

2. % B B (Fimemeieconcy -] g serch| B o

“wfBookmarks 4 MandrakeSoft ¢ Mandr

Go Bookmarks Tools Windaw Help

4hHome inux 4 MandrakeStore ¢ MandrakeExpert »

Thank you for your submission. If you have another error, fill in the form below.
Book: | wicksd Cool Perl Scripts =]

Your E-Mall address: feo@bar (optional).

Location of the error:[

Description of the problem:

Submit El
% & 2z [Done Ir I—ﬁ-}i‘g

The author will receive an email for each mistake submitted.

Date: Tue, 26 Oct 2004 23:20:42 -0700 (PDT)

From: system user for apache-conf <apache@www.oualline.com>
To: oualline@www.oualline.com

Subject: Errata for wcp

Book: wcp

User: jruser@someplace.com
Location: Errata script
Problem:

The script does not let you pick which edition
of the book has the problem.

How It Works

The script is not that much different than the guest book script, except that
it sends email when an input is made.

Now, sending email is normally a fairly simple operation. All you do is
open a pipe to the mailer and send the data to it. That simple statement
glosses over a host of security concerns.

Problem #1 is the location of the mail program. It is possible for a
malicious user to screw up the environment, particularly the PATH environ-
ment variable, in an effort to trick the script into running their own program.

CGI Programs 13

74

Chapter 4

But how can a user convince the Apache web server to change the environ-
ment? Who said the CGI script was run from Apacher A bad guy with access
to an account on your system could run the script manually after playing with
the environment.

Fortunately, we are running with the taint check turned on (the -T in the
top line), and any attempt to run a command without making the script secure
will result in an error such as this:

Insecure $ENV{PATH} while running with -T switch at
script.pl line 1.

Before Perl will let you run a command, you must reset all environment
variables that could affect the running of the program:?

51 $ENV{PATH} = "/bin:/usr/bin";
52 delete (SENV{qu(IFS CDPATH BASH_ENV ENV)});

Now you come to the line that sends the mail. Here’s what you would
like to write:

open OUT_FILE, "|mail -s 'Errata for $book' $collector”

The problem is that $book is a parameter from the web page. A clever
user can manipulate that variable and change it to anything they want. What
sort of thing would a hacker put in this variable? How about changing $book
to this:

' '

5 om -xf /;
This looks funny until you plug it in the mail statement:
mail -s 'Errata for ' ; rm -rf /; '' oualline@www.oualline.com

So now the shell executes a malformed mail command followed by a
perfectly good and nasty hacking command with some other junk tacked
onto the end.*

*You can define and use your own environment variables without having to worry about Perl’s
security logic, such as DEBUG or ENABLE_LOGGING. Only the ones that may affect security must be
changed. For more information, see the Perl document: perlsec.

#There are some problems with this example, which would cause it to fail. But don’t try this on
vour system unless you have lots of time on your hands and good backups. And don’t try this on
someone else’s system unless vou have a good lawyer and are willing to spend three to five vears
away from your computer.

Taint mode is smart enough to detect that $book came from the user and
will not let it be used in a command until it is untainted. If you attempt to use
user input in a command, Perl will abort your program with an error like this:

Insecure dependency in system while running with -T switch at
script.pl line 3.

For the errata script, the only legal $book parameters contain just lower-
case letters. So for security, compare the variable against a regular expression
to make sure that the input is legal. Anything illegal will get discarded. After
this check $book will be untainted:

56 $book =~ /([a-z]*)/;
57 $book = $1;

Just because strange things can happen in CGI programs, we check to
make sure that $book is set. If it’s not, we give it a default value so as not
to confuse the rest of the system.

58 if (not $book) {
59 $book = "Strange";
60 }

Checks like these are extremely important because Perl assumes that if
you use a regular expression to extract data from a user parameter, you know
what you are doing and the result is secure.

Hacking the Script

This program is a good example of a simple two-stage CGI data-collection
script. In the first stage, the user fills out the form, and in the second, the
form is validated and the data recorded.

Although simple, this script can easily serve as a template for you to
produce your own simple (and perhaps not so simple) data-collection scripts.

CGl Programs 78

INTERNET DATA MINING

The Internet is one of the greatest informa-
tion sources in the world. There are a couple
of ways of getting information from the Inter-
net. One way is to visit web pages. You’ll need a

very large program called a browser to do this.' You'll
have to get the entire web page, including information
you probably don’t want or need (advertisements, for
example). And it’s difficult to do anything with the data
once you get it.

On the other hand, Perl is ideal for grabbing web pages, munching them
up, and spitting out what you want. So with a little Perl magic, you can actually
extract useful information from the Web.

! If you're using Windows, you'll need a very lzu';iv, very bloated, and very buggy program called
a browser unless you'll willing to go to the trouble of replacing the default Windows browser.

#18 Getting Stock Quotes

Anyone who's invested in stocks wants to know how their portfolio is doing.
This script goes to the Internet and fetches the latest quotes for any given

company.
The Code
1 #!/usr/bin/perl
2 use strict;
3 use warnings;
4
5 use Finance::Quote;
6
7 1f (SHARGV == -1) {
8 print STDERR "Usage is $0 <stock> [<stock> ...]\n";
9 exit (8);
10 }
11
12 # Get the quote engine
13 my $quote = Finance::Quote->new;
14
15 # Get the data
16 my %data = $quote->fetch('usa', @ARCV);
17
18 # Print the data
19 foreach my $stock (@ARGV) {
20 my $price = $data{$stock, "price"};
21 if (not defined($price)) {
22 print "No information on $stock\n”;
23 next;
24 }
25 my $day = $data{$stock, "day range"};
26 my $year = $data{$stock, "year range"};
27 if (not defined($day)) {
28 $day = "227?";
29 }
30 if (not defined($year)) {
31 $year = "22227";
32 }
33
34 print "$stock Last: $price Day range: $day\n";
35 print "Year range: $year\n";
36 }

78 cChapter 5

Running the Script

To run the script, simply specify the stock symbols on the command line.
For example, the symbol for Google is GOOG:

$ quote.pl GOOG

The Resulis

GOOG Last: 185.97 Day range: 181.77 - 189.52
Year range: 95.96 - 194.43

How It Works

The program uses the Finance::Quote module to get the quotes. You first ini-
tialize the module:

12 # Get the quote engine
13 my $quote = Finance::Quote->new;

Next you ask the module to go to the Internet and the get the data:

15 # Get the data
16 my %data = $quote->fetch('usa', RARGV);

The result is a hash with a two-dimensional key structure. The first key is
the stock symbol (e.g., GOOG); the second is a label for the value of the hash
entry. There are a lot of labels for each stock. The ones we're interested in
are as follows:

price The price of the stock

day_range The price range for the current day (or the last day traded)

year_range The price range for the previous year

You now go through the list of stocks and print the information.

18 # Print the data
19 foreach my $stock (@ARGV) {

First you get the price, if any. If there’s no price, you fuss and stop printing:

20 my $price = $data{$stock, "price"};

21 if (not defined($price)) {

22 print "Ne information on $stock\n”;
23 next;

24 }

Internet Data Mining 19

80

Next you get the price range for the day and year:

25 my $day = $data{$stock, "day_range"};
26 my $year = $data{$stock, "year range"};

Justin case something goes wrong, you set default values for printing:

27 if (not defined($day)) {

28 $day = "2222";

29 }

30 if (not defined($year)) {
31 $year = "2277";

32 }

Finally, you print the data:

33
34 print "$stock Last: $price Day range: $day Year range: $y ear\n";
35}

Hacking the Script

This script is designed for stocks traded in the United States only. You'll have
to change line 16 if you want to use a different stock exchange.

Also, the script just fetches the stock price. If you want historical data,
technical analysis, moving averages, or any of the other numbers that the
experts use, you'll have to add them to the script.

I pick astock because I think the company is doing a good job. So far this
system has served me moderately well with only a few nasty surprises. As far as
all those numbers go, I always thought that they were there to disguise the
fact that most of the experts were really just guessing.

(I'was listening to a business program today on the radio, and the financial
expert told the host that the stock market was going to go up or down unless
it remained stagnant. The host thought that was a very insightful and wise
statement.)

#19 Comics Download

Chapter 5

Every morning I get up, go to the computer, and read the morning paper.
Actually the “paper” is a set of bookmarks in Mozilla. I happen to love
editorial cartoons. Unfortunately, editorial cartoonists don’t create new
works daily, so I'm forced to view a large number of pictures I've seen
before.

So I decided to see if Perl could help me and designed a program to
download new cartoons from the Web. Old cartoons get skipped.

So now I get up, run the script, and view just the new stuff. It's amazing
how a little technology can dejunk your life.

The Code

W oo~ O W N R

1
12
1
1
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

=

& W

#!/usr/bin/perl
use strict;
use warnings;
use LWP::Simple;
use HTML::SimplelLinkExtor;
use URI;
use POSIX;
Information on the comics
my $in_file = "comics.txt";
File with last download info
my $info_file = "comics.info";
my %file info; # Information on the last download
#
do_file($name, $page, $link, $index)
#
Download the given link and store it in a file.
If multiple file are present,
$index should be different
for each file.
#
sub do_file($$$4$)
{
my $name = shift; # Name of the file
my $page = shift; # The base page
my $1link = shift; # Link to grab
my $index = shift; # Index (if multiple files)
Try and get the extension of the file from the link
$link =~ /(\.[M\$\.]%)$/;
Define the extension of the file
my $ext;
if (defined($1)) {
$ext = $1;
} else {
Sext = ".jpg";
}
my $uri = URI->new($link);
my $abs_link = $uri->abs($page);
Get the heading information of the link
(and the modification time goes into $2);

Internet Data Mining

82

Chopter 5

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9
95
%6
a7
98
99

my @head = head($abs_link->as_string());
if ($#thead == -1) {
print "$name Broken link: ",
$abs_link->as_string(), "\n";
return;

}
if (defined($file_info{$name})) {
If we've downloaded this one before
if ($head[2] == $file_info{$name}) {
print "Skipping $name\n";
return;
}
}

Set the file information
$file_info{$name} = $head[2];

Time of the last modification
my $time = asctime(localtime($head[2]));
chomp($time); # Stupid POSIX hack

print "Downloading $name (Last modified $time)i\n";
The raw data from the page
my $raw _data = get($abs_link->as string());
if (not defined($raw_data)) {
print "Unable to download link $link\n";
return;
}

my $out_name; # Name of the output file

if (defined($index)) {
$out_name = “comics/$name.$index$ext";

} else {
$out_name = “comics/$name$ext”;

}

if (not open(OUT_FILE, ">$out_name")) {
print "Unable to create $out_name\n";
return;

}

binmode OUT_FILE;

print OUT_FILE $raw_data;

close OUT_FILE;

open INFO_FILE, "<$info_file";
while (1) {

my $1line = <INFO_FILE>; # Get line from info file

if (not defined($line)) {
last;

}

100 chomp($line);

101 # Get the name and time of the last download
102 my ($name, $time) = split /\t/, $line;

103 $file_info{$name} = $time;

104 }

105 close INFO_FILE;

106

107 open IN FILE, "<$in_file"

108 or die("Could not open $in_file");

109

110

111 while (1) {

112 my $line = <IN_FILE>; # Get line from the input
113 if (not defined($line)) {

114 last;

115

116 chomp($line);

117

118 # Parse the information from the config file
119 my ($name, $page, $pattern) = split /\t/, $line;
120

121 # If the input is bad, fuss and skip
122 if (not defined($pattern)) {

123 print "Illegal input $line\n";

124 next;

125 }

126

127 # Get the text page which points to the image page
128 my $text_page = get($page);

129

130 if (not defined($text page)) {

131 print "Could not download $page\n”;
132 next;

133 }

134

135 # Create a decoder for this page

136 my $decoder = HTML::SimpleLinkExtor->new();
137 $decoder->parse($text_page);

138

139 # Get the image links

140 my @links = $decoder->img();

141 my @matches = grep /$pattern/, @links;

142

143 if ($#matches == -1) {

144 print "Nothing matched pattern for $name\n";
145 print " Pattern: $patternin”;

146 foreach my $cur_link (@links) {

147 print " $cur_link\n";

148 }

149 next;

150 }

Internet Data Mining 83

151 if ($#tmatches != 0) {

152 print "Multiple matches\n";

153 my $index = 1;

154 foreach my $cur link (@matches) {

155 print " $eur_link\n";

156 do_file($name, $page, $cur_link, $index);
157 ++$index;

158 }

159 next;

160 }

161 # One match

162 do_file($name, $page, $matches[0], undef);
163 }

164

165 open INFO FILE, ">$info file" or
166 die("Could not create $info_file");

167

168 foreach my $cur_name (sort keys %file_info) {

169 print INFO FILE "$cur name $file info{$cur_name}\n";
170 }

171 close (INFO_FILE);

Running the Script

First, create a directory called comics. This is where the images will be stored.
The next thing you'll need to do is to create a comics.txt file. Each line in
the file has the following format:

name--->url--->pattern

The parts of the format have the following meanings:

---> The tab character.

name The name of the entry. This name will be used when it comes
time to store the result. It should be something simple like dilbert.

url The URL of the web page that contains the comic. This is not the
URL of the comic image itself since these URLs change from day to day.
For the Dilbert comic strip, this would be http://www.dilbert.com.
pattern A regular expression that will be matched to all the links
within the web page, as in this example:

*/comics/dilbert/archive/images/dilbert\d+\.gif$

That’s a lot of information, so how do you get the information filled in
for each of the fields? The first field is simple: make up a name, a single word
describing the comic.

For the next one, visit the website of your favorite comic. Copy the URL
from the address box and put it in your code.

84 cChaprer 5

Now right-click on the comic and select View Image. You should see a
screen with just the image on it. Copy the URL from this image and put it
in your file. Now turn it into a regular expression by escaping all the bad
characters, such as dots (.), as well as putting a caret (*) at the beginning
and a dollar sign ($) at the end. If you see something that looks a date
or serial number, replace the series of digits with the matching regular
expression syntax. Thus dilbert2004183061028.gif becomes dilbert\d+\.gif
(note the escaped dot (.) in the string).

So the line in your comics.txt file looks like this:

dilbert http://www.dilbert.com/ “http://www.dilbert.com/ comics/
dilbert/archive/images/dilbert\d+\.gif$

(It’s all on one line with tabs separating the three pieces.)
You're not done yet. When you run the script, yow’ll get an error message:

Nothing matched pattern for dilbert
Pattern: “http://www\.dilbert\.com/archive/comics/dilbert/archive/images/
dilbert\d+\.gif$

/comics/dilbert/images/small_ad.gif
/images/clear_dot.gif
/images/ffffff_dot.gif
/comics/dilbert/archive/images/dilbert2004183061028.gif
/images/000000_dot.gif

(This error output has greatly been shortened.)

‘What’s happened is that you put in a pattern that matches an absolute
link and the web page contains a relative link. You now need to go through
the list of image links (which the script so thoughtfully spewed out) and find
one that look something like your pattern.

The entry

/comics/dilbert/archive/images/dilbert2004183061028.gif

looks promising. So you go back to your original file and edit it so that the
URL matcher now starts at /comics. The result is this:

*/comics/dilbert/archive/images/dilbert\d+\.gif$

This is now the entry you'll use when you run the script.
The Results
Here's the output of a typical run:
Downloading dilbert (Last modified Mon Oct 4 15:58:59 2004)
Downloading shoe (Last modified Fri Oct 1 21:11:32 2004)
Skipping userfriendly

Internet Data Mining 85

86

Chopter 5

Skipping ed_ann

Skipping ed luck

Downloading ed_matt (Last modified Mon Oct 25 16:01:04 2004)
Downloading ed mccoy (Last modified Wed Oct 27 21:01:09 2004)
Skipping ed_ohman

set of new images is stored in the comics directory. Unfortunately,

copy

ight laws prevent me from including them in this book.

How It Works

The script needs two pieces of information to work: (1) what to download
and (2) when was it last downloaded.

The first is stored in the hand-generated configuration file comics.txt.
The second is stored in the file comics.info. This file is automatically gen-
erated and updated by the script. The format of this file is as follows:

name date

The name component is the name of the comics as defined by the
comics.txt file. The date component is the modification date from the
image URL.

The first step is to read in the comics.info file and store itin the %file_info
hash. The keys to this hash are names of the comics and the values are the
last modified date.

13 # File with last download info
14 my $info_file = "comics.info";

Q2 oo m o e e e
93 open INFO FILE, "<$info_file";

94 while (1) {

95 my $1line = <INFO_FILE>; # Get line from info file
96

97 if (not defined($line)) {

98 last;

99 }

100 chomp($line);

101 # Get the name and time of the last download

102 my ($name, $time) = split /\t/, $line;

103 $file_info{$name} = $time;

104 }

105 close INFO_FILE;
Next you start on the configuration file comics.txt:

Information on the comics
my $in_file = "comics.txt";

I
1

= o

106
107 open IN FILE, "<$in_file"
108 or die("Could not open $in_file");

Each line is read in and parsed:

111 while (1) {

112 my $line = <IN_FILE>; # Get line from the input
113 if (not defined($line)) {

114 last;

115 }

116 chomp($1ine);

117

118 # Parse the information from the config file

119 my ($name, $page, $pattern) = split /\t/, $line;

Justin case something went wrong, you check to make sure that there
are three tab-separated fields on the line. If there’s no field #3, you are most
likely very upset:

121 # If the input is bad, fuss and skip
122 if (not defined($pattern)) {

123 print "Illegal input $line\n";
124 next;

125 }

The script now grabs the main web page for the entry (i.e., htep://
www.dilbert.com). This page contains a link to the image, which is what
you really want:

127 # Get the text page which points to the image page
128 my $text_page = get($page);

129

130 if (not defined($text_page)) {

131 print "Could not download $page\n";

132 next;

133 }

You have the page; now you need to extract the links so you can attempt
to find one that matches your pattern. Fortunately, there is a Perl module
that chews up web pages and spits out links. It's called HTML: : SimpleLinkExtor.
Using this module, you get a set of image links:

135 # Create a decoder for this page

136 my $decoder = HTML::SimplelinkExtor->new();
137 $decoder->parse($text_page);

138

Internet Data Mining 87

88

Chapter 5

139 # Get the image links
140 my @links = $decoder->img();

Now all you have to do is check each link against your regular expression
to see if it matches. Perl performs this amazing feat with one statement:

141 my @matches = grep /$pattern/, @links;
At this point, you may have zero, one, or more matches. Zero matches
means that your regular expression is bad. Here's how to tell the user about

it and list all the URLs you did find so they can correct the problem:

143 if ($#matches == -1) {

144 print "Nothing matched pattern for $name\n”;
145 print " Pattern: $pattern\n”;

146 foreach my $cur link (@links) {

147 print " $eur_link\n";

148 }

149 next;

150 }

This produces the very verbose error message you saw earlier. (Inci-
dentally, that error message was cut to 15 percent of its real length.)

The next thing you look for is multiple matches. If you have multiple
image links that match your expression, you download them all. The do_file
function handles the downloading (see the following code), and all you have
to do is call it. You use an index for each call to tell do_file to use different
names for each image:

151 if ($#tmatches != 0) {

152 print "Multiple matches\n";

153 my $index = 1;

154 foreach my $cur link (@matches) {

155 print " $eur_link\n";

156 do_file($name, $page, $cur link, $index);
157 ++$index;

158 }

159 next;

160 }

The only case you haven’t handled yet is the one in which only one URL
matches. For that, the processing is very simple; it is just a call to do_file:

161 # One match
162 do_file($name, $page, $matches[0], undef);

The do_file function does the actual work of getting the image. The first
thing it does is compute the extension of the file you are going to write. The
extension will be the same as the URL; if the URL has no extension, you
default to .jpg:

33 # Try and get the extension of the file from the link
34 $link =~ /(N [*\$N.]%)$/;

35

36 # Define the extension of the file

37 my $ext;

38 if (defined($1)) {

39 $ext = $1;

40 } else {

41 $ext = ".jpg";
42 }

Now comes the only tricky part of your code. You have a relative link and
you need to turn it into an absolute one. Perl has a package for just about
everything, but you have to know what to ask for. The language used for
specifying web pages is HTML and the protocol used for web communica-
tion is called HTTP. Turns out that the package to transform relative links
into absolute ones is under neither of the two names.

Instead, it’s filed under URI, for Uniform Resource Indicator. This is the
name of the format used to specify links. So you use the URI package to turn
your relative link into an absolute one:

44 my $uri = URI->new($link);
45 my $abs link = $uri->abs($page);

Next you get the header of the image. This first thing this tells you is
whether or not the link is broken. (On my favorite editorial cartoon site,
there is frequently trouble keeping the servers up.) Here's the code:

A7 # Get the heading information of the link
48 # (and the modification time goes into $2);
49 my @head = head($abs_link-»>as_string());

50 if ($tthead == -1) {

51 print "$name Broken link: ",

52 $abs_link-»as_string(), "\n";
53 return;

54 }

The head function of the LWP::Simple module returns the document type,
length, modification time, and other information. The modification time is
in field number 2. This is checked against the modification time of the last
page you downloaded.

Internet Data Mining 89

90

Chapter 5

If they are the same, you skip this page:

55 if (defined($file_info{$name})) {

56 # If we've downloaded this one before
57 if ($head[2] == $file_info{$name}) {
58 print "Skipping $name\n";

59 return;

60 }

61 }

A new comic has arrived. Store its modification time for future reference:

62 # Set the file information
63 $file_info{$name} = $head[2];

Now download the comic and write it out:
71 my $raw_data = get($abs_link->as_string());

83 if (not open(OUT_FILE, ">$out_name")) {

84 print "Unable to create $out_name\n";
85 return;
86 }

87 binmode OUT_FILE;
88 print OUT_FILE $raw data;
89 close OUT_FILE;

After all the files are closed, the only thing left is a little post-download
cleanup. All you need to do is write out the file information (filename, modi-
fication date pairs) so you will download only the new stuff on the next run:

165 open INFO FILE, ">$info file" or
166 die("Could not create $info_file");

167

168 foreach my $cur_name (sort keys %file_info) {

169 print INFO FILE "$cur name $file info{$cur_name}\n";
170 }

171 close (INFO FILE);

Hacking the Script

Although the script is designed for comics, it can be used any time you need
to grab a web page, locate a link, and get content.

Another neat trick would be to not only download the data but also
create aweb page that displays all your new comics. That way, you create your
own morning paper that consists of nothing but comics. After all, comics are
the only useful part of the paper. With a little Perl, you can create the perfect
web paper: all comics and no news.

UNIX SYSTEM ADMINISTRATION

Perl was designed to be a simple language
to let a system administrator perform every-
day tasks easily. It is ideal for creating simple

scripts to automate the drudgery that is system
administration.

#20 Fixing Bad Filenames

In the beginning there was the command line—and the filename had form
and consistency. Then came the GUI-based file manager. And people could
put just about anything they wanted to in a filename. This may look nice
in the GUI, but it creates real problems for those of us who still use the
command line.

For example, I've had to deal with files with names that looked like this:

Fibber&Molly [10-1-47] "Fibber's lost $" (v\g snd!).mp3

Now I count no fewer than 17 nasty characters in that string that require
special handling. So if I want to play from the command line I must type this:

$ mpg123 Fibber\BMolly\ \[10-1-47\]\ "Fibber\’s\ lost\ \$"\ \(viig snd\!I\).mp3

It would be nice if there was a program that would take mean filenames
and get rid of all the mean characters. That is what this script does.

The Code

1 #!/usr/bin/perl
2 foreach my $file_name (RARGV)

34
4 # Compute the new name
5 my $new_name = $file_name;
6
7 $new_name =~ s/[\t]/_/g;
8 $new_name =~ s/[N(\MNV[NI>\]/x/g;
9 $new_name =~ s/[\'\"]/=/g;
10 $new_name =~ s/\&/_and /g;
11 $new_name =~ s/\$/ _dol /g;
12 $new_name =~ s/;/:/g;
13
14 # Make sure the names are different
15 if ($file_name ne $new_name)
16 {
17 # If a file already exists by that name
18 # compute a new name.
19 if (-f $new_name)
20 {
21 my $ext = 0;
22
23 while (-f $new_name.".".$ext)
24 {
25 fext++;
26 1
27 $new_name = $new_name.".".$ext;
28
29 print "$file_name -> $new_name\n";
30 rename($file name, $new_name);
31 }
32}
33
Running the Script

To run the script, just specify the bad filenames on the command line:

$ fix-names.pl Fibb*

92 Chapter 6

(Wildcards work very nicely when it comes to dealing with rotten
filenames. This wildcard matches the bad filename used as an example.)

The Resulis

Fibber8Molly [10-1-47] "Fibber's lost $" (v\g snd!).mp3 ->
Fibber and Molly x10-1-47x_"Fibber=s lost dol " xvxg_snd!x.mp3

How It Works
The script loops through each file on the command line:
2 foreach my $file_name (RARGV)

It then computes a new filename by replacing all the bad stuff in the
name with something typeable. For example, the first substitution changes all
spaces and tabs to _. An underscore may not be a space, but it looks like one:

7 $new_name =~ s/[\t]/_/g;

A similar edit is applied for all the other bad things you see in filenames:

8 $new_name =~ s/[\(\)\[\]<]/x/g;
9 $new_name =~ s/[\'\]/=/g;

10 $new_name =~ s/\&/_and /g;
11 $new_name =~ s/\$/_dol_/g;
12 $new_name =~ s/;/:/g;

Next, make sure that the name actually changed. If it didn’t, there’s no
work to be done since the filename is already sane.

14 # Make sure the names are different
15 if ($file_name ne $new_name)
16 {

Renaming will fail if a file with the new name already exists. To avoid this
problem, check to see if you are about to have a name collision, and if one is
eminent, change your filename. This is done by adding a numerical exten-
sion to the name.

In other words, if you are renaming the file to the_file and the_file
exists, try the_file.o, the_file.1, the_file.2 until you find a name that won’t
cause trouble:

17 # If a file already exists by that name
18 # compute a new name.

19 if (-f $new_name)

20 {

Unix System Administratian 93

94

21 my $ext = 0;

22

23 while (-f $new_name.".".$ext)
24 {

25 $ext++;

26 1

27 $new_name = $new_name.".".$ext;
28 }

You’'ve gone through all the transformations; now you’re ready to do the
renaming:

29 print "$file name -> $new_name\n";
30 rename($file name, $new_name);

The filename is fixed and you're ready for the next one.

Hacking the Script

This script doesn’t get rid of all the bad characters. It just eliminates the ones
I've seen in the files I've downloaded. You can easily add to the script to take
care of any bad stuff you find. I've also tried to leave as much of the original
filename as intact as possible—for example, mapping $ to _dol_. If you wanta
different mapping, feel free to change the script.

During my college days, | got into a contest with one of my fellow computer science
students. My goal was to create a file in his directory that he could not delete. And
| created some files with some mean names, such as “delete.me ” [note the trailing
space), “f", and others with special characters in them. Eventually he learned how
to delete them all.

In the end, | exploited a system bug that allowed me fo stick the file seven levels
deep on a system in which the directory nesting was limited to six. The operating
system refused to let him even look ot the file, much less delete it. (The OS was the
DecSystem-10, if you're interested.)

#21 Mass File Renaming

Chopter &

The standard Unix/Linux rename command allows you to change the name
of only one file at a time. (You can move multiple files from one directory to
another but only really rename one.) If you want to rename multiple files at
one time, you'll need a Perl script.

The Code

1 #!/usr/bin/perl
2 use strict;
3 use warnings;

4
5 use Getopt::Std;
6 use vars quw/%opt_n $opt_v $opt_e/;

7
8 if (not getopts("nve:")) {
9 die("Bad options");

10 }

11 if (not defined($opt_e)) {

12 die("Required option -e missing");

13 }

14

15 foreach my $file name (®ARGV)

16 {

17 # Compute the new name

18 my $new_name = $file_name;

19

20 # Perform the substitution

21 eval "\$new_name =~ s$opt_e";

22

23 # Make sure the names are different
24 if ($file_name ne $new_name)

25 {

26 # If a file already exists by that name
27 # compute a new name.

28 if (-f $new_name)

29 {

30 my $ext = 0;

31

32 while (-f $new_name.".".$ext)
33 {

34 $ext++;

35 }

36 $new_name = $new_name.".".$ext;
37 }

38 if ($opt_v) {

39 print "$file name -> $new_name\n";
40 }

41 if (not defined($opt n)) {

42 rename($file_name, $new_name);
43 }

44 }

45}

46

Running the Script

The script takes the following parameters:

-e '/old/new/flags' Editing pattern (as used in the Perl “=~ s...
command).

Unix System Administration 95

96

Chapter 6

-n Don’t rename, just pretend to.

-v Print out information on what’s going on.

Any other parameters are files that need renaming.
Example:

$ mass-rename.pl -e '/\.3/\.MP3/' test/D*.3

The Resulis

test/Dragnet_50_1_14.3 -> test/Dragnet_50_1_14.mp3
test/Dragnet 50 1 21.3 -> test/Dragnet 50 1 21.mp3
test/Dragnet_50_1_7.3 -> test/Dragnet_50_1_7.mp3

How It Works

The script begins by parsing the command line. For this, the module
Getopt::Std is used:

8 if (not getopts('nve:")) {
9 die("Bad options");
10 }
The -e option is required, so you check for it:
11 if (not defined($opt_e)) {
12 die("Required option -e missing");
13}

Now you process each file:

15 foreach my $file_name (@ARGV)

16 {
17 # Compute the new name
18 my $new_name = $file name;

The old name is turned into the new name with an eval operator. This
function treats its argument as a Perl statement and executes it. The function
is a little tricky to work with.

In this program, the editing pattern (the -e parameter) is placed in the
string. You want the results to be assigned to $new_name. If you just put this
variable inside the string without quoting, you’d get a syntax error. That’s
because if you don’t escape the $, eval will use the value of $new_name as part of
the command. Since you want the variable itself, literally $new_name, the dollar
sign must be escaped:

20 # Perform the substitution
21 eval "\$new name =~ s$opt e";

After you have the new name, you handle name collisions using the same
method used in the previous script.

Finally, you print out what you are going to do (if -v is specified) and do
it (if -n is not specified):

38 if ($opt_v) {

39 print "$file name -> $new_name\n";
40 }

41 if (not defined($opt n)) {

42 rename($file_name, $new_name);

43 }

Hacking the Script

This script is designed for people who know what they are doing. As such, it

lacks many safety checks that would normally be found in an end-user script.

For

example, the substitute expression is not validated and there is no inter-

active mode to confirm each change before it takes effect.

Also, the script was designed to rename files. With a little work, it can be

adapted to perform a mass relinking of symbolic links. Such a script might be

useful when a disk is replaced and you need to modify all the symbolic links

that referenced the old one.

This script does show how a good Perl script can eliminate a lot of repeti-

tive drudgery from administering your system.

#22 Checking Symbolic Links

Symbolic links are nice, but they can be a real pain when they get broken.

This script checks a directory tree for symbolic links and makes sure they

are good.
The Code
1 #!/usr/bin/perl
2 use strict;
3 use warnings;
4
5 use File::Find ();
6
7 use vars gw/*name *dir *prune/;
8 *name = *File::Find::name;
9 *dir = *File::Find::dir;
10 *prune = *File::Find::prune;
11
12 # Traverse desired filesystems
13 File::Find::find({wanted => \Bwanted}, @ARGV);
14 exit;
15

Unix System Administration 97

98

Chopter &

16
17 sub wanted {
18 if (-1$) {

19 my @stat = stat($);

20 if ($#stat == -1) {

21 print "Bad link: $name\n";
22 }

23 }

24 }

25

Running the Script

The script takes a directory or set of directories as arguments. It then scans
each directory tree and reports any bad links, as in this example:

$ sym-check.pl the_dir

The Resulis

Bad link: the_dir/link_to_nowhere

How It Works

The File::Find module is used to search the directory trees. The find func-
tion traverses each file in the directory tree and calls the wanted subroutine
for each of them:

12 # Traverse desired filesystems
13 File::Find::find({wanted => \&wanted}, @ARGV);

The wanted function first checks to see if the file is a symbolic link (-1)
then does a stat of the file. The stat function returns information on the
actual file, not the symbolic link. (If you want link information, use the lstat
function.)

If the symbolic link is broken, the stat function will return an empty list.
When that occurs, you print an error message:

17 sub wanted {
18 if (-1 g {

19 my @stat = stat($);

20 if ($#stat == -1) {

21 print "Bad link: $name\n";
22 }

23 }

24 }
25

One more thing: The variable $_is the name of the file relative to the
current directory. The find function changes the directory, so although $_
works for things like the -1 operator and the stat function, it won’t do when
it comes to printing the error for the user. For that you need the full name
of the file, which is contained in $name.

Hacking the Script

The script was originally written by the find2perl command. The wanted func-
tion was then edited to make it work the way I wanted it to. The File::Find
module can be used to locate lots of things. All you need to do is figure out
what you are looking for and hack the script to find it.

Another hack would be to change the script to interactively fix the broken
links or remove them. The script is good at finding problems. What you do
with them is up to you.

#23 Disk Space Alarm

I'ran out of disk space today. I was working on a program that produced a
number of huge core dumps and filled up my disk. Of course I didn’t notice
it until I started to do a compile and found that my object files were getting
truncated. It would have been nice to learn of the problem sooner. As it
turned out, because the build broke, [was forced to clean out the core files
and restart the build from scratch.

This script tells everyone when disk space is low.

The Code
1 #!/usr/bin/perl
2 use strict;
3 use warnings;
4
5 use Filesys::DiskSpace;
6
7 my $space limit = 5; # Less than 5%, scream
8
9 if ($HARGV == -1) {
10 print "Usage is $0 <fs> [<fs>....]\n";
11 exit (8);
12 }
13
14 # Loop through each directory in the

list.
foreach my $dir (@ARGV) {
Get the file system information

B e
~ oW

Unix System Administration 99

100

Chapter &

18 my ($fs_type, $fs_desc, $used,

19 $avail, $fused, $favail) = df $dir;

20

21 # The amount of free space

22 my $per free = (($avail) / ($avail+$used)) * 100.0;
23 if ($per_free < $space_limit) {

24 # Tailor this command to meet your needs
25 my $msg = sprintf(

26 "WARNING: Free space on $dir ".

27 "has dropped to %0.2F%k",

28 $per_free);

29 system("wall '$msg'");

30 }

31}

32

Running the Script

You'll probably want to set up some sort of cron job to run the script according
to a schedule. But to run it manually, just put the name of one or more direc-
tories to check on the command line:

$ disk.pl /home

The Results

If there is space on the drive, nothing will happen. But if you are out of space,
everyone on the system will get a message that looks something like this:

Broadcast message from root(pts/6) (Thu Oct 28 20:19:13 2004):

WARNING: Free space on /home has dropped to 4.00%

How It Works

The script loops through each directory on the command line checking
for space:

16 foreach my $dir (@ARGV) {

The Filesys::DiskSpace module tells you how much space is being used
on the disk. From this, you can easily compute the percentage that is free:

17 # Get the file system information

18 my ($fs_type, $fs_desc, $used,

19 $avail, $fused, $favail) = df $dir;
20

21 # The amount of free space
22 my $per free = (($avail) / ($avail+$used)) * 100.0;

Now you check to see if the free space falls below the specified limit:

23 if ($per_free < $space_limit) {
24 # Tailor this command to meet your needs

You have a space emergency. Use the system wall command to send out a
panic message to everyone.

25 my $msg = sprintf(

26 "WARNING: Free space on $dir ".
27 "has dropped to %0.2f%%",
28 $per_free);

29 system("wall '$msg'");

30 }

31}

Hacking the Script

The free space limit is hard-coded to b percent. If the space falls below that,
you get the message. This number can easily be changed to fit your situation.
As written, the script just warns everybody. But you can do more than just
yell when you’re in trouble. For example, the script could clean up the tem-
porary directories, remove outdated log files, or remove old core files.
The script is good at discovering when a problem occurs and giving you
a chance to handle it any way you want to.

#24 Adding a User

There are lots of programs out there to add a user to a Unix or Linux system.
Just fill in the blanks, click the Add button, and you’re done. Why write a
script to do it?

If you're adding one user, this script is useless. But if you have to add
several thousand, it can be very useful as the back end to a much larger batch
system. (For example, if you were working at a university, you could connect
this script to one that reads a list of incoming students and creates accounts
for them automatically.)

The Code

1 #!/usr/bin/perl

2 use strict;

3 use warnings;

4 use Fentl ':flock'; # import LOCK_* constants
5

Unix System Administration 101

6 # The file we are going to change
my $pw_file = "/etc/passwd”;

-

8 my $group file = "/etc/group”;

9 my $shadow_file = "/etc/shadow”;

10

11 # Get the login name for the user

12 my $login; # Login name

13 print "Login: ";

14 $login = <STDIN>;

15 chomp($login);

16

17 if ($login !~ /[A-Z a-z0-9]+/) {

18 die("No login specified");

19 }

20

21 open PW_FILE, "<$pw_file" or die("Could not read $pw_file");
22 # Lock the file for the duration of the program
23 flock PW FILE, LOCK EX;

24

25 # Check login information

26 my $check_uid = getpwnam($login);
27 if (defined($check uid)) {

28 print "$login already exists\n";
29 exit (8);

30}

31

32 # Find the highest UID. We'll insert a new one at "highest+1".
33 my @pw_info = <PW_FILE>;

34

35 my $uid = 0; # UID for the user

36

37 # Find biggest user

38 foreach my $cur_pw (@pw_info) {

39 my @fields = split /:/, $cur_pw;

40 if ($fields[2] > 60000) {

o

41 next;

42 }

43 if ($fields[2] > $uid) {
44 $uid = $fields[2];
45 }

46 }

47 $uid++;

48

49 # Each user gets his own group.

50 my $gid = $uid;

51

52 # Default home directory

53 my $home_dir = "/home/$login”;
54

55 print "Full Name: ";

102 Chapter &

o

5
5
58

59 my $shell = ""; # The shell to use
60 while (! -f $shell) {

61 print "Shell: ";

my $full_name = <STDIN>;
chomp($full_name);

<

S ©

62 $shell = <STDIN>;

63 chomp($shell);

64 }

65

66 print "Setting up account for: $login [$full_name]\n";
67

68 open PW_FILE, ">>$pw_file" or

69 die("Could not append to $pw_file");

70 print PW_FILE

71 "${login}:x:${uid}:${gid}:${full name}:${home_dir}:$shell\n";
72

73 open GROUP_FILE, "»>>$group file" or

74 die("Could not append to $group_file");
75 print GROUP_FILE "${login}:x:${gid}:$login\n";

76 close GROUP_FILE;

77

78 open SHADOW, ">>$shadow_file" or

79 die("Could not append to $shadow file");
80 print SHADOW "${login}:*:11647:0:99999:7:::\n";
81 close SHADOW;

82

83 # Create the home directory and populate it

84 mkdir($home_dir);

85 chmod(0755, $home_dir);

86 system("cp -R /etc/skel/.[a-zA-Z]* $home_dir");
87 system("find $home dir -print "

88 "-exec chown ${login}:${login} {} \\;");
89

k)
9
9.
93
9
9!

-~ o

=]

Set the password for the user
print "Setting password\n";
system("passwd $login");

[SI=Y

=

flock(PW_FILE,LOCK_UN);
close(PW_FILE);

v

Running the Script

The script is interactive. It runs with no parameters and prompts you for all
input.

NOTE This seript is system specific and can potentially damage your system. You should take
the usual precautions such as backing wp critical files, checking the code to make sure it
does the correct thing on your system, and testing it oul on an experimental computer first.

Unix System Administration 103

104

Chapter &

The Resvlis

add_user.pl

Login: jruser

Full Name: J . R. User

Shell: /bin/bash

Setting up account for: jruser [J. R. User]
/home /jruser

/home/jruser/.bash_logout
/home/jruser/.bash_profile
/home/jruser/.bashrc

/home/jruser/.mailcap
/home/jruser/.screenrc

Setting password

Changing password for user jruser.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

How It Works

Actually setting up a user is a fairly simple process. All you do is edit a few files.
That being said, get the editing wrong and you can badly screw up your sys-
tem and possibly prevent anyone from logging in.

The script performs the following steps:

1. Get the username from the operator.
2. Lock the password file.

3. Make sure the user doesn’t exist.

4. Generate a user ID (UID) for the user.
5. Create an entry in /etc/passwd.

6. Create an entry in /etc/groups.

7. Create an entry in /etc/shadow.

8. Create the user’'s home directory.

9. Copy all of the files in the skeleton directory (/etc/skel) into the new
home directory.

10. Change ownership of all these files so that they are owned by the user.
11. Call the passwd program to set the initial password for the user.

12. Unlock the /etc/passwd file.

Each one of these steps is simple. Remembering them all is not.

1.

Let’s see how the script accomplishes these steps:

Get the username from the operator. Also validate it to make sure that
it’s legal:

11 # Get the login name for the user
12 my $login; # Login name

13 print "Login: ";

14 $login = <STDIN>;

15 chomp($login);

16

17 if ($login !~ /[A-Z a-z0-9]+/) {
18 die("No login specified");
19 }

Lock the password file. This prevents anyone else from adding the user
while you work on the file:

21 open PW_FILE, "<$pw_file" or die("Could not read $pw_file");
22 # Lock the file for the duration of the program
23 flock PW FILE, LOCK EX;

Make sure that the user doesn’t exist. This is accomplished by getting the
UID of the new user. Since the new user doesn’t exist, this should fail and
return an undefined value:

25 # Check login information
26 my $check_uid = getpwnam($login};
27 if (defined($check uid)) {

28 print "$login already exists\n";
29 exit (8);
30}

Generate a UID for the user. The program goes through the password
file and finds the highest UID that’s less than 60000. The 60000 limit is
there because there are some special UIDs that have a high number. For
example, the account nobody has a UID of 65534.

The UID for the new user will come after the highest one you find
(line 47):

32 # Find the highest UID. We'll use "highest+1" for our new user.
33 my @pw_info = <PW_FILE>;

34

35 my $uid = 0; # UID for the user

36

37 # Find biggest user

8 foreach my $cur_pw (@pw_info) {

39 my @fields = split /:/, $cur_pw;

w

Unix System Administration 108

106

Chapter &

o

6.

10.

40 if ($fields[2] > 60000) {

41 next;

42 }

43 if ($fields[2] > $uid) {
44 $uid = $fields[2];
45 }

46 }

47 $uid++;

The script gets some additional information needed for the password
entry. It also assumes that GUI = UID. In other words, each user has
their own group. Once this information is obtained, you can create an
entry in /etc/passwd:

68 open PW_FILE, "»»>$pw_file" or

69 die("Could not append to $pw_file");

70 print PW_FILE

71 "${login}:x:${uid}:${gid}:${full name}:${home_dir}:$shell\n";

Create an entry in /etc/groups:

73 open GROUP_FILE, "»»$group file" or

74 die("Could not append to $group file");

75 print GROUP_FILE "${login}:x:${gid}:$login\n";
76 close GROUP_FILE;

Create an entry in /etc/shadow:

78 open SHADOW, ">>$shadow_file" or

79 die("Could not append to $shadow file");
80 print SHADOW "${login}:*:11647:0:99999:7:::\n";
81 close SHADOW;

Create the user’s home directory:

83 # Create the home directory and populate it
84 mkdir($home_dir);
85 chmod(0755, $home_dir);

Copy all the files in the skeleton directory (/etc/skel) into the new home
directory:

86 system("cp -R /etc/skel/.[a-zA-Z]* $home_dir");

Change the ownership of all these files so that they are owned by the user:

87 system("find $home_dir -print
88 "-exec chown ${login}:${login} {} \\;");

11. Call the passwd program to set the initial password for the user:

90 # Set the password for the user
91 print "Setting password\n";
92 system("passwd $login");

12. Unlock the /etc/passwd file:

94 flock(PW_FILE,LOCK_UN);

Hacking the Script

The script gets the username and other information through interactive
prompts. But there’s nothing to prevent it from getting that information
from a configuration file or even a list of incoming students. The script does
the job; how you feed the beast is up to you.

#25 Disabling a User

NOTE

One of your students has violated the no hacking policy repeatedly. So you're
going to give him a time-out for a few weeks and turn off his account.

This script is system dependent. Don’t run il on your system until you've inspected it
and know il_fits your operation.

The Code
1 #!/usr/bin/perl
2 use strict;
3 use warnings;
4
5 1f ($#ARGY != 0) {
6 print STDERR "Usage is $0 <account>\n";
7}
8
9 my $user = $ARGV[0];
10
11 # Get login information
12 my $uid = getpwnam($user);
13 if (not defined($uid)) {
14 print "$user does not exist.\n";
15 exit (8);
16 }
17
18 system("passwd -1 $user");
19 my @who = “who";

20 @who = grep /“$user\s/,@who;
21 foreach my $cur_who (@who) {

[y

Unix System Administration 107

108

Chapter &

22 my @words = split /\s+/, $cur_who;
23 my $tty = $words[1];

24

25 if (not open(YELL, ">>/dev/$tty")) {
26 next;

27 }

28 print YELL <<EOF ;

29 3 kot ok skokok s skokok ek skok ok ok kokokok sk sk kok R kok s koskok dok kol dkokokokkskok ok ookl ook ok
30 URGENT NOTICE FROM THE SYSTEM ADMINISTRATOR

31

32 This account is being suspended. You are going to be

33 logged out in 10 seconds. Please exit immediately.

34 SR SRR K SRR R ROR R K R R SROR H ROKE OK R OR R OR R OR R RO R R RO Rk
35 EOF

36 close YELL;

37 }

38 sleep(10);

39 my @procs = “ps -u $user’;

40 shift @procs;

41 foreach my $cur proc (@procs) {

42 $cur_proc =~ /(\d+)/;

43 if (defined($1)) {

o

o

i

4 print "Killing $1\n";
45 kill 9, $1;

%)

47}

Running the Script

The script takes one parameter, the username:

dis_user.pl jruser

The Resulis

Locking password for user jruser
passwd: Success

If the user is logged in, he’s about to get a shock. A message appears on
his terminal:

okok sk ko s SRR K o SRR SRR SR R o R R ok kR s SRR R ROR R SR Rk ok ok ko

URGENT NOTICE FROM THE SYSTEM ADMINISTRATOR

This account is being suspended. You are going to be

logged out in 10 seconds. Please exit immediately.
R R SRR K ROROR R ROR R K RO O R R OR R OR R OR R ROR O R RR Rk

Ten seconds later he is logged out whether he wants to be or not.

How It Works

The script first checks to see if the user exists using the same getpwnam method
we used in add_user.pl.
It then calls the passwd program to lock the user out:

18 system("passwd -1 $user");

Next it uses the who command to see if the user is logged in. If you find
the user, you determine which terminal he’s on:

19 my @who = “who";

20 @who = grep /“$user\s/,@who;

1 foreach my $cur_who (@who) {

22 my @words = split /\s+/, $cur_who;
23 my $tty = $words[1];

e

Now you open that terminal and yell at the user. Actually, you just write
out a message to him:

25 if (not open(YELL, ">>/dev/$tty")) {
26 next;
27 }

28 print YELL <<EOF ;
29 3 ket ok skokok e skeokok sk skok ok ok ok kok ok sk kok ok skok s skoskok 3ok kol dokokokok skoskok kR olok koo ok

30 URGENT NOTICE FROM THE SYSTEM ADMINISTRATOR
31
32 This account is being suspended. You are going to be

33 logged out in 10 seconds. Please exit immediately.

34 e ok ok skokok e skokok ek skok ok ok ki koR s sk ko R kok s skokoR 3ok kol dokokoR s okoskok ok ook koo ok
35 EOF

36 close YELL;

37}

You told the user you’d give him 10 seconds. Now do so:

o

38 sleep(10);

Next the ps is used to get all the processes that belong to the user. The first
line of the ps output is removed because it is a heading. You process the rest:

39 my @procs = “ps -u $user’;
40 shift @procs;

Unix System Administration 100

110

The ps output is parsed and you determine the process ID of each proc-
ess owned by the user. This information is used to send a kill to each process,
thus throwing the user off the system with extreme force.

41 foreach my $cur_proc (@procs) {
42 $cur_proc =~ /(\d+)/;
43 if (defined($1)) {

a4 print "Killing $1\n";
45 kill 9, $1;

16 }

47 }

At this point, the user is gone and the account disabled.

Hacking the Script

This script depends on a number of outside commands such as ps and who.
The output of these commands varies from system to system, so it may take a
little hacking to get this script to work on your system.

#26 Deleting a User

WARNING

Chapter &

Your user has been disabled. Now get rid of him.

This script can destroy data and depends not only on the operating system you are using,
but also on your system administration policies. Please inspect it before use.

The Code

#1/usr/bin/perl

use strict;

use warnings;

use Fentl ':flock’; # import LOCK_* constants

if ($#ARGV 1= 0) {
print STDERR "Usage is $0 <user>\n";
exit (8);

W oo~ W B W N R

B
= o

my $user = $ARGV[O];

13 sub edit_file($)
14 {
15 my $file = shift;

17 open IN_FILE, "<$file” or
18 die("Could not open $file for input");

19
20
21
22
23

25
26
27
28
29
30
31

33
34
35
36
37
38
39
!
4
42
43
44
45
46
47
4
4
50
5
5
53
5
55
5
57
58
59
60
3
62
6
64
65
6

[=3K=]

o o

oA

S

o

P

@

o

open OUT_FILE, "»>$file.new" or
die("Could not open $file.new for output");

while (1) {
my $line = <IN FILE>;
if (not defined($line)) {

last;
}
if ($line =~ /"$user/) {
next;
}
print OUT_FILE $line;
}
close (IN_FILE);

(

close (OUT_FILE);
unlink("$file.bak");
rename("$file", "$Ffile.bak");
rename("$file.new", $file);

}

my @info = getpwnam($user);
if (@info == -1) {
die("No such user $user");

}

open PW_FILE, "</etc/passwd” or
die("Could not read /etc/passwd");

Lock the file for the duration of the program
flock PW_FILE, LOCK EX;

edit_file("/etc/group");
edit_file("/etc/shadow");

3

if ($info[7] eq "/home/$user") {
system("xm -xf /home/$user")
} else {
print "User has a non-standard home directory.\n";
print "Please remove manually.\n";
print "Directory = $info[7]\n";
}

print "User $user -- Deleted\n";
edit_file("/etc/passwd");

flock(PW_FILE,LOCK_UN);
close(PW_FILE);

m

12

Chapter &

Running the Script

The user to be deleted is specified on the command line:

del_user.pl jruser

The Resulis

del_user.pl jruser
User jruser -- Deleted

How It Works

The script edits the files /etc/group, /etc/shadow, and /etc/passwd to remove
any reference to the user. This is done by reading the files one at a time and
looking for lines beginning with the username and a colon (:). Such lines
are discarded.

The edit_file function reads from the file (e.g., /etc/group) and writes a
file with the same name and a .new extension (e.g., /etc/group.new). After it
completes, it performs the following renames:

/etc/group -> /etc/group.bak
/etc/group.new -> /etc/group

The script also deletes the user’s home directory using the following code:

54 if ($info[7] eq "/home/$user") {
)

55 system("tm -xf /home/$user");

56 } else {

57 print "User has a non-standard home directory.\n";
58 print "Please remove manually.\n";

59 print "Directory = $info[7]\n";

This code performs a very important check. If the user has a nonstandard
home directory, the script won’t remove it. This is to avoid the “sces™ problem.
The original problem occurred when an administrator discovered that there
was a user “sccs” who had never logged in. So he decided to remove the
account.

The first thing he did was remove the home directory of the user using
this command:

1m -rf “sces
(Don't do this!!!)

Turns out that *sces” was a system account created for system use. The
home directory was set to /. In other words, removing the home directory

of “sccs” was the equivalent to this:

rm -rf /

If that command doesn’t scare you, then you don’t know Unix. The com-
mand wipes out your entire disk. Fortunately, the administrator had recent
backups and an understanding wife who didn’t get angry when he didn’t come
home till 3:00 the next morning (restores take time)!

To avoid the “sces” problem, only delete directories if they are in a safe
place. If there is anything funny, skip this step and let the administrator do
it manually.

One final note: The last file edited is /ete/passwd. That’s because this is
the file you lock when adding or removing users. When the file is renamed as
part of the editing process, the lock is effectively nullified. So editing this file
must be the last step.

Hacking the Script

Again, there are other programs out there that can delete a single user better
than this one. But if you have to delete lots of users, this script can serve as the
prototype for a mass deletion program.

#27 Killing a Stuck Process

T used to work for a large company that used one of the worst build systems
I've ever seen. One of the biggest problems was that if you logged out with-
out properly shutting down your development environment, one of the
background programs would get stuck in the run state, trying continuously
to connect to a front end that wasn’t there.

As a result, you'd find several high-performance build machines slowed
down by useless stuck processes. This meant that you had to spend time and
effort racking down the user or a system administrator to kill the rogue
process.

Perl lets you do automatically what used to be done manually; in this
case, identify and kill stuck programs.

The Code

#1/usr/bin/perl

use strict;

use warnings;

#

Kill stuck processes

#

A stuck process is one that accumulates over an
hour of CPU time

#

Wooe o B W M

NOTE: This program is designed to be nice.

1 # It will send & "nice" kill (SIGTERM) to the process
12 # which asks the process to terminate. If you change
13 # this to 'KILL" (SIGKILL) the process will be FORCED
14 # to terminate.

15 #

Unix System Administration 113

114

Chapter &

16
17
18
19
20
21
2
23
24
25
2
27
28
29

[N

o

31
32
33
34
35
36
3
38
3
4
41
4
4
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

~

S @

W

Also no killing is done without operator interaction.
If you find that some "user" routinely gets a process
stuck, then you may wish to change this and always
kill his long running processes automatically.

Lo Y

my $max_time = 60*60; # Max time a process can have
in seconds

Process names which are allowed to last a long time
my %exclude_cmds = (

Avoid KDE stuff, they really take time
'kdeinit:' => 1,
‘fusr/bin/krozat.kss' => 1

)

Users to avoid killing

my %exclude_users = (

root => 1,

postfix => 1
)
Use the PS command to get bad people
#HWARNING: Linux specific ps command
my @ps = “ps -A -eo cputime,pcpu,pid,user,cmd”;
shift @ps; # Get rid of the title line
chomp(@ps);

Loop through each process
foreach my $cur proc (@ps) {

The fields of the process (as names)
my ($cputime,$pcpu,$pid,$user,scmd) =
split /\s+/, %cur_proc;

$cputime =~ /(\d+): (\d+): (\d+) /5
CPU time in seconds instead of formatted
my $cpu_seconds = $1*60%60 + $2*60 + $3;

if ($cpu_seconds < $max_time) {
next;

}

if (defined($exclude_users{$user})) {
print "User excluded: $cur_prochn”;
next;

}

if (defined($exclude_cmds{$cmd})) {
print "User excluded: $cur_procin”;
next;

66

67 # Someone's stuck. Ask for the kill
68 print "STUCK: $cur_proc\n";

69 print "Kill? ";

70 my $answer = <STDIN>;

71

72 if ($answer =~ /*[Yy]/) {

73 # We kill nicely.

74 kill "TERM', $pid;

75 print "Sent a TERM signal to the process\n";
76 }

77 }

Running the Script

The script should be run by root every so often to kill bad processes.

The Results

STUCK: mpg123
Kill? y
Sent a TERM signal to the process

How It Works

The program starts by running the ps command to get a list of processes:

36 # Use the PS command to get bad people

37 #WARNING: Linux specific ps command

38 my @ps = “ps -A -eo cputime,pcpu,pid,user,cmd’;
39 shift @ps; # Get rid of the title line

40 chomp(@ps);

Now you loop through each process to see if you need to do something
about it:

42 # Loop through each process
43 foreach my $cur_proc (@ps) {

You break apart the fields for easy reference:

45 # The fields of the process (as names)
46 my ($cputime,$pcpu,$pid,$user,$emd) =
47 split /\s+/, $cur_proc;

The CPU time is formatted as HH:MM:SS. You need to turn this into
something more useful.

Unix System Administration 115

116

Chapter &

49 $cputime =~ /(\d+): (\d+): (\d+) /5
50 # CPU time in seconds instead of formatted
51 my $cpu_seconds = $1*60%60 + $2*60 + $3;

Now you check to see it the process has exceeded your limit:

53 if ($cpu_seconds < $max_time) {
54 next;
55 }

There are some users you don’t want to touch (for example, root). If you
find one, you skip this process:

57 if (defined($exclude_users{user})) {

58 print "User excluded: $cur_prochn”;
59 next;
60 }

There are also some commands that are expected to take up time.
Skip these as well:

62 if (defined($exclude_cmds{$cmd})) {

63 print "User excluded: $cur_procin”;
64 next;
65 }

If the process passes all these checks, you interactively kill it:

67 # Someone's stuck. Ask for the kill
68 print "STUCK: $cur_procin";
69 print "Kill? ";

70 my $answer = <STDIN>;

71

72 if ($answer =~ /*[Yy]/) {

73 # We kill nicely.

74 kill "TERM', $pid;

75 print "Sent a TERM signal to the process\n";
76 }

77 }

Hacking the Script

The script depends on the output of the ps command. The output of this
command varies from system to system. You'll need to customize the script
for your computer.

Also, killing processes is not only a technical procedure but also a
political one. In other words, what constitutes a runaway, killable process
is not a technical procedure, but one of policy. Once policy is decided,
you can incorporate it into this script.

PICTURE UTILITIES

Digital photography is replacing film.
Photographs can be stored, copied, printed,
and shared with very little effort and without
expensive equipment.

If you take a lot of photographs, you may grow tired of the repetitive
chores required to process them. A good scripting language like Perl can
automate your work, giving you more time to take photographs.

#28 Image Information

Digital cameras store a lot of information about a photograph in a hidden
encoding in the image. Perl can make this information visible.

The Code

1 #!/usr/bin/perl
2 use strict;
3 use warnings;

118

Chapter 7

R I Y S

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38 ust
39
40

®

my %good = (

'ColorSpace' =» 1,
'ComponentsConfiguration' =» 1,
'DateTime’ =» 1,
‘DateTimeDigitized' =» 1,
'DateTimeOriginal’ =» 1,
'ExifImagelength’ => 1,
'ExifImageWidth’ => 1,
'ExifVersion' = 1,
'FileSource' => 1,

'Flash' => 1,
'FlashPixVersion' =»> 1,
'IS0SpeedRatings’ => 1,
‘ImageDescription’ =» 1,
‘InteroperabilityIndex’ => 1,
'InteroperabilityVersion' =» 1,
'JPEG Type' => 1,
‘LightSource' =» 1,

'Make' => 1,

'MeteringMode’ =» 1,

'Model" => 1,

'Orientation' =» 1,
'SamplesPerPixel’ => 1,
'Software' =» 1,
'YCbCrPositioning' => 1,
‘color_type' =» 1,

‘file ext' => 1,

‘file media_type' => 1,
‘height' =» 1,

'resolution’ => 1,

‘width' => 1

Image: :Info gqw(image_info);

41 foreach my $cur file (@ARGV) {

43
44
45
16
47
18
49
50 }

my $info = image_info($cur_file);

print "$eur_file -----comcmemcmmee e eeee An";
foreach my $key (sort keys %$info) {
if ($good{skey}) {
print " $key -> $info->{$key}in";
}

Running the Script

To run the script, just type the names of the files you're interested in on the
command line.

The Resulis

The result is a lot of information from the photograph.

P2230148.jpg ---=---=---m-memmeeememeeeeeaenee
ColorSpace -> 1
ComponentsConfiguration -» YCbCr
DateTime -> 2001:02:23 18:07:45
DateTimeDigitized -»> 2001:02:23 18:07:45
DateTimeOriginal -> 2001:02:23 18:07:45
ExifImagelength -> 960
ExifImageWidth -> 1280
ExifVersion -> 0210
FileSource -> (DSC) Digital Still Camera
Flash -> Flash fired
FlashPixVersion -> 0100
IS0SpeedRatings -> 125
ImageDescription -»> OLYMPUS DIGITAL CAMERA
InteroperabilityIndex -> R98
InteroperabilityVersion -> 0100
JPEG_Type -> Baseline
LightSource -> unknown
Make -> OLYMPUS OPTICAL CO.,LTD
MeteringMode -> Pattern
Model -» C960Z,D460Z
Orientation -> top_left
SamplesPerPixel -> 3
Software -> v874u-74
YCbCrPositioning -» 2
color_type -» YCbCr
file_ext -> jpg
file media_type -> image/jpeg
height -> 960
resolution -> 72 dpi
width -> 1280

How It Works

JPEG and some other image file formats store information inside the files.
Because [PEG was designed for digital cameras, a lot of this information has
to do with the camera and how the photograph was taken. The Perl module
Image::Info knows all about the JPEG standard for embedded information
and how to extract that information.

Picture Utilities 119

Running the Script

To run the script, just type the names of the files you're interested in on the
command line.

The Resulis

The result is a lot of information from the photograph.

P2230148.jpg ---=---=---m-memmeeememeeeeeaenee
ColorSpace -> 1
ComponentsConfiguration -» YCbCr
DateTime -> 2001:02:23 18:07:45
DateTimeDigitized -»> 2001:02:23 18:07:45
DateTimeOriginal -> 2001:02:23 18:07:45
ExifImagelength -> 960
ExifImageWidth -> 1280
ExifVersion -> 0210
FileSource -> (DSC) Digital Still Camera
Flash -> Flash fired
FlashPixVersion -> 0100
IS0SpeedRatings -> 125
ImageDescription -»> OLYMPUS DIGITAL CAMERA
InteroperabilityIndex -> R98
InteroperabilityVersion -> 0100
JPEG_Type -> Baseline
LightSource -> unknown
Make -> OLYMPUS OPTICAL CO.,LTD
MeteringMode -> Pattern
Model -» C960Z,D460Z
Orientation -> top_left
SamplesPerPixel -> 3
Software -> v874u-74
YCbCrPositioning -» 2
color_type -» YCbCr
file_ext -> jpg
file media_type -> image/jpeg
height -> 960
resolution -> 72 dpi
width -> 1280

How It Works

JPEG and some other image file formats store information inside the files.
Because [PEG was designed for digital cameras, a lot of this information has
to do with the camera and how the photograph was taken. The Perl module
Image::Info knows all about the JPEG standard for embedded information
and how to extract that information.

Picture Utilities 119

W0~ W B W N R

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
2
43
44
45

47

#!/usr/bin/perl
use strict;
use warnings;

use Image::Magick;
use constant X SIZE => 100;
use constant Y_SIZE => 150;

sub do_file($)

{

}

my $file = shift; # The file to create
thumbnail of

my $image = Image::Magick->new();

my $status = $image->Read($file);

if ($status) {
print "Error $status\n";
return;

}

print "Size ", $image->Get('width'), " x ",
$image->Get('height'), "\n";

my $x_scale = X _SIZE / $image->Cet('width');
my $y scale = Y SIZE / $image->Get('height');
my $scale = $x_scale;
if ($y scale < $scale) {
$scale = %y scale;
}
print "Scale $scale (x=$x_scale, y=$y_scale)\n";
my $new x = int($image->CGet('width') * $scale + 0.5);
my $new_y = int($image->Get('height') * $scale + 0.5);
print "New $new x, $new_y\n";

$status = $image->Scale(
width => $new_x, height => $new_y);

if ($status) {
print "$status\n";
}
$status = $image->Write(" thumb/$file");
if ($status) {
print "Error $status\n";

}

if (1 -d " thumb") {

mkdir("_thumb");

Picture Utilities 121

122

Choptar 7

48 }

49 foreach my $cur file (@ARGV) {
50 do_file($cur_file);

51}

Running the Script

To run the script, put the name of the file you want to process on the
command line, as in this example:

$ thumb.pl p1010017.jpg

The Resulis

A scaled image of the file will be put in the directory jhumh.l

How It Works

The Image::Magick module lets you do all sorts of things to images:
5 use Image::Magick;

First, you create the image object and read in the file data from the full-
size file:

14 my $image = Image::Magick->new();
15 my $status = $image->Read($file);

ImageMagick function calls return undef if no error occurred and an
error message if one did. The following code aborts if the Read failed:

16 if ($status) {

17 print "Error $statusin”;
18 return;
19 }

The Get function returns information about the image. In this case, you
want to know the size of the image so you can compute the scale factor:

23 my $x_scale = X SIZE / $image->Cet('width');
24 my $y scale = Y SIZE / $image->Get('height");

You now have two scale factors. We need to decide which one we are going
to use for our picture. If the picture is tall and skinny, we’ll need to use the
$y_scale. If the picture is short and fat, we’ll need to use $x_scale. The smaller

' The directory used to be <dot=thumb until I tried to burn it into a CD-ROM and found that the
1SO9660 standard considers the name illegal.

the scale number, the more the picture is reduced. So in order to make sure
our picture fits in the thumbnail size we selected, we need to use the smaller
of the two scale numbers.

25 my $scale = $x_scale;

26 if ($y scale < $scale) {
27 $scale = $y scale;
28 }

This scale factor computes the actual size of the scaled image:

30 my $new x = int($image->Get('width') * $scale + 0.5);
31 my $new_y = int($image->Get('height') * $scale + 0.5);

Now the ImageMagick scale function is called to resize the image:

34 $status = $image->Scale(
35 width => $new_x, height => $new_y);
36

The resulting thumbnail is written to a new file:

40 $status = $image->Write("_thumb/$file");

Hacking the Script

The ImageMagick module contains a tremendous number of functions you
can use to manipulate images. This script uses only one of them. The enhance-
ments and effects you choose to use depend on what you want your thumbnails
to look like.

#30 Photo Gallery

Taking pictures is only half the fun. The other half is sharing them with your
friends and family. This script makes it easy to turn your photograph collection
into a web gallery.

The Code

#!/usr/bin/perl -I/usr/local/lib
use strict;
use warnings;

CONFIGURATION SECTION

use constant ACROSS =» 6; # Number of photos across
use constant X SIZE => 100;

use constant Y _SIZE => 150;

o~ oW B W N R

Picture Utilities 123

9

10 use POSIX;

11

12 use Image::Magick;

13 use Image::Info gw(image_info);

14

15 #

16 # File format:

17 # =title heading/title -- Head/title of the page
18 # =head[1234] -- Heading

19 # =text -- Start text section
20 # =photo -- Start photo section
21 # XXXXXXX. Jpg -- Picture

22 # text -- Text

23

24

25 my @photo_list = (); # List of queued photos

26

27

28 # do_thumb($file) -- Create a thumbnail of a file

29

30 sub do_thumb($)

31 {

32 my $file = shift; # The file to create

33 # thumbnail of

34

35 my $image = Image::Magick->new();

36 my $status = $image->Read($file);
37 if ($status) {

38 print "Error $statusin”;
39 return;

40 }

41

42 my $x_scale = X SIZE / $image->Get('width');

43 my $y_scale = Y _SIZE / $image->Cet('height');

44 my $scale = $x_scale;

45 if ($y_scale < $scale) {

46 $scale = $y scale;

47 }

48 my $new x = int($image->Get('width') * $scale + 0.5);
49 my $new_y = int($image->Get('height') * $scale + 0.5);

50

51 $status = $image->Scale(

52 width => $new x, height => $new y);
53

54 if ($status) {

55 print "$status\n";

56 }

57 $status = $image->Write("_thumb/$file");
58 if ($status) {

124 choprer 7

59
60
61
62
63
64
65
66
6
68
69
70
71
72
3
74
75
76
77
78
79
80
81
82
83
84
85
86
87
8
89
El
91
92
93
94
95
96
97
98
9
100
101
102
103
10,
105
101
107
10

=

@

o

&

&

=3

print "Exrror $status\n";

}

info_date($file) -- Return the data (from the info section)
#
Returns the date from the jpeg info or undef if none.

sub info_date($)

{
my $file = shift;

my $info = image_info($file);

if (not defined($info)) {
return (undef);

}

if (not defined($info->{DateTime})) {
return (undef);

}

if ($info->{DateTime} eq "0000:00:00 00:00:00") {
return (undef);

}

This can be formatted better

return ($info->{DateTime});

}

file_date($file) -- Compute the date from the
file modification date.

#

Returns date as a string

sub file date($)

{
my $file = shift; # The file name

File information
my @stat = stat("¢file");

Date as a string (f) is the code for file
my $date = strftime(
"%a %B %d, %CHy
%r(f)", localtime($stat[9]));

return ($date);
}

get date($file) -- Get a date from the file
#
Returns date as a string

sub get_date($)

Picture Utilities 125

109 {

110 my $file = shift; # The file to get the information on
111 my $date; # The date we've seen

112

113 $date = info_date($file);
114 if (defined($date)) {

115 return ($date);

116 }

117

118 return (file date($file));
119 }

120
121
122 # do_file -- Print the cell for a single file
123
124 sub do_file($)

125 {

126 # The name of the file we are writing

127 # (Can be undef for the end of the table)
128 my $cur file = shift;

129

130 if (defined($cur file)) {

131 if (! -f "_thumb/$cuxr_file") {
132 do_thumb($cur_file);

133 }

134 print <<EOF;

135 <A HREF="$cur_file"s

136

137

138 EOF

139 my $date = get_date($cur_file);
140 print "$date
\n";

141 } else {

142 print " \n";
143 }

144 }

145

146 # dump_photo -- Dump the list of photos we've
147 # accumulated

148

149 sub dump_photos() {

150 my $i; # Photo index

151

152 if ($#photo list < 0) {

153 return;

154 }

155 print "<TABLE>\n";

156 while ($#photo list >= 0) {

157 print " <TR>\n";

158 for ($i = 0; $i < ACROSS; $i++) {

126 choprer 7

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

178
179
180
181
182
183
18
185
18
187
188
189
190
191
192
193
194
195
196

=

@

198
199
200
201
202
203
204
205
206
207
208

The photo we are processing
print " <TD>\n";
do_file(shift @photo_list);
print " </TD>\n";
}
print " </TR>\n";
}
print "</TABLE>\n";
}
#

if (1 -d "_thumb") {
mkdir("_thumb");
}

Current mede for non = lines
my $mode = "Photo"; # The current mode (Photo/Text)

Loop over each line of the input
while (<) {
chomp() ;

if (/=title\s+(.*)/) {
dump_photos();

print <<EOF;
<HEAD> < TITLE»$1</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<H1 ALIGN="center">$1</H1>
<P>
EOF
next;
}
if (/"=head([1-4])\s+(.*$)/) {
dump_photos();
print "<H$1>$2</H$1>\n";
next;
}
if (/r=text/) {
dump_photos();
$mode = "Text";
next;
}
if (/*=photo/) {
$mode = "Photo";
next;
}
if ($mode eq "Photo") {

Picture Utilities 127

209 if (length($_) == 0) {

210 next;

211 }

212 if (I -F$) {

213 die("No such file $_");
214 }

215 push(@photo_list, $_);

216 next;

217 }

218 if ($mode eq "Text") {

219 print "$_\n";

220 next;

221 }

222 die("Impossible mode $mode\n");
223 }

224 dump_photos();

Running the Script

This program takes a page description file as input. The format is similar to the
POD format used for Perl documentation.

The script recognizes the following keywords:

=title Defines the title of the page.

=head1 Adds alevel 1 heading.

=head2, =head3, =head4 Adds other headings.

=text Text follows. Just copy it to the page.

=photo A list of photographs follows.

Here’s a typical input file for a small gallery:

=title My Snapshots
=head1 Baby

=text

Ingesting a Cheerio nasally
=photo

p4240093.jpg
p4240102.3pg
pc200088.jpg
pc200090.jpg

=head1 Dog

=photo

p2230148.jpg
p2250157.3pg
p2250159.7pg
p8040360.jpg
p8040361.3jpg
p8040364.jpg

128 choprer 7

To run the script, put the name of the configuration file on the command
line and redirect the standard out to the web page file:

$ make_page.pl photo.txt >index.html

The Resulis

The left side of the following graphic shows a web page generated by the
script. If we click on one of the thumbnails, we get the full picture as shown
on the right.

b Bvihiat Twels dniae B Lo

A P T e 3

2 e] 2

My Snapshots
Baby

How It Works

The main body of the program is a big while loop that reads in each line and
processes it.

First you check for an =title line. If that’s present, you print the <TITLE>
section of the HTML page. Actually, before printing any HTML, the script
always calls dump_photos (this function will be explained later):

181 if (/r=title\s+(.*)/) {
182 dump_photos();

183 print <<EOF;

184 <HEAD><TITLE»$1</TITLE></HEAD>
185 <BODY BGCOLOR="H#FFFFFF">

186 <H1 ALIGN="center"»$1</H1>
187 <P>

Picture Utilities 129

130

Chapter 7

188 EOF
189 next;
190 }

Next you check to see if you have any =headn lines. When one is found,
you print an <Hn> line:

191 if (/"=head([1-4])\s+(.*$)/) {

192 dump_photos();

193 print "<H$1>$2</H$1>\n";
194 next;

195 }

So the line
=head3 Dog Washing
turns into the HTML line
<H3>Dog Washing</H3>

An =text line indicates that the following lines are text. All you do is
record the mode change and continue:

197 if (/r=text/) {

198 dump_photos();
199 $mode = "Text";
200 next;

201 }

The same thing is done for =photo:

203 if (/*=photo/) {

204 $mode = "Photo";
205 next;
206 }

If you get to this point, you have normal text. If you are in "Photo"
mode, the line contains the name of an image file and you store it for later
processing:

208 if ($mode eq "Photo") {

209 if (length(s_) == 0) {

210 next;

211 }

212 if (P -f5) {

213 die("No such file $ ");

214 }

215 push(@photo 1ist, $);
216 next;

217 }

A text line goes straight to the output as is:

218 if ($mode eq "Text") {

219 print "$ \n";
220 next;
221 }

As the program goes through your input file, it builds up a list of photo-
graphs in the array @hoto_list. When it encounters text, it calls dump_photo to
write out an HTML table containing the images.

Each cell of the table contains a thumbnail picture that serves as a link to
the full-size image and the date the picture was taken. A typical cell entry looks
like this:

<TD>

2001:08:04 11:30:40

</TD>

The table has six columns and as many rows as needed. The dump_photos
function contains the actual code to produce the table:

149 sub dump_photos() {

150 my $i; # Photo index

151

152 if ($#photo_list < 0) {

153 return;

154 }

155 print "<TABLE>\n";

156 while ($#photo_list »= 0) {

157 print " <TR>\n";

158 for ($i = 0; $i < ACROSS; $i++) {
159 # The photo we are processing
160 print " <TD>\n";

161 do_file(shift @photo list);
162 print " </TD>\n";

163 }

164 print " </TR>\n";

165 }

166 print "</TABLE>\n";

167 }

Picture Utilities 131

132

Choptar 7

Every time a photo cell is printed, @photo_list is reduced by one
(shift @photo_list). If there are not enough photos to complete a row,
then do_file will be called with an undefined value. That’s OK, though,
because it’s smart enough to handle it.

Here’s what the do_file function does for files:

1. Creates a thumbnail if needed.
2. Writes out the HTML link to the original file.

3. Gets the date of the picture and prints it.

If there is no picture defined, the cell is filled with the HTML version of
the empty string: .

124 sub do_file($)

125 {

126 # The name of the file we are writing
127 # (Can be undef for the end of the table)
128 my $cur_file = shift;

129

130 if (defined($cur_file)) {

131 if (I -f " thumb/$cur file") {
132 do_thumb($cur_file);

133 }

134 print <<EOF;

135

136

137

138 EOF

139 my $date = get date($cur file);
140 print "$date
\n";

141 } else {

142 print " \n";
143 }

144 }

The do_thumb function uses the subroutine described in the previous script
to create a thumbnail.

The get_date function gets the date for the file. It first tries to get the data
from the hidden fields in the image using info_date and then tries to get
it from the creation time of the file using the function file_date:

108 sub get_date($)

109 {

110 my $file = shift; # The file to get the information on
111 my $date; # The date we've seen

112

113 $date = info_date($file);
114 if (defined($date)) {

115
116
117
118
119 }

return ($date);

}

return (file_date($file));

The info_date function uses the Image::Info module to extract the date

from the image itself. If there is a problem, it returns undef. (The date infor-
mation is part of the JPEG image standard used by almost all digital cameras.
Every one I've seen will fill in the date fields in the image.)

The function has undergone one modification since I first wrote it. After

I found out about the Image::Info module, I went out and shot a bunch of
pictures and downloaded them to my computer. Using the make_page.pl script,
I created a web page with the dates and discovered that all my pictures were
taken on 0000:00:00 00:00:00. (Guess who forget to set the date on his new
digital camera.)

So the info_date function also checks for stupid operator tricks and returns
undef if the date is present but meaningless:

67 sub info_date($)

68 {
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83 }

my $file = shift;

my $info = image info($file);

if (not defined($info)) {
return (undef);

}

if (not defined($info->{DateTime})) {
return (undef);

}

if ($info->{DateTime} eq "0000:00:00 00:00:00") {
return (undef);

}

This can be formatted better

return ($info->{DateTime});

If a date is not available from the image itself, you get it from the creation

time of the file. The file_date function uses stat to get the creation date and
strftime to turn it into something readable:

90 sub file_date($)

91 {
92
93
94
95
%
97
98

my $file = shift; # The file name

File information
my @stat = stat("¢file");

Date as a string (f) is the code for file
my $date = strftime(

Picture Utilities 133

134

99 "%a %B %d, %CHy
%r(f)", localtime($stat[9]));
100

101 return ($date);
102 }
Huacking the Seript

This script creates a simple but useful photo gallery. There are fancier ways
of displaying pictures. For example, you could split the page up into frames
with the thumbnails on one side and full-size photographs on the other.
Clicking on a thumbnail would change the image displayed in the main frame.

You could also use a slide show to present your pictures. Each photo-
graph appears at full size on a page with buttons to navigate to the next and
previous picture. It’s even possible to hack the script to sort your photographs
by date and put each day’s result on a different web page. It’s also possible to
create a greeting card using the photo or photos. Web designs can become
quite elaborate, and this script can be hacked to keep up with them.

#31 Card Maker

Choptar 7

Here’s a fun project: If you have a digital camera and a laser printer, you can
create your own greeting cards. A single 8.5x11 sheet of paper folded twice
makes a wonderful birthday invitation or Christmas card. However, creating
the card can be a little tricky.

The folded greeting card

looks like this:
Here’s the unfolded sheet:

Page 3

que 1 | abpy ¥ @by

Page 2 Page 3

Printing a page in four pieces can be tricky, especially when the contents
of half of the pieces are upside down, but Perl is up to the task.

The Code

B - JE Y. I VYRR NI

1
1
13
1
15
1
1
18
19
20
21
22
23
24
25
26
2
28
29
3
31
3
33
3
35
36
37
38
39
40
41
4
43
4

N R

=~

-~ o

=

o

~

~

=

use strict;

use warnings;

use Image::Magick;
use Getopt::Std;

The four images (one for each quad)
use vars qu/$opt_1 $opt_2 $opt_3 $opt_4
$opt_o $opt O $opt_C $opt_E/;

Size of an image in X and Y
my $xi_size;
my $yi size;

Font for text. Must exist on the system.

Use xlsfonts to find your font

my $font =

' -adobe-helvetica-medium-r-normal--25-180-100-100-p-130-is08729-1";

If you installed the ImageMagick Generic font
let's use that. It works better.
if (-f 'Generic.ttf') {

$font = 'Generic.ttf';

my @text; # Text for the display

status_check($result)

#
Check an ImageMagick return status
and if it indicates an error -- die.
sub status_check($)
{

my $result = shift;

if (not($result)) {

return;

}

die("ImageMagick Error $result");
}

read text -- Read the text file

sub read_text($)

Picture Utilities 135

45 {
46 my $file = shift; # File to read

47

48 open IN_FILE, "<$file" or

49 die("Could not open $file");

50

51 my $index; # Index into the text array
52 while (<IN _FILE>) {

53 If (/=text\s*(\d+)/) {

54 if (($1 < 1) or ($1 > 4)) {

55 die("Illegal text page $1");
56 }

57 $index = $1-1;

58 next;

59 }

60 if (/r=size\s*(\d+)/) {

61 if (not defined($index)) {

62 die("=size before =text");
63 }

64 $text[$index]->{size} = $1;

65 next;

66 }

67 if (not defined($index)) {

68 die("Text data before =text");
69 }

70 # ImageMagick has problems with empty lines
n if ($_eq "\n") {

72 $ =" \n";

73 }

74 $text[$index]->{text} .= $;

75 }

76 close (IN_FILE);

77}

78

79 #

80 # do_image($number, $name) -- Read an image
81 # file and scale it fit into a

82 # quad

83 #

84 sub do_image($$)

85 {

86 my $number = shift; # Image number

87 my $name = shift; # Name of the image
88

89 # The image

90 my $image = Image::Magick->new;

91 status_check($image->Read($name));

92

93 if (index($opt_E, $number) »>= 0) {

94 status_check($image->Emboss(

136 choprer 7

95
96
97
98
99
100
101
102
103
104
105
106
107
108

radius =» 3, sigma =» 1));
}
if (index($opt_C, $number) »= 0) {
status_check($image->Charcoal(
radius =» 3, sigma =» 1));
}
if (index($opt_0, $number) »= 0) {
status_check($image->0ilPaint(radius => 3));

}

status_check($image->Scale(
geometry => "${xi_size}x${yi size}"
)i

return ($image);

109 }

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

3

<- xq_size -»

- T R R T T

getopts("1:2:3:4:0:0:C:E:");
if ($#ARGV > 0) {
print <<EOF ;
Usage $0 [options] [images] <text-templates

Options:
-0 <out-file> -- Specify output file
-O<numbers> -- 0il Paint the given images
-C<numbers> -- Charceal the given images
-E<numbers> -- Emboss the given images

Images
-1<image> -- Image for page 1
-2<image> -- Image for page 2
-3<image> -- Image for page 3

Ficture Utilities

137

138

Chapter 7

145
146
147
148
14
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
17
174
175
176

o

w

178
17
18
181
18,
18
184
185
186
187
188
189
190
191
192
193
194

[SJRv=]

% R

-4<image> -- Image for page 4
EOF
exit(8);

}
if ($#ARGV == 0) {
read_text($ARGV[0]);

}

if (not defined($opt E)) {
$opt E = "%

}

if (not defined($opt_C)) {
$opt C = "";

}

if (not defined($opt 0)) {
Sopt 0 = "'

}

Our sizes are set for an 8.5x11 sheet

of paper at 75 dpi

#

#T0D0: Set the DPI / paper size
my $x_size = int(8.5%75);
my $y_size = int(11*75);

my $xq_size = int($x_size / 2);
my $yq size = int($y size / 2);

Allow 10% margin on each side
my $x_margin = int($xq_size * 0.10);
my $y margin = int($yq size * 0.10);

$xi_size = $xq_size - $x_margin;
$yi_size = $yq_size - $y_margin;

The card we are making
my $card = Image::Magick->new;

$card->Set(size => "${x_size}x${y_size}");
status_check($card->ReadImage("xc:white"));

Draw a line across the middle
my $x1 = 0;

my $x2 = $x_size;

my $y1 = int($y size/2) - 1;
my $y2 = int($y_size/2) + 1;

status_check($card->Draw(
fill =» "Black",
stroke=»>"Black",
primitive =»> "rectangle”,

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

);

$x1
$x2
$y1
$y2

points=>"$x1,$y1 $x2,%y2")

= int($x_size/2) - 1;
= int($x_size/2) + 1;
=0;

= $y_size;

status_check($card->Draw(

fill =» "black",
stroke=>"black",
primitive =» "rectangle",
points=>"$x1,%y1 $x2,%y2")

if (defined($opt 1)) {

The image we are depositing on the screen
my $image 1 = do_image(1, $opt_1);

Pages 1,4 are upside down
status_check($image_1->Rotate(degrees => 180));

The corner of the centered image
my $center x =

int(($xq_size - $image_1->Get('width'))/2);
my $center y =

int(($yq_size - $image_1->Get('height'))/2);

status_check($card->Composite(image=>$image_1,
x => $center x, y => $center y));

if (defined($opt_2)) {

The image we are depositing on the screen
my $image_2 = do_image(2, $opt_2);

The corner of the centered image
my $center x =

int(($xq_size - $image_2->Get('width'))/2);
my $center y =

int(($yq_size - $image_2->Get('height'))/2);

status_check($card->Composite(image=>$image_2,
x => $center x, y => $center y + $yq size));

if (defined($opt_3)) {

The image we are depositing on the screen

Ficture Utilities

139

140

Chapter 7

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

}

my $image_3 = do_image(3, $opt_3);

The corner of the centered image
my $center_x =

int(($xq_size - $image_3->Get('width'))/2);
my $center y =

int(($yq_size - $image_3->Get('height'))/2);

status_check($card->Composite(image=>$image 3,
x => $center x + $xq_size,
y => $center y + $yq size));

if (defined($opt _4)) {

}

The image we are depositing on the screen
my $image_4 = do_image(4, $opt_4);

Pages 1,4 are upside down
status_check($image 4->Rotate(degrees => 180));

The corner of the centered image
my $center x =

int(($xq_size - $image_4->Get('width'))/2);
my $center_y =

int(($yq_size - $image 4->Get('height'))/2);

status_check($card->Composite(image=>$image 4,
x =» $center_x + $xq_size, y => $center_y));

if (defined($text[o])) {

}

if (not defined($text[o]->{size})) {
$text[0]->{size} = 10;

status_check($card->Annotate(
text => $text[o]->{text},
pointsize =» $text[0]->{size},
font => $font,
X => $xq_size - $x_margin,
y => $yq_size - $y margin,
align => 'left’,
rotate => 180));

if (defined($text[1])) {

if (not defined($text[1]->{size})) {
$text[1]->{size} = 10;

status_check($card->Annotate(
text =» $text[1]->{text},
pointsize => $text[1]->{size},

296 font => $font,

297 x => $x_margin,

298 y => $yq size + $y margin)
299 i

300 }

301

302 if (defined($text[2])) {
303 if (not defined($text[2]->{size})) {

304 $text[2]->{size} = 10;

305

306 status_check($card->Annotate(

307 text =» $text[2]->{text},
308 pointsize =» $text[2]->{size},
309 font =»> $font,

310 X => $xq_size + $x_margin,
311 y => $yq_size + $y_margin)
312)

313 }

314

315 if (defined($text[3])) {
316 if (not defined($text[3]->{size})) {

317 $text[3]->{size} = 10;

318

319 status_check($card->Annotate(

320 text => $text[3]->{text},
321 pointsize =» $text[3]->{size},
322 font => $font,

323 X => $x_size - $x_margin,
324 y => $yq_size - $y margin,
325 align =» 'left',

326 rotate => 180)

327)

328 }

329

330

331 if (not defined($opt o)) {
332 $opt_o = "card_out.ps";
333 }

334 print "Writing $opt_o\n";
335 $card->Write($opt_o);

Running the Script

The command line for the program is as follows:
card.pl [-1image-file] [-2image-file]
[-3image-file] [-4image-file]

[-oout-file] [-Oimages] [-Cimages]
[-Eimages] [text-file]

Picture Utilies 141

142

Chapter 7

There are four pages to the card. The options -1image-file, -2image-file,
-3image-file, and -4image-file specify the images to use for each of the pages.
Each image is optional.

The output file is selected by the -ooutput-file. The default output file
is card.ps. Although the default output file format is PostScript, you can
specify any type of graphic file that ImageMagick understands. For example,
you could create a PNG image of the page by specifying the output file
my_card.png.

If you want any of the images to be processed through an oil-painting
filter (simulates an oil painting), use the option -0 followed by the image num-
bers. For example, -034 turns the images on pages 3 and 4 into oil paintings.

The -E option uses an embossing filter, and -C uses a charcoal drawing
filter.

Finally there is text-file, which specifies the text for the card. Each entry
in the text file looks like this:

=text page
=size point

Multiple lines of text for the page

Let’s now take a look at an example of a birthday invitation. On the
first page is a little bit of art produced by someone who's a better programmer
than an artist:

4,0\}‘ e ln Vg

3 to a
J}Thday ?“3&6

<:;ilﬁ i l; ﬁ!i;'.:

The second page contains a picture of the little girl giving the party:

The other input file specifies the text to be put on each page:

=text 3

=size 24

Where: Grace's House
When: April 24

Time: 10:30 - 2:30
Food -- Games -- Fun
=text 4

=size 16

Please RSVP
(858)-555-1212

The script is invoked with the following command:

card.pl -1birthday.png -2grace.jpg \
-ocard.png birthday.txt

Picture Utilities

143

144

Choptar 7

The Resvlis

The result is a birthday invitation.

2/2S- 585558
oy 2504

Where: Grace's House
When: April 24

Time: £0:30 - 2:30
Food - Games -~ Fin

Effects

With the card.pl program, you can process your images through several
different effects filters, including oil painting, embossing, and charcoal
drawing. Here is a typical image before any filtering has been done.

‘What happens when you apply the oil painting filter to the image.

Picture Utilities 145

146

Choptar 7

It should be noted that the filters can turn some ordinary pictures into
something special. The picture of my daughter is not one of those pictures.
In particular, the charcoal drawing filter has turned my beautiful daughter
into something that looks like a snarling fiend. But if you find the right
image, the proper effects filter can work wonders.

How It Works

The basic functions of this script can be summarized as follows:

1. Create a blank page.

2. Draw the lines across the middle for folding.

3. Readin the first image, apply the effects filters, and scale it to the
proper size.

4. Use the ImageMagick Compose function to put it on the page.

5. Repeat this process for the other three images.

6. Use the ImageMagick Annotate function to put the text on the page.

7. Write out the result.
Let’s take a look at these steps in detail.
You start by computing some numbers. The output image is going to be

8.5x11 at 75 dpi. You need to determine the size of the image in pixels:

166 my $x_size = int(8.5*75);
167 my $y size = int(11*75);

Next you need to know the location of the middle in the X and Y
directions:

169 my $xq_size = int($x_size / 2);
170 my $yq_size = int($y_size / 2);

You want a 10 percent margin around each image:

172 # Allow 10% margin on each side
173 my $x_margin = int($xq_size * 0.10);
174 my $y margin = int($yq size * 0.10);

From these numbers, you can compute the size of the images for each
of the four panels:

176 $xi_size = $xq_size - $x_margin;
177 $yi_size = $yq size - $y margin;

Next you need to create a blank image. First, create an image object and
set its size. Then “read” in a magic built-in image file containing a blank
white image:

179 # The card we are making

180 my $card = Image::Magick->new;

181

182 $card->Set(size => "${x_size}x${y_size}");
183 status_check($card->ReadImage("xc:white"));

All ImageMagick functions return undef if they work and an error message
if they don’t. The error-checking code has been consolidated into a single
status_check function, which prints a message and aborts if it sees an error:

32 sub status_check($)

33 {

34 my $result = shift;
35 if (not($result)) {

36 return;

37 }

38 die("ImageMagick Error $result");
39 }

To divide the paper into four panels, you draw horizontal and vertical
lines through the middle of the page:

185 # Draw a line across the middle
186 my $x1 = 0;

187 my $x2 = $x_size;

188 my $y1 = int($y size/2) - 1;
189 my $y2 = int($y_size/2) + 1;

190

191 status_check($card->Draw(

192 fill =» "Black",

193 stroke=>"Black",

194 primitive => "rectangle",
195 points=>"$x1,$y1 $x2,%y2")
196);

197

198 $x1 = int($x_size/2) - 1;
199 $x2 = int($x_size/2) + 1;

200 $y1 = 0;

201 $y2 = $y_size;

202

203 status_check($card->Draw(
204 fill =» "black",
205 stroke=>"black",

Picture Utilities 147

148

Choptar 7

206 primitive =» "rectangle",
207 points=>"$x1,$y1 $x2,$y2")
208);

Now you process each image. The do_image function reads in an image,
processes it through the effects filters, and resizes it. The result is an Image-
Magick image object that can be composited onto the card itself.

Let’s look at this function in detail. The first thing to do is create the
image and read it in:

89 # The image
90 my $image = Image::Magick->new;

91 status_check($image->Read($name));

Check to see if the -E option contains your image number. If it does, you
process the image through the Enboss filter:

93 if (index($opt E, $number) >= 0) {

94 status_check($image->Emboss(
95 radius =» 3, sigma =» 1));
9% }

The same thing is done for the Charcoal and 0ilPaint filters:

97 if (index($opt_C, $number) »= 0) {

98 status_check($image->Charcoal(

99 radius => 3, sigma => 1));

100 }

101 if (index($opt_0, $number) »= 0) {

102 status_check($image->0ilPaint(radius => 3));
103 }

Finally, the image is resized so that it exactly fits in one panel on your card:

105 status_check($image->Scale(
106 geometry => "${xi_size}x${yi size}"
107))s

The processed image is returned to the caller:
108 return ($image);

The do_image function is used in the main program to read the image for
each panel. For example, the following code checks to see if you have an
image for panel 1 and reads it if you do:

212 if (defined($opt_1)) {
213 # The image we are depositing on the screen
214 my $image_1 = do_image(1, $opt_1);

Since the image for panel 1 is upside down, the image is rotated 180
degrees:

216 # Pages 1,4 are upside down
217 status_check($image 1->Rotate(degrees => 180));

Next you compute the coordinates needed to center the image on
the panel:

219 # The corner of the centered image

220 my $center_x =

221 int(($xq_size - $image 1->Get('width'))/2);
222 my $center_y =

223 int(($yq_size - $image 1->Get('height'))/2);

Finally, the image is placed on the card using the Composite function:

225 status_check($card->Composite(image=>$image_1,
226 x => $center x, y => $center y));

A similar process is used for the other three images. Only the location
and rotation of the image change from panel to panel.

Now that the images are placed, it is time to add the text. The function
read_text reads the file containing the text information and stores it in the
array @text. This is a simple matter of text processing, so I won’t go into
the details. The result is that @text[0]->{text} contains the text to display
for the first panel and @text[0]->{size} contains the point size for this text.
The other elements of the array specify the text for the other three panels.

The text is drawn on the page using the ImageMagick Annotate function.
For example, the following code draws the text for the first panel:

279 status_check($card->Annotate(

280 text => $text[o]->{text},

281 pointsize => $text[0]->{size},
282 font =» $font,

283 X => $xq_size - $x_margin,
284 y => $yq_size - $y_margin,
285 align => 'left’',

286 rotate => 180));

The Case of the Disappearing Text

There’s one final detail to worry about: the font. When this program was first
created, there was no font specification in the Annotate call. Then the program
was moved to a new machine with a slightly different version of Linux and
suddenly all the text disappeared.

There was no error message coming out of the Annotate call. It would
report success and then not draw the text. This was extremely annoying and
confusing.

Picture Utilities 149

150

Choptar 7

After a great deal of debugging, cursing, and experimentation, I located
the problem. Whatever font ImageMagick uses as the default was present
on the original system and absent on the new one. As a result, I added a
font specification to the program. The program starts out with a default
Adobe font found in almost all Linux distributions:

16 my $font =
17 '-adobe-helvetica-medium-r-normal--25-180-100-100-p-130-is08729-1";

The problem with using this fontis that it does not scale. In other words,
you can’t change the point size of the font. The ImageMagick distribution
contains a TrueType font format that not only looks nice but is scalable.

If this font is installed on your system, the program will use it:

19 # If you installed the ImageMagick Ceneric font
20 # let's use that. It works better.
21 if (-f 'Generic.ttf') {

22 $font = 'Generic.ttf';
23}
Hacking the Script

The user interface to this program is awkward. There should be a simple and
easy way of specifying everything that goes into the card, and when I figure
out what it is, I'll probably rewrite the script. Also, the paper size (8.5x11) is
hard-coded. This parameter should be configurable.

As it stands, the script contains the major pieces of code needed to
produce greeting cards. There are lots of details you can play with, making
this program a hacker’s dream.

GAMES AND LEARNING TOOLS

I have a one-and-a-half-year-old daughter,
Grace, who's just beginning to learn things.
@lle’s at an age when everyday things are new

and fascinating. Turning on and off a light switch
can hold her attention for quite some time.

One of the things she’s learned is that the computer is very important to
Daddy. She loves to come over and type on the keyhoard, especially when I'm
trying to write this book.

So I wrote a few programs for her, one for now (see “Teaching a Toddler”
later in this chapter) and many for later as she grows up and learns more.

Learning should not be boring, so a good teaching tool should be fun.
Playing games is one way of learning. For example, the solitaire game that
comes with Microsoft Windows teaches people the concept of clicking and
dragging the mouse.

As for myself, I find the process of writing Perl scripts both fun and
educational. So let’s get started with the fun part.

152

#32 Guessing Game

Chapter 8

This is one of the simpler computer games. The program generates a random
number in the interval 1 to 1,000 and asks you to guess it.

Guess right and you win. Guess wrong and the system adjusts the interval
based on your guess and let’s you try again.

This is a good game for first graders. It teaches them the basics of com-
puter usage and how to follow instructions and even gives them an idea of
how to create a binary search.

The Code
1 use strict;
2 use warnings;
3
4 my $low = 1; # Current low limit
5 my $high = 1000; # Current high limit
6
7 # The number the user needs to guess
8 my $goal = int(rand($high))+1;
9
10 while (1) {
11 print "Enter a number between $low and $high: ";
12
13 # The answer from the user
14 my $answer = <STDIN>;
15 chomp($answer) ;
16
17 if ($answer !~ /\d+/) {
18 print "Please enter a number only\n";
19 next;
20 }
21 if ($answer == $goal) {
22 print "You guessed it.\n";
23 exit;
24 }
25 if (($answer < $low) || ($answer > $high)) {
26 print "Please stay between $low and $high.\n";
27 next;
28 }
29 if ($answer < $goal) {
30 $low = $answer;
31 } else {
32 $high = $answer;
33 }
34 }

Running the Script

The script is entirely interactive. Just run it.
The Resulis

$ perl guess.pl

Enter a number between 1 and 1000: 500
Enter a number between 1 and 500: 250
Enter a number between 1 and 250: 125
Enter a number between 1 and 125: 60
Enter a number between 1 and 60: 30
Enter a number between 30 and 60: 35
Enter a number between 30 and 35: 32
You guessed it.

How It Works

The script uses two variables, $low and $high, to hold the current limits. The
hidden number is called $goal.

If the player guesses the goal, the game is over. Otherwise, the guess is
used to adjust either $low or $high and the game continues.

Hacking the Script

As it stands, the script is pretty basic. But then again, it was designed for first
graders, to teach some very basic math.

However, it would be nice to have a feature that records the scores of
each run so that the youngster could get an idea of how well their current
guessing strategy is working. Also, a high score module could be created to
encourage competition between players.

Although simple, there’s a lot that can be learned from this little game.

#33 Flash Cards

Unfortnately, there’s still a lot of learning that requires memorization and
drill. T still remember the hours I spent typing up 3xb-inch cards with my
weekly French vocabulary on them.

The system I used was to go through each word one at a time. If I got the
word right, the flash card was set aside. Get it wrong and the card went to the
back of the stack so I could try again later.

I got pretty good at learning my French vocabulary. Unfortunately, after
I passed the weekly quiz, I got good at forgetting things as well.

This script automates the process I went through with my 3x5-inch cards
and gives the user a vocabulary drill.

Games and Learning Tools 153

154

Chapter 8

The Code

1
2
3
4
5
6
7
8
9

WO W W W W N NN NN NN NN R R R R S
HEAEURNESCE I nAd oo edowmBenNR O

36
37
3
39
40
41
2
43
44
45
46
a7

=3

use strict;
use warnings;
#
perl lang.pl <flash file»
#
File format:
question<tab>answer
#
if ($#ARGV 1= 0) {
print "Usage: is $0 <flash-file»\n";
exit (8);
}
open IN_FILE, "<$ARGV[0]" or
die("Could not open $ARGV[0] for reading");
my @list; # List of questions and answers
#
Read the stuff in
#
while (<IN FILE>) {
chomp;
my @words = split /\t/;
if ($#words != 1) {
die("Malformed input $ ");
}
push(@list,
{
question => $words[0],
answer => $words[1]
K
}
#
Ask the questions until there are no more
#
while ($#list > -1) {

print "Question: $list[0]->{question}: ";
my $answer = <STDIN>;
chomp($answer) ;
if ($answer eq $1ist[0]->{answer}) {
print "Right: ",
"The answer is $1ist[0]->{answer}\n";
shift(@list);
next;

48 print "Wrong: ",

49 "The correct answer is $list[0]->{answer}\n";
50 # Push the question to the end of the list

51 push(@list, shift(@list));

52}

53 print "All done\n";

Running the Script

To run the script, youw'll first need to create a quiz file. Each line of this file
contains the question and answer separated by a tab.
For example, a small English-to-French quiz file follows.

address adresse
again de nouveau
against contre
airplane avion
almost presque
alongside 1le long de
also aussi
although bien que
always toujours
among entre
amuse amuser
arrive arriver
aunt tante
author auteur
bacon lard
baggage bagage
bake cuire
between entre
blind aveugle
blue bleu
boring ennuyeux

by chance par accident
by heart par coeur

This file (french.quiz) is then passed to the script on the command line:

$ perl lang.pl french.quiz

The Results

$ perl lang.pl french.quiz

Question: address: adresse

Right: The answer is adresse

Question: again: de noveau

Wrong: The correct answer is de nouveau

Games and Learning Tools 1535

156

Chapter 8

Question: against: contre

Right: The answer is contre
Question: airplane: avion

Right: The answer is avion
Question: all: trout

Wrong: The correct answer is tout

Question: both: tous les deux
Right: The answer is tous les deux
Question: by chance: par accident
Right: The answer is par accident
Question: by heart: par coeur
Right: The answer is par coeur
Question: again: de nouveau
Right: The answer is de nouveau
Question: all: tout

Right: The answer is tout

A1l done

How It Works

The script starts by reading in the file a line at a time:
22 while (<IN_FILE>) {
Each line is trimmed and then split into the question and answer part:

23 chomp;
24 my @words = split /\t/;

Next you add an entry from the question list. Each item in the list consists
of a hash with a question and answer part:

28 push(@list,

29 {

30 question => $words[o],
31 answer => $words[1]

32 1s

Once the quiz has been read into the @list array, it’s time to start asking
the questions.
The basic algorithm is as follows:

1. Take the top entry off the @1ist array and ask the question.
2. If the user supplies the right answer, throw the question away.

3. If the answer is wrong, take the top entry off of @list and put it on the
bottom so the question will be re-asked later.

This process is illustrated in the following graphic.

@list

Correct
answer?

Discard

* No

The first step is to ask the first question on the list:

39 print "Question: $list[0]->{question}: “;

The next step is to get the answer and check it:

40 my $answer = <STDIN>;
41 chomp($answer) ;
42 if ($answer eq $list[o]->{answer}) {

If the answer is correct, you remove the top entry from the list and the

user never sees it again:

42 if ($answer eq $1ist[0]->{answer}) {

43 print "Right: ",

44 "The answer is $list[o]->{answer}in";
45 shift(@list);

46 next;

47 }

If the answer is wrong, you take the question off the top of the list and
put it on the bottom. You’ll ask the user the question again later:

"

48 print "Wrong: ",

49 "The correct answer is $list[0]->{answer}\n";

50 # Push the question to the end of the list
51 push(@list, shift(@list));

When you run out of questions, the loop exits and the quiz is finished.

53 print "All done\n";

Gaomes and Laarning Tools

157

158

Hacking the Script

This script works fine as a simple test. It would be nice if the program kept
track of some statistics to give students some idea of how much they are
progressing. Ideally, each time they take a quiz, they should answer more
questions correctly than they did the first time.

Also, the questions are given out in the same sequence each time.
It might be better to randomize them.

But the system does a good job of giving you a basic quiz. How you
customize it is up to you.

#34 Web-Based Quiz

Chapter 8

The flash card script is a good text-based quiz. But what if you want something
more graphical? That’s where this script comes in.

The original requirements called for the script to be a stand-alone pro-
gram. That meant using the Perl/Tk graphics module to draw the questions
in a window. The script would also have to provide answer buttons as well as a
few more GUI elements.

It's a lot of work to create a GUI, even asimple one, because each screen
element must be specified and drawn. In the end you wind up with hundreds
of simple little pieces, and the result is something large.

Ideally, it would be nice if you could get someone else to write the GUL
Turns out there’s a pre-built GUT system that handles text, graphics, and user
input already. It’s called the web browser. So if you eliminate the custom-made
GUI from your design and make the program a CGI script, you are able get
rid of a tremendous amount of code.

The result is a CGI program that quizzes the user. As you will see, you use
HTML to define the questions and answers and Perl to do all the asking. The
finished product is a simple yet powerful quiz program.

The Code
1 #1/usr/bin/perl -T
204
3 # File format
4 4 =question
5 # <question page>
6 # =answer value
74 <answer page>
8 # =answer value
9 # <answer page>
10 # =right value
11 # <answer page for the right answer>
12 #

13 use strict;
use warnings;

[y
=~

16
17
18
19
20
21
22
23
2
25
2
27
2
2
30
31
32
33
34
35
36
37
38
3
4
41

=

o

0 o

[SIRY:

2
43
4
45
46
a7
4
49
50
5
52
53
54
55
56
57
58
59
60
6
6
6
64

=

=3

iy

[N\

use CGI::Thin;

use CGI::Thin::Cookies;

use CGI::Carp;

use POSIX;

use HTML::Entities;

use Scalar::Util qw(tainted);

use Storable qu(retrieve nstore);

Place the questions and session files are
stored in
my $quiz_dir = "/var/quiz";

The data from the form
my %cgi data = Parse CGI();

Cookie information
my %cookies = Parse Cookies();

The session from the cookie
my $session_cookie = $cookies{QUIZ};

my $session = undef; # The session name

Taint checking and cleaning
if (defined($session_cookie) &&
($session_cookie =~
/$quiz_dir\/session\/session. (\d+)$/)) {
$session cookie =~ /(\d+)$/;
$session = "$quiz_dir/session/session.$1";
} else {
$session = undef;

if (! -f $session) {
$session = undef;
}
if (not defined ($session)) {
for (my $1 = 0; ; $i++) {
Generate a new session
$session = "$quiz_dir/session/session.$i";
if (! -f "$quiz_dir/session/session.$i") {
last;

}

The cookie to send to the user
my $cookie;
$cookie = Set_Cookie(
NAME => "QUIZ", # Cookie's name

Gomes and Learning Tools 159

160

Chapter 8

65
66

6
69
7
71
7
73
74
75
76
77
78
79
80
81
8!
83
8
85
8

=3

o

~

[+

=

o

88
89
90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

VALUE =» $session, # Value for the cookie
EXPIRE => "+3h", # Keep cookie for 3 hours
);
print "$cookie";
print "Content-type: text/html\n";
print "\n";

my $session_info;

if (-f $session) {
$session_info = retrieve($session);

} else {
my @files = glob("$quiz_dir/questions/*");
$session_info->{files} = [@files];
$session_info->{mode} = 'question’;

#

parse_file($file name) -- Read / parse a file
#

Returns a hash containing the file information
#

sub parse file($)
{

my $file name = shift;

open IN _FILE, "<$file_name" or
die("Unable to open $file_name");

my %file_info; # Information about the file

my $field; # Field we are defining
my $item = undef;# Item for current field

while (my $line = <IN _FILE>) {

if ($line =~ /"=question/) {
$field = 'question’;
$item = undef;

} elsif ($line =~ /=answer\s+(\S+)/) {
$field = 'answer';
$item = $1;

} elsif ($line =~ /=right\s+(\S+)/) {
$field = "answer';

$item = $1;
$file_info{right} = $1;
} else {

if (defined($item)) {
$file_info{$field}->{$item} .= $line;
} else {
$file_info{$field} .= $line;
}

115
116
117
118
119
120
121
12
123
12
125
126
127
128
12
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

[N

&

0

}
}
close (IN_FILE);
return (%file_info);
}
display done -- Tell the user he's done.
sub display done()
{
$session_info->{mode} = 'done’;
print <<EOF
<H1>Test Complete</H1>

<P>
Congratulations, you have finished the quiz.
EOF
#T0DO: Need something here to go somewhere
}
display_question -- Display the current question
sub display_gquestion()
{
if ($#{$session_info->{files}} == -1) {
display_done();
return;
}
Information about the file
my %file_info = parse_file($session_info->{files}->[0]);
print $file_info{question};
$session_info->{mode} = 'answer';
}
display_answer -- Display the answer
sub display_answer()
{
The information from the question file
my %file info = parse_file($session_info->{files}->[0]);
The answer the user submitted
my $answer = $cgi_data{answer};

Games and Learning Tools 161

162

Chapter 8

165 # Display the answer
166 if (defined($file_info{answer}->{$answer})) {

167 print $file_info{answer}->{$answer};
168 } else {

169 print "<Hi>Internal error: Undefined answer $answer</Hi>\n";
170 $answer = ""

171 }

172 if ($answer eq $file info{right}) {

173 shift @{$session_info->{files}};

174 } else {

175 my $last = @{$session_info->{files}};
176 push(@{$session_info->{files}}, $last);
177 }

178 $session_info->{mode} = 'question’;

179 print <<EOF ;

180 <FORM ACTION="quiz.pl">

181 <INPUT TYPE="submit" NAME="next" VALUE="next"»>
182 </FORM>

183 EOF

184 }

185

186

187 if ($session_info->{mode} eq 'answer') {

188 display answer();

189 } elsif ($session_info->{mode} eq 'question') {

190 display_question();
191 } else {

192 display done();

193 }

194

195 # Store the data for later use
196 nstore($session_info, $session);

Running the Script

Before you run the script, you need to create a series of question files. These
are text files consisting of a series of HTML pages separated by special tags.
The format of the file looks like this:

=question

HTML page containing the question

=answer value

HTML page to be displayed when the user selects the given answer "value".
=answer value

Additional answer sections

=right value

Like answer, but this answer is the right one. (=answer and =right may be in
any order.)

Let’s look at a sample question. Here’s what the raw input file looks like:

=question

<HEAD><TITLE>Question 1</TITLE></HEAD>
<H1>Question 1:</H1>

<P>

What does the following regular expression mean
<pre>

IN\S+/

</pre>

<P>

<FORM ACTION="quiz.pl">»

<P>

<INPUT TYPE="submit" NAME="answer" VALUE="1"»
One or more spaces.

<INPUT TYPE="submit" NAME="answer" VALUE="2">
Zero or more spaces.

<INPUT TYPE="submit" NAME="answer" VALUE="3"»
One or more non-space characters.
»

</FORM>

=answer 1

<HEAD><TITLE>Wrong</TITLE></HEAD>

<H1>Wrong</H1>

<P>

Lower case 's' (<code>\s</code>) is used to specify

spaces. The regular expression given uses an uppercase 'S'. (See <i»perldoc
perlre</i> for a reference.)

=answer 2

<HEAD><TITLE>Wrong</TITLE></HEAD>

<H1>Wrong</H1>

<P>

The star character (<code>*</code>) denotes zero
or more characters. This expression uses the
plus (<coder+</code>) character.

(See <i>perldoc perlre</i> for a reference.)

=right 3

<HEAD><TITLE>Right</TITLE></HEAD>
<H1>Right</H1>

Go on to the next question.

Games and Learning Tools 163

164

Chapter 8

The first section between the =question and the =answer markers is an
HTML page containing the question. Here, you can see how this page looks
in the browser.

Edit VMiew Go Bookmarks Tools Window Help

R h 5 R:%'ad f%% 'Tj &2 Search

Home | “df Bookmarks

Question 1:

What does the following regular expression
mean:

NS+

1 | One or more spaces.
2 | Zero or more Spaces.
3 | One or more non-space characters.

£ 2 B8 JDone l e I’G'H“

This web page contains an HTML form that invokes your Perl script when
one of the buttons is clicked:

<FORM ACTION="quiz.pl">

Each answer is its own submit button. The name of the button is answer,
and the value of the button is used to display an answer page.
For example, the first answer looks like this:

<INPUT TYPE="submit" NAME="answer" VALUE="1">
One or more spaces.

There is an =answer or =right section for each of the values in the main
page. This answer is wrong, so later on in the file you'll find an =answer
section for it

=answer 1
<HEAD><TITLE>Wrong</TITLE></HEAD>

<H1>Wrong</H1>
<P>

Lower case 's' (<code>\s</code>) is used to specify
spaces. 3 The regular expression given uses an uppercase 'S'.
perlre</i> for a reference.)

Here, you see what happens when the first answer is selected.

Ip

i ¥ a ;% IIj &2.Search

Back Reload

Home | \iBoakmarks

Wrong

Lower case 's' (\s) is used Lo specify spaces. The
regular expression given uses an upper case 'S'.
(See perldoc perire for a reference.)

next
W% & 2 E) | Done e

The Resulis

When it’s first run, the script scans the quiz directory and locates all the
questions. It then displays the first one and waits for the user to select an

answer.

The answer page is then displayed. If the user got the question wrong,
the question goes to the back of the question list and will be asked later.
If the user answered the question correctly, the question is dropped

from the list.

When all the questions have been correctly answered, a completion

screen appears.

ol
e Edit View Go Bookmarks Tools Window Help

i - ’Q - a §§ 'Ij 2. Searc

Back Reload

| 4hHome | WpBookmarks

Test Complete

Congratulations, you have finished the quiz.

Gaomes and Learning Tools

(See <i>perldoc

165

166

Chapter 8

How It Works

Following is the basic flowchart for the program.

Generate question list
Mode - Question

Question Answer

Display Question Display Answer

Mode — Answer Maode - Question

Although this program looks simple, there are a few challenges you need
to overcome. The first is that this is a CGI program. That means that it runs
once for each web page. We must somehow remember our state between
runs so that we don’t give the student the same question over and over again.
Also we must make sure we can identify which student we are dealing with.
More than one student may use us at one time.

Let’s take a look at a typical execution sequence:

Run once, display first question
Run once, display first answer
Run once, display second question

Run once, display second answer

The program should start with question 1 for new users. But since the
program runs once as each page is accessed, not once each session, how do
you identify new users?

Fortunately, the HTTP protocol lets you store something called a cookie
on the user’s machine. This program uses a cookie called QUIZ to hold a
session number.

If no cookie is available, there is no current session in progress and you
should start a new one. The following code fetches the cookies and extracts
the value of the QUIZ cookie:

31 # Cookie information

32 my %cookies = Parse_Cookies();

33

34 # The session from the cookie

35 my $session_cookie = $cookies{QUIZ};

Next you go through a little code to translate the variable $session_cookie
into the variable $session. This would normally be a simple assighment, but
because this is a CGI program, you have to go through a slightly complex
untainting process, which we’ll discuss later. But for now, you can consider
$session and $session_cookie the same thing.

If the session does not exist, you create a new one. Each session has an
information file stored in $quiz_dir/session/. All you have to do to create a
new session is to find any empty slot in this directory:

51 if (not defined ($session)) {
52 for (my $1 = 0; ; $i++) {

53 # Generate a new session

54 $session = "$quiz_dir/session/session.$i";
55 if (! -f "$quiz_dir/session/session.$i") {
56 last;

57 }

58 }

59 }

Now that you have a session number, you need to send it to the browser
for storage. In other words, the browser needs a cookie. So you create a cookie
and transmit it as part of the HTTP header:

63 $cookie = Set_Cookie(

64 NAME =»> "QUIZ", # Cookie's name

65 VALUE =» $session, # Value for the cookie
66 EXPIRE => "+3h", # Keep cookie for 3 hours
67);

68 print "$cookie”;
69 print "Content-type: text/htmli\n";
70 print "\n";

Next you check to see if you have a new or existing session. If you have an
existing session, the session data is read in using the retrieve function call.

Games and Learning Tools 167

168

Chapter 8

If you have a new session, you set all the variables to their default values.
Alist of all the question files is created and stored. Also, you start the program
in question mode:

72 my $session_info;

73 if (-f $session) {

74 $session_info = retrieve($session);

75 } else {

76 my @files = glob("$quiz_dir/questions/*");
77 $session_info->{files} = [@files];

78 $session_info-»{mode} = 'question';

79}

Depending on the mode, you ask a question or display an answer and
update the session information. This code is fairly simple and straightforward.

At the end, you need to save the session information for the next run.
This is done through a call to nstore:

195 # Store the data for later use
196 nstore($session_info, $session);

One thing I want to point out about this script is that you store all the
session information on the server. This is done for security reasons. You
could have put everything into the cookie, but a clever user can edit cookies,
s0 you can’t trust their values.

One Web retailer found this out the hard way. He uses a cookie to store
the items in your shopping cart along with their prices. Some hackers noticed
this and did a little cookie editing during their shopping. The cookie as sent
said the price of the MP3 player was $299.95. When the cookie was read back
in, the price was $0.99. Since the system trusted the value of the cookie, the
hackers got some really cheap MP3 players.

Perl has a nice feature called taint mode. When the taint feature is
turned on (-T on the command line), all user input is considered tainted and
cannot be used in any situation in which it might cause trouble.

In this program, you get the session number from a cookie. A cookie is
supplied by the user’s browser, so it’s tainted. Before you can use it to access
the session file, you must untaint it. In this case, you do so by using a regular
expression to validate the input:

39 # Taint checking and cleaning
40 if (defined($session_cookie) &&

41 ($session_cookie =~ /*$quiz_dir\/session\/session.(\d+)$/)) {
42 $session cookie =~ /(\d+)$/;

43 $session = "$quiz_dir/session/session.$1";

44 } else {

45 $session = undef;

46 }

Perl assumes that since the user input has been validated using a regular
expression and extracted using $1, the validation worked and the data can
now be considered untainted.

Hacking the Script

The script is not hacker-proof. Because the cookie is stored on the user’s
computer, the user can alter it. If they can guess the number of another
session (and that’s not that hard to do), they could hijack it. Additional
information, such as an IP address, could be added to the cookie to make
hacking more difficult.

There is a subtle race condition in this code. It has to do with the logic
that locates a new empty session:

51 if (not defined ($session)) {
52 for (my $1 = 0; ; $i++) {

53 # Generate a new session

54 $session = "$quiz_dir/session/session.$i";
55 if (! -f "$quiz_dir/session/session.$i") {
56 last;

57 }

58 }

59 }

You perform two operations:

s Test for an empty slot.
s Use the empty slot.

The problem is that multiple people can run this program at the same
time. If two programs run at the same time, the following can occur:

Program 1: Test for use of session 1. It’s not in use.

Program 2: Test for use of session 1. It’s not in use.

Program 2: Use session 1.

Program 1: Use session 1.

The result is that two programs now think that their session number is 1.
This is not good.

The program should use some sort of locking mechanism to prevent this
race condition. (The POSIX module has a flock function you might use.)

Finally, this script might be good for single-user drills, but it needs a
couple of features if it is to be used in a classroom setting. It will require a

login screen so that you can identify which student is taking the quiz and also
some way of storing the results.

But the basic quiz engine is there and it works. If you need new features,
the script can easily be expanded. And if you don’t, just leave the thing alone.

Games and Learning Tools 169

#35 Teaching a Toddler

I have a one-and-a-half-year-old daughter, Grace. She has known for some
time now that typing on the computer is something that Daddy does for fun.

Whenever I'm writing, she will come over to me, smile sweetly, climb up
on my lap, and pound the heck out of the keyboard. (Thank God for xlock
and early bedtimes.)

To help her learn how to use a computer, I wrote a simple Perl script
that displays a picture and plays a sound whenever a key is pressed. For
example, press B and a picture of a bee appears as the word bee is spoken.
Press C and a cow appears, D and a dog appears, and so on.

It quickly became apparent that even this simple program was too
complex for her. After all, she can’t recognize letters just yet. So I modified
the program to allow for an even simpler mode of operation. Press any key
and you get the first letter of the alphabet (both displayed and spoken),
press another and you get the next letter, and so on.

The result is a game that she loves and can play for up to half an hour
withoult stopping. Actually, she can play it longer, but after half an hour my
wife and I get sick of hearing the same set of letters and words over and over
again and redirect her energy toward the LEGOs.

The Code

#1/usr/bin/perl
Display a big window and let Grace type on it.

When a key is pressed, display a picture and
play a sound.

The file cmd.txt contains the sound playing
command.

EoRE TR R N Y

1
12
1
14
15
16
17
18
19
20
21
2
2
2
25
2
2
28
2
3
31
32
33
3
35
36
37
3
39
40
4
4
4
44
45
46
47
48
49
50
51
52
53
5
55
56
5
5
59
60

=

w

£ W

~ o

[SRY-=1

kS

=3

woN R

B

o =

The format of this file is:
#

key <tab> command

#

#

use strict;

use warnings;

use POSIX qw(:sys wait h);

use Tk;

use Tk::JPEG;

my %sound_list = (); # Key -»> Command mapping
my %image list = (); # List of images to display

List of sound commands in sequential mode
my @seq_sound_list;

List of images in sequential mode

my @seq_image list;

my $bg pid = 0; # Pid of the background process
my $canvas; # Canvas for drawing

my $canvas_image; # Image on the canvas

my $mw; # Main window

my $mode = “?2?7"; # The mode (seq, key, debug)
#

Called when a child dies.

Tell the system that nothing
is running in background
#
sub child_handlex()
{
my $wait_pid = waitpid(-1, WNOHANG);
if ($wait_pid == $bg_pid) {
$bg_pid = 0;
}

What we have to type to get out of here
my @exit = gw(e x i t);
my $stage = 0; # How many letters of "exit" typed

my $image_count = -1; # Current image in seq mode
my $sound count = -1; # Current sound in seq mode

Gomes and learning Tools 171

61 # get_image($key) -- Get the image to display

62 #

63 # Make sure it's the right one for the mode

64

65 sub get_image($)

66 {

67 my $key = shift; # Key that was just pressed
68

69 if ($mode eq "seq") {

70 ++$image_count;

71 if ($image_count > $#seq_image_list) {
72 $image_count = 0;

73 }

4 return ($seq_image list[$image count]);
75 }

76 return ($image list{$key});

77}

78

79

80 # get_sound($key) -- Get the next sound to play
81

82 sub get sound($)

8 {

84 my $key = shift; # Key that was just pressed
85

86 if ($mode eq "seq") {

87 ++$sound_count;

88 if ($sound_count > $#seq sound list) {
89 $sound_count = 0;

90 }

91 return ($seq_sound list[$sound_count]);
92 }

93 return ($image_list{$key});

94 }

95

96 # Handle keypresses

97

98 sub key handler($) {
99 # Widget generating the event
100 my ($widget) = @ ;

101

102 # The event causing the problem
103 my $event = $widget->XEvent;
104

105 # The key causing the event

106 my $key = Sevent->K();

107

108 if ($exit[$stage] eq $key) {
109 $stage+t;

110 }

172 cChoprers

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154 }
155

156 #

if ($stage » $fexit) {
exit (0);

}
Lock system until bg sound finishes
if ($bg_pid != 0) {

return;

}

my $image_name = get_image($key);
my $sound = get sound($key);

#
Display Image
#
if (defined($image_name)) {
Define an image
my $image =
$mw->Photo(-file => $image name);

if (defined($canvas_image)) {
$canvas->delete($canvas_image);
}
$canvas_image= $canvas->createImage(0, 0,
-anchor => "nuw",
-image => $image);
}
else
{
print NO_KEY "$key -- no image\n";
}
#
Execute command
#
if (defined($sound)) {
if ($bg_pid == 0) {
$bg_pid = fork();
if ($bg_pid == 0)
exec($sound);

_~

}
}
} else {
print NO_KEY "$key -- no sound\n";

}

157 # read_list(file)

158 #
159 #
160 #

Read a list from a file and return the
hash containing the key value pairs.

Games and Learning Tools 173

161
162 sub read list($)

163 {

164 my $file = shift; # File we are reading
165 my %result; # Result of the read
166

167 open (IN_FILE, "<$file") or

168 die("Could not open $file");

169

170 while (<IN _FILE>) {

171 chomp($_);

172 my ($key, $value) = split /\t/, $_;
173

174 $result{tkey} = $value;

175 }

176 close (IN_FILE);

177 return (%result);

178 }

179

180

181 # read_seq_list($file) -- Read a sequential list
182

183 sub read_seq_list($)

184 {

185 my $file = shift; # File to read

186 my @list; # Result

187

188 open IN_FILE, "<$file" or

189 die("Could not open $file");

190 @list = <IN FILE>;
191 chomp(@list);

192 close(IN_FILE);
193 return (@list);
194
195
196

197 if ($#ARGV > -1) {
198 if ($ARCGV[0] eq "seq") {

199 $mode = "seq";

200 } else {

201 $mode = "debug";

202 }

203 }

204

205 $SIG{CHLD} = \&child_handler;
206

207 if ($mode eq "seq") {

208 # The list of commands
209 @seq_sound_list= read_seq_list("seq_key.txt");
210 @seq_image list =

174 cChoprers

211 read_seq_list("seq_image.txt");

212 } else {

213 # The list of commands

214 %sound_list = read list("key.txt");
215 %image_list = read_list("image.txt");
216 }

217

218 # Open the key error file
219 open NO_KEY, ">no_key.txt" or

220 die("Could not open no_key.txt");

221

222

223 $mw = MainWindow->new(-title =»> "Grace's Program");
224

225 # Big main window

226 my $big = $mw->Toplevel();

227

228 #

229 # Don't display borders

230 # (And don't work if commented in)

231 #

232 #if ($#ARGY == -1) {

233 # $big->overrideredirect(1);

234 #}

235

236 $mw->bind("<KeyPress>" => \8key handler);
237 $big->bind("<KeyPress>" =» \Bkey_handler);
238

239 # Width and height of the screen

240 my $width = $mw->screenwidth();
241 my $height = $mw->screenheight();
242

243 if ($mode eq "debug") {
244 $width = 800;
245 $height = 600;

246 }

247

248 $canvas = $big->Canvas(-background => "Yellow",
249 -width => $width,
250 -height => $height
251)->pack(

252 -expand => 1,

253 -fill =»> "both"
54);

255 $mw->iconify();

256

257 if ($mode ne "debug") {

258 $big->bind("<Map>" =>

259 sub {$big->grabGlobal();});
260 }

Games and learning Tools 175

176

Chapter 8

261
262 Mainloop();

Running the Script
The script has three modes:

key Press a key on the keyboard and the corresponding picture
appears. In this mode, the program grabs the keyboard and mouse,
preventing Grace from typing in any other window.

debug Similar to key mode, only without the grabbing. When the
program grabs the keyboard and mouse, it’s not possible to run the
debugger. (The main program has grabbed the keyboard, which pre-
vents you from typing anything in the debug window.) This mode
allows you to run the debugger.

seq Sequential mode, in which a sequence of pictures (with
accompanying sound) appears.

To run the program in key mode, just run the script:
$ grace.pl

Seq and debug modes are specified on the command line, as in this
command to run the program in seq mode:

$ grace.pl seq

In key mode, when a key is pressed, a picture is shown and a sound played.
The files image. txt and key.txt define which pictures and sounds are associated
with each key.

The format of the image. txt file is as follows:

key-name image-file

key-name image-file

For example, here’s a short image. txt for the letters a, b, and
a image/apple.jpg

b image/beach.jpg
¢ image/cow.jpg

NOTE

The key.txt file uses a similar format:

key-name command
key-name command

This tells the program which command to execute when a key is pressed.
The way the system is designed, the commands should play a sound. Here's a
sample file:

a play sounds/soundi.au
b play sounds/seasound.wav
¢ mpgl23 sounds/Cow02.mp3

The system was designed this weay because there are a lot of different ways lo play sounds.
This format gives you access to all the sound playing tools available to you.

The system uses the X11 names for the keys. This allows for the use of
special keys like FI1, F2, F3, ALT-A, ALT-B, and so on.

If you are in sequential mode, the configuration files are seq_key.txt
and seq_image.txt. These files contain a list of images (one per line) and
commands (one per line).

Here is a sample seq_key. txt:

play words/alphabol.wav
play words/boy00001.wav
play words/colorion6.wav

And here is a sample seq_image.txt:

jpeg/alphabet. jpeg
Jjpeg/boy.jpeg
jpeg/color.jpeg

Finally, to get out of the program, you need to type exit. (Four images
will be displayed while you do this, but it does get you out.)

Clicking the close button does not close the application. Because the
mouse has been grabbed, all mouse clicks go to the script and not the window
manager.

The Resvulis

When the program runs, it fills the screen with a picture and plays a sound.
Here, you can see the result of a properly configured program after the C key
has been pressed. (Pretend you're hearing mooing when you view this.)

Games and Learning Tools 177

178

Chaptar 8

One of the problems with designing configuration files for this program
is that you don’t necessarily know all the key names. After all, there are some
awful strange key combinations out there. (What is the name of the key you
get when you press ALT, SHIFT, CTRL, keypad dot?') Every time the system
sees a key with no image or sound, it writes a new entry to the file no_key.txt.
Later you can use this file to design better configuration files.

How It Works

The script is designed to completely take over the screen and the keyboard.
After all, Grace isn’t old enough to understand the concept of windows, much
less how to manipulate them.

The script uses the Perl/ Tk toolkit and creates a big top level window:

223 $mw = MainWindow->new(-title =»> "Grace's Program");
224

225 # Big main window

226 my $big = $mw->Toplevel();

227

Ideally, you would like one big borderless window to take over the whole
screen. There is a Tk function to make the window borderless, but when I
tried it, T couldn’t get any key input. So I had to comment out this code until
I can figure out how to make it work:

228 #

229 # Don't display borders

230 # (And don't work if commented in)
231 #

232 #if ($#ARGY == -1) {

! Because this program reads scan codes, you get four keys: ALT_L, sHIFT_L, CTRL_L, and
KP_Decimal.

233 # $big->overrideredirect(1);
234 #}

Next you get the height and width so that you can use it later when cre-
ating the Tk Canvas widget to hold the image. Then if you are debug mode,
you shrink down the size of the window to make enough room on the screen
for a debug window:

239 # Width and height of the screen

240 my $width = $mw->screenwidth();
241 my $height = $mw->screenheight();
242

243 if (%mode eq "debug") {
244 $width = 800;

245 $height = 600;

246 }

Now you create the canvas, which will cover the entire screen and be
used for image display:

248 $canvas = $big->Canvas(-background => "Yellow",

249 -width => $width,
250 -height => $height
251)->pack(

252 -expand => 1,

253 -fill =»> "both"
254)i

The script needs to handle all keyboard input. So you tell Perl/Tk to call
the function key_handler any time a key is pressed:

236 $mw->bind("<KeyPress>" => \&key_handler);
237 $big->bind("<KeyPress>" => \Bkey handler);

Finally, you grab the keyboard and mouse, which means that no other
program can use them until the program releases its hold on them. This
prevents Grace from typing things into other programs.

When Grace presses a key, the key_handler function is called. The first
thing this function does is determine what key was pressed:

98 sub key handler($) {
99 # Widget generating the event
100 my ($widget) = @_;

101

102 # The event causing the problem
103 my $event = $widget->XEvent;
104

105 # The key causing the event

106 my $key = $event->K();

Games and Learning Tools 179

180

Chapter 8

Next you check to see if you are in the middle of typing exit to get out of
the program:

108 if ($exit[$stage] eq $key) {

109 $stage+t+;

110 }

111 if ($stage > $#exit) {
112 exit (0);

113 }

The job of the program is to display an image and play a sound. The script
now locates the image and sound for this key:

119 my $image name = get image($key);
120 my $sound = get_sound($key);

The image uses the Tk: :Photo package:

125 if (defined($image name)) {

126 # Define an image

127 my $image =

128 $mw->Photo(-file => $image_name);
129

130 if (defined($canvas_image)) {

131 $canvas->delete($canvas_image);
132 }

133 $canvas_image= $canvas->createImage(0, 0,
134 -anchor => "nw",

135 -image => $image);

136 }

You also fork off a process to run the command to play the sounds:

144 if (defined($sound)) {

145 if ($bg_pid == 0) {
146 $bg_pid = fork();
147 if ($bg_pid == 0) {
148 exec($sound);
149 }

150 }

151 }

Playing sounds in the background presents an interesting challenge.
Suppose a long sound is playing in the background and Grace hits another
key. What should you do?

The first version of this program tried to kill the background program
and play the new sound. This didn’t work well. One of the problems had to
do with the design of the Linux play command. Killing this program does not
release the sound device (that’s a bug in play, not a problem with the script).

To work around this problem, the script was redesigned so that if it is
playing a sound, it will ignore new keystrokes. When you play a sound, the
PID (process ID) of the background process is stored in the variable $bg_pid.

If this variable is nonzero, then you have a background processing
running and you ignore any new keystrokes:

114 # Lock system until bg sound finishes
115 if ($bg pid != 0) {

116 return;

117 }

When the background process exits, the system generates a SIGCHLD.
The script defines a handler for this signal:

205 $SIG{CHLD} = \&child handler;

‘When the child exists, the function is called. This function checks to make
sure the exiting process is correct and clears the variable $bg_pid:

45 sub child_handlex()

46 {

47 my $wait_pid = waitpid(-1, WNOHANG);
48 if ($wait_pid == $bg pid) {

49 $bg_pid = 0;

50 }

51}

This code does slow down the speed at which images can be displayed,
but Grace doesn’t care. She just bangs away at the keyboard and laughs.

Hacking the Script

I'learned a lot writing this script. For example, I now know how to remove
Play-Doh from a keyboard.

Also, I discovered that the grab function does not grab all the keys on the
keyboard. On my laptop, there a big silver button labeled Power. Grace will
hit that just as hard as she will any other key. Unfortunately, every time she
hits it, the computer turns off.

Grace doesn’t know how to talk yet, so she signals that she’s done by
throwing the keyboard to the ground. She’s very good at throwing the key-
board down with enough force to pop a few keys off it. I'm getting very good
at hunting for lost keys and popping them back on. (I'm typing this on a
keyboard that’s missing the * and - from the numeric pad.)

Currently the script ignores the mouse. It would be nice if the script would
do something when a mouse button is clicked.

As it stands now, the script will serve Grace for the next six months or so.
After that, we'll see what develops.

Games and Learning Tools 181

DEVELOPMENT TOOLS

Perlis a useful language even if you are
" developing C, C++, or Java programs. The
rich set of text-manipulation functions in
Perl can eliminate some of the more tedious

and mechanical aspects of software development.

0 0]

S

Perl is ideal for translating constant declarations from one language to
another or for generating simple functions.

Itis also an excellent tool for examining your code and figuring out what
is going on with things. Consider, for example, the Linux Cross Reference
utility, which is written in Perl. Despite its name, this utility is a powerful tool
for examining any large C program. It’s available from http:/ /Ixr.linux.no.

In this chapter, we'll take a look at some of the Perl scripts you can use to
accelerate the development process.

#36 Code Generator

One of the problems with C and C++ is that there’s no easy way of turning
an enum into a string. To do so you have to write your own translation table.
Or you can write a short Perl script to do the work for you.

The Code

1
2
3
4
5
6
7
8
9

B s ol e
A& N RO

15
16
17
18
1
20
21
2
23
2
25
26
2
28
29
3
31

o

[N

&

=

o

use strict;
use warnings;

if ($#ARGV != 0) {
print STDERR "Usage is $0 <input file>\n";
exit (8);

$ARGV[0] =~ /~([*\.]1*)/;
my $enum = $1;

my $ENUM = $enum;

$ENUM =~ tr [a-z] [A-Z];

my @words = <>;
chomp(@words);

print "enum $ENUM {\n";
foreach my $cur_word (@words) {

print " $cur_word, \n";
}

print "};\n";

print <<EOF;
static const char* const ${enum}_to_string[] = {
EOF
foreach my $cur_word (@words) {
print " \"$cur_word\",\n";
}

print "}\n";

Running the Script

The input to the script is a file with a list of enum values, one per line.

For example, the file name.txt contains the following values:

SAM

JOE
MAC

You run the script by giving it a single argument, the name of the

input file:

$ perl enum.pl names.txt

The Results

The result is some C/C++ code that defines the enum and a table to convert it
into a printable string, as shown in this example:

enum NAMES {
SAM,
J0E,
MAC,

b

static const char* const names_to_string[] = {
"SAM",
"JOE"
TMAC"

}

How It Works

The scriptitselfis simple. All it does is read in a list of words and print them
in various formats. About the only tricky part is the section that extracts the
name of the enum from the filename and translates it to all uppercase:

9 $ARGV[0] =~ /*(["\.]*)/;
10 my $enum = $1;

11 my $ENUM = $enum;

12 $ENUM =~ tr [a-z] [A-Z];

As scripts go it’s not much. But when you are dealing with large sources
and lots of enum definitions, this simple script can save you a lot of manual
labor as well as help you avoid translation errors that occur when you try to
maintain two lists manually.

Hacking the Script

The script is good for dealing with simple code generation. It can easily
augmented for more elaborate situations. For example, if you need to gen-
erate more that one enum at a time or need to generate more output files.
In my experience, each programming situation is unique, and in every one
there’s a place where Perl can be very useful for automatically generating
some part of the program.

#37 Dead Code Locator

There’s an urban legend about a group of programmers who were working
on a government contract changing some code from one version of Jovial to
another. One of them came to a function with obscure and very confused
logic, so he decided that instead of just mechanically translating the code, he
would see how the function was used and then perhaps write a better one.

Developmant Tools 185

186

Chapter @

Imagine his surprise when he discovered that the function was not called
at all.

So he went to his boss and said, “This function is never used. We can
eliminate it.”

“We already know that,” responded the boss. “But the cost of doing the
paperwork to eliminate this function is far greater than the cost of convert-
ing it. So go back and update it.”

The programmer went back to his job with a wiser understanding of how
government contracts really work.

Back in the real world, in most cases it is better to delete unused code
than it is to maintain it. But how do you know what’s used and what’s not?
That’s where Perl comes in.

The Code

use strict;
use warnings;

my %symbols;

open IN FILE, "nm @ARGV|" or
die("Could not connect to nm command");

W0~ W B W N R

my $cur_file; # File we are looking at

11 while (<IN_FILE>) {
12 if (£(.%):84) {

13 $cur_file = $1;

14 next;

15 }

16 if (length($) < 12) {

17 next; # Blank line or other junk

18 }

19

20 my $type = substr($_, 9, 1);

21 my $name = substr($_, 11);

22 chomp($name);

23

24 if ($type eq "U") {

25 $symbols{$name}->{ undefined'} = $cur_file;
26 } else {

27 $symbols{$name}->{'defined'} = $cur_file;
28 }

29 }

30

31 foreach my $cur_symbol (sort keys %symbols) {

32 if (not defined($symbols{$cur symbol}->{undefined})) {

33 print "Not used.\n";

34 print " Symbol: $cur symbol\n";
35 print " Defined in: $symbols{$cur_symbol}->{'defined'}\n";
36 }
37 }
Running the Script

The script takes a set of object files as input. Any symbols in the files defined
as external but not used in another object file will be printed:

$ dead.pl test-prog.o test-sub.o

The Results

Not used.

Symbol: bar

Defined in: test-sub.o
Not used.

Symbol: main

Defined in: test-code.o

How It Works

The program starts by running every program through the nm command.
This command lists the global symbols defined and used by each object file.
More important, it also lists the symbol type. The symbol type can be "U" for an
undefined symbol definition. (The code letter tells us what sort of definition
itis, but for this program we don’t care. Defined is defined and type does not
matter.)

For example, let’s look at what happens nm is run on some test files:

$ nm test-prog.o test-sub.o
test-code.o:

U foo
00000000 T main

test-sub.o:
00000004 C bar
00000004 C foo

The file test-code.o uses the symbol foo and defines the symbol main.
The file test-sub.o defines the symbols foo and bar.

The Perl script reads in the output of the nm command and figures out
where each symbol is defined and used. Any symbol that is defined but not
used is considered dead code.

Developmant Tools 187

Let’s take a look at the process in detail: The first thing the script does is
open an input pipe to the output of the nm command:

6 open IN_FILE, "nm @ARGV|" or
7 die("Could not connect to nm command");

Next, each line is processed in the input stream. The first thing you
check for is a filename line. These lines all end in a colon (:) and are the

only lines that do. If you find one, you set the current filename:

12 if (/)80 |

13 $cur_file = $1;
14 next;
15 }

Next you check for blank lines (or any other type of short line). These
are ignored:

16 if (length($_) < 12) {
17 next; # Blank line or other junk
18 }

At this point you have a line that contains symbol information. The first
eight characters of the line are the value of the symbol (if any). A type char-
acter is located in character number 10 (position number = 9) and the symbol
name begins in column number 12 (position = 11).

The program extracts the type and symbol name from the line:

20 my $type = substr($_, 9, 1);
21 my $name = substr($_, 11);
22 chomp($name);

If the symbol type is "U", then the symbol is undefined in the current file.
That means that it’s used. Any other symbol type code indicates a definition.

The use or definition of the symbol is recorded:

24 if ($type eq "U") {

25 $symbols{$name}->{ 'undefined'} = $cur file;
26 } else {

27 $symbols{$name}->{'defined'} = $cur_file;
28 }

Once all the information has been processed, all you have to do is iden-
tify the dead code and print the results. A dead symbol is one that's defined
but not used; in other words, one for which there is no undefined entry:

31 foreach my $cur_symbol (sort keys %symbols) {
32 if (not defined($symbols{$cur symbol}->{undefined})) {
33 print "Not used.\n";

34 print " Symbol: $cur_symbol\n";

35 print " Defined in: $symbols{$cur symbol}->{'defined’}\n";
36 }

37 }

The result is a list of symbols that are not used and are candidates for
potential elimination.

Hacking the Script

Currently the script is designed to handle individual object files, not libraries.
Libraries are a litte tricky because only the files that are needed are actually
included in the final executable, so you'd have to add logic to ignore files.

This program illustrates how Perl can be used on object files for data min-
ing. Dead code is just one type of information that can be obtained. You can
also find other information, such as module dependencies and how many
modules use a global symbol.

#38 EOL Type Detector

One of the problems with standards is that there are so many of them. Even
something as simple as the format of a text file can be subject to many different
standards. For example, Microsoft, Apple, and Unix/Linux all use a different
end-of-line (EOL) indicator.

The root of this problem can be traced back to the early days, in the
1920s B.C. (before computers). A device called a Teletype was invented to
send text over the phone lines at the amazingly fast speed of 10 characters a
second (fast for 1920s technology).

The unit consisted of a keyboard, printer, paper tape reader, and punch.
It contained a character encoder made out of levers and a character decoder
built around a shift register that looked a lot like a car’s distributor. The thing
was loud and difficult to maintain, but it still managed to do its job.

One of the problems with the Teletype was that although it took 1/10 of
a second to print a character, it took 2/10 of a second to move the printhead
from the right side of the page to the left. If you sent the machine a printable
character while the printhead was moving, it would print a smudge in the
middle of the page.

The solution to this problem was to use two characters for the end of
line. The first, a carriage return, sent the printhead or carriage to the left
side, the second, a line feed, moved the paper up.

The early computers frequently used Teletypes as their main console.
After all, the Teletype had a keyboard and printer for typing and a paper
tape reader/punch for storage. But back then storage cost a lot more per
byte than it does now. Storing two characters for an end of line was expensive.

So some people decided to take the two-character end-of-line sequence
(carriage return, line feed) and store only one of the characters. The Unix
people decided to use the line feed. DEC, and later Apple, decided to stan-
dardize on carriage return. Microsoft decided to use both carriage return
and line feed. The result is the tower of babble we must deal with now.

Developmant Tools 189

Moving files from one machine to another can cause problems because
of EOL incompatibilities. For that reason, it’s a good idea to know what type of
EOL is being used in a file. So you need a good way of telling what type of file
you are dealing with.

The Code

1 use strict;

2 use warnings;
3 use English;
4
5
6 # do_file($name) -- Tell what type of file
74 the given file is

8
9 sub do_file($)

10 {

11 my $file = shift;

12 if (not open IN _FILE, "<$file") {

13 print "Could not open $file\n";
14 return;

15 }

16 binmode(IN_FILE);

17 my $old file = select IN_FILE;

18 local $/;

19 select $old_file;

20 my $buffer = <IN FILE>;

21

22 my $cr = $buffer =~ tr/\r/\r/;

23 my $1f = $buffer =~ tr/\n/\n/;

24 my $crlf = $buffer =~ s/\r\n/\r\n/g;
25

26 close (IN_FILE);

27

28 $cr -= $crlf;

29 $1f -= $crlf;

30 if (($cr == 0) B& ($1f == 0) && ($crlf != 0)) {

31 print "$file:\tMicrosoft (<cr><lf>)\n";

32 } elsif (($cr == 0) && ($1F 1= 0) 8& ($crlf == 0)) {

33 print "$file:\tLinux/UNIX (<1f>)\n";

34} elsif (($cr 1= 0) 8& ($1f == 0) 8& ($crlf == 0)) {

35 print "$file:\tApple (<cr>)\n";

36 } else {

37 print "$file:\tBinary (<crr=$cr <lf>=$1f <cr><lf>=$crlf)\n";
38 }

39 }

40

41 foreach my $cur_file (@ARGV) {

42 do_file($cur_file);
43 }

Running the Script

To run the script, just specify the files to be processed on the command line:

$ eol-type.pl test.dos test.unix test.mac test.mixed

The Resulis

test.dos: Microsoft (<cry<lfy)

test.unix: Linux/UNIX (<1f>)

test.mac: Apple (<cry)

test.mixed: Binary (<cr>=1 <1f>=1 <cr><1lf>=1)

How It Works

The script starts by opening the file and then setting binmode on it. This
prevents Perl from internally performing any EOL editing on the input file.
(On Windows, for example, a carriage return/line feed combination would
be translated to just a line feed as the file was being read. Binary mode turns
off Perl’s internal EOL editing.)

12 if (not open IN_FILE, "<$file"} {

13 print "Could not open $file\n";
14 return;
15 }

16 binmode(IN_FILE);

Next the file is read in using one read statement. To do this, you use a
little trick. First you use the select call to make IN_FILE the current file
(saving the old current file in the process). Next, declare a local version of
the record separator $\. This is assigned no value so it gets the value undef.
That means that the file is not divided into records. The old current file
specification is restored. (The record separator specification stays with the
input file.) The file is then read. Because there is no record separator, the
entire file is read and deposited into the variable $buffer. There's one final
step, but that one is invisible. When the local $\ goes out of scope (at the end
of the function), the old value of $\ is restored. Although the result is only a
few lines of Perl, there’s a lot going on here:

17 my %o0ld_file = select IN_FILE;
18 local $/;

19 select $old file;

20 my $buffer = <IN FILE>;

Development Tools 191

Next you count the number of carriage returns, line feeds, and carriage
return/line feed combinations. The tr operator is used to count single char-
acters (carriage returns, line feeds). The substitution operator is used to count
the carriage return/line feed combinations:

22 my $cr = $buffer =~ tr/\r/\r/;
23 my $1f = $buffer =~ tr/\n/\n/;
24 my $crlf = $buffer =~ s/\r\n/\r\n/g;

Next you adjust the carriage return and line feed count so it reflects the
number of solo carriage returns and line feeds and does not include any
contained in the carriage return/line feed pairs.

28 $cr -= $crlf;
29 $1f -= $crlf;

At this point, if you have a text file, only one of the variables $cr, $1f, and
$crlf will be nonzero. All you have to do is figure out which one and print
out the results. If more than one of these variables is nonzero, then multiple
types of EOLSs are present in the file. This indicates a binary or confused file:

30 if (($cxr == 0) && ($1f == 0) && ($cxlf != 0)) {

31 print "$file:\tMicrosoft (<cr><1f>)\n";
32 } elsif (($cr == 0) && ($1f != 0) &8 ($crlf == 0)) {
33 print "$file:\tLinux/UNIX (<1f>)\n";
34 } elsif (($cxr != 0) & ($1f == 0) && ($crlf == 0)) {
35 print "$file:\tApple (<cr>)\n";
36 } else {
37 print "$file:\tBinary (<cr>=$cr <1f>=$1f <cr><lf>=$crlf)\n";
38 }
39 }
Hacking the Script

The script is fairly simple, but it still can be hacked. I'm sure that there are a
number of ways to use Perl tricks to improve the speed and efficiency of this
program.

#39 EOL Converter

Because different operating systems use different EOL conventions, when
moving text files from one system to another, you must perform an EOL
conversion. This script shows you one way of doing this.

192 cChoprere

The Code

1
2
3
4
5
6
7
8
9

=
5

1
12
1
14
1
1
17
1
19
2
21
2
23
2.
25
2
27
2
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[

w

o W

o

o

~

=

o

o

use strict;
use warnings;
sub usage()
{
print STDERR "Usage $0 <unix|linux|dos|mac|apple>\n";
exit(8);
}
binmode (STDIN);
binmode (STDOUT) ;
my $eol = "\n";
if ($#ARGV != 0) {
usage();
}
if ($ARGV[0] eq "linux") {
$eol = "\n";
} elsif ($ARGV[0] eq "unix") {
$e0l = "\n";
} elsif ($ARGV[0] eq "dos") {
$e0l = "\r\n";
} elsif ($ARGV[0] eq "apple") {
$eo0l = "\r";
} elsif ($ARGV[0] eq "mac") {
$eo0l = "\r";
} else {
usage();
}
while (1) {
my $ch; # Character from the input
Read a character
my $status = sysread(STDIN, $ch, 1);
if ($status <= 0) {
last;
}
if ($ch eq "\n") {
syswrite(STDOUT, $eol);
next;

Development Toals

193

44 }

45
46 if ($ch eq "\x") {
47 my $next_ch; # Check for \r\n
48 $status = sysread(STDIN, $next_ch, 1);
49 if ($status <= 0) {
50 syswrite(STDOUT, $eol);
51 last;
52 }
53
54 # Check for \r\n
55 if ($next_ch eq "\n") {
56 syswrite(STDOUT, $eol);
57 next;
58 }
59
60 syswrite(STDOUT, $eol);
61 $ch = $next_ch;
62 }
63 syswrite(STDOUT, $ch);
64 }
Running the Script

The script takes one parameter: the type of EOL you wish to end up with.
This can be apple, mac, linux, unix, or dos. The script reads the standard input
and writes out the converted file to the standard output. For example, to
convert a file to Linux format, use this command:

$ eol-change.pl linux <in-file.txt »out_file.txt

The Results

The result is a file with the lines in the correct format. Note that it doesn’t
matter what format the input is in; the program handles all types of text files
as input.

How It Works

Perl is a great language for dealing with strings. It was not designed to work

on characters. Sll, the job gets done, even if the program is a little inefficient.
The first thing the program does is to set binmode on the input and output.

This prevents Perl’s internal EOL logic from playing games with your file:

10 binmode (STDIN);
11 binmode (STDOUT});

You then read the file one character at a time using the sysread function:

36 my $status = sysread(STDIN, $ch, 1);

Each character is checked to see if it looks like an EOL (of any type).
For example, a line feed is one type of EOL:

41 if ($ch eq "\n") {

42 syswrite(STDOUT, $eol);
43 next;
44 }

Carriage return is a little trickier. A carriage return can be an end-of-line
indicator, or it can be the first character in a carriage return/line feed pair.
You need to check for both possibilities:

46 if ($ch eq "\r") {

47 my $next_ch; # Check for \r\n
48 $status = sysread(STDIN, $next_ch, 1);
49 if ($status <= 0) {

50 syswrite(STDOUT, $eol);

51 last;

52 }

53

54 # Check for \r\n

55 if ($next_ch eq "\n") {

56 syswrite(STDOUT, $eol);

57 next;

58 }

59

60 syswrite(STDOUT, $eol);

61 $ch = $next_ch;

62 }

Any other character is just passed from standard in to standard out:

63 syswrite(STDOUT, $ch);

Hacking the Script

The script as written is simple yet inefficient. It can be made more efficient at
the expense of simplicity. But for small-to-medium files, it does the job well
enough. And that’s what Perl is good for: providing a simple way to get the
job done well enough.

Developmant Tools 195

MAPPING

You might wonder what taking a long hike
out in the middle of nowhere has to do with
Perl. Well, I hike for exercise. When I go on

a long hike, I like to have a topographical map of
where I’'m going.

You can order maps from the United States Geological Survey (USGS),
but they take a long time to arrive. However, the USGS has allowed its
mapping data to be put online.

You can go to the site, http://terraserver.microsoft.com, and view a
topographical map or an aerial photograph for any part of the United States.
This is a pretty nice service if you like the Microsoft interface and if
you like getting your maps in small patches. It is possible, using about 50
to 100 clicks, to download enough patches to paste them together into a

usable map.

Fortunately, because this is government data, there is a documented way
you can freely download the data yourself.

198

So it is easy to write a Perl program to download, view, and print maps.

Instead of getting Microsoft’s peephole maps, you can actually get something
useful.

But there are lots of details that you have to worry about. For that

reason, I've split the job into three major sections. The first module, map.pm,
is designed to get data from the map server and cache it so you can display it
in the main GUIL The GUI is located in the main program, map.pl. Finally,
there is another module, goto_loc.pm, that handles requests for place names

(for

example, Goto San Diego).

#40 Getting the Map

In simple terms, this module gets a map. There are a number of details that
have to be handled to do this.

Chapter

o

The input to this module is a map description. It consists of the following

elements:

center The center of the map
type Type of map (a topographical map or aerial photograph)
scale The scale of the map

size The height and width of the map

The output consists of a matrix of image tiles that, when put together,

make a map.

The

B - JE Y. I VYRR NI

=
B o

1
1
14
15
16
17
18
19
20
21

w N

Code

use strict;
use warnings;

#

This module contains all the functions that
deal with the map server

and manipulate coordinates

#

package map;

require Exporter;
use vars qw/@ISA @EXPORT $x_size $y size $scale/;

@ISA = qw/Exportex/;
@EXPORT=qu/
$x_size
$y size
$scale
cache_dir
get_file

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
4
44
45
46

w

w
~

55

get_scale_factor
get_scales

init_map
map_to_tiles
move_map
scale_exists
set_center_lat_long
set_map_scale
toggle_type

Geo::Coordinates::UTM;
HTTP::Lite;

constant MAP_PHOTO => 1;# Aerial Photograph
constant MAP_TOPO => 2;# Topo map

$x_size = 3; # Size of the map in X
$y_size = 3; # Size of the map in Y
$scale = 12; # Scale for the map

my $map_type = MAP_TOPO;# Type of the map

Grand Canyon

360320N 1120820W)

(
Grand Canyon (36 03 20N 112 08 20MW)
my $center lat =

36.0 + 3.0 / 60.0 + 20.0 / (60.0 * 60.0);

my $center long =

(112.0 + 8.0 / 60.0 + 20.0 / (60.0 * 60.0));

my $cache_dir = "$ENV{HOME}/.maps";

convert fract($) -- Convert

to factional degrees

#

Knows the formats:

dddmmss

dd. ffff (not converted)
sub convert_fract($)

{

my $value = shift; # Value to convert

Fix the case where we have things

like 12345W or 134565

if ($value =~ /~([+-12\d+)([nNeEsSwh])$/) {
my $code; # Direction code
($value, $code) = ($1, $2);
if (($code eq 's') || ($code eq 'S') ||

wopping 199

72
73
74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

($code eq "W') || ($code eq 'w')) {
$value = -$value;

}

Is it a long series of digits

with possible sign?

if ($value =~ /~[-+]2\d+$/) {
USGS likes to squish things to
together +DDDmmSS
#
Cet the pieces
$value =~ /([-+]2)(\d+)(\d\d)(\d\d)/;
my ($sign, $deg, $min, $sec) =

(%1, $2, $3, $4);

Convert to fraction
my $result = ($deg + ($min / 60.0) +
($sec / (60.0%60.0)));

Take care of sign
if ($sign eg "-") (
return (-$result);
}
return($result);
}
if ($value =~ /*[-+]2\d*\.\d*$/) {
return ($value);
}
print "Unknown format for ($value)in";
return (undef);

set_center_lat_long($lat, $long) --

Change the center of a picture

sub set_center_lat long($$)

Coordinate of the map (latitude)
my $lat = shift;

Coordinate of the map (longitude)
my $long = shift;

$lat = convert fract($lat);
$long = convert_fract($long);

if (defined($long) and defined($lat)) {
$center lat = $lat;
$center_long = $long;

122 }

123

124 #

125 # Scales from

126 # http://terraserver.homeadvisor.msn.com/
127 # /About/AboutLinktoHtml.htm
128 #

129 # Fields

130 # Resolution -- Resolution of the
131 # map in meter per pixel
132 # factor -- Scale factor to turn UTM into
133 # tile number

134 # dog -- Aerial photo available
135 # drg -- Topo map available

136 #

137 my %scale_info = (

138 10 => {

139 resolution => 1,

140 factor =» 200,

141 doq =1,

142 drg =0

143 b

144 11 => {

145 resolution => 2,

146 factor => 400,

147 dog = 1,

148 drg =1

149 b

150 12 = {

151 resolution => 4,

152 factor =» 800,

153 doq =1,

154 drg =1

155 b

156 13 = {

157 resolution => 8§,

158 factor =» 1600,

159 doq =1,

160 drg =1

161 s

162 14 => {

163 resolution => 16,

164 factor =» 3200,

165 doq =1,

166 drg =1

167 }s

168 15 => {

169 resolution => 32,

170 factor => 6400,

171 dog =1,

Mapping

201

172
173

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

195
196
197
198
199
200
201
20
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

~

drg =1
I8
16 => {
resolution => 64,
factor => 12800,
doq = 1,
drg =1
I8
17 => {
resolution => 128,
factor =» 25600,
doq = 0,
drg =1
I8
18 = {
resolution => 256,
factor => 51200,
doq = 0,
drg =1
I8
19 = {
resolution => 512,
factor => 102400,
doq = 0,
drg =1
}
);
map_to_tiles()
#
Turn a map into a set of URLs
#

Returns the url array

sub map_to_tiles()

{
my @result;

Get the coordinates as UTM
my ($zone,$easting,$north)=latlon_to_utm(
'GRS 1980',$center_lat, $center_long);

Fix the zone, it must be a number
$zone =~ /(\d+)/;
$zone = $1;

Compute the center tile number
my $center x =
int($easting /
$scale_info{$scale}->{factor});

172
173

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

195
196
197
198
199
200
201
20
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

~

drg =1
I8
16 => {
resolution => 64,
factor => 12800,
doq = 1,
drg =1
I8
17 => {
resolution => 128,
factor =» 25600,
doq = 0,
drg =1
I8
18 = {
resolution => 256,
factor => 51200,
doq = 0,
drg =1
I8
19 = {
resolution => 512,
factor => 102400,
doq = 0,
drg =1
}
);
map_to_tiles()
#
Turn a map into a set of URLs
#

Returns the url array

sub map_to_tiles()

{
my @result;

Get the coordinates as UTM
my ($zone,$easting,$north)=latlon_to_utm(
'GRS 1980',$center_lat, $center_long);

Fix the zone, it must be a number
$zone =~ /(\d+)/;
$zone = $1;

Compute the center tile number
my $center x =
int($easting /
$scale_info{$scale}->{factor});

204

Chapter 10

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

"T=$url->{T}&S=$url->{S}&".
"X=$url->{X}&Y=3url->{¥}8Z=$url->{Z}";
print "Cetting $image_urlin";
The request
my $req = $http->request($image url);
if (not defined($req)) {
die("Could not get url $image url");
}
Dump the data into a file
my $data = $http->body();
open (OUT_FILE, "»$file_spec") or
die("Could not create $file spec");
print OUT_FILE $data;
close OUT_FILE;
}
return ($file_spec);
}
toggle type -- Change the map type
sub toggle type()
{
if ($map_type == MAP_TOPO) {
if ($scale_info{$scale}->{dog}) {
$map_type = MAP_PHOTO;
} else {
if ($scale_info{$scale}->{drg}) {
$map_type = MAP_TOPO;
}
}
}
get_scale factor -- Get the current scale
sub get _scale factor()
{
return ($scale info{$scale}->{factor});
}
set_map_scale($scale) -- Set the scale for map
#
Returns
true if the scale was set,
false if it's not possible to set

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

a

the scale to the give value
sub set_map_scale($)
{
The scale we want to have
my $new scale = shift;
if (not defined($scale_info{$new scale})) {
return(0);
}
if ($map_type == MAP_TOPO) {
if (not $scale_info{$new scale}->{drg}) {
return(0);
}
} else {
if (not $scale_info{$new scale}->{dog}) {
return(0);
}
}
$scale = $new_scale;
return (1);
}
scale_exists($scale)
#
Return true if the scale exists for

this type of map
sub scale_exists($)
{
my $test scale = shift; # Scale to check
if ($map_type == MAP_TOPO) {
if(not $scale_info{$test_scale}->{drg}) {
return (0);
}
} else {
if(not $scale_info{$test_scale}->{dog}) {
return (0);
}
}
return (1);
}
get_scales -- Get an array of possible scales
sub get_scales()
{
return (sort {$a <=> $b} keys %scale info);

Mapping

205

206

Chapter 10

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

=~

}

move_map($x, $y) -- Move the map in
the X and Y direction

sub move map($$)

{
my $x = shift; # Amount to move in X tiles
my $y = shift; # Amount to move in Y tiles

my ($zone,$east,$north)=
latlon to_utm('GRS 1980',
$center_lat, $center_long);

$east -= $x * get_scale_factor();
$north -= $y * get scale factor();

($center_lat, $center long) =
utm_to_latlon('GRS 1980',
$zone, $east, $north);

cache_dir -- Return the cache directory

sub cache_dir()

{

return($cache_dir);

i

init_map -- Init the mapping system.

sub init map()
{
if (! -d $cache dir) {
if (not mkdir($cache_dir, 0755)) {
die("Could not create cache directory");

Using the Module

The first thing you do is call init_map to initialize the module. The mapping
system assumes that you have a 3x3-tile topographical map centered around
the Grand Canyon.

At this point, you can call map_to_tiles and get a set of image specifica-
tions for this map (nine tiles for your 3x3 map). To turn a specification into
a file, call get_file.

The function move_map will move the map a certain number of tiles
in any direction. If you want to go to a different place entirely, call
set_center_lat_long.

You use the toggle_type function to change from a topographical map to
an aerial photograph.

Finally, the scale of the map can be adjusted using set_map_scale.

These are the major pieces; we'll get into some of the nasty details in the
section “How It Works.”

The USGS is responsible for mapping the nation. The folks there are the
ones who produce topographical maps. Microsoft maintains a web server
that allows you to download a topographical map or aerial photograph for
any place in the United States.

The Resulis

The result is that when you call map_to_tiles, you pass to get_file to get a set
of files that you can put together to make a map.

How It Works

The USGS data is online and can be accessed by anyone. Instructions on how
to download this data can be found at:
http://terraserver-usa.com/about.aspx?n=AboutLinktoHtml

Coordinate Systems

Earth is not flat. This is a big problem for mapmakers because maps are flat.
Most people locate a point on Earth using longitude and latitude. However,
these units suffer from some limitations. For example, it’s difficult to
measure the distance between two longitudes.

Mapmakers would much rather deal with a flat Earth than a round one.
For small patches, it’s OK to pretend that Earth is flat. So the standard
makers have devised a rectangular coordinate system for mapping points on
Earth called the Universal Transverse Mercator (UTM) system. There are
several different versions of this coordinate system out there and each one
uses its own ellipsoid for coordinate conversion. The United States
Geological Survey uses the North American Datum of 1983 (NADS3)
version.

Perl has a module to convert longitude/latitude to UTM. But there’s a
problem. This module has no provision for the NADS3 ellipsoid. Turns out
that that NADB83 is the same as an earlier standard, the Geodetic Reference
System 1980 (GRS 1980). (It took me about three weeks of searching the
Web to discover that GRS 1980 and NADS3 are the same. Obviously, Perl
programmers aren’t the only ones who can be a bit cryptic.)

Figuring out the language the various mapping agencies are using and
all the abbreviations is half the battle. The other half is Per] code.

rapping 207

Downloading Map Tiles

From the TerraServer you can download a 200x200-pixel tile containing a
map or aerial photograph of any place in the United States. But you need
to know the name of the tile. The first step in the process is to turn the
longitude /latitude coordinate into the UTM coordinate used by the server:

210 # Get the coordinates as UTM
211 my ($zone,$easting,$north)=1atlon to_utm(
212 'GRS 1980',$center_lat, $center_long);

To download a tile, you need to know five numbers:
X The easting number divided by a scale factor
The northing number divided by a scale factor
The zone number

The scale factor

I

The map type (1=Topographical, 2= Aerial Photograph, 3=Urban
Aerial Photographs)

Table 10-1 shows the various scale factors for each zoom level.

Table 10-1: Conversion Factors'

Resolution
Theme Scale Value (Meters per Pixel) UTM Multiplier
Urban 8 0.25 50
Urban Q 0.5 100
DOQ, Urban 10 1 200
DOQ, DRG, Urban 11 2 400
DOQ@, DRG, Urban 12 4 800
DOQ@, DRG, Urban 13 8 1,600
DOQ@, DRG, Urban 14 16 3,200
DOQ, DRG, Urban 15 32 6,400
DOQ, DRG, Urban 16 64 12,800
DOQ, DRG, Urban 17 128 25,600
DOQ@, DRG, Urban 18 256 51,200

! From the AP| specification: hitp:/ /terraserverusa.com/about.aspx2n=AboutlinktoHtm|

The TerraServer contains three types of data. The first, digital raster
graphic (DRG), is a topographical map. The next, digital orthophoto
quadrangle (DOQ), is an aerial photograph. Finally there is Urban, which
indicates a USGS Urban Area photograph. This script does not handle
Urban images because they cover only a limited area and because at the time
the script was originally written, this type of data was not available.

NOTE

Sa let’s see what it takes to create a map of the Grand Canyon. You start
with the coordinates of the visitor’s center in the park:

36°03'20"N 112°08'20"W

Now you need to get the S, T, X, Y, and Z values for the tile. You want a
topographical map, so the type is 1 (T=1), and you want the highest
resolution possible. For topographical maps, that is 1 meter per pixel.
Looking through the table, you can see that the scale factor is 11 (S=11).

When you convert the longitude /latitude to UTM, you get this:

Zone 128
Easting 397424
Northing 3990710

The TerraServer wants the zone without the north/south indicator, so
the zone is 12 (Z=12).

The table shows that the scale factor is 800. Dividing that into the
easting, you get 496 (X=496). Performing a similar conversion on the
northing gives you a’Y of 4988. As a result, the full URL for the map tile is
http://terraserver-usa.com/tile.ashx?T=2&5=128&X=496&Y=4988&Z=12.

The X- and Y-coordinate numbers are consecutive. So by decrementing the X number
by 1, you get the tile o the left of the current tile, incrementing the Y number by 1 gives
the tile below the current tile, and so on.

Getfing the Data

The get_file function is responsible for turning a tile specification into an
image file. The module HTTP::Lite is used to fetch the file.
The first thing you do is create a HTTP: :Lite object for downloading:

266 # Connection to the remote site
267 my $http = new HTTP::Lite;

Next you turn your tile specification into a URL:

269 # The image to get

270 my $image_url =

271 "http://terraserver-usa.com/tile.ashx?".
272 "T=$url->{T}&S=3url->{S}8".

273 "K=purl->{X}ay=$url->{Y}8zZ=$url->{Z}";

The next step is to create an HTTP request to get the data:

276 # The request
277 my $req = $http->request($image_url);
278 if (not defined($req)) {

Mapping 209

210

Chapter

o

279 die("Could not get url $image_url");
280 }

This gets all sorts of information about the page. All you want is the data,
so you take the body of the page and dump it to a file. It is this file that you
give back to the user as the image file they want:

282 # Dump the data into a file

283 my $data = $http->body();

284 open (OUT_FILE, "»$file_spec") or

285 die("Could not create $file spec");
286 print QUT_FILE $data;

287 close OUT_FILE;

288 }

Moving the Map

You allow the map to be panned to the left or right. The move_map function
moves the map by tiles. But you store your center point as longitude/
latitude. Changing the center is not as simple as just adding in a constant to
these values.

The problem is that longitude curves. So in order to recenter, you need
a rectangular coordinate system, in this case UTM. The amount to move is
determined by the scale factor. The move_map function schanges the center
point by one tile in the X or Y direction or both. Each parameter to this
function can have the value 1, 0, or —1. The result of this function is a new
map with a different center point.

373

374 # move map($x, $y) -- Move the map in

375 # the X and Y direction

376

377 sub move_map($$)

378 {

379 my $x = shift; # Amount to move in X tiles
380 my $y = shift; # Amount to move in Y tiles
381

382 my ($zone,$east,$north)=

383 latlon_to_utm('GRS 1980',

384 $center lat, $center long);

385

386 $east -= $x * get_scale factor();
387 $north -= $y * get_scale_factor();

388

389 ($center_lat, $center_long) =

390 utm_to latlon('GRS 1980',

391 $zone, $east, $north);
392 }

Hacking the Script

This module was created by the process of successive experimentation: try

something, see if works, try something else, see if it works, add a little to the
code, and so on. In other words, there’s not a whole lot of design that went
into this module.

As a result, the API is a little more complex and cluttered than it needs

to be. The code could use a little cleaning up. But then again, this is Wicked

Cool Perl Seripts, not Clean Pretty Perl Seripls, so have fun.

#41 Map Generator

With this program, the user can view and print topographical maps and
aerial photographs of any place in the United States. Its job is to take the
data from the mapping module and display it in a way you can use it.

The Code
1 use strict;
2 use warnings;
3
4 use Tk;
5 use Geo::Coordinates::UTM;
6 use HTTP::Lite;
7 use Tk::Photo;
8 use Tk::JPEG;
9 use Tk::LabEntry;
10 use Tk::BrowseEntry;
11 use Image::Magick;
12
13 use map;
14 use goto loc;
15
16 my $tk_mw; # Main window
17 my $tk_canvas; # Canvas on the main window
18 my $tk_nav; # Navigation window
19
20 my $goto long = 0; # Where to go from the entry
21 my $goto_lat = 0;
22
23 # The buttons to display the scale
24 my @tk_scale buttons;
25
26
27 # do_error -- Display an error dialog
28
29 sub do_error($)
30 {
31 # Error message to display

Mapping m

32 my $msg = shift;

34 $tk_mw->messageBox(
35 -title => "Error",
36 -message => $msg,
37 -type => "0K",

38 -icon =» "error"
39)i

43 # get photo($) -- Get a photo from a URL

45 sub get_photo($)
46 {
47 my $url = shift; # Url to get

49 # File containing the data
50 my $file_spec = get_file($url);

52 my $tk_photo =
53 $tk_mw->Photo(-file => $file_spec);

55 return ($tk_photo);

59 # paint_map(@maps)
60 #
61 # Paint a bitmap on the canvas

63 sub paint_map(@)
64 {
65 my @maps = @_; # List of maps to display

67 # Delete all the old map items
68 $tk_canvas->delete("map");

69

70 for (my $y = 0; Sy < $y_size; ++3y) {

71 for (my $x = 0; $x < $x_size; ++$x) {
72 my $url = shift @maps;# Get the URL
73 # Turn it into a photo

74 my $photo = get_photo($url);

75 $tk_canvas->createImage(

76 $x * 200, $y * 200,

77 -tags => "map",

78 -anchor => "nw",

79 -image => $photo);

80 }

81 }

212 Choprer 10

83
84
85
86
87
88
89
9
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

=}

$tk_canvas->configure(
-scrollregion => [
$tk_canvas->bbox("all")]);
}
show_map -- Show the current map
sub show_map()
{
my @result = map_to_tiles();
Repaint the screen
paint_map(@result);
}
do_move($x, $y) -- Move the map in
the X and Y direction
sub do_move($$)
{
my $x = shift; # Amount to move in X tiles
my $y = shift; # Amount to move in Y tiles
move_map($x, $y);
show_map();
}
change_type -- Toggle the type of the map
sub change_type() {
toggle_type();
set_scale($scale);
show_map()
}
set_scale($new_scale) --
Change the scale to a new value
sub set_scale($) {

The scale we want to have
my $new_scale = shift;

if (not set_map_scale($new_scale)) {
return;

}

$scale = $new_scale;

for (my $i = o0;
$i <= $#tk scale_buttons; ++$i) {

if (($1i + 10) == $scale) {

Mapping 213
pping

132
133

135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153

w

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

=)

$tk_scale_buttons[$i]->configure(
-background =»> "green"

)
} else
The background
my $bg = "white";
if (not scale exists($i + 10)) {
$bg = "gray”;
}
$tk_scale buttons[$i]->configure(
-background => $bg
)i
}
}

show_map() ;

change_canvas_size --

Change the size of the canvas

sub change_canvas_size()

if ($x_size <= 0) {
$x_size = 1;

}

if ($y_size <= 0) {
$y_size = 1;

}

$tk_canvas-»configure(
-width => $x_size * 200,
-height => $y_size * 200);
show_map();

The name of the image file to save
my $save_image_name = "map_image";

my $tk_save_image; # The save image popup

use Image::Magick;

do_save_image --

Save the image as a file
(actually do the work)

sub do_save_image()

if ($save_image_name !~ /\.(jpg|jpeg)$/) {
$save_image name .= ".jpg";

}

182
183
184
185
186
187
188
189
190
191
192
193

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

List of tiles to write
my @tiles = map to tiles();

The image array
my $images = Image::Magick->new();

Load up the image array

foreach my $cur tile (@tiles) {
The file containing the tile
my $file = get file($cur tile);

The result of the read
my $result = $images->Read($file);
if ($result) {
print
"ERROR: for $file -- $result\n";

Put them together

my $new_image = $images->Montage(
geometry => "200x200",
tile =» "${x_size}x$y_size");

my $real_save_image_name = $save_image_name;
if ($save_image name =~ /%d/) {
for (my $i = 0; ; ++%i) {
$real save image name =
sprintf($save_image_name, $i);
if (1 -f $real save image name) {
last;
}

}

Save them
$new_image->Write($real save_ image name);
$tk_save_image->withdraw();
$tk_save_image = undef;

save_image -- Display the save image popup

sub save image()

{

if (defined($tk_save_image)) {
$tk_save_image->deiconify();
$tk_save_image->raise();
return;

topping 215

232
233

235
236
237
238
239
240
241
242
243

245
246
247
248
249
250
251
252
253

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

275
276
277
278
279
280
281

$tk_save_image = $tk_mw->Toplevel(
-title => "Save Image");

$tk_save_image->LabEntry(
-label => "Name: ",
-labelPack => [-side => 'left'],
-textvariable => \$save_image_name
)->pack(
-side => "top",
-expand => 1,
-fill =» 'x'
)i
$tk_save_image->Button(
-text => "Save",
-command => \&do_save_image
)->pack(
-side => 'left’
)i
$tk_save_image->Button(
-text => "Cancel”,
-command =»
sub {$tk_save image->withdraw();}
)-»pack(
-side => 'left’

)5

print_image --

Print the image to the default printer
(Actually save it as postscript)

sub print_image()

List of tiles to write
my @tiles = map_to_tiles();

The image array
my $images = Image::Magick->new();

Load up the image array

foreach my $cur_tile (@tiles) {
The file containing the tile
my $file = get_file($cur_tile);

The result of the read
my $result = $images->Read($file);
if ($result) {
print
"ERROR: for $file -- $resultin”;

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307 }

Put them together

my $new_image = $images->Montage(
geometry => "200x200",
tile => "${x_size}x$y size");

my $print file; # File name for printing

for (my $i = 0; ; ++$i) {
if (! -f "map.$i.ps") {
$print_file = "map.$i.ps";
last;
}
}
Save them
$new_image->Set(page => "Letter");
$new_image->Write($print_file);
$tk_mw->messageBox(
-title => "Print Complete",
-message =>
"Print Done. Output file is $print file",
-type => "OK",
-icon => "info"

)5

308

309 # goto_lat long -- Goto the given location

310

311 sub goto lat long()

312 {
313
314 }
315
316

set_center_lat long($goto_lat, $goto_long);

317

318 # scroll listboxes -- Scroll all the list boxes

319 #
320 #
321

(taken from the 0'Reilly book
with little modification)

3
323 {
324
325
326
327
328
329
330
331 }

e}

2 sub scroll_listboxes

my ($sb, $scrolled, $lbs, @args) = @_;

$sb->set(Rargs);
my ($top, $bottom) = $scrolled->yview();
foreach my $list (@$%lbs) {

$1list->{tk list}->yviewMoveto($top);
}

Mapping 217
pping

332

333 # Mapping from direction to image names
334 my %images = (

335 ul => undef,

336 u => undef,

337 ur => undef,

338 1 => undef,

339 r => undef,

340 dl => undef,

341 d => undef,

342 dr => undef,

343);

344

345 my @key bindings = (

346

347 key => "<Key-j>»",

348 event =» sub{do_move(0, +1)}
349 1,

350

351 key => "<Key-k»",

352 event =» sub{do_move(0, -1)}
353 1

354

355 key => "<Key-h>",

356 event =» sub{do_move(+1, 0)}
357 1

358

359 key => "<Key-1>",

360 event =» sub{do_move(-1, 0)}
361 b

362

363 key => "<Key-p>",

364 event => \print_image

365 1

366

367 key => "<Key-q»",

368 event =» sub { exit(o)}

369 b

370

7 key => "<Key-x>",

372 event =» sub { exit(o)}

373 1,

374

375 key => "<Key-s>",

376 event => \&save_image

377 }s

378);

379

380

381 # build gui -- Create all the GUI elements

218 cChoprer 100

382

=3

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

sub build gui()

{

$tk_mw = MainWindow->new(
-title => "Topological Map");

my $tk_scrolled = $tk_mw->Scrolled(
'Canvas’',
-scrollbars =>

)->pack(
-fill => "both",
-expand => 1,
-anchor =» 'n',
-side => 'top’

Skl

)5

$tk_canvas =
$tk_scrolled->Subwidget('canvas');
$tk_canvas->configure(
-height => 600,
-width => 600
)i
$tk_canvas->CanvasBind("<Button-1>",
sub {set_scale($scale-1)});

$tk_canvas->CanvasBind("<Button-2>",
sub {set_scale($scale+1)});

$tk_canvas->CanvasBind("<Button-3>",
sub {set_scale($scale+1)});

foreach my $cur_image (keys %images) {
The file to put in the image
my $file name = "arrow $cur_image.jpg";

Create the image
$images{$cur_image} = $tk_mw->Photo(
-file => $file_name);
}
$tk_mw->Button(-image => $images{ul},
-command =» sub {do_move(-1, 1)})-»>grid(
$tk_mw->Button(
-image => $images{u},
-command => sub {do_move(0, 1)}
)s
$tk_mw->Button(
-image => $images{ur},
-command => sub {do_move(1, 1)}
)s

-sticky => "nesw"

vopping 219

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

);
$tk_mw->Button(-image => $images{l},
-command => sub {do_move(-1, 0)})->grid(
$tk_scrolled,
$tk_mw->Button(
-image =»> $images{r},
-command => sub {do_move(1, 0)}

)s
-sticky => "nesw"
)i
$tk_mw->Button(
-image => $images{dl},
-command =» sub {do_move(-1, -1)}
)->grid(
$tk_mw->Button(
-image => $images{d},
-command => sub {do_move(0, -1)}
)s
$tk_mw->Button(
-image => $images{dr},
-command => sub {do_move(1, -1){
)s
-sticky => "nesw"
)i
$tk_mw->gridColumnconfigure(1, -weight => 1);
$tk_mw->gridRowconfigure(1, -weight =» 1);

TODO: Is there some way of

making this on top?

$tk_nav = $tk_mw->Toplevel(
-title => "Map Control");

Map the keys
foreach my $bind (@key_bindings) {
$tk_mw->bind($bind->{key},
$bind->{event});

$tk_nav->bind($bind->{key},
$bind->{event});
}

The item to set the scale
my $tk_scale_frame = $tk_nav->Frame();
$tk_scale frame->pack(

-side => 'top',

-anchor => 'w'

)5

$tk_scale_frame->Button(
-text => "+",

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

-command => sub {set_scale($scale-1)}
)->pack(
-side => 'right'

)i

Go through each scale and produce
a button for it.
foreach my $info (get scales()) {
push(@tk_scale_buttons,
$tk_scale frame->Button(
-bitmap => "transparent”,
-width => 10,
-height => 20,
-command =>
sub {set_scale($info);}
)->pack(
-side => 'right'
1);
}

$tk_scale_frame->Button(

-text = "-"

-command => sub {set_scale($scale+1) }
)->pack(

-side => 'right'

)i

$tk_nav->Button(
-text => "Toggle Type",
-command => \&change type
)-»pack(
-side => "top",

-anchor => "w

)i

The frame for the X size adjustment
my $tk_map x = $tk_nav->Frame()->pack(
-side => "top",
-fill => "x",
-expand => 1

)i

$tk_map_x->Label(
-text => "Map Width"
)->pack(
-side => "left"

)i
$tk_map_x->Button(

Mapping

m

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

-command => sub {set_scale($scale-1)}
)->pack(
-side => 'right'

)i

Go through each scale and produce
a button for it.
foreach my $info (get scales()) {
push(@tk_scale_buttons,
$tk_scale frame->Button(
-bitmap => "transparent”,
-width => 10,
-height => 20,
-command =>
sub {set_scale($info);}
)->pack(
-side => 'right'
1);
}

$tk_scale_frame->Button(

-text = "-"

-command => sub {set_scale($scale+1) }
)->pack(

-side => 'right'

)i

$tk_nav->Button(
-text => "Toggle Type",
-command => \&change type
)-»pack(
-side => "top",

-anchor => "w

)i

The frame for the X size adjustment
my $tk_map x = $tk_nav->Frame()->pack(
-side => "top",
-fill => "x",
-expand => 1

)i

$tk_map_x->Label(
-text => "Map Width"
)->pack(
-side => "left"

)i
$tk_map_x->Button(

Mapping

m

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

-command => \&print_image
)->pack(
-side => "top",

-anchor => "w

)5

The frame for the lat/log goto button
my $tk_lat long = $tk_nav->Frame(

)-»pack(
-side => "top",
-expand => 1,
-fill => "x"

)i

$tk_lat_long->Label(
-text => "Latitude:"
)-»pack(
-side => "left"
)
$tk_lat long->Entry(
-textvariable =» \$goto_lat,
-width => 10
)-»pack(
-side => "left"
)
$tk_lat long->Label(
-text => "Longitude"
)->pack(
-side => "left"
)i
$tk_lat_long->Entry(
-textvariable => \$goto_long,

-width => 10
)->pack(
-side => "left"

)i

$tk_lat long->Button(
-text => "Goto Lat / Long",
-command => \&goto lat long
)-»pack(
-side => "left"
)
$tk_nav->Button(
-text =» "Goto Location",
-command => sub { goto loc($tk mw);}
)-»pack(
-side => "top",

-anchor => "w

)i

Mapping

223

224

Chapter 10

632 $tk_nav->Button(

633 -text => "Exit",

634 -command => sub {exit(0);}
635)->pack(

636 -side =» "top",

637 -anchor =» "w"

638);

639

640 $tk_nav->bind('<Destroy>', sub { exit(0);});
641 $tk_nav->raise();

642 }

643

644 init_map();

645 build gui();

646

647 # Grand Canyon (360320N 1120820W)
648 set_center_lat_long(360320, -1120820);
649 set_scale(12);

650

651 show map();

652 $tk_nav->raise();

653

654 MainLoop();

Running the Script

‘When the script starts, it displays a map window and a control window.

Frint

Exar

bap Height JJ
Save nage

Latitusie: [0 Lungiturie [0 Golo Lal £ Lung s
Goto Location

2

A detailed view of the control panel can be seen in the following figure.

Zoom ;

level

Save Image]

Print

Latitude: [0

Goto Location

The controls in this GUI are as follows:

Longitude [0

e | 1] il

oggle Type
Map Width _f_J _;_J
Map Height ;I _l

Goto Lat / Long

Zoom Level

Controls the zoom level of the map. Pressing + increases the zoom level.
Similarly, — decreases it. Click any of the buttons in between to set the
zoom level to the corresponding level. (Not all zoom levels are available
for each map type.)

Toggle Type

Changes the map type from topographical map to aerial photograph

and back.

Map Width

Increases or decreases the map width by one tile (200 pixels).

Map Height

Increases or decreases the map height by one tile (200 pixels).

Save Image

Saves the image to a file. (The program prompts you for the file name.)

Print

Saves the image as a PostScript file suitable for printing.

Goto Lat/Long
Takes you to the given latitude and longitude.

Goto Location

Displays a dialog you can use to select a location by name (i.e., Grand

Canyon or San Diego, CA).

Exit

Gets you out of the program.

226

Chopter 10

You can toggle between topographical maps and aerial photographs.

You use the arrows at the edge of the map to scroll the view in any
direction.

Clicking the Goto Location button brings up a dialog in which you select
a named location to go to. This will be discussed in the next section.

How It Works

The basic algorithm is fairly simple: get the needed tiles and paint them
on the screen. Sounds simple, but there are hundreds of details and lots
of controls to worry about.

Displaying the Map

To display a map, you first get the specification for the tiles that are to be
displayed and then send them off to be painted on the screen:

87

88 # show_map -- Show the current map
89

90 sub show_map()

91 {

92 my @result = map_to_tiles();
93 # Repaint the screen

94 paint_map(@result);

95 }

The paint_map function goes through each tile on the screen:

70 for (my $y = 0; $y < $y_size; ++%y) {
71 for (my $x = 0; $x < $x_size; ++$x) {

The tile is turned into a Tk: :photo and the system paints it on the canvas:

72 my $url = shift @maps;# Get the URL
73 # Turn it into a photo

74 my $photo = get_photo($url);

75 $tk_canvas->createImage(

76 $x * 200, $y * 200,

77 -tags => "map",

78 -anchor => "nw",

79 -image => $photo);

The get_photo function is responsible for turning a tile specification into
a Tk: :photo you can display. It uses the map.pm module to get the image file
containing the tile and the Tk: :photo module to turn it into a displayable Tk
object:

42
43 # get_photo($) -- Get a photo from a URL
44
45 sub get_photo($)
46 {
47 my $url = shift; # Url to get
48
49 # File containing the data
50 my $file_spec = get_file($url);
51
52 my $tk_phote =
53 $tk_mw->Photo(-file => $file_spec);
54
55 return ($tk_photo);
56 }
Saving the Map

To save an image, you need to take all your tiles and put them together to
form one big image. The Image::Magick package provides you with the tools to
do this. This module includes a rich set of image manipulation functions that
allow you to do just about anything to an image.

The first step in putting your tiles together is to create the image object:

185
186

The image array

my $images = Image::Magick->new();

Next you read in all the tiles and store them in the image:

188
189
190

Load up the image array

foreach my $cur tile (@tiles) {
The file containing the tile

Mapping 227

228

Chapter

o

191 my $file = get_file($cur_tile);

192

193 # The result of the read

194 my $result = $images->Read($file);

195 if ($result) {

196 print

197 "ERROR: for $file -- $result\n";
198 }

199 }

You use the Montage function to put them together. This function creates
a montage of all the images that have been loaded in the object. In this case,
the geometry of each cell in the montage is 200x200 pixels (the tile size)
and number of rows and columns of the composition are determined by the
number of rows and columns in the main map window ($x_size, $y_size).

201 # Put them together

202 my $new_image = $images->Montage(
203 geometry => "200x200",
204 tile =» "${x_size}x$y_size");

The last step is to write out the result:

216 # Save them
217 $new_image->Write($real save_image name);

Printing the Map

Actually, the script does not print the map. Instead, it creates a PostScript file
that the user can print. The code to create the PostScript is very similar to the
image save code except that, instead of writing a JPEG file, it writes a
PostScript file.

Huacking the Script

The original purpose of this program was to provide me with maps for
hiking. It would be nice to be able to annotate the images with information.
In particular, it would be nice to be able to trace a trail on an aerial

photograph and have the same line show up on the topographical map.

Also, an interface to a GPS system would be nice so that you could
download GPS tracks and have them drawn on the maps as well.

If you wanted to get really fancy, the USGS has digital elevation data
available that would allow you to convert the aerial photographs into 3D
images. I'm not sure why you’d want to do that, but it would be really wicked
and very cool.

#42 The Location Finder

When the mapping program was first written, you could get a map of any

place in the United States. This was useful if you knew the coordinates, but
you couldn’t tell the system to give you a map of Lake Dixon by name. That’s
where the location finder comes in.

The Code

1
2
3
4
5
6
7
8
9

1
11
12
13
14
15
16
17
18
19
20
21
22
2
24
25
26
2
28
29
30
31
32
33
34
35
36
37

o

w

-~

use strict;
use warnings;

#

This module contains the info needed to go
to a named location

#

package goto loc;

use Tk;

use Geo::Coordinates::UTM;
use HTTP::Lite;

use Tk::Photo;

use Tk::JPEG;

use Tk::LabEntry;

use Tk::BrowseEntry;

use Image::Magick;

use map;

require Exporter;
use vars qw/@ISA @EXPORT/;

@ISA = qw/Exporter/;
@EXPORT=qu/goto_loc/;

my $tk_goto_loc;# Goto location popup window

my $place_name; # Name of the place to go to

my $state; # State containing the place name
my $tk_mw; # Main window

#

The scrolling lists of data
#

Mapping

229

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Fields

name -- The title of the data

index -- Index into the data fields for
the place data

width -- Width of the field

#

my @data_list = (
{ #0
name => "Name",
index => 2,
width => 30

name => "Type",
index =» 3,
width => 10,

name => "County",
index => 4,
width => 20,

{ #3
name => "Latitude",
index => 7,
width => 10,

name => "Longitude",
index => 8§,
width => 10,

#5
name => "Elevation",
index =» 15,
width => 9,

);

List of states and two character abbreviations
my @state_list = (

"AK = Alaska",

"AL = Alabama",

"AR = Arkansas",

"AS = American Samoa",

"AZ = Arizona",

"CA = California",

"C0 = Colorado”,

"CT = Connecticut",

"DC = District of Columbia",

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137

"DE

"EL =

"FM
"GA
"GU
"HI
"IA
"ID
"IL
"IN

T =

s
"y
LA

"D
"ME

"MH =

"MI
"MN
"MO
"MP
"MS
"MT
"NC

"ND =

"NE
"NH
"N
"NM
"NV
"NY
"OH

oK =

"OR
"PA
"PR

"oy =

"RI
"sC
"sD
"N
"TX
"ut
"VA
"VI
VT
"WA
"WI

"

WY =

Delaware",
Florida",
Federated States of Micronesia”,
Georgia",

Guam",

Hawaii",

Towa",

Idaho",
Illinois",
Indiana",

All Indian Tribes",
Kansas",
Kentucky",
Louisiana",
Massachusetts”,
Maryland”,
Maine",

Marshall Island",
Michigan",
Minnesota",
Missouri”,
Northern Mariana Islands",
Mississippi”,
Montana",

North Carolina”,
North Dakota",
Nebraska",

New Hampshire",
New Jersey”,

New Mexico",
Nevada",

New York",

Ohio",

Oklahoma",
Oregon”,
Pennsylvania”,
Puerto Rico",
Palau, Republic of",
Rhode Island",
South Carelina",
South Dakota",
Tennessee",
Texas",

Utah",

Virginia",

Virgin Islands",
Vermont",
Washington",
Wisconsin",

West Virginia",

Mapping

231

232

Chapter 10

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

B s

v

);

"WY = Wyoming"

The window with the places in it
my $tk_place_where;

jump_to_loc --

#
#

Jump to the location specified
in the 1ist box

sub jump_to_loc()

{

my $cur_selection =
$data_list[0]->{tk list}->curselection();

if (not defined($cur_selection)) {

do_error(
"You need to select an item to jump to"
)
return;
}
Where we're jumping to
my $lat =

$data_1ist[3]->{tk list}->get(
$cur_selection->[0]);

my $long =
$data_list[4]->{tk_list}->get(
$cur_selection->[0]);

set_center_lat_long($lat, $long);
::show_map();

select _boxes -- Called when a Listbox

#
#
#

gets a selection

So make everybody walk in lock step

sub select_boxes($)

{

The widget in which someone selected
my $tk_widget = shift;

my $selected = $tk widget->curselection();

foreach my $cur data (@data list) {

188 $cur_data-»{tk_list}->selectionClear(

189 0, 'end");

190

191 $cur_data->{tk_list}->selectionSet(
192 $selected->[0]);

193 }

194 }

195

196

197 # Given a state name, return the

198 # file with the information in it
199

200 sub info_file($)

201 {

202 my $state = shift; # State we have
203

204 # The file we need for this state
205 my $file spec = cache dir()."/${state} info.txt";
206 return ($file_spec);

207 }

208

209

210 # get_place_file($) --

211 # Get a place information file
212 # for the give state

213

214 sub get_place_file($)

215 {

216 my $state = shift; # URL to get
217

218 # The file we need for this state
219 my $file spec = info_file($state);
220

221 if (1 -f $file spec) {

222 # Connection to the remote site
223 my $http = new HTTP::Lite;

224

225 # The image to get

226 my $place_url =

227 "http://geonames.usgs.gov/".
228 "stategaz/${state} DECI.TXT";
229 print "Getting $place urli\n";
230

231 # The request

232 my $req = $http->request($place_url);
233 if (not defined($req)) {

234 die("Could not get url $place_url");
235 }

236

237 # Dump the data into a file

wvopping 233

238
239
240
241
242
243

245
246
247
248
249
250
251
252
253

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

275
276
277
278
279
280
281
282
283
284
285
286
287

my $data = $http->body();

open (OUT_FILE, ">$file spec") or
die("Could not create $file_spec");

print OUT_FILE $data;

close OUT_FILE;

}

return ($file_spec);

do_goto_loc -- Goto a given location

sub do_goto_loc()

if ((not defined($state)) ||
($state eq "")) {
do_erroxr("No state selected");
return;

}

if (not defined($place name)) {
do_erroxr("No place name entered");
return;

}

if ($place_name =~ /"\s*$/) {
do_erroxr("No place name entered");
return;

The state as two character names
my $state2 = substr($state, 0, 2);
get_place_file($state2);

The file containing the state information
my $state file = info file($statez);

open IN FILE, "<$state_file" or
die("Could not open $state_file");

my @file_data = <IN_FILE>;
chomp(@file data);
close(IN_FILE);

#T0D0: Check to see if anything matched,
if not error

if (defined($tk_place where)) {
$tk_place_where->deiconify();
$tk_place where->raise();

} else {
The pick a place screen

288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

$tk_place_where = $tk_mw->Toplevel(
-title => "Goto Selection");

Frame in which we place our places
my $tk_place_frame =
$tk_place where->Frame();

The scrollbar for the place list
my $tk_place_scroll =
$tk_place where->Scrollbar()->pack(
-side =» 'left',
-fill = 'y’
)

Loop through each item and construct it
foreach my $cur_data (@data list) {
$cur_data->{tk_frame} =
$tk_place frame->Frame();

$cur_data->{tk_frame}->Label(
-text => $cur_data->{name}

)->pack(
-side => "top’

)i

$cur_data->{tk_list} =
$cur_data->{tk_frame}->Listbox(
-width => $cur_data->{width},
-selectmode =»> 'single’,
-exportselection => 0

)->pack(
-side => "top",
-expand => 1,
-fill => "both"

)i

$cur_data->{tk_list}->bind(
"<<ListboxSelect>>",
\&select_boxes);

$cur_data->{tk_frame}->pack(
-side => "left"

)5

Define how things scroll
$cur_data->{tk_list}->configure(
-yscrollcommand =>
[\&scroll listboxes,
$tk_place_scroll,
$cur_data->{tk_1list},
\@data_list]);

vopping 235

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

define how the scroll bar works
$tk_place_scroll->configure(
-command => sub {
foreach my $list (@data_list

) o
$1list->{tk_list}->yview(@)

3

}

}
)i
Put the frame containing the list
on the screen
$tk_place_frame->pack(

-side => 'top',

-fill => 'both',

-expand => 1);

$tk_place_where->Button(
-text => "Go To",
-command => \&jump_to_loc

)->pack(
-side => 'left’

)i

$tk_place_where->Button(
-text => "Close",
-command => sub {

$tk_place where->withdraw();

}

)->pack(
-side => 'left’

)i

foreach my $cur_result (@file_data) {

Split the data up into fields

See http://gnis.usgs.gov for field list

my @data = split /\|/, $cur_result;

if ($data[2] !~ /$place_name/i) {
next;

}

foreach my $cur_data (@data list) {
$cur_data->{tk_list}->insert('end’,

$data[$cur_data->{index}]);
}

foreach my $cur_data (@data_list) {

$cur_data->{tk_list}->selectionSet(0);

387

388 # goto_loc -- Goto a named location

389 #

(popup the window to ask the name)

390

391 sub goto loc($)

392 {
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434 }
435
436 1;

$tk_mw = shift;

if (defined($tk_goto loc)) {
$tk_goto_loc->deiconify();
$tk_goto_loc->raise();
return;

}

$tk_goto_loc = $tk_mw->Toplevel(
-title => "Goto Location");

#T0D0: Add label
$tk_goto_loc->BrowseEntry(
-variable => \jstate,
-choices =» \@state list,
)-»pack(
-side => "top",

)5

#T0D0: Add place type
$tk_goto_loc->LabEntry(
-label => "Place Name: ",
-labelPack => [-side =» 'left'],
-textvariable => \$place_name
)->pack(
-side => "top",
-expand => 1,
-fill = 'x'
)
$tk_goto_loc->Button(
-text =» "Locate",
-command => \&do_goto loc
)-»pack(
-side => 'left’
)i
$tk_goto_loc->Button(
-text => "Cancel",
-command =»
sub {$tk_goto_loc->withdraw();}
)->pack(
-side => 'left’
)i

Mapping

237

238

Chapter

o

Running the Script

If you click Goto Location, the program calls the goto_loc function in this
module. This displays a dialog that asks you for the name of the location and
the state in which it’s located.

[e e TBCaTD P00 |
CA = Califamia 3+
Place Name: Ilrnm mountair|

Locate | cancel |

It then displays a list of all the locations that match that name and you
select the correct one.

Name Type County Latitude Longitude Elevation
Iron Mountain summit l Calaveras ‘ 375248N l 1204050% (990 ‘
Iron Mountain sumimit El Dorado 3642140 1202119% 6242
Iron Mountain summit El Dorado 384423 1210434% (911
Iron Mountain summit Kem 354113N [1185054W (2486
Iron Mountain summit Los Angeles 347TIBN 1174243 (8007
Iron Mountain summit Los Angeles 342055M [1181343W 5635
Iron Mountain summit. lLos Angeles 342021N 1180528W 5040
Iron Mountain summit. Madera 37361 N 1190947% 11149
Iron Mountain summit. Madera 371108 1195736 (984

; GoTo | Cose |

One final note: The program caches the image files and other
information files in $HOME/ .maps. It never removes any files from this
cache, so you'll need to clean out this directory every so often.

How It Works

The USGS maintains a gazetteer containing the names of all the significant
and most of the insignificant places in the United States. The actual URL for
this information is http://geonames.usgs.gov/stategaz.

For each state, there is a data file containing the place names. For
example, the information on California can be found at http://
geonames.usgs.gov/stategaz,/CA_DECLTXT.

This is a text file with pipe (|) separated fields, something Perl eats for
lunch. Here are the first few lines of the California file:

664200|CA|10 Mg Walteria 1049 Dam|dam|Los Angeles|06|037]|334718N|1182012M|
33.78833|-118.33667||| ||| | |Torrance

1664803 | CA|101 Ranch|locale|Madera|06|039]|370852N|1194019K|37.14778]-
119.67194| || ||]]|0'Neals

1663277|CA[10th and Western 5-004 Dam|dam|Los Angeles|06|037]|341042N]|1181654M|
34.17833|-118.28167||| ||| | |Burbank

1655057|CA|2 S Ranch 3220 Dam|dam|Shasta|06|089|403942N|1215706W|40.66167|-
121.95167| || ||| | |Whitmore

238384|CA|2 Schali Drain|canal|Imperial|o6|025|324616N|1152028W]32.77111]-
115.34111] | | ||| | |[Holtville East

To process this file, all you have to do is split out the fields and match
them against the name the user specified in the search dialog. When the user
selects one of the items you found, you can recenter the map at that location.

The Scrolling List

The GUI is a little tricky. One of its major features is a scrolling list of place
names. Actually, the dialog contains six lists that all scroll together. Also, the
currently selected item is synchronized between these lists.

The first step in displaying this dialog is to create the window to hold
the list:

287 # The pick a place screen

288 $tk_place where = $tk_mw->Toplevel(
289 -title =»> "Goto Selection");
290

291 # Frame in which we place our places
292 my $tk_place_frame =

293 $tk_place_where->Frame();

Next, the scrollbar is added to the edge of the frame. You'll be using one
scrollbar for all six lists:

295 # The scrollbar for the place list

296 my $tk_place scroll =

297 $tk_place_where->Scrollbar()->pack(
298 -side => 'left’,

299 -fill =» 'y'

300);

Each column of the datais placed in its own list. (The lists don’t have
their own scroll bar; you will be using the common scroll bar you just
created.) Each list is placed in its own Tk Frame widget:

302 # Loop through each item and construct it
303 foreach my $cur_data (@data list) {
304 $cur_data->{tk_frame} =

305 $tk_place frame->Frame();
306

307 $cur_data->{tk_frame}->Label(
308 -text => $cur_data->{name}
309)->pack(

310 -side => 'top'

m);

312 $cur_data->{tk_list} =

Mapping 239

240

Chapter

o

313 $cur_data->{tk_frame}->Listbox(

314 -width => $cur_data->{width},
315 -selectmode => 'single',

316 -exportselection => 0

317)-»pack(

318 -side => "top",

319 -expand => 1,

320 -fill => "both"

321)

There is one “feature” of the Tk GUI that’s not well documented and
caused me a lot of trouble. When I first wrote this code, only one of the six
columns would have a selection in it. And if I selected something in column
2, the selection in column 1 went away.

There was no apparent reason for this and it took a lot of time for me to
find the problem. By default, a Tk::ListBox exports the current selection to
the clipboard. What's this got to do with the disappearing selections? When
one item gets exported to the clipboard, any other item that may have been
exported is cleared.

As a result, I would select something in column 1. It would be high-
lighted and go to the clipboard. Then I'd highlight something in column 2.
Since column 1's selection was on the clipboard, the data on the clipboard
and column 1s selection would be cleared.

The solution was to tell the system to leave the clipboard alone. The
actual code is as follows:

316 -exportselection => 0
After you create your list box, you need to tell it to call the select_boxes

function when something is selected. That way, when you select something in
column 1, all the other columns will follow suit:

322 $cur_data->{tk_1list}->bind(
323 "<¢ListboxSelect>>",
324 \&select_boxes);

You also need to tell the system that when one list box scrolls, it needs to
call the function scroll_listboxes to scroll them all:

330 # Define how things scroll

331 $cur_data->{tk_list}->configure(
332 -yscrollcommand =>

333 [\&scroll listboxes,
334 $tk_place_scroll,

335 $cur_data->{tk_1list},
336 \@data_list]);

337 }

The last little bit of code tells the scroll bar to scroll all six lists when it
gets moved:

339 # define how the scroll bar works

340 $tk_place_scroll->configure(

341 -command => sub {

342 foreach my $list (@data list) {
343 $list->{tk_list}->yview(@_};
344 }

345 }

346);

The last little bit of code is called when someone scrolls. Its job is to
make sure that all six list boxes scroll the same:

317

318 # scroll listboxes -- Scroll all the list boxes
319 # (taken from the 0'Reilly book

320 # with little modification)

321

322 sub scroll listboxes

323 {

324 my ($sb, $scrolled, $1lbs, @args) = @_;

325

326 $sb->set(Rargs);
327 my ($top, $bottom) = $scrolled->yview();
328 foreach my $list (@$%lbs) {

329 $1list->{tk list}->yviewMoveto($top);
330 }
331 }

Hacking the Script

There are a lot of online databases popping up on the Web. This script
exploits one of them, the USGS place name database. But it could be
expanded to take advantage of some of the other ones available.

Also, the GUI can be used to select something by name. It would be nice
to expand this to allow for a type (lake, point, city) to be used as well.

#43 Hacking the Grand Canyon

I'wrote this program to provide myself with maps when I hiked the Grand
Canyon. I produced high-resolution maps and aerial photographs for every
mile I was going to hike.

I made my map set using the OpenOffice.org presentation program
(Impress). I started by importing a map into a slide. I then traced out my
route using a red line from the drawing tool.

Mapping 241
pping

242

Chapter 10

Next I duplicated the slide. On the second slide, I replaced the
topographical map with an aerial photograph. This gave me an aerial
photograph with the trail drawn on it.

The Grand Canyon is an interesting place. For the most part, you don’t
need a map to see where you are going. The first day, I looked down and saw
10 switchbacks below me. The next day, I looked up and saw 20 switchbacks
way above me.

The trip went very well. The only surprise was that, although they
recommend that you leave the bottom at 6:00 AM, the store that sells sack
lunches to the hikers opens at 8:00 AM. (We brought along lots of trail
snacks, so this was not a problem.)

T also learned that the bottom of the Grand Canyon is one of the few
places where it’s difficult to hack Perl.

REGULAR EXPRESSION

GRAPHER

Regular expressions are among Perl’s
most powerful features. But they are also
the most cryptic. After all, it’s hard at first

glance to tell what /\s*(\5+)(\d+)/ really means.
But it turns out that the regular expression matcher is
a simple state machine whose input and processing
can easily be represented graphically, as shown.

Regular Expression: \/s*(\S+)(\d#)/

From this you can see that the regular expression consists of three major
parts (excluding the start and end nodes) and that it stores results into $1
and $2. We’ll go into what all those lines and symbols mean later, but this
example shows how something complex and cryptic can be made simple and
understandable if you present it in the right manner.

#44 Regular Expression Parser

In order to be able to graph a regular expression, you first must figure out
what’s in it. That’s the job of the parse.pn module.

The Code

#

parse_re -- Parse a regular expression
#

use strict;

use warnings;

package parse;
require Exporter;

W0~ W B W N R

=
5

use English;

2R
NoR

use vars qw/@ISA @EXPORT/;

B
=W

@ISA = qgw/Exporter/;
@EXPORT = qw/parse_re/;

o
o W

B
o ~

parse_re -- Parse a regular expression
and return an array of parsed data

=
ke

NN
B o

sub parse_re($)

{

NN
w N

The regular expression to use
my $quote re = shift;

NN
o e

$quote_re =~ s/\N/\\\\/g;

NN
w ~

The command to get the debug output
my $cmd = <<EOF ;

30 perl 2>81 <<SHELL_EOF

31 use re 'debug';

32 /$quote_re/;

33 SHELL_EOF

34 EOF

35

36 # The raw debug output

¥}
w0

244 Choprer 11

37
38
39
40
41
42
43
44
5

-
=

7
8
49
50

S

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

my @raw_debug = “$cmd”;

if ($main::opt_d) {
print @raw_debug;

}

if ($CHILD_ERROR != 0) {
my $cmd = <<EOF ;
perl 2>8&1 <<SHELL_EOF
use re 'debug’;
/ERROR/ ;
SHELL EOF
EOF
@raw_debug = “$cmd”;

if ($CHILD_ERROR != 0) {
die("Could not run perl");
}
}
my @re_debug = (); # The regular expression
push(@re_debug, {
node => 0,
type =»> "Start",
next => 1
};

foreach my $cur_
if ($cur_line =

line (@raw_debug) {
/*Compiling/) {

next;
}
if ($cur_line =~ /*\s*size/) {

next;
}
ek
[} 44tmmmm e e
R
[THTT
[THTT
[ETT = mmm e m oo
[EHTTT e mm e mm oo
[EEETTEETT
[EHTTTRIT T #mmmmmmmmmmmmmme oo
FEETTEEETTTL = mmm e mmm e mmm e
FEREETEEETETETT
FEEETTEETETET
FERETTEEEETTEET e mmmmmmmm e e e
FEEEPTEEEETEEEEETEr
FERTTREEETEREEETERE e mmmmmmmmmmm e e
FEEEPTEEEETEEEEETEE e omm mmmmm e e
[EHTTTET
[EETETET

Regular Expression Grapher

Group $1
(Node)

Word chars
Group $2
(Type)

Spaces

Any chars
Group $3
(arg)

Lit o

245

246

Chapter

1

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112 }

Executing the Module

}

H R B B B B B

if ($cur_line

}

[|444-==mmmm-- Spaces

\

\

\

‘ LT - Any char str

\ [T+ 1] #++-- Lit ()

FEECEEEEETERTTERERERED T1 1T (next state)

FEECEEEEETETTTEEEEE T+ 1411 - Group $4
AASF(AA+) ASFOw) As* (NS FA((LFN) /) {

push(@re_debug, {

next;

node => $1,
type => $2,
raw_type => $2,
arg => $3,

next => $4

}i

if ($cur_line =~ /"anchored/) {

}

next;

if ($cur_line =~ /*Freeing/) {

}

last;

return (@re_debug);

The module contains one function, parse_re, which takes a regular expression
as input and outputs an array containing a parsed version of the expression.

The Resulis

The expression /a*b/ results in the following array:

0 HASH(0x84c1b54)
=> 1
‘node’ =»> 0
‘type' =» 'Start’
1 HASH(0x804c43c)

‘next’

‘arg' =>
‘next’ => 4
‘node’ => 1
‘raw_type' =» 'STAR'
‘type' => 'STAR'

2 HASH(Ox80761ac)
‘arg' => '<a»
‘next’ => 0

‘node’ =» 2
‘raw_type' => 'EXACT'
‘type' => "EXACT'

3 HASH(0x84c1bfc)
‘arg' => '<b»'
‘next' =»> 6
‘node’ => 4
‘raw_type' =»> 'EXACT'
‘type' => "EXACT'

4 HASH(0x84c1c50)

‘arg' =>

‘next' =» 0

‘node’ => 6
‘raw_type' =»> 'END'
‘type' =»> 'END'

Each part of the array has the following elements:

type, raw_type The type of the node. (See the Perl documentation
perlre for a list of types.) The raw_type is never changed, while subse-
quent code can change the value of type as needed.

arg The argument for this node. For example, if this node is an exact
match, this field will contain the text to be matched.

node The node number.

next New node number of the next node (if any).

How It Works

The script runs the code through the regular expression debugger. For
example, if the regular expression is /a*b/, the function creates and executes
the following Perl mini-script:

use re 'debug';
/a*b/;

The first line causes the system to output a lot of debugging information
as Perl compiles the regular expression. In this example, the debugger
outputs the following:

Compiling REx “a*b’
size 6 Got 52 bytes for offset annotations.
first at 1
synthetic stclass “ANYOF[ab]'.
1: STAR(4)
2: EXACT <a>(0)
4: EXACT (6)
6: END(0)
floating “b' at 0..2147483647 (checking floating) stclass ~ANYOF[ab]' minlen 1

Regular Expression Grapher 247

243

Offsets: [6]
2[1] 1[1] o[o] 3[1] o[o] 4[o]
Freeing REx: ~"a*b"'

It's only the numbered lines we are interested in (the ones that begin
with STAR and end with END}. These are parsed by a large regular expression
and the results stuffed in the @re_debug array.

#45 Laying Out the Graph

Chapter

1

You have the basic information about the regular expression. The next step
is to lay things out. The size.pm module has two functions: it decides how big
each element of the graph is and it decides where each element goes.

The Code

use strict;
use warnings;

package size;
require Exporter;

use vars qw/@ISA @EXPORT format_re/;

W~ o B W N R

@ISA = qw/Exportex/;

10 @EXPORT = qw/convert_re &BOX_FONT_SIZE
11 BX CHAR SIZE 8X MARGIN &Y NODE SIZE
12 &X_MARGIN &Y_MARGIN &MARGIN

13 BX NODE_SIZE Y NODE SIZE

14 &X_BRANCH_MARGIN &Y_BRANCH_MARGIN
15 BX TEXT OFFSET BY TEXT OFFSET

16 @format_re layout_array &BOX_MARGIN/;
17

18 #

19 # Constants that control the layout
20 4

21 # Margin around the graph

22 use constant MARGIN => 100;

23

24 # Size of a node (X Space)

25 use constant X NODE_SIZE =» 60;

26

27 # Size of a node (Y Space)

i)

~

28 use constant Y_NODE_SIZE =»> 40;

29 Hm e e
30 # layout the "ANYOF" node (ANYOF + text)

31 Hem e

32 # Size of a character in X dimensions
33 use constant X_CHAR_SIZE => 7;

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
5
58
59
60
6
62
6
6.
65
66
67
6!
69
70
71
72
73
74
75
76
77
78
79
80
81

b

=

b

=3

83

OPEN the open (

Size of the box around a group
use constant BOX_MARGIN => 50;

Height of the font used to label boxes
use constant BOX_FONT_SIZE => 15;

Space between nodes (X)
use constant X_MARGIN => 50;

Vertical spacing
use constant Y_MARGIN => 10;

Padding for PLUS style nodes (left, right)
use constant PLUS PAD => 10;

Space between branches (x)
use constant X_BRANCH_MARGIN => 20;

Space between branches (y)
use constant ¥ _BRANCH MARGIN => 20;

Space text over this far
use constant X_TEXT_OFFSET => 3;
use constant ¥ _TEXT OFFSET => 3;

The regular expression debugging information
my $re_debug;

sub size array(\@);

size text -- Compute the size of a
text type node

sub size text($)

{
Node we want layout information for
my $node = shift;

Get the size of the string argument
my $length = length($node->{node}->{arg});
if ($length < 10) {
$length = 10;
}
$node->{x_size} =
$length * X_CHAR_SIZE + X_MARGIN;

Regular Expression Grapher 249

250

Chapter

1

84 $node->{y_size} = Y_NODE_SIZE;
85 }

86
87 # size start -- Layout a start node
88
89 sub size start($)

90 {

91 # Node we want layout information for

92 my $node = shift;

93

94 $node->{x_size} = X_NODE_SIZE + X_MARGIN;
95 $node->{y_size} = Y _NODE_SIZE;

9 }

Q7 B
98 # layout the end node

99 Hem o e
100 sub size_end($)

101 {

102 # Node we want layout information for
103 my $node = shift;

104

105 $node->{x_size} = X _NODE_SIZE;

106 $node->{y_size} = Y_NODE_SIZE;

layout the "EXACT" node (EXACT + text)

111 sub size exact($)

112 {

113 # Node we want layout information for
114 my $node = shift;

115

116 $node->{x_size} = X_NODE_SIZE + X_MARGIN;
117 $node->{y_size} = Y_NODE_SIZE;

118 }

119

120

121 # size open -- Size the open (-- Actually
122 # the entire (....) expression

123

124 sub size_open($)

125 {

126 # The node we want to size

127 my $node = shift;

128

129 # Compute the size of the children
130 my ($x_size, $y_size) =

131 size_array(@{$node->{children}});
132

133 # We add X_MARGIN because we

134 # must for all nodes

135 #

136 # We subtract X_MARGIN because one too many
137 # is added in our children

138 #

139 # Result is nothing

140

141 $node->{x_size} = $x_size + BOX_MARGIN;

142

143 $node->{y size} =

144 $y_size + BOX_MARGIN + BOX_FONT_SIZE;

147 # size plus -- Compute the size of

148 # a plus/star type node

149 Hm-mmmmmmmmm e
150 sub size_plus($)

151 {

152 # Node we want layout information for
153 my $node = shift;

154

155 # Compute the size of the children
156 my ($x_size, $y_size) =

157 size_array(@{$node->{children}});
158

159 # Arc size is based on the

160 # Y dimension of the children

161 $node->{arc_size} =

162 int($y_size/4) + PLUS_PAD;

163

164 $node->{child_x} = $x_size - X_MARGIN;
165

166 $node->{x_size} =

167 $node->{child x} +

168 $node->{arc_size} * 2 + X_MARGIN;
169

170 $node->{y_size} =

171 $y size + $node->{arc_size} * 2;
172 }

173 Hm oo m e e
174 # size star -- Compute the size of

175 # a star type node

176 H---ommmm e e
177 sub size star($)

178 {

179 # Node we want layout information for
180 my $node = shift;

181

182 # Compute the size of the children

183 my ($x_size, $y size) =

Regular Expression Grapher

251

252

Chapter

1

184
185
186
187
188
189
190
191
192
193

195
196
197
198 }
199 #

size_array(@{$node->{children}});

Arc size is based on the
Y dimension of the children
$node->{arc_size} =

int($y _size/4) + PLUS_PAD;

$node->{child x} = $x size - X_MARGIN;

$node->{x_size} = $node->{child x} +
$node->{arc_size} * 5 + X_MARGIN;

$node->{y_size} = $y_size +
$node->{arc_size} * 2 + Y _MARGIN;

200 # layout a branch node

201 #

202 sub size branch($)

203 {
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231 }

Node we want layout information for
my $node = shift;

my $x_size = 0; # Current X size
my $y_size = 0; # Current Y size

foreach my $cur_choice (
@{$node->{choices}}) {

The size of the current choice
my ($x_choice, $y_choice) =
size_array(@{$cur_choice});

if ($x_size < $x_choice) {
$x_size = $x_choice;
}
if ($y_size !=0) {
$y size += Y BRANCH MARGIN;
}
$cur_choice->[0]->{row y size} =
$y choice;

$y_size += $y_choice;
}
$x_size += 2 * X_BRANCH_MARGIN + X_MARGIN;
$node->{x_size} = $x_size;
$node->{y_size} = $y_size;

232 # Functions used to compute the sizes
233 # of various elements

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

my %compute_size = (

"ANYOF" => \Bsize text,
"BOL" => \&size_exact,
"SPACE" => \&size exact,
"NSPACE" => \&size_exact,
"DIGIT" => \&size exact,
"BRANCH"=> \&size_branch,
"END" => \&size end,
"EOL" => \&size_exact,
"EXACT" => \Bsize exact,
"IFMATCH" => \Bsize_open,
"OPEN" => \Bsize open,
"PLUS" = \&size_plus,
"REF" => \Bsize exact,
"REG_ANY" => \&size_exact,
"STAR" => \Bsize star,
"Start" =» \&size_start,
"UNLESSM" => \8size_open
);

do_size($cur_node) --
Compute the size of a given node

sub do_size($);

sub do_size($)
{
my $cur_node = shift;
if (not defined(
$compute_size{
$cur_node->{node}->{type}})) {
die("No compute function for ".
"$cur_node->{node}->{type}");
exit;
}
$compute_size{
$cur_node->{node}->{type}}($cur_node);
}
$new_index = parse_node($index,
$array, $next, $close)
#
-- Parse a single regular expression node
-- Stop when next (or end) is found
-- Or when a close ")" is found
sub parse_node($$$%);

sub parse_node($$$$)
{

Regular Expression Grapher 253

254

Chapter

1

284
285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304
305
306

Index into the array
my $index = shift;

Array to put things on
my $array = shift;

my $next = shift;

Looking for a close?
my $close = shift;

my $min_flag = 0;
while (1) {

Next node

Minimize flag

if (not defined($re_debug->[$index])) {

return ($index);

$re_debug->[$index]->{node}) {

}
if (defined($next)) {
if ($next <=
return ($index);
}
}

if ($re_debug->[$index]->{type} ="~

JCLOSE(\G+) /) {

if (defined($close)) {
if ($1 == $close) {
return ($index + 1);

}
}
}
if ($re_debug->[$index]->{type} eq
"MINMOD") {
$min_flag = 1;
$index++;

next;

if (($re_debug->[$index]->{type} eq

"IFMATCH") ||

($re_debug->[$index]->{type} eq

"UNLESSM™)) {

if ($re_debug->[$index]->{arg} !~

ALCFIN A

die("IFMATCH/UNLESSM funny ",
"argument ".
"$re_debug->[$index]->{arg}");

}
Ending text (
my $equal = "!

= or !=)

334

335 if ($re_debug->[$index]->{type} eq
336 "IFMATCH") {

337 $equal = "=";

338 }

339 # Flag indicating the next look ahead
340 my $flag = $1;

341

342 # Text to label this box

343 my $text;

344

345 if ($flag eq "-0") {

346 $text = "$equal ahead”;

347 } elsif ($flag eq "-0") {

348 $text = "$equal behind";

349 } elsif ($flag eq "-1") {

350 $text = "$equal behind";

351 } else {

352 die("Unknown IFMATCH/UNLESSM ".
353 “flag text $flag");
354 exit;

355 }

356 push(@{$array}, {

357 node => $re_debug->[$index],
358 text =» $text,

359 children => []

360 1;

361

362 $index = parse_node($index+1,

363 $$array|$#$array]->{children},
364 $re_debug->[$index]->{next},
365 undef);

366 next;

367 }

368 Hom o m e mmmm oo

369 if ($re_debug->[$index]->{type} ="~
370 JOPEN(N+)/) {

371

372 my $paren_count = $1;

373 $re_debug->[$index]->{type} = "OPEN";
374 push(@{$array}, {

375 node => $re_debug->[$index],
376 paren_count => $paren_count,
377 text => "() => \$$paren_count",
378 children => []

379 1

380

381 $index = parse_node($index+1,

382 $$array[$#$array]->{children},
383 undef, $paren_count);

Regular Expression Grapher 258

256

Chapter

1

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
118
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

if ($re_debug->[$index]->{type} ="~

JREF(\d+)/) {

my $ref_number = $1;
$re_debug->[$index]->{type} = "REF";
push(@{sarray}, {

node => $re_debug->[$index],

ref => $ref_number,

children => []
Hs

++$index;
next;

if ($re_debug->[$index]->{type} eq

"BRANCH") {

push(@{$array}, {
node =» $re_debug->[$index],
choices =» []

1;

my $choice_index = 0;

while (1) {
Next node in this series
my $next =

$re_debug->[$index]->{next};

$$array|[$#$array]->
{choices}[$choice_index] = [];

$index = parse_node($index+1,
$$array[$#$array]->
{choices}[$choice_index],
$next, undef);

if (not defined(
$re_debug->[$index])) {

last;
}
if ($re_debug->[$index]->{type} ne
"BRANCH") {
last;

}

$choice_index++;

434 }

435 next;

436 }

437 Ho oo s
438 if (($re_debug->[$index]->{type} eq
439 "CURLYX™) |

440 ($re_debug->[$index]->{type} eq
441 "CURLY™)) {

442

443 # Min number of matches

444 my $min_number;

45

446 # Max number of matches

447 my $max_number;

448

449 if ($re_debug->[$index]->{arg} =~
450 H(\d+), (\d+)) {

451 $min_number = $1;

452 $max_number = $2;

453 } else {

454 die("Funny CURLYX args “.

455 "$re_debug->[$index]->{arg}");
456 exit;

457 }

458

459 my $star flag = ($min_number == 0);
460

461 my $text = "+";

462 if ($min_number == 0) {

463 $text = "*";

464 }

465 if (($max_number != 32767) ||

466 ($min_number > 1)) {
467

468 $text =

469 "{$min_number, $max_number}";
470 if ($max_number == 32767) {
471 $text = "min($min_number)";
472 }

473 }

474 # Node that's enclosed

475 # inside this one

476 my $child = {

477 node => {

478 type =>

479 ($star_flag) ?

480 "STAR" : "PLUS",

481 raw_type =>

482 $re_debug->[$index]->{type},
483 arg =

Regular Expression Grapher 257

258

Chapter

1

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

$re_debug->[$index]->{arg},
next =»
$re_debug->[$index]->{next},
text_label =>
$text

b
min_flag => %min_flag,
children => [],

b
push(@{$array}, $child);

$index = parse_node($index+1,
$child->{children},
$re_debug->[$index]->{next},
undef);

if ($re_debug->[$index]->{type} eq

"CURLYM") {
my $paren_count; # () number

Min number of matches
my $min_number;

Max number of matches
my $max_number ;

if ($re_debug->[$index]->{arg} =~
ALOARNNs*{ (\d+), (\d+) }/) {

$paren_count = $1;
$min_number = $2;
$max_number = $3;

} else {
die("Funny CURLYM args ".

"$re_debug->[$index]->{arg}");

exit;

}

Are we doing a * or +

(anything else is just too hard)

my $star flag = ($min_number == 0);

The text for labeling this node
my $text = "+";
if ($min_number == 0) {

$text = "*";

}

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

if (($max_number != 32767) ||
($min_number > 1)) {

$text =
"{$min_numbexr, $max_number}";

if ($max_number == 32767) {
$text = "min($min_number)";
}
}

Node that's enclosed
inside this one
my $child = {
node => {
type =>
($star_flag) ?
"STAR" : "PLUS",
raw_type =>
$re_debug->[$index]->{type},
arg =>
$re_debug->[$index]->{arg},
next =»
$re_debug->[$index]->{next},
text_label =>
$text
b
min_flag => $min_flag,
children =» [],
b
$min_flag = 0;

The text for labeling this node
$text = "() => \$$paren_count";
if ($paren_count == 0) {

$text = "() [no $x]';

}
push(@{$array},
{
node => {
type =>
"OPEN",
raw_type =>
$re_debug->[$index]->{type},
arg =>
$re_debug->[$index]->{arg},
next =»
$re_debug->[$index]->{next}
h

paren_count => $paren_count,

Regular Expression Grapher 259

260

Chapter

1

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

text =» $text,
children => [$child]
}i

$index = parse_node($index+1,
$child->{children},
$re_debug->[$index]->{next},
undef);

if ($re_debug->[$index]->{type} eq

"STAR") {
push(@{$array},
{
node => {
%{$re_debug->[$index]},
-text_label =» "+"
b
min_flag => $min_flag,
children => []
I3

$min_flag = 0;

Where we go for the next state
my $star next;

if (defined($next)) {
$star_next = $next;
} else {
$star_next =
$re_debug->[$index]->{next};

$index = parse_node($index+1,
$$array|$#$array]->{children},
$star_next, undef);

next;

if ($re_debug->[$index]->{type} eq

"PLUS") {
push(@{$array},
{

node => {
%{$re_debug->[$index]},
text_label => "+"

b

min_flag => %min_flag,

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

children => []
I3
$min_flag = 0;
$index = parse_node($index+1,
$$array|[$#$array]->{children},
$re_debug->[$index]->{next},
undef);
next;
}
s
Ignore a couple of nodes
if ($re_debug->[$index]->{type} eq
"WHILEM") {
++$index;
next;
}
if ($re_debug->[$index]->{type} eq
"SUCCEED") {
++$index;
next;
}
if ($re_debug->[$index]->{type} eq
"NOTHING") {
++$index;
next;
}
if ($re_debug->[$index]->{type} eq
"TAIL") {
++$index;
next;
}
push(@$array, {
node =» $re_debug->[$index]});
if ($re_debug->[$index]->{type} eq "END") {
return ($index+1);
}
$index++;
}
}
size array(\@array) -- Compute the size of
an array of nodes
#
Returns
(x_size, y size) -- Size of the elements
#

Regular Expression Grapher 261

262

Chapter

1

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

x_size -- Size of all the elements in X
(We assume they are
laid out in a line)
y_size -- Biggest Y size
(side by side layout)

#
sub size array(\@)

{

The array
my $re_array = shift;

Size of the array in X
my $x_size = 0;

Size of the elements in Y
my $y size = 0;

foreach my $cur_node(@$re_array) {
do_size($cur_node);
$x_size += $cur_node->{x_size};
if ($y_size < $cur_node->{y_size}) {
$y size = $cur_node->{y size};
}
}

return ($x_size, $y_size);

layout array($x_start, $y start,

#
#

$y_max, \@array)

Layout an array of nodes

sub layout_array($$$\@)

{

Starting point in X
my $x_start = shift;

Starting point in Y
my $y_start = shift;

largest Y value
my $y max = shift;

The data
my $re_array = shift;

foreach my $cur_node (@$re_array) {
$cur_node->{x_loc} = $x_start;
$cur_node->{y_loc} = $y_start +

262

Chapter

1

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

x_size -- Size of all the elements in X
(We assume they are
laid out in a line)
y_size -- Biggest Y size
(side by side layout)

#
sub size array(\@)

{

The array
my $re_array = shift;

Size of the array in X
my $x_size = 0;

Size of the elements in Y
my $y size = 0;

foreach my $cur_node(@$re_array) {
do_size($cur_node);
$x_size += $cur_node->{x_size};
if ($y_size < $cur_node->{y_size}) {
$y size = $cur_node->{y size};
}
}

return ($x_size, $y_size);

layout array($x_start, $y start,

#
#

$y_max, \@array)

Layout an array of nodes

sub layout_array($$$\@)

{

Starting point in X
my $x_start = shift;

Starting point in Y
my $y_start = shift;

largest Y value
my $y max = shift;

The data
my $re_array = shift;

foreach my $cur_node (@$re_array) {
$cur_node->{x_loc} = $x_start;
$cur_node->{y_loc} = $y_start +

How It Works

Let’s start with a simple regular expression, /test/. The debug output for this
regular expression is as follows:

1: EXACT <test>(3)
3: END(0)

These tell you that the first step (line 1) checks for an exact match of the
data test. The next step is in line 3. It is the END step, indicating the end of
this expression.

The convert_re turns this into an array, @format_re, which looks like the
following figure.

Start | [exact | [EnD

Once you have parsed the expression, you need to lay it out on the
graph. The program goes through each node and asks it to compute its size.
Since you are dealing with simple nodes, the algorithm is fairly simple. The
start and end node have a fixed size. The EXACT node’s size is based on the
text that's matched.

All the nodes in the graph go through a straight line. So the layout of the
nodes is fairly simple.

Now let’s look at a more complex expression:

/ab*c/
The parser output looks like this:

1 EXACT <a»(3)
: STAR(G)

: EXACT (0)
1 EXACT <c>(8)
: END(0)

[I Y

The key item in this list is line 3:
3: STAR(6)

This tells you that the * operator applies to all the nodes from here up to
node 6 (node 6 is not included). The parser turns this into an array of
elements:

EXACT<a>»

START -- and whatever the star operates on
EXACT

264 Choprer 11

The STAR node contains not only the star operator, but also all the
nodes affected by the star. In this case, it’s EXACT.
Graphically, your parsed tree looks like the following figure.

Start | [star] [EnD |

Now one of the key things to notice about this arrangement is that
everything is still in a straight line if you consider the STAR node and its
children as one entity. Actually, that’s the method used by both the layout
and drawing logic.

The layout logic tells STAR, “Give me the size of yourself and your
children so I can compute the straight line layout.” Using this system, the
main layout and drawing logic is fairly simple. Everything is drawn in a
straight line, although occasionally some of the nodes have to do something
recursive. But that complexity and vertical stuff is hidden from the top-level
logic.

This makes the layout code fairly simple. You first compute the size of
each item in the top row:

675
676 # size array(\@array) -- Compute the size of
677 an array of nodes
678
679
680
681
682
683
684
685
686
687
688 sub size_array(\@)

689 {

690 # The array

691 my $re_array = shift;

692

693 # Size of the array in X
694 my $x_size = 0;

695

696 # Size of the elements in Y
697 my $y size = 0;

Returns
(x_size, y_size) -- Size of the elements

x_size -- Size of all the elements in X
(We assume they are
laid out in a line)
y_size -- Biggest Y size
(side by side layout)

Fodr F 4F 4F A o I I

698

699 foreach my $cur_node(@$re_array) {
700 do_size($cur_node);

701 $x_size += $cur_node->{x_size};

Regular Expression Grapher 268

266

Chapter

1

702 if ($y_size < $cur_node->{y_size}) {

703 $y_size = $cur_node->{y size};
704 }

705 }

706 return ($x_size, $y_size);

707 }

This also computes the sizes of any children.
Next you lay them out using a similar method:

714 sub layout_array($$$\@)

715 {

716 # Starting point in X

717 my $x_start = shift;

718

719 # Starting point in Y

720 my $y_start = shift;

721

722 # largest Y value

723 my $y max = shift;

724

725 # The data

726 my $re_array = shift;

727

728 foreach my $cur node (@$re array) {
729 $cur_node->{x_loc} = $x_start;
730 $cur_node->{y_loc} = $y_start +
731 int(($y_max -

732 $cur_node->{y_size})/2);
733 $x_start += $cur_node->{x_size};
734 }

735 }

Now let’s take a closer look at how the size logic works for the STAR
node. The graph of a typical STAR node can be seen in the following figure.

The key features of this are that a STAR node consists of a child or set of
children in the middle and a bunch of lines and arrows surrounding it. So
the code first sizes the children and then adds in the size for the various lines
that are drawn.

177 sub size star($)
178 {

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198 }

Node we want layout information for
my $node = shift;

Compute the size of the children
my ($x_size, $y_size) =
size_array(@{$node->{children}});

Arc size is based on the

Y dimension of the children

$node->{arc_size} =
int($y_size/4) + PLUS_PAD;

$node->{child_x} = $x_size - X_MARGIN;

$node->{x_size} = $node->{child_x} +
$node->{arc_size} * 5 + X_MARGIN;

$node->{y size} = $y size +
$node->{arc_size} * 2 + Y_MARGIN;

Now let’s take on a slightly more complex regular expression:

/alblc/

The debug output from the parser looks like this:

o~ w1 BN e

: BRANCH(4)

: EXACT <a>(10)
: BRANCH(7)

: EXACT (10)
: BRANCH(10)

: EXACT <c>(10)

10: END(0)

The parse tree for this regular expression is illustrated in the following

figure.

Start |

[BRANCH] [Eenp

Again, you can lay things out in a straight line if you consider the
BRANCH node as a single entity. Because each node is responsible for the
layout and drawing of its children, you can do this, thus simplifying the code

greatly.

Regular Expression Grapher 267

268

Sa by being careful with your design and using recursion, you can greatly
simplify the algorithm used to lay out and draw the graph. Unfortunately,
because there are many details to worry about, you still have a lot of code to
deal with.

Hacking the Script

Perl’

s regular expressions contain a very rich set of operators. I'm sure that
there are some that this script doesn’t know how to handle. Fortunately, the
layout engine is mostly table driven, so it shouldn’t be too hard to add new

elements as needed.

#46 Drawing the Image

Chapter

1

After you lay out the elements, you need to create the image. That’s the job

of the draw.pm module.

The Code

W~ W B W N R

1
12
1
14
15
16
1
18
1
2
21
2
2
24
25
26
27
2
2
30

[

w

)

o o

w N

o oo

use strict;
use warnings;

package draw;
use GD;
use GD::Arrow;

use size;

require Exporter;
use vars qw/@ISA @EXPORT $image $color_ black/;

@ISA = qw/Exportex/;
@EXPORT = qw/draw_re $image $color black/;

Thickness of the lines
use constant THICKNESS =»> 3;

Offset for line 2 of a 2 line text field
use constant X_LINE2 OFFSET => 10;

Offset for line 2 of a 2 line text field
use constant Y_LINE2_OFFSET => 15;

#

Image variables

#

my $color white; # White color
my $color_green; # Green color
my $color blue; # Blue color

31 my $color_light green; # Light green color

32

33 # filled_rectangle -- Draw a filled rectangle at
34 # the given location

35

36 sub filled rectangle($3$$$)

37 {

38 # Corners of the rectangle

39 my $x1 = shift;
40 my $y1 = shift;
41 my $x2 = shift;
42 my $y2 = shift;

43

44 my $coler = shift; # Color for drawing
45

46 if ($main::opt_d) {

47 print

48 "Rectangle($x1,$y1,$x2, $y2, $color)\n";
49 }

50 $image->filledRectangle(

51 $x1, $y1, $x2, $y2,

52 $color);

53 $image->setThickness(1);

54 $image->rectangle(

55 $x1, $y1, $x2, $y2,

56 $color black);

57 }

58

59

60 # arrow -- Draw an arrow from x1,yl -> x2,y2
61 #

62 # All arrows are black

63

64 sub arrow($$%$) {

65 my $x1 = shift; # Start of arrow
66 my $yl = shift;

67 my $x2 = shift; # End of arrow

68 my $y2 = shift;

69

70 if ($main::opt d) {

71 print "Arrow($x1, $y1, $x2, $y2)\n";
72 }

73 # For some reason arrows

74 # tend to point backwards

75 my $arrow = GD::Arrow::Full->new(

76 -X1 => $x2,

77 -Y1 => $y2,

78 -X2 = $x1,

79 -¥Y2 => $y1,

80 -WIDTH => THICKNESS-1);

Regular Expression Grapher 269

81 $image->setThickness(1);
82 $image->filledPolygon($arrow, $color black);

83}

84

85

86 # The "PLUS" node

87 #

88 #

89 # 01 2 1p 2p 3p (p = +size of child)
90 # v Vv vI3v v v

91 # . -e-ee-ee-

92 # / . \

93 # / . \

94 # a2 < . > al

95 # AL N

96 # e \bmmmmmmm +/

97 # L1--->| child |----- >+ L2

98 # Fomm - +

99 #

100 # Arc start, end, centers

101 #

102 # al / 270 - 180 / (ap*2, y-a)

103 # a2 / 90 - 180 / (a0, y-2a), (a2, y-2a)
104 #

105 # L1 (a3, y+2a) (a3p, y+2a)

106

107

108 H--mm - m oo e
109 # Draw the plus type node

120 - mmmm e m e
111 sub draw_plus($)

112 {

113 # The node we are drawing

114 my $cur_node = shift;

115

116 layout_array(

117 $cur_node->{x_loc} +

118 $cur_node->{arc_size} * 1,

119 $cur_node->{y_loc},

120 $cur_node->{y size},

121 @{$cur_node->{children}});

122

123 draw_node_array($cur_node->{children});
124

125 # The place we start drawing from (X)
126 my $from x = $cur_node->{x_loc};

127

128 # The current middle of the item (Y)
129 my $y = $cur_node->{y_loc} +

130 int($cur_node->{y size}/2);

270 Choprer 11

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

148
149
150
151
152
153
154
155
156

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

178
179
180

Size of an arc
my $arc_size = $cur_node->{arc_size};

Size of the child
my $child x = $cur node->{child x};

Debugging
if (o) {
for (my $debug x = 0;
$debug_x < 5;
$debug_x++) {
$image->Lline(
$from x +
$arc_size * $debug_x,
$y - $arc_size*z,
$from_x +
$arc_size * $debug x,
$y + $arc_size*2,
$color black
)
}

for (my $debug x = 3;
$debug_x < 7;
$debug_x++) {
$image->Lline(
$from x + $child x +
$arc_size * $debug_x,
$y - $arc_size*z,
$from_x + $child x +
$arc_size * $debug x,
$y + $arc_size*z,
$color_green

)i
}
}
my $flip = 1; # Flipping factor
if ($cur_node->{min_flag}) {
$flip = -1;
}

$image->setThickness (THICKNESS);

First arc (a1)

$image->arc(
$from_x + $child_x + $arc_size,
$y - $arc_size * $flip,
$arc_size *2, $arc_size *2,
270, 90,

Regular Expression Grapher 271

272

Chapter

1

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

$color_black);

$image-rarc(
$from_x + $arc_size * 1,
$y - $arc_size * $flip,
$arc_size *2, $arc_size *2,
90, 270,
$color black);

Draw (L1)
arrow(
$from x, $y,
$from_x + $arc_size * 1, $y

)i

Draw (L2)

arrow(
$from_x + $child x + $arc_size * 1,
Y,
$from_x + $child x + $arc_size * 2,
sy

)i

Draw (L3)

arrow(
$from_x + $child x + $arc_size * 1,
$y - $arc_size * 2,
$from_x + $arc_size * 1,
$y - $arc_size * 2

)i

Text to display for the current node
my $text = $cur_node->{node}->{text label};
if ($cur_node->{min_flag}) {

Stext .= "?";

}

$image-»string(
gdMediumBoldFont,
$from_x + $child_x + $arc_size * 2,
$y - $arc_size * 2,
$text,
$color blue);

$cur_node->{left x} = $from x;
$cur_node->{left_y} = $y;

$cur_node->{right_x} =
$from x + $cur_node->{child x} +

231
232
233
234
235
236
237
238
239

259
260
261
262
263
264
265
266
267
268
269
270
271
27
273
274
275
276

~

278
279
280

$cur_node->{arc_size} * 2;
$cur_node->{right_y} = $y;
}
The "STAR" node

(p = +size of child)
1 2 3 p3 p4 ps
v v L2 v v v

/ . \
v . \
a6 < as >
.
. R kel +/ .
[R >| child |- . +
Voj 4eeeee-- + a4/
\a1 i
N
\ s
a2\ . ./a3
Nemmmmee e
” " L1
2 3

Arc / swing / center
al /270 -0 / (a1, y +a)
a2/ 90 - 180 / (a3, y + a)
a3/ 0 -90 / (p3, y+a)
a4 / 180 - 270 / (adp, y)

as /270 - 90 / (p3, y-a)
ab / 90 - 270 / (a1, y-a)

#oFE 4F dF @ 3 4F SF b G 3F 3 3F 3 3 3 45 3F 4 3 #F 3F 3 3 3 3 4 3 I I 3 a3

L1 (a3, y+2a) (a3p, y+2a)

B m e
Draw the star type node
B m e
sub draw star($)
{

The node we are drawing

my $cur_node = shift;

layout_array(

$cur_node->{x_loc} +

Regular Expression Grapher

273

274

Chapter

1

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

$cur_node->{arc_size} * 3,
$cur_node->{y loc},
$cur_node->{y_size},
@{$cur_node->{children}});

The place we start drawing from (X)
my $from_x = $cur_node->{x_loc};

The current middle of the item (Y)
my $y = int($cur_node->{y loc} +
$cur_node->{y_size}/2);

Size of an arc
my $arc_size = $cur_node->{arc_size};

Size of the child
my $child_x = $cur_node->{child_x};

Debugging
if (0) {
for (my $debug_x = 0;
$debug x < 5;
$debug_x++) {
$image->1line(
$from_x +
$arc_size * $debug x,
$y - $arc_size*2,
$from x +
$arc_size * $debug_x,
$y + $arc_size*z,
$color_black

}

for (my $debug_x = 3;
$debug x < 7;
$debug_x++) {
$image->1line(
$from_x + $child x +
$arc_size * $debug x,
$y - $arc_size*2,
$from x + $child x +
$arc_size * $debug_x,
$y + $arc_size*2,
$color_green

my $flip = 1; # Flipping factor

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

if ($cur_node->{min_flag}) {
$flip = -1;

}

$image->setThickness (THICKNESS);

if ($Flip ==

IR

First arc (a1)
$image->arc(

$from_x + $arc_size,

$y + $arc_size,
$arc_size * 2, $arc_size
270, 0,

$color_black);

Second arc (a2)
$image->arc(

} else {

$from_x + $arc_size * 3,
$y + $arc_size,
$arc_size * 2, $arc_size
90, 180,

$color_black);

First arc (a1)
$image->arc(

$from_x + $arc_size,

$y - $arc_size,
$arc_size * 2, $arc_size
0, 90,

$color_black);

Second arc (a2)
$image->arc(

}

$from_x + $arc_size * 3,
$y - $arc_size,
$arc_size * 2, $arc_size
180, 270,
$color_black);

if ($f1ip > 0) {
Third arc (a3)
$image->arc(

$from_x + $child x +
$arc_size * 3,

$y + $arc_size,

$arc_size * 2, $arc_size

0, 90,

$color black);

Fourth arc (a4)

* 2,

Regular Expression Grapher 275

276

Chapter

1

381
382
383
384
385
386
387
388
389
390
391
392
393

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

$ima

} else {
Th
$ima

Fo
$ima,

Fifth
$image->

Sixth
$image->

L1
arrow(

ge-rarc(
$from x + $child x +
$arc_size * 5,
$y + $arc_size,
$arc_size * 2, $arc_size * 2,
180, 270,
$color_black);

ird arc (a3)
ge->arc(
$from_x + $child x +
$arc_size * 3,
$y - $arc_size,
$arc_size * 2, $arc_size * 2,
270, 0,
$color black);

urth arc (a4)
ge-rarc(
$from x + $child x +
$arc_size * 5,
$y - $arc_size,
$arc_size * 2, $arc_size * 2,
90, 180,
$color_black);

arc (as)

arc(

$from_x + $child x + $arc_size * 3,
$y - $arc_size * $flip,

$arc_size * 2, $arc_size * 2,

270, 90,

$color black);

arc (ab)
arc(
$from_x + $arc_size,

$y - $arc_size * $flip,
$arc_size * 2, $arc_size * 2,
90, 270,
$color black);

$from_x + $arc_size * 3,
$y + $arc_size * 2 * $flip,
$from_x + $arc_size * 3 + $child x,
$y + $arc_size * 2 * $flip);

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

L2
arrow(

$from_x + $arc_size * 3 + $child_x,
$y - $arc_size * 2 * $flip,
$from_x + $arc_size * 1,
$y - $arc_size * 2 * $flip);

Draw (L3)
arrow(
$from_x, $y,
$from_x + $arc_size * 3, $y);

$image->string(
gdMediumBoldFont,
$from_x + $child x + $arc_size * 4,
$y - $arc_size * 2,
($cur_node->{min_flag}) ? "*?" : "*",
$color_black);

draw_node_array($cur_node->{children});

$cur_node->{left x} = $from x;
$cur_node->{left_y} = $y;

$cur_node->{right_x} =
$from_x + $cur_node->{child x} +

$cur_node->{arc_size} * 5;

$cur_node->{right_y} = $y;

Branch nodes

sub draw branch($)

{

Node we want layout information for
my $cur_node = shift;

Location where we draw the branches
my $x_loc = $cur_node->{x_loc} +

X_BRANCH_MARGIN;

my $y_loc = $cur_node->{y_loc};

Regular Expression Grapher

277

278

Chapter

1

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

foreach my $cur_child (

@{$cur_node->{choices}}

) {

layout_array(
$x_loc + X_BRANCH_MARGIN,
$y loc,
$cur_child->[0]->{row_y_size},
@{$cur_child});

$y loc += $cur_child->[0]->{row_y size} +
Y_BRANCH_MARGIN;
draw_node_array($cur_child);

Largest right x of any node
my $max_x = 0;

foreach my $cur child (
@{$cur_node->{choices}}) {

Last node on the string of children
my $last node =
$cur_child-»[$#{$cur_child}];

if ($last_node->{right_x} » $max_x} {
$max_x = $last_node->{right x};
}
}
foreach my $cur_child (
@{$cur_node->{choices}}
) o
Last node on the
string of children
my $last node =
$cur_child->[$#{$cur_child}];

if ($last_node->{right_x} < $max_x) {
$image->1line(
$last_node->{right_x},
$last_node->{right y},
$max_x,
$last_node->{right y},
$color_black);

my $left_x = $cur_node->{x_loc};
my $right x = $cur_node->{x_loc} +
$cur_node->{x_size} - X_MARGIN;

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

my $y = $cur_node->{y_loc} +
($cur_node->{y_size} / 2);

foreach my $cur child (
@{$cur_node->{choices}}
)
Create a branch line to the item
in the list of nodes
$image->Lline(
$left_x, 3y,
$cur_child->[0]->{left_x},
$cur_child->[0]->{1left_y},
$color_black);

The last node on the list
my $last child =
$cur_child->[$#$cur_child];

Line from the last node
to the collection point
$image->Lline(
$max_x, $last_child->{right y},
$right_x, 3y,
$color black);
}

$cur_node->{left_x} = $left_x;
$cur_node->{left_y} = $y;

$cur_node->{right x} = $right x;
$cur_node->{right_y} = $y;

draw a start or end node

sub draw_start_end($)
{
my $cur_node = shift;
my $node_number = $cur node->{node}->{node};

filled rectangle(
$cur_node->{x_loc},
$cur_node->{y loc},
$cur_node->{x_loc} + X_NODE_SIZE,
$cur_node->{y loc} + Y_NODE_SIZE,
$color_green);

Regular Expression Grapher 279

280

Chapter

1

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

$cur_node->{text} = $image->string(
gdSmallFont,
$cur_node->{x_loc} + X_TEXT_OFFSET,
$cur_node->{y loc} + Y_TEXT OFFSET,

$cur_node->{node}->{type},
$color_black);

$cur_node->{left_x} = $cur_node->{x_loc};

$cur_node->{left_y} =
$cur_node->{y loc} + Y _NODE_SIZE / 2;

$cur_node->{right x} =
$cur_node->{x_loc} + X_NODE_SIZE;

$cur_node->{right_y} =
$cur_node->{y loc} + Y _NODE_SIZE / 2;

sub draw exact($)

{

my $cur_node = shift; # The node
my $node_number = $cur_node->{node}->{node};

filled_rectangle(

$cur_node->{x_loc},

$cur_node->{y_loc},

$cur_node->{x_loc} +
$cur_node->{x_size} -
X_MARGIN,

$cur_node->{y loc} + Y_NODE_SIZE,

$color green);

$image->string(
gdSmallFont,
$cur_node->{x_loc} + X_TEXT_OFFSET,
$cur_node->{y_loc} + Y_TEXT_OFFSET,
"$cur_node->{node}->{type}",
$color_black);

$image-»string(
gdSmallFont,
$cur_node->{x_loc} +
X_TEXT OFFSET + X_LINE2 OFFSET,
$cur_node->{y_loc} +
Y TEXT OFFSET + Y _LINE2 OFFSET,

631 "$cur_node->{node}->{arg}",

632 $color black);

633

634 $cur_node->{left x} = $cur_node->{x_loc};
635

636 $cur_node->{left y} =

637 $cur_node->{y_loc} + Y_NODE_SIZE / 2;
638

639 $cur_node->{right_x} =

640 $cur_node->{x_loc} + X_NODE_SIZE;
641

642 $cur_node->{right y} =

643 $cur_node->{y_loc} + Y_NODE_SIZE / 2;
644 }

645 H- o mmm e e
646 # draw_ref($node) -- Draw a "REF" re node
64T Hmmmmmmm e e
648 sub draw_ref($)

649 {

650 my $cur_node = shift; # The node
651 my $node_number = $cur_node->{node}->{node};
652

653 filled_rectangle(

654 $cur_node->{x_loc},

655 $cur_node->{y_loc},

656 $cur_node->{x_loc} + X_NODE_SIZE,
657 $cur_node->{y_loc} + Y_NODE_SIZE,
658 $color light green);

659

660 $cur_node->{text} = $image->String(

661 gdSmallFont,

662 $cur_node->{x_loc} + X_TEXT_OFFSET,
663 $cur_node->{y loc} + Y_TEXT_OFFSET,
664 "Back Reference:\n".

665 " $cur_node->{node}->{ref}",
666 $color black);

667

668 $cur_node->{left x} = $cur_node->{x_loc};
669

670 $cur_node->{left y} =

671 $cur_node->{y_loc} + Y_NODE_SIZE / 2;
672

673 $cur_node->{right_x} =

674 $cur_node->{x_loc} + X_NODE_SIZE;

675

676 $cur_node->{right y} =

677 $cur_node->{y_loc} + Y_NODE_SIZE;

678 }

679 H-mmmm e e

680 # draw the () stuff

Regular Expression Grapher 281

282

Chapter

1

682 sub draw open($$)

683 {
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

my $cur_node = shift; # The node

$image->setStyle(
$color_black, $color_black,
$color_black, $color black,
$color_black,
$color white, $color white,
$color_white, $color white,
$color_white
)i
$image->rectangle(
$cur_node->{x_loc},
$cur_node->{y loc} +
BOX_FONT_SIZE,
$cur_node->{x_loc} +
$cur_node->{x_size} -
X_MARGIN,
$cur_node->{y_loc} +
$cur_node->{y size},
gdStyled);

$image-»string(
gdSmallFont,
$cur_node->{x_loc},
$cur_node->{y loc},
$cur_node->{text},
$color black);

layout_array(

$cur_node->{x_loc} +

BOX_MARGIN/2,
$cur_node->{y_loc} +

BOX_MARGIN/2 + BOX_FONT SIZE,
$cur_node-»{y_size} -

BOX_MARGIN - BOX_FONT SIZE,
@{$cur_node->{children}});

draw_node_array($cur_node->{children});

$cur_node->{left_x} = $cur_node->{x_loc};

$cur_node->{left_y} = $cur _node->{y loc} +
($cur_node->{y_size} + BOX_FONT_SIZE)/2;

$cur_node->{right_x} = $cur_node->{x_loc} +
$cur_node->{x_size} - X MARGIN;

$cur_node->{right y} = $cur node->{left y};

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

Child we are drawing arrows to / from
my $child = $cur_node->{children}->[0];
$image->1line(
$cur_node->{left_x},
$cur_node->{left_y},
$child->{left_x},
$child->{1left y},
$color_black
)i
$child =
$cur_node->{children}->[
$#{$cur_node->{children}}
I

$image->1line(
$child->{right_x},
$child->{right vy},
$cur_node->{right_x},
$cur_node->{right vy},
$color_black

my %draw_node = (

"ANYOF" => \&draw_exact,
"BOL" => \&draw_start_end,
"EOL" => \&draw_start end,
"SPACE" => \&draw_start_end,
"NSPACE" => \&draw start end,
"DIGIT" => \&draw_start_end,
"BRANCH"=> \&draw_branch,
"END" => \&draw_start_end,
"EXACT" => \&draw_exact,
"IFMATCH" => \&draw_open,
"OPEN" => \&draw_open,
"PLUS" => \&draw_plus,
"REF" => \&draw_ref,
"REG_ANY" => \&draw_start_end,
"STAR" => \&draw_star,
"Start” => \&draw_start_end,
"UNLESSM" => \&draw_open

);

draw_node_array -- draw an array of nodes

sub draw node_array($)

{

my $array = shift;

Regular Expression Grapher 283

284

Chapter

1

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

#
Draw Nodes
#
foreach my $cur _node (@$array) {
if (not defined(
$draw_node{
$cur_node->{node}->{type}})) {
die("No draw function for ".
"$cur_node->{node}->{type}");
}
$draw_node{
$cur_node->{node}->{type}}(
$cur_node
)i
}
#
Loop through all the things
(except the last) and
draw arrows between them
#
for (my $index = 0;
$index < $#%array;
++pindex) {
my $from x = $array->[$index]->{right x};
my $from_y = $array->[$index]->{right_y};
my $to_x = $array->[$index+1]->{left_x};
my $to y = $array->[$index+1]->{left y};
arrow(
$from_x, $from_y,
$to x, $to y
)i
}
}
draw_re -- Draw the image
sub draw_re($)
{
Formatted expression
my $format_re = shift;
Background color
$color_white =
$image->colorAllocate(255,255,255);
$color_black = $image->colorAllocate(0,0,0);
$color green=$image->colorAllocate(0,255, 0);

831 $color_blue=$image->colorAllocate(0, 0, 255);
832 $color_light green =

833 $image->colorAllocate(0, 128, 0);
834 # Draw the top level array

835 # (Which recursively draws

836 # all the enclosed elements)

837 draw_node_array($format_re);

838 # Make all the canvas visible

839 }

Running the Script

The function draw_re takes a formatted regular expression and produces an
image. The image is stored in a global variable, $image, so that the caller can
then do what they want with it.

How It Works

Drawing is a pretty straightforward operation. The shapes are mostly simple
and the layout has already been done. The same recursive system you used
for laying out the nodes work for drawing. For example, if you are to draw a
STAR node, you tell the children to draw themselves and then you draw the
lines around them.

The drawing consists of squares, lines, text, and arcs. Squares, lines, and
text are simple to draw. Unfortunately, nobody has found a good way of
specifying arcs. As a result, it’s easy to draw arcs backwards, upside down,
flipped, offset, and generally screwed. Let’s take a look at the STAR node

again.

This element has six, count them, six arcs. Getting each one specified
perfectly is difficult. To make things easier, the STAR node was laid out as a
text graph before the code was generated as illustrated in the next code
example. This gave me the ability to see where things should go before
committing them to code. Also, I was able to record my notes and
measurements, which helped in computing exactly where everything should
go. (It also helped me find out what was going on when things went wrong.)

In some cases, the comments for a drawing function are bigger than the
code. But the planning helps tremendously when it comes time to commit
the drawing to code.

235

236 # The "STAR" node

Regular Expression Grapher 285

286

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

(p = +size of child)
12 3 p3 p4 ps
VoV v L2 v v v

L3--mmmmmmme- >| child |- .+

Arc / swing / center
al /270 -0 / (a1, y +a)
a2/ 90 - 180 / (a3, y + a)
a3/ 0 -90 / (p3, y+a)
a4 / 180 - 270 / (adp, y)

as /270 - 90 / (p3, y-a)
ab / 90 - 270 / (a1, y-a)

oFE 4F dF a3 3 #F SF b 3 dF I 3F 3 3 3 4F 3F 4 3 #F 3F 3 3 3 3 3 3 I I 3 a3

L1 (a3, y+2a) (a3p, y+2a)

Hacking the Script

Again, this is a table-driven script. As new elements are needed, new drawing
functions can be added easily.

#47 Regular Expression Grapher

Chapter

1

Finally, we have the re_graph.pl program. This does the actual work of
graphing the regular expression.

The Code

14
2 # re_graph.pl -- Graph a regular expression

W oo~ oW B W

11
12
13
14
15
16
1
1
19
20
21
2
23
24
2
26
27
2
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

w ~

~

v

o

use strict;
use warnings;

use I0::Handle;
use English;
use GD;

use GD::Arrow;

use parse;
use size;

use draw;

Label location

use constant LABEL_LOC_X => 50;

use constant LABEL LOC Y => 50;

Location of progress msg

use constant PROGRESS_X => 50;

use constant PROGRESS_ Y => 70;

Length of the yellow arrow

use constant YELLOW_ARROW_SIZE => 25;

use constant YELLOW_ARROW WIDTH => 5;

use Getopt::Std;

use vars qw/$opt_d $opt_o $opt x $opt_y/;

STDOUT->auteflush(1);

Configuration items

my $x_margin = 16; # Space between items
my $y margin = 16; # Space between items
#

Fields

node -- Node number

type -- Node type (from re debug)
arg -- Argument (optional)

next -- Next node

#

#

Fields

x_size - Size of the node in X

y_size - Size of the node in Y

x_loc - X Location of the node

y_loc - Y Location of the node

node - Reference to the

Regular Expression Grapher

287

288

Chapter

1

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
7
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

o

89
90
91
92
93
94
95
96
97
98
99
100
101

node in @re_debug
child - Array of child
nodes for this node
#
Re we are displaying now
my $current_re;
my $re_to_add = ""; # Re we are adding
usage -- Tell the user how to use us
sub usage()
{
print STDERR <<EOF;

Usage is $0 [options] [-o <file>] <re» [<str>]
Options:

-d -- Debug

-X <size> -- Minimum size in X
-y <size> -- Minimum size in Y
EOF
exit (8);

find_node($state, $node_array) -- Find a node
the parsed node tree

#

Returns the location of the node

sub find node($$);

sub find_node($$)

{
State (node number) to find
my $state = shift;

my $array = shift; # The array to search
foreach my $cur _node (@$array) {
if ($cur_node->{node}->{node} ==

$state) {

return ($cur_node->{x_loc},
$cur_node->{y_loc});

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143

145
146
147
148
149
150

if (defined($cur_node->{children})) {
Get the x,y to return from
the children
my ($ret x, $ret y) =
find_node(
$state,
$cur_node->{children});

if (defined($ret_x)) {
return ($ret x, $ret y);
}
}
if (defined($cur_node->{choices})) {
my $choices = $cur node->{choices};
foreach my $cur_choice (@$choices) {
Get the x,y to return from the
choice list
my ($ret x, $ret y) =
find_node(
$state, $cur_choice);

if (defined($ret x)) {
return ($ret_x, $ret_y);

}

}

return (undef, undef);

draw_progress($cur_line, $page)

#

Draw a progress page

#

Returns true if the page was drawn

sub draw_progress($$$)

{

my $value = shift; # Value to check

my $cur_line = shift;# Line we are processing

my $page = shift; # Page number

Check to see if this

is one of the progress lines

if (substr($cur_line, 26, 1) ne '[") {
return (0); # Not a good line

}

Line containing the progress number

from the debug output

Regular Expression Grapher 289

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143

145
146
147
148
149
150

if (defined($cur_node->{children})) {
Get the x,y to return from
the children
my ($ret x, $ret y) =
find_node(
$state,
$cur_node->{children});

if (defined($ret_x)) {
return ($ret x, $ret y);
}
}
if (defined($cur_node->{choices})) {
my $choices = $cur node->{choices};
foreach my $cur_choice (@$choices) {
Get the x,y to return from the
choice list
my ($ret x, $ret y) =
find_node(
$state, $cur_choice);

if (defined($ret x)) {
return ($ret_x, $ret_y);

}

}

return (undef, undef);

draw_progress($cur_line, $page)

#

Draw a progress page

#

Returns true if the page was drawn

sub draw_progress($$$)

{

my $value = shift; # Value to check

my $cur_line = shift;# Line we are processing

my $page = shift; # Page number

Check to see if this

is one of the progress lines

if (substr($cur_line, 26, 1) ne '[") {
return (0); # Not a good line

}

Line containing the progress number

from the debug output

Regular Expression Grapher 289

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243 }

the new image
my $new color yellow =
$new_image->colorAllocate(255, 255, 0);

my $new_color black =
$new_image->colorAllocate(0,0,0);

Make the arrow point

to the current step

$new_image->filledPolygon(
$arrow, $new_color_yellow);

$new_image->polygon(
$arrow, $new_color black);

Get the size of the font we are using
my $char_width = gdGiantFont->width;
my $char_height = gdGiantFont->height;

$new_image->filledRectangle(
PROGRESS_X, PROGRESS_Y,
PROGRESS X +
$progress * $char_width,
PROCGRESS_Y + $char_height,
$new_color_yellow

)i

$new_image->string(gdGiantFont,
PROGRESS_X, PROGRESS_Y,
$value, $new_color black);

Generate the output file name
my %out_file =
sprintf($opt_o, $page);

open OUT_FILE, ">$out file" or
die("Could not open output”.
"file: $out_file");

binmode OUT_FILE;

print OUT_FILE $new_image->png(0);
close OUT_FILE;

return (1);

244

245 # chart_progress -- Chart the progress of the

246 #

execution of the RE

247

248 sub chart_progress()

Regular Expression Grapher 291

292

Chapter

1

249 {
250
251
252
253
254
255
256
257
258
259
260

my $value = $ARGV[0]; # Value to check

Value with ' quoted
my $quote_value = $value;
$quote_value =~ s/'/\\'/g;

Regular expression
my $quote_re = $current_re;

$quote_re =~ s/\\/\\\\/g;

my $cmd = <<EOF ;

261 perl 2>81 <<SHELL_EOF

262 use

re 'debug';

263 '$quote_value' =~ /$quote_re/;
264 SHELL_EOF

265 EOF
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289 }
290
291

292 # -d

The raw debug output
my @raw debug = “$cmd”;

Discard junk before the “Matching” keyword
while (($#raw_debug > 0) and
($raw_debug[0] !~ /*Matching/)) {
shift(@raw_debug);
}
shift(@raw_debug);

my $page = 1; # Current output page

foreach my $cur_line (@raw_debug) {
Skip other lines
if (length($cur_line) < 27) {
next;

}

if (draw_progress($value,
$cur_line, $page)) {
++ipage;

-- Print RE debug output and draw output

293 # -o file -- specify output file (template)
294 # -x <min-x>

295 # -y <min-y»

296 my $status = getopts("df:o:x:y:");

29
298 {

=

if ($status == 0)

299
300
301
30
303
304
305
306
307
308
30
310
311
312
313
314
315
316
317
318
319
320
321
322
32
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
34
34
344
345
34
347
348

=

B

w

o

=

usage();

}

if (not defined($opt_o)) {
$opt_o = "re_graph_%ozd.png";

}

if ($#ARGV == -1) {
usage();

}

$current_re = shift(@ARGV);

Compute the regular expression debug info.
my @re debug = parse_re($current re);

Convert the data, get the size of the new node
my ($x_size, $y_size) = convert_re(\@re_debug);
$x_size += MARGIN;
$y_size += MARGIN;
if (defined($opt_x)) {
if ($opt_x > $x_size) {
$x_size = $opt_x;
}
}
if (defined($opt_y)) {
if ($opt_y > $y size) {
$y_size = $opt_y;
}

$image = GD::Image->new($x_size, $y_size);
draw_re(\@format_re);

$image->string(gdGiantFont,
LABEL LOC X, LABEL LOC Y,
"Regular Expression: /$current_re/",
$color black);

my $out_file = sprintf($opt_o, 0);
open OUT_FILE, ">$out_file" or
die("Could not open output file: $out_file");

binmode OUT_FILE;
print OUT_FILE $image->png(0);
close OUT_FILE;

if ($#ARGV 1= -1) {
chart_progress();

¥

Regular Expression Grapher

293

Running the Script

To graph a regular expression, run the program and give it the name of an
output file (-0 option) and a regular expression to graph. Here's an
example:

$ perl re graph.pl -o first.png '\s*test\s*'

If you want to graph the execution of the regular expression against a
particular string, you’ll need to specify an output file template and a string to
match against the regular expression:

$ perl re graph.pl -o re_%2d.png '\s*test\s*' 'testing'

The output file template is a printf style specification that will be used to
generate a series of images showing the regular expression and its execution.

The Resvulis

Let's start by taking a look at the result of graphing the regular expression:
/test/
The graph is shown in the following figure.

Regular Expression: test

Start EXACT END
<test>

Perl’s regular expression engine starts at the start node. The next node
(EXACT) tells Perl that the string must match the text exactly. In this case,
the text is test. If the match is successful, the regular expression goes to the
next node, in this case it’s END, indicating a successful match.

If a match is not successful (for example, if you were trying to match the
beginning of “this is a test” against /test/), the engine moves forward in the
string and tries the match again. In this case, it tries to match “his is a test”
against /test/. Eventually it will match or run out of string.’

Now let’s try a more complicated expression:

A 7

! The regular expression engine has an optimizer that helps it guess where the best possible
match of the string can be located. However, for the purposes of this chapter, we're going to
assume the optimizer does not exist.

The graph of this expression can be seen in the following figure.

Regular Expression: /°,=#/

start. 0L [REG_ANY EXACT END
‘ Ly

The first node after the start node is called BOL. This is Perl’s way of
saying, “match the ‘beginning of line’.”

Between the BOL node and the REG_ANY node you have a fork in the
road. The regular expression engine will always attempt to take the upper
branch of any fork. So if the next character is a space (matching EXACT< >),
the upper branch will be taken and the expression will loop. If the next
character is not a space, the lower branch will be taken. This takes you to an
exacl node that matches the # character. After this matches, the END node is
reached and the match is successful.

There’s one more major type of construct to consider: the branch. Take
a look at this regular expression:

/alb/

This regular expression matches a or b. Graphically this is illustrated by
the following figure.

Regular Expression: Falb/

Remember that Perl always tries to take the top branch when it comes to
a fork, so in this case, it will first try to match a and then try to match b. If
neither one matches, it fails.

Finally let’s look at what happens when you have a sub-expression
specification, as in this example:

S\s*(\d+)/

The only thing new about this graph (see the following figure) is the big
box around the middle expression. Anything inside that box gets assigned to
the variable $1.

Regular Expression Grapher 295

Regular Expression: /sx{d+)/

SPACE.

So far you've just graphed the expressions. Now let’s see them in action.
For this example, we'll use the following command:

$ perl re graph.pl -o ex %0zd.png '*.*(a|b|c).+$' 'abc

The command generates a series of images showing how Perl executes
this statement:

‘abe' =~ /h¥(alble) 48/

The following figure shows the first attempt at matching. The letters abc
are shaded, indicating that Perl has processed them. The arrow points to the
graph of .*.

Regular Expression: /7,={alblc),+S/
abc

BTGPV

Perl will now try to match the rest of the string (consisting of the end of
the string only) against the rest of the regular expression (/(a|b|c).+$/). The
following figure shows the system trying to match the end of the string

against b.

Regular Expression: /" .=(alblc).+8/
abc

296 Choprer 11

This isn’t going to work, so Perl backs up a character and sees what
happens when it matches ab against /*.*/. The following figure shows that
Perlis trying to match the ¢ of abc against the second item in the branch list.

Notice that only the ab of abc is shaded.

Regular Expression: /~.={alblc).+5/
abo

ISEX:

: £ REC AT 2 - N0

This step will fail, but the next one will succeed. Next Perl tries to match
“end of string” against /.+/. This fails. So Perl backtracks and sees what
happens if it matches a against /*.*/ and the rest of the string against /(a|b|
c).+$/.

The b matches the middle element as we can see in the following figure.

Regular Expression: /", =(alblc),+8/
abc

The c is checked against /.+/ as shown by the following figure. It

succeeds.

Regular Expression: /".x(alblc). 15/
abc

REG_ANY B0

The result is a match. It took a while to get there, but you have a match.

The best way of fully understanding this script is to try it. By playing
around with various expressions and values, you should get a pretty good
idea of what goes on inside a regular expression.

Regula

298

Chapter

1

How It Works

The system feeds the regular expression through the parsing module, places
the nodes on the image with the layout module, and draws the basic regular
expression with the drawing module.

Showing the Execution of the Graph

Once you have your graph, you can use it to show the regular expression
engine in action. Let’s take a look at the debug output produced by the
following Perl code:

tabe' =~ /r¥(alble) .+

The debug code shows not only the compilation of the expression, but
its execution:

Compiling REx ~~.*(a|b|c).+'
size 19 Got 156 bytes for offset annotations.
first at 2

1: BOL(2)

2: STAR(4)

3: REG_ANY(0)

4: OPEN1(6)

6: BRANCH(9)

7: EXACT <a»(15)
9: BRANCH(12)
10: EXACT (15)

12: BRANCH(15)

13: EXACT <c>(15)

15: CLOSE1(17)

17: PLUS(19)

18: REG_ANY(0)

19: END(0)
anchored (BOL) minlen 2
Offsets: [19]

11] 3[1] 2[1] 4[1] o[o] 4[1] 5[1] o[o] 6[1] 7[1] o[e] 8[1] 9[1] o[o] 10

[1] o[o] 22[1] 11[1] 13[0]
Matching REx "*.*(a|b|c).+' against ~abc'

Setting an EVAL scope, savestack=3

0 <> <abc> | 1: BOL

0 <> <abc> | 2: STAR

REG_ANY can match 3 times out of 2147483647...
Setting an EVAL scope, savestack=3

3 <abo o | 4 OPEN1

3 <abo> o | 6: BRANCH

Setting an EVAL scope, savestack=13

3 <abc> <> |7 EXACT <a»
failed...

3 <abe> <> | 10: EXACT

failed...

3 <abe> <> | 13: EXACT <c>
failed...

Clearing an EVAL scope, savestack=3..13

2 <ab> <o | 4: OPEN1

2 <aby <c> | 6: BRANCH

Setting an EVAL scope, savestack=13

2 <ab> <o |7 EXACT <a>

8 failed...

2 <aby <c> | 10: EXACT
failed...

2 <aby <c> | 13: EXACT <c>

3 <abo> © | 15: CLOSE1

3 <abo> © | 17: PLUS

REG_ANY can match 0 times out of 2147483647...
Setting an EVAL scope, savestack=13

failed...
setting an EVAL scope, savestack=13
1 <a> <be> | 7 EXACT <a>
failed...
1 <a> <be> | 10: EXACT
2 <aby <c> | 15: CLOSE1
2 <ab> <> | 17: PLUS

REG_ANY can match 1 times out of 2147483647...
Setting an EVAL scope, savestack=13
3 <abe> <> | 19: END
Match successfull
Freeing REx: ~"~.*(alb|c).+"'

Let’s take a closer look at a typical debug line:
0 < <abc> | 1: BOL

The first number (0) tells you that the regular expression engine has
matched 0 characters of the string at this point. The next little bit of text
shows a bit of the string matched so far (nothing, or <»>) and a bit of the
unmatched portion (<abc>). Then you have a vertical bar followed by the
node that is currently being executed. In this case, it's node number 1,
beginning of line (BOL).

We've gone through the execution of this regular expression before.
Now let’s see how the debug output relates to what you saw previously.

After matching the BOL, the engine tries to match abc against /.*/. Since

/.*/ is greedy, it matches all three characters:

3 <abo o | 4: OPEN1

Regular Expression Grapher

This line tells you that all three characters have been matched and the
engine is now going to match the remainder (<) against the expression
starting at node 4 (the open parenthesis).

Next Perl tries to match the end of the string against the expression
/(alble)/. This fails:

3 <abo> © |7 EXACT <a>
failed...

3 <abe> <> | 10: EXACT
failed...

3 <abe> <> | 13: EXACT <c>
failed...

Perl goes back and decides to see if things will work better if it matches
only 'ab' against /.*/:

2 <ab> <o | 4: OPEN1

Things are better this time. When it checks c against /(a|b[c)/, it gets a
match on the third try:

2 <ab> <o |7 EXACT <a>
failed...

2 <aby <c> | 10: EXACT
failed...

2 <aby <c> | 13: EXACT <c>

3 <abo> © | 15: CLOSE1

Next it tries matching the end of line to /.+/. This fails:

3 <abe> o | 17: PLUS
REG_ANY can match 0 times out of 2147483647...
Setting an EVAL scope, savestack=13
failed...

So the engine goes back again and sees if things will work better if only a
is matched against the initial /.*/. This works. The b matches the middle, and
the ¢ matches the end. Success:

2 <ab> <c> | 17: PLUS
REG_ANY can match 1 times out of 2147483647...
Setting an EVAL scope, savestack=13
3 <abo> o | 19: END
Match successfull

The execution of this regular expression took a bit of work and required
the system to backtrack twice.

300 choprer 11

NOTE

The regular expression graphing program illustrates the execution
process graphically, as shown in the following figure.

1 | abe 7 | abe 13| abe
2 | abe 8 | abe 14| abe
3 | abc 9 [abc 15| abe
4 | abe 10 abe 16 | abe
5 | abe 11 abe
6 | abe 12 abe

Regular Expression: /*.#(a|b|c).+5/

3,7,12

o \ 4,8,13
2 ()= 81 /
temesiens ,)
NN\ * s /
|5m BOL REG_ANY _ REG_ANY |EOl END I
l——l [EXACT 55 | Q p‘

L =]
6,10

The actual output of the script is a sevies of 20 images. However, they were consolidated
Lo save space.

Now how do you produce the images? It's actually quite easy. Let’s take
another look at a typical line from the debug output of the regular
expression engine:

1 <a> <be> | 10: EXACT

The first number is the number of characters matched. On the other
side of the vertical bar you have the node number of the parsed regular
expression. These two numbers are the only pieces of information you need
from this line.

To show the progress within the string, you draw the string and highlight
the appropriate number of characters:

219 $new_image->filledRectangle(
220 PROCGRESS_X, PROGRESS_Y,
221 PROCGRESS_X +

222 $progress * $char_width,
223 PROCGRESS_Y + $char_height,
224 $new_color_yellow

25)

226

Regular Expression Grapher 301

302

Chapter

1

227
228
229
230

$new_image->string(gdGiantFont,
PROCGRESS_X, PROGRESS_Y,
$value, $new_color_black);

To show which is the current node in the state machine, you draw a

yellow arrow pointing to it. The only problem you've got is finding the
location of the node. The location of each node is recorded with the node
itself. All you have to do is find it.

Unfortunately, the complex data structure you created to make parsing

and graphing easier makes searching harder. The find_node function, which
performs the search, must not only search each node in the array, but also
recursively search the children (if any) and the branches (if any) of the data:

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

find node($state, $node_array) -- Find a node

the parsed node tree
#
Returns the location of the node

sub find_node($$);

sub find node($$)

{
State (node number) to find
my $state = shift;

my $array = shift; # The array to search

foreach my $cur_node (@$array) {
if ($cur_node->{node}->{node} ==
$state) {

return ($cur_node->{x_loc},
$cur_node->{y loc});

}
if (defined($cur_node->{children})) {
Get the x,y to return from
the children
my ($ret x, $ret y) =
find_node(
$state,
$cur_node->{children});

if (defined($ret x)) {
return ($ret x, $ret y);

}

113 }

114 if (defined($cur_node->{choices})) {
115 my $choices = $cur_node->{choices};
116 foreach my $cur _choice (@$choices) {
117 # Get the x,y to return from the
118 # choice 1ist

119 my ($ret_x, $ret_y) =

120 find_node(

121 $state, $cur_choice);
122

123 if (defined($ret_x)) {

124 return ($ret x, $ret y);

125 }

126 }

127 }

128 }

129 return (undef, undef);

130 }

Once the node is found, you draw an arrow to it:

188 # Create the arrow

189 my $arrow = GD::Arrow::Full->new(

190 -X1 => $x_location,

191 -¥1 => $y_location,

192 -X2 => $x_location - YELLOW_ARROW_SIZE,
193 -Y2 => $y location - YELLOW ARROW SIZE,
194 -WIDTH => YELLOW_ARROW_WIDTH

195)i

207 # Make the arrow point

208 # to the current step

209 $new_image->filledPolygon(

210 $arrow, $new_color_yellow);

211

212 $new_image->polygon(

213 $arrow, $new_color_black);

With the arrow in place, it’s time to write out the image. The result
is a series of image files showing the progress of the regular expression
execution.

Hacking the Script

The script is in a state of almost constant evolution. As it currently stands, it
parses and graphs all the regular expressions I've encountered. But it does
not parse all possible regular expressions.

Regular Expression Grapher 303

304

Chapter

1

If you encounter a node that the script does not understand, it should be
easy to hack it back into the script.

Also, I am not an artist. Although the graphs are technically accurate,
they are not elegant. The whole thing has a functional look to it. I'm sure
that through the use of colors and a smarter layout engine, the results can be
made to look more beautiful.

But as it stands now the script is a really wicked and cool tool for
understanding and learning regular expressions. It's amazing how
something so complex and convoluted as an advanced regular expression
can turn out simple and elegant when you graph it. Now that’s cool.

INDEX

Symbols and Numbers

$\ record separator, 191

7 */ regular expression, 294

$1 $2 regular expression, 244

1752 (year), missing days, 14

% 2E hack, 37

/*.*(alb|c).+$/ regular expression,
296-298

/a*b/ regular expression, 246-247

/alb/ regular expression, 295

A

absolute links, 29

absolute URLs, 29

addlfile, Digest::MD5, 7

adding a user, 101

add-user.pl program, 104

aerial photographs, Grand Canyon trails,
241

alarm, disk space, 99

Annotate function, Image: :Magick module,
149

Apache error log, 34, 37, 42

displaying, 47

Apple EOL type, 189

August, 14

automatic help, 1

Babylonians, 14

bad filenames, fixing, 91

binmode functon, 191, 194

birthday party invitation, 134

BOL node, regular expression, 295,
297,299

BRANCH node, regular expression,
267, 297

broken links, checking, 97

C

Caesar, Augustus, 14
Caesar, Julius, 14
calculations, date, 15
calendar, Gregorian, 15
calendar, Julian, 15
Canvas widget, Tk, 179
card, greeting, 134
card maker, 134
card.pl program, 141, 143-144
Carriage Return (EOL type), 189
Carriage Return/Line Feed (EOL type),
189
cartoons, editorial, 80
C/C++ code, 185
CGl
cookie, 167, 169
debugging information, printing, 50
errata submission, 69
guest book, 63
Hello World, 45
programs, 37
programs, interactive debugging, 53
quiz, 158
visitor counter, 60
CGI: :Carp module, 47, 49, 58-59
€GI module, 60, 63, 67
CGI scripts, 28
CGI::Thin::Cookies module, 159, 167
Parse_Cookies function, 167
CGIL: :Thin module, 50, 159
Parse_CGI function, 52
changed files, checking for, 8
change.pl program, 10
charcoal filter, 145
Charcoal function, Image: :Magick module,
148
checker, orphan files, 31
checking for changed files, 8
checking HTML links, 21

306

INDE®

checking links, 26
checking symbolic links, 97
checksum, MDA, 3, 7-8, 10
Chi (wife), 69
CHLD (SIGCHLD), 181
Christmas card, 134
cmd.exe, 34
code

C/C++, 185

dead, locator, 185
code generator, 183
comics, downloading, 80
command

find, 107

findzperl, 99

findzpl, 33

fortune, 59

nm, 187

passwd, 109

ps, 115

route, 40, 43

wall, 101

who, 109
control window (map program), 224
converter, currency, 16
converter, EOL type, 192
cookie, CGI, 167, 169
counter, visitor, 60
CPAN, xvi
creating thumbnail images, 120
currency converter, 16

data mining, 77
Date::Calc module, 12, 15
date calculations, 15
Date Reminder program, 12
date, UNIX, 15
dead code locator, 185
dead links, 21
dead.pl program, 187
debugger, regular expression, 247
debugging, CGI programs
interactive, 53
printing information, 50
DEC EOL type, 189
deleting a user, 110
del_user.pl program, 112
detection, hacker, 34
detector, EOL type, 189
Digest::MD5 module, 3, 7-8
Digital Orthophoto Quadrangle (DOQ)
maps, 208

Digital Raster Graphic (DRG) maps, 208
directory, /etc/skel, 106
disabling a user, 108
disappearing text, Inage: :Magick, 149
disk.pl program, 100
disk space alarm, 99
displaying the Apache error log, 47
DISPLAY variable (X server), 53
dis_user.pl program, 108
dollar

Hong Kong, 18

Us, 18
DOQ (Digital Orthophoto Quadrangle)

maps, 208

downloading comics, 80
-d:ptkdb, 54
draw function, Image::Magick module, 147
DRG (Digital Raster Graphic) maps, 208
duplicate files, finding, 3

Earth, not flat, 207
Easting, UTM, 209
ed2k protocol, 29
editorial cartoons, 80
email, sending, 74
Emboss function, Image: :Magick module,
148
embossing filter, 145
encode_entities function, HTML: :Entities
module, 49, 52
END node, regular expression, 247, 264,
267, 294-297, 300
enum, 184
generator, 183
enum.pl program, 184
environment, untainting, 53, 5
SENV{PATH}, 55
eol-change.pl program, 194
EOL converter, 192
EOL node, regular expression, 296
EOL type
Apple, 189
DEC, 189
Linux, 189
Microsoft, 189
UNIX, 189
Windows, 189
EOL type detector, 189
eol-type.pl program, 191
errata submission, 69
error log, Apache, 34, 37, 42
displaying, 47

error, premature end of script, 48

fetc/groups file, 104, 106, 112

/etc/passud file, 104, 106-107, 112

Jetc/shadow file, 104, 106, 112

fetc/skel directory, 104, 106

EXACT node, regular expression, 247,
264-265, 267, 294-297, 300-301

exchange rates (currency), 16

exchange rates, Yahoo!, 18-19

exit, map control, 225

-exportselection, Tk::ListBox module, 240

Fentl module, 101
flock function, 105, 107, 110
Februa (feast), 14
February, 14
File::Find::Duplicates module, 5
File::Find module, 6, 8, 10, 31, 33, 97-98
file size (stat), 6
file, /etc/groups, 106, 112
file, /etc/passwd, 106, 108, 112
file, /etc/shadow, 106, 112
files
changed, checking for, 8
duplicate, finding, 3
orphan, 33
orphan, checking, 31
Filesys: :DiskSpace module, 99-100
File::Tail module, 39, 42
filter
charcoal, 145
embossing, 145
oil painting, 145
Finance: :Currency::Convert::XE module,
17,19
Finance::Currency: :Convert: :Yahoo module,
18-19
Finance: :Quote module, 78-79
findzperl command, 99
findzpl command, 33
find command, 107
finding duplicate files, 3
finding processes owned by a user, 109
fixing bad filenames, 91
fix-names.pl program, 92
flash card program, 153
flock function, Fentl module, 105,
107,110
font, ImageMagick, 150
fortune command, 59
French vocabulary, 153
FTP protocol, 29-30

function
binmode, 191, 194
getpwnam, 105
kill, 116
localtime, 15
lstat, 98
read, 191
rename, 94
stat, 133
stat (file size), 6
strftime, 133
sysread, 195
syswrite, 195
waitpid, 181

G

game, guessing, 152
oD module, 60, 61, 287
GD: :Arrow module, 287
generator
enum, 183
map, 211
Geo: :Coordinates: :UTM module, 199
latlon_to_utm function, 208
Geodetic Reference System 1980 (GRS
1980y, 207
geonames.usgs.gov/stategaz, 238
Get function, Image: :Magick module, 149
get function, LWP: :Simple module, 28, 87
getpunam function, 105
getling maps, 198
goto lat/long, map control, 225
goto location, map control, 225-226
goto named location (map), 238
Grace Qualline, 129, 143-145, 151, 170
grace.pl program, 176
Grand Canyon, hacking, 241
Grand Canyon trails, aerial photo-
graphs, 241
grapher, regular expression, 243, 286
graph layout, regular expression, 248
greeting card, 134
Gregorian calendar, 15
GRS 1980 (Geodetic Reference System
1980y, 207
guessing game, 152
guess.pl program, 153
guest book, 63

H

hack, %2FE, web, 37
hacker detection, 34

iMpex 307

308

INDE®

hackers, locking out, 38

head function, LWP: :Simple module, 27, 89

Hello World (CGI), 45

--help, 1, 3

help option, automatic, 1

hexasegimal numbers, 14

Hong Kong dollar, 18

hope, pray, print, 55

HTML: :Entities module, 47, 50, 60, 67
encode_entities function, 49, 52

HTML form, 164

HTML pages, quiz, 162, 164

TML: : SimpleLinkExtor module, 22, 28, 81

links function, 28
parse function, 28

HTTP::Lite module, 199, 209, 211, 229

HTTP protocol, 29

HTTPS protocol, 30

Image: :Info module, 118-120, 124, 133
image information, 117
image, JPEG, 119
ImageMagick, 120
Image: :Magick
disappearing text, 149
fonts, 150
module, 120-123, 135, 142, 146-147,
211, 227
Annotate function, 149
Charcoal function, 148
draw function, 147
Emboss function, 148
Get function, 149
Montage function, 228
0ilPaint function, 148
Write function, 228
image/png. MIME type, 60
image, thumbnail, creating, 120
images
JPEG format, 228
PNG format, 142
information, CGI debugging, printing, 50
information, image, 117
INIT block, 2-3
insecure dependency, 75
interactive debugging, CGI programs, 53
invitation, birthday party, 134

J

Jjoke generator, 57
Jjoke.pl program, 58

JPEG image, 119, 228
Julian calendar, 15
July, 14

K

Karen (not wife), 69

keyboard, Play-Doh removal from, 181
key names (X11), 177

kill function, 116

killing a stuck process, 113

L

lang.pl program, 155
latlon_to_utm function,
Geo: :Coordinates: :UTM
module, 208
layout, regular expression graph, 248
Line Feed (EOL type), 189
link
absolute, 29
broken, checking, 97
checker, 21
checking, 26
dead, 21
relative, 29
links function, HTML: : SimpleLinkExtor
module, 28
Linux Cross Reference utility, 183
Linux EOL type, 189
localtime function, 15
locator, dead code, 185
locking out hackers, 38
lock-out.pl program, 41
1stat function, 98
LWP: :Simple module, 22, 27-28, 81, 87, 89
get function, 28, 87
head function, 27, 89
Ixr.linux.no, 183

mailto protocol, 29-30
make_page.pl program, 129
map generator, 211
map, goto named location, 238
map height level, map control, 225
maps
DOQ (Digital Orthophoto
Quadrangle), 208
DRG (Digital Raster Graphic), 208
getting, 198
topographical, 197

map width, map control, 225
map window, 224
mass file rename, 94
mass-rename.pl program, 96
match progress, regular expressions, 301
MD5 checksum, 7-8, 10
Digest::MD5 module, 3
Microsoft EOL type, 189
MIME type, 28
MIME type, image/png, 61
missing days in 1752, 14
module
CGL, 60, 63, 67
CGI::Carp, 47, 49, 58-59
CGI::Thin, 50, 159
CGL::Thin::Cookies, 159, 167
Parse_Cookies function, 167
Parse_CGI function, 52
Date::Calc, 12, 15
Digest::MD5, 3, 7-8
Fentl, 101
flock function, 105, 108, 110
Finance: :Quote, 79
File::Find, 5, 8, 10, 31, 33, 97-98
File::Find::Duplicates, b
Filesys: :DiskSpace, 99-100
File::Tail, 39, 42
Finance::Currency::Convert::Xg, 17, 19
Finance: :Currency: : Convert: :Yahoo,
18-19
Finance: :Quote, 78
@D, 60-61, 287
GD: :Arrow, 287
Geo::Coordinates::UTM, 199
latlon_to_utm function, 208
HTML: :Entities, 47, 50, 60, 67
encode_entities function, 49, 52
HTML: :Simplel inkExtor, 22, 28, 81
HTTP: :Lite, 199, 209, 211, 229
Image::Info, 118-120, 124, 133
Image::Magick, 120-123, 135, 142,
146-147, 211, 227
Annotate function, 149
Charcoal function, 148
draw function, 147
Emboss function, 148
Get function, 149
Montage function, 228
0ilPaint funcron, 148
Write function, 228
LWp::Simple, 22, 27-28, 81, 87, 89
POSIX, 171
Storable, 8, 10-11
nstore function, 168

Time::ParseDate, 12, 15
Tk, 171, 178
Tk: :BrowseEntry, 211
Tk::IPEG, 171, 211
Tk::labEntry, 211
Tk::ListBox, 240
-exportselection, 240
selection problem, 240
Tk: :Photo, 211
Photo function, 227
URT, 31, 33, 81, 89
URIL::URL, 22, 29
Montage function, Image::Magick module,
228
multiple serolling windows, Tk, 239

NADSB3 (North American Datum of
1983), 207
named location (map), 238
nmcommand, 187
node, regular expression
BOL, 295, 298-299
BRANCH, 267, 298
END, 247, 264, 267, 294-297, 300
EOL, 296
EXACT, 247, 264-265, 267, 204-297,
300-301
OPEN, 208-299
PLUS, 298-299
REG_ANY, 205-296, 298
SPACE, 296
STAR, 247, 264-266, 285, 298
North American Datum of 1983
(NADS83), 207
Northing, UTM, 209
nstore function, Storable module, 11, 168

0

0ilPaint function, Image: :Magick module,
148

oil painting filter, 145

OPEN node, regular expression,
298, 300

OpenOffice.org, 241

operator, substitute (s///), 192

operator, wranslate (tr), 192

orphan file checker, 31

orphan files, 33

QOualline, Grace, 129, 143-145, 151,
170

out of space alarm, 99

iMpeEx 309

310

INDE®

Parse_CGI function, CGI::Thin module, 52
Parse_Cookies function, CGI::Thin: :Cookies
module, 167
parse function, HTML: : SimpleLinkExtor
module, 28
parser, regular expression, 246
passwd command, 109
PATH (environment variable), 55
path function, URT module, 34
perldoc command, 2-3
Photo function, Tk::Phote module, 227
photograph gallery, 123
photographs, 117
Plain Old Documentation (POD), xvi, 2
Play-Doh, 181
PLUS node, regular expression, 298-300
PNG images, 142
POD (Plain Old Documentation), xvi, 2
POSIX module, 171
PostScript files, 142, 228
pray, hope, print, 55
Premature end of script header error, 48
print, hope, pray, 35
print, map control, 225
process, stuck, killing, 113
program
add-user.pl, 104
card.pl, 141, 143-144
change.pl, 10
dead.pl, 187
del_user.pl, 112
disk.pl, 100
dis_user.pl, 108
enum.pl, 184
eol-change.pl, 194
eol-type.pl, 191
fix-names.pl, 92
grace.pl, 176
guess.pl, 153
joke.pl, 58
lang.pl, 155
lock-out.pl, 41
make_page.pl, 129
mass-rename.pl, 96
quote.pl, 79
remind.pl, 14
site-check.pl, 25
site-orphan.pl, 32
sym-check.pl, 98
thumb.pl, 122
who-hacked. pl, 36

protocol
ed2k, 29
FTP, 29-30
HTTP, 29
HTTPS, 30
mailto, 29-30
RST, 30
telnet, 29-30
ps command, 115
ptkdb, 54
ptkdb (CGI programs), 53

Q

quiz
CGI, 158
vocabulary, 153
web-based, 158
quote.pl program, 79

race condition, 169
random joke generator, 57
read function, 191
record separator ($\), 191
REG_ANY node, regular expression,
295-297
regular expression
/o, 294
$1 %2, 244
fa*b/, 246-247
/a|b/, 295
/% *(a|blc).+$/, 206-298
BOL node, 295, 208-299
BRANCH node, 267, 298
debugger, 247
END node, 247, 264, 267,
294-297, 300
EOL node, 296
EXACT node, 247, 264-265, 267,
294-297, 300-301
grapher, 243, 286
graph, layout, 248
match progress, 301
OPEN node, 298, 500
parser, 246
PLUS node, 298, 300
REG_ANY node, 295-298
As*(\d+)/, 295
SPACE node, 296
As*(\S+) (\d+)/, 243
STAR node, 247, 264-266, 285, 298

state machine, 243

/test/, 294

tree graph, 263
relative links, 20
relative URLs, 29
remind.pl program, 14
rename, file, mass, 94
rename function, 94
retrieve function, Storable module, 10
Romans, 14
route command, 40, 43
route

delete, 43

reject, 43
RST protacol, 30

S

save image level, map control, 225
scripts, CGI, 28
scrolling windows, multiple, Tk, 239
/As*(\d+)/, regular expression, 295
selection problem, Tk::ListBox module,
240
sending email, 74
SIGCHLD, 181
signal handling, 181
site-check.pl program, 25
site-orphan.pl program, 32
SPACE node, regular expression, 296
/As*(\S+) (\d+)/, regular expression, 243
s///, substitute operator, 192
STAR node, regular expression, 247,
264-266, 285, 208

state machine, regular expression, 243
stat funcron, 133
stat function (file size), 6
stock quotes, 78
stocks, 78
Storable module, 8, 10-11

nstore function, 11, 168

retrieve function, 10
strftime function, 133
stuck process, killing, 113
substitute operator (s///), 192
symbolic links, checking, 97
sym-check.pl program, 98
sysread function, 195
syswrite function, 195

T

taint (-T), 49
insecure dependency message, 75

teaching toddlers, 170
Teletype, 189
telnet protocol, 29-30
usa.com, 207, 209
terraserver.microsoft.com, 197
TerraServer, 197, 207-209
/test/, regular expression, 294
text/huml, MIME type, 28
thumbnail, creating, 120
thumb.pl program, 122
Time::ParseDate module, 12, 15
Tk module, 171, 178
multiple scrolling windows, 239
Tk: :BrowseEntry module, 211
Tk Canvas widget, 179
Tk::IPEG module, 171, 211
Tk::LabEntry module, 211
Tk::ListBox module, 240
-exportselection, 240
selection problem, 240
Tk::Photo module, 211
Photo function, 227
toddlers, teaching, 170
toggle type, map contwrol, 225
topographical maps, 197
tree graph, regular expression, 263
Tripwire program, 12
tr operator, 192

Leraser

u

UID (user ID), 104-105
United States Geological Survey (USGS),
197, 207, 228
Universal Transverse Mercator (UTM)
system, 207-210
Unix date, 15
Unix EOL type, 189
untainting the environment, 55, 59, 74
URI module, 31, 33, 81, 89
path function, 33
URI::URL module, 22, 29
URL, 25-26, 28
absolute, 29
relative, 29
US dollar, 18
use re 'debug’ statement, 247
user
adding, 101
deleting, 110
disabling, 107
finding processes, 109
yelling at, 109

voex 311

user ID (UID), 104-105

USGS (United States Geological Survey),
197, 207, 228

UTM (Universal Transverse Mercator)
system, 207-210

UTM, Zone, Easting, Northing, 209

v

visitor counter, 60
vocabulary quiz, 153

w

waitpid function, 181

wall command, 101
web-based quiz, 158

web joke generator, 57
website, managing, 21
website link checker, 21
who command, 109
who-hacked.pl program, 36
widget, Tk Canvas, 179
wife, Chi, 69

wife, not, Karen, 69
Windows EOL type, 189
WINNT directory, 34
WINNT (hack), 37

word lists, 157

Write function, Image: :Magick module, 228

X

X11 key names, 177

XE.com (currency conversion rates),
16, 19

X server, 53

Y

Yahoo! exchange rates, 18-19
velling at a user, 109

1

Zone, UTM, 209
zoom level, map control, 225

312 noex

Electronic Frontier Foundation
Defending Freedom in the Digital World

Free Speech. Privacy. Innovation. Fair Use. Reverse Engineering. If you care about these rights in the
digital world, then you should join the Electronic Frontier Foundation (EFF). EFF was founded in 1990 to
protect the rights of users and developers of technology. EFF is the first to identify threats to basic rights
online and to advocate on behalf of free expression in the digital age.

The Electronic Frontier Foundation Defends Your Rights!
Become a Member Today!
hitp://www.eff.org/support/

Current EFF projects include:

FPratecting your fundamental right fo vote. Widely
publicized security flaws in computerized voting
machines show that, though filled with potential, this
technolagy is far from perfect. EFF is defending the
open discussion of e-voting problems and is coordinat-
ing a national litigation strategy addressing issues
arising from use of paorly developed and tested
computerized voting machines.

Ensuring that you are not traceable through your
things. Libraries, schools, the government and private
sector businesses are adopting radio frequency
identification tags, or RFIDs - a technology capable of
pinpainting the physical location of whatever item the
tags are embedded in. While this may seem like a
convenient way to track items, it's also a convenient
way to do something less benign: track people and their
activities through their belongings. EFF is working to
ensure that emhrace of this technology does not erode
your right o privacy.

Stopping the FBI from ereating surveillance backdoors
on the Internet. EFF is part of a coalition opposing the
FBI's expansion of the Communications Assistance for
Law Enforcement Act (CALEA), which would require that
the wiretap capahilities built into the phone system he
extended 1o the Internet, forcing 1SPs 1o build hackdoors
for law enforcement.

Praviding you with a means by which you can contact
Key decision-makers on cyber-liberties issues. EFF
maintains an action center that provides alerts on
technology, civil liberties issues and pending legislation
to more than 50,000 subscribers. EFF also generates a
weekly online newsletter, EFFector, and a blag that
provides up-to-the minute information and commentary.

Defending your right to listen ta and copy digital music
and mavies. The entertainment industry has been
overzealous in trying to protect its copyrights, often
decimating fair use rights in the process. EFFis
standing up to the movie and music industries on
several fronts.

Check out all of the things we're working on at http://www.eff.org and join today
or make a donation to support the fight to defend freedom online.

ELECTRONIC FRONTIER FOUNDATION - 454 SHOTWELL STREET - SAN FRANCISCO, CA 94110 - 415.436.9333

[
Muore No-Nonsense Books from ‘ :f-.' NO STARCH PRESS

WRITE GREAT CODE, VOLUME 2
Thinking Low-Level, Writing High-Level
by RANDALL HYDE

Today’s computer science students aren’t always taught how to choose
high-level language statements carefully to produce efficient code. In this
follow-up to Write Great Code, Volume 1: Understanding the Machine, Randall
Hyde shows software engineers what too many college and university courses
don’t: how compilers translate high-level language statements and data struc-
tures into machine code. Armed with this knowledge, readers will be better
informed about choosing the high-level structures that will help the compiler
produce superior machine code, all without having to give up the productivity
and portability benefits of using a high-level language.

FEBRUARY 2006, 608 pr., $44.95 ($60.95 CDN)
ISBN 1-59327-065-8

THE BOOK OF PYTHON
From the Tip of the Tongue to the End of the Tale
byw](')lll\' A. GOEBEL, ADIL HASAN, and FRANCESCO SAFAI TEHRANI

The Book of Python is a complete reference to the Python programming lan-
guage. [t begins with a discussion of Python’s programming environment,
then moves on to more advanced topics, including object-oriented pro-
gramming, interacting with operating systems, creating GUIs and database
interfaces, network programming, XML, web programming, and much
more. To aid programmers in their day-to-day use of this book, functions
and modules are cross-referenced throughout and multiple examples
illustrate how to use Python.

JUNE 2006, 1000 pp., $49.95 ($67.95 CDN)

ISBN 1-59327-103-4

JUST SAY NO TO MICROSOFT'
How to Ditch Microsoft and Why 1t's Not as Hard as You Think
by TONY BOVE

Just Say No to Microsoft begins by tracing Microsoft’s rise from tiny software

startup to monopolistic juggernaut and explains how the company’s practices
over the years have discouraged innovation, stunted competition, and helped
foster an environment ripe for viruses, bugs, and hackers. Readers learn how
they can dump Microsoft products—even the Windows operating system—
and continue to be productive.

NOVEMBER 2005, 264 pp., $24.95 ($33.95 CDN)
ISBN 1-59327-064-X

HOW LINUX WORKS

What Every Superuser Should Know
by BRIAN WARD

Houw Linux Works describes the inside of the Linux system for systems admini-
strators, whether you maintain an extensive network in the office or one Linux
box at home. Some books try to give you copy-and-paste instructions for
how to deal with every single system issue that may arise, but How Linux
Works actually shows you how the Linux system functions so that you can
come up with your own solutions. After a guided tour of filesystems, the
boot sequence, system management basics, and networking, author Brian
Ward delves into topics such as development tools, custom kernels, and
buying hardware. With a mixture of background theory and real-world exam-
ples, this book shows both how to administer Linux, and why each particular
technique works, so that you will know how to make Linux work for you.

MAY 2004, 368 pp., $37.95 ($55.95 CDN)
ISBN 1-59327-035-6

HACKING OPENOFFICE.ORG

Tips, Tricks, and Untold Secrets

f)”)‘ BRUCE BYFIELD

Hacking OpenOffice.org shows you how to get the most out the OpenOffice.org
program suite, without spending time on obvious basics that you can easily
deduce on your own. Rather than covering every aspect of OpenOffice.org,
author Bruce Byfield focuses on the essentials and the tasks that are most likely
to be puzzling or frustrating.

JUNE 2006, 304 pp., $24.95 ($33.95 CDN)

ISBN 1-59327-072-0

PHONE: EMAIL:
800.420.7240 OR
415.863.9900

@NOSTARCH.COM

MONDAY THROUGH FRIDAY, WEB:
9 AM. TO 5 P.M. (PST) HTTE:/ / WWW.NOSTARCH.COM
FAX: MAIL:

415.863.9950 NO STARCH PRESS

24 HOURS A DAY, 555 DE HARO ST, SUITE 250

7 DAYS A WEEK SAN FRANCISCO, CA 94107

USA

COLOPHON

Wicked Cool Perl Scripts was laid out in Adobe FrameMaker. The font families
used are New Baskerville for body text, Futura for headings and tables, and
Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Thor 60# Antique, which is made from
50 percent recycled materials, including 30 percent postconsumer content.
The book uses a RepKover binding, which allows it to lay flat when open.

UPDATES

Visit http://www.nostarch.com /weps.htm for updates, errata, and other
information.

