< Day Dav Un > MEXT wip

NETWORK
SECURITY
HAGKS

i e st S i e

. able of Contentg
. d
. view

Reader Reviews
. rrata

. Academid

L]
=
)
<. ||®
(‘DA
)

Network Security Hacks

By Andrew Lockhar

Publisher: O'Reilly
Pub Date: April 2004
ISBN: 0-596-00643-8
Pages: 312

Slots: 1.0

This information-packed book provides more than 100 quick, practical, and clever things to do to help make your Linux, UNIX, or
Windows networks more secure. Loaded with concise but powerful examples of applied encryption, intrusion detection, logging, trending,
and incident response, Network Security Hacks demonstrates effective methods for defending your servers and networks from a variety

of devious and subtle attacks.
< Day Dav Up 5| MEXT wp

http://www.oreilly.com/catalog/netsechacks/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=netsechacks
http://www.oreilly.com/catalog/netsechacks/errata/
http://academic.oreilly.com
http://www.oreillynet.com/cs/catalog/view/au/1757?x-t=book.view

NETWORK
SECURITY

Network Security Hacks

By Andrew Lockhar

Publisher: O'Reilly
Pub Date: April 2004
ISBN: 0-596-00643-8
Pages: 312
Slots: 1.0

reditg

Ebout the AJthO]
Eontributors
cknowledgment:
Why Network Security Hacksji.

How This Book Is Orqanizea

Conventions Used in This Bookj

sing Code Exampleq

Eow to Contact Ug
Ehaéter 1. Unix Host Securia

acks #1-2

ection 1. Secure Mount Pointﬁ

Eection 2. Scan for SUID and SGID Programé

ection 3. Sczln For World- gnd Group—Writa_ble Directorie

ection 4. Create Flexible Permissions Hierarchies with POSIX ACL

Eection 5. Protect Your Logs from Tamperﬁ
ection 6. Delegate Administrative Role
Eection 7. Automate Cryptographic Signature Verificatiogl
Eection 8. Check for Listening Services
Eection 9. Prevent Services from Binding to an Interfaﬁj
ection 10. Restrict Services with Sandboxed Environment

Eection 11. Use proftp with a MySOL Authentication Sourca

toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
http://www.oreilly.com/catalog/netsechacks/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=netsechacks
http://www.oreilly.com/catalog/netsechacks/errata/
http://academic.oreilly.com
http://www.oreillynet.com/cs/catalog/view/au/1757?x-t=book.view

Eection 12 Prevent Stgck—Smashinq Attack

ection 13. Lock Down Your Kernel with g_rsecurit\j

Eection 14. Restrict Applications with grsecuria

ection 15. Restrict System Ca_IIs with Systrac

ection 16. Automated Systrace Policy Creatio

Eection 17. Control Login Access with PAM

ection 18. Restricted Shell EnvironmentJ

ection 19. Enforce User and Group Resource Limit

Section 20. Automate System Updated
Ehaéter 2. Windows Host Securit]
Eacks #21-3d

ection 21 Check Servers for Applied Patcheg

ection 22. Get a List of Open Files and Their Owning Processeg

ection 23. List Running Services and Open Port

ection 24. Enable Auditingd

ection 25. Secure Your Event Lo

Eection 26. Chan;e Your Maximum Loé File Size;

ection 27. Disable Default Shareg

Section 29. Clear the Paging File at Shutdows
Eection 30. Restrict Applications Available to User;
Ehagter 3. Network Securig

acks #31-53
ection 31. Detect ARP Spoofind

Eection 32. Create a Static ARP Tabld

ection 33. Firewgll with Netfilte

ection 34. Firewall with OpenBSD's PacketFiIterI

Eection 35. Create an Authenticated Gatewa}J

ection 36, Firewall with Window:

ection 37. Keep Your Network Self-Containel

Eection 38. Test Your Firewall

ection 39. MAC Filtering with Netfiltell
ection 40. Block OS Finqerprintind

Eection 41. Fool Remote Operating System Detection Softwarel

ection 42. Keep an Inventory of Your NetworlJ

ection 43. Scan Your Network for Vulnerabilitie

Eection 44. Keep Server Clocks Svnchronizea

ection 45. Create Your Own Certificate Authori

ection 46. Distribute Your CA to Clien

Eection 47. Encrypt IMAP and POP with SSJ
ection 48. Set Up TLS-Enabled SMTH
ection 49. Detect Ethernet Sniffers RemoteI\j

Eection 50. Install Apache with SSL and suEXEd

ection 51. Secure BIN

ection 52. Secure MySQ
Eection 53. Share Files Securely in Uni>J

acks #54-6(

Eection 54. Run a Central Syslog Serve[l
Eection 55. Steer Sysloa

ection 56. Integrate Windows into Your Syslog Infrastructur:

ection 57. Automatically Summarize Your Lo

Eection 59. Agéreéate Logs from Remote Site;
ection 60. Log User Activity with Process Accountinc]
hapter 5. Monitoring and Trendind

acks #61-6
Eection 61. Monitor Avails bilit\j

ection 62. Graph Trendd

ection 63. Run ntop for Real-Time Network Statsl

Section 64. Audit Network Traffid
Eection 65. Collect Sta_tistics with Firewall Ruleg
ection 66. Sniff the Ether RemoteI\j

hapter 6. Secure Tunnelsl
acks #67-8

ection 67. Set Up IPsec Under Linuﬂ

Eection 68. Set Up IPsec Under FreeBS]

ection 69. Set Up IPsec in OpenBSd
ection 70. PPTP Tunnelin_cJ

ection 71. Opport_unistic Encryption with FreeS/WA

ection 72. Forward and Encrypt Traffic with SS

Section 73. Quick Logins with SSH Client Keys

ection 74. Squid Proxy over SS
ection 75. Use SSH as a SOCKS ProxJ

Eection 76. Encrypt and Tunnel Traffic with Sﬁl

ection 77. Tunnel Connections Inside HTT
ection 78. Tunnel with VTun and SSI—I
Eection 79. Automatic vtund.conf Generat_ol
Eection 80, Create a Cross-Platform VP;I
ection 81. Tunnel PPFI

bhagter 7. Network Intrusion Detectio;l
acks #82-94
ection 82. Detect Intrusions with Snor]

Eection 83. Keep Track of Alerts

ection 84. Real-Time Monitorinﬁ

ection 85. Manage a Sensor Networ

Eection 86. Write Your Own Snort Rule;

ection 87. Prevent gnd Contgin Intrusions with Snort inIinxJ

ection 88. Automated Dynamic Firewalling with SnortSam|

Eection 89. Detect Anomalous Behavio]

ection 90. Automatically Update Snort's Ruleé

ection 91. Create a Distributed Stealth Sensor NetworlJ

Eection 92. Use Snort in High-Performance Environments with Barnvar(l

ection 93. Detect and Prevent Web Application Int usiongl

ection 94. Simulate a Network of Vulnerable Hostg

ection 95. Record Honeypot Activi

Ehaéter 8. Recove& and Reséonsa
Flacks #96-100

Eection 96. Image Motmed Filesvstemé

ection 97. Verify File Integrity and Find Compromised Filesl

Eection 98. Find Compromised Packages with RPN{
ection 99. Scan for Root Kit

Eection 100. Find the Owner of a Networg
Eoloéhor_

nde

[@ rrev]

Copyright © 2004 O'Reilly Media, Inc.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & nggj_aﬁsjmks_wpe purchased for educational, business, or sales promotional use. Online editions are also available for
ost titles (http://safarj.oreilly.con]). For more information, contact our corporate/institutional sales department: (800) 998-9938 or

Corporate@oreilly.co

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. The Hacks
series designations, Network Security Hacks, the image of barbed wire, "Hacks 100 Industrial-Strength Tips and Tricks," and related
trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
netsechacks-PREFACE-1.html
http://safari.oreilly.com
mailto:corporate@oreilly.com

Credits

About the Autho

Acknowledgmentd

netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html
netsechacks-PREFACE-2.html

About the Author

Andrew Lockhart is originally from South Carolina but currently resides in northern Colorado, where he spends his time trying to learn the
black art of auditing disassembled binaries and trying to keep from freezing to death. He holds a BS in computer science from Colorado
State University and has done security consulting for small businesses in the area. When he's not writing, he currently works at a

Fortune 100 company. In his free time, he works on Snort-Wireless (http://snort-wireless.ord), a project intended to add wireless intrusion
detection to the popular open source IDS Snort.

netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
netsechacks-PREFACE-2-SECT-1.html
http://snort-wireless.org

Contributors

The following people contributed their hacks, writing, and inspiration to this book:

Oktay Altunergil is the founder of The Free Linux CD Project (http://www.freelinuxcd.orcl) and one of the maintainers of
Turk-PHP.com (a Turkish PHP portal). He also works full-time as a Unix system administrator and PHP programmer.

Michael D. (Mick) Bauer d1ttp://mick.wiremonkevs.orcl) writes Linux Journal's "Paranoid Penguin” security column. By day, he
works to keep strangers out of banks' computer networks.

Schuyler Erle (http://nocat.nef) is a Free Software developer and activist. His interests include collaborative cartography,
wireless networking, software for social and political change, and the Semantic Web. Schuyler is the lead developer of
NoCatAuth, the leading open source wireless captive portal.

Bob Fleck (l1ttp :/lwww.securesoftware. con{) is Director of Security Services at Secure Software. He consults in the fields of
secure development and wireless security, and is a coauthor_of O'Re 80 ecurity book. The results of his more

ttp://bluetooth.shmoo.com.

Rob Flickenger (http://nocat.nef) is a writer and editor for O'Reilly's Hacks series. He currently spends his time hacking on
various projects and promoting community wireless networking.

recent investigations into Bluetooth security can be found at

Michael Lucas (lmp:llwww.blackhelicopters.orq/~mw|uca4) lives in a haunted house in Detroit, Michigan, with his wife Liz,
assorted rodents, and a multitude of fish. He has been a pet wrangler, a librarian, and a security consultant, and now works
as a network engineer and system administrator with the Great Lakes Technologies Group. He's the author of Absolute BSD,
Absolute OpenBSD, and Cisco Routers for the Desperate, and is currently preparing a book about NetBSD.

Matt Messier (lmp://www.securesoftware.coni) is Director of Engineering at Secure Software and a security authority who has
been programming for nearly two decades. In addition to coauthoring the O'Reilly books Secure Programming Cookbook for
C and C++ and Network Security with OpenSSL, Matt coauthored the Safe C String Library (SafeStr), XXL, RATS, and
EGADS.

Ivan Ristic (I1ttp://www.modsecuritv.orcl) is a web security specialist and the author ofmod_security, an open source intrusion

detection and prevention engine for web applications. He is a member of the OASIS Web Application Security Technical
Committee, where he works on the standard for web application protection.

John Viega (lmp://www.securesoftware.com}) is Chief Technology Officer and Founder of Secure Software. He is also the
coauthor of several books on software security, including Secure Programming Cookbook for C and C++ (O'Reilly) and
Building Secure Software (Addison-Wesley). John is responsible for numerous software security tools, and he is the original
author of Mailman, the GNU mailing list manager.

netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
netsechacks-PREFACE-2-SECT-2.html
http://www.freelinuxcd.org
http://mick.wiremonkeys.org
http://nocat.net
http://www.securesoftware.com
http://bluetooth.shmoo.com
http://nocat.net
http://www.blackhelicopters.org/~mwlucas
http://www.securesoftware.com
http://www.modsecurity.org
http://www.securesoftware.com/

Acknowledgments

| would first like to thank the illustrious DJ Jackalope (aka Karen) for all of her encouragement, support, and understanding throughout
the writing of this book. Without her, it would have languished in the doldrums, and | don't think | could have done this book without her.

I'd also like to thank Nat Torkington for putting me in touch with Rob, my fearless (and patient) editor for this book, as well as my parents
for having the faith to let me have time to tinker with computers and do silly things like read Phrack when | was a kid; if not for that, |
might have ended up doing something completely different.

netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html
netsechacks-PREFACE-2-SECT-3.html

Preface

Nowhere is the term hacker more misconstrued than in the network security field. This is understandable because the very same tools
that network security professionals use to probe the robustness of their own networks also can be used to launch attacks on any
machine on the Internet. The difference between system administrators legitimately testing their own machines and a system cracker
attempting to gain unauthorized access isn't so much a question of techniques or tools, but a matter of intent. After all, as with any
powerful piece of technology, a security tool isn't inherently good or bad—this determination depends entirely on how it is used. The
same hammer can be used to either build a wall or knock it down.

The difference between "white hat" and "black hat" hackers isn't the tools or techniques they use (or even the color of their hats), but
their intent. The difference is subtle but important. White hat hackers find that building secure systems presents an interesting challenge,
and their security can be truly tested only through a thorough knowledge of how to subvert such systems. Black hat hackers (more
appropriately called crackers) pursue precisely the same knowledge, but without regard for the people who built the systems or the
servers they attack. They use their knowledge to subvert these systems for their own personal gain, often to the detriment of the systems
they infiltrate.

Of course, tales of daring international techno-robberies and black-clad, cigarette-smoking, laptop-wielding evil masterminds tend to sell
better than simple tales of the engineer who built a strong network, and so the term hacking has a bad reputation in the popular press.
They use it to refer to individuals who break into systems or who wreak havoc using computers as their weapon. Among people who
solve problems, though, the term hack refers to a "quick-n-dirty" solution to a problem, or a clever way to get something done. And the
term hacker is taken very much as a compliment, referring to someone as beingreative, i.e., having the technical chops to get things
done. The Hacks series is an attempt to reclaim this word, document the ways people are hacking (in a good way), and pass the hacker
ethic of creative participation on to the uninitiated. Seeing how others approach systems and problems is often the quickest way to learn
about a new technology. Only by openly discussing security flaws and implementations can we hope to build stronger systems.

netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html
netsechacks-PREFACE-3.html

Why Network Security Hacks?

Network Security Hacks is a grimoire of 100 powerful security techniques. This volume demonstrates effective methods for defending
your servers and networks from a variety of devious and subtle attacks. Within this book are examples of how to detect the presence
(and track every keystroke) of network intruders, methods for protecting your network and data using strong encryption, and even
techniques for laying traps for would-be system crackers. Many important security tools are presented, as well as clever methods for
using them to reveal real, useful information about what is happening on your network.

netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html
netsechacks-PREFACE-3-SECT-1.html

How This Book Is Organized

Although each hack is designed to stand on its own, this book makes extensive use of cross-referencing between hacks. If you find a

reference to something you're interested in while reading a particular hack, feel free to skip around and follow it (much as you might while
browsing the Web). The book itself is divided into several chapters, organized by subject:

Enapter |

Unix Host Security

As the old saying goes, Unix was designed to share information, not to protect it. This old saw is no longer true with modern
operating systems, where security is an integral component to any server. Many new programs and kernel features have
been developed that provide a much higher degree of control over what Unix-like operating systems can do. Chapter 1
demonstrates advanced techniques for hardening your Linux, FreeBSD, or OpenBSD server.

, Windows Host Security

Enapter

Enapter 4

Enapter

Enapter

Microsoft Windows is used as a server platform in many organizations. As the Windows platform is a common target for
various attacks, administering these systems can be challenging. This chapter covers many important steps that are often
overlooked by Windows administrators, including tightening down permissions, auditing all system activity, and eliminating
security holes that are present in the default Windows installation.

Network Security

Regardless of the operating system used by your servers, if your network is connected to the Internet, it uses TCP/IP for
communications. Networking protocols can be subverted in a number of powerful and surprising ways, leading to attacks that
can range from simple denial of service to unauthorized access with full privileges. This chapter demonstrates some tools and
technigues used to attack servers using the network itself, as well as methods for preventing these attacks.

Logging

Network security administrators live and die by the quality of their logs. If too little information is tracked, intrusions can slip by
unnoticed. If too much is logged, attacks can be lost in the deluge of irrelevant information. Chapter 4 shows you how to
balance the need for information with the need for brevity by automatically collecting, processing, and protecting your system
logs.

Monitoring and Trending

As useful as system logs and network scans can be, they represent only a single data point of information, relevant only to
the instant that the events were recorded. Without a history of activity on your network, you have no way to establish a
baseline for what is "normal,” nor any real way to determine if something fishy is going on. This chapter presents a number of
tools and methods for watching your network and services over time, allowing you to recognize trends that will aid in future
planning and enable you to tell at a glance when something just isn't right.

Secure Tunnels

How is it possible to maintain secure communications over networks as untrustworthy as the Internet? The answer nearly

netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html
netsechacks-PREFACE-3-SECT-2.html

always involves powerful encryption and authentication techniques. Chapter 6 shows you how to implement powerful VPN
technologies, including IPSec, PPTP, and OpenVPN. You will also find techniques for protecting services, using SSL, SSH,

and other strong encryption tools

Network Intrusion Detection

How do you know when your network is under attack? While logs and historical statistics can show you if something is out of
sorts, there are tools designed to notify you (or otherwise take action) immediately when common attacks are detected. This
chapter centers on the tremendously popular NIDS tool Snort and presents many techniques and add-ons that unleash this
powerful tool's full potential. Also presented are methods for setting up your own "honeypot" network to attract and confuse

would-be system crackers.

Recovery and Response

Even the most competent and careful network administrator will eventually have to deal with successful security incidents.
This chapter contains suggestions on how to verify your system's integrity, preserve evidence for later analysis, and track
down the human being at the other end of undesirable network traffic.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories, daemons, programs, and
Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types, classes, nhamespaces, methods,

modules, properties, parameters, values, objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Color

The second color is used to indicate a cross-reference within the text.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

beginner moderate expert

netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html
netsechacks-PREFACE-3-SECT-3.html

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation.
You do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example:
"Network Security Hacks by Andrew Lockhart. Copyright 2004 O'Reilly Media, Inc., 0-596-00643-8."

,Wuiﬁf code examples falls outside fair use or the permission given here, feel free to contact us at
permissions@oreilly.con.

netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
netsechacks-PREFACE-3-SECT-4.html
mailto:permissions@oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:

Lttp://www.oreiIIv.com/cataloq/netsechacksl

To comment or ask technical questions about this book, send email to:

l)ookquestions@oreilly.con{

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

Lttp://www.oreillv.conl

netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
netsechacks-PREFACE-3-SECT-5.html
http://www.oreilly.com/catalog/netsechacks
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreillv.con{

netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
netsechacks-PREFACE-3-SECT-6.html
http://hacks.oreilly.com

Chapter 1. Unix Host Security

lSection 1. Secure Mount Pointsl

bection 2. Scan for SUID and SGID Proqrams]

lSection 3. _Scan For World- and Group-Writable Directoriesl

lSection 4. Create Flexible Permissions Hierarchies with POSIX ACLEI

bection 5. Protect Your Logs from Tamperind

lSection 6. Delegate Administrative Rolesl

lSection 7. Automate Cryptographic Signature Verificatiod

bection 8. Check for Listening Services]

lSection 9. Prevent Services from Binding to an Interfacel

lSection 10. Restrict Services with Sandboxed Environmentsl

bection 11. Use proftp with a MySOL Authentication Sourcel

lSection 12. Prevent Stack-Smashing Attacksl

lSection 13. Lock Down Your Kernel with qrsecurit\j

bection 14. Restrict Applications with qrsecurit\j

lSection 15. Restrict System Calls with Svstracel

lSection 16. Automated Systrace Policy Creatiorl

bection 17. Control Login Access with PAV\/{

lSection 18. Restricted Shell Environmentsl

lSection 19. Enforce User and Group Resource Limits]

bection 20. Automate System Updates]

netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html
netsechacks-CHP-1.html

Hacks #1-20

Networking is all about connecting computers together, so it follows that a computer network is no more secure than the machines that it
connects. A single insecure host can make lots of trouble for your entire network, as it can act as a tool for reconnaissance or a strong
base of attack if it is under the control of an adversary. Firewalls, intrusion detection, and other advanced security measures are useless
if your servers offer easily compromised services. Before delving into the network part of network security, you should first make sure
that the machines you are responsible for are as secure as possible.

This chapter offers many methods for reducing the risks involved in offering services on a Unix-based system. Even though each of
these hacks can stand on its own, it is worth reading through this entire chapter. If you only implement one type of security measure, you
run the risk of all your preparation being totally negated once an attacker figures out how to bypass it. Just as Fort Knox isn't protected by
a regular door with an ordinary dead bolt, no single security feature can ultimately protect your servers. And the security measures you
may need to take increase proportionally to the value of what you're protecting.

As the old saying goes, security isn't a noun, it's a verb. That is, security is an active process that must be constantly followed and
renewed. Short of unplugging the machine, there is no single action you can take to secure your machine. With that in mind, consider
these techniques as a starting point for building a secure server that meets your particular needs.

netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html
netsechacks-CHP-1-SECT-1.html

Hack 1 Secure Mount Points

6

Use mount options to help prevent intruders from further escalating a compromise

The primary way of interacting with a Unix machine is through its filesystem. Thus, when an intruder has gained access to a system, it
is desirable to limit what he can do with the files available to him. One way to accomplish this is with the use of restrictive mount options.

A mount option is a flag that controls how the filesystem may be accessed. It is passed to the operating system kernel's code when the
filesystem is brought online. Mount options can be used to prevent files from being interpreted as device nodes, to disallow binaries
from being executed, and to disallow the SUID bit from taking affect (by using thenodev , noexec, and nosuid flags). Filesystems can also
be mounted read-only with the ro option.

These options are specified from the command line by running mount with the -o flag. For example, if you have a separate partition for
/tmp that is on the third partition of your first IDE hard disk, you can mount with theaodev, noexec, and nosuid flags, which are enabled by
running the following command:

mount -0 nodev,noexec,nosuid /dev/hda3 /tmp

An equivalent entry in your/etc/fstab would look something like this:

/dev/hda3 /tmp ext3 defaults,nodev,noexec,nosuid 12

By carefully considering your requirements and dividing up your storage into multiple filesystems, you can utilize these mount options to
increase the work that an attacker will have to do in order to further compromise your system. A quick way to do this is to first categorize
your directory tree into areas that need write access for the system to function and those that don't. You should consider using the
read-only flag on any part of the filesystem where the contents do not change regularly. A good candidate for this might be /usr,
depending on how often updates are made to system software.

Obviously, many directories (such as /home) will need to be mounted as read-write. However, it is unlikely that users on an average
multiuser system will need to run SUID binaries or create device files within their home directories. Therefore, a separate filesystem,
mounted with the nodev and nosuid options, could be created to house the users' home directories. In addition, if you've determined that
your users will not need to execute programs stored in their home directories, you can use the noexec mount option as well. Similar
situations also arise when looking at /tmp and /var, where it is highly unlikely that any process will legitimately need to execute SUID or
non-SUID binaries or access device files. This helps prevent the possibility of an attacker leaving a Trojan horse in common directories,
such as /tmp or a user's home directory. The attacker may be able to install the program, but it cannot actually run, with or without the
proper chmod bits.

Note that services running in a|Hack #10] nodev is specified on the filesystem running under the chroot. This is becausedevice nodes
such as /dev/log and /dev/null must be available within thechroot() environment.

There are a number of ways that an attacker can still circumvent these mount restrictions. For example, the noexec option on Linux can
be bypassed by using /lib/ld-linux.so to execute binaries residing on such filesystems. At first glance, you'd think that this can be
remedied by making Id-linux.so nonexecutable, but this would render all dynamically linked binaries unexecutable. So, unless all of the
programs you rely on are statically linked (they're probably not), then the noexec option is of little use in Linux. In addition, an attacker
who has already gained root privileges will not be significantly hampered by filesystems mounted with special options, since these can
often be remounted with the -o remount option. But by using mount flags, you can easily limit the possible attacks available to a hostile

user before he gains root privileges.

netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html
netsechacks-CHP-1-SECT-2.html

Hack 2 Scan for SUID and SGID Programs

IE3

Quickly check for potential root-exploitable programs and backdoors.

One potential way for a user to escalate her privileges on a system is to exploit a vulnerability in an SUID or SGID program. SUID
and SGID are legitimately used when programs need special permissions above and beyond those that are available to the user who is
running them. One such program is passwd. Simultaneously allowing a user to change her password while not allowing any user to
modify the system password file means that the passwd program must be run with root privileges. Thus the program has its SUID bit set,
which causes it to be executed with the privileges of the program file's owner. Similarly, when the SGID bit is set, the program is
executed with the privileges of the file's group owner.

Running Is -l on a binary that has its SUID bit set should look like this:
-r-s--x--x lroot root 16336 Feb 13 2003 /usr/bin/passwd
Notice that instead of an execute bit (x) for the owner bits, it has ans. This signifies an SUID file.

Unfortunately, a poorly written SUID or SGID binary can be used to quickly and easily escalate a user's privileges. Also, an attacker who
has already gained root access may hide SUID binaries throughout your system in order to leave a backdoor for future access. This
leads us to the need for scanning systems for SUID and SGID binaries. This is a simple process and can be done with the following
command:

#find /\(-perm -4000 -0 -perm -2000 \) -type f -exec Is -la {} \;

One important thing to consider is whether an SUID program is in fact a shell script rather than an executable, since it's trivial for
someone to change an otherwise innocuous script into a backdoor. Most operating systems will ignore any SUID or SGID bits on a shell
script, but if you want to find all SUID or SGID scripts on a system, change the argument to the -exec option in the last command and add

a pipe so that the command reads:

find /\(-perm -4000 -0 -perm -2000\) \
-type f -exec file {} \; | grep -v ELF

Now every time an SUID or SGID file is encountered, the file command will run and determine what type of file is being examined. If it's
an executable, grep will filter it out; otherwise, it will be printed to the screen with some information about what kind of file it is. Most
operating systems use ELF-format executables, but if you're running an operating system that doesn't (older versions of Linux used
a.out, and AlX uses XCOFF), you'll need to replace the ELF in the previousgrep command with the binary format used by your operating
system and architecture. If you're unsure of what to look for, run the file command on any binary executable, and it will report the string
you're looking for.

For example, here's an example of running file on a binary in Mac OS X:
$ file /bin/sh
/bin/sh: Mach-O executable ppc

To go one step further, you could even queue the command to run once a day using cron and have it redirect the output to a file. For
instance, this crontab entry would scan for files that have either the SUID or SGID bits set, compare the current list to the one from the
day before, and then email the differences to the owner of the crontab (make sure this is all on one line):

04 ***find /\(-perm -4000 -0 -perm -2000\) -type f\

netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html
netsechacks-CHP-1-SECT-3.html

> [var/log/sidlog.new &&
diff /var/log/sidlog.new /var/log/sidlog &&

mv /var/log/sidlog.new /var/log/sidlog

This example will also leave a current list of SUID and SGID files irvar/log/sidlog.

Hack 3 Scan For World- and Group-Writable Directories

s

Quickly scan for directories with loose permissions.

World- and group-writable directories present a problem: if the users of a system have not set theinmask properly, they will

inadvertently create insecure files, completely unaware of the implications. With this in mind, it seems it would be good to scan for
directories with loose permissions. Much like [Hack #2], this can be accomplished by running thefind command:

#find / -type d \(-perm -g+w -0 -perm -o+w \) -exec Is -lad {} \;

Any directories that are listed in the output should have the sticky bit set, which is denoted by at in the directory's permission bits. A
world-writable directory with the sticky bit set ensures that even though anyone may create files in the directory, they may not delete or
modify another user's files. If you see a directory in the_output that does not contain a sticky bit, consider whether it really needs to be
world-writable or whether the use of groups or ACLs [Hack #4] will work better for your situation. If you really do need the directory to be
world-writable, set the sticky bit on it using chmod +t.

To get a list of the directories that don't have their sticky bit set, run this:
#find / -type d \(-perm -g+w -o -perm -o+w \) \
-not -perm -a+t -exec Is -lad {} \;
If you're using a system that creates a unique group for each user (e.g., you create a user andrew, which in turn creates a groupandrew

as the primary group), you may want to modify the commands to not scan for group-writable directories. (Otherwise, you will get a lot of
output that really isn't pertinent.) To do this, run the command without the -perm -g+w portion.

netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html
netsechacks-CHP-1-SECT-4.html

Hack 4 Create Flexible Permissions Hierarchies with POSIX ACLs

I

When Unix mode-based permissions just aren't enough, use an ACL.

Most of the time, the traditional Unix file permission system fits the bill just fine. But in a highly collaborative environment with multiple
people needing access to files, this scheme can become unwieldy. Access control lists, otherwise known as ACLs (pronounced to rhyme
with "hackles"), are a feature that is relatively new to the Linux operating system, but has been available in FreeBSD and Solaris for
some time. While ACLs do not inherently add "more security" to a system, they do reduce the complexity of managing permissions.
ACLs provide new ways to apply file and directory permissions without resorting to the creation of unnecessary groups.

ACLs are stored as extended attributes within the filesystem metadata. As the name implies, they allow you to define lists that either
grant or deny access to a given file based on the criteria you provide. However, ACLs do not abandon the traditional permission system
completely. ACLs may be specified for both users and groups and are still separated into the realms of read, write, and execute access.
In addition, a control list may be defined for any user or group that does not correspond to any of the user or group ACLs, much like the
"other" mode bits of a file. Access control lists also have what is called an ACL mask, which acts as a permission mask for all ACLs that
specifically mention a user and a group. This is similar to a umask, but not quite the same. For instance, if you set the ACL mask ta--,
any ACLs that pertain to a specific user or group and are looser in permissions (e.g., rw-) will effectively becomer--. Directories also may
contain a default ACL, which specifies the initial ACLs of files and subdirectories created within them.

To modify or remove ACLs, use the setfacl command. To modify an ACL, the-m option is used, followed by an ACL specification and a
filename or list of filenames. You can delete an ACL by using the -x option and specifying an ACL or list of ACLs.

There are three general forms of an ACL: one for users, another for groups, and one for others. Let's look at them here:

User ACL

u:[user]:<mode>

Group ACL

g:[group]:<mode>

Other ACL

o:<mode>

Notice that in the user and group ACLs, the actual user and group names that the ACL applies to are optional. If these are omitted, it

means that the ACL will apply to the base ACL, which is derived from the file's mode bits. Thus, if you modify these, the mode bits will be
modified and vice versa.

See for yourself by creating a file and then modifying its base ACL:

$ touch myfile
$ Is -l myfile
-rw-rw-r-- 1 andrew andrew 0 Oct 13 15:57 myfile

$ setfacl -m u::---,g::---,0:--- myfile

netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html
netsechacks-CHP-1-SECT-5.html

$ Is -l myfile

---------- 1 andrew andrew 0 Oct 13 15:57 myfile

From this example, you can also see that multiple ACLs can be listed by separating them with commas.
You can also specify ACLs for an arbitrary number of groups or users:
$ touch foo

$ setfacl -m u:jlope:rwx,g:wine:rwx ,0:--- foo

$ getfacl foo

file: foo

owner: andrew

group: andrew

user::rw-

user:jlope:rwx

group::---

group:wine:rwx

mask::rwx

other::---

Now if you changed the mask to r--, the ACLs forjlope and wine would effectively becomer-- as well:
$ setfacl -m m:r-- foo

$ getfacl foo

file: foo

owner: andrew

group: andrew

user::rw-

user:jlope:rwx #effective:r--

group::---

group:wine:rwx #effective:r--

mask::r--

other::---

As mentioned earlier, directories can have default ACLs that will automatically be applied to files that are created within the directory.
Default ACLs are set by prepending a d: to the ACL that you want to set:

$ mkdir mydir

$ setfacl -m d:u:jlope:rwx mydir

$ getfacl mydir
file: mydir

owner: andrew
group: andrew
user::rwx
group::---
other::---
default:user::rwx
default:user:jlope:rwx
default:group::---
default:mask::rwx

default:other::---

$ touch mydir/bar

$ getfacl mydir/bar

file: mydir/bar

owner: andrew

group: andrew

user::rw-

user:jlope:rwx #effective:rw-
group::---

mask::rw-

other::---

As you may have noticed from the previous examples, you can list ACLs by using the getfacl command. This command is pretty
straightforward and has only a few options. The most useful is the -R option, which allows you to list ACLs recursively and works very
much like Is -R.

Hack 5 Protect Your Logs from Tampering

I3

Use file attributes to prevent intruders from removing traces of their break-in.

In the course of an intrusion, an attacker will more than likely leave telltale signs of his actions in various system logs. This is a
valuable audit trail that should be well protected. Without reliable logs, it can be very difficult to figure out how the attacker got in, or

where the attack came from. This information is crucial in analyzing the incident and then responding to it by contacting the appropriate
parties involved [Hack #100] . However, if the break-in attempt is successful and the intruder gains root privileges, what's to stop him
from removing the traces of his misbehavior?

This is where file attributes come in to save the day (or at least make it a little better). Both Linux and the BSDs have the ability to assign
extra attributes to files and directories. This is different from the standard Unix permissions scheme in that the attributes set on a file
apply universally to all users of the system, and they affect file accesses at a much deeper level than file permissions or ACLs
In Linux you can see and modify the attributes that are set for a given file by using the Isattr and chattr commands, respectively. Under
the BSDs, Is -lo can be used to view the attributes, andchflags can be used to modify them. At the time of this writing, file attributes in
Linux are available only when using the ext2 and ext3 filesystems. There are also kernel patches available for attribute support in XFS
and reiserfs.

One useful attribute for protecting log files is append-only. When this attribute is set, the file cannot be deleted, and writes are only
allowed to append to the end of the file.

To set the append-only flag under Linux, run this command:

chattr +a
filename

Under the BSDs, use this:

chflags sappnd
filename

See how the +a attribute works by creating a file and setting its append-only attribute:
touch /var/log/logfile

echo "append-only not set" > /var/log/logfile

chattr +a /var/log/logfile

echo "append-only set" > /var/log/logfile

bash: /var/log/logfile: Operation not permitted

The second write attempt failed, since it would overwrite the file. However, appending to the end of the file is still permitted:

echo "appending to file" >> /var/log/logfile
cat /var/log/logfile

append-only not set

netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html
netsechacks-CHP-1-SECT-6.html

appending to file

Obviously, an intruder who has gained root privileges could realize that file attributes are being used and just remove the append-only
flag from our logs by running chattr -a. To prevent this, we need to disable the ability to remove the append-only attribute. To accomplish
this under Linux, use its capabilities mechanism. Under the BSDs, use its securelevel facility.

The Linux capabilities model divides up the privileges given to the all-powerful root account and allows you to selectively disable them.
In order to prevent a user from removing the append-only attribute from a file, we need to remove the CAP_LINUX_IMMUTABLE
capability. When present in the running system, this capability allows the ap - i ifi i

capabilities available to the system, we will use a simple utility called Icap (http://packetstormsecurity.org/linux/admin/lcap-0.0.3.tar.bz2).

To unpack and compile the tool, run this command:

tar xvfj Icap-0.0.3.tar.bz2 && cd Icap-0.0.3 && make

Then, to disallow modification of the append-only flag, run:

/lcap CAP_LINUX_IMMUTABLE

/lcap CAP_SYS_RAWIO

The first command removes the ability to change the append-only flag, and the second command removes the ability to do raw I/O. This
is needed so that the protected files cannot be modified by accessing the block device they reside on. It also prevents access to
/dev/imem and /dev/kmem, which would provide a loophole for an intruder to reinstate theCAP_LINUX_IMMUTABLE capability. To
remove these capabilities at boot, add the previous two commands to your system startup scripts (e.g., /etc/rc.local). You should ensure
that capabilities are removed late in the boot order, to prevent problems with other startup scripts. Once Icap has removed kernel
capabilities, they can be reinstated only by rebooting the system.

The BSDs accomplish the same thing through the use of securelevels. The securelevel is a kernel variable that can be set to disallow
certain functionality. Raising the securelevel to 1 is functionally the same as removing the two previously discussed Linux capabilities.
Once the securelevel has been set to a value greater than 0, it cannot be lowered. By default, OpenBSD will raise the securelevel to 1
when in multiuser mode. In FreeBSD, the securelevel is -1 by default.

To change this behavior, add the following line tdetc/sysctl.conf:

kern.securelevel=1

Before doing this, you should be aware that adding append-only flags to your log files will most likely cause log rotation scripts to fail.
However, doing this will greatly enhance the security of your audit trail, which will prove invaluable in the event of an incident.

http://packetstormsecurity.org/linux/admin/lcap-0.0.3.tar.bz2

Hack 6 Delegate Administrative Roles

e

Let others do your work for you without giving away root privileges.

The sudo utility can help you delegate some system responsibilities to other people, without giving away fullroot access. It is a setuid
root binary that executes commands on an authorized user's behalf, after she has entered her current password.

As root, run/usr/shin/visudo to edit the list of users who can callsudo. The default sudo list looks something like this:
root ALL=(ALL) ALL

Unfortunately, many system administrators tend to use this entry as a template and grant unrestricted root access to all other admins
unilaterally:

root ALL=(ALL) ALL
rob ALL=(ALL) ALL
jim ALL=(ALL) ALL
david ALL=(ALL) ALL

While this may allow you to give out root access without giving away the root password, this method is truly useful only when all of the
sudo users can be completely trusted. When properly configured, the sudo utility provides tremendous flexibility for granting access to
any number of commands, run as any arbitrary uid.

The syntax of the sudo line is:
user machine=(effective user) command

The first column specifies the sudo user. The next column defines the hosts in which this sudo entry is valid. This allows you to easily
use a single sudo configuration across multiple machines.

For example, suppose you have a developer who needs root access on a development machine, but not on any other server:
peter beta.oreillynet.com=(ALL) ALL

The next column (in parentheses) specifies the effective user that may run the commands. This is very handy for allowing users to
execute code as users other than root:

peter lists.oreillynet.com=(mailman) ALL
Finally, the last column specifies all of the commands that this user may run:
david ns.oreillynet.com=(bind) /usr/sbin/rndc,/usr/shin/named

If you find yourself specifying large lists of commands (or, for that matter, users or machines), then take advantage of sudo's Alias
syntax. An Alias can be used in place of its respective entry on any line of the sudo configuration:

User_Alias ADMINS=rob,jim,david

User_Alias WEBMASTERS=peter,nancy

netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html
netsechacks-CHP-1-SECT-7.html

Runas_Alias DAEMONS=bind,www,smmsp,ircd

Host_Alias WEBSERVERS=www.oreillynet.com,www.oreilly.com,www.perl.com
Cmnd_Alias PROCS=/bin/kill,/bin/killall,/usr/bin/skill,/usr/bin/top

Cmnd_Alias APACHE=/ust/local/apache/bin/apachectl

WEBMASTERS WEBSERVERS=(www) APACHE

ADMINS ALL=(DAEMONS) ALL

It is also possible to specify system groups in place of the user specification, to allow any user who belongs to that group to execute
commands. Just preface the group with a %, like this:

%wwwadmin WEBSERVERS=(www) APACHE
Now any user who is part of the wwwadmin group can executeapachectl as the www user on any of the web server machines.

One very useful feature is the NOPASSWD: flag. When present, the user won't have to enter apassword before executing the
command:

rob ALL=(ALL) NOPASSWD: PROCS

This will allow the user rob to executekill, killall, skill, and top on any machine, as any user, without entering a password.
Finally, sudo can be a handy alternative tosu for running commands at startup out of the systemrc files:

(cd /usr/local/mysql; sudo -u mysql ./bin/safe_mysqld &)

sudo -u www /ust/local/apache/bin/apachect! start

For that to work at boot time, the default lineroot ALL=(ALL) ALL must be present.

Use sudo with the usual caveats that apply to setuid binaries. Particularly if you allowsudo to execute interactive commands (like editors)
or any sort of compiler or interpreter, you should assume that it is possible that the sudo user will be able to execute arbitrary commands
as the effective user. Still, under most circumstances this isn't a problem, and it's certainly preferable to giving away undue access to
root privileges.

—Rob Flickenger

netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html
netsechacks-CHP-1-SECT-8.html

Hack 7 Automate Cryptographic Signature Verification

E HACK
Use scripting and key servers to automate the chore of checking software authenticity.

One of the most important things you can do for the security of your system is to be familiar with the software you are installing. You
probably will not have the time, knowledge, or resources to actually go through the source code for all of the software that you are
installing. However, verifying that the software you are compiling and installing is what the authors intended it to be can go a long way
toward preventing the widespread distribution of Trojan horses. Recently, several pivotal pieces of software (such as tcpdump, LibPCap,
Sendmail, and OpenSSH) have had Trojaned versions distributed. Since this is an increasingly popular vector for attack, verifying your
software is critically important.

Why is this even an issue? Unfortunately, it takes a little bit of effort to verify software before installing it. Either through laziness or
ignorance, many system administrators overlook this critical step. This is a classic example of "false" laziness, as it will likely lead to more
work for the sysadmin in the long run. This problem is difficult to solve because it relies on the programmers and distributors to get their
acts together. Then there's the laziness aspect: many times, software packages don't even come with a signature to use for verifying the
legitimacy of what you've downloaded. Often, signatures are available right along with the source code, but in order to verify the code,
you must then hunt through the site for the public key that was used to create the signature. After finding the public key, you have to
download it, verify that the key is genuine, add it to your keyring, and finally check the signature of the code.

Tfmm_mjm.d look like when checking the signature for Version 1.3.28 of the Apache web server using GnuPG
(http://www.gnupg.ord):

#gpg -import KEYS

gpg -verify apache_1.3.28.tar.gz.asc apache_1.3.28.tar.gz

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5

gpg: Good signature from "Jim Jagielski <jim@zend.com>"

gpg: aka "Jim Jagielski <jim@apache.org>"

gpg: aka "Jim Jagielski <jim@jaguNET.com>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Fingerprint: 8B39 757B 1D8A 994D F243 3EDS5 8B3A 601F 08C9 75E5

As you can see, it's not terribly difficult to do, but this step is often overlooked when you are in a hurry. This is where this hack comes to
the rescue. We'll use a little bit of shell scripting and what are known as key servers to reduce the number of steps to perform this
process.

Key servers are a part of a public-key cryptography infrastructure that allows you to retrieve keys from a trusted third party. A nice
feature of GnuPG is its ability to query key servers for a key ID and to download the result into a local keyring. To figure out which key ID
to ask for, we rely on the fact that the error message generated by GnuPG tells us which key ID it was unable to find locally when trying

to verify the signature.

In the previous example, if the key that GnuPG was looking for had not been imported prior to verifying the signature, it would have
generated an error like this:

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5

gpg: Can't check signature: public key not found

http://www.gnupg.org

The following script takes advantage of that error:

#l/bin/sh
VENDOR_KEYRING=vendors.gpg
KEYSERVER=search.keyserver.net
KEYID="0x"gpg --verify $1 $2 2>&1 | grep 'key ID' | awk ‘{print $NF}"™"
gpg --no-default-keyring --keyring $VENDOR_KEYRING --recv-key \
--keyserver $SKEYSERVER $KEYID
gpg --keyring $VENDOR_KEYRING --verify $1 $2
The first line of the script specifies the keyring in which the result from the key server query will be stored. You could uspubring.gpg

(which is the default keyring for GnuGP), but using a separate file will make managing vendor public keys easier. The second line of the

script specifies which key server to query (the script uses ; another good one is). The third line attempts
(and fails) to verify the signature without first consulting the key server. It then uses the key ID it saw in the error, and prepends an0x in

order to query the key server on the next line. Finally, GhuPG attempts to verify the signature, and specifies the keyring in which the
query result was stored.

This script has shortened the verification process by eliminating the need to search for and import the public key that was used to
generate the signature. Going back to the example of verifying the Apache 1.3.28 source code, you can see how much more convenient
it is to verify the package's authenticity:

checksig apache_1.3.28.tar.gz.asc apache_1.3.28.tar.gz

gpg: requesting key 08C975E5 from HKP keyserver search.keyserver.net
gpg: key 08C975E5: public key imported

gpg: Total number processed: 1

gpg: imported: 1

gpg: Warning: using insecure memory!

gpg: please see http://www.gnupg.org/fag.html for more information

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5
gpg: Good signature from "Jim Jagielski <jim@zend.com>"

gpg: aka "Jim Jagielski <jim@apache.org>"

gpg: aka "Jim Jagielski <jim@jaguNET.com>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Fingerprint: 8B39 757B 1D8A 994D F243 3ED5 8B3A 601F 08C9 75E5

With this small and quick script, both the number steps needed to verify a source package and the amount of time needed have been
reduced. As with any good shell script, it should help you to be lazy in a good way: by doing more work properly, but with less effort on

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/search.keyserver.net
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/pgp.mit.edu

your part.

Hack 8 Check for Listening Services

E HAGK
Find out whether unneeded services are listening and looking for possible backdoors.

One of the first things that should be done after a fresh operating system install is to see what seryj unning, and remove any
unneeded services from the system startup process. You could use a port scanner (such as nmapI Hack #42]) and run it against the
host, but if one didn't come with the operating system install, you'll likely have to connect your fresh (and possibly insecure) machine to
the network to download one. Also, nmap can be fooled if the system is using firewall rules. With proper firewall rules, a service can be
completely invisible to nmap unless certain criteria (such as the source IP address) also match. When you have shell access to the
server itself, it is usually more efficient to find open ports using programs that were installed with the operating system. One program
that will do what we need is netstat, a program that will display various network-related information and statistics.

To get a list of listening ports and their owning processes under Linux, run this:
netstat -luntp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 00.0.0.0:22 0.0.0.0:* LISTEN 1679/sshd

udp 0 00.0.0.0.68 0.0.0.0:* 1766/dhclient

From the output, you can see that this machine is probably a workstation, since it just has a DHCP client running along with an SSH
daemon for remote access. The ports in use are listed after the colon in the Local Address column (22 for sshd and68 for dhclient). The
absence of any other listening processes means that this is probably a workstation, and not a network server.

Unfortunately, the BSD version of netstat does not let us list the processes and the process IDs (PIDs) that own the listening port.
Nevertheless, the BSD netstat command is still useful for listing the listening ports on your system.

To get a list of listening ports under FreeBSD, run this command:

netstat -a -n | egrep 'Proto|LISTEN'

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *587 *x LISTEN
tcp4 0 0 *25 *x LISTEN
tcp4 0 0 *22 *x LISTEN
tcp4 0 0 *.993 *x LISTEN
tcp4 0 0 *143 *x LISTEN
tcp4 0 0 *53 *x LISTEN

Again, the ports in use are listed in theLocal Address column. Many seasoned system administrators have memorized the common port
numbers for popular services, and can see that this server is running SSH, SMTP, DNS, IMAP, and IMAP+SSL services. If you are ever

netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html
netsechacks-CHP-1-SECT-9.html

in doubt about which services typically run on a given port, either eliminate the -n switch from netstat (which tells netstat to use names
but can take much longer to run when looking up DNS addresses) or manually grep the /etc/services file:

grep -w 993 /etc/services
imaps 993/udp # imap4 protocol over TLS/SSL
imaps 993/tcp # imap4 protocol over TLS/SSL

Also notice that, unlike the output of netstat on Linux, we don't get the PIDs of the daemons themselves. You might also notice that no
UDP ports were listed for DNS. This is because UDP sockets do not have d.ISTEN state in the same sense that TCP sockets do. In
order to display UDP sockets, you must add udp4 to the argument for egrep, thus making it Proto|LISTEN|udp4'. However, due to the
way UDP works, not all UDP sockets will necessarily be associated with a daemon process.

Under FreeBSD, there is another command that will give us just what we want. The sockstat command performs only a small subset of
what netstat can do, and is limited to just listing information on both Unix domain sockets and Inet sockets.

To get alist of listening ports and their owning processes withsockstat, run this command:
sockstat -4 -|

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

root sendmail 1141 4tcp4d *:25 *o
root sendmail 1141 5tcp4 *587 *ox
root sshd 1138 3tcpd *22 *ox

root inetd 1133 4tcpd4 *:143 *ox
root inetd 1133 5tcp4 *:993 *ox
named named 1127 20tcp4 *53 *ox
named named 1127 21 udp4 *:53 *ox
named named 1127 22 udp4 *1351 *ox

Once again, we see that sshd, SMTP, DNS, IMAP, and IMAP+SSL services are running, but now we have the process that owns the
socket plus its PID. We can now see that the IMAP services are being spawned from inetd instead of standalone daemons, and that
sendmail and named are providing the SMTP and DNS services.

For most other Unix-like operating systems you can use thelsof utility d1ttp://ﬁp.cerias.purdue.edu/pub/tools/unix/svsutils/lsofb. Isof is
short for "list open files" and, as the name implies, allows you to list files that are open on a system, in addition to the processes and PIDs
that have them open. Since sockets and files work the same way under Unix, Isof can also be used to list open sockets. This is done
with the -i command-line option.

To get a list of listening ports and the processes that own them using Isof, run this command:

#1sof -i -n | egrep 'COMMAND|LISTEN'

COMMAND PID USERFD TYPE DEVICE SIZE/OFF NODE NAME
named 1127 named 20u IPv4 Oxeb401dcO 0t0 TCP *:domain (LISTEN)
inetd 1133 root 4u IPv4 Oxeb401ba0 Ot0 TCP *imap (LISTEN)

inetd 1133 root 5u IPv4 0xeb401980 0Ot0 TCP *imaps (LISTEN)

sshd 1138 root 3u IPv4 0xeb401760 0t0 TCP *:ssh (LISTEN)

http://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof/

sendmail 1141 root 4u IPv4 Oxeb41b7e0 0t0 TCP *:smtp (LISTEN)
sendmail 1141 root 5u IPv4 Oxeb438fa0 0t0 TCP *:submission (LISTEN)

Again, you can change the argument to egrep to display UDP sockets. However, this time useUDP instead of udp4, which makes the
argument COMMANDILISTEN|UDP'. As mentioned earlier, not all UDP sockets will necessarily be associated with a daemon process.

Hack 9 Prevent Services from Binding to an Interface

lig

Keep services from listening on a port instead of firewalling them.

Sometimes you might want to limit a service to listen on only a specific interface. For instance, ApachdHack #50] can be configured to
listen on a specific interface as opposed to all available interfaces. You can do this by using the Listen directive in your configuration file
and specifying the IP address of the interface:

Listen 192.168.0.23:80
If you use VirtualHost entries, you can specify interfaces to bind to on a per-virtual-host basis:

<VirtualHost 192.168.0.23>

</VirtualHost>

You may even have services that are listening on a TCP port but don't need to be. Database servers such as MySQL are often used in
conjunction with Apache, and are frequently set up to coexist on the same server when used in this way. Connections that come from the
same machine that MySQL is installed on use a domain socket in the filesystem for communications. Therefore, you don't need to have
MySQL listening on a TCP socket. To do this, you can either use the --skip-networking command-line option when starting MySQL or

specify it in the [mysqld] section of yourmy.cnffile:

[mysqld]
skip-networking

Another program that you'll often find listening on a port is your X11 server, which listens on TCP port 6000 by default. This port is
traditionally used to enable remote clients to connect to your X11 server so they can draw their windows and accept keyboard and
mouse input; however, with the advent of SSH and X11 forwarding, this really isn't needed anymore. With X11 forwarding enabled inssh,
any client that needs to connect to your X11 server will be tunneled through your SSH connection and will bypass the listening TCP port
when connecting to your X11 server. To get your X Windows server to stop listening on this port, all you need to do is add -nolisten tcp
to the command that is used to start the server. This can be tricky, though—figuring out which file controls how the server is started can
be a daunting task. Usually, you can find what you're looking for in /etc/X11.

If you're using gdm, open yourgdm.conf and look for a line similar to this one:

command=/usr/X11R6/bin/X
Then just add -nolisten tcp to the end of the line.

If you're using xdm, look for a file calledXservers and make sure it contains a line similar to this:

:0 local /usr/X11R6/bin/X -nolisten tcp

Alternatively, if you're not using a managed display and instead you're using startx or a similar command to start your X11 server, you

netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html
netsechacks-CHP-1-SECT-10.html

can just add -nolisten tcp to the end of yourstartx command. To be sure that it is passed to the X server process, start it after an extra set
of hyphens:

$ startx -- -nolisten tcp

Once you start X, fire up a terminal and see what is listening using Isof or netstat [Hack #8]. You should no longer see anything bound to

port 6000.
|||!||||||||II|||
||||| (LR 0T RGN

Hack 10 Restrict Services with Sandboxed Environments

Mo

Mitigate system damage by keeping service compromises contained.

Sometimes keeping up with the latest patches just isn't enough to prevent a break-in. Often, a new exploit will circulate in private
circles long before an official advisory is issued, during which time your servers may be open to unexpected attack. With this in mind, it's
wise to take extra preventative measures to contain the aftermath of a compromised service. One way to do this is to run your services in
sandbox environments. Ideally, this lets the service be compromised while minimizing the effects on the overall system.

Most Unix and Unix-like systems include some sort of system call or other mechanism for sandboxing that offers various levels of
isolation between the host and the sandbox. The least restrictive and easiest to set up is a chroot() environment, which is available on
nearly all Unix and Unix-like systems. In addition to chroot(), FreeBSD includes another mechanism calledjail(), which provides a few
more restrictions beyond those provided by chroot().

chroot() very simply changes the root directory of a process and all of its children. While this is a powerful feature, there are many
caveats to using it. Most importantly, there should be no way for anything running within the sandbox to change its effective UID (EUID)
to 0, which is root's UID. Naturally, this implies that you don't want to run anything as root within the jail. If an attacker is able to gain root
privileges within the sandbox, then all bets are off. While the attacker will not be able to directly break out of the sandbox environment, it
does not prevent him from running functions inside the exploited processes' address space that will let him break out. There are many
ways to break out of a chroot() sandbox. However, they all rely on being able to get root privileges within the sandboxed environment.
The Achilles heel of chroot() is possession of UID 0 inside the sandbox.

There are a few services that support chroot() environments by calling the function within the program itself, but many services do not. To
run these services inside a sandboxed environment using chroot(), we need to make use of thechroot command. The chroot command
simply calls chroot() with the first command-line argument and attempts to execute the program specified in the second argument. If the
program is a statically linked binary, all you have to do is copy the program to somewhere within the sandboxed environment; but if the
program is dynamically linked, you will need to copy all of its supporting libraries to the environment as well.

See how this works by setting up bash in achroot() environment. First we'll try to runchroot without copying any of the librariesbash
needs:

mkdir -p /chroot_test/bin

cp /bin/bash /chroot_test/bin/

chroot /chroot_test /bin/bash

chroot: /bin/bash: No such file or directory

Now we'll find out what libraries bash needs, which you can do with theldd command, and attempt to runchroot again:
#1dd /bin/bash

libtermcap.so.2 => /lib/libtermcap.so0.2 (0x4001a000)

libdl.so0.2 => /lib/libdl.so0.2 (0x4001e000)

libc.s0.6 => /lib/tls/libc.s0.6 (0x42000000)

/lib/ld-linux.s0.2 => /lib/ld-linux.s0.2 (0x40000000)

netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html
netsechacks-CHP-1-SECT-11.html

mkdir -p chroot_test/lib/tls && \

> (cd /lib; \

> cp libtermcap.so.2 libdl.so0.2 Id-linux.so0.2 /chroot_test/lib; \
> cd tls; cp libc.so0.6 /chroot_test/lib/tls)

chroot /chroot_test /bin/bash

bash-2.05b#

bash-2.05b# echo /*

/bin /lib

Setting up a chroot environment mostly involves trial and error in getting permissions right and all of the library dependencies in order.
Be sure to consider the implications of having other programs such as mknod or mount available in thechroot environment. If these
were available, the attacker could possibly create device nodes to access memory directly or to remount filesystems, thus breaking out
of the sandbox and gaining total control of the overall system. This threat can be mitigated by putting the directory on a filesystem
mounted with options that prohibit the use of device files (as in), but that isn't always convenient. It is advisable to make as
many of the files and directories in the chrooted directory as possible owned by root and writable only by root, in order to make it
impossible for a process to modify any supporting files (this includes files such as libraries and configuration files). In general it is best to
keep permissions as restrictive as possible, and to relax them only when necessary (for example, if the permissions prevent the daemon
from working properly).

The best candidates for a chroot() environment are services that do not need root privileges at all. For instance, MySQL listens for remote
connections on port 3306 by default. Since this port is above 1024, mysqgld can be started without root privileges and therefore doesn't
pose the risk of being used to gain root access. Other daemons that need root privileges can include an option to drop these privileges
after completing all the operations for which it needs root access (e.g., binding to a port below 1024), but care should be taken to ensure
that the program drops its privileges correctly. If a program uses seteuid() rather thansetuid() to drop its privileges, it is still possible to
gain root access when exploited by an attacker. Be sure to read up on current security advisories for programs that will run only with root
privileges.

You might think that simply not putting compilers, a shell, or utilities such as mknod in the sandbox environment may protect them in the
event of a root compromise within the restricted environment. In reality, attackers can accomplish the same functionality by changing
their code from calling system("/bin/sh") to calling any other C library function or srstem call that they desire. If you can mount the

filesystem that the chrooted program runs from using the read-only flag [Hack #1], you can make it more difficult for attackers to install
their own code, but this is still not quite bulletproof. Unless the daemon you need to run within the environment can meet the criteria
discussed earlier, you might want to look into using a more powerful sandboxing mechanism.

One such mechanism is available under FreeBSD and is implemented through the jail() system call. jail() provides many more
restrictions in isolating the sandbox environment from the host system and provides additional features, such as assigning IP addresses
from virtual interfaces on the host system. Using this functionality, you can create a full virtual server or just run a single service inside
the sandboxed environment.

Just as with chroot(), the system provides ajail command that uses thejail() system call. The basic form of the jail command is:

jail
new root hostname ipaddr command

where ipaddr is the IP address of the machine on which the jail is running. Try it out by running a shell inside a jail:
mkdir -p /jail_test/bin

cp /bin/sh /jail_test/sh

jail /jail_test jail_test 192.168.0.40 /bin/sh

echo /*

/bin
This time, no libraries needed to be copied, because FreeBSD's/bin/sh is statically linked.

On the opposite side of the spectrum, we can build a jail that can function as a nearly full-function virtual server with its own IP address.
The steps to do this basically involve building FreeBSD from source and specifying the jail directory as the install destination.

You can do this by running the following commands:

mkdir /jail_test

cd /usr/src

make world DESTDIR=/jail_test

cd /etc && make distribution DESTDIR=/jail_test -DNO_MAKEDEV_RUN
cd /jail_test/dev && sh MAKEDEYV jail

cd /jail_test && In -s dev/null kernel

However, if you're planning to run just one service from within the jail, this is definitely overkill. Note that in the real world you'll most likely
need to create /dev/null and/dev/log device nodes in your sandbox environment for most daemons to work correctly.

Hack 11 Use proftp with a MySQL Authentication Source

i

Make sure that your database system's OS is running as efficiently as possible with these tweaks.

proftpd is a powerful FTP daemon with a configuration syntax much like Apache. It has a whole slew of options not available in most
FTP daemons, including ratios, virtual hosting, and a modularized design that allows people to write their own modules.

One such module is mod_sql , which allowsproftpd to use a SQL database as its back-end authentication source. Currently,mod_sq|l
supports MySQL and PostgreSQL. This can be a good way to help lock down access to your server, as inbound users will authenticate
against the database (and therefore not require an actual shell account on the server). In this hack, we'll get proftpd authenticating
against a MySQL database.

First, download and build the source to proftpd and mod_sql:

~$ bzcat proftpd-1.2.6.tar.bz2 | tar xf -

~/proftpd-1.2.6/contrib$ tar zvxf ../../mod_sql-4.08.tar.gz
~/proftpd-1.2.6/contrib$ cd ..

~/proftpd-1.2.6$./configure --with-modules=mod_sqgl:mod_sgl_mysqgl \
--with-includes=/usr/local/mysql/include/ \
--with-libraries=/usr/local/mysql/lib/
(Naturally, substitute the path to your mySQL install, if it isn't in /usr/local/mysql/.) Now, build the code and install it:
rob@catlin:~/proftpd-1.2.6% make && sudo make install
Next, create a database for proftpd to use (assuming that you already have mysql up and running):
$ mysqladmin create proftpd
Then, permit read-only access to it from proftpd:
$ mysql -e "grant select on proftpd.* to proftpd@localhost \
identified by 'secret';"

Create two tables in the database, with this schema:

CREATE TABLE users (

userid varchar(30) NOT NULL default ",
password varchar(30) NOT NULL default ",
uid int(11) default NULL,

gid int(11) default NULL,

netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html
netsechacks-CHP-1-SECT-12.html

homedir varchar(255) default NULL,
shell varchar(255) default NULL,
UNIQUE KEY uid (uid),

UNIQUE KEY userid (userid)

) TYPE=MyISAM;

CREATE TABLE groups (

groupname varchar(30) NOT NULL default ",
gid int(11) NOT NULL default '0',

members varchar(255) default NULL

) TYPE=MyISAM;

One quick way to create the tables is to save this schema to a file called proftpd.schema and run a command likemysq| proftpd <
proftpd.schema.

Now we need to tell proftpd to use this database for authentication. Add the following lines tdusr/local/etc/proftpd.conf:

SQLConnectinfo proftpd proftpd secret
SQLAuthTypes crypt backend
SQLMinUserGID 111
SQLMinUserUID 111

The SQLConnectInfo line takes the formdatabase user password. You could also specify a database on another host (even on another
port) with something like:

SQLConnectinfo proftpd@dbhost:5678 somebody somepassword

The SQLAuthTypes line lets you create users with passwords stored in the standard Unix crypt format, anysql's PASSWORD() function.
Be warned that if you're using mod_sql's logging facilities, the password may be exposed in plain text, so keep those logs private.

The SQLAuthTypes line as specified won't allow blank passwords; if you need that functionality, also include the empty keyword. The
SQLMinUserGID and SQLMinUserUID lines specify the minimum group and user ID thaproftpd will permit on login. It's a good idea to
make this greater than 0 (to prohibit root logins), but it should be as low as you need to allow proper permissions in the filesystem. On
this system, we have a user and group called www, with both its uid and gid set to 111. As we'll want web developers to be able to log in
with these permissions, we'll need to set the minimum values to 111.

Finally, we're ready to create users in the database. This will create the user jimbo, with effective user rights as www/www, and dump
him in the /usr/local/apache/htdocs/ directory at login:

mysq|l -e "insert into users values ('jimbo’,PASSWORD('sHHH'),'111', \
'111", 'lusr/local/apache/htdocs','/bin/bash’);" proftpd

The password for jimbo is encrypted with mysgl's PASSWORD() function before being stored. The/bin/bash line is passed to proftpd to
pass proftpd's RequireValidShell directive. It has no bearing on granting actual shell access to the user jimbo.

At this point, you should be able to fire up proftpd and log in as user jimbo, with a password of sHHH. If you are having trouble getting
connected, try running proftpd in the foreground with debugging on, like this:

proftpd -n -d 5

Watch the messages as you attempt to connect, and you should be able to track down the source of difficulty. In my experience, it's
almost always due to a failure to set something properly in proftpd.conf, usually regarding permissions.

The mod_sql module can do far more than I've shown here; it can connect to existing mysql databases with arbitrary table names, log all
activity to the database, modify its user lookups with an arbitrary WHERE clause, and much more.

See Also

® The mod_sql home page atlmp://www.Iastditcheffort.orq/~aah/proftpd/mod sqll

® The proftpd home page atl]ttp://www.proftpd.orql

—~Rob Flickenger (Linux Server Hacks)

http://www.lastditcheffort.org/~aah/proftpd/mod_sql/
http://www.proftpd.org/

netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html
netsechacks-CHP-1-SECT-13.html

Hack 12 Prevent Stack-Smashing Attacks

i

Learn how to prevent stack-based buffer overflows.

In C and C++, memory for local variables is allocated in a chunk of memory called thetack. Information pertaining to the control flow of
a program is also maintained on the stack. If an array is allocated on the stack and that array is overrun (that is, more values are pushed
into the array than the available space provides), an attacker can overwrite the control flow information that is also stored on the stack.
This type of attack is often referred to as a stack-smashing attack.

Stack-smashing attacks are a serious problem, since an otherwise innocuous service (such as a web server or FTP server) can be
made to execute arbitrary commands. Several technologies have)rams against these attacks.
Some are implemented in the compiler 1uch as IBM's ProPolice (nttp://www.trl.ibm.com/projects/security/sspl) and the Stackguard

(it www immunix.org/stackauard. html) versions of ~ GCC. Others are dynamic runtime solutions, such as LibSafe
(http://www.research.avayalabs.com/project/libsafef). While recompiling the source gets to the heart of the buffer overflow attack, runtime
solutions can protect programs when the source isn't available or recompiling simply isn't feasible.

All of the compiler-based solutions work in much the same way, although there are some differences in the implementations. They work
by placing a "canary" (which is typically some random value) on the stack between the control flow information and the local variables.
The code that is normally generated by the compiler to return from the function is modified to check the value of the canary on the stack;
if it is not what it is supposed to be, the program is terminated immediately.

The idea behind using a canary is that an attacker attempting to mount a stack-smashing attack will have to overwrite the canary to
overwrite the control flow information. By choosing a random value for the canary, the attacker cannot know what it is and thus cannot
include it in the data used to "smash" the stack.

When a program is distributed in source form, the developer of the program cannot enforce the use of StackGuard or ProPolice, because
they are both nonstandard extensions to the GCC compiler. It is the responsibility of the person compiling the program to make use of
one of these technologies.

For Linux systems, Avaya Labs's LibSafe technology is not implemented as a compiler extension, but instead takes advantage of a
feature of the dynamic loader that causes a dynamic library to be preloaded with every executable. Using LibSafe does not require the
source code for the programs it protects, and it can be deployed on a system-wide basis.

LibSafe replaces the implementation of several standard functions that are known to be vulnerable to buffer overflows, such as gets(),
strepy(), and scanf(). The replacement implementations attempt to compute the maximum possible size of a statically allocated buffer
used as a destination buffer for writing, using a GCC built-in function that returns the address of the frame pointer. That address is
normally the first piece of information on the stack following local variables. If an attempt is made to write more than the estimated size of
the buffer, the program is terminated.

Unfortunately, there are several problems with the approach taken by LibSafe. First, it cannot accurately compute the size of a buffer; the
best it can do is limit the size of the buffer to the difference between the start of the buffer and the frame pointer. Second, LibSafe's
protections will not work with programs that were compiled using the -fomit-frame-pointer flag to GCC, an optimization that causes the
compiler not to put a frame pointer on the stack. Although relatively useless, this is a popular optimization for programmers to employ.
Finally, LibSafe will not work on SUID binaries without static linking or a similar trick.

In addition to providing protection against conventional stack-smashing attacks, the newest versions of LibSafe also provide some
protection against format-string attacks. The format-string protection also requires access to the frame pointer because it attempts to
filter out arguments that are not pointers into either the heap or the local variables on the stack.

In addition to user-space solutions, you can also opt to patch your kernel to use nonexecutable stacks and detect buffer overflow attacks.
We'll do just that in [Hack #13] .
I
LA LAREAN

http://www.trl.ibm.com/projects/security/ssp/
http://www.immunix.org/stackguard.html
http://www.research.avayalabs.com/project/libsafe/

Hack 13 Lock Down Your Kernel with grsecurity

i3

Harden your system against attacks with the grsecurity kernel patch.

Hardening a Unix system can be a difficult process. It typically involves setting up all the services that the system will run in the most
secure fashion possible, as well as locking down the system to prevent local compromises. However, putting effort into securing the
services that you're running does little for the rest of the system and for unknown vulnerabilities. Luckily, even though the standard Linux
kernel provides few features for proactively securing a system, there are patches available that can help the enterprising system
administrator do so. One such patch is grsecurity (http://www.grsecurity.nef).

grsecurity started out as a port of the OpenWall patch (lntp://www.openwall.coni) to the 2.4.x series of Linux kernels. This patch added
features such as nonexecutable stacks, some filesystem security enhancements, restrictions on access to /proc, as well as some
enhanced resource limits. These features helped to protect the system against stack-based buffer overflow attacks, prevented filesystem
attacks involving race conditions on files created in /tmp, limited a user to only seeing his own processes, and even enhanced Linux's
resource limits to perform more checks. Since its inception, grsecurity has grown to include many features beyond those provided by the
OpenWall patch. grsecurity now includes many additional memory address space protections to prevent buffer overflow exploits from
succeeding, as well as enhanced chroot() jail restrictions, increased randomization of process and IP IDs, and increased auditing

features that enable you to track every process executed on a system. grsecurity adds a sophisticated access control list (ACL) system
that makes use of Linux's capabilities system. This ACL system can be used to limit the privileged operations that individual processes
are able to perform on a case-by-case basis.

Configurati s is handled through the gradm utility. If you already havegrsecurity installed on your machine, feel free to skip
ahead to [Hack #14] .

To compile a kernel with grsecurity, you will need to download the patch that corresponds to your kernel version and apply it to your
kernel using the patch utility.

For example, if you are running Linux 2.4.24:

cd /usr/src/linux-2.4.24

patch -pl < ~andrew/grsecurity-1.9.13-2.4.24.patch

While the command is running, you should see a line for each kernel source file that is being patched. After the command has finished,
you can make sure that the patch applied cleanly by looking for any files that end in .rej . The patch program creates these when it
cannot apply the patch cleanly to a file. A quick way to see if there are any .rej files is to use the find command:

find ./ -name *.rej

If there are any rejected files, they will be listed on the screen. If the patch applied cleanly, you should be returned back to the shell
prompt without any additional output.

After the patch has been applied, you can configure the kernel to enablegrsecurity's features by runningmake config to use text
prompts, make menuconfig for a curses-based interface, or make xconfig to use a Tk-based GUI. If you went the graphical route and
used make xconfig, you should then see a dialog similar t. If you ranmake menuconfig or make config, the relevant kernel
options have the same name as the menu options described in this example.

Figure 1-1. Linux kernel configuration after the grsecurity patch has been applied

netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
netsechacks-CHP-1-SECT-14.html
http://www.grsecurity.net
http://www.openwall.com

« Linux Kernel Confauration

Codn malzrily lereel oplans Fugion MPT dasce suppor Sorul

Lobdahile ssdule suppori BEEE 1394 [Fretre) support | EXPERIMENTAL) UEE sspport
Frocessor bype and Toatures R dedicn support Bltpeth support

Gl SRk Bl lwne: device supgrt Fiem i fac kieg

sinminry Tachmsingy Davices (MTD] itk Wil Siijipaet Crypligrapiic ojtiniG
Faralel purt support IFiA, (nfrarsd) support Libaary inpatis

Flug ond Py configuration IS0 subsysiam Grscurily

Hlock dievices Ol CO-AOM drivers (red 3051, nol 10E)

Belutti-davicn sugport | FAID aml LV8) Inprul core Seppor

i rwiricinag apimng Charstior $aicag Suva B Eal

Telephany Suppor] Mutimisgia fevices Gt Without Saving

AT EF MMALL suppor Filn sysbomes Lo Candiguration from Fie
51 spport Console drivers Starn Confguration o Fis

To configure which grsecurity features will be enabled in the kernel, click the button labeled Grsecurity. After doing that, you should see a
dialog similar to Figure 1-4.

Figure 1-2. The Grsecurity configuration dialog

% Lrsecunty

Graecurity
¥ “on Grsecunty Help
Help
Main Ment Mesxt Pravy

To enable grsecurity, click the y radio button. After you've done that, you can enable predefined sets of features with the Security Level
drop-down list, or set it to Custom and go through the menus to pick and choose which features to enable.

Choosing Low is safe for any system and should not affect any software's normal operation. Using this setting will enable linking
restrictions in directories with mode 1777. This prevents race conditions in /tmp from being exploited, by only following symlinks to files
that are owned by the process following the link. Similarly, users won't be able to write to FIFOs that they do not own if they are within a
directory with permissions of 1777.

In addition to the tighter symlink and FIFO restrictions, the Low setting increases the randomness of process and IP IDs. This helps to

prevent attackers from using remote detection techniques to correctly guess the operating system your machine is running (as in
), and it also makes it difficult to guess the process ID of a given program. TheLow security level also forces programs that use

chroot() to change their current working directory to/ after the chroot() call. Otherwise, if a program left its working directory outside of the
chroot environment, it could be used to break out of the sandbox. Choosing the Low security level also prevents nonroot users from using
dmesg, a utility that can be used to view recent kernel messages.

Choosing Medium enables all of the same features as the Low security level, but this level also includes features that make
chroot()-based sandboxed environments more secure. The ability to mount filesystems, calkchroot(), write to sysctl variables, or create
device nodes within achrooted environment are all restricted, thus eliminating much of the risk involved in running a service in a
sandboxed environment under Linux. In addition, TCP source ports will be randomized, and failed fork() calls, changes to the system
time, and segmentation faults will all be logged. Enabling the Medium security level will also restrict total access to /proc to those who
are in the wheel group. This hides each user's processes from other users and denies writing to /dev/kmem, /dev/mem, and /dev/port.
This makes it more difficult to patch kernel-based root kits into the running kernel. Also, process memory address space layouts are
randomized, making it harder for an attacker to successfully exploit buffer overrun attacks. Because of this, information on process
address space layouts is removed from /proc as well. Because of these/proc restrictions, you will need to run youridentd daemon (if you
are running one) as an account that belongs to the wheel group. According to the grsecurity documentation, none of these features
should affect the operation of your software, unless it is very old or poorly written.

To enable nearly all of grsecurity's features, you can choose the High security level. In addition to the features provided by the lower
security levels, this level implements additional /proc restrictions by limiting access to device and CPU information to users who are in the
wheel group. Sandboxed environments are also further restricted by disallowing chmod to set the SUID or SGID bit when operating
within such an environment. Additionally, applications that are running within such an environment will not be allowed to insert loadable
modules, perform raw 1/O, configure network devices, reboot the system, modify immutable files, or change the system's time. Choosing
this security level will also cause the kernel's stack to be laid out randomly, to prevent kernel-based buffer overrun exploits from
succeeding. In addition, the kernel's symbols will be hidden—making it even more difficult for an intruder to install Trojan code into the
running kernel—and filesystem mounting, remounting, and unmounting will be logged.

The High security level also enables grsecurity's PaX code, which enables nonexecutable memory pages. Enabling this will cause
many buffer overrun exploits to fail, since any code injected into the stack through an overrun will be unable to execute. However, it is
still possible to exploit a program with buffer overrun vulnerabilities, although this is made much more difficult by grsecurity's address
space layout randomization features. PaX can also carry with it some performance penalties on the x86 architecture, although they are
said to be minimal. In addition, some programs—such as XFree86, wine, and Java® virtual machines—uwill expect that the memory
addresses returned by malloc() will be executable. Unfortunately, PaX breaks this behavior, so enabling it will cause those programs and

others that depend on it to fail. Luckily, PaX can be disabled on a per-program basis with the chpax utility d\ttp://chpax.qrsecurity.nell).

To disable PaX for a program, you can run a command similar to this one:
chpax -ps /usr/bin/java

There are also other programs that make use of special GCC features, such as trampoline functions. This allows a programmer to
define a small function within a function, so that the defined function is only in the scope of the function in which it is defined.
Unfortunately, GCC puts the trampoline function's code on the stack, so PaX will break any programs that rely on this. However, PaxX
can provide emulation for trampoline functions, which can be enabled on a per-program basis with chpax, as well by using the-E switch.

If you do not like the sets of features that are enabled with any of the predefined security levels, you can just set the kernel option to
"custom" and enable only the features you need.

After you've set a security level or enabled the specific options you want to use, just recompile your kernel and modules as you normally
would. You can do that with commands similar to these:

make dep clean && make bzlmage
make modules && make modules_install

Then reboot with your new kernel. In addition to the kernel restrictions already in effect, you can now use gradm to set up ACLs for your
system. We'll see how to do that in [Hack #14] .

As you can see, grsecurity is a complex but tremendously useful modification o,ummm_almmmuaﬁinformation on
installing and configuring the patches, consult the extensive documentation at pttp://www.grsecurity.net/papers.phg.

http://chpax.grsecurity.net
http://www.grsecurity.net/papers.php

Hack 14 Restrict Applications with grsecurity

liia

Use Linux capabilities and grsecurity's ACLs to restrict applications on your system.

Now that you have installed thegrsecurity patches, you'll probably want to make use of its flexible ACL system to further restrict the
privileged applications on your system, beyond what grsecurity's kernel security features provide. If you're just joining us and are not
familiar with grsecurity, read [Hack #13] first.

Tlf_gﬁm;pmu;amlﬁrtions, you will need to make use of the gradm utility, which can be downloaded from the maingrsecurity site
(http://www.grsecurity.nef). You can compile and install it in the usual way: unpack the source distribution, change into the directory that

it creates, and then run make && make install. This will installgradm in /sbin, create the/etc/grsec directory containing a default ACL, and

install the manpage.

After gradm has been installed, the first thing you'll want to do is create a password thagradm will use to authenticate itself to the kernel.
You can do this by running gradm with the -P option:

#gradm -P

Setting up grsecurity ACL password

Password:

Re-enter Password:

Password written to /etc/grsec/pw.

To enable grsecurity's ACL system, use this command:
/sbin/gradm -E

Once you're finished setting up your ACLs, you'll probably want to add that command to the end of your system startup. You can do this
by adding it to the end of /etc/rc.local or a similar script that is designated for customizing your system startup.

The default ACL installed in /etc/grsec/acl is quite restrictive, so you'll want to create ACLs for the services and system binaries you want
to use. For example, after the ACL system has been enabled, ifconfig will no longer be able to change interface characteristics, even
when run as root:

Isbin/ifconfig eth0:1 192.168.0.59 up

SIOCSIFADDR: Permission denied

SIOCSIFFLAGS: Permission denied

SIOCSIFFLAGS: Permission denied

The easiest way to set up an ACL for a particular command is to specify that you want to use grsecurity's learning mode, rather than

specifying each ACL manually. If you've enabled ACLs, you'll need to temporarily disable them for your shell by running gradm -a. You'll
then be able to access files within /etc/grsec; otherwise, the directory will be hidden to you.

Add an entry like this to /etc/grsec/acl:

netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
netsechacks-CHP-1-SECT-15.html
http://www.grsecurity.net

/shin/ifconfig lo {

/etc/grsec h

-CAP_ALL

This is about the most restrictive ACL possible because it hides the root directory from the process and removes any privileges that it
may need. The lo next to the binary to which the ACL applies says to use learning mode and to override the default ACL. After you're
done editing the ACLs, you'll need to tell grsecurity to reload them by running gradm -R.
Now try to run the ifconfig command again:
Isbin/ifconfig eth0:1 192.168.0.59 up
Isbin/ifconfig eth0:1
ethO:1 Link encap:Ethernet HWaddr 00:0C:29:E2:2B:C1
inet addr:192.168.0.59 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Interrupt:10 Base address:0x10e0

In addition to the command succeeding, grsecurity will create learning log entries. You can then use gradm to generate an ACL for the
program based on these logs:

#gradm -a

Password:

gradm -L -O stdout

Isbin/ifconfig o {
lusr/share/locale/locale.alias r
lusr/lib/locale/locale-archive r
lust/lib/gconv/gconv-modules.cache r
/proc/net/unix r
/proc/net/dev r
/proc/net r
/lib/1d-2.3.2.s0 x
/lib/i686/libc-2.3.2.50 rx
/etc/ld.so.cache r
/sbin/ifconfig x

/etc/grsec h

/'h
-CAP_ALL

+CAP_NET_ADMIN

Now you can replace the learning ACL for /sbin/ifconfig in /etc/grsec/acl with this one, andifconfig should work. You can then follow this
process for each program that needs special permissions to function. Just make sure to try out anything you will want to do with those
programs, to ensure that grsecurity's learning mode will detect that it needs to perform a particular system call or open a specific file.

Using grsecurity to lock down applications can seem like tedious work at first, but it will ultimately create a system that gives each
process only the permissions it needs to do its job—no more, no less. When you need to build a highly secured platform, grsecurity can
provide very finely grained control over just about everything the system can possibly do.

Hack 15 Restrict System Calls with Systrace

165

Keep your programs from performing tasks they weren't meant to do.

One of the more exciting new features in NetBSD and OpenBSD issystrace, a system call access manager. Withsystrace, a system
administrator can specify which programs can make which system calls, and how those calls can be made. Proper use ofsystrace can
greatly reduce the risks inherent in running poorly written or exploitable programs. Systrace policies can confine users in a manner
completely independent of Unix permissions. You can even define the errors that the system calls return when access is denied, to allow
programs to fail in a more proper manner. Proper use of systrace requires a practical understanding of system calls and what
functionality programs must have to work properly.

First of all, what exactly are system calls? Asystem call is a function that lets you talk to the operating-system kernel. If you want to
allocate memory, open a TCP/IP port, or perform input/output on the disk, you'll need to use a system call. System calls are documented
in section 2 of the manpages.

Unix also supports a wide variety of C library calls. These are often confused with system calls but are actually just standardized
routines for things that could be written within a program. For example, you could easily write a function to compute square roots within a
program, but you could not write a function to allocate memory without using a system call. If you're in doubt whether a particular function
is a system call or a C library function, check the online manual.

You may find an occasional system call that is not documented in the online manual, such as break(). You'll need to dig into other
resources to identify these calls (break() in particular is a very old system call used withirlibc, but not by programmers, so it seems to
have escaped being documented in the manpages).

Systrace denies all actions that are not explicitly permitted and logs the rejection using syslog. If a program running undersystrace has a
problem, you can find out which system call the program wants to use and decide if you want to add it to your policy, reconfigure the
program, or live with the error.

Systrace has several important pieces: policies, the policy generation tools, the runtime access management tool, and the sysadmin
real-time interface. This hack gives a brief overview of policies; in [Hack #16], we'll learn about thesystrace tools.

The systrace(1) manpage includes a full description of the syntax used for policy descriptions, but | generally find it easier to look at
some examples of a working policy and then go over the syntax in detail. Since named has been a subject of recent security
discussions, let's look at the policy that OpenBSD 3.2 provides for named.

Before reviewing the named policy, let's review some commonly known facts about the name server daemon's system-access
requirements. Zone transfers and large queries occur on port 53/TCP, while basic lookup services are provided on port 53/UDP.
OpenBSD chroots named into /var/named by default and logs everything to/var/log/messages.

Each systrace policy file is in a file named after the full path of the program, replacing slashes with underscores. The policy file
usr_sbin_named contains quite a few entries that allow access beyond binding to port 53 and writing to the system log. The file starts with:

Policy for named that uses named user and chroots to /var/named
This policy works for the default configuration of named.
Policy: /usr/sbin/named, Emulation: native

The Policy statement gives the full path to the program this policy is for. You can't foosystrace by giving the same name to a program
elsewhere on the system. The Emulation entry shows which ABI this policy is for. Remember, BSD systems expose ABls for a variety of
operating systems. Systrace can theoretically manage system-call access for any ABI, although only native and Linux binaries are

netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html
netsechacks-CHP-1-SECT-16.html

supported at the moment.

The remaining lines define a variety of system calls that the program may or may not use. The sample policy for named includes 73 lines
of system-call rules. The most basic look like this:

native-accept: permit

When /usr/shin/named tries to use the accept() system call to accept a connection on a socket, under the native ABI, it is allowed. Other
rules are far more restrictive. Here's a rule for bind(), the system call that lets a program request a TCP/IP port to attach to:

native-bind: sockaddr match "inet-*:53" then permit

sockaddr is the name of an argument taken by theaccept() system call. The match keyword tells systrace to compare the given variable
with the string inet-*:53, according to the standard shell pattern-matching (globbing) rules. So, if the variablesockaddr matches the string
inet-*:53, the connection is accepted. This program can bind to port 53, over both TCP and UDP protocols. If an attacker had an exploit
to make named attach a command prompt on a high-numbered port, thissystrace policy would prevent that exploit from working.

At first glance, this seems wrong:

native-chdir: filename eq "/" then permit

native-chdir: filename eq "/namedb" then permit

The eq keyword compares one string to another and requires an exact match. If the program tries to go to the root directory, or to the
directory /namedb, systrace will allow it. Why would you possibly want to allow named to access the root directory? The next entry
explains why:

native-chroot: filename eq "/var/named" then permit

We can use the native chroot() system call to change our root directory to/var/named, but to no other directory. At this point, thednamedb
directory is actually /var/named/namedb. We also know thatnamed logs to syslog. To do this, it will need access to/dev/log:

native-connect: sockaddr eq "/dev/log" then permit

This program can use the native connect() system call to talk to/dev/log and only /dev/log. That device hands the connections off
elsewhere.

We'll also see some entries for system calls that do not exist:

native-fsread: filename eq "/" then permit

native-fsread: filename eq "/dev/arandom" then permit

native-fsread: filename eq "/etc/group” then permit

Systrace aliases certain system calls with very similar functions into groups. You can disable this functionality with a command-line
switch and only use the exact system calls you specify, but in most cases these aliases are quite useful and shrink your policies
considerably. The two aliases are fsread and fswrite. fsread is an alias forstat(), Istat(), readlink(), and access() under the native and
Linux ABIs. fswrite is an alias forunlink(), mkdir(), and rmdir(), in both the native and Linux ABls. A®pen() can be used to either read or
write a file, it is aliased by both fsread and fswrite, depending on how it is called. Sonamed can read certain /etc files, it can list the
contents of the root directory, and it can access the groups file.

Systrace supports two optional keywords at the end of a policy statement, errorcode and log. The errorcode is the error that is returned
when the program attempts to access this system call. Programs will behave differently depending on the error that they receive. named
will react differently to a "permission denied" error than it will to an "out of memory" error. You can get a complete list of error codes from
the errno manpage. Use the error name, not the error number. For example, here we return an error for nonexistent files:

filename sub "<non-existent filename>" then deny[enoent]

If you put the word log at the end of your rule, successful system calls will be logged. For example, if we wanted to log each timeamed
attached to port 53, we could edit the policy statement for the bind() call to read:

native-bind: sockaddr match "inet-*:53" then permit log

You can also choose to filter rules based on user ID and group ID, as the example here demonstrates.

native-setgid: gid eq "70" then permit

This very brief overview covers the vast majority of the rules you will see. For full details on the systrace gr: d the systrace
manpage. If you want some help with creating your policies, you can also use systrace's automated mode iHack #16

ttp://www.onlamp.com/pub/a/bsd/2003/01/30/Big _Scary _Daemons.htm|.

—NMichael Lucas

http://www.onlamp.com/pub/a/bsd/2003/01/30/Big_Scary_Daemons.html

Hack 16 Automated Systrace Policy Creation

s

Let Systrace's automated mode do your work for you.

Inatrue paranoid's ideal world, system administrators would read the source code for every application on their system and be able to
build system-call access policies by hand, relying only on their intimate understanding of every feature of the application. Most system
administrators don't have that sort of time, and would have better things to do with that time if they did.

Luckily, systrace includes a policy-generation tool that will generate a policy listing for every system call that an application makes. You
can use this policy as a starting point to narrow down the access you will allow the application. We'll use this method to generate a policy
forinetd .

Use the -A flag to systrace, and include the full path to the program you want to run:

systrace -A /usr/sbin/inetd

To pass flags to inetd, add them at the end of the command line.

Then use the program for which you're developing a policy. This system has ident, daytime, and time services open, so run programs
that require those services. Fire up an IRC client to trigger ident requests, and telnet to ports 13 and 37 to get time services. Once you
have put inetd through its paces, shut it down.inetd has no control program, so you need to kil it by process ID.

Checking the process list will show two processes:

#ps -ax | grep inet

24421 ?? Ixs 0:00.00 /usr/sbin/inetd

12929 ?? Is 0:00.01 systrace -A /usr/shin/inetd

Do not kill the systrace process (PID 12929 in this example)—that process has all the records of the system calls thainetd has made.
Just kill the inetd process (PID 24421), and thesystrace process will exit normally.

Now check your home directory for a .systrace directory, which will containsystrace's first stab at aninetd policy. Remember, policies are
placed in files named after the full path to the program, replacing slashes with underscores.

Here's the output of Is:
#|s .systrace
usr_libexec_identd usr_sbin_inetd

systrace created two policies, not one. In addition to the expected policy for/usr/sbin/inetd, there's one for/usr/libexec/identd. This is
because inetd implements time services internally, while ident calls a separate program to service requests. Wherinetd spawned identd,
systrace captured theidentd system calls as well.

By reading the policy, you can improve your understanding of what the program actually does. Look up each system call the program
uses, and see if you can restrict access further. You'll probably want to look for ways to further restrict the policies that are automatically
generated. However, these policies make for a good starting point.

Applying a policy to a program is much like creating the systrace policy itself; just run the program as an argument to systrace, using the

netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html
netsechacks-CHP-1-SECT-17.html

-a option:
systrace -a /usr/shin/inetd

If the program tries to perform system calls not listed in the policy, they will fail. This may cause the program to behave unpredictably.
Systrace will log failed entries in /var/log/messages.

To edit a policy, just add the desired statement to the end of the rule list, and it will be picked up. You could do this by hand, of course,
but that's the hard way. Systrace includes a tool to let you edit policies in real time, as the system call is made. This is excellent for use in
a network operations center environment, where the person responsible for watching the network monitor can also be assigned to watch
for system calls and bring them to the attention of the appropriate personnel. You can specify which program you wish to monitor by
using systrace's -p flag. This is called attaching to the program.

For example, earlier we saw two processes containing inetd. One was the actualinetd process, and the other was thesystrace process
managing inetd. Attach to the systrace process, not the actual program (to use the previous example, this would be PID 12929), and give
the full path to the managed program as an argument:

systrace -p 12929 /usr/sbin/inetd

At first nothing will happen. When the program attempts to make an unauthorized system call, however, a GUI will pop up. You will have
the options to allow the system call, deny the system call, always permit the call, or always deny it. The program will hang until you make
a decision, however, so decide quickly.

Note that these changes will only take effect so long as the current process is running. If you restart the program, you must also restart
the attached systrace monitor, and any changes you set in the monitor are gone. You must add those rules to the policy if you want them

to be permanent.

ttp://www.onlamp.com/pub/a/bsd/2003/02/27/Big_Scary _Daemons.htm|.

—NMichael Lucas

http://www.onlamp.com/pub/a/bsd/2003/02/27/Big_Scary_Daemons.html

Hack 17 Control Login Access with PAM

E HAGK
Seize fine-grained control of when and where your users can access your system.

In traditional Unix authentication there is not much granularity available in limiting a user's ability to log in. For example, how would
you limit the hosts tha come_from when logging into your servers? Your first thought might be to set up TCP wrappers or
possibly firewall rules [Hack #33] and[Hack #34] . But what if you wanted to allow some users to log in from a specific host, but disallow
others from logging in from it? Or what if you wanted to prevent some users from logging in at certain times of the day because of daily
maintenance, but allow others (i.e., administrators) to log in at any time they wish? To get this working with every service that might be
running on your system, you would traditionally have to patch each of them to support this new functionality. This is where PAM enters
the picture.

PAM, or pluggable authentication modules, allows for just this sort of functionality (and more) without the need to patch all of your
services. PAM has been available for quite some time under Linux, FreeBSD, and Solaris, and is now a standard component of the
traditional authentication facilities on these platforms. Many services that need to use some sort of authentication now support PAM.

Modules are configured for services in a stack, with the authentication process proceeding from top to bottom as the access checks
complete successfully. You can build a custom stack for any service by creating a file in /etc/pam.d with the same name as the service. If
you need even more granularity, an entire stack of modules can be included by using the pam_stack module. This allows you to specify
another external file containing a stack. If a service does not have its own configuration file in /etc/pam.d, it will default to using the stack
specified in /etc/pam.d/other.

When configuring a service for use with PAM, there are several types of entries available. These types allow one to specify whether a
module provides authentication, access control, password change control, or session setup and teardown. Right now, we are interested
in only one of the types: the account type. This entry type allows you to specify modules that will control access to accounts that have
been authenticated. In addition to the service-specific configuration files, some modules have extended configuration information that can

be specified in files within the /etc/security directory. For this hack, we'll mainly use two of the most useful modules of this type,
pam_access and pam_time.

The pam_access module allows one to limit where a user or group of users may log in from. To make use of it, you'll first need to
configure the service you wish to use the module with. You can do this by editing the service's PAM config file in /etc/pam.d.

Here's an example of what /etc/pam.d/login might look like under Red Hat 9:

#%PAM-1.0

auth required pam_securetty.so

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

session optional pam_console.so

Notice the use of the pam_stack module—it includes the stack contained within thesystem-auth file. Let's see what's inside

netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html
netsechacks-CHP-1-SECT-18.html

letc/pam.d/system-auth:

#%PAM-1.0

This file is auto-generated.

User changes will be destroyed the next time authconfig is run.

auth required /lib/security/$ISA/pam_env.so

auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok

auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so

password required /lib/security/$ISA/pam_cracklib.so retry=3 type=
password sufficient /lib/security/$ISA/pam_unix.so nullok use_authtok md5 shadow
password required /lib/security/$ISA/pam_deny.so

session required /lib/security/$ISA/pam_limits.so

session required /lib/security/$ISA/pam_unix.so

To add the pam_access module to the login service, you could add another account entry to the login configuration file, which would, of
course, just enable the module for the login service. Alternatively, you could add the module to the system-auth file, which would enable it
for most of the PAM-aware services on the system.

To add pam_access to the login service (or any other service for that matter), simply add a line like this to the service's configuration file
after any preexisting account entries:

account required pam_access.so

Now that we've enabled the pam_access module for our services, we can editfetc/security/access.conf to control how the module
behaves. Each entry in the file can specify multiple users, groups, and hostnames to which the entry applies, and specify whether it's
allowing or disallowing remote or local access. When pam_access is invoked by an entry in a service configuration file, it will look
through the lines of access.conf and stop at the first match it finds. Thus, if you want to create default entries to fall back on, you'll want
to put the more specific entries first, with the general entries following them.

The general form of an entry in access.conf is:

permission

users

origins
where permission can be either a+ or -. This denotes whether the rule grants or denies access, respectively.

The users portion allows you to specify a list of users or groups, separated by whitespace. In addition to simply listing users in this
portion of the entry, you can use the form user@host, where host is the local hostname of the machine being logged into. This allows you
to use a single configuration file across multiple machines, but still specify rules pertaining to specific machines. The origins portion is
compared against the origin of the access attempt. Hostnames can be used for remote origins, and the special LOCAL keyword can be
used for local access. Instead of explicitly specifying users, groups, or origins, you can also use the ALL and EXCEPT keywords to
perform set operations on any of the lists.

Here's a simple example of locking out the user andrew (Eep! That's me!) from a host named colossus:
- andrew : colossus

Note that if a group that shares its name with a user is specified, the module will interpret the rule as applying to both the user and the
group.

Now that we've covered how to limit where a user may log in from and how to set up a PAM module, let's take a look at how to limit what
time a user may log in by using the pam_time module. To configure this module, you need to editetc/security/time.conf. The format for
the entries in this file are a little more flexible than that of access.conf, thanks to the availability of the NOT (), AND (&), and OR ()
operators.

The general form for an entry in time.conf is:

services;devices;users;times

The services portion of the entry specifies what PAM-enabled service will be regulated. You can usually get a full list of the available
services by looking at the contents of your /etc/pam.d directory.

For instance, here's the contents of /etc/pam.d on a RedHat Linux system:

$Is -1 /etc/pam.d
authconfig

chfn

chsh

halt

internet-druid

kbdrate

login

neat

other

passwd

poweroff

ppp

reboot
redhat-config-mouse
redhat-config-network
redhat-config-network-cmd
redhat-config-network-druid
rhn_register

setup

smtp

sshd

su

sudo
system-auth
up2date
up2date-config
up2date-nox
vlock

To set up pam_time for use with any of these services, you'll need to add a line like this to the file ifetc/pam.d that corresponds to the
service that you want to regulate:

account required /lib/security/$ISA/pam_time.so

The devices portion specifies the terminal device that the service is being accessed from. For console logins, you can usktyp*, which
specifies all TTY devices except for pseudo TTYs. If you want the entry to only affect remote logins, then use ttyp*. You can restrict it to
all users (console, remote, and X11) by using tty*.

For the users portion of the entry, you can specify a single user or a list of users by separating each one with|acharacter. The times
portion is used to specify the times that the rule will apply. Each time range is specified with a combination of two character
abbreviations, which denote the days that the rule will apply, followed with a range of hours for that day. The abbreviations for the days
of the week are Mo, Tu, We, Th, Fr, Sa, and Su. For convenience you can use Wk to specify weekdays andWd to specify the weekend. In
addition, you can use Al to specify every day of the week. These last three basically expand to the set of days that compose each time
period. This is important to remember, since repeated days are subtracted from the set of days that the rule will apply to (e.g., WkSu
would effectively be just Sa). The range of hours is simply specified as two 24-hour times, minus the colons, separated by a dash (e.g.,
0630-1345 is 6:30 A.M. to 1:45 P.M.).

If you wanted to disallow access to the user andrew from the local console on weekends and during the week after hours, you could use
an entry like this:

system-auth;!ttyp*;andrew;Wk1700-0800|Wd0000-2400

Or perhaps you want to limit remote logins through SSH during a system maintenance window lasting from 7 P.M. Friday to 7 A.M.
Saturday, but want to allow a sysadmin to log in:

sshd;ttyp*;!landrew;Fr1900-0700

As you can see, there's a lot of flexibility for creating entries, thanks to the logical Boolean operators that are available. Just make sure
that you remember to configure the service file in /etc/pam.d for use withpam_time when you create entries in/etc/security/time.conf.

Hack 18 Restricted Shell Environments

E HAGK
Keep your users from shooting themselves (and you) in the foot.

Sometimes a sandboxed environment is overkill for your needs. If you want to set up a restricted environment for a group of
users that only allows them to run a few particular commands, you'll have to duplicate all of the libraries and binaries for those
commands for each user. This is where restricted shells come in handy. Many shells include such a feature, which is usually invoked by
running the shell with the -r switch. While not as secure as a system call-based sandbox environment, it can work well if you trust your
users not to be malicious, but worry that some might be curious to an unhealthy degree.

Some common features of restricted shells are the ability to prevent a program from changing directories, to only allow the execution of
commands using absolute pathnames, and to prohibit executing commands in other subdirectories. In addition to these restrictions, all of
the command-line redirection operators are disabled. With these features, restricting the commands a user can execute is as simple as
picking and choosing which commands should be available and making symbolic links to them inside the user's home directory. If a
sequence of commands needs to be executed, you can also create shell scripts owned by another user. These scripts will execute in a
nonrestricted environment and can't be edited within the environment by the user.

Let's try running a restricted shell and see what happens:

$ bash -r

bash: SHELL: readonly variable

bash: PATH: readonly variable

bash-2.05b$ Is

bash: Is: No such file or directory

bash-2.05b$ /bin/ls

bash: /shin/ls: restricted: cannot specify /' in command names
bash-2.05b$ exit

$In-s /bin/ls .

$ bash -r
bash-2.05b$ Is -la

total 24

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .

drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..

-TW------- 1 andrew andrew 18 Oct 20 08:00 .bash_history

-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout

netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html
netsechacks-CHP-1-SECT-19.html

-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile

-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc

Irwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 Is -> /bin/Is

Restricted ksh is a little different in that it will allow you to run scripts and binaries that are in yo®®ATH, which can be set before entering
the shell:

$ rksh

$ls-la

total 24

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .
drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..

-TW------- 1 andrew andrew 18 Oct 20 08:00 .bash_history
-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout

-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile

-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc

Irwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 Is -> /bin/ls

$ which Is

/bin/ls

$ exit

This worked because /bin was in the PATH before we invokedksh. Now let's change thePATH and runrksh again:

$ export PATH=.

$ /bin/rksh

$ /bin/ls
Ibin/rksh: /bin/ls: restricted

$ exit

$In-s /bin/ls .

$ls -la

total 24

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .
drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..

-rW------- 1 andrew andrew 18 Oct 20 08:00 .bash_history
-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout

-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile

-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc
Irwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 Is -> /bin/ls

Restricted shells are incredibly easy to set up and can provide minimal restricted access. They may not be able to keep out determined
attackers, but they certainly make a hostile user's job much more difficult.

Hack 19 Enforce User and Group Resource Limits

linis

Make sure resource-hungry users don't bring down your entire system.

Whether it's through malicious intent or an unintentional slip, having a user bring your system down to a slow crawl by using too much
memory or CPU time is no fun at all. One popular way of limiting resource usage is to use the ulimit command. This method relies on a
shell to limit its child processes, and it is difficult to use when you want to give different levels of usage to different users and groups.
Another, more flexible way of limiting resource usage is with the PAM module pam_limits.

pam_limits is preconfigured on most systems that have PAM installed. All you should need to do isedit /etc/security/limits.conf to
configure specific limits for users and groups.

The limits.conf configuration file consists of single-line entries describing a single type of limit for a user or group of users. The general
format for an entry is:

domain type resource value

The domain portion specifies to whom the limit applies. Single users may be specified here by name, and groups can be specified by
prefixing the group name with an @. In addition, the wildcard character* may be used to apply the limit globally to all users except for
root. The type portion of the entry specifies whether the limit is asoft or hard resource limit. Soft limits may be increased by the user,
whereas hard limits can be changed only by root. There are many types of resources that can be specified for the resource portion of the
entry. Some of the more useful ones are cpu, memlock, nproc, andfsize. These allow you to limit CPU time, total locked-in memory,
number of processes, and file size, respectively. CPU time is expressed in minutes, and sizes are in kilobytes. Another useful limit is
maxlogins, which allows you to specify the maximum number of concurrent logins that are permitted.

One nice feature of pam_limits is that it can work together withulimit to allow the user to raise her limit from the soft limit to the imposed
hard limit.

Let's try a quick test to see how it works. First we'll limit the number of open files for the guest user by adding these entries tolimits.conf:
guest soft nofile 1000
guest hard nofile 2000

Now the guest account has a soft limit of 1,000 concurrently open files and a hard limit of 2,000. Let's test it out:

#SU - guest

$ ulimit -a

core file size (blocks, -¢) 0

data seg size (kbytes, -d) unlimited

file size (blocks, -f) unlimited

max locked memory (kbytes, -I) unlimited

max memory size (kbytes, -m) unlimited

netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html
netsechacks-CHP-1-SECT-20.html

open files (-n) 1000

pipe size (512 bytes, -p) 8

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 1024

virtual memory (kbytes, -v) unlimited

$ ulimit -n 2000

$ ulimit -n
2000

$ ulimit -n 2001

-bash: ulimit: open files: cannot modify limit: Operation not permitted

There you have it. In addition to open files, you can create resource limits for any number of other resources and apply them to specific
users or entire groups. As you can see, pam_limits is quite powerful and useful in that it doesn't rely upon the shell for enforcement.

Hack 20 Automate System Updates

iz

Patch security holes in a timely manner to prevent intrusions

Updating and patching a system in a timely manner is one of the most important things you can do to help protect your systems from
the deluge of newly discovered security vulnerabilities. Unfortunately, this task often gets pushed to the wayside in favor of "more
pressing" issues, such as performance tuning, hardware maintenance, and software debugging. In some circles, it's viewed as a waste
of time and overhead that doesn't contribute to the primary function of a system. Coupled with management demands to maximize
production, keeping a system up-to-date is often pushed even further down on the to-do list.

Updating a system can be very repetitive and time consuming if you're not using scripting to automate it. Fortunately, most Linux
distributions make their updated packages available for download from a standard online location. We can monitor that location for

changes and automatically detect and downlo mng_ummwﬂen they're made available. To demonstrate how to do this on an
RPM-based distribution, we'll use AutoRPM (pttp://www.autorpm.org).

AutoRPM is a powerful Perl script that allows you to monitor multiple FTP sites for changes. It will automatically download new or
changed packages and either install them automatically or alert you so that you may do so. In addition to monitoring single FTP sites,
you can also monitor a pool of mirror sites, to ensure that you still get your updates in spite of a busy FTP server. This feature is
especially nice in that AutoRPM will monitor busy FTP servers and keep track of how many times a connection to them has been
attempted. Using this information, it assigns internal scores to each of the FTP sites configured within a given pool, with the outcome that
the server in the pool that is available most often will be checked first.

To install AutoRPM, download the latest package and install it like this:

#rpm -ivh autorpm-3.3-1.noarch.rpm

Although a tarball is also available, installation is a little more tricky than the typical make; make install, and so it is recommended that
you stick to installing from the RPM package.

By default, AutoRPM is configured to monitor for updated packages for Red Hat's Linux distribution. However, you can configure it to
monitor any file repository of your choosing, such as one for SuSe or Mandrake.

netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
netsechacks-CHP-1-SECT-21.html
http://www.autorpm.org

Chapter 2. Windows Host Security

acks #21-3(

lSection 21. Check Servers for Applied Patchesl

bection 22. Get a List of Open Files and Their Owning Processesl

lSection 23. List Running Services and Open Portsl

lSection 24. Enable Auditincl

bection 25. Secure Your Event Loqsl

lSection 26. Change Your Maximum Log File Sizesl

lSection 27. Disable Default Sharesj

bection 28. Encrypt Your Temp Foldel

lSection 29. Clear the Paging File at Shutdowrl

lSection 30. Restrict Applications Available to UserJ

netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html
netsechacks-CHP-2.html

Hacks #21-30

This chapter shows you some ways to keep your Windows system up-to-date and secure, thereby making your network a safer place to
work (and have fun). Although many may scoff at the mention of Windows and security in the same sentence, you actually can make a
Windows system fairly secure without too much effort.

One of the main reasons that Windows gets a bad rap is the poorly administered state in which Windows machines seem to be kept. The
recent deluge of worm and virus attacks that have brought down many a network shows this to hold true. A lot of this can be traced back
to the "ease" of administration that Windows seems to provide by effectively keeping the Windows administrator out of the loop about the
inner workings of her environment—effectively wresting control from the system administrator's hands.

This chapter seeks to remedy that to some degree by showing you ways to see exactly what your server is really doing. While this may
seem old hat to a Unix sysadmin, getting details on open ports and running services is often a new concept to the average Windows
administrator. In addition, this chapter shows you how to disable some Windows "features," such as sharing out all your files
automatically and truncating log files. You'll also learn how to enable some of the auditing and logging features of Windows, to give you
early warning of possible security incidents (rather than waiting for the angry phone call from someone at the wrong end of a
denial-of-service attack originating from your network).

netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html
netsechacks-CHP-2-SECT-1.html

Hack 21 Check Servers for Applied Patches

iz

Make sure your Windows servers have the latest patches installed.

Keeping a network of systems patched and up-to-date is hard enough in Unix, but it can be even more difficult on Windows systems. A
lack of robust built-in scripting and remote access capabilities makes Windows unsuitable for automation. Nevertheless, before you even
attempt to update your systems, you need to know which updates have been applied to each system; otherwise, you might waste time
and effort updating systems that don't need it. Clearly, this problem gets more difficult as the number of systems that need to be
managed increases. We can avoid much of the extra work of manually updating systems by using the HFNetChk tool, which was
origi i i i i . i rity Analyzer
(http://download.microsoft.com/download/8/e/e/8ee73487-4d36-4f7f-92f2-2bdc5c5385b3/mbsasetup.ms|) and is available through its
command-line interface, mbsacli.exe.

Not only can HFNetChk remotely check the status of Windows Server 2003 and Windows XP/2000/NT, but it can also check whether
critical updates for IS, SQL Server, Exchange Server, Media Player, and Internet Explorer have been applied. Although it can only
check the update status of a system (and won't actually bring the system up-to-date), it is still an invaluable timesaving tool.

HFNetChk works by downloading a signed and compressed XML file from Microsoft that contains information on all currently available
updates. This information includes checksums and versions of files covered by each update, as well as the registry keys modified by
each update. Additional dependency information is also included. When scanning a system, HFNetChk will first scan the registry for the
keys that are associated with the most current set of updates available for the current system configuration. If any of these registry keys
are missing or do not match what is contained in the XML file, it will flag the update as not having been installed. If the registry key for an
update is present and matches the information in the XML file, HFNetChk will then attempt to verify whether the files specified in the
update information are present on the system and whether their version and checksum matches. If any of the checks fail, the update will
be flagged. All flagged updates are then displayed in a report, along with a reference to the Microsoft Knowledge Base article with more
information on the specific update.

To get HFNetChk installed on your system, you first need to download and install the Microsoft Baseline Security Analyzer. To run
HFNetChk, open a command prompt and change to the directory that was created during the install¢:\Program Files\Microsoft Baseline
Security Analyzer is the default).

To check the update status of the local system, run this command:

C:\> Program Files\Microsoft Baseline Security Analyzer> mbsacli /hf
Microsoft Baseline Security Analyzer

Version 1.1.1

Powered by HFNetChk Technology - Version 3.82.0.1

Copyright (C) Shavlik Technologies, 2001-2003

Developed for Microsoft by Shavlik Technologies, LLC

info@shavlik.com (www.shavlik.com)

netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
netsechacks-CHP-2-SECT-2.html
http://download.microsoft.com/download/8/e/e/8ee73487-4d36-4f7f-92f2-2bdc5c5385b3/mbsasetup.msi

Please use the -v switch to view details for

Patch NOT Found, Warning and Note messages

Attempting to get cab from http://go.microsoft.com/fwlink/?Linkld=16932

XML successfully loaded.

Scanning PLUNDER

Done scanning PLUNDER

PLUNDER(192.168.0.65)

* WINDOWS XP SP1

Note MS02-008 317244

Warning MS02-055 323255

Note MS03-008 814078

Note MS03-030 819696

Patch NOT Found MS03-041 823182

Patch NOT Found MS03-044 825119

Patch NOT Found MS03-045 824141

Patch NOT Found MS03-049 828035

Note MS03-051 813360

*INTERNET EXPLORER 6 SP1

Patch NOT Found MS03-048 824145

* WINDOWS MEDIA PLAYER FOR WINDOWS XP SP1

Information

All necessary hotfixes have been applied.

The first column tells why the check for a particula he

ar update fajled
column lists a Microsoft Knowledge Base http://support.microsoft.co

issue fixed by that particular update.

econd column shows which update failed the check, and the third
) article number that you can refer to for more information on the

If you want more information on why a particular check failed, you can run the command with the -v (verbose) switch. Here are the
results of the previous command, but this time with the verbose switch:

Scanning PLUNDER

Done scanning PLUNDER

PLUNDER(192.168.0.65)

* WINDOWS XP SP1

Note MS02-008 317244

Please refer to Q306460 for a detailed explanation.

Warning MS02-055 323255
File C:\WINDOWS\system32\hhctrl.ocx has a file

version [5.2.3735.0] greater than what is expected [5.2.3669.0].

Note MS03-008 814078

Please refer to Q306460 for a detailed explanation.

Note MS03-030 819696

Please refer to Q306460 for a detailed explanation.

http://support.microsoft.com

Patch NOT Found MS03-041 823182

File C:\WINDOWS\system32\cryptui.dil has a file

version [5.131.2600.1106] that is less than what is expected

[5.131.2600.1243].

Patch NOT Found MS03-044 825119

File C:\WINDOWS\system32\itircl.dll has a file

version [5.2.3644.0] that is less than what is expected

[5.2.3790.80].

Patch NOT Found MS03-045 824141

File C:\WINDOWS\system32\user32.dll has a file

version [5.1.2600.1134] that is less than what is expected

[5.1.2600.1255].

Patch NOT Found MS03-049 828035

File C:\WINDOWS\system32\msgsvc.dll has a file

version [5.1.2600.0] that is less than what is expected

[5.1.2600.1309].

Note MS03-051 813360

Please refer to Q306460 for a detailed explanation.

*INTERNET EXPLORER 6 SP1

Patch NOT Found MS03-048 824145

The registry key *SOFTWARE\Microsoft\Internet Explorer\ActiveX

Compatibility\{69DEAF94-AF66-11D3-BEC0-00105AA9B6AE}** does not

exist. It is required for this patch to be considered installed.

* WINDOWS MEDIA PLAYER FOR WINDOWS XP SP1

Information
All necessary hotfixes have been applied.

After applying the listed updates, you should see something like this:

Scanning PLUNDER

Done scanning PLUNDER

PLUNDER(192.168.0.65)

* WINDOWS XP SP1

Information

All necessary hotfixes have been applied.

* INTERNET EXPLORER 6 SP1

Information

All necessary hotfixes have been applied.

* WINDOWS MEDIA PLAYER FOR WINDOWS XP SP1

Information

All necessary hotfixes have been applied.
When scanning the local system, Administrator privileges are needed. If you wish to scan a remote machine, you will need Administrator
privileges on it. There are several ways to scan remote machines. To scan a single remote system, aNetBIOS name can be specified

with the -h switch. Likewise, an IP address can be specified with thei switch.

For example, to scan the machine PLUNDER from another machine, either of these two commands can be used:

mbsacli /hf -h PLUNDER

mbsacli /hf -i 192.168.0.65

You can also scan a handful of additional systems by listing them on the command line with commas separating each NetBIOS name or
IP address.

Note that, in addition to having Administrator privileges on the remote machine, you must also ensure that you have not disabled the
default shares [Hack #27] . If the default administrative shares have been disabled, therHFNetChk will not be able to check for the

proper files on the remote system and, consequently, will not be able to determine whether an update was applied.

If you wish to scan a group of systems, there are several options for this as well. Using the -fh option, you can specify a file containing up
to 256 NetBIOS hostnames (one on each line) that will be scanned. You can do the same thing with IP addresses, using the -fip option.
Ranges of IP addresses may also be specified by using the -r option.

For example, you could run a command like this to scan from 192.168.1.23 to 192.168.1.172:

mbsacli /hf -r 192.168.1.123 - 192.168.1.172
All of these options are very flexible, and you can use them in any combination to specify which remote systems will be scanned.

In addition to specifying remote systems by NetBIOS name and IP address, you can also scan systems by domain name by using the-d
option, or you can scan your entire local network segment by using the-n command-line option.

When scanning systems from a personal workstation, the -u and -p options can prove useful. These allow you to specify a username and
password to use when accessing the remote systems. These switches are particularly handy if you don't normally log in using the
Administrator account. The account that is specified with the -u option will of course need to have Administrator privileges on the remote
machines being scanned.

Also, if you're scanning a large number of systems, you might want to use the -t option. This allows you to specify the number of threads
used by the scanner, and increasing this value generally will speed up scanning. Valid values are from 1 to 128; the default value is 64.

If you are scanning more than one machine, a huge amount of data will simply be dumped to the screen. Use the -f option to specify a
file to store the results of the scan in, and view it at your leisure using a text editor.

HFNetChk is a very flexible tool and can be used to check the update status of a large number of machines in a very short amount of
time. It is especially useful when a new worm has come onto the scene and you need to know if all of your systems are up-to-date on
their patches.

See Also

® rrequently Asked
Article 305385, at http://support.microsoft.com/default.aspx?scid=kb;EN-US

Checker Hfnetchk.exe) Tool: Knowledge Base

http://support.microsoft.com/default.aspx?scid=kb;EN-US;

Hack 22 Get a List of Open Files and Their Owning Processes

iz

Look for suspicious activity by monitoring file accesses.

Suppose you're looking at the list of processes in the task manager one day after noticing some odd behavior on your workstation,
and you notice a process you haven't seen before. Well, what do you do now? If you were running something other than Windows, you
might try to determine what the process is doing by looking at the files it has open. Unfortunately, Windows doesn't provide a tool to do
this.

ﬁ&mmmummmmmmmﬂuﬁh is available for free at
ttp://www.sysinternals.com/ntw2k/freeware/handle.shtm|. Handle is a lot like IsofHack #8], but it can list many other types of operating

resources, including threads, events, and semaphores. It can also display open registry keys and IOCompletion structures.

Running handle without any command-line arguments will list all open file handles on the system. You can also specify a filename, which
will list the processes that are currently accessing it, by typing this:

C:\> handle
filename

Or you can list only files that are opened by a particular process—in this case Internet Explorer:

C:\> handle -p iexplore
Handle v2.10
Copyright (C) 1997-2003 Mark Russinovich

Sysinternals - www.sysinternals.com

IEXPLORE.EXE pid: 688 PLUNDER\andrew

98: Section \BaseNamedObjects\MTXCOMM_MEMORY_MAPPED_FILE

9c: Section \BaseNamedObjects\MtxWndList

12c: Section \BaseNamedObjects__R_0000000000d4_SMem_ _

18c: File C:\Documents and Settings\andrew\Local Settings\Temporary Internet

Files\Content.IE5\index.dat

198: Section \BaseNamedObjects\C:_Documents and Settings_andrew_Local

Settings_Temporary Internet Files_Content.IE5_index.dat_3194880

1a0: File C:\Documents and Settings\andrew\Cookies\index.dat

netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
netsechacks-CHP-2-SECT-3.html
http://www.sysinternals.com/ntw2k/freeware/handle.shtml

1a8: File C:\Documents and Settings\andrew\Local Settings\History\History.IE5\
index.dat

lac: Section \BaseNamedObjects\C:_Documents and Settings_andrew_Local
Settings_History_History.IE5_index.dat_245760

1b8: Section \BaseNamedObjects\C:_Documents and
Settings_andrew_Cookies_index.dat_81920

228: Section \BaseNamedObjects\UrlZonesSM_andrew

2a4: Section \BaseNamedObjects\SENS Information Cache

540: File C:\Documents and Settings\andrew\Application
Data\Microsoft\SystemCertificates\My

574: File C:\Documents and Settings\All Users\Desktop

5b4: Section \BaseNamedObjects\mmGlobalPnplnfo

5cc: File C:\WINNT\system32\mshtml.tlb

614: Section \BaseNamedObjects\WDMAUD _Callbacks

640: File C:\WINNT\system32\Macromed\Flash\Flash.ocx

648: File C:\WINNT\system32\STDOLE2.TLB

6a4: File \Dfs
6b4: File C:\Documents and Settings\andrew\Desktop
6c8: File C:\Documents and Settings\andrew\Local Settings\

Temporary Internet Files\Content.IE5\Q5USFSTO\softwareDownloadindex[1].htm
70c: Section \BaseNamedObjects\MSIMGSIZECacheMap
758: File C:\WINNT\system32\iepeers.dll
75c: File C:\Documents and Settings\andrew\Desktop
770: Section \BaseNamedObjects\RotHintTable
If you want to find the Internet Explorer process that owns a resource with a partial name of handle, you could type:
C:\> handle -p iexplore handle
Handle v2.10
Copyright (C) 1997-2003 Mark Russinovich

Sysinternals - www.sysinternals.com

IEXPLORE.EXE pid: 1396 C:\Documents and Settings\andrew\Local Settings\Temporary

Internet Files\Content.IES\H1EZGFSH\handle[1].htm

Additionally, if you wanted to list all types of resources, you could use the -a option. Handle is quite a powerful tool, and any of its

command-line options can be mixed together to quickly narrow your search and find just what you want.

Hack 23 List Running Services and Open Ports

flizs

Check for remotely accessible services the Windows way.
Unix makesrumwm_mw;gﬁ but how can you do that on Windows? Well, withFPort from
Foundstone (pttp://www.foundstone.com/resources/index_resources.htny) it's as quick and easy as running good oldnetstat.

FPort has very few command-line options, and those deal mostly with specifying how you'd like the output sorted. For instance, if you
want the output sorted by application name, you can use /a; if you want it sorted by process ID, you can use /i. While it may not be as full

of features as netstat, it definitely gets the job done.

To get a listing of all ports that are open on your system, simply type fport. If you want the list to be sorted by port number, use thep
switch:

C:\>fport /p
FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.

http://www.foundstone.com

Pid Process Port Proto Path

432 svchost -> 135 TCP C:\WINNT\system32\svchost.exe

8 System -> 139 TCP
8 System -> 445 TCP
672 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1028 TCP
8 System -> 1031 TCP

1116 navapw32 -> 1035 TCP C:\PROGRA~1\NORTON~1\navapw32.exe

788 svchost -> 1551 TCP C:\WINNT\system32\svchost.exe

788 svchost -> 1553 TCP C:\WINNT\system32\svchost.exe

788 svchost -> 1558 TCP C:\WINNT\system32\svchost.exe

1328 svchost -> 1565 TCP C:\WINNT\System32\svchost.exe

8 System -> 1860 TCP

netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
netsechacks-CHP-2-SECT-4.html
http://www.foundstone.com/resources/index_resources.htm

1580 putty -> 3134 TCP C:\WINNT\putty.exe

772 WinVNC -> 5800 TCP C:\Program Files\TightVNC\WinVNC.exe

772 WinVNC -> 5900 TCP C:\Program Files\TightVNC\WinVNC.exe

432 svchost -> 135 UDP C:\WINNT\system32\svchost.exe

8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
256 Isass -> 500 UDP C:\WINNT\system32\lsass.exe

244 services -> 1027 UDP C:\WINNT\system32\services.exe

688 IEXPLORE -> 2204 UDP C:\Program Files\Internet ExplorenNlEXPLORE.EXE
1396 IEXPLORE -> 3104 UDP C:\Program Files\Iinternet ExploreNlEXPLORE.EXE
256 Isass -> 4500 UDP C:\WINNT\system32\Isass.exe

Notice that there are some processes listed—such as navapw32, putty, and IEXPLORE—that don't appear to be services. These show
up in the output because FPort lists all open ports, not just opened ports that are listening.

While FPort is not as powerful as some of the commands available under other operating systems, it is still a valuable, quick, and
easy-to-use tool that is a great addition to Windows.
||||| |II!I|III|||II|
LA LAREAN

Hack 24 Enable Auditing

fliza

Log suspicious activity to help spot intrusions.

Windows 2000 includes some very powerful auditing features, but unfortunately they are all disabled by default. Windows 2003 has
corrected this by enabling some features by default, but it is still wise to check that you are tracking precisely what you want to audit.
Using these capabilities, you can monitor failed logins, account management events, file access, privilege use, and more. You can also
log security policy changes as well as system events.

To enable auditing in any one of these areas, locate and double-click the Administrative Tools icon in the Control Panel. Now find and
double-click the Local Security Policy icon. Expand the Local Policies tree node, and you should see something similar to fFigure 2-1.

Figure 2-1. Audit Policy settings in the Local Security Settings applet

A o [=
fean Wew o3 & m B e
Tooe | Piokcy [Local Setting [ERectiveSeting |
_H Serunty Salings __].ﬁ.lk il ke stz Hig aadiarg Mo anslbng
. Seeruard Policias 1] ek Bocound managaTer o auding Mo adbng
g ol o
= | s Prbss : [, = S T T s audirg T
| -] R [
_ 3 usii Folicy] At koo e el W sudieg Mo asdling
3 L T AT e P phect scceaa T, | ek
P xh Hao org [g
+ & Secuily Dpiom (i ekt puicy chiange R i o g
4 | Pubhe Ky Prbeumt 15 dexlk prraliegs uos Ho musiteg Mo audibng
B IF Sacudy Pobtes or | 5] Audk process acking Wi audiing Mo asdiing
12 fexlt, ppptem avaniy Hg msiteg Mo wsditng
L] I— |

Now you can go through each of the audit policies and check whether to log successes or failures for each type. You can do this by
double-clicking the policy you wish to modify, located in the right pane of the window. After double-clicking, you should see a dialog
similar to figure 2-4.

Figure 2-2. The "Audit logon events" dialog

netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html
netsechacks-CHP-2-SECT-5.html

2 1 Audit logon events

E ffective policy setting

|5uccaaﬁ, Faillure

Local policy setting

Audit these attempts:

WV Failure

If domain-level policy settings are defined, they overnde local policy
settings.

ok I Cancel

Leaving auditing off is akin to not logging anything at all, so you should enable auditing for all policies. Once you've enabled auditing for a
particular policy, you should begin to see entries in the event logs for when a particular audit event occurs. For example, once you have
enabled logon event auditing, you should begin to see entries for logon successes and failures in the system's security event log.

Hack 25 Secure Your Event Logs

flizs

Keep your system's logs from being tampered with

Windows has some very powerful logging features. Unfortunately, by default the event logs are not protected against unauthorized
access or modification. You may not realize that even though you have to view the logs through the Event Viewer, the event logs are
simply regular files just like any other. To secure them, all we have to do is locate them and apply the proper ACLs.

Unless their location has been changed through the registry, you should be able to find the logs in the %SystemRoot%\system32\config
directory.

The three files that correspond to the Application Log, Security Log, and System Log are AppEvent.Evt, SecEvent.Evt, and SysEvent.Ewvt,
respectively. Now, apply ACLs to limit access to only Administrator accounts. You can do this by bringing up the Properties dialog for the
files and clicking the Security tab. After you've done this, remove any users or groups other than Administrators and SYSTEM from the
top pane.

netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html
netsechacks-CHP-2-SECT-6.html

Hack 26 Change Your Maximum Log File Sizes

iz

Change your log properties so that they see the whole picture.

From a security point of view, logs are one of the most important assets contained on a server. After all, without logs how will you know
if or when someone has gained access to your machine? Therefore, it is imperative that your logs not miss a beat. If you're trying to track
down the source of an incident, having missing log entries is not much better than having no logs at all.

One common problem is that the maximum log size is set too low—the default is a measly 512KB. To change this. open the
Administrative Tools control panel, and then open the Event Viewer. You should now see something similar to fFigure 2-3.

L]

Achion Whew =

TIEEl

Figure 2-3. The Windows Event Viewer

_Lu E vt Wismer [Locsl]
| /| Applcation Log
|} Secuny Log

1] 5 pstem Lag|

=10] =]
B® B F
Sytam Log 1B everis]
Tipe I [t I T i | Spigce I Categ
'\._‘.:I IFfcnmaticn 112262003 FITIRPS Apphcation Popup Hore
&) Infomation 11/ 252003 43312 P Apphcsbon Popup Hore
E i 1142442003 S48 26 88 Seraces Covhinl Manager Hore
._.:' Irfiomaticn 11/24,/2003 $14618 88 evendog Hore
L) |rfarmatian 17./24/2003 LT4188M sverdog Hors
Birfomation 11/24/2003 £1256AM evening Hore
J Irfio=asticn 11./24,2003 L0IEAY MEServecaFack Hore
Emoi TIMEA2003 24719P« DOOM Hore
E i 11 E2003 7P DOOM Mo
Enei 111642003 23227 eM DCOM More
E i 11 ESA03 2A225aM DICOMW Ko
,,.:'Irfm-.lli:"l 19112003 G430 PS Aulomatic Ulpdales Install:
-H_..-"' |rhor=ahan 117174003 4340 P Sulomahe Llpdalss Inshall
Airformation 1741/2003 4333PM MeServiceFack Hore
q,f:'lrrm-du"l 1141142003 F4TTT P MHESereceFack Hore=
Airioemation 1141172003 S0209PW Automatic Updates Instalk
Emoi 114272003 B0 2IPH Sernce Conbiol Manager More
Eiei 104272003 FZ210PS Sepncs Conbiol Manager Mo

| +

After you have done this, select one of the log files from the left pﬂ Event Viewer window and right-click it. Now select the
Figure 2-4.

Properties menu item. You should now see something similar to |

Figure 2-4. Security Log Properties

netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html
netsechacks-CHP-2-SECT-7.html

Geneal] Fiter |

Diesplay name: I |

Log name: |E:"~WIMHT".Eyahanﬁz"-.-:-:mlig'-.Ean:E vl Ev
Gz 4.0 KB (65,536 bybes]
Craated: Thisraday, June 06, 2002 3227 P
I odifiedt Monday, Movember 24, 2003 4:1 257 AM
Arcested: Friday, Decamber 12, 2003 845 37 P

Log size

a

Masimwm log size: (512 < KB

wihen masmwm log size i ieached

" Ovenaite events as nesded

& [Oyenanbe svents cider than |-"r 3: days
" Do paot ovesweke svenis

[clear log manualy) Restone Defaulls |
[Using a low-spesd connection Llear Log |
0K Cancel |

Now locate the text input box with the label "Maximum log size". You can type in the new maximum size directly, or you can use the
arrows next to the text box to change the value. Anything above 1MB is good to use here. It all depends on how often you want to review
and archive your logs. However, keep in mind that having very large log files won't inherently slow down the machine, but can slow down
the Event Viewer when you're trying to view the logs. While you're here, you may also want to change the behavior for when the log file
reaches its maximum size. By default, it will start overwriting log entries that are older than seven days with newer log entries. It is

recommended that you change this value to something higher—say 31 days. Alternatively, you could elect not to have logs overwritten
automatically at all, in which case you'll need to clear the log manually.

Hack 27 Disable Default Shares

iz

Stop sharing all your files with the world.

By default, Windows enables sharing for each logical disk on your system C$ for the C drive) in addition to another share called
ADMINS for the %SystemRoot% directory (e.g., C:\WINNT). Although this is accessible only to Administrators, it is wise to disable these
shares (if at all possible) since they still present a potential security hole.

To disable these shares, open the Registry by running regedit.exe and then find the
HKey_Local_Machine\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters key.

If you're using Windows 2000 workstation, add an AutoShareWks DWORD key with the value of0 (as shown in by clicking

Edit ; New ; DWORD Value. For Windows 2000 Server, add anAutoShareServer key with a value of0. When you're done
editing the Registry, restart Windows for the change to take effect.

Figure 2-5. Adding an AutoShareWks registry key

& =100 =
Bepotr Edi Yea Fecemr Hee
1 i dreieii =l I Hams Tigen (XYY
—J vy el] AEG_5T [y rioi 1]
H) Shem P — AEG_DwORD NN 15
+] ek ol sl ™ REG_[MwIRD (ke 0
1 b - bl F—
| -) Eshadlipanl WIG_Fann (ONEENNT 1]
! —: kT iy 28 R R T REG_[MwORE WDEEEEET (1]
v | Mabm Uleabdsiecnbagnabae AEG_[NWIRD ViAW
T e—— 1)t FIEG_EIHAF i |
v | MGAEGESE P isk R AEGIWIRD
+ | rwadd T L REG_[iwiJRD
F] rema o U E LR S REG_MLTI_EZ P et
+ | Maders)il pmaat e MG MLTEY gy gt Nacs
¥ | Fosdlar: djpasscEbaRyeiae AEG_INWIRD m T —
i] ek T REG_DWiIRD)
; j oy : I Denans
H | Wi
: :Il ::": | [| Cared
" £
v | HEDTC
+ | M
+] HilSeram
& | MEESSRY
¥ _| WEPCLOD)
+ | HMEFOM
% 1 KRN -
=] | ;I_I
Fp L HeE' s LOZ& MACHHE S TEWC imemilartaliat S e s G srn mvarc anarasare

After Windows has finished loading, you can verify that the default shares no longer exist by running net share:

C:\>net share

Share name Resource Remark

netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html
netsechacks-CHP-2-SECT-8.html

IPC$ Remote IPC The command completed successfully.

Before doing this, you should be sure that disabling these shares_wi atively affect your environment. Lack of these shares can
cause some system management software—such as HFNetChk [Hack #21 ror System Management Server—to not work. This is

because software like this depends on remote access to the default administrative shares in order to access the contents of the systems

disks.

Hack 28 Encrypt Your Temp Folder

flizs

Keep prying eyes out of your temporary files.

Many Windows applications will create intermediary files while they do their work. They typically store these files in a temporary folder
within the current user's settings directory. Most often these files are created world-readable and aren't always cleaned up when the
program exits. How would you like it if your word processor left a copy of the last document you were working on for anyone to come
across and read? Not a pretty thought, is it?

One way to guard against this situation is to encrypt your temporary files folder. To do this, open an Explorer window and go to the
C:\Documents and Settings\<username>\Local Settings folder. In this folder you should see another folder calledTemp. This is the folder
that holds the temporary files. Right-click the folder and bring up its Properties dialog. Make sure the General tab is selected, and click
the button labeled Advanced. This will bring up an Advanced Attributes dialog, as seen in. Here you can choose to encrypt the
folder.

Figure 2-6. The Temp folder's Advanced Attributes dialog

2=

j]| Chioose the sedtings you want for this Folider

When you apply these changes you will be asked F you wenk the
changes to affect all subfolders and files as well,

Archive and Index attributes

[Folder is ready For archiving
[¥ For Fast searching, allow Indexing Service bo jdex: this folder

Compress or Encrypt attributes

[T Compress contents to save disk space

ik Cancel

Check the "Encrypt contents to secure data" box and click the OK button. When you have done that, click the Apply button in the
Properties dialog. Another dialog (as seen in) will open asking you whether you would like the encryption to apply recursively.

Figure 2-7. Confirm the choice of encryption and make it recursive

netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html
netsechacks-CHP-2-SECT-9.html

You have chosen ko make the Following attribube chamga(s):
encrypk

Do ol wiank bo apphe this chamnge bo this Folder anby, or do wou wank bo

apphy i b all subfolders and Fles a5 wel?

" Apphe changes to this Folder oribe
Hpply changes ko this Folder, subfolders and files!

S e T e e S T e e e e e

QK

Cance

To apply the encryption recursively, choose the "Apply changes to this folder, subfolders and files" option. This will automatically create a
public-key pair if you have never encrypted any files before. Otherwise, Windows will use the public key that it generated for you
previously. When decrypting, Windows ensures that the private keys are stored in nonpaged kernel memory, so that the decryption key
will never be left in the paging file. Unfortunately, the encryption algorithm used, DESX, is barely an improvement on DES and is

nowhere near as strong as 3DES. However, it serves the purpose of transparepily encrypting temparary files very well. If you want to
encrypt other files, it is suggested you use a third-party utility such as GnuPG (pttp://www.gnupg.ord), which has Windows binaries

available on its web site.

http://www.gnupg.org

Hack 29 Clear the Paging File at Shutdown

iz

Prevent information leaks by automatically clearing the swap file before shutting down.

Virtual

memory management (VMM) is truly a wonderful thing. It protects programs from one another and lets them think that they have

more memory available than is physically in the system. To accomplish this, the VMM uses what is called a paging file .

As you run more and more programs over the course of time, you'll begin to run out of physical memory. Since things can start to go
awry when this happens, the memory manager will look for the least frequently used pieces of memory owned by programs that aren't
actively doing anything at the moment and write the chunks of memory out to the disk (i.e., the virtual memory). This is known as

swapping .

However, there is one possibly bad side effect of this feature: if a program containing confidential information in its memory space is
running, the memory containing such information may be written out to disk. This is fine when the operating system is running and there
are safeguards to prevent the paging file from being read, but what about when the system is off or booted into a different operating

system?

This is where this hack comes in handy. What we're going to do is tell the operating system to overwrite the paging file with zeros when it
shuts down. Keep in mind that this will not work if the cord is pulled from the system or the system is shut down improperly, since this
overwrite will only be done during a proper shutdown.

To enable this feature of Windows, we must edit the system registry. To do this, open the Registry and find the

HKEY_LOCAL_MACHIN
something that looks like

\CurrentControISet\ControI\Session Manager\Memory Management key. You should now see
_iure 2-§4.

Figure 2-8. The Memory Management registry key

& 200
Psgeiy Ll Wwea Preanbsr MHeip
1] SosFo 2] | o T Diada
+] SeasPgmhene | st FEG_5T s vicd s
R e i o FED_[OAD D NN
—| Feter Appislie D katieP g wsnithe FEG_[WORD DX 1]
- z"'“"i‘::::] irdoecesriaPtecion PO _[PAIRD (NN 5]
. j ——]kl cxch i FEEG _[PWORD DRI 5]
] -;..c-_._...-.-.,..,,..r.]\ gt prinmlachs P[P [T
B] BppCamputh 1 JH onFagedFiallusta FEG_[M40RD Do NN Y
. MR FEG_[WORD DRI 151
] DD Darvican)P agmFooiluca 3 T Do MONONI0 3
1 Ereroreand B 2 2 FEL_[PATAD Dl MW 21
1 Bxacubss)P i REG_HULTI_5Z C\pageite o 576 1152 Dpaguile o 576 1152
1 Vilel arorend ! post oo i | Phare slabch et cbaviwny. FEG_[PW R0 Do MNMNN00 3]
J Fresiiny s i) SescondswslimtaCachs PILG[PaIRD [T
A Warvoy Husagavend | [1]5merFage: FEE_DWORD D000 5]
—J Pioreeme]t Pl _Emasiaing [aEXENKE 1)
W
| lyEeis
| Sehgm
B} _| 'Slln.age-
+] SpiienFlassce
1 | Tewmnal Servm
] TEeZarsinlarmates
I Lisigle
bl
(RIS |
Flp Compuba HEEY_LOCAL S CHIRE WSS TEMY Dorsant Cantsal S sl C o= S H Sl Har

netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html
netsechacks-CHP-2-SECT-10.html

Locate the ClearPageFileAtShutdown entry in the right pane of the window and change its value to 1. Now restart Windows for the
change to take effect, and your swap file will be cleared at shutdown. The only side effect of enabling this is that Windows may take
longer to shut down. However, this is very much dependent on your hardware (e.g., disk controller chipset, disk drive speed, processor
speed, etc.), since that's what will govern how long it will take to overwrite your paging file with zeros.

Hack 30 Restrict Applications Available to Users

3o

Prevent your users from running potentially dangerous applications.

Keeping users from running certain applications isn't so important when you're an administrator using your own workstation. But when
you're dealing with regular users in an enterprise network environment, you don't want your users running any nefarious programs. Such
programs include those that can break their operating system installation, introduce security holes to their system, or even attack other
machines on your network.

There are a couple ways to restrict the applications available to your users. First you can modify the ACLs for a particular program so
that users cannot execute it. For example, suppose you have a sniffer installed on a user's machine for network diagnostic purposes.
Access to this program is fine for an administrator, but probably is not appropriate for a normal user. You can prevent normal users from
running the program by removing execution permissions for the Users group. To do this, locate the program's executable file and
right-click it. Now click the Properties menu item, and you should see a dialog box like the one shown infigure 2-9.

Figure 2-9. Properties dialog for ethereal.exe, the Ethernet sniffer

2] x|

General]"."araim| Securiy | Summary |

= |ethereal. exe

Type of filke; Application

Descopon: Ethenzal

Location C:\Program Fles\Elhesal
Sipe V07 BB 17,240,280 bytes)
Sipe ondisk: 107 MB [11.243.520 bybes)

Craated: Thurzday, May 01, 2003, E0411 PM
Il oditiesct Thurzday, Map (1, 2003, 6:04:17 P

Accessed Today, Decamiar 15, 2003, 11:1357 FM

Awibtes: [~ Beadordi [Hidden Advanced.,.

OE, Concel |

netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html
netsechacks-CHP-2-SECT-11.html

%ﬂ the Security tab and select the Users group from the list at the top of the dialog. You should now see something similar to
Figure 2-19.

Figure 2-10. The Security tab of the ethereal.exe Properties dialog

] x]

Gana‘all Version Securily] Eunma‘y]

Hame ..
m Adminiztrators [FLUMDE R YAdmmistraton|
Bemove
'm Powser Upes [PLUMDERWPosmer seiz)
€T SvSTEM
5
Peirissiong Bl v Dary
Full Contiol O 0O
Moddhy O O
Fiead & Execute E D
Fiead =1 O
Wit D D

Advanced |

v Alloe inpertable pemizsions from parent to propagate to iz
ohjeci

(E. Cancel Aoply

Now click the Deny checkbox that applies to the Read & Execute permission. After clicking the Apply button, anyone that is a member of
the Users group will not be able to run the program. Alternatively, you could also modify the ACL for the directory that the program
resides in and disallow read access. This approach could be useful if you want to keep all of your administrative tools under a single
folder and restrict access to all of them at once.

If you are running a terminal-server version of Windows, there is another alternative to using ACLSs. If you have the Microsoft Windows
2000 resource kit installed, you can use the AppSec program to disallow program access with just a few clicks. To useAppSec, locate its
directory and start the program. After the program loads, you will be presented with a list of programs. If the program that you want to
disallow from your terminal-service users is op_the list, simply click the Disabled radio button. For instance, if you wanted to disable
cmd.exe, you would see something similar tofigure 2-11|.

Figure 2-11. Restricting cmd.exe

Hame | Fath I:
Tloadwcexe CNWINNT \apstemn32
a

Tsubstexme CAWINNT \system32

TJicoppexs CVWINNT wystemas

T netexe CAWIRNT wapsbemnd2

Tregiriexne CANWINNT wystem32

Tevstrapene CANWINNT wystemaz

b, explorer e CNWINHT

) athiib gxe CAWAMMT cpstem 32

TJACRegl exe CAWINNT \Application Compalibilty Seripts
| JALsr.aus CAWRM T A ppiication Compabbilty Sorpts

Vit bl i PR AR T Y e srban 33 j
Sacurity
(™ Ensbled & Dushied Ldd Delete Exit

If the application you want to restrict is not on the list, you can click the Add button and browse for the application. After you have made

your choices, click Exit. Before these changes can fully take effect, all users will have to log off of the terminal server.

Chapter 3. Network Security

acks #31-5

lSection 31. Detect ARP Spoofind

bection 32. Create a Static ARP Tablel

lSection 33. Firewall with Netfilterl

lSection 34. Firewall with OpenBSD's PacketFiIterI

bection 35. Create an Authenticated Gatewa\j

lSection 36. Firewall with Windowsl

lSection 37. Keep Your Network Self—Contained

bection 38. Test Your Firewall

lSection 39. MAC Filtering with Netfiltell

lSection 40. Block OS Finqerprintinc]

bection 41. Fool Remote Operating System Detection Softward

lSection 42. Keep an Inventory of Your NetworlJ

lSection 43. Scan Your Network for VuInerabiIitieJ

bection 44. Keep Server Clocks Svnchronizec‘

lSection 45. Create Your Own Certificate Authorit\j

lSection 46. Distribute Your CA to CIientJ

bection 47. Encrypt IMAP and POP with SSLI

lSection 48. Set Up TLS-Enabled SMTFI

lSection 49. Detect Ethernet Sniffers Remotel\j

bection 50. Install Apache with SSL and suEXEd

lSection 51. Secure BINd

bection 52. Secure MySQI:I

bection 53. Share Files Securely in Uni>J

netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html
netsechacks-CHP-3.html

Hacks #31-53

As we rely more and more on massively interconnected networks, the stability and security of these networks is more vital than ever.
The world of business has adopted information technology to help streamline their processes, increase productivity, and cut costs. As
such, a company's IT infrastructure is a core asset to many businesses. Because of this, many businesses would cease to function if
disaster (whether natural or digital) were to disrupt their network operations in a significant way. At the same time, the widespread
adoption of the Internet as a global communications medium has also brought computer networks out of the business and academic
world and into our personal lives, where it is used not only for entertainment, but also as a means to keep in touch with friends, family,
and loved ones.

Although this book as a whole is meant to address network security, the information it contains extends into many other areas. After all, a
network is simply a means to connect machines and services together so that they can communicate. This chapter, however, deals
primarily with the security and integrity of the network itself. In this chapter, you'll learn how to detect and prevent certain types of
spoofing attacks that can be used to compromise the core integrity of a TCP/IP Ethernet network at its lowest level. This chapter also
includes a great deal of information about firewalls, discussing everything from basic port-based firewalling to MAC-address filtering, and
even shows you how to create a gateway that will authenticate machines based on login credentials.

Although it is not always a direct security threat, network reconnaissance is often a precursor to an attack. In this chapter, you'll leamn
how to fool those who are trying to gather information about the hosts on your network, as well as ways to detect eavesdroppers who are
monitoring your network for juicy bits of information.

netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html
netsechacks-CHP-3-SECT-1.html

netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html
netsechacks-CHP-3-SECT-2.html

Hack 31 Detect ARP Spoofing

flisi

Find out if there's a "man in the middle" impersonating your server.

One of the biggest threats to a computer network is a rogue system pretending to be a trusted host. Once someone has successfully
impersonated another host, they can do a number of nefarious things. For example, they can intercept and log traffic destined for the real
host, or lay in wait for clients to connect and begin sending the rogue host confidential information. Spoofing a host has especially severe
consequences in IP networks, as this opens many other avenues of attack. One technique for spoofing a host on an IP network is
Address Resolution Protocol (ARP) spoofing. ARP spoofing is limited only to local segments and works by exploiting the way IP
addresses are translated to hardware Ethernet addresses.

When an IP datagram is sent from one host to another on the same physical segment, the IP address of the destination host must be
translated into a MAC address. This is the hardware address of the Ethernet card that is physically connected to the network. To
accomplish this, the Address Resolution Protocol is used.

When a host needs to know another host's Ethernet address, it sends out a broadcast frame that looks like this:

01:20:14.833350 arp who-has 192.168.0.66 tell 192.168.0.62

This is called an ARP request. Since this is sent to the broadcast address, all Ethernet devices on the local segment should see the
request. The machine that matches the requests responds by sending an ARP reply:

01:20:14.833421 arp reply 192.168.0.66 is-at 0:0:d1:1f:3f:f1

Since the ARP request already contained the MAC address of the sender in the Ethernet frame, the receiver can send this response
without making yet another ARP request. Unfortunately, ARP's biggest weakness is that it is a stateless protocol . This means that it
does not track responses to the requests that are sent out, and therefore will accept responses without having sent a request. If
someone wanted to receive traffic destined for another host, they could send forged ARP responses matching any chosen IP address to
their MAC address. The machines that receive these spoofed ARP responses can't distinguish them from legitimate ARP responses, and
will begin sending packets to the attacker's MAC address.

Another side effect of ARP being stateless is that a system's ARP tables usually only use the results of the last response. In order for
someone to continue to spoof an IP address, it is necessary to flood the host with ARP responses that overwrite legitimate ARP
responses from the original host. This particular kind of attack is commonly known as ARP cache poisoning .

F&ml_mlgimh_ag_ﬂtercap (http://ettercap.sourceforqe.nell), Dsniff (l1ttp://WWW.monkey.orq/~duqsonq/dsniff}), and Hunt
(http://lin.fsid.cvut.cz/~kraj)—employ techniques like this to both sniff on switched networks and perform man-in-the-middle attacks. This
technique can of course be used between any two hosts on a switched segment, including the local default gateway. To intercept traffic

bidirectionally between hosts A and B, the attacking host C will poison host A's ARP cache, making it think that host B's IP address
matches host C's MAC address. C will then poison B's cache, to make it think A's IP address corresponds to C's MAC address.

Luckily, there are methods to detect just this kind of hehavior, whether you're using a shared or switched Ethernet segment. One

program that can help accomplish this is Arpwatch (ftp://ftp.ee.lbl.gov/arpwatch.tar.g7). It works by monitoring an interface in

promiscuous mode and recording MAC/IP address pairings over a period of time. When it sees anomalous behavior, such as a change
to one of the MAC/IP pairs that it has learned, it will send an alert to the syslog. This can be very effective in a shared network using a
hub, since a single machine can monitor all ARP traffic. However, due to the unicast nature of ARP responses, this program will not work
as well on a switched network.

To achieve the same level of detection coverage in a switched environment, Arpwatch should be installed on as many machines as
possible. After all, you can't know with 100% certainty what hosts an attacker will decide to target. If you're lucky enough to own one,
many high-end switches allow you to designate a monitor port that can see the traffic of all other ports. If you have such a switch, you
can install a server on that port for network monitoring, and simply run Arpwatch on it.

After downloading Arpwatch, you can compile and install it in the usual manner by running:

/configure && make && make install

http://ettercap.sourceforge.net
http://www.monkey.org/~dugsong/dsniff/
http://lin.fsid.cvut.cz/~kra/
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz

When running Arpwatch on a machine with multiple interfaces, you'll probably want to specify the interface on the command line. This
can be done by using the -i command-line option:

arpwatch -i iface

As Arpwatch begins to learn the MAC/IP pairings on your network, you'll see log entries similar to this:
Nov 1 00:39:08 zul arpwatch: new station 192.168.0.65 0:50:ba:85:85:ca

When a MAC/IP address pair changes, you should see something like this:

Nov 1 01:03:23 zul arpwatch: changed ethernet address 192.168.0.65 0:€0:81:3:d8:8e
(0:50:ba:85:85:ca)

Nov 1 01:03:23 zul arpwatch: flip flop 192.168.0.65 0:50:ba:85:85:ca (0:€0:81:3:d8:8e)

Nov 1 01:03:25 zul arpwatch: flip flop 192.168.0.65 0:€0:81:3:d8:8e (0:50:ba:85:85:ca)

In this case, the initial entry is from the first fraudulent ARP response that was received, and the subsequent two are from a race
condition between the fraudulent and authentic responses.

0 make it easier to deal with multiple Arpwatch installs on a switched environment, you can send the log messages to a central syslogd
, aggregating all the output into one place. However, due to the fact that your machines can be manipulated by the same
attacks that Arpwatch is looking for, it would be wise to use static ARP table entries on your syslog server, as well as all the
hosts running Arpwatch.

Hack 32 Create a Static ARP Table

iz

Use static ARP table entries to combat spoofing and other nefarious activities.
As discussed in[Hack #31], a lot of bad things can happen if someone successfully poisons the ARP table of a machine on your
network. The previous hack discussed how to monitor for this behavior, but how do we prevent the effects of someone attempting to

poison an ARP table?

One way to prevent the ill effects of this behavior is to create static ARP table entries for all of the devices on your local network
segment. When this is done, the kernel will ignore all ARP responses for the specific IP address used in the entry and use the specified
MAC address instead.

To do this, you can use the arp command, which allows you to directly manipulate the kernel's ARP table entries. To add a single static
ARP table entry, run this:

arp -s ipaddr macaddr

If you know that the MAC address that corresponds to 192.168.0.65 is 00:50:BA:85:85:CA, you could add a static ARP entry for it like
this:

#arp -s 192.168.0.65 00:50:ba:85:85:ca

For more than a few entries, this can be a time-consuming process. To be fully effective, you must add an entry for each device on your
network on every host that allows you to create static ARP table entries.

Luckily, most versions of the arp command can take a file as input and use it to create static ARP table entries. Under Linux, this is done
with the -f command-line switch. Now all you need to do is generate a file containing the MAC and IP address pairings, which you can
then copy to all the hosts on your network.

To make this easier, you can use this quick-n-dirty Perl script:

#l/usr/bin/perl
#
gen_ethers.pl <from ip> <to ip>

#

my ($start_1, $start_2, $start_3, $start_4) = split(\./, SARGVI[0], 4);
my ($end_1, $end_2, $end_3, $end_4) = split(/\./, SBARGV[1], 4);

my $ARP_CMD="/shin/arp -n";

netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html
netsechacks-CHP-3-SECT-3.html

for(my $oct_1 = $start_1; $oct_1 <= $end_1 && $oct_1 <= 255; $oct_1++){
for(my $oct_2 = $start_2; $oct_2 <= $end_2 && $oct_2 <= 255; $oct_2++){
for(my $oct_3 = $start_3; $oct_3 <= $end_3 && $oct_3 <= 255; $oct_3++){
for(my $oct_4 = $start_4; $oct_4 <= $end_4 && $oct_4 < 255; $oct_4++){
system("ping -c 1 -W 1 $oct_1.$oct_2.$oct_3.$oct_4 > /dev/null 2>&1");
my $ether_addr = "$ARP_CMD $oct_1.$oct_2.$oct_3.$oct_4 | egrep 'HWaddress|
(incomplete)' | awk {print \$3}'"";
chomp($ether_addr);
if(length($ether_addr) == 17){

print("$ether_addr\t$oct_1.$oct_2.$oct_3.$oct_4\n");

This script will take a range of IP addresses and attempt to ping each one once. In doing this, each active IP address will appear in the
machine's ARP table. After an IP address is pinged, the script will then look for that IP address in the ARP table, and print out the
MAC/IP address pair in a format suitable for putting into a file to load with the arp command. This script was written with Linux in mind
but should work on other Unix-like operating systems as well.

For example, if you wanted to generate a file for all the IP addresses from 192.168.1.1 to 192.168.1.255 and store the results in
/etc/ethers, you would run the script like this:

./gen_ethers 192.168.1.1 192.168.1.255 > /etc/ethers

When using arp with the -f switch, it will automatically use the/etc/ethers file to create the static entries. However, you can specify any file
you prefer. For example, if you wanted to use /root/arp_entries instead, you would run this:

arp -f /[root/arp_entries

This script isn't perfect, but it can save a lot of time when creating static ARP table entries for the hosts on your network. Once you've
generated the file with the MAC/IP pairings, you can copy it to the other hosts and add an arp command to the system startup scripts, to
automatically load them at boot time. The main downside to using this method is that all the devices on your network need to be
powered on when the script runs; otherwise, they will be missing from the list. In addition, if the machines on your network change
frequently, you'll have to regenerate and distribute the file often, which may be more trouble than it's worth. But for servers and devices
that never change their IP or MAC address, this method can protect your machines from ARP poisoning attacks.
g
A

Hack 33 Firewall with Netfilter

fliss

Protect your network with Linux's powerful firewalling features.

Linux has long had the capability for filtering packets, and it has come a long way since the early days in terms of both power and
flexibility. The first generation of packet-filtering code was called ipfw (for "IP firewall") and provided basic filtering capability. Since it was
somewhat inflexible and inefficient for complex configurations, ipfw is rarely used now. The second generation of IP filtering was called IP
chains. It improved greatly onipfw and is still in common use. The latest generation of filtering is called Netfilter and is manipulated with
the iptables command. It is used exclusively with the 2.4.x and later series of kernels. Although\etfilter is the kernel component and
iptables is the user-space configuration tool, these terms are often used interchangeably.

An important concept in Netfilter is the chain , which consists of a list of rules that are applied to packets as they enter, leave, or
traverse through the system. The kernel defines three chains by default, but new chains of rules can be specified and linked to the
predefined chains. The INPUT chain applies to packets that are received and are destined for the local system, and tteUTPUT chain

applies to packets that are transmitted by the local system. Finally, the FORWARD chain applies whenever a packet will be routed from
one network interface to another through the system. It is used whenever the system is acting as a packet router or gateway, and applies
to packets that are neither originating from nor destined for this system.

The iptables command is used to make changes to the Netfilter chains and rulesets. You can create new chains, delete chains, list the
rules in a chain, flush chains (that is, remove all rules from a chain), and set the default action for a chain. iptables also allows you to
insert, append, delete, and replace rules in a chain.

Before we get started with some example rules, it's important to set a default behavior for all the chains. To do this we'll use the-P
command-line switch, which stands for "policy":

iptables -P INPUT DROP

iptables -P FORWARD DROP

This will ensure that only those packets covered by subsequent rules that we specify will make it past our firewall. After all, with the
relatively small number of services that will be provided by the network, it is far easier to explicitly specify all the types of traffic that we
want to allow, rather than all the traffic that we don't. Note that a default policy was not specified for the OUTPUT chain; this is because

we want to allow traffic to proceed out of the firewall itself in a normal manner.

With the default policy set to DROP, we'll specify what is actually allowed. Here's where we'll need to figure out what services will have to
be accessible to the outside world. For the rest of these examples, we'll assume that ethO is the external interface on our firewall and that
ethlis the internal one. Our network will contain a web server[[92.168.1.2(), a mail server), and a DNS server
(—a fairly minimal setup for a self-managed Internet presence.

However, before we begin specifying rules, we should remove filtering from our loopback interface:

iptables -P INPUT -i lo -j ACCEPT

iptables -P OUTPUT -o lo -] ACCEPT

Now let's construct some rules to allow this traffic through. First, we'll make a rule to allow traffic on TCP port 80—the standard port for
web servers—to pass to the web server unfettered by our firewall:

iptables -A FORWARD -m state --state NEW -p tcp \

netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
netsechacks-CHP-3-SECT-4.html
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/192.168.1.20
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/192.168.1.21
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/192.168.1.18

-d 192.168.1.20 --dport 80 -j ACCEPT
And now for the mail server, which uses TCP port 25 for SMTP:

iptables -A FORWARD -m state --state NEW -p tcp \

-d 192.168.1.21 --dport 25 -j ACCEPT

Additionally, we might want to allow remote POP3, IMAP, and IMAP+SSL access as well:

POP3
iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 110 -j ACCEPT

IMAP
iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 143 -j ACCEPT

IMAP+SSL

iptables -A FORWARD -m state --state NEW -p tcp \

-d 192.168.1.21 --dport 993 -] ACCEPT
Unlike the other services, DNS can use both TCP and UDP port 53:

iptables -A FORWARD -m state --state NEW -p tcp \

-d 192.168.1.21 --dport 53 -] ACCEPT

Since we're using a default deny policy, it makes it slightly more difficult to use UDP for DNS. This is because our policy relies on the
use of state tracking rules, and since UDP is a stateless protocol, there is no way to track it. In this case, we can configure our DNS
server either to use only TCP, or to use a UDP source port of 53 for any response that it sends back to clients that were using UDP to
query the nameserver.

If the DNS server is configured to respond to clients using UDP port 53, we can allow this traffic through with the following two rules:

iptables -A FORWARD -p udp -d 192.168.1.18 --dport 53 -j ACCEPT

iptables -A FORWARD -p udp -s 192.168.1.18 --sport 53 -] ACCEPT

The first rule allows traffic into our network destined for the DNS server, and the second rule allows responses from the DNS server to
leave the network.

You may be wondering what the-m state and --state arguments are about. These two options allow us to use Netfilter's stateful
packet-inspection engine. Using these options tells Netfilter that we want to allow only new connections to the destination IP and port
pairs that we have specified. When these rules are in place, the triggering packet is accepted and its information is entered into a state
table.

Now we can specify that we want to allow any outbound traffic that is associated with these connections by adding a rule like this:
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

The only thing left now is to allow traffic from machines behind the firewall to reach the outside world. To do this, we'll use a rule like the

following:
iptables -A FORWARD -m state --state NEW -i ethl -j ACCEPT

This rule enters any outbound connections from the internal network into the state table. It works by matching packets coming into the
internal interface of our firewall that are creating new connections. If we were setting up a firewall that had multiple internal interfaces, we
could have used a Boolean NOT operator on the external interface (e.g.,-i ! eth0). Now any traffic that comes into the firewall through the
external interface that corresponds to an outbound connection will be accepted by the preceding rule, because this rule will have put the
corresponding connection into the state table.

In these examples, the order in which the rules were entered does not really matter. Since we're operating with a defaullENY policy, all
our rules have an ACCEPT target. However, if we had specified targets of DROP or REJECT as arguments to the -j option, then we would
have to take a little extra care to ensure that the order of those rules would result in the desired effect. Remember that the first rule that
matches a packet is always triggered as the rule chains are traversed, so rule order can sometimes be critically important.

It should also be noted that rule order can have a performance impact in some circumstances. For example, the rule shown earlier that
matches ESTABLISHED and RELATED states should be specified before any of the other rules, since that particular rule will be
matched far more often than any of the rules that will match only on new connections. By putting that rule first, it will prevent any packets
that are already associated with a connection from having to traverse the rest of the rule chain before finding a match.

To complete our firewall configuration, we'll want to enable packet forwarding. Run this command:
#echo 1 > /proc/sys/net/ipv4/ip_forward

This tells the kernel to forward packets between interfaces whenever appropriate. To have this done automatically at boot time, add the
following line to /etc/sysctl.conf:

net.ipv4.ip_forward=1

If your system doesn't support /etc/sysctl.conf, you can put the precedingecho command in one of your startup rc scripts, such as
letc/rc.local. Another useful kernel parameter isrp_filter, which helps prevent IP spoofing. This enables source address verification by
checking that the IP address for any given packet has arrived on the expected network interface. This can be enabled by running the
following command:

#echo 1 > /proc/sys/net/ipv4/conf/default/rp_filter

Much like how we enabled IP forwarding, we can also enable source address verification by editing /etc/sysctl.conf on systems that
support it, or else put the changes in your rc.local. To enablerp_filter in yoursysctl.conf, add the following line:

net.ipv4.conf.all.rp_filter=1

To save all of our rules, we can either write all of our rules to a shell script or use our Linux distribution's particular way of saving them.
We can do this in Red Hat by running the following command:

Isbin/service iptables save

This will save all currently active filter rules to /etc/sysconfig/iptables. To achieve the same effect under Debian, editetc/default/iptables
and set enable_iptables_initd=true.

After doing this, run the following command:
letc/init.d/iptables save_active

When the machine reboots, youriptables configuration will be automatically restored.

Hack 34 Firewall with OpenBSD's PacketFilter

flisa

Use OpenBSD's firewalling features to protect your network.

PacketFilter, commonly known as PF, is the firewalling system available inOpenBSD. While it is a relatively new addition to the
operating system, it has already surpassed IPFilter, the system it has replaced, in both features and flexibility. PF shares many features
with Linux's Netfilter. Although Linux's Netfilter is more easily extensible with modules, PF outshines it in its traffic normalization
capabilities and enhanced logging features.

To communicate with the kernel portion of PF, we need to use the pfctl command. Unlike the iptables command that is used with Linux's
Netfilter, it is not used to specify individual rules, but instead uses its own configuration and rule specification language. To actually
configure PF, we must edit /etc/pf.conf. PF's rule specification language is actually very powerful, flexible, and easy to use. Thepf.conf file
is split up into seven sections, each of which contains a particular type of rule. Not all sections need to be used—if you don't need a
specific type of rule, that section can simply be left out of the file.

The first section is for macros. In this section you can specify variables to hold either single values or lists of values for use in later
sections of the configuration file. Like an environment variable or a programming-language identifier, macros must start with a letter and
also may contain digits and underscores.

Here are some example macros:

EXT_IF="de0Q"

INT_IF="del"

RFC1918="{ 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"

A macro can be referenced later by prefixing it with the $ character:
block drop quick on $SEXT_IF from any to $SRFC1918

The second section allows you to specify tables of IP addresses to use in later rules. Using tables for lists of IP addresses is much faster
than using a macro, especially for large numbers of IP addresses, because when a macro is used in a rule, it will expand to multiple
rules, with each one matching on a single value contained in the macro. Using a table adds just a single rule when it is expanded.

Rather than using the macro from our previous example, we can define a table to hold the nonroutable RFC 1918 IP addresses:

table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

The const keyword ensures that this table cannot be modified once it has been created. Tables are specified in a rule in the same way
that they were created:

block drop quick on $EXT_IF from any to <rfc1918>

You can also load a list of IP addresses into a table by using the file keyword:

table <spammers> file "/etc/spammers.table”

If you elect not to use the const keyword, then you can add addresses to a table by running a command such as this:

pfctl -t spammers -T add 10.1.1.1

netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html
netsechacks-CHP-3-SECT-5.html

Additionally, you can delete an address by running a command like this:

pfctl -t spammers -T delete 10.1.1.1

To list the contents of a table, you can run:

pfctl -t spammers -T show

In addition to IP addresses, hostnames may also be specified. In this case, all valid addresses returned by the resolver will be inserted
into the table.

The next section of the configuration file contains options that affect the behavior of PF. By modifying options, we can control session
timeouts, defragmentation timeouts, state-table transitions, statistic collection, and other behaviors. Options are specified by using the
set keyword. The number of options is too numerous to discuss all of them in any meaningful detail; however, we will discuss the most
pertinent and useful ones.

One of the most important options is block-policy . This option specifies the default behavior of theblock keyword and can be configured

to silently drop matching packets by specifying drop . Alternatively, return may be used, to specify that packets matching a block rule will
generate a TCP reset or an ICMP unreachable packet, depending on whether the triggering packet is TCP or UDP. This is similar to the

REJECT target in Linux's Netfilter.

For example, to have PF drop packets silently by default, add a line like this to /etc/pf.conf:

set block-policy drop

In addition to setting the block-policy, additional statistics such as packet and byte counts can be collected for an interface. To enable
this for an interface, add a line similar to this to the configuration file:

set loginterface de0

However, these statistics can only be collected on a single interface at a time. If you do not want to collect any statistics, you can replace
the interface name with the none keyword.

To better utilize resources on busy networks, we can also modify the session-timeout values. Setting this to a low value can help
improve the performance of the firewall on high-traffic networks, but at the expense of dropping valid idle connections.

To set the session timeout (in seconds), put a line similar to this in /etc/pf.conf:

set timeout interval 20
With this setting in place, any TCP connection that is idle for 20 seconds will automatically be reset.

PF can also optimize performance on low-end hardware by tuning its memory use regarding how many states may be stored at any one
time or how many fragments may reside in memory for fragment reassembly. For example, to set the number of states to 20,000 and the
number of entries used by the fragment reassembler to 15,000, we could put this in our pf.conf:

set limit states 20000

set limit frags 15000

Alternatively, we could combine these entries into a single one, like this:

set limit { states 20000, frags 15000 }

Moving on, the next section is for traffic normalization rules. Rules of this type ensure that packets passing through the firewall meet
certain criteria regarding fragmentation, IP IDs, minimum TTLs, and other attributes of a TCP datagram. Rules in this section are all
prefixed by the scrub keyword. In general, just puttingscrub all is fine. However, if necessary, we can get quite detailed in specifying
what we want normalized and how we want to normalize it. Since we can use PF's general filtering-rule syntax to determine what types
of packets a scrub rule will match, we can normalize packets with a great deal of control.

One of the more interesting possibilities is to randomize all IP IDs in the packets leaving your network for the outside world. In doing this,
we can make sure that passive operating system determination methods based on IP IDs will break when trying to figure out the
operating system of a system protected by the firewall. Because such methods depend on analyzing how the host operating system
increments the IP IDs in its outgoing packets, and our firewall ensures that the IP IDs in all the packets leaving our network are totally

random, it's pretty hard to match them against a known pattern for an operating system. This also helps to prevent enumeration of
machines in a network address translated (NAT) environment. Without random IP IDs, someone outside the network can perform a
statistical analysis of the IP IDs being emitted by the NAT gateway in order to count the number of machines on the private network.
Randomizing the IP IDs defeats this kind of attack.

To enable random ID generation on an interface, put a line such as this in /etc/pf.conf:

scrub out on de0 all random-id

We can also use the scrub directive to reassemble fragmented packets before forwarding them to their destinations. This helps prevent
specially fragmented packets (such as packets that overlap) from evading intrusion-detection systems that are sitting behind the firewall.

To enable fragment reassembly on all interfaces, simply put the following line in the configuration file:
scrub fragment reassemble
If we want to limit reassembly to just a single interface, we can change this to:

scrub in on de0 all fragment reassemble
This will enable fragment reassembly for the deO interface.

The next two sections of the pf.conf file involve packet queuing and address translation, but since this hack focuses on packet filtering,
we'll skip these. This brings us to the last section, which contains the actual packet-filtering rules. In general, the syntax for a filter rule
can be defined by the following:

action direction [log] [quick] on int [af] [proto protocol] \

from src_addr [port src_port] to dst_addr [port dst_port] \

[tcp_flags] [state]

In PF, a rule can have only two actions: block and pass. As discussed previously, the block policy affects the behavior of the block
action. However, this can be modified for specific rules by specifying it along with an action, such as block drop or block return.
Additionally, block return-icmp can be used, which will return an ICMP unreachable message by default. An ICMP type can be specified
as well, in which case that type of ICMP message will be returned.

For most purposes, we want to start out with a default deny policy; that way we can later add rules to allow the specific traffic that we
want through the firewall.

To set up a default deny policy for all interfaces, put the following line in /etc/pf.conf:

block all

Now we can add rules to allow traffic through our firewall. First we'll keep the loopback interface unfiltered. To accomplish this, we'll use
this rule:

pass quick on lo0 all

Notice the use of the quick keyword. Normally PF will continue through our rule list even if a rule has already allowed a packet to pass, in
order to see whether a more specific rule that appears later on in the configuration file will drop the packet. The use of the quick keyword
modifies this behavior and causes PF to stop processing the packet at this rule if it matches the packet and to take the specified action.
With careful use, this can greatly improve the performance of a ruleset.

To prevent external hosts from spoofing internal addresses, we can use theantispoof keyword:
antispoof quick for $INT_IF inet

Next we'll want to block any packets from entering or leaving our external interface that have a nonroutable RFC 1918 IP address. Such
packets, unless explicitly allowed later, would be caught by our default deny policy. However, if we use a rule to specifically match these
packets and use the quick keyword, we can increase performance by adding a rule like this:

block drop quick on $EXT_IF from any to <rfc1918>

If we wanted to allow traffic into our network destined for a web server at 192.168.1.20, we could use a rule like this:

pass in on $EXT_IF proto tcp from any to 192.168.1.20 port 80 \
modulate state flags S/SA

This will allow packets destined to TCP port 80 at 192.168.1.20 only if they are establishing a new connection (i.e., the SYN flag is set),
and will enter the connection into the state table. The modulate keyword ensures that a high-quality initial sequence number is generated
for the session, which is important if the operating system in use at either end of the connection uses a poor algorithm for generating its
ISNs.

Similarly, if we wanted to pass traffic to and from an email server at the IP address 192.168.1.21, we could use this rule:
pass in on $EXT_IF proto tcp from any to 192.168.1.21 \
port { smtp, pop3, imap2, imaps } modulate state flags S/SA

Notice that multiple ports can be specified for a rule by separating them with commas and enclosing them in curly braces. We can also
use service names, as defined in /etc/services, instead of specifying the service's port number.

To allow traffic to a DNS server afL92.168.1.1§, we can add a rule like this:

pass in on $EXT_IF proto tcp from any to 192.168.1.18 port 53 \

modulate state flags S/SA
This still leaves the firewall blocking UDP DNS traffic. To allow this through, add this rule:
pass in on $EXT_IF proto udp from any to 192.168.1.18 port 53 \

keep state

Notice here that even though this is a rule for UDP packets we have still used the state keyword. In this case, PF will keep track of the
connection using the source and destination IP address and port pairs. Also, since UDP datagrams do not contain sequence numbers,
the modulate keyword is not applicable. We usekeep state instead, which is how to specify stateful inspection when not modulating ISNs.
In addition, since UDP datagrams do not contain flags, we simply omit them.

Now we'll want to allow connections initiated from the internal network to pass through the firewall. To do this, we'll need to add the
following rules to let the traffic into the internal interface of the firewall:

pass in on $INT_IF from $INT_IF:network to any

pass out on $INT_IF from any to $INT_IF:network

pass out on $EXT_IF proto tcp all modulate state flags S/SA
pass out on $EXT_IF proto { icmp, udp } all keep state

As you can see, OpenBSD has a very powerful and flexible firewalling system. There are too many features and possibilities to discuss

here. For more information, you can look at the excellent PF documentation available online or the pf.conf manpage.

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/192.168.1.18

Hack 35 Create an Authenticated Gateway

Mliss

Use PF to keep unauthorized users off the network.

Firewalling gateways have traditionally been used to block traffic from specific services or machines. Instead of watching IP
addresses and port numbers, an authenticated gateway allows you to regulate traffic to or from machines based on a user's credentials.
With an authenticated gateway, a user will have to log in and authenticate himself to the gateway in order to gain access to the protected
network. This can be useful in many situations, such as restricting Internet access or restricting a wireless segment to be used only by
authorized users.

With the release of OpenBSD 3.1, you can implement this functionality through the use of PF and the authpf shell. Using authpf also
provides an audit trail by logging usernames, originating IP addresses, and the time that they authenticated with the gateway, as well as
when they logged off the network.

To set up authentication with authpf, you'll first need to create an account on the gateway for each user. Specifylusr/sbin/authpf as the
shell, and be sure to add authpf as a valid shell to/etc/shells. When a user logs in through SSH,authpf will obtain the user's name and IP
address through the environment. After doing this, a template file containing NAT and filter rules is read in, and the username and IP
address are applied to it. The resulting rules are then added to the running configuration. When the user logs out (i.e., types*C), the
rules that were created are unloaded from the current ruleset. For user-specific rule templates, authpf looks in
/etc/authpf/users/$USER/authpf.rules. Global rule templates are stored in/etc/authpf/authpf.rules. Similarly, NAT entries are stored in
authpf.nat, in either of these two directories. When a user-specific template is present for the user who has just authenticated, the
template completely replaces the global rules, instead of just adding to them. When loading the templates, authpf will expand the
$user_ip macro to the user's current IP address.

For example:
pass in quick on wi0 proto { tcp, udp } from $user_ip to any \
keep state flags S/SA

This particular rule will pass in all traffic on the wireless interface from the newly authenticated user's IP address. This works particularly
well with a default deny policy, where only the initial SSH connection to the gateway and DNS have been allowed from the authenticating
IP address.

You could be much more restrictive and allow only HTTP-, DNS-, and email-related traffic through the gateway:
pass in quick on wi0 proto tcp from $user_ip to any \

port { smtp, www, https, pop3, pop3s, imap, imaps } \

keep state flags S/SA
pass in quick on wi0 proto udp from $user_ip to any port domain

After the template files have been created, you must then provide an entry point into pf.conf for the rules thatauthpf will create for
evaluation by PF. These entry points are added to your pf.conf with the various anchor keywords:

nat-anchor authpf

rdr-anchor authpf

netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html
netsechacks-CHP-3-SECT-6.html

binat-anchor authpf
anchor authpf

Note that each anchor point needs to be added to the section it applies to—you cannot just put them all at the end or beginning of your
pf.conf. Thus the nat-anchor, rdr-anchor, and binat-anchor entries must go into the address translation section of thepf.conf. Likewise, the
anchor entry, which applies only to filtering rules, should be added to the filtering section.

When a user logs into the gateway, he should now be presented with a message like this:

Hello andrew, You are authenticated from host “192.168.0.61"

The user will also see the contents of/etc/authpf/authpf.message if it exists and is readable.
If you examine /var/log/daemon, you should also see log messages similar to these for when a user logs in and out:

Dec 322:36:31 zul authpf[15058]: allowing 192.168.0.61, \
user andrew

Dec 322:47:21 zul authpf[15058]: removed 192.168.0.61, \
user andrew- duration 650 seconds

Note that since it is present in /etc/shells, any user that has a local account is capable of changing his shell tauthpf. If you want to ensure
that the user cannot do this, you can create a file named after his username and put it in the /etc/authpf/banned directory. The contents
of this file will be displayed when he logs into the gateway. On the other hand, you can also explicitly allow users by listing their
usernames, one per line, in /etc/authpf/authpf.allow. However, any bans that have been specified in‘etc/authpf/banned take precedence
over entries in authpf.allow.

Since authpf relies on the SSH session to determine when the rules pertaining to a particular user are to be unloaded, care should be
taken in configuring your SSH daemon to time out connections. Timeouts should happen fairly quickly, to revoke access as soon as
possible once a connection has gone stale. This also helps prevent connections to systems outside the gateway from being held open by
those conducting ARP spoof attacks.

You can set up OpenSSH to guard against this by adding these to lines to yousshd_config:

ClientAlivelnterval 15
ClientAliveCountMax 3

This will ensure that the SSH daemon will send a request for a client response 15 seconds after it has received no data from the client.
The ClientAliveCountMax option specifies that this can happen three times without a response before the client is disconnected. Thus,
after a client has become unresponsive, it will be disconnected after 45 seconds. These keepalive packets are sent automatically by the
SSH client software and don't require any intervention on the part of the user.

Authpf is very powerful in its flexibility and integration with PF, OpenBSD's native firewalling system. It is easy to set up and has very little
performance overhead, since it relies on SSH and the operating system to do authentication and manage sessions.
[|||||'I|||
||||| LR L DORAN

Hack 36 Firewall with Windows

flivss

Yes, you can use Windows as a firewall.

You may not know it, but Windows has a very capable firewall built right in. To access it, run the Microsoft Management Console. You
can do this by opening up a Run dialog, typing mmc, and clicking the OK button. After the program loads, you should see something
similar to .

Figure 3-1. The Microsoft Management Console

% ol x;
f) Donsole Wwindow Hep Dl I .18
fotion Wiew Fawories e

'|=1e| Eavoie: | i |

. | Corrbals Flo d

Click on the Console menu and select the "Add/Remove Snap-in..." menu item. Next you should be presented with a dialog that has an
Add button at the bottom. After clicking the Add button, you should see a dialog box with a list of available snap-ins. Scr: h the
list and locate the item titled IP Security Policy Management. After you've selected this, the dialog box should look likgrigure 3-4

Figure 3-2. Adding the IP Security Policy Management snap-in

netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html
netsechacks-CHP-3-SECT-7.html

Al xj

Available Standalone Snag-ing

Snaprin [erdor B

,5,5 Fax Service Management Miciozoft Corporabon

—J Foider

—AFiantPags Server Exlensions

fﬁ G Paliciy Miciozaft Coiporabion

}‘-ﬁ Indewmg Sarace Miciosoft Corporabion, In...
L.
& Link to'web Address

d Local Users and Groups Miciozoft Corporabon

] Peromance Logs and Alerts Miciosol Corporabon

& Removable Storage Management HighGiround Systems, lne, B
Dezcription

Inkerriet Protocal Secunty IFSec] Adminisiation Manage IPSec
policies for secure communicabion with other computars,

Add l:hul

Now click the Add button. You'll be presented with a dialog asking whether you want the snap-in to manage the local computer or a
domain. Determine whether you want to apply the filtering settings to just the local computer or the entire domain, and click the Finish
button. Click the Close button in the Add Standalone Snap-in list dialo ii fljg_zﬂ'l in . You should now see the IP Security
Policies snap-in listed in the Add/Remove Snap-in dialog, as shown injFi ure 3-3. Click the OK button and you'll be returned to the
original Management Console window. You should now see the IP Security Policies snap-in listed in the window.

Figure 3-3. The Add/Remove Snap-in dialog with the IP Security Policies snap-in loaded

2 x]
Standalone]Ea&u‘mna]
IJze thiz page bo add of remove a standalons Snap-in from the congole,
Snep-ns added to | A Congale Roal j _I
B P Security Polcies on Local Machine
Description
ok | Cancel

Before setting up firewall rules, you'll need to create a block action for them to use. To do this, right-click the IP Security Policies icon and

select the "Manage IP filter lists and filter actions" item. After the dialog appears, click on the Manage Filter Actions tab. You should now
see something similar to

Figure 3-4. The Manage Filter Actions tab

7] x|
Manage IP Fiter Lists Manage Fiker Actions |

. Thiz dighog allows you to make mantain the fiker actions that
’,é descrbe the secuity of your nebwark,

2
The awalable fiter actions are shared by al IF security
pabicies.
Fibes Actions:
Marm Diazcription
Pesmit Pami unzacuread P packets fo .
Fequest Secuily [Optional] Accapl: usaculed communcali.,
Require Securiy Accepts unsecued communicali,
gl | Ed. | Bemove | [ysepddwizad

Close E

If the Use Add Wizard checkbox is not checked, be sure to check it. Now click the Add button. Click the Next button after the wizard
dialog opens. Then type "Block" for name of the new filter action. For the description, type "Blocks Access" or something similarly
appropriate. After filling those in, click the Next button. Now click the Block radio button, and then click the Next button once again. After
that, click the Finish button. You should now see the new filter action in the list that was shown in You may now click the
Close button.

Now you can set up the firewall rules. Right-click the security policy icon and select the Create IP Security Policy item. This will bring up
a wizard. Click the Next button and fill in the Name and Description; a good choice for both of them would be "Firewall". After filling those
in, click the Next button. You should now see a checkbox labeled "Activate the default response rule". Uncheck this bot ifij Ilfff click
the Next button. After that, click the Finish button. You should now see a dialog called Firewall Properties, as shown in Eigure 3-3

Figure 3-5. The Firewall Properties dialog

2%

Rules | Gerssl |
Q-P__g_!' Secunhy mles for cammunicating with othen compubers

1P Secutiy Rules

IF Fikes List | Fiker &iction | Autherticaton. . | Tu

a < Dyriamics Dretfauk Aesponse Ketbeanos Mc

| | |

b, | Ed | % Useidiuien
0. Canced |

0 create a new filtering rule, uncheck the Use Add Wizard box and click the Add button. You should now see a dialog box that looks like
mure 3-4.

Figure 3-6. Adding a new rule

2| x

futhenbication Mathods | Tunrel Saltng | Cormechon Type]
IF Flber List Filler Bt
=
o The selected IP fikes izt specilies which network. Falhic wil be

sacured with this ule

IP Filer Lists:
Manme Dezchphion
O AllNCMP Traflic Matches sl ICHP packets bebs,,
O Al IP Tradfic Matches: all IP packets from hiz
BAdd | Edt . Bemove |

oF. Cancel |

To select the IP addresses to match on, click the Add button in the IP Filter List tab. This will also let you define ports and protocols to

match on. After you have selected the IP addresses and ports you want the rule to apply to, click the Filter Action tab and choose your
selections from the list of actions.

Hack 37 Keep Your Network Self-Contained

E HAGK
Use egress filtering to mitigate attacks and information leaks coming from your network

You're probably familiar with the concept of firewalling as it applies to blocking traffic coming into your network. Have you considered
the benefits of filtering traffic that leaves your network? For instance, what would happen if someone compromised a host on your
network and used it as a platform to attack other networks? What if a worm somehow made it onto your network and tried to infect hosts
across the Internet? At the very least, you would probably receive some angry phone calls and emails. Luckily, filtering your outbound
traffic—otherwise known as egress filtering—can help to contain such malicious behavior. Egress filtering can not only protect others
from attacks originating from your network, but can also be used to enforce network usage policies and make sure information doesn't
leak out of your network onto the wider Internet. In many situations, egress filtering is just as important as filtering inbound traffic.

The general guideline when crafting egress-filtering rules is the same as when constructing any inbound-filtering rule—devices should
only be allowed to do what they were meant to do. That is, a mail server should only be allowed to serve and relay mail, a web server
should only be allowed to serve web content, a DNS server should only service DNS requests, and so on. By ensuring that this policy is
implemented, you can better contain the threats mentioned earlier.

It may also be a good idea to force users to use internal services rather than Internet services wherever possible. For example, if you are
using your own DNS servers, clients shouldn't be able to connect to external DNS servers to resolve hostnames. If a client is allowed to
do this, you risk the chance that they will reveal intranet hostnames to outside parties when the client attempts to resolve an internal
hostname through an external DNS server.

For instance, this restriction can be accomplished in OpenBSD with a rule like this:
rdr on $INT_IF inet proto { tcp, udp } from $INT_IF:network to any port 53
-> $DNS_SERVER port 53

Of course, you'll need to set INT_IF to the interface facing your internal network and setDNS_SERVER to the IP address of your internal
DNS server.

Similarly, if you're running an internal mail server, then company email need never cross the Internet. If you have gone to the trouble of
setting up an internal email server, do you really want your employees to be able to connect to servers outside your network?

You can do this with a similar rule:

rdr on $INT_IF inet proto tcp from $INT_IF:network to any port 25 -> $SMTP_HOST port 25

Egress filtering can also prevent IP spoofing. By filtering on your external interface at the border of your network, you can verify that
packets leaving your network have source addresses that match your address space. By filtering all other traffic, you can ensure that any
IP spoofing attack performed from your network or routed through it will be dropped before the packets are able to leave.

netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html
netsechacks-CHP-3-SECT-8.html

Hack 38 Test Your Firewall

liss

Find out if your firewall really works the way you think it should.

So you've set up a firewall and done a few cursory tests to make sure it's working, but have you tested the firewall to be sure that it's
blocking everythi it 2 You may not have done this because you think it will take too long or be too difficult. Luckily
there's ftester (http://ftester.sourceforge.nel), a free tool for doing extensive firewall tests.

Ftester consists of three Perl scripts. The ftest script is used for injecting custom packets as defined in the configuration filéest.conf. If
you are testing how the firewall behaves with ingress traffic, you should run this script on a machine outside of your firewalled network. If
you want to test your firewall's behavior toward egress traffic, you will need to run ftest from a machine within your firewall's protected
network. One of the other scripts is ftestd, which listens for the packets injected withtest that come through the firewall that you are
testing. This script should be run on a machine within your internal network if you are testing the firewall's ingress behavior. If you are
testing egress behavior, you'll need to run it on a machine external to your network. Both of these scripts keep a log of what they send or
receive. After a test run, their respective logs can be compared using the freport script, to quickly see what packets were able to get
through the firewall.

Before you can use Ftester, you will need the Net::RawlP , Net::PcapUtils, and NetPacket Perl modules. You will also need the
Net::Pcap module if it is not already installed, since theNet::PcapUtils module depends on it. If you have the CPAN Perl module
available, you can install these modules with the following commands:

perl -MCPAN -e "install Net::RawlIP"
perl -MCPAN -e "install Net::PcapUtils"

perl -MCPAN -e "install NetPacket"

Once these modules are available on the systems you will be using to conduct your firewall test, you will need to create a configuration
file to tell ftest what packets it should generate.

The general form for a TCP or UDP packet in ftest.confis:

source addr:source port:dest addr:dest port:flags:proto:tos

where source addr and source port are the source IP address and port, andlest addr and dest port are the destination IP address and
port. Address ranges can be specified in the low-high format or by using CIDR notation. Port ranges can be specified using thdow-high
format as well. The flags field is where you specify the TCP that you want set for the packet. Valid values for this field ares for SYN, A for
ACK, P for PSH, U for URG, R for RST, andF for FIN. The proto field specifies which protocol to use (eitherTCP or UDP), and tos
contains the number to setthe Type-of-Service (ToS) field in the IP header to. Sometimes routers will use the contents of this field to

n isi ic prioritization. You can get more information on the ToS field by reading RFC 791
(http://www.ietf.org/rfc/rfc0791.tx{), which defines Internet Protocol.

ICMP packets can be defined in a similar manner. Here's the general form for one:

source addr::dest addr:::ICMP:type:code

Here you can see that the main difference between the two forms is the omission of port numbers and flags. This is because ICMP does
not use port numbers and does not make use of flags. Instead, it uses types and codes, hence the addition of the type and code fields.
Currently, there are over 40 ICMP types. Some that may be familiar to you are the ones used by the ping utility, echo (type 8) and echo
reply (type 0), or the type used by the traceroute command (type 30). ICMP codes are like subclassifications of an ICMP type. Not all
ICMP types have ICMP codes associated with them, although there are roughly the same number of ICMP codes as there are types.

netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
netsechacks-CHP-3-SECT-9.html
http://ftester.sourceforge.net
http://www.ietf.org/rfc/rfc0791.txt

Here's an ftest.conf that will check all of the unprivileged TCP ports on a machine with the IP address 10.1.1.1:

192.168.1.10:1025:10.1.1.1:1-1025:S:TCP:0
stop_signal=192.168.1.10:1025:10.1.1.1:22:S:TCP:0
The stop_signal creates a payload for the packet that will telftestd that the testing is over.

Before starting ftest, you should startftestd:

[ftestd -i ethO

Now, to run ftest:

.[ftest -f ftest.conf

This will create a log file called ftest.log containing an entry for every packefftest sent. When ftestd receives the signal to stop, it will exit.
You can then find its log of what packets it received in ftestd.log. Now you can copy the logs to the same machine and run them through

freport. If you used a configuration file like the one shown earlier and were allowing SSH, SMPTP, and HTTP traffic, you might get a
report similar to this:

[freport ftest.log ftestd.log

Authorized packets:

22-192.168.1.10:1025 > 10.1.1.1:22 STCP 0
25-192.168.1.10:1025 > 10.1.1.1:25 STCP 0

80 -192.168.1.10:1025 > 10.1.1.1:80 S TCP 0

Modified packets (probably NAT):

Filtered or dropped packets:

1-192.168.1.10:1025 >10.1.1.1:1 STCP O
2-192.168.1.10:1025 > 10.1.1.1:2 STCP O
3-192.168.1.10:1025 > 10.1.1.1:3 STCP 0O
If you are using a stateful firewall and want to test this functionality, you can also specify packets that have flags other than SYN set. For

instance, if the previous example had used ACK or some other flag instead of SYN, it would be dropped by the firewall since only
packets with the SYN flag set are used to initiate connections.

http://www.iana.org/assignments/icmp-parameters

It's a good idea to run ftest each time you make changes to your firewall, or periodically just to make sure that your firewall works as you
expect it to. While complex rulesets on your firewall can sometimes make it difficult to predict exactly how it will behave, ftest will tell you

with good authority exactly what kind of traffic is permitted.

netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html
netsechacks-CHP-3-SECT-10.html

Hack 39 MAC Filtering with Netfilter

3o

Keep unwanted machines off your network with MAC address whitelisting

Media Access Control (MAC) address filtering is a well-known method for protecting wireless networks. This type of filtering works on
the default deny principle: you specify the hosts that are allowed to connect, while leaving unknown ones behind. MAC addresses are
unique 48-bit numbers that have been assigned to every Ethernet device that has ever been manufactured, including 802.11 devices,
and are usually written as six 8-bit hexadecimal digits separated by colons.

In addition to Linux's native IP packet filtering system, Netfilter also contains MAC address filtering functionality. While many of the
wireless access points on the market today already support this, there are many older ones that do not. MAC filtering is also important if
your access point is actually the Linux machine itself, using a wireless card. If you have a Linux-based firewall already set up, it's a trivial

modification to enable it to filter at the MAC level. MAC address filtering with iptables is very much like IP-based filtering, and is just as
easy to do.

This example demonstrates how to allow a particular MAC address if your firewall policy is set to DROfHack #33] :
iptables -A FORWARD -m state --state NEW \
-m mac --mac-source 00:DE:AD:BE:EF:00 -j ACCEPT

This command will allow any traffic sent from the network interface with the address 00:DE:AD:BE:EF:00. Using rules like this one along
with a default deny policy enables you to create a whitelist of the MAC addresses that you want to allow through your gateway. To create
a blacklist, you can employ a default accept policy and change the MAC address matching rule's target to DENY.

This is all pretty straightforward if you already know the MAC addresses for which you want to create rules, but what if you don't? If you
have access to the system, you can find out the MAC address of an interface by using the ifconfig command:

$ ifconfig ethO

ethO Link encap:Ethernet HWaddr 00:0C:29:E2:2B:C1
inet addr:192.168.0.41 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:132893 errors:0 dropped:0 overruns:0 frame:0
TX packets:17007 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:46050011 (43.9 Mb) TX bytes:1601488 (1.5 Mb)
Interrupt:10 Base address:0x10e0

Here you can see that the MAC address for this interface is 00:0C:29:E2:2B:C1. The output of ifconfig is somewhat different on other
operating systems, but they are all similar to some degree (this output was from a Linux system).

Finding the MAC address of a system remotely is slightly more involved and can be done by using the arp and ping commands. By
pinging the remote system, its IP address will be resolved to a MAC address, which can then be looked up using the arp command.

For example, to look up the MAC address that corresponds to the IP address 192.168.0.61, you could run the following commands:

$ ping -c 1 192.168.0.61

$ /shin/arp 192.168.0.61 | awk '{print $3}'

Or you could use this very small and handy shell script:

#!/bin/sh

ping -¢c $1 >/dev/null && /sbin/arp $1 | awk {print $3}'\
| grep -v Hwaddress

When implementing MAC address filtering, please be aware that it is not foolproof. Under many circumstances, it is quite trivial to
change the MAC address that an interface uses by simply instructing the driver to do so. It is also possible to send out link-layer frames
with forged MAC addresses by using raw link-layer sockets. Thus, MAC address filtering should only be considered as an additional
measure that you can use to protect your network. Treat MAC filtering more as a "Keep Out" sign, rather than a good deadbolt.

Hack 40 Block OS Fingerprinting

liao

Keep outsiders on a need-to-know basis regarding your operating systems.

When performing network reconnaissance, one very valuable piece of information for would-be attackers is the operating system
running on each system discovered in their scans. From an attacker's point of view, this is very helpful in figuring out what vulnerabilities
the system might have or which exploits may work on a system. Combined with the knowledge of open ports found during a port-scan,
this information can be devastating. After all, an RPC exploit for SPARC Solaris isn't very likely to work for x86 Linux—the code for the
portmap daemon isn't common to both systems, and they have different processor architectures. Armed with the knowledge of a given
server's platform, attackers can very efficiently try the techniques most likely to grant them further access without wasting time on
exploits that cannot work.

Traditionally, individuals performing network reconnaissance would simply connect to any services detected by their port-scan, to see
which operating system the remote system is running. This works because many daemons, such as Sendmail, Telnet, and even FTP,
readily announce the underlying operating system, as well as their own version numbers. Even though this method is easy and
straightforward, it is now seen as intrusive since it's easy to spot someone connecting in the system log files. Additionally, most services
can be configured not to disclose this sensitive information. In response, more sophisticated methods were developed that do not require
a full connection to the target system to determine which operating system it is running. These methods rely on the eccentricities of the
host operating system's TCP/IP stack and its behavior when responding to certain types of packets. Since individual operating systems
respond to these packets in a particular way, it is possible to make a very good guess at what OS a particular server is running based on
how it responds to probe packets, which normally don't show up in log files. Luckily, such probe packets can be blocked at the firewall to
circumvent any operating system detection attempts that deploy methods like this.

One popular tool that employs such OS detection methods is Nmap (I]ttg://www.insecure.org/nmagj), which not only allows you to detect
the operating system running on a remote system, but also perform various types of port-scans.

Attempting to detect an operating system with Nmap is as simple as running it with the -O switch. Here are the results of scanning an
OpenBSD 3.3 system:

#nmap -O puffy

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-02 19:14 MST
Interesting ports on puffy (192.168.0.42):

(The 1653 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

13/tcp open daytime

22/tcp open ssh

37/tcp open time

113/tcp open auth

Device type: general purpose

netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
netsechacks-CHP-3-SECT-11.html
http://www.insecure.org/nmap/

Running: OpenBSD 3.X

OS details: OpenBSD 3.0 or 3.3

Nmap run completed -- 1 IP address (1 host up) scanned in 24.873 seconds
To thwart Nmap's efforts, we can employ firewall rules that block packets used for operating-system probes. These are fairly easy to
spot, since several of them have invalid combinations of TCP flags. Some of the tests that Nmap performs cannot be blocked by PF by

simply adding block rules, but they can be blocked if stateful filtering and a default deny policy have been implemented in the ruleset.
This is because some of the tests make use of TCP options, which cannot be filtered with PF.

To block these fingerprinting attempts with OpenBSD's PF, we can put rules similar to these in our /etc/pf.conf:

set block-policy return

block in log quick proto tcp flags FUP/WEUAPRSF

block in log quick proto tcp flags WEUAPRSF/WEUAPRSF

block in log quick proto tcp flags SRAFU/WEUAPRSF

block in log quick proto tcp flags /IWEUAPRSF

block in log quick proto tcp flags SR/SR

block in log quick proto tcp flags SF/SF

This also has the side effect of logging any attempts to the pflog0 interface. Even if we can't block all of Nmap's tests, we can at least log

some of the more unique attempts, and possibly confuse it by providing an incomplete picture of our operating system's TCP stack
behavior. Packets that have triggered these rules can be viewed with tcpdump by running the following commands:

ifconfig pflogO up

#tcpdump -n -i pflog0

Now let's look at the results of an Nmap scan after enabling these rules:
#nmap -O puffy

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-02 22:56 MST
Interesting ports on puffy (192.168.0.42):

(The 1653 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

13/tcp open daytime

22/tcp open ssh

37/tcp open time

113/tcp open auth

No exact OS matches for host (If you know what OS is running on it, see

http://www.insecure.org/cgi-bin/nmap-submit.cgi).

TCP/IP fingerprint:
SInfo(V=3.48%P=i686-pc-linux-gnu%D=12/2%Time=3FCD7B3F%0=13%C=1)
TSeq(Class=TR%IPID=RD%TS=2HZ)
T1(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%O0ps=)
T3(Resp=Y%DF=Y%W=0%ACK=0%Flags=AR%Ops=)
T4(Resp=Y%DF=Y%W=4000%ACK=0%Flags=R%Ops=)
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=Y%W=0%ACK=0%Flags=R%Ops=)
T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=134%RID=E%RIPCK=F%UCK=E%ULEN=134%DAT=E)

Nmap run completed -- 1 IP address (1 host up) scanned in 27.028 seconds

As you can see, this time the attempt was unsuccessful. But if you are feeling particularly devious, simply confusing Nmap attempts may
not be enough. What if you want to actually trick would-be flfflf[f into believing that a server is running a different OS entirely? For
example, this could be useful when setting up a honeypot[Hack #94] to attract miscreants away from your critical servers. If this sounds
like fun to you, read on.

Hack 41 Fool Remote Operating System Detection Software

liai

Evade remote OS detection attempts by disguising your TCP/IP stack.

Another method to thwart operating system detection attempts is to modify the behavior of your system'sTCP/IP stack and make it
emulate the behavior of another operating system. This may sound difficult, but can be done fairly easily in Linux by patching your kernel
with code available from the IP Personality project http://ippersonality.sourceforge.nef). This code extends the kernel's built-in firewalling
system, Netfilter, as well as its user-space component, the iptables command.

To set up IP Personality, download the package that corresponds to vour kernel, If you can't find the correct one, visit the SourceForge
patches page for the project (http://sourceforge.net/tracker/?group id=7557&atid=307557), which usually has more recent kernel
patches available.

To patch your kernel, unpack the IP Personality source distribution and go to the directory containing your kernel source; then run the
patch command:

cd /usr/src/linux
patch -pl <\
.Jippersonality-20020819-2.4.19/patches/ippersonality-20020819-linux-2.4.19.diff

If you are using a patch downloaded from the patches page, just substitute it in your patch command. To verify that the patch has been
applied correctly, you can run this command:

find ./ -name *.rej
If the patch was applied correctly, this command should not find any files.

Now that the kernel is patched, you will need to configure the kernel for IP Personality support. As mentioned in[Hack #13], running
make xconfig, make menuconfig, or even make config while you are in the kernel source's directory will allow you to configure your kernel.

Regardless of the method you choose, the menu options will remain the same.

First, be sure that "Prompt for development and/or incomplete code/drivers" is enabled under "Code maturity level options". Under
Networking Options, find and enable the option for Netfilter Configuration.

The list displayed by make xconfig is shown in . Find the option labeled IP "Personality Support”, and either selecy to statically
compile it into your kernel, or select m to create a dynamically loaded module.

Figure 3-7. Enable IP Personality Support

netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
netsechacks-CHP-3-SECT-12.html
http://ippersonality.sourceforge.net
http://sourceforge.net/tracker/?group_id=7557&atid=307557

X IP: Metfilter Conhiguration

IF: Helfiller Configuration

&om n REDIRECT target support Help
¥ * n HMAT of local connections (READ HELF) Help
¢ m n Basic SNMP-ALG support (EXPERIMENTAL) Help
“m n Packet mangling Help
“m n TOS target support Help
wom n ECH target support. Halp
“m n DSCP tarmget support Help
& m n MARE Largel support Help
¢ m n IP Personality Support (EXPERIMENTAL) Hedp
& m n LOG target support Help
“om f ULOG target support Help
“m n TCPMSS targel support Help
¥ ¢m N ARP tables support Help
& m n ARFP packet filtering Help
W % m n inchaing ©2 2 -atvie soannet Hizlm
OK Hext Prev

After you have configured in support for IP Personality, save your configuration. Now compile the kernel and modules, and install them
by running commands similar to these:

make dep && make clean

make bzlmage && make modules

cp arch/i386/boot/bzimage /boot/vmlinuz

make modules_install

Now reboot with your new kernel. In addition to patching yﬁuusgmMulLa.lﬁg_j)eed to patch the user-space portion of Netfilter, the
iptables command. To do this, go to the Netfilter web site (ttp://www.netfilter.ord) and download the version specified by the patch that
came with your IP Personality package. For instance, the iptables patch included inippersonality-20020819-2.4.19.tar.gz is for Netfilter
Version 1.2.2.

After downloading the proper version and unpacking it, you will need to patch it with the patch included in the IP Personality package.
Then build and install it in the normal way:

tar xfj iptables-1.2.2.tar.bz2

cd iptables-1.2.2

patch -pl <\

.Jlippersonality-20020819-2.4.19/patches/ippersonality-20020427-iptables-\1.2.2.diff

http://www.netfilter.org

patching file pers/Makefile

patching file pers/example.conf

patching file pers/libipt_PERS.c

patching file pers/pers.h

patching file pers/pers.|

patching file pers/pers.y

patching file pers/pers_asm.c

patching file pers/perscc.c

make KERNEL_DIR=/usr/src/linux && make install

This will install the modified iptables command, its supporting libraries, and the manpage under thdusr/local hierarchy. If you would like to
change the default installation directories, you can edit the Makefile and change the values of the BINDIR, LIBDIR, MANDIR, and INCDIR
macros. Be sure to set KERNEL_DIR to the directory containing the kernel sources you built earlier.

If you are using Red Hat Linux, you can replace the iptables command that is installed by changing the macros to these values:
LIBDIR:=/lib

BINDIR:=/sbin

MANDIR:=/usr/share/man

INCDIR:=/usr/include

In addition to running make install, you may also want to create a directory for the operating system personality configuration files. These

files are located in the samples/ directory within the IP Personality distribution. For example, you could create a directory called
letc/personalities and copy them there.

Before setting up IP Personality, try running Nmap against the machine to see which operating system it detects:

#nmap -O colossus

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-12 18:36 MST
Interesting ports on colossus (192.168.0.64):

(The 1651 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

111/tcp open rpcbind

139/tcp open netbios-ssn

505/tcp open mailbox-Im

631/tcp open ipp

Device type: general purpose
Running: Linux 2.4.X|2.5.X
OS details: Linux Kernel 2.4.0 - 2.5.20

Uptime 3.095 days (since Tue Dec 9 16:19:55 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 7.375 seconds

If your machine has an IP address of 192.168.0.64 and you want it to pretend that it's running Mac OS 9, you can run iptables
commands like these:

iptables -t mangle -A PREROUTING -d 192.168.0.64 -j PERS \
--tweak dst --local --conf /etc/personalities/macos9.conf

iptables -t mangle -A OUTPUT -s 192.168.0.64 -j PERS \
--tweak src --local --conf /etc/personalities/macos9.conf

Now run Nmap again:

#nmap -O colossus

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-12 18:47 MST
Interesting ports on colossus (192.168.0.64):

(The 1651 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

111/tcp open rpcbind

139/tcp open netbios-ssn

505/tcp open mailbox-Im

631/tcp open ipp
Device type: general purpose
Running: Apple Mac OS 9.X

OS details: Apple Mac OS 9-9.1

Uptime 3.095 days (since Tue Dec 9 16:19:55 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.274 seconds

You can of course emulate other operating systems that aren't provided with the IP Personality package. All you need is a copy of

Nmap's operating system fingerprints file, nmap-os-fingerprints, and then you can construct your own IP Personality configuration file for
any operating system Nmap knows about.

Hack 42 Keep an Inventory of Your Network

I

Use Nmap to keep track of the devices and services on your network.

As we saw in[Hack #40] , Nmap dmp://www.insecure.orq/nmapj) is free a tool that can be used to conduct various sorts of scans on
networks. Normally when people think of using Nmap, they assume it's used to conduct some sort of nefarious network reconnaissance
in preparation for an attack. But as with all powerful tools, Nmap can be used for far more than breaking into networks.

For example, simple TCP connect scans can be conducted without needing root privileges:

$ nmap rigel

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-15 17:42 MST
Interesting ports on rigel (192.168.0.61):

(The 1595 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE

7hcp open echo

9/tcp open discard

13/tcp open daytime

19/tcp open chargen

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

37/tcp open time

79/tcp open finger

111/tcp open rpchind

512/tcp open exec

513/tcp open login

514/tcp open shell

netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
netsechacks-CHP-3-SECT-13.html
http://www.insecure.org/nmap/

587/tcp open submission

4045/tcp open

7100/tcp open

32771/tcp open

32772ltcp open

32773ltcp open

32774ltcp open

32775/tcp open

32776/tcp open

32777ltcp open

lockd

font-service

sometimes-rpcs

sometimes-rpc7

sometimes-rpc9

sometimes-rpcll

sometimes-rpcl3

sometimes-rpcl5

sometimes-rpcl7

Nmap run completed -- 1 IP address (1 host up) scanned in 75.992 seconds

This is tremendously useful for checking on the state of your own machines. You could probably guess that this scan was performed on a
Solaris machine, and one that needs to have some services disabled at that.
Nmap can also scan ranges of IP addresses by specifying the range or using CIDR notation:

nmap 192.168.0.1-254
nmap 192.168.0.0/24

Nmap can provide much more information if it is run as root. When run as root, it can use special packets to determine theperating
system of the remote machine by using the -O flag. Additionally, you can do half-open TCP scanning by using thesS flag. When doing a
half-open scan, Nmap will send a SYN packet to the remote host and wait to receive the ACK from it; if it receives an ACK, it knows that
the port is open. This is different from a normal three-way TCP handshake, where the client will send a SYN packet and then send an
ACK back to the server once it has received the initial server ACK. Attackers typically use this option to avoid having their scans logged
on the remote machine.

Try it out for yourself:

#nmap -sS -O rigel

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on rigel.nnc (192.168.0.61):

(The 1578 ports scanned but not shown below are in state: filtered)

Port State Service
7hcp open echo
9/tcp open discard
13/tcp open daytime
19/tcp open chargen

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

37/tcp open time

79/tcp open finger

111/tcp open sunrpc

512/tcp open exec

513/tcp open login

514/tcp open shell

587/tcp open submission
7100/tcp open font-service
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7
32773/tcp open sometimes-rpc9
32774/tcp open sometimes-rpcll
32775/tcp open sometimes-rpcl3
32776/tcp open sometimes-rpcl5
32777/tcp open sometimes-rpcl7
Remote operating system guess: Solaris 9 Beta through Release on SPARC

Uptime 44.051 days (since Sat Nov 1 16:41:50 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 166 seconds

With OS detection enabled, Nmap has confirmed that the operating system is Solaris, but now you also know that it's probably Version 9
running on a SPARC processor.

One powerful feature that can be used to help keep track of your network is Nmap's XML output capabilities. This is activated by using
the -oX command-line switch:

#nmap -sS -O -oX scandata.xml rigel

This is especially useful when scanning a range of IP addresses or your whole network, because you can put all the information gathered
from the scan into a single XML file that can be parsed and inserted into a database. Here's what an XML entry for an open port looks
like:

<port protocol="tcp" portid="22">

<state state="open" />

<service name="ssh" method="table" conf="3" />
</port>

Nmap is a powerful tool. By using its XML output capabilities, a little bit of scripting, and a database, you can create an even more
powerful tool that can monitor your network for unauthorized services and machines.

Hack 43 Scan Your Network for Vulnerabilities

a3

Use Nessus to quickly and easily scan your network for services that are vulnerable to attack.

As anetwork administrator, you not only need to knfmmjgh_t_osts are on your network and the services they are running, but also if
those services are vulnerable to exploits. While Nmap [Hack #40] can only show you what machines and ports are reachable on your
network, a security scanner such as Nessus (http://www.nessus.ord) can tell you if those machines are vulnerable to known exploits.

Unlike a regular port scanner, a security scanner first locates listening services, and then connects to those services and attempts to
execute all known exploits. It then records whether the exploit was successful and continues scanning until all available services have
been tested. The key benefit here is that you'll know at a glance how your systems perform against the most recent exploits, and thus
know whether they truly are vulnerable to attack.

If you're feeling a bit adventurous, Nessus can be installed by simply typing the following command:
$ lynx -source http://install.nessus.org | sh

This will completely automate the installation of Nessus, but isn't really a good idea since you don't know what you'll be executing on
your system until you actually run it. A better way to install Nessus that retains the benefits of the automated installer is to download the
nessus-installer.sh script and execute it manually. After you've downloaded the installer script and run it, you will be asked where you
want to install Nessus (the default is /usr/local) and prompted for your root password. The script will then create a temporary SUID shell
that is accessible only through your user account. This may sound alarming at first, but it tells you the filename for the shell, so you can
verify that it is indeed accessible only to you and make sure that it is deleted when the installation has completed.

After installation has finished, you'll need to create a Nessus user (not the same thing as a Unix account). SincéNessus uses a
client-server model, you'll also need to generate a certificate so that all communications can be encrypted.

To create a new Nessus user, run nessus-adduser. It will then prompt you for a name and a password. To create a certificate, you can
run nessus-mkcert, or if you have your own Certificate Authority (CAiHack #45], you can use that to create a certificate folNessus to

use. If you do use your own CA, you'll need to edit nessus.conf to tell it where to look for the CA certificate and the certificate and key
that you generated.

The configuration file usually lives in /etc or /usr/local/etc. To tellNessus where its certificates are, add lines similar to the following:
cert_file=/etc/ssl/nessus.key

key_file=/etc/ssl/nessus.crt

ca_file=/etc/ssl/ca.crt

If you generated a certificate-key pair and used a password, you can specify that password here as well:
pem_password=mypassword

After you've done all of that, you can start the Nessus daemon. This is the business end of Nessus and is what will actually perform the
scans against the hosts on your network.

You can start it by running something similar to this command:
lusr/local/sbin/nessusd -D

Now you can start theNessus client and connect to the server. There are several Nessus clients available, including a command-line

netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
netsechacks-CHP-3-SECT-14.html
http://www.nessus.org

interface, an X11 application, and a Windows client. The figures in this hack show the X11 interface. You can start the client by simply
typing nessus. After you've done that, you should see a window like the one shown i .

Figure 3-8. Nessus client setup

% Messus Setup

Nessusd host | Piugin | Prefs, | Sean options | Target selection | user | kg | creais
Hew sessian sefup
= Messusd Host - [localhost
Port - [1241
[j Lagin |'Er||:|rE'r'-"
Fassword :|
Log in I
start the scan Load repor it |

You'll need to fill in the information for the user that you created and click the "Log In" button. After that, you'll be presented with a dialog
that allows you to verify the information contained in the server's certificate.

To select which types of vulnerabilities to scan for, click on the Plugins tab, and you'll see something similar t.

Figure 3-9. Nessus plugin selection

% MNessus Setup

Nessusd host Plugins | Prefe. | Scan options | Target setection | user | k& | credis |

Flugin salaction
CGl abuses |
kisc. r
Cienial of Service =
SMKP =
CEzCO =
Windows r
FTP =
Gain oot remately |
General r
Setiings F
AFPC 2 ¥
Enable all Enable all but dangerous plugins Dizable all Uplaad plugin... |
_| Enable dependencias & muntima Filfar ., |

BEA WebLogic Scrpls Server scnpls source DISclosUrne r [&
OfficeScan configuration file disclosure r
ASFMET Cross Site Scripling r
SemvieiE=ec 4.1 F JRun 15&P1 Dos I |

=l
nph-test-cgi r
Reading CGI script sources using fogi-bin-sdb r
Home Frae search.ogl direciony trayerzal r
pldispaly =
anli Hessus defenzes r
Bb=hist.sh "
overlow.cgi detection r
Unpassworded iiprotect administralive interface r /

Start the

sCan

Lozad repart I Cluit |

In the top pane you can enable or disable types of scans, and in the bottom pane you can disable individual vulnerability checks that
belong to the category selected in the top pane. One thing to note: scans listed in the bottom pane that have an exclamation icon next to
them will potentially crash the server that they are run against. If you want to enable all scans except for these, you can click the "Enable
all but dangerous plugins" button. If you're running Nessus on a noncritical machine, you can probably leave these scans on, but you
have been warned! You'll probably want to disable several types of scans unless you need to scan a machine or group of machines that
run a wide variety of services; otherwise, you'll waste time having Nessus scan for services that you aren't running. For instance, if you
wanted to scan a Solaris system, you might disable CGI abuses, CISCO, Windows, Peer-To-Peer File Sharing, Backdoors, Firewalls,
Windows User Management, and Netware plug-ins.

In order for Nessus to more thoroughly test your services, you can supply it with login information for various services. This way, it can

actually log into the service tha
with the Prefs tab, as shown in

Ei;ure 3-1d.

1 and have access just like any normal user. You can tell Nessus about the accounts to use

Figure 3-10. Nessus's Prefs tab

% MNessus Setup

Nessusd host | Plugine [Frefs]| Scan options | Target setection |user | k8 | credis |

Pluging preferances
Login configurations: B

HTTF account |

HTTF password (sent in clear) - |
MNNTP account : |

MMTP password (sent n clear) : |
FTP account : |9n|:|r1!,.'m|:|u¢

FTP password (sent In clear) : B

FTP writaable directory : |rmcummg

POPZ account - |

POPZ password (sent in clear) |
POP3 account - |

POP3 password (sent in claar) |
AP account ; I

IMAF password (sent in clear) |
ShBE account |
SMB password [/

Star the scan Lozd report I Chuil |

In addition, you can tell Nessus to attempt brute-force logins to the services it is scanning. This can be a good test—not only of the
services themselves, but also of your intrusion detection system (IDS) [Hack #82] and your system logs.

The "Scan options" tab lets you configure how Nessus will conduct its port-scans. Most of these settings can be left at their default

value, unless you are also checking to see whether Nessus can evade detection by the hosts that you are scanning. For instance,

Nessus is configured by default to perform full TCP connect scans and to ping the remote host that it is scanning. You can change this
behavior by going to the "Scan options" tab, enabling "SYN scans" instead of "TCP connect", and disabling the ping. To specify which
hosts you want to scan, you can use the "Target selection” tab.

After you've mad
window similar to

your selections, try scanning a host by clicking "Start the scan” at the bottom of the window. You should now see a

igure 3-11. In this case,Nessus is performing a scan against a Solaris machine.

Figure 3-11. Performing a vulnerability scan

% Scanning network from localhost

rigel

Porzcan | Stop

Anack : |

Stop the whole tast |

The results of the scan are shown in .

St

Figure 3-12. The vulnerability scan results

%, MEESUS NG Repart

Pl =i | Sevenly - |
di el 230 3|y Sacurity Waming
& EunmpE (V1 1Amp) v Sacurtly Mot

) snimpe (11105)
@ subnison SATAGH

E s34 |??.'I:ii J

+ [EnEalsdp
« TpiEifcp) AT

The emike sendmsil serer, scconding is ds werson nunber,
FaY D vumeralie 10 @ reno bufier oeamon alceing emo
usars W ogan ol privileges

Sandmail versions from 573 1o O12.9 ae vulearable
Soluban : Upgrade Io Sendmal ver 81200
o w0 hBgeaT sl Asbees Co nfpidermElTul-desd G surs 20 3-5a plemBeniin 02 0.7 Blm|

MOTE: manizal paichas de nof changs Ma warsan numbers
Vandoes wha have raleased palched veesions ol sandnal
may stil Taisely show wulnerabity:

-

5 MEEsUE repeiE M wul e ailily using ank
" the hannge of he remole SRATP deraer. Thanaioes,
U7 M meght Bs3 & A posiiva

Risk Twchar : High
CWE - CAN-2003-0834
B : 8641

Sava repart. Clese windoer |

If you scanned multiple subnets, you can select those in the Subnet pane. Any hosts that are in the selected subnet will then appear in
the Host pane. Similarly, when you select a host, the list of open ports on it will appear in the Port pane. You can select these to view the
warnings, notes, and possible security holes that were found regarding the selected port. You can view the information that Nessus
provides for these by clicking on them in the Severity pane. Don't be too alarmed by most of Nessus's security notes and warnings; they
are designed mainly to let you know what services you are running and to tell you if that service might present a potential vulnerability.
Security holes are far more serious and should be investigated.

To save the report that you are viewing, click the "Save report" buttonNessus will let you save reports in a variety of formats. If you want
to view the report in Nessus again at a later date, you should use Nessus's own report format (NBE). Reports in this format can be
viewed by using the "Load report" button in the main Nessus client window. Additionally, you can save reports in XML, HTML, ASCII, and
even LaTeX format.

While Nmap is probably the champion of host and port detection, Nessus goes even further to demonstrate whether your own services
are vulnerable to known attacks. Of course, new exploits surface all of the time, so it is important to keep your Nessus plug-ins
up-to-date. Using Nessus, you can protect your own services by attempting to break into them before the bad boysdo.

Hack 44 Keep Server Clocks Synchronized

fliaa

Make log analysis easier by keeping the time on your systems in sync.

Correlating events that occurred on multiple servers can be a chore if there are discrepancies between the machines' clocks. Keeping
the clocks on your systems synchronized can save valuable time when analyzing router, firewall, and host logs after a compromise, or
when debugging everyday networking issues. Luckily, it's not that hard to do this with a little help from NTP, the Network Time
Protocol.

NTP is a peer-to-peer protocﬁmmmmww;recision and accuracy between host clocks. To get this going, all you
need is the NTP distribution (http://www.ntp.org/downloads.htm|), which contains a daemon for performing clock synchronization, plus
other supporting tools. While NTP might not be installed on your system, it usually comes with the various Linux distributions, FreeBSD,

and OpenBSD as an optional package or port, so poke around your installation media or the ports tree if it's not already installed. If it
isn't available with your OS of choice, you can still download and compile it yourself.

Configuring ntpd as a client is a fairly simple process. However, first you'll need to find out whether you have a local time server, either on
your network or at your ISP. If you don't, you'll have tr ocate an NTP server that will let you query from it. Don't worry, though—a list of
all the publicly accessible time servers is available at pttp://www.eecis.udel.edu/~mills/ntp/servers.htm|. One new term you will encounter
when looking for a server is stratum (e.g., stratum 1 or stratum 2). This refers to the hierarchy of the server within the public NTP
infrastructure. Stratum 1 servers are usually machines that have a direct time-sync source, such as a GPS or atomic clock signal that
provides updates to the daemon running on that machine. Stratum 2 servers obtain their time sync from stratum 1 servers. Using stratum

2 servers helps to reduce the load on stratum 1 servers and is still accurate enough for our purposes. In addition, you'll want to find
servers that are as geographically close to you as possible.

With this in mind, let's look for some NTP servers that we can use case one fails). | live
in Colorado, so after following the link to the stratum 2 server list (http://www.eecis.udel.edu/~mills/ntp/clock2a.htm|), | find two entries:

US CO ntpl.linuxmedialabs.com

Location: Linux Media Labs LLC, Colorado Springs, CO

Service Area: US

Synchronization: NTP Secondary (stratum 2), i686/Linux

Access Policy: open access

Contact: ntp@linuxmedialabs.com

Note: ntpl is an alias and the IP address may change, please use DNS

US CO ntpl.tummy.com

Location: tummy.com, Itd., Fort Collins, CO

Service Area: US

Synchronization: NTP Secondary (stratum 2), i686/Linux

netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
netsechacks-CHP-3-SECT-15.html
http://www.ntp.org/downloads.html
http://www.eecis.udel.edu/~mills/ntp/servers.html
http://www.eecis.udel.edu/~mills/ntp/clock2a.html

Access Policy: open access.

Contact: ntp@tummy.com

Note: ntpl is an alias and the IP address may change, please use DNS.
Since they're both listed as open access, | can just add them tdetc/ntp.conf:
server ntpl.linuxmedialabs.com

server ntpl.tummy.com

In addition, ntpd can automatically correct for the specific clock frequency drift of your machine. It does this by learning the average drift
over time as it receives sync messages. To enable this, add a line similar to the following to your ntp.conf:

driftfile /etc/ntp.drift
Of course, if you're keeping all of youmtpd configuration files in/etc/ntp, you'll want to use a directory similar to/etc/ntp/ntp.drift instead.

That's it. Simply addntpd to your startup scripts, start it up, and you're ready to go.

Hack 45 Create Your Own Certificate Authority

a5

Sign your own certificates to use in securing your network.

SSL certificates are usually thought of as being used for secure communications over the HTTP protocol. However, they are also
useful in providing both a means for authentication and a means for jnitiating key exchan yriad of other services where
ption is desired, such as POP and IMAP [Hack #47], SMTP [Hack #48], IPSec (seeChapter §), and, of course, SSL tunnels
76

. To make the best use of SSL, you will need to properly manage your own certificates.

If an SSL client needs to verify the authenticity of an SSL server, the cert used by the server needs to be signed by a Certificate Authority
(CA) that is already trusted by the client. Well-known Certificate Authorities (such as Thawte and VeriSign) exist to serve as an
authoritative, trusted third party for authentication. They are in the business of signing SSL certificates that are used on sites dealing with
sensitive information (such as account numbers or passwords). If a site's SSL certificate is signed by a trusted authority, then
presumably it is possible to verify the identity of a server supplying that cert's credentials. However, for anything other than e-commerce
applications, a self-signed certificate is usually sufficient for gaining all of the security advantages that SSL provides. But even a
self-signed cert must be signed by an authority that the client recognizes.

OpenSSL, a free SSL implementation, is perfectly capable of generating everything you need to run your own Certificate Authority. The
CA.pl utility makes the process very simple.

In these examples, you'll need to type anything in boldface, and enter passwords wherever appropriate (they don't echo to the screen).
To establish your new Certificate Authority, first change to the misc/ directory under wherever OpenSSL is installed

(/System/Library/OpenSSL/ on OpenBSD; /ust/ssl/ or /usr/local/ssl/ on most Linux systems). Then use these commands:

$./CA.pl -newca

CA certificate filename (or enter to create)

Making CA certificate ...
Generating a 1024 bit RSA private key
++++++

e+

writing new private key to './demoCA/private/cakey.pem
Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html
netsechacks-CHP-3-SECT-16.html

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter "', the field will be left blank.

Country Name (2 letter code) [J:US

State or Province Name (full name) [:Colorado

Locality Name (eg, city) [:Denver

Organization Name (eg, company) [:NonExistant Enterprises
Organizational Unit Name (eg, section) [J:IT Services

Common Name (eg, fully qualified host name) [:ca.nonexistantdomain.com
Email Address [J:certadmin@nonexistantdomain.com

Note that you don't necessarily need root permissions, but you will need write permissions on the current directory.

Congratulations! You're the proud owner of your very own Certificate Authority. Take a look around:

$ s -l demoCA/

total 16

-rw-r--r-- 1 andrew andrew 1399 3 Dec 19:52 cacert.pem
drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 certs
drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 crl
-rw-r--r-- 1 andrew andrew 0 3 Dec 19:49 index.txt
drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 newcerts
drwxr-xr-x 3 andrew andrew 102 3 Dec 19:49 private
-rw-r--r-- 1 andrew andrew 3 3 Dec 19:49 serial

The public key for your new Certificate Authority is contained incacert.pem, and the private key is inprivate/cakey.pem. You can now use
this private key to sign other SSL certs.

By default, CA.pl will create keys that are good for only one year. To change this behavior, edi€A.pl and change the line that reads:
$DAYS="-days 365";
Alternatively, you can forego CA.pl altogether and generate the public and private keys manually with a command like this:

$ openssl req -new -x509 -keyout cakey.pem -out \

cakey.pem -days 3650

This will create a key pair that is good for the next 10 years, which can of course be changed by using a different argument to the -days
switch. Additionally, you should change the private key's permissions to 600, to ensure that it is protected from being read by anyone.

So far, we have only created the Certificate Authority. To actually create keys that you can use with your services, you need to create a
certificate-signing request and a key. Again, this can be done easily with CA.pl. First, a certificate-signing request is created:

$./CA.pl -newreqg-nodes
Generating a 1024 bit RSA private key

R

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter "', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Colorado

Locality Name (eg, city) [:Denver

Organization Name (eg, company) [Internet Widgits Pty Ltd]:NonEXxistant Enterprises
Organizational Unit Name (eg, section) [J:IT Services

Common Name (eg, YOUR name) [:mail.nonexistantdomain.com

Email Address [:;postmaster@nonexistantdomain.com

Please enter the following 'extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name [[:NonEXxistant Enterprises

Request (and private key) is in newreq.pem

If you wish to encrypt the private key, you can use the -newreq switch in place of-newreq-nodes. However, if you encrypt the private key,

you will have to enter the password for it each time the service that uses it is started. If you decide not to use an encrypted private key,
be extremely cautious with your private key, as anyone who can obtain a copy of it can impersonate your server.

Now, to actually sign the request and generate the signed certificate:

$./CA.pl -sign
Using configuration from /System/Library/OpenSSL/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 1 (0x1)

Validity

Not Before: Dec 3 09:05:08 2003 GMT

Not After : Dec 3 09:05:08 2004 GMT

Subject:
countryName =US
stateOrProvinceName = Colorado
localityName = Denver
organizationName = NonExistant Enterprises

organizationalUnitName = IT Services

commonName = mail.nonexistantdomain.com

emailAddress = postmaster@nonexistantdomain.com

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

X509v3 Subject Key Identifier:

94:0F:E9:F5:22:40:2C:71:D0:A7:5C:65:02:3E:BC:D8:DB:10:BD:88

X509v3 Authority Key Identifier:

keyid:7E:AF:2D:A4:39:37:F5:36:AE:71:2E:09:0E:49:23:70:61:28:5F:4A

DirName:/C=US/ST=Colorado/L=Denver/O=NonExistant Enterprises/OU=IT Services/

CN=Certificate Administration/emailAddress=certadmin@nonexistantdomain.com

serial:00

Certificate is to be certified until Dec 7 09:05:08 2004 GMT (365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

Signed certificate is in newcert.pem

Now you can set up keys in this manner for each server that needs to provide an SSL-encrypted service. It is easier to do this if you

designate a single workstation to majnfain the certificate authority and all the files associated with it. Don't forget to distribute your CA
cert to programs that need to trust it [Hack #46] .

Hack 46 Distribute Your CA to Clients

Mias

Be sure all of your clients trust your new Certificate Authority

Once you have created a Certificate Authority (CA]Hack #45], any certificates that are signed by your CA will be trusted by any
program that trusts your CA. To establish this trust, you need to distribute your CA's certificate to each program that needs to trust it. This
could include email programs, IPSec installations, or web browsers.

Since SSL uses public key cryptography, there is no need to keep the certificate a secret. You can simply install it on a web server and
download it to your clients over plain old HTTP. While the instructions for installing a CA cert are different for every program, this hack
will show you a quick and easy way to install your CA on web browsers.

There are two possible formats that browsers will accept for new CA certspem and der. You can generate ader from your existingpem
with a single openssl command:

$ openssl x509 -in demoCA/cacert.pem -outform DER -out cacert.der

Also, add the following line to theconf/mime.types file in your Apache installation:

application/x-x509-ca-cert ~ der pem crt

Now restart Apache for the change to take effect. You should now be able to place both the cacert.der and demoCA/cacert.pem files
anywhere on your web server and have clients install the new cert by simply clicking on either link.

Early versions of Netscape expected pem format, but recent versions will accept either. Internet Explorer is just the opposite (early IE
would accept only der format, but recent versions will take both). Other browsers will generally accept either format.

You will get a dialog box in your browser when downloading the new Certificate Authority, asking if you'd like to continue. Accept the
certificate, and that's all there is to it. Now SSL certs that are signed by your CA will be accepted without warning the user.

Keep in mind that Certificate Authorities aren't to be taken lightly. If you accept a new CA in your browser, you had better trust it
completely—a mischievous CA manager could sign all sorts of certs that you should never trust, but your browser would never complain
(since you claimed to trust the CA when you imported it). Be very careful about who you extend your trust to when using SSL-enabled
browsers. It's worth looking around in the CA cache that ships with your browser to see exactly who you trust by default.

For example, did you know that AOL/Time Warner has its own CA? How about GTE? Or VISA? CA certs for all of these entities (and
many others) ship with Netscape 7.0 for Linux, and are all trusted authorities for web sites, email, and application add-ons by default.
Keep this in mind when browsing to SSL-enabled sites: if any of the default authorities have signed online content, your browser will trust
it without requiring operator acknowledgment.

If you value your browser's security (and, by extension, the security of your client machine), then make it a point to review your trusted
CA relationships.

—Rob Flickenger (Linux Server Hacks)

netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html
netsechacks-CHP-3-SECT-17.html

Hack 47 Encrypt IMAP and POP with SSL

E HAGK
Keep your email safe from prying eyes while also protecting your POP and IMAP passwords.

Having your email available on an IMAP server is invaluable when you have to access your email from multiple locations. Unlike POP,
IMAP stores all your email and any folders you create on the server, so you can access all of your email from whatever email client you
decide to use. You can even set up a web-based email client so that messages can be accessed from literally any machine with an
Internet connection and a web browser. But more than likely, you will need to cross untrusted networks along the way. How do you
protect your email account password and email from others with less than desirable intentions? You use encryption, of course!

If you already have an IMAP or POP daemon installed that does not have the ability to use SSL natively, you can use stunnel[Hack #76
to wrap the service in an SSL tunnel. If you're starting from scratch, you have the luxury of choosing a daemon that has SSL support
compiled directly into the binary.

ut of the box is the University of Washington's IMAP daemon, otherwise known as UW-IMAP
(http://www.washington.edu/imap/). The IMAP daemon is included with their IMAP software distribution.

To compile and install the IMAP daemon, download the compressed tar archive and run commands similar to these:

$ tar xfz imap.tar.Z
$ cd imap-2002e

$ make Inp SSLDIR=/usr SSLCERTS=/usr/share/ssl/certs

The Makefile target specifies what type of system you are building for. In this caselnp stands for Linux-PAM. Other popular Makefile
targets are bsf for FreeBSD, bso for OpenBSD, osx for Mac OS X,sol for Solaris, and gso for Solaris with GCC. TheSSLDIR variable is
used to set the base directory for your OpenSSL installation. By default, the Makefile is set to use /usr/local/ssl, which would cause it to
look for the libraries in /usr/local/ssl/lib and the headers in/usr/local/ssl/include. If a version of OpenSSL came installed with your
operating system and you want to use that, you will most likely need to use SSLDIR=/usr as shown in the example. TheSSLCERTS
variable is used to tell the imapd and popd where to find their SSL certificates.

If the compile aborts due to errors, look for a message similar to this:
In file included from /usr/include/openssl/ssl.h:179,
from osdep.c:218:
lusr/include/openssl/kssl.h:72:18: krb5.h: No such file or directory
In file included from /usr/include/openssl/ssl.h:179,
from osdep.c:218:

This means that the compiler cannot find the Kerberos header files, a known issue with newer versions of Red Hat Linux. This happens
because the files are located in /usr/kerberos/include, which is a nonstandard directory on the system.

To tell the compiler where to find the headers, use the EXTRACFLAGS variable. The make command from the previous example will
now look like this:

$ make Inp SSLDIR=/usr SSLCERTS=/usr/share/ssl/certs \

netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
netsechacks-CHP-3-SECT-18.html
http://www.washington.edu/imap/

EXTRACFLAGS=-I/usr/kerberos/include

After the binaries have been built, become root and copy them to a suitable place:
cp imapd/imapd ipopd/ipopd /usr/local/bin

Next, to create self-signed certificates, run these two commands:

$ openssl req -new -x509 -nodes \

-out /usr/share/ssl/certs/imapd.pem \

-keyout /usr/share/ssl/certs/imapd.pem -days 3650

$ openssl req -new -x509 -nodes \

-out /usr/share/ssl/certs/ipopd.pem \

-keyout /usr/share/ssl/certs/ipopd.pem -days 3650

Alternatively, you can sign the certificates with your own Certificate Authority [Hack #45] . However, if you go this route, you must
change the certificates' names to imapd.pem and ipopd.pem.

All that's left to do now is edit your /etc/inetd.conf file so thatinetd will listen on the correct ports and spawn imapd and ipopd when a
client connects. To do this, add the following lines at the end of the file:

imaps stream tcp nowait root /usr/libexec/tcpd /usr/local/bin/imapd
pop3s stream tcp nowait root /ustr/libexec/tcpd /usr/local/bin/ipop3d
Now tell inetd to reload its configuration:
kill -HUP “ps -ax | grep inetd | grep -v grep \
| awk {print $1}"
That's the final task for the server end of things. All you need to do now is configure your email clients to connect to the secure version of

the service that you were using. Usually, there will be a Use Encryption, Use SSL, or some other similarly named checkbox in the
incoming mail settings for your client. Just check the box, reconnect, and you should be using SSL now. Be sure your client trusts your

CA cert, or you will be nagged with annoying (but important!) trust warnings.

Hack 48 Set Up TLS-Enabled SMTP

I

Protect your users' in-transit email from eavesdroppers.

If you have set up encrypted POP and IMAP service, your users' incoming email is protected from others once it reaches
your servers, but what about their outgoing email? You can protect outgoing email quickly and easily by setting up your MTA to use
Transport Layer Security (TLS) encryption. Virtually all modern email clients support TLS—enable it by simply checking a box in the
email account preferences.

If you're using Sendmail, you can check to see if it has TLS support compiled-in by running this command:
$ sendmail -bt -d0.1

This will print out the options that your sendmail binary was compiled with. If you see a line that saySTARTTLS, then all you need to do
is supply some additional configuration information to get TLS support working. However, if you don't see this line, you'll need to
recompile sendmail.

Before recompiling sendmail, you will need to go into the directory containingsendmail's source code and add the following lines to
devtools/Site/site.config.m4:

APPENDDEF('conf_sendmail_ ENVDEF', -DSTARTTLS')
APPENDDEF('conf_sendmail_LIBS', *-Issl -Ilcrypto’)

If this file doesn't exist, simply create it. The build process will automatically include the file once you create it. The first line in the
example will cause TLS support to be compiled into the sendmail binary, and the second line will link the binary withlibssl.so and

libcrypto.so.
After adding these lines, you can recompile and reinstall sendmail by running this command:
./Build -c && ./Build install

After you've done this, you will need to create a certificate and key pair to use with sendmail . Then you'll need to reconfigure
sendmail to use the certificate and key that you created. You can do this by editing the file yowendmail.cf file is generated from, which is
usually /etc/mail/sendmail.mc. Once you've located the file, add lines, similar to the following, that point to your Certificate Authority's
certificate as well as the certificate and key you generated earlier:

define("confCACERT_PATH', “/etc/mail/certs’)
define("confCACERT!, “/etc/mail/certs/cacert.pem’)
define("confSERVER_CERT', “/etc/mail/certs/cert.pem’)
define("confSERVER_KEY", “/etc/mail/certs/key.pem")
define("confCLIENT_CERT', “/etc/mail/certs/cert.pem’)
define("confCLIENT_KEY", “/etc/mail/certs/key.pem’)

The first line tells sendmail where your Certificate Authority is located, and the second one tells it where to find the CA certificate itself.
The next two lines tell sendmail which certificate and key to use when it is acting as a server (i.e., accepting mail from a MUA or another

netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html
netsechacks-CHP-3-SECT-19.html

mail server). The last two lines tell sendmail which certificate and key to use when it is acting as a client (i.e., relaying mail to another
mail server). Usually you can then rebuild your sendmail.cf by typing make sendmail.cf while inside the /etc/mail directory. Now kill
sendmail and then restart it.

After you've restarted sendmail, you can check whether TLS is set up correctly by connecting to it:
telnet localhost smtp

Trying 127.0.0.1...

Connected to localhost.

Escape character is "',

220 mail.example.com ESMTP Sendmail 8.12.9/8.12.9; Sun, 11 Jan 2004 12:07:43 -0800 (PST)
ehlo localhost

250-mail.example.com Hello IDENT:6l14ZhaGP3Qczgkngm/KdTFGsrBe2SCYC@Ilocalhost
[127.0.0.1], pleased to meet you

250-ENHANCEDSTATUSCODES

250-PIPELINING

250-EXPN

250-VERB

250-8BITMIME

250-SIZE

250-DSN

250-ETRN

250-AUTH DIGEST-MD5 CRAM-MD5

250-STARTTLS

250-DELIVERBY

250 HELP

QUIT

221 2.0.0 mail.example.com closing connection

Connection closed by foreign host.

When sendmail relays mail to another TLS-enabled mail server, your mail will be encrypted. Now all you need to do is configure your
malil client to use TLS when connecting to your mail server, and your users' email will be protected all the way to the MTA.

i isn' ugh room in rjﬁmWM,TA available, nearly all support some variant of TLS. If you are running Exim
(hito:www exim.ord) or Courier (pttp://www.courier-mta.ord), you can build TLS support straight out of the box. Postfix
o/ postfix.ord) has TLS support and is designed to be used in conjunction with Cyrus-SASL (see the HOWTO &

httg://gostfix.state-of-mind.de/[:)atrick.koetter/smtgauthj). Qmail has an RFC 2487 (TLS) patch available athttp://inoa.net/gmail-tls]. With

TLS support in virtually all MTAs and email clients, there is no longer any good reason to send email "in the clear."

http://www.exim.org
http://www.courier-mta.org
http://www.postfix.org
http://postfix.state-of-mind.de/patrick.koetter/smtpauth/
http://inoa.net/qmail-tls/

Hack 49 Detect Ethernet Sniffers Remotely

I

Detect potential spies on your network without having to trust compromised machines.

Ethernet sniffers are one of the most powerful tools in your network security arsenal. However, in the wrong hands they can be one of
the biggest threats to the security of your network. It may be an insider or it could be a malicious intruder, but, nevertheless, once a
system has been detected they will most likely begin sniffing the local network. This network reconnaissance will help these "spies" find
their next target, or simply collect juicy bits of information (such as usernames and passwords, email, or other sensitive data).

Not too long ago, it was commonly thought that only shared-medium Ethernet networks were vulnerable to being sniffed. These
networks employed a central hub, which would rebroadcast every transmitted packet to each port on the hub. In this type of setup, every
frame sent by any network node is received by every other node on the local network segment. Each node's network interface then
performs a quick check to see if it is the node that the frame is destined for. If it is not, the frame is discarded. If it is, the frame is passed
up through the operating system's protocol stack and is eventually processed by an application. Because of this, sniffing other systems'
traffic on the network was trivial. After all, since all the traffic was reaching each system, one only needed to disable the check that the
network interface performs, and the system would have access to the traffic meant for others. This is usually referred to as putting the
network interface into promiscuous mode, which usually can be done only by a privileged user.

Eventually, switched Ethernet networks became prevalent and the shared-medium aspect no longer applied. Thus, the main facilitator of
sniffing was removed. Unlike hubs, Ethernet switches will only send traffic to the device that it is destined for. To do this, an Ethernet
switch learns which network device's MAC address corresponds to what port on the switch as traffic passes through the switch. When
the switch sees an Ethernet frame with a certain destination MAC address, it will look up which port on the switch corresponds to it and
forward the frame to only that port. In doing this, the switch effectively creates a virtual dedicated connection from the sending station to
the receiving station every time an Ethernet frame is transmitted on the network. Thus, only the machine that the frame was originally
intended for is able to see it. This would be fine, but certain aspects of the Ethernet specification and the TCP/IP can cause problems.

One problem is that switches can memorize only a limited number of MAC addresses. The maximum number will often be several orders
of magnitude higher than the number of ports that the switch has, which allows switches to be connected to each other hierarchically. In
order to do this efficiently, each switch must memorize the MAC addresses available on the switches to which it is connected. For

example, suppose you have a 24-port switch (switch A) with 23 machines plugged into it, and the 24th port is occupied by another
switch. This other switch (switch B) has 48 ports, with the 47 other ports being occupied by machines. In this situation, switch A will learn

the MAC addresses of the 47 systems on switch B and associate it with its 24th port, and switch B will learn the MAC addresses of the

23 systems connected directly to switch A and associate it with its own 48th port. Even though the average switch can memorize
upwards of several thousand MAC addresses, it is still possible to overflow the switch's MAC address table by generating large amounts
of traffic with fake MAC addresses. This tactic is desirable for a malicious user because many switches will revert to behaving like a hub
once their MAC address tables have been filled. Once this happens, the network is no different than a shared-medium segment using a
hub. A malicious user will then be able to sniff the network by simply putting her network interface into promiscuous mode.

Luckily this approach is fairly invasive—in order for it to work, the network will need to be flooded with bogus traffic, which is something
that can be detected passively with tools such as Arpwatch . A flood of bogus MAC and IP address pairings would cause
Arpwatch to likewise flood your system logs. As long as you're good about monitoring your logs, this attack should be fairly easy to spot.
As mentioned in, Arpwatch is also capable of detecting ARP table poisoning. That makes it an effective tool for detecting the
two most common types of ARP attacks that are usually precursors to data logging: ARP flooding and targeted ARP poisoning.

Another way to monitor switched networks is to simply change the MAC address of the Ethernet card in the system that is going to be
used for sniffing. In Linux and many other Unix and Unix-like operating systems, this can be done with the ifconfig command:

Isbin/ifconfig eth1

netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html
netsechacks-CHP-3-SECT-20.html

ethl Link encap:Ethernet HWaddr 00:E0:81:03:D8:8F
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Interrupt:11 Base address:0x1c80

Isbin/ifconfig ethO hw ether 00:DE:AD:BE:EF:00
Isbin/ifconfig eth1
ethl Link encap:Ethernet HWaddr 00:DE:AD:BE:EF:00
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Interrupt:11 Base address:0x1c80

The purpose of doing this is to trick the switch into forwarding the traffic to two different nodes on the segment. This is sometimes a
hit-or-miss deal, since different switches will behave differently when there are duplicate MAC addresses in use on the same network.
The switch may forward traffic to both ports, distribute the traffic unpredictably between them, stop passing traffic altogether, or raise an
error. All of these methods can be detected and stopped with more expensive managed switches, which allow you to specify what MAC
addresses are allowed on each individual port. This feature is sometimes called port security.

However, even if attackers choose not to employ these methods, they can still gather quite a bit of information by just putting the network
interface into promiscuous mode. For example, broadcast traffic such as DHCP and ARP requests will still be sent to every port on the
switch. This traffic is not as easy to detect, unless you already have the infrastructure in place to do so.

(tuim_m_a_ﬁﬁn_nﬂp_mmm;r promiscuous interfaces on both switched and unswitched networks is sniffdet
(http://sniffdet.sourceforge.net). For a tool that really only serves a single purposesniffdet is fairly versatile, as it can detect sniffers in
several ways. The main difference between sniffdet and a tool like Arpwatch is that sniffdet actively scans for sniffers. That is, if you

suspect that a machine may be running a sniffer, you can simply run sniffdet and point it at that machine to determine whether its
network device is in promiscuous mode.

To build and install sniffdet, you will first have to obtain the libnet packet injection library Ijttg://www.Qacketfactory.net/gro'ects/libne;]).

Make sure to download the latest 1.0.x version—the 1.1 versions of libnet are incompatible with programs written for the 1.0.x versions.

To compile libnet, unpack the source distribution and go into the directory that it creates. Then run this command:
$./configure && make
After it has finished compiling, become root and type make install.

Building sniffdet is a similar affair. Like libnet, you will need to unpack the source distribution and change to the directory that it creates.
Then, to build and install it, do the same thing you did for libnet.

sniffdet has several methods for determining whether a target machine is running a sniffer. However, only two of the methods that it

http://sniffdet.sourceforge.net
http://www.packetfactory.net/projects/libnet/

employs will work with repeatable and predictable results. These are the ARP and DNS tests.

The ARRP test relies on how the sniffing system's protocol stack deals with ARP queries while in promiscuous mode. When running this
test against a target machine, sniffdet will send out an ARP query to the target machine. This request has fake source and destination
MAC addresses but uses the correct IP addresses of the machine being checked. If the target machine is in promiscuous mode, the ARP
query with the fake MAC address will be passed up the protocol stack, and the target machine will send a reply. If the machine is not in
promiscuous mode, this ARP query will be quietly discarded. This method is effective on both switched and unswitched networks.

Let's look at a sniffdet scan against sirius (192.168.0.2) fromcolossus (192.168.0.64), two machines that are on the same switched
network.

Here are the results of running sniffdet against sirius:

colossus # sniffdet -i ethO -t arp sirius

Sniffdet Report

Generated on: Wed Dec 31 03:49:28 2003

Tests Results for target sirius

Test: ARP Test (single host)

Check if target replies a bogus ARP request (with wrong MAC)

Validation: OK

Started on: Wed Dec 31 03:49:08 2003

Finished on: Wed Dec 31 03:49:28 2003

Bytes Sent: 252

Bytes Received: 0

Packets Sent: 6

Packets Received: 0

RESULT: NEGATIVE

Number of valid tests: #1

Number of tests with positive result: #0

Now start a sniffer on sirius and run the scan again:

sirius # tcpdump -i le0 arp

tcpdump: listening on le0

06:58:00.458836 arp who-has sirius.nnc tell colossus.nnc
06:58:00.458952 arp reply sirius.nnc is-at 8:0:20:81:a4:a3
06:58:00.466601 arp who-has sirius.nnc (ff:0:0:0:0:0) tell colossus.nnc
06:58:00.466928 arp reply sirius.nnc is-at 8:0:20:81:a4:a3

Let's look at the results of the scan:

Sniffdet Report

Generated on: Wed Dec 31 06:58:01 2003

Tests Results for target sirius

Test: ARP Test (single host)
Check if target replies a bogus ARP request (with wrong MAC)
Validation: OK
Started on: Wed Dec 31 06:58:00 2003
Finished on: Wed Dec 31 06:58:01 2003
Bytes Sent: 84
Bytes Received: 60
Packets Sent: 2

Packets Received: 1

RESULT: POSITIVE

Number of valid tests: #1

Number of tests with positive result: #1

The DNS test works very well, particularly on shared-medium networks such as hubs or wireless LANs. However, it does rely on name

resolution being enabled in the sniffer. When performing DNS tests, sniffdet will send bogus packets that contain IP addresses that are
not in use on the local network segment. If name resolution is enabled, the sniffer will attempt to do a reverse lookup in order to
determine the hostname that corresponds to the IP addresses. Since these addresses are not in use, sniffdet will determine that the
target machine is in promiscuous mode when it sees the DNS queries.

This test can be performed just as the ARP test, but instead ofusing -t arp, use -t dns.

Hack 50 Install Apache with SSL and suEXEC

5o

Help secure your web applications with mod_ssl| and suEXEC.

Web server security is a very important issue these days, especially since people are always finding new and creative ways to put the
Web to use. If you're using any sort of web application that needs to handle authentication or provides some sort of restricted
information, you should seriously consider installing a web server with SSL capabilities. Without SSL, any authentication information your
users send to the web server is sent over the network in the clear, and any information that clients_can access can be viewed by anyone
with a sniffer. If you are already using Apache, you can easily add SSL capabilities with mod_ssl (http://www.modssl.org).

In addition, if your web server serves up dynamic content for multiple users, you may want to enable Apache's suEXEC functionality.
SUEXEC allows your web server to execute server-side scripts as the user that owns them, rather than as the account under which the
web server is running. Otherwise, any user could create a script and run code as the account the web server is running under. This is a
bad thing, particularly on a multiuser web server. If you don't review the scripts that your users write before allowing them to be run, they
could very well write code that allows them to access other users' data or other sensitive information, such as database accounts and
passwords.

To compile Apache with mod_ssl, download the appropriatemod_ssl source distribution for the version of Apache that you'll be using. (If
you don't want to add mod_ssl to an existing Apache source tree, you will also need to download and unpack the Apache source.) After
you've done that, unpack the mod_ssl distribution and go into the directory that it created. Then run a command like this:

.Iconfigure \
--with-apache=../apache_1.3.29\
--with-ssI=SYSTEM \
--prefix=/usr/local/apache \
--enable-module=most \
--enable-module=mmap_static \
--enable-module=so \
--enable-shared=ssl \
--disable-rule=SSL_COMPAT \
--server-uid=www \
--server-gid=www \
--enable-suexec \
--suexec-caller=www \
--suexec-uidmin=500 \
--suexec-gidmin=500

This will both patch the Apache source tree with extensions provided with mod_ssl and configure Apache for the build process.

You will probably need to change a number of options in order to build Apache. The directory specified in the --with-apache switch should

netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
netsechacks-CHP-3-SECT-21.html
http://www.modssl.org

point to the directory that contains the Apache source code for the version that you are building. In addition, if you want to use a version
of OpenSSL that has not been installed yet, specify the location of its build tree with the-with-ssl switch. If you elect to do that, you
should configure and build OpenSSL in the specified directory before attempting to build Apache and mod_ssl. The --server-uid and
--server-gid switches are used to specify what user and group the web server will run under. Apache defaults to the iobody" account.
However, many programs that can be configured to drop their privileges also default to the nobody account; if you end up accepting
these defaults with every program, the nobody account can become quite privileged. So, it is recommended that you create a separate
account for every program that provides this option.

The remaining options enable and configure Apache's suEXEC. To provide the sSUEXEC functionality, Apache uses aSUID wrapper
program to execute users' scripts. This wrapper program makes several checks before it will allow a program to execute. One thing that
the wrapper checks is the UID of the process that invoked it. If it is not the account that was specified with the --suexec-caller option, then
execution of the user's script will abort. Since the SUEXEC wrapper will be called by the web server, this option should be set to the same
value as --server-uid. Additionally, since most privileged accounts and groups on a system usually all have a UID and GID beneath a
certain value, the sUEXEC wrapper will check to see if the UID or GID of the process invoking it is less than this threshold. For this to
work, you must specify the appropriate value for your system. In this example, Apache and mod_ssl| are being built on a Red Hat system,
which starts regular user accounts and groups at UID and GID 500. In addition to these checks, SUEXEC performs a multitude of other
checks, such as ensuring that the script is writable only by the owner, that the owner is not root, and that the script is not SUID or SGID.

After the configure script completes, change to the directory that contains the Apache source code and run make and make install. You
can run make certificates if you would like to generate an SSL certificate to test out your installation. You can also runmake certificate
TYPE=custom to generate a certificate signing request to be signed by either a commercial Certificate Authority or your own CA. See

Hack #45] if you would like to run your own Certificate Authority.
After installing Apache, you can start it by running this command:
lusr/local/apache/bin/apachect! startssl
If you want to start out by testing it without SSL, run this:
lusr/local/apache/bin/apacect| start
You can then verify that SUEXEC support is enabled by running this command:

grep suexec /usr/local/apachel/logs/error_log
[Thu Jan 1 16:48:17 2004] [notice] SUEXEC mechanism enabled (wrapper:
lusr/local/apache/bin/suexec)

Now add a Directory entry similar to this to enable CGI scripts for user directories:

<Directory /home/*/public_htmI>
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinkslfOwnerMatch Includes ExecCGl
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<LimitExcept GET POST OPTIONS PROPFIND>
Order deny,allow
Deny from all

</LimitExcept>

</Directory>

In addition, add this line to enable CGI scripts outside of the ScriptAlias directories:

AddHandler cgi-script .cgi
After you've done that, you can restart Apache by running this:
lusr/local/apache/bin/apachectl restart

Now test out SUEXEC with a simple script that runs the id command, which will print out information about the user the script is executed
as:

#1/bin/sh

echo -e "Content-Type: text/plain\r\in\r\n”

lusr/sbin/id

Put this script i i che/cgi-bin, name it suexec-test.cgi, and make it executable. Now enter the URL for the
script (i.e., pttp://webserver/cgi-bin/suexec-test.cq]) into your favorite web browser. You should see something like this:

uid=80(www) gid=80(www) groups=80(www)

As you can see, it is being executed as the same user that the web server runs as.
Now copy the script into a user's public_html directory:

$ mkdir public_html && chmod 711 ~/ ~/public_html

$ cp /usr/local/apache/cgi-bin/suexec-test.cgi .

After you've done that, enter the URL for the script (i.e., httg://webserver/~user/suexec-test.cg|) in your web browser. You should see

something similar to this:

uid=500(andrew) gid=500(andrew) groups=500(andrew)

In addition to handling scripts in users' private HTML directories, SUEXEC can also execute scripts as another user within a virtual host.
However, to do this, you will need to create all of your virtual host's directories beneath the web server's document root (i.e.,
lusr/local/apache/htdocs). When doing this, you can configure what user and group the script will execute as by using the User and
Group configuration directives within the VirtualHost statement.

For example:

<VirtualHost>

User myuser

Group mygroup

DocumentRoot /usr/local/apache/htdocs/mysite

</VirtualHost>

Unfortunately, SUEXEC is incompatible with mod_perl and mod_php because the modules run within the Apache process itself instead
of a separate program. Since the Apache process is running as a nonroot user it cannot change the UID under which the scripts
execute. SUEXEC works by having Apache call a special SUID wrapper (e.g., /usr/local/apache/bin/suexec) that can only be invoked by
Apache processes. If you care to make the security/performance trade-off by using SUEXEC but still need to run Perl scripts, you can do
so through the standard ~ CGl interface. Just as with Perl, you can also run PHP programs through the CGl interface, but you'll have to

http://webserver/cgi-bin/suexec-test.cgi
http://webserver/~user/suexec-test.cgi

create a php binary and specify it as the interpreter in all the PHP scripts you wish to execute through suEXEC. You can also execute

your scripts through mod_perl or mod_php by locating them outside the directories where sUEXEC will work.

Hack 51 Secure BIND

lisi

Lock down your BIND setup to help contain potential security problems.
Due to BIND's not-so-illustrious track record with regard to security, you'll probably want to spend some time hardening your setup if you
want to continue using it. One way to make running BIND a little safer is to run it inside a sandboxed environment. This is easy to do

with recent versions of BIND, since it natively supports running as a nonprivileged user within a chroot() jail. All you need to do is set up
the directory you're going to have it chroot() to, and then change the command you're using to starhamed to reflect this.

To begin, create a user and group to run named as (e.g., named). To prepare the sandboxed environment, you'll need to create the
appropriate directory structure. You can create the directories for such an environment within /named_chroot by running the following

commands:

mkdir /named_chroot

cd /named_chroot

mkdir -p dev etc/namedb/slave var/run

Next, you'll need to copy your named.conf and namedb directory to the sandboxed environment:

cp letc/named.conf /named_chroot/etc

cp -a /var/namedb/* /named_chroot/etc/namedb

This assumes that you store your zone files in /var/namedb. If you're setting up BIND as a secondary DNS server, you will need to make
the /named_chroot/etc/namedb/slave directory writable so thathamed can update the records it contains when it performs a domain
transfer from the master DNS node. You can do this by running a command similar to the following:

chown -R named:named /named_chroot/etc/namedb/slave

In addition, named will need to write its process ID (PID) file to/named_chroot/var/run, so you'll need to make this directory writable by
the named user as well:

chown named:named /named_chroot/var/run

Now you'll need to create some device files that named will need to access after it has called chroot():
cd /named_chroot/dev

#Is -la /dev/null /dev/random

crw-rw-rw- 1 root root 1, 3Jan 30 2003 /dev/null

crw-r--r-- 1root root 1, 8Jan 30 2003 /dev/random

#mknod nullc 13

mknod randomc 1 8

netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html
netsechacks-CHP-3-SECT-22.html

chmod 666 null random

You'll also need to copy your time zone file from /etc/localtime to /named_chroot/etc/localtime. Additionally, named usually uses /dev/log
to communicate its log messages to syslogd. Since this doesn't exist inside the sandboxed environment, you will need to tebyslogd to
create a socket that the chrooted named process can write to. You can do this by modifying yousyslogd startup command and adding-a
/named_chroot/dev/log to it. Usually you can do this by modifying an existing file iretc.

For instance, under Red Hat Linux you would edit/etc/sysconfig/syslogd and modify theSYSLOGD_OPTIONS line to read:
SYSLOGD_OPTIONS="-m 0 -a /named_chroot/dev/log"

Or if you're running FreeBSD, you would modify thesyslogd_flags line in/etc/rc.conf:

syslogd_flags="-s -a /named_chroot/dev/log"

After you restart syslogd, you should see a log socket in/fnamed_chroot/dev.

Now to startnamed all you need to do is run this command:

named -u named -t /named_chroot

Other tricks for increasing the security of your BIND installation include limiting zone transfers to your slave DNS servers and altering
the response to BIND version queries. Restricting zone transfers ensures that random attackers will not be able to request a list of all the
hostnames for the zones hosted by your name servers. You can globally restrict zone transfers to certain hosts by putting an
allow-transfer section within theoptions section in yournamed.conf.

For instance, if you wanted to restrict transfers on all zones hosted by your DNS server to only 192.168.1.20 and 192.168.1.21, you
could use an allow-transfer section like this:

allow-transfer {
192.168.1.20;
192.168.1.21;
h

If you don't want to limit zone transfers globally and instead want to specify the allowed hosts on a zone-by-zone basis, you can put the
allow-transfer section inside the zone section.

Before an attacker attempts to exploit a BIND vulnerability, they will often scan for vulnerable versions of BIND by connecting to name
servers and performing a version query. Since you should never need to perform a version query on your own name server, you can

modify the reply BIND sends to the requester. To do this, add a version statement to the options section in yournamed.conf.

For example:

version "SuperHappy DNS v1.5"

Note that this really doesn't provide extra security, but if you don't want to advertise what software and version you're running to the
entire world, you don't have to.

See Also

® The section "Securing BIND" inBuilding Secure Servers with Linux by Michael D. Bauer (O'Reilly)

Hack 52 Secure MySQL

52

Basic steps you can take to harden your MySQL installation.

MySQL (http://www.mvsql.con{), one of the most popular open source database systems available today, is often used in conjunction
with both the Apache web server and the PHP scripting language to drive dynamic content on the Web. However, MySQL is a complex
piece of software internally and, given the fact that it often has to interact both locally and remotely with a broad range of other programs,
special care should be taken to secure it as much as possible.

Some steps you can take are running MySQL in achrooted environment [Hack #10], running it as a nonroot user, and disabling
MySQL's ability to load data from local files. Luckily, none of these are as hard to do as they may sound. To start with, let's look at how to
chroot() MySQL.

First create a user and group for MySQL to run as. Next, you'll need to download the MySQL source distribution. After you've done that,
unpack it and go into the directory that it created. Run this command to build MySQL and set up its directory structure for chrooting:

$./configure --prefix=/mysql --with-mysqld-ldflags=-all-static && make

This configures MySQL to be installed in /mysql and statically links the mysqld binary. This will make setting up the chroot environment
much easier, since you won't need to copy any additional libraries to the environment.

After the compilation finishes, become root and then run these commands to install MySQL:

make install DESTDIR=/mysql_chroot && In -s /mysql_chroot/mysql /mysql

scripts/mysql_install_db

The first command installs MySQL, but instead of placing the files in /mysq|, it places them in/mysql_chroot/mysql. In addition, it creates
a symbolic link from that directory to /mysql, which makes administering MySQL much easier after installation. The second command
creates MySQL's default databases. If you hadn't created the symbolic link prior to running this command, themysqgl_install_db script
would have failed. This is because it expected to find MySQL installed beneath /mysgl. Many other scripts and programs will expect this,

too, so creating the symbolic link will make your life easier.

Now you need to set up the correct directory permissions so that MySQL will be able to function properly. To do this, run these
commands:

chown -R root:mysql /mysql

chown -R mysql /mysql/var

Now try running MySQL:

/mysql/bin/mysqld_safe&

Starting mysgld daemon with databases from /mysql/var

ps -aux | grep mysql | grep -v grep

root 10137 0.6 0.5 4156 744 pts/2 S 23:01 0:00 /bin/sh /mysql/bin/

mysqld_safe

netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
netsechacks-CHP-3-SECT-23.html
http://www.mysql.com

mysql 10150 7.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10151 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10152 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10153 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10154 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10155 0.3 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10156 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10157 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10158 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10159 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
Imysql/bin/mysqgladmin shutdown

040103 23:02:45 mysqld ended

[1]+ Done /mysql/bin/mysqgld_safe

Now that you know MySQL is working outside of its chroot environment, you can create the additional files and directories it will need to
work inside the chroot environment:

mkdir /mysql_chroot/tmp /mysql_chroot/dev

#chmod 1777 /mysql_chroot/tmp

#ls - /[dev/null

crw-rw-rw- 1 root root 1, 3Jan 30 2003 /dev/null

mknod /mysql_chroot/dev/null c 1 3

Now try running mysqld in the chrooted environment:

lusr/sbin/chroot /mysql_chroot /mysql/libexec/mysqld -u 100

Here the UID of the user you want mysqld to run as is specified with the-u option. This should correspond to the UID of the user created
earlier.

To ease management, you may want to modify the mysqld_safe shell script to chroot mysgld for you. You can accomplish this by finding
the lines where mysqld is called and modifying them to use the chroot program.

To do this, open up /mysgl/bin/mysqld_safe and locate block of lines that looks like this:

if test -z "$args"
then
$NOHUP_NICENESS $ledir/l$MYSQLD $defaults \

--basedir=$MY_BASEDIR_VERSION \

--datadir=$DATADIR $USER_OPTION \
--pid-file=$pid_file --skip-locking >> $err_log 2>&1
else
eval "$NOHUP_NICENESS $ledir/$MYSQLD $defaults \
--basedir=$MY_BASEDIR_VERSION \
--datadir=$DATADIR $USER_OPTION \
--pid-file=$pid_file --skip-locking $args >> $err_log 2>&1"
fi
Change them to look like this:
if test -z "$args"”
then
$NOHUP_NICENESS /usr/shin/chroot /mysql_chroot \
$ledir/$SMYSQLD $defaults \
--basedir=$MY_BASEDIR_VERSION \
--datadir=$DATADIR $USER_OPTION \
--pid-file=$pid_file --skip-locking >> $err_log 2>&1
else
eval "$NOHUP_NICENESS /usr/sbin/chroot /mysql_chroot \
$ledir/$SMYSQLD $defaults \
--basedir=$MY_BASEDIR_VERSION \
--datadir=$DATADIR $USER_OPTION \
--pid-file=$pid_file --skip-locking $args >> $err_log 2>&1"
fi
Now you can start MySQL by using themysqld_safe wrapper script, like this:
/mysql/bin/mysqld_safe --user=100
In addition, you may want to create a separate my.conf file for the MySQL utilities and server. For instance, irfetc/my.cnf you could

specify socket = /mysql_chroot/tmp/mysqgl.sock in the [client] section so you do not have to manually specify the socket every time you
run a MySQL-related program.

You'll also probably want to disable MySQL's ability to load data from local files. To do this, you can add set-variable=local-infile=0 to the
[mysqld] section of your/mysqgl_chroot/etc/my.cnf. This disables MySQL's LOAD DATA LOCAL INFILE command. Alternatively, you can
disable it from the command line by using the --local-infile=0 option.

Hack 53 Share Files Securely in Unix

53

Use SFS to help secure your remote filesystems.

If you are using Unix systems and sharing files on your network, you are most likely using NFS. However, there are a lot of security
problems, not only with individual implementations, but also with the design of the protocol itself. For instance, if a user can spoof an IP
address and mount an NFS share that is only meant for a certain computer, she essentially has root access to all the files on that share.
In addition, NFS employs secret file handles that are used with each file request. Since NFS does not encrypt its traffic, this makes it
very easy for attackers to guess these file handles. If they guess correctly, they essentially get total root access to the remote filesystem.

SFS 4 ,the Self-certifying File System, fixes all of these problems by employing a drastically different design

philosophy. NFS was created with the notion that you can (and should) trust your network. SFS has been designed from the beginning
with the idea that no network should ever be trusted until it can definitively prove its identity. To accomplish this, SFS makes use of
public keys on both the client and server ends. It uses these keys to verify the identity of servers and clients, and also provides access
control on the server side. One particularly nice side effect of such strong encryption is that SFS provides a much finer grained level of
access control than NFS. With NFS, you are limited to specifying which hosts can or cannot connect to a given exported filesystem. In
order to access an SFS server, a user must create a key pair and then authorizes the key by logging into the SFS server and registering
the key manually.

Building SFS can take up quite a lot of disk space. Before you attempt to build SFS, make sure you have at least 550MB of disk space
avai i n which you'll be compiling SFS. You will also need to make sure that you have GMP
(http://www.swox.com/gmpj), the GNU multiple precision math library, installed. Before you begin to build SFS, you will also need to
create a user and group for SFS's daemons. By default, these are both called sfs. If you want to use a different user or group, you can

do this by passing options to the configure script.

Once your system is ready, you can build SFS by simply typing this command:

$./configure && make

Once that process is finished, become root and type make install.

If you want to use a user and group other than sfs, you can specify these with the--with-sfsuser and --with-sfsgroup options:
$./configure --with-sfsuser=nobody --with-sfsgroup=nobody

Building SFS can take quite a bit of time, so you may want to take the opportunity to enjoy a cup of coffee, a snack, or maybe even a full
meal, depending on the speed of your machine and the amount of memory it has.

After SFS has finished building and you have installed it, you can test it out by connecting to the SFS project's public server. You can do
this by starting the SFS client daemon, sfscd , and then changing to the directory that the SFS server will be mounted under:

sfscd

cd /sfs/@sfs.fs.net,uzwadtctbjb3dg596waiyru8cx5kb4an
#ls

CONGRATULATIONS cvs pi0 reddy sfswww

cat CONGRATULATIONS

netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
netsechacks-CHP-3-SECT-24.html
http://www.fs.net
http://www.swox.com/gmp/

You have set up a working SFS client.
#

sfscd automatically creates the /sfs directory and the directory for the SFS server. Note that SFS relies on the operating system's
portmap daemon and NFS mounter; you'll need to have those running before running the client.

To set up an SFS server, first log into your server and generate a public and private key pair:

mkdir /etc/sfs

sfskey gen -P /etc/sfs/sfs_host_key

sfskey will then ask you to bang on the keys for a little while in order to gather entropy for the random number generator.

Now you will need to create a configuration file for sfssd, the SFS server daemon. To do this, create a file ietc/sfs called sfsrwsd_config,
which is where you configure the filesystem namespace that SFS will export to other hosts.

If you wanted to export the /home filesystem, you would create a configuration file like this:

Export /var/sfs/root /
Export /nome /home
Then you would need to create the /var/sfs/root and /var/sfs/home directories. After that, you would create NFS exports so that thehome

filesystem could be mounted under /var/sfs/root/home. These are then reexported bysfssd. The NFS exports need only to allow mounting
from localhost.

Here's what /etc/exports looks like for exporting /home:

Ivar/sfs/root localhost(rw)

/home localhost(rw)

This exports file is for Linux. If you are running the SFS server on another operating system (such as Solaris or OpenBSD), consult your
operating system's mountd manpage for the proper way to add these shares.

Now start your operating system's NFS server. Once NFS has started, you can then start sfssd. After attempting to connect to the sfssd
server, you should see some messages in your logs like these:

Dec 12 12:29:14 colossus : sfssd: version 0.7.2, pid 3503

Dec 12 12:29:14 colossus : rexd: version 0.7.2, pid 3505

Dec 12 12:29:14 colossus : sfsauthd: version 0.7.2, pid 3506

Dec 12 12:29:14 colossus : rexd: serving @colossus.nnc,fd82m36uwxjém3q8tawp56ztgsvu7g77

Dec 12 12:29:14 colossus : rexd: spawning /usr/local/lib/sfs-0.7.2/ptyd

Dec 12 12:29:15 colossus rpc.mountd: authenticated mount request from

localhost.localdomain: 715 for /var/sfs/root (/var/sfs/root)

Dec 12 12:29:15 colossus rpc.mountd: authenticated mount request from

localhost.localdomain:715 for /home (/home)

Dec 12 12:29:15 colossus : sfsauthd: serving

@colossus.nnc,fd82m36uwxjém3q8tawp56ztgsvu7g77

Dec 12 12:29:16 colossus : sfsrwsd: version 0.7.2, pid 3507

Dec 12 12:29:16 colossus : sfsrwsd: serving
Isfs/@colossus.nnc,fd82m36uwxjém3q8tawp56ztgsvu7g77
The last log entry shows the path that users can use to mount your filesystem. Before mounting any filesystems on your server, users will

have to create a key pair and register it with your server. They can do this by logging into your server and running the sfskey
command:

$ sfskey register
sfskey: /home/andrew/.sfs/random_seed: No such file or directory
sfskey: creating directory /home/andrew/.sfs
sfskey: creating directory /home/andrew/.sfs/authkeys
Ivar/sfs/sockets/agent.sock: No such file or directory
sfskey: sfscd not running, limiting sources of entropy
Creating new key: andrew@colossus.nnc#1 (Rabin)
Key Label: andrew@colossus.nnc#l
Enter passphrase:

Again:

sfskey needs secret bits with which to seed the random number generator.
Please type some random or unguessable text until you hear a beep:
DONE

UNIX password:

colossus.nnc: New SRP key: andrew@colossus.nnc/1024

wrote key: /home/andrew/.sfs/authkeys/andrew@colossus.nnc#1

Alternatively, if you already have an existing key pair on another server, you can type sfskey user@otherserver instead. This will retrieve
the key from the remote machine and register it with the server you are currently logged into.

Now that you have registered a key with the server, you can log into the SFS server from another machine. This is also done with the
sfskey program:

$ sfskey login andrew@colossus.nnc
Passphrase for andrew@colossus.nnc/1024:
SFS Login as andrew@colossus.nnc

Now try to access the remote server:

$ cd /sfs/@colossus.nnc,fd82m36uwxjém3q8tawp56ztgsvu7g77

$ls

home

As you can see, SFS is a very powerful tool for sharing files across a network, and even across the Internet. Not only does it provide
security, but it also provides a unique and universal method for referencing a remote host and its exported filesystems. You can even put
your home directory on an SFS server, simply by linking the universal pathname of the exported filesystem/home.
|II!I|III||I'||||
||||| AL LAREAN

Chapter 4. Logging

acks #54-6(

lSection 54. Run a Central Syslog Servell

bection 55. Steer Sysloc]

lSection 56. Integrate Windows into Your Syslog Infrastructurel

lSection 57. Automatically Summarize Your Loqsl

bection 58. Monitor Your Logs Automaticall\j

lSection 59. Aggregate Logs from Remote Sitesl

lSection 60. Log User Activity with Process Accountincl

netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html
netsechacks-CHP-4.html

Hacks #54-60

Keeping logs is a very important aspect of maintaining the security of your network, as logs can assist in everything from alerting you to
an impending attack to debugging network problems. After an incident has occurred, good logs can help you track down how the attacker
got in, fix the security hole, and figure out which machines were affected. In addition, logs can help with tracing the attack back to its
source, so you can identify or take legal action against the intruder. In short, log files are worth their weight in gold (just pretend that bits
and bytes weigh a lot). As such, they should be given at least as much protection as any other information that's stored on your
servers—even the patent schematics for your perpetual motion machine.

This chapter deals mostly with various ways to set up remote logging, whether it be a simple central syslogd that your servers are
logging to, setting up your Windows machines to send to a syslogd, or using syslog-ng to collect logs from remote sites through an
encrypted TCP connection. Using these methods, you can ensure that your logs are sitting safely on a dedicated server that's running
minimal services, to decrease the chance that the logs will be compromised.

Once you have all your logs collected in a central place, what can you do with them? This chapter also covers ways to summarize your
logs into reports that are easy to read and understand, so you can quickly spot the most pertinent information. If that's not fast enough
for you, you'll also learn how to set up real-time alerts that will notify you as soon as a critical event occurs. In some circumstances,
responding immediately to an event—rather than waiting around for it to end up in a report that you read the next morning—can save
hours of effort.

netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html
netsechacks-CHP-4-SECT-1.html

netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html
netsechacks-CHP-4-SECT-2.html

Hack 54 Run a Central Syslog Server

lisa

Keep your logs safe from attackers by storing them remotely.

Once an intruder has gained entry into one of your systems, how are you to know when or if this has happened? By checking your logs,
of course. What if the intruder modified the logs? In this situation, centralized logging definitely saves the day. After all, if a machine is
compromised but the log evidence isn't kept on that machine, it's going to be much more difficult for the attacker to cover his tracks. In
addition to providing an extra level of protection, it's also much easier to monitor the logs for a whole network of machines when they're
all in one place.

To quickly set up a central syslog server, just start your syslogd with the switch that causes it to listen for messages from remote
machines on a UDP port.

This is done under Linux by specifying the -r command-line option:
lusr/sbin/syslogd -m O -r

Under FreeBSD, run syslogd without the -s command-line option:
lusr/sbin/syslogd

The -s option causes FreeBSD'ssyslogd to not listen for remote connections. FreeBSD'ssyslogd also allows you to restrict what hosts it
will receive messages from. To set these restrictions, use the -a option, which has the following forms:

ipaddr/mask[:service]
domain[:service]
*domain[:service]

The first form allows you to specify a single IP address or group of IP addresses by using the appropriate netmask. The service option
allows you to specify a source UDP port. If nothing is specified, it defaults to port 514, which is the default for the syslog service. The
next two forms allow you to restrict access to a specific domain name, as determined by a reverse lookup of the IP address of the
connecting host. The difference between the second and third is the use of the * wildcard character, which specifies that all machines
ending in domain may connect.

Moving on, OpenBSD uses the -u option to listen for remote connections:
lusr/sbin/syslogd -a /var/empty/dev/log -u

whereas Solaris's syslogd uses -T:

lusr/sbin/syslogd -T

Now let's set up the clients. If you want to forward all logging traffic from a machine to your central log host, simply put the following in
your /etc/syslog.conf:

*x @loghost

You can either make this the only line in the configuration file, in which case messages will be logged only to the remote host, or add it to
what is already there, in which case logs will be stored both locally and remotely for safekeeping.

One drawback to remote logging is that the stock syslogd for most operating systems fails to provide any measure of authentication or
access control with regard to who may write to a central log host. Firewalls can provide some protection, keeping out everyone but those
who are determined to undermine your logging infrastructure; however, someone who has already gained access to your local network

can easily spoof his network connection and bypass any firewall rules that you set up. If you've determined that this is a concern for your

network, take a look at [Hack #59], which discusses one method for setting up remote logging using public-key authentication and
SSL-encrypted connections.

Hack 55 Steer Syslog

fliss

Make syslog work harder, and spend less time looking through huge log files.

The default syslog installation on many distributions doesn't do a very good job of filtering classes of information into separate files. If
you see a jumble of messages from Sendmail, sudo, BIND, and other system services in /var/log/messages, then you should probably
review your /etc/syslog.conf.

There are a number of facilities and priorities that syslog can filter on. These facilities include auth, auth-priv, cron, daemon, kern, lpr,
mail, news, syslog, user, uucp, andlocalO through local7. In addition, each facility can have one of eight prioritiesdebug, info, notice,
warning, err, crit, alert, and emerg.

Note that applications decide for themselves at what facility and priority to log (and the best apps let you choose), so they may not be
logged as you expect. Here's a sample /etc/syslog.conf that attempts to shuffle around what gets logged where:

auth.warning /var/log/auth

mail.err Ivar/log/maillog

kern.* Ivar/log/kernel

cron.crit /var/log/cron
*.err;mail.none Ivarl/log/syslog
*.info;auth.none;mail.none /var/log/messages
#*.=debug I/var/log/debug
local0.info Ivarllog/cluster

locall.err /var/log/spamerica

All of the lines in this example will log the specified priority (or higher) to the respective file. The special priority none tells syslog not to
bother logging the specified facility at all. The localO through local7 facilities are supplied for use with your own programs, however you
see fit. For example, the /var/log/spamerica file fills withlocall.err (or higher) messages that are generated by our spam processing job.
It's nice to have those messages separate from the standard mail delivery log (which is in /var/log/maillog).

The commented *.=debug line is useful when debugging daemonized services. It tells syslog to specifically log only debug priority
messages of any facility, and generally shouldn't be running (unless you don't mind filling your disks with debug logs). Another approach
is to log debug information to a fifo. This way, debug logs take up no space, but they will disappear unless a process is watching it. To
log to a fifo, first create it in the filesystem:

mkfifo -m 0664 /var/log/debug

Then amend the debug line in syslog.conf to include a|, like this:

netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html
netsechacks-CHP-4-SECT-3.html

*.=debug |/var/log/debug

Now debug information is constantly logged to the fifo and can be viewed with a command like less -f /var/log/debug. A fifo is also handy
if you want a process to constantly watch all system messages and perhaps notify you via email about a critical system message. Try
making a fifo called /var/log/monitor, and add a rule like this to yousyslog.conf:

* ¥ |/ivar/log/monitor

Now every message (at every priority) is passed to the /var/log/monitor fifo, and any process watching it can react accordingly, all without
taking up any disk space.

Mark Who?

Do you notice a bunch of lines like this invar/log/messages?

Dec 29 18:33:35 catlin -- MARK --

Dec 29 18:53:35 catlin -- MARK --

Dec 29 19:13:35 catlin -- MARK --

Dec 29 19:33:35 catlin -- MARK --

Dec 29 19:53:35 catlin -- MARK --

Dec 29 20:13:35 catlin -- MARK --

Dec 29 20:33:35 catlin -- MARK --

Dec 29 20:53:35 catlin -- MARK --

Dec 29 21:13:35 catlin -- MARK --

These are generated by the mark functionality of syslog, as a way of "touching base" with the system, so that you can (theoretically) tell if
syslog has unexpectedly died. Most times, this only serves to fill your log files, and unless you are having problems with syslog, you
probably don't need it. To turn this off, pass the -m 0 switch to syslogd (after first killing any running syslogd), like this:

killall syslogd; /usr/sbin/syslogd -m O

If all of this fiddling about with facilities and priorities strikes you as arcane Unix speak, you're not alone. These examples are provided
for systems that include the default (and venerable) syslogd daemon. If you have the opportunity to install a newsyslogd, you will likely

want to look into syslog-ng . This new implementati id allows much more flexible filtering and a slew of new features. We take
a look at some of what is possible with syslog-ng in[Hack #59

—Rob Flickenger

netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html
netsechacks-CHP-4-SECT-4.html

Hack 56 Integrate Windows into Your Syslog Infrastructure

o6

Keep track of all of your Windows hosts the Unix way.

It's hard enough to keep tabs on all the Event Logs for all your Windows hosts, but it's even more difficult if your propensities
predispose you to Unix. After all, Unix systems keep their logs in plain text files that are easily searchable with common shell commands.
This is a world apart from the binary logs that Windows keeps in its Event Log. Wouldn't it be nice if you could have your Windows
machines work more like the Unix machines that you're used to? Someone has already thought of it and has written a free Windows
service that lets us do just that.

Ntsyslog (httg://ntsyslog.sourceforge.ne;l) is a freely available service written for Windows that allows you to log to a remotsyslogd. To
set it up, just download and extract the ZIP file, and then copy the NTSyslogCtrl.exe and ntsyslog.exe files into your

%SystemRoot%\system32 directory.
To install the service, open up a command prompt and run this:
C:\> ntsyslog -install

To verify that it was installed, open up the Administrative Tools Control Panel a double-click the Services icon. Then scroll
around and look for the NTsyslog service. You should see something similar to Figure 4-1

Figure 4-1. The Services Control Panel applet with the NTsyslog service shown

S -0 x|
Artion Weew m O F O »
Tiee | Mame | Desciption. | St [Stwro Tepe [Logonas | <]
% Sarvras [Local %IFSEE Palicy dosrt M arsgss IP.. Stadad Buta-alic Locals ysiem
%I ogical Disk Marager Logical D G kortesd Aupomakic Locats yalem
% Lol Disk Marag .. Sdmisiairsh W arual Localoysism
!EHEH"IE Debug Ma., Support: ko Sharhed Bupomatic LocalSuslem
'% Messenge Sends ad . Slahed By el Localsuslem
iy MGABGERE Staned Hupomalic LocalSysiem
#fs Het Logon Suppoits pa.. Ianisal Localsvsiem
iy Hethdenting Aemale .. Allows auh Manieal Locals psiem
'% Wbtk Connaclicie Mars)ss o st b mrisal Lz a5 s
% Hebwmk: DOE Prowndes ne.... Harual LocalSusiem
g Hetwoonk, DDE DSDM Marage: =, Manial Locatsvstem =
%Hl:rl:m Brlivous Sul... HandezsMo.. Sheabsd Bupamalic Localsysiem
s NT LM Securiy Sup . Provide e, Hanial LicalSpstem
T
lrEF‘:lIl:ll'rn.:ﬁ:n: Logs 2., Configures anual LocalSyslem
'%I"l.uan:ll"h:.l Marsdss d.. Sheadad Bupa-alic Localousiem
%P:llaﬂ: Media Sena.,, Aeneves th Manual Locals yslem
s Pred Spocke Loads flest.. Stated Automalic Locativsiem
iy Protecied Sioiage Paovides m Started Auko=atic Localspsiem
% ns RSVP Panaides na Wanial Loz als pten
%I’Iemulz Bocmss Bk, Ciesles sc. Harual Local5usiem ;l

By default, NTsyslog installs itself to run under the Local System account, which has complete access to the resources of the local host.
This is obviously not the optimal configuration, since the NTsyslog service needs access to the Eve. d nothing else. You can
change this by double-clicking the NTsyslog line in the Services Control Panel applet as shown in Eigure 4-3. This will bring up the

http://ntsyslog.sourceforge.net/

Properties dialog for the service. However, before you do this, you might want to create an account specifically for the NTsyslog service
that has only the necessary privileges for NTsyslog to run properly. To do this, go back to the Administrative Tools window and
@mle-click the Computer Management icon. After clicking the Local Users and Groups icon, you should see something similar to

Figure 4-2. The Computer Management Control Panel applet with the Users folder shown

= =101 =]
e Yen o mFE DG

Tex | e |

g [e TR T | —
Wy Sorter Toohy g

" Pt Wireid
g Carriar Iniromaion
[e S
Ehusar F piriars
[emvioe Marages
. j Local bz and Smum
=l Benrage
) Uzk s
[Db Dehagresvins
= Lepeallnaa
v gl Parwzrootin Srsage
¥ Seramee aed Apckealions

Right-click the Users folder and click New User. You should now see a dialog where you can enter the information for the new user.
Enter information similar to that shown in , and make sure you pick a strong password.

Figure 4-3. Creating a new user for NTsyslog

1l.x]

Liser name: |HT spzhog

Full name:; |

De=zcrption: |Fh:n'-ut|: syilog sevice sccoun!
Pmd: |!nr'|-m"n|

-
[+ Uger cannol change password

[Accoust iz dizablad

Crgats g |

Now we need to give our new user the rights it needs to do its job. Locate the Local Security Policy icon in the Administrative Tools
window and double-click it. Click the Local Policies folder in the left pane of the Local Security Settings wi then double-click the
User Rights Assignment folder in the right pane of the window. You should now see something similar to Eigure 4-4.

Figure 4-4. Viewing the User Rights Assignments settings in the Local Security Settings
Control Panel applet

F =lol x|
golon Wew 4 L el
Tomm | Précy | Local Setting | Enectiv Sating =
_H e — _:_:I.ﬁ;uul. Fai onngrhin i Fa et . Eviansoris e Poe .. Evaipor Ll oii: Pow
#_3 hecourl Policie: AE] Aol 24 et of the ppeisling apsten
-1 3 Locs Pokices UZ] M) v i coic 1 Bormadn
v 3 Budi Policy vn] Bawk vp Meg and diechonss B o O pesegioes & Backun Opessioes A,
. Lk Fighis: At _] D Hiveaiol haching E vangorii |t Prae Eviipare Ll piie P
+ D Secuiy Dplisn i) e The: gysbamn e Proases Useisbdnine .. Power Uern Sadves
4] Pulbhz Ese Pobci: _:_]._.'\.-H! a pagelia Lrrarirainee drbranchal e
4 B P Sacuiy Poles or (5 Coanle a kobn obiact
2] Comsle glntesl obgci ducraradsdoee SERV didranchalnee SERY
i Comaber pusareint shaied objects
12 Dty prograrss Admiriuslong ffmirish ol org
GiE] v st L0 T e onpues Bam L.
iiz) [harg kg 22 & bath ok
:_] Dasy kg i & sorens
£38] Dreerge koo sl
:_] Erualie covgroket aral uier @czouril
fiz] Froros shuldown lom & smoks plem Godmnidusios Bajerarmshial ooy

_] Dacwile sy sz
o] npessomate & chent sl sulkendc.. Adminicheios SERY. Adminishsios SERV..

_] i i LT Akt ialsie Agdirasial oid
g et okedulng oronky Ardmenialoes Saderirmshial s
_-_J.I'I.!I‘l and urksad davica diveait B v Ll i e Agdrarastigl s
i) Lock page: n mevon
35| Log an & & batchch FLUKDE At anchesn * FLUKDE Fuanckmy
(0] ez o i v R R R B B iR o o L]
o] | 2] [ZZlngon ncaly didmmithalor Backy | ddmesch el o Bachs =

The access right that we are logking for is "Manage auditing and security log". Locate this in the Policy list and double-click it. You should
then see a dialog like ‘.

Figure 4-5. Settings for the "Manage auditing and security log" user right

2| x|
: 1 Manage audbng and secunty log

_ Local Effective
Azsoned To Pobcy Setting Policy Setting
Bdmintstratons ﬂ‘]' O
*5-1.5-21-1606960848-261903753-72 [+ 1

2455431005

If domain-level policy setlings aie defined. they overnde local policy sstlings

114 Cancel

Click the Add button, select the name of the user from the list, and then click OK.

We have the account and we've given it the proper access rights, so let's go back to the Services wi and double-click the NTsyslog
service to bring up its Properties dialog. Click the Log On tab and you should see something like Figure 4-6

Figure 4-6. The Log On tab for the NTsyslog service Properties dialog

2=
Gerersl LoogOn] Flﬁ:uvu_l.l] Dependencies
Liog on a3
" Local System account
[Allow service bo nbetact with desklop

" Thiz sccount: | |
|
|

ow can ensble o disshls this seiace for the hardwaie profles isted below

Hardware Pralile Semice
Pialil=1 Enabled
| Diizabls |
0k Cancel |

Click the "This account” radio button to enable the Browse... button. Now click the Browse... button and locate and select the account
that you created. Then click the OK button. You should now see the account name in the text box to the right of the "This account" radio
button. Enter the password you set for the account and confirm it. After clicking the Apply button, a dialog will appear confirming that the
Log On As A Service right has been granted to the account. Click the OK button, then click the General tab in the Properties dialog. To
start the service as the new user that you created, click the Start button. If you get an error dialog, you will need to change the ACL for
the ntsyslog.exe file and add Read and Execute permissions for the new account.

Now we'll use the included configuration program to configure the settings particular to NTsyslog. You can use this to set up a primary
and secondary syslogd to send messages to, as well as the types of Event Log events to send and their mappings to syslog facilities and
severities. You can also start gnd stop the NTsyslog service from this screen. To use the configuration program, run NTSyslogCtrl.exe.
You should see a window like ..

Figure 4-7. The NTSyslog configuration program

Service slabes on compuler <Local Machines

g Senaca g shopped.

Selact Compuked | Shart Service
Corifigusation .,
Syzlog Dasmons | Selact Suslog Daemeoe seavers for fonwaided events.

Iz the drop down menu below bo select wihich EventLog to foswand

Appication S O PR

Claze | dboul |

To start the service, click the Start Service button; to stop the service, click the Stop Service button. Clicking the Syslog Daemons button
brings up the dialog shown in

Figure 4-8. Specifying a primary and backup syslog server

Entar Syslog Dasmons [P Addiesses bo which foewand events..

Prmary Syslog Daemon - ||Dgh-:-3|
Aegured

Backup Spslog Dasmon |
Leave blank feld if pow don'l have & backup Ewvent

Il st ceaver.

LCancsl

Again, this is pretty straightforward. Just put in the host you want to log to, and if you have a secondary syslog host, put that in the
appropriate field.

The most difficult part of the configuration is setting up the mappin f :f Ilf jvent Log entry types to the syslog facilities and severity
levels, but even this is fairly easy. In the drop-down list (as seen injFi ure 4-1) you can select between the Application, Security, and
System Event Logs. To configure one, simply select it in the drop-down list and click the EventLog button. If you select the Security log
and click the EventLog button, you should see something similar to.

Figure 4-9. Mapping Security Event Log entries to syslog facilities and severities

x|
Select Secunby Log events bo fonwand
Faciihy Sevenhy
[Fomwaid Infamation Events. |]7] user =[(1] alest -
I Forvand Waming Events [1] uzen | |11] alest =
W Formard Erot Evenits. [1] usges | |[1] alest -
™ Forward Audt Success Events ||7] user RIEET =
i Fonward Audk Failure Events. ||7) uzer =| 111 alest -
Sed default walues
Cancel [1]4

To enable the forwarding of a particular type of event, click the checkbox next to it. Using the drop-down listboxes, you can also
configure the facility and severity mappings for each type. Since this is the security log, you should probably pick one of the security/auth
syslog facilities. For the severity, choose something that sounds similar to the Event Log type. For example, | selected (4)security/authl
and (6)information for the Information type for the Security Event Log. You could, however, pick a facility and severity that's not used on

any of your Unix servers,_and have your syslogd log all Windows events to a common file separate from your Unix logs. Of course, if
you're using syslog-ng [Hack #59], you can use any facility you like and filter out your Windows hosts by IP address.

Once you have it working, try logging in and out a few times using an incorrect password so that you can see that everything is working.
If it is, you should see login failure messages similar to this:

Oct 29 17:19:04 plunder security[failure] 529 NT AUTHORITYWSYSTEM Logon Failure:
Reason:Unknown user name or bad password User Name:andrew Domain:PLUNDER Logon Type:2
Logon Process:User32 Authentication Package:Negotiate Workstation Name:PLUNDER

One of the best things about doing this is that now you can use the wealth and flexibility of Unix log-monitoring tools to help monitor all
your Windows systems.

Hack 57 Automatically Summarize Your Logs

E HAGK
Wade through that haystack of logs to find the proverbial needle.

If you're logging almost every piece of information you can from all services and hosts on your network, no doubt you're drowning in a

sea of informat,gu_ﬁumﬂ&n_ajreast of the real issues affecting your systems is summarizing your logs. This easy with the
logwatch tool (pttp://www.logwatch.ord).

Logwatch analyzes your system logs over a given period of time and automatically generates reports, and it can easily be run froomon so
that it can email you the results. Logwatch is available with most Red Hat Linux distributions. You can also download RPM packages
from the project's web site if you are using another RPM-based Linux distribution.

To compile logwatch from source, you can download the source code package. Since it is a script there is no need to compile anything.
Thus installing it is as simple as copying the logwatch script to a directory.

You can install it by running commands similar to these:

tar xfz logwatch-5.0.tar.gz

cd logwatch-5.0

mkdir /etc/log.d

#cp -R conf lib scripts /etc/log.d

You can also install the manpage and, for added convenience, create a link from the logwatch.pl script to /usr/sbin/logwatch:
cp logwatch.8 /usr/share/man/man8

(cd /usr/sbin && \

In -s ../../etc/log.d/scripts/logwatch.pl logwatch)

Running the following command will give you a taste of the summaries logwatch creates:

#logwatch --print | less
B A LogWatch 4.3.1 (01/13/03) i #HHHHIHHHHHH
Processing Initiated: Sat Dec 27 21:12:26 2003
Date Range Processed: yesterday
Detail Level of Output: 0
Logfiles for Host: colossus

BHH B R R R R R R R R

netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
netsechacks-CHP-4-SECT-5.html
http://www.logwatch.org

Users logging in through sshd:

andrew logged in from kryten.nnc (192.168.0.60) using password: 2 Time(s)

HEHHHHHHEHEHH T LogWatch End #HHHHEHH I

If you have an /etc/cron.daily directory, you can simply make a symbolic link from thelogwatch.pl script to /etc/cron.daily/logwatch.pl, and
the script will be run daily. Alternatively, you can create an entry in root's crontab, in which case you can also modify logwatch's behavior
by passing it command-line switches. For instance, you can change the email address that logwatch sends reports to by using the
--mailto command-line option. They are sent to the local root account by default, which is probably not what you want.

Logwatch supports most standard log files without any additional configuration, but you can add support for any type of log file. To do
this, you first need to create a logfile group configuration for the new file type in /etc/log.d/conf/logfiles. This file just needs to contain an
entry pointing logwatch to the lodfile for the service and another entry specifying a globbing pattern for any archived log files for that
service.

For example, if you had a service calledmyservice, you could create/etc/log.d/conf/logfiles/myservice.conf with these contents:

LogFile = /var/log/myservice
Archive = /var/log/myservice.*

Next, you need to create a service definition file. This should be called /etc/log.d/conf/services/myservice.conf and should contain the
following line:

LogFile = myservice

Finally, since logwatch is merely a framework for generating log file summaries, you'll also need to create a script in
letc/log.d/scripts/services called myservice. When logwatch executes, it will strip all time entries from the logs and pass the rest of the log
entry through standard input to the myservice script. Therefore, you must write your script to read from standard input, parse out the
pertinent information, and then print it to standard out.

This just scratches the surface of how to get logwatch running on your system. There is a great deal of information in the
HOWTO-Make-Filter, which is included with the logwatch distribution.
[l |||||'||||
||||| AL LAREAN

Hack 58 Monitor Your Logs Automatically

liss

Use swatch to alert you to possible problems as they happen.

Automatically generated log file summaries are fine for keeping abreast of what's happening with your systems and networks, but if you
want to appen, you'll need to look elsewhere. One tool that can help keep you informed in real time is
swatch (http://swatch.sourceforge.nef), the " Simple WATCHer."

Swatch is a highly configurable log file monitor that can watch a file for user-defined triggers and dispatch alerts in a variety of ways. It
consists of a Perl program, a configuration file, and a library of actions to take when it sees a trigger in the file it is monitoring.

To install swatch, download the package, unpack it, and go into the directory that it creates. Then run these commands:
perl Makefile.PL
make && make install

Before swatch will build, the Date::Calc , Date::Parse, File::Tail, and Time::HiRes Perl CPAN modules must be installed. If you get an
error message like the following when you run perl Makefile.PL, then you will need to install those modules:

Warning: prerequisite Date::Calc 0 not found.

Warning: prerequisite Date::Parse 0 not found.

Warning: prerequisite Time::HiRes 1.12 not found.

Writing Makefile for swatch

If you already have Perl's CPAN module installed, simply run these commands:

perl -MCPAN -e "install Date::Calc"

perl -MCPAN -e "install Date::Parse"

perl -MCPAN -e "Time::HiRes"

By default, swatch looks for its configuration in a file called.swatchrc in the current user's home directory. This file contains regular
expressions to watch for in the file that you are monitoring with swatch. If you want to use a different configuration file, telswatch by
using the -c command-line switch.

For instance, to use /etc/swatch/messages.conf to monitor /var/log/messages, you could invoke swatch like this:

swatch -c /etc/swatch/messages.conf -t /var/log/messages

The general format for entries in this file is the following:

watchfor /<regex>/
<action1>

[action2]

netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
netsechacks-CHP-4-SECT-6.html
http://swatch.sourceforge.net

[action3]

Alternatively, you can ignore specific log messages that match a regular expression by using the ignore keyword:
ignore /<regex>/
You can also specify multiple regular expressions by separating them with the| character.

Swatch is very configurable in what actions it can take when a string matches a regular expression. Some useful actions that you can
specify in your .swatchrc are echo, write, exec, mail, pipe, and throttle.

The echo action simply prints the matching line to the console; additionally, you can specify what text mode it will use. Thus, lines can be
printed to the console as bold, underlined, blinking, inverted, or colored text.

For instance, if you wanted to print a matching line in red, blinking text, you could use the following action:
echo blink,red

The write action is similar to the echo action, except it does not support text modes. It can, however, write the matching line to any
specified user's TTY:

write user.user2:...
The exec action allows you to execute any command:

exec <command>

You can use the $0 or $* variables to pass the entire matching line to the command that you execute$1 to pass the first field in the line,
$2 for the second, and so on. So, if you wanted to pass only the second and third fields from the matching line to the command
mycommand, you could use an action like this:

exec "mycommand $2 $3"

The mail action is especially useful if you have an email-enabled or text messaging-capable cell phone or pager. When using thenail
action, you can list as many recipient addresses as you like, in addition to specifying a subject line. Swatch will send the line that
matched the regular expression to these addresses with the subject you set.

Here is the general form of the mail action:
mail addresses=address:address2:...,subject=mysubject

When using the mail action, be sure to escape the@ characters in the email addresses (i.e.,@ becomes\@). If you have any spaces in
the subject of the email, you should escape those as well.

In addition to the exec action, swatch can execute external commands with thepipe action as well. The only difference is that instead of
passing arguments to the command, swatch will execute the command and pipe the matching line to it. To use this action, just put thaipe
keyword followed by the command you want to use.

Alternatively, to increase performance, you can use the keep_open option to keep the pipe to the program open untilswatch exits or
needs to perform a different pipe action:

pipe mycommand,keep_open

One problem with executing commands or sending emails whenever a specific string occurs in a log message is that sometimes the
same log message may be generated over and over again very rapidly. Clearly, if this were to happen, you wouldn't want to get paged or
emailed 100 times within a 10-minute period. To alleviate this problem, swatch provides the throttle action. This action lets you suppress
a specific message or any message that matches a particular regular expression for a specified amount of time.

The general form of the throttle action is:

throttle h:m:s

The throttle action will throttle based on the contents of the message by default. If you would like to throttle the actions based on the
regular expression that caused the match, you can add a ,use=regex to the end of yourthrottle statement.

Swatch is an incredibly useful tool, but it can take some work to create a goodswatchrc. The best way to figure out what to look for is to
examine your log files for behavior that you want to monitor closely.

Hack 59 Aggregate Logs from Remote Sites

55

Integrate collocated and other remote systems or networks into your central syslog infrastructure.

Monitoring the logs of a remote site or just a collocated server can often be overlooked when faced with the task of monitoring activity
on your local network. You could use the traditional syslog facilities to send logging information from the remote network or systems, but
since the syslog daemon uses UDP for sending to remote systems, this is not the ideal solution. UDP provides no reliability in its
communications, and so you risk losing logging information. In addition, the traditional syslog daemon has no means to encrypt the traffic
that it sends, so your logs might being viewable by anyone with access to the intermediary networks between you and your remote hosts
or networks.

To get around these issues, you'll have to look beyond the syslog i i em and find a
replacement. One such replacement syslog daemon is syslog-ng (http://www.balabit.com/products/syslog_ngj). syslog-ng is not only a
fully functional replacement for the traditional syslog daemon, but also adds flexible message filtering capabilities, as well as support for

logging to remote systems over TCP (in addition to support for the traditional UDP protocol). With the addition of TCP support, you can
also employ stunnel or ssh to securely send the logs across untrusted networks.

To build syslog-ng, you will need thelibol library package (I]ttg:/lwww.balabit.com/downloads/syslog-ng/libol]) in addition to the

syslog-ng package. After downloading these packages, unpack them and then build libol:

$ tar xfz libol-0.3.9.tar.gz

$ cd libol-0.3.9

$./configure && make
When you build syslog-ng you can have it statically link to libol, so there is no need to fully install the library.
And now to build syslog-ng:

$ tar xfz syslog-ng-1.5.26.tar.gz

$ cd syslog-ng-1.5.26

$./configure --with-libol=../libol-0.3.9

$ make

If you want to compile in TCP wrappers support, you can add the --enable-tcp-wrapper flag to the configure script. Aftersyslog-ng is
finished compiling, become root and run make install. This will install thesyslog-ng binary and manpages. To configure the daemon,
create the /usr/local/etc/syslog-ng directory and then create asyslog-ng.confto put in it. To start off with, you can use one of the sample
configuration files in the doc directory of the syslog-ng distribution.

There are five types of configuration file entries forsyslog-ng, each of which begins with a specific keyword. The options entry allows
you to tweak the behavior of the daemon, such as how often the daemon will sync the logs to the disk, whether the daemon will create
directories automatically, and hostname expansion behavior. source entries tell syslog-ng where to collect log entries from. A source can
include Unix sockets, TCP or UDP sockets, files, or pipes. destination entries allow you to specify possible places forsyslog-ng to send
logs to. You can specify files, pipes, Unix sockets, TCP or UDP sockets, TTYs, or programs. Sources and destinations are then
combined with filters (using the filter keyword), which let you select syslog facilities and log levels. Finally, these are all used together in a
log entry to define precisely where the information is logged. Thus you can arbitrarily combine any source, select what syslog facilities

netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
netsechacks-CHP-4-SECT-7.html
http://www.balabit.com/products/syslog_ng/
http://www.balabit.com/downloads/syslog-ng/libol/

and levels you want from it, and then route it to any destination. This is what makes syslog-ng an incredibly powerful and flexible tool.

To set up syslog-ng on the remote end so that it can replace the syslogd on the system and send traffic to a remotesyslog-ng, you'll first
need to translate your syslog.conf to equivalent source, destination, andlog entries.

Here's the syslog.conf for a FreeBSD system:

*.err;kern.debug;auth.notice;mail.crit /dev/console

*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages

security.* Ivar/log/security
auth.info;authpriv.info Ivar/log/auth.log
mail.info Ivar/log/maillog
Ipr.info Ivarl/log/lpd-errs
cron.* Ivar/log/cron

*.emerg *

First you'll need to configure a source. Under FreeBSD, /dev/log is a link to /var/run/log. The following source entry tellssyslog-ng to read
entries from this file:

source src { unix-dgram(“/var/run/log"); internal(); };
If you were using Linux, you would specify unix-stream and /dev/log like this:
source src { unix-stream("/dev/log"); internal() };

The internal() entry is for messages generated bysyslog-ng itself. Notice that you can include multiple sources in a source entry. Next,
include destination entries for each of the actual log files:

destination console { file("/dev/console™); };

destination messages { file("/var/log/messages"); };

destination security { file("/var/log/security"); };

destination authlog { file("/var/log/auth.log"); };

destination maillog { file("/var/log/maillog"); };

destination Ipd-errs { file("/var/log/lpd-errs"); };

destination cron { file("/var/log/cron"); };

destination slip { file("/var/log/slip.log"); };

destination ppp { file("/var/log/ppp.log"); };

destination allusers { usertty("*"); };

In addition to these destinations, you'll also want to specify one for remote logging to another syslog-ng process. This can be done with a
line similar to this:

destination loghost { tcp("192.168.0.2" port(5140)); };
The port number can be any available TCP port.

Defining the filters is straightforward. You can simply create one for each syslog facility and log level, or you can create them according
to those used in your syslog.conf. If you do the latter, you will only have to specify one filter in each log statement, but it will still take

some work to create your filters.
Here are example filters for the syslog facilities:

filter f_auth { facility(auth); };

filter f_authpriv { facility(authpriv); };

filter f_console { facility(console); };

filter f_cron { facility(cron); };

filter f_daemon { facility(daemon); };

filter f_ftp { facility(ftp); };

filter f_kern { facility(kern); };

filter f_lpr { facility(lpr); };

filter f_mail { facility(mail); };

filter f_news { facility(news); };

filter f_security { facility(security); };

filter f_user { facility(user); };

filter f_uucp { facility(uucp); };

and examples for the log levels:

filter f_emerg { level(emerg); };

filter f_alert { level(alert..emerg); };

filter f_crit { level(crit..emerg); };

filter f_err { level(err..emerqg); };

filter f_warning { level(warning..emerg); };

filter f_notice { level(notice..emerg); };

filter f_info { level(info..emerq); };

filter f_debug { level(debug..emerg); };

Now you can combine the source with the proper filter and destination within the log entries:

*.err;kern.debug;auth.notice;mail.crit /deviconsole

log { source(src); filter(f_err); destination(console); };

log { source(src); filter(f_kern); filter(f_debug); destination(console); };

log { source(src); filter(f_auth); filter(f_notice); destination(console); };

log { source(src); filter(f_mail); filter(f_crit); destination(console); };

*.notice;kern.debug;lpr.info;mail.crit;news.err Ivar/log/messages

log { source(src); filter(f_notice); destination(messages); };

log { source(src); filter(f_kern); filter(f_debug); destination(messages); };

log { source(src); filter(f_Ipr); filter(f_info); destination(messages); };

log { source(src); filter(f_mail); filter(f_crit); destination(messages); };

log { source(src); filter(f_news); filter(f_err); destination(messages); };

security.* Ivar/log/security

log { source(src); filter(f_security); destination(security); };

auth.info;authpriv.info Ivar/log/auth.log

log { source(src); filter(f_auth); filter(f_info); destination(authlog); };

log { source(src); filter(f_authpriv); filter(f_info); destination(authlog); };

mail.info Ivar/log/maillog

log { source(src); filter(f_mail); filter(f_info); destination(maillog); };

Ipr.info Ivarllog/lpd-errs

log { source(src); filter(f_lIpr); filter(f_info); destination(lpd-errs); };

cron.* /var/log/cron

log { source(src); filter(f_cron); destination(cron); };

*.emerg *

log { source(src); filter(f_emerg); destination(allusers); };

You can set up the machine that will be receiving the logs in much the same way as if you were replacing the currently used syslogd.

To configure syslog-ng to receive messages from a remote host, you must specify a source entry:

source r_src { tcp(ip("192.168.0.2") port(5140)); };

Alternatively, you can dump all the logs from the remote machines into the same destinations that you use for your local log entries. This
is not really recommended, because it can be a nightmare to manage, but can be done by including multiple source drivers in the source
entry that you use for your local logs:

source src {

unix-dgram(“/var/run/log");

tep(ip("192.168.0.2") port(5140));
internal();
h
Now logs gathered from remote hosts will appear in any of the destinations that were combined with this source.
If you would like all logs from remote hosts to go into a separate file named for each host ifvar/log, you could use a destination like this:
destination r_all { file("/var/log/$HOST"); };

syslog-ng will expand the SHOST macro to the hostname of the system sending it logs and create a file named after it ifvar/log. An
appropriate log entry to use with this would be:

log { source(r_src); destination(r_all); };

However, an even better method is to recreate all of the remote syslog-ng log files on your central log server. For instance, a destination
for a remote machine's messages file would look like this:

destination fbsd_messages { file("/var/log/$HOST/messages"); };

Notice here that the $HOST macro is used in place of a directory name. If you are using a destination entry like this, be sure to create
the directory beforehand, or use the create_dirs() option:

options { create_dirs(yes); };

syslog-ng's macros are a very powerful feature. For instance, if you wanted to separate logs by hostname and day, you could use a
destination like this:

destination fbsd_messages {

file("/var/log/$HOST/SYEAR.$MONTH.$DAY/messages");

h

You can combine the remote source with the appropriate destinations for the logs coming in from the network just as you did when
configuring syslog-ng for local logging—just specify the remote source with the proper destination and filters.

Another neat thing you can do with syslog-ng is collect logs from a number of remote hosts and then send all of those to yet another
syslog-ng daemon. You can do this by combining a remote source and a remote destination with a log entry:

log { source(r_src); destination(loghost); };

Since syslog-ng is now using TCP ports, yoy can use any encrypting tunnel you like to secure the traffic between yousyslog-ng
daemons. You can use SSH port forwarding [Hack #72] or stunnelto create an encrypted channe benr/ee our
servers. By limiting connections on the listening port to include only localhost (using firewall rules, as in [Hack #33] or[Hack #34]), you
can eliminate the possibility of bogus log entries or denial-of-service attacks.

Server logs are among the most critical information that a system administrator needs to do her job. Using new tools and strong
encryption, you can keep your valuable log data safe from prying eyes.
[l |||||'I|||
||||| LLERLREE

Hack 60 Log User Activity with Process Accounting

6o

Keep a detailed audit trail of what's being done on your systems.

Process accounting allows you to keep detailed logs of every command a user runs, including CPU time and memory used. From a
security standpoint, this means the system administrator can gather information about what user ran which command and at what time.
This is not only very useful in assessing a break-in or local root compromise, but can also be used to spot attempted malicious behavior
by normal users of the system. (Remember that intrusions don't always come from the outside.)

To enable process accounting, run these commands:
mkdir /var/account

touch /var/account/pacct && chmod 660 /var/account/pacct

I/sbin/accton /var/account/pacct

Alternatively, if you are running Red Hat or SuSE Linux and have the process accounting package installed, you can run a startup script
to enable process accounting. On Red Hat, try this:

chkconfig psacct on

Isbin/service psacct start
On SuSE, use these commands:
chkconfig acct on

Isbin/service acct start

The process accounting package provides several programs to make use of the data that is being logged. The ac program analyzes
total connect time for users on the system.

Running it without any arguments prints out the number of hours logged by the current user:
[andrew@colossus andrew]$ ac
total 106.23

If you want to display connect time for all users who have logged onto the system, use the -p switch:

#ac -p
root 0.07
andrew 106.05
total 106.12

The lastcomm command lets you search the accounting logs by username, command name, or terminal:

netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html
netsechacks-CHP-4-SECT-8.html

lastcomm andrew

Is andrew ?? 0.01 secs Mon Dec 15 05:58
romq andrew ?? 0.08 secs Mon Dec 15 05:58
sh andrew ?? 0.03 secs Mon Dec 15 05:44
gunzip andrew ?? 0.00 secs Mon Dec 15 05:44

lastcomm bash

bash F andrew ?? 0.00 secs Mon Dec 15 06:44
bash F root stdout 0.01 secs Mon Dec 15 05:20
bash F root stdout 0.00 secs Mon Dec 15 05:20
bash F andrew ?? 0.00 secs Mon Dec 15 05:19

To summarize the accounting information, you can use the sa command. By default it will list all the commands found in the accounting
logs and print the number of times that each one has been executed:

#sa

14 0.04re 0.03cp Oavio 1297k troff

7 0.03re 0.03cp Oavio 422k lastcomm

2 63.90re 0.01cp Oavio 983k info

14 34.02re 0.01cp Oavio 959k less

14 0.03re 0.01cp Oavio 1132k grotty

44 0.02re 0.01cp Oavio 432k gunzip

You can also use the -u flag to output per-user statistics:

#sa-u

root 0.0l cpu 344k mem 0io which

root 0.00 cpu 1094k mem 0o bash

root 0.07 cpu 1434kmem Oiorpmq

andrew 0.02cpu 342kmem Oioid

andrew 0.00cpu 526k mem 0o bash

andrew 0.01cpu 526k mem 0Oio bash

andrew 0.03cpu 378kmem 0Oiogrep

andrew 0.01cpu 354kmem Oioid

andrew 0.01cpu 526k mem 0Oio bash

andrew 0.00cpu 340k mem 0 io hostname

You can peruse the output of these commands every so often to look for suspicious activity, such as increases in CPU usage or

commands that are known to be used for mischief.

Chapter 5. Monitoring and Trending

acks #61-64

lSection 61. Monitor Availabilit\j

bection 62. Graph Trendsl

lSection 63. Run ntop for Real-Time Network Statsl

lSection 64. Audit Network Trafficl

bection 65. Collect Statistics with Firewall Rulesl

lSection 66. Sniff the Ether RemoteI\j

netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html
netsechacks-CHP-5.html

Hacks #61-66

While the importance of reliable system logs can't be overestimated, logs only tell part of the story of what is happening on your network.
When something out of the ordinary happens, the event is duly logged to the appropriate file, where it waits for a human to notice and
take the appropriate action. But logs are valuable only if someone actually reads them. When log files add to the deluge of information
that most network administrators already wade through each day, many log files may go unread for days or weeks. This situation is
made worse when log files are clogged with irrelevant information. For example, a cry for help from an overburdened mail server can
easily be lost if it is surrounded by innocuous entries about failed spam attempts. All too often, logs are used as a resource to figure out
"what happened" when systems fail, rather than as a guide to what is happening now.

Another important aspect of log entries is that they only provide a "spot check" of your system at a particular moment. Without a history
of what normal performance looks like, it can be difficult to tell the difference between ordinary network traffic, a DoS attack, and a
visitation from Slashdot readers. While you can easily build a report on how many times the /var partition filled up, how can you easily
know what usage looks like over time? Is the mail spool clogged due to one inconsiderate user, or is it part of an attack by an adversary?
Or is it simply a general trend that is the result of trying to serve too many users on too small a disk?

This chapter describes a number of methods for tracking the availability of services and resources over time. Rather than having to
watch system logs manually, it is usually far better to have the systems notify you when there is a problem—and only when there is a
problem. There are also a number of suggestions about how to recognize trends in your network traffic by monitoring flows and plotting
the results on a graph. Sure, you may know what your average outbound Internet traffic looks like, but how much of that traffic is made
up of HTTP versus SMTP? You may know roughly how much is being used by each server on your network, but what if you want to
break the traffic down by protocol? The hacks in this chapter will show you how.

netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html
netsechacks-CHP-5-SECT-1.html

Hack 61 Monitor Availability

lisi

Use Nagios to keep tabs on your network.

Since remote exploits can often crash the service that is being broken into or cause its CPU use_to skyrocket, you should monitor the
services that are running on your network. Just looking for an open port (such as by using Nmap [Hack #42]) isn't enough. The machine

may be able to respond to a TCP connect request, but the service may be unable to resruﬂ_{gmwhﬁbe replaced by a different
program entirely!). One tool that can help you verify your services at a glance is Nagios (http://www.nagios.ord).

Nagios is a network-monitoring application that monitors not only the services running on the hosts on your network, but also the
resources on each host, such as CPU usage, disk space, memory usage, running processes, log files, and much more. In the advent of

a problem it can notify you through email, pager, or any other method that you define, and you can check the status of your network at a
glace by using the web GUI. Nagios is also easily extensible through its plug-in API.

To install Nagios, download the source distribution from the Nagios web site. Then, unpack the source distribution and go into the
directory it creates:

$ tar xfz nagios-1.1.tar.gz

$ cd nagios-1.1

Before running Nagios's configure script, you should create a user and group for Nagios to run as (e.g., nagios). Then run the configure
script with a command similar to this:

$./configure --with-nagios-user=nagios --with-nagios-grp=nagios

This will install Nagios in /usr/local/nagios. As usual, you can modify this behavior by using the-prefix switch. After the configure script
finishes, compile Nagios by running make all. Then become root and runmake install to install it. In addition, you can optionally install
Nagios's initialization scripts by running make install-init.

If you take a look into the /ust/local/nagios directory right now, you will see that there are four directories. The bin directory contains a
single file, nagios, that is the core of the package. This application does the actual monitoring. Thebin directory contains the CGI scripts
that will be used in the web-based interface. Inside the share directory, you'll find the HTML files and documentation. Finally, thevar
directory is where Nagios will store its information once it starts running.

Before you can use Nagios, you will need a couple of configuration files. These files go into theetc directory, which will be created when
you run make install-config. This command also creates a sample copy of each required configuration file and puts them into thestc

directory.

At this point the Nagios installation is complete. However, it is not very useful in its current state, because it lacks the actual monitoring
applications. These applications, which check whether a particular monitored service is functioning properly, are called plug-ins. Nagios
comes with a default set of plug-ins, but they must be downloaded and installed separately.

Download the latest Nagios Plugins package and decompress it. You will need to run the provided configure script to prepare the
package for compilation on your system. You will find that the plug-ins are installed in a fashion similar to the actual Nagios program.

To compile the plug-ins, run commands similar to these:

$./configure --prefix=/usr/local/nagios \

--with-nagios-user=nagios --with-nagis-grp=nagios

netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
netsechacks-CHP-5-SECT-2.html
http://www.nagios.org

$ make all

You might get notifications about missing programs or Perl modules while the script is running. These are mostly fine, unless you
specifically need the mentioned applications to monitor a service.

After compilation is finished, become root and run make install to install the plug-ins. The plug-ins will be installed in thdibexec directory
of your Nagios base directory (e.g., /usr/local/nagios/libexec).

There are a few rules that all Nagios plug-ins should implement, making them suitable for use by Nagios. All plug-ins provide a--help
option that displays information about the plug-in and how it works. This feature is very helpful when you're trying to monitor a new
service using a plug-in you haven't used before.

For instance, to learn how the check_ssh plug-in works, run the following command:
$ /usr/local/nagios/libexec/check_ssh

check_ssh (nagios-plugins 1.4.0alphal) 1.13

The nagios plugins come with ABSOLUTELY NO WARRANTY. You may redistribute
copies of the plugins under the terms of the GNU General Public License.

For more information about these matters, see the file named COPYING.

Copyright (c) 1999 Remi Paulmier <remi@sinfomic.fr>

Copyright (c) 2000-2003 Nagios Plugin Development Team

<nagiosplug-devel@lists.sourceforge.net>

Try to connect to SSH server at specified server and port

Usage: check_ssh [-46] [-t <timeout>] [-p <port>] <host>
check_ssh (-h | --help) for detailed help

check_ssh (-V | --version) for version information

Options:
-h, --help
Print detailed help screen
-V, --version
Print version information
-H, --hostname=ADDRESS
Host name or IP Address
-p, --port=INTEGER

Port number (default: 22)

-4, --use-ipv4
Use IPv4 connection
-6, --use-ipv6
Use IPv6 connection
-t, --timeout=INTEGER
Seconds before connection times out (default: 10)
-v, --verbose

Show details for command-line debugging (Nagios may truncate output)

Send email to nagios-users@lists.sourceforge.net if you have questions
regarding use of this software. To submit patches or suggest improvements,

send email to nagiosplug-devel@lists.sourceforge.net

Now that both Nagios and the plug-ins are installed, we are almost ready to begin monitoring our servers. However, Nagios will not even
start before it's configured properly.

The sample configuration files provide a good starting point:

$ cd /usr/local/nagios/etc
$ls-1

cgi.cfg-sample
checkcommands.cfg-sample
contactgroups.cfg-sample
contacts.cfg-sample
dependencies.cfg-sample
escalations.cfg-sample
hostgroups.cfg-sample
hosts.cfg-sample
misccommands.cfg-sample
nagios.cfg-sample
resource.cfg-sample
services.cfg-sample

timeperiods.cfg-sample

Since these are sample files, the Nagios authors added a .cfg-sample suffix to each file. First, we need to copy or rename each one to
end in .cfg, so that the software can use them properly. (If you don't change the configuration filenames, Nagios will not be able to find
them.)

You can either rename each file manually or use the following command to take care of them all at once. Type the following script on a
single line:

for i in *cfg-sample; do mv $i “echo $i |\

sed -e s/cfg-sample/cfg/’; done;
First there is the main configuration file, nagios.cfg. You can pretty much leave everything as is—the Nagios installation process will
make sure the file paths used in the configuration file are correct. There's one option, however, that you might want to change:
check_external_commands, which is set to 0 by default. If you would like to be able to directly run commands through the web interface,
you will want to set this to 1. Depending on your network environment, this may or may not be an acceptable security risk, as enabling
this option will permit the execution of scripts from the web interface. Other options you need to set incgi.cfg configure which usernames

are allowed to run external commands.

To get Nagios running, you must modify all but a few of the sample configuration files. Configuring Nagios to monitor your servers is not
as difficult as it looks. To help you, you can use the verbose mode of the Nagios binary by running:

Jusr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
This command will go through the configuration files and report any errors. Start fixing the errors one by one, and run the command
again to find the next error. For testing purposes, it is easiest to disable all hosts and services definitions in the sample configuration files

and merely use the files as templates for your own hosts and services. You can keep most of the files as is, but remove the following,
which will be created from scratch:

hosts.cfg
services.cfg
contacts.cfg
contactgroups.cfg
hostgroups.cfg

Start by configuring a host to monitor. We first need to add our host definition and configure some options for that host. You can add as
many hosts as you like, but we will stick with one for the sake of simplicity.

Here are the contents of hosts.cfg:

Generic host definition template

define host{

The name of this host template - referenced i
name generic-host

n other host definitions, used for template recursion/resolution
Host notifications are enabled
notifications_enabled 1

Host event handler is enabled
event_handler_enabled 1

Flap detection is enabled
flap_detection_enabled 1

Process performance data

process_perf_data 1

Retain status information across program restarts
retain_status_information 1

Retain non-status information across program restarts
retain_nonstatus_information 1

DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST,
#JUST A TEMPLATE!

register 0

Host Definition
define host{

Name of host template to use

use generic-host

host_name freelinuxcd.org

alias Free Linux CD Project Server
address www.freelinuxcd.org
check_command check-host-alive

max_check_attempts 10
notification_interval 120
notification_period 24x7

notification_options d,u,r

The first host defined is not a real host but a template from which other host definitions are derived. This mechanism can be seen in other
configuration files and makes configuration based on a predefined set of defaults a breeze.

With this setup we are monitoring only one host, l/vww.freelinuxcd.orcl, to see if it is alive. The host_name parameter is important because
other configuration files will refer to this server by this name. Now the host needs to be added to a hostgroup, so that the application
knows which contact group to send notifications to.

Here's what hostgroups.cfg looks like:

define hostgroup{
hostgroup_name flcd-servers

alias The Free Linux CD Project Servers

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/www.freelinuxcd.org

contact_groups flcd-admins

members freelinuxcd.org

This defines a new hostgroup and associates the flcd-admins contact_group with it. Now you'll need to define that contact group in
contactgroups.cfg :

define contactgroup{
contactgroup_name fled-admins
alias FreeLinuxCD.org Admins

members oktay, verty

Here the flcd-admins contact_group is defined with two members,oktay and verty. This configuration ensures that both users will be
notified when something goes wrong with a server that flcd-admins is responsible for. The next step is to set the contact information and
notification preferences for these users.

Here are the definitions for those two members incontacts.cfg :

define contact{

contact_name oktay

alias Oktay Altunergil

service_notification_period 24x7

host_notification_period 24x7

service_notification_options w,u,c,r

host_notification_options d,u,r
service_notification_commands notify-by-email,notify-by-epager

host_notification_commands host-notify-by-email,host-notify-by-epager

email oktay@freelinuxcd.org
pager dummypagenagios-admin@Iocalhost.localdomain
}

define contact{

contact_name Verty

alias David 'Verty' Ky
service_notification_period 24x7
host_notification_period 24x7

service_notification_options w,u,c,r

host_notification_options d,u,r
service_notification_commands notify-by-email,notify-by-epager
host_notification_commands host-notify-by-email

email verty@flcd.org

In addition to providing contact details for a particular user, the contact_name in the contacts.cfg file is also used by the CGlI scripts (i.e.,
the web interface) to determine whether a particular user is allowed to access a particular resource. Now that your hosts and contacts
are configured, you can start to configure monitoring for individual services on your server.

This is done in services.cfg

Generic service definition template
define service{
The 'name’ of this service template, referenced in other service definitions
name generic-service
Active service checks are enabled
active_checks_enabled 1
Passive service checks are enabled/accepted
passive_checks_enabled 1
Active service checks should be parallelized
(disabling this can lead to major performance problems)
parallelize_check 1
We should obsess over this service (if necessary)
obsess_over_service 1
Default is to NOT check service 'freshness'
check_freshness 0
Service notifications are enabled
notifications_enabled 1
Service event handler is enabled
event_handler_enabled 1
Flap detection is enabled
flap_detection_enabled 1
Process performance data

process_perf_data 1

Retain status information across program restarts
retain_status_information 1

Retain non-status information across program restarts
retain_nonstatus_information 1

DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE!

register 0

Service definition

define service{

Name of service template to use
use generic-service
host_name freelinuxcd.org
service_description HTTP
is_volatile 0

check_period 24x7
max_check_attempts 3
normal_check_interval 5
retry_check_interval 1
contact_groups flcd-admins
notification_interval 120
notification_period 24x7
notification_options w,u,c,r

check_command check_http

Service definition

define service{

Name of service template to use
use generic-service

host_name freelinuxcd.org

service_description PING
is_volatile 0

check_period 24x7
max_check_attempts 3
normal_check_interval 5
retry_check_interval 1
contact_groups flcd-admins
notification_interval 120
notification_period 24x7
notification_options c,r

check_command check_ping!100.0,20%!'500.0,60%

This setup configures monitoring for two services. The first service definition, which has been called HTTP, will monitor whether the web
server is up and will notify you if there's a problem. The second definition monitors the ping statistics from the server and notifies you if
the response time or packet loss become too high. The commands used are check_http and check_ping, which were installed into the
libexec directory during the plug-in installation. Please take your time to familiarize yourself with all other available plug-ins and configure
them similarly to the previous example definitions.

Once you're happy with your configuration, run Nagios with the -v switch one last time to make sure everything checks out. Then run it as

a daemon by using the -d switch:

lusr/local/nagios/bin/nagios -d /usr/local/nagios/etc/nagios.cfg

That's all there is to it. Give Nagios a couple of minutes to generate some data, and then point your browser to the machine and look at

the pretty service warning lights.

netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html
netsechacks-CHP-5-SECT-3.html

Hack 62 Graph Trends

e

Use RRDtool to easily generate graphs for just about anything.

You may be familiar with graphing bandwidth usage with tools such as MRTG. From a security standpoint it's useful to graph
bandwidth usage, since it can help you spot anomalous behavior. Having a history of typical bandwidth usage gives you a baseline to
judge what's going on. This can make it easier to determine if somebody is performing a DoS attack on your site, or if a machine on your
network is acting as a Warez depot.

RRDtool (lmp://people.ee.ethz.ch/~oetiker/webtools/rrdtool‘) provides similar functionality to MRTG, but it is much more flexible RRDtool
is basically a tool for storing data in a general-purpose database that will never grow in size. RRD stands for round-robin database
which is a special type of database that maintains a fixed number of entries—the oldest entry is constantly being replaced by the newest
data. RRDtool also has the ability to generate graphs of the data contained in a round-robin database.

The most common use of RRDtool is to make pretty bandwidth graphs. This is easily done with RRDtool and snmpget , a utility that
gueries devices managed with SNMP. First, you'll need to create a round-robin database by running a command similar to this one:

$ rrdtool create zul.rrd --start N\
DS:de0_in:COUNTER:600:U:U \
DS:de0_out:COUNTER:600:U:U \
RRA:AVERAGE:0.5:1:600 \
RRA:AVERAGE:0.5:6:700 \
RRA:AVERAGE:0.5:24:775\
RRA:AVERAGE:0.5:288:797 \
RRA:MAX:0.5:1:600 \
RRA:MAX:0.5:6:700 \
RRA:MAX:0.5:24:775\

RRA:MAX:0.5:288:797

This command creates a database containing entries for two separate counters, de0_in and de0_out. These will store samples of
interface statistics collected every five minutes from an SNMP daemon on a router. In addition, it contains several fields for automatically
maintaining running averages.

You can populate the database by running a command like this:
$ rrdtool update zul.rrd N:\

‘snmpget -Oqv zul public interfaces.ifTable.ifEntry.ifInOctets.4":\

‘snmpget -Oqv zul public interfaces.ifTable.ifEntry.ifOutOctets.4’

This command queries the input and output statistics for the de0 interface on a computer namedzul. To schedule it to run every five
minutes, you could make a crontab entry similar to the following:

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

0-55/5 * * * * rrdtool update /home/andrew/rrdbs/zul.rrd N:’snmpget -Oqv zul public
interfaces.ifTable.ifEntry.iflnOctets.4™:"snmpget -Oqv zul public
interfaces.ifTable.ifEntry.ifOutOctets.4

However, you can use whatever methods you want to collect the data. To generate hourly graphs of the data, you could run a command
like this:

rrdtool graph zul_de0-hourly.png -t "Hourly Bandwidth" --start -3600 \
DEF:inoctets=zul.rrd:de0_in:AVERAGE \
DEF:outoctets=zul.rrd:de0_out:AVERAGE \
AREA:inoctets#00FF00:"de0 In" \

LINE1:outoctets#0000FF:"de0 Out"

This would create an image like the one shown in .

Figure 5-1. A graph generated by RRDtool

Hourly Bandwidth

£, 0 & T———t——t—1— . , . . .

40K Ty O SO U L B e SIS N O O

3.0k :

20k oot 3

PPN (0 R R D | . i | el
1700 17:10 17:20 17:30 17140 17:50

O ded In W ded Jut

The -3600 in the command tellsrrdtool that you want to graph the data collected over the last hour (there are 3,600 seconds in an hour).
Likewise, if you wanted to create a graph over the course of a day, you would use -86400.

But that's just the beginning. AftEE ff ff'ng multiple data sources, you can combine them all into a single graph that gives you a great
deal of information at a glance. figure 5-4 shows the relative outbound usage of several servers simultaneously, with the total average
for all servers just below it. While this figure is in grayscale, the actual graph uses a different color for each server, making it easy to tell
at a glance which one is hogging all of the bandwidth.

Figure 5-2. Multiple servers on a single graph

Internet Owtbound

i I i I
00 k t T '

i k- . . L S - 1 I . . L. -
600 k
E00 k
400 k
200 K~

200k H

Bits Per Second

4100 k + I [b L. . x - .,.I = I - l

i\] :
_'\-\.J-‘\-r'IJI'IIL udh " :II - — i Bt Yot —:H-.-J.—.L e _'-"F_'J'-_ B el I.l-
Mar apr paay Jun Jul Al Sep (a4 | My

O cutbound Current: TET.F2 Kk Average: 98,98 K Maximam 787,72 k

As you can see, RRDtool is a very flexible tool. All you need to do is tell it how much data you want to store and then set up some
method to collect the data at a regular interval. Then you can easily generate a graph of the data whenever you want it

Hack 63 Run ntop for Real-Time Network Stats

flics

See who's doing what on your network over time with ntop.
If you're looking for real-time network statistics, check out the terrificntop tool (http://www.ntop.org). It is a full-featured protocol
analyzer with a web frontend, complete with SSL and graphing support. Unfortunately, ntop isn't exactly lightweight (the precise amount

of resources required depend on the size of your network and the volume of network traffic), but it can give you a very nice picture of
who's talking to whom on your network.

ntop needs to run initially as root (to throw your interfaces into promiscuous mode and start capturing packets), but then releases its
privileges to a user that you specify. If you decide to run ntop for long periods of time, you'll probably be happiest running it on a
dedicated monitoring box (with few other services running on it, for security and performance reasons).

Here's a quick reference on how to get ntop up and running. First, create an ntop user and group:

groupadd ntop

useradd -c "ntop user" -d /usr/local/etc/ntop \

-s /bin/true -g ntop ntop

Then unpack and build ntop per the instructions in docs/BUILD-NTOP.txt. | assume that you have the source tree unpacked in
lusr/local/src/ntop-2.1.3/.

Create a directory for ntop to keep its capture database in:
mkdir /usr/local/etc/ntop
Note that it should be owned by root, and not by the ntop user.

If you'd like to use SSL for HTTPS (instead of standard HTTP), then copy the default SSL key tdusr/local/etc/ntop. Assuming that you
have unpacked ntop into /usr/local/src/ntop-2.1.3/, you can do this by running this command:

cp /usr/local/src/ntop-2.1.3/ntop/*pem /usr/local/etc/ntop

Note that the default SSL key will not be built with the correct hostname for your server. So, you'll probably want to generate your own
SSL certificate and key pair [Hack #45] . Now you'll need to initialize thentop databases and set an administrative password:

ntop -A -u ntop -P /usr/local/etc/ntop

21/Sep/2002 20:30:23 Initializing GDBM...

21/Sep/2002 20:30:23 Started thread (1026) for network packet analyser.
21/Sep/2002 20:30:23 Started thread (2051) for idle hosts detection.
21/Sep/2002 20:30:23 Started thread (3076) for DNS address resolution.

21/Sep/2002 20:30:23 Started thread (4101) for address purge.

netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
netsechacks-CHP-5-SECT-4.html
http://www.ntop.org

Please enter the password for the admin user:

Please enter the password again:

21/Sep/2002 20:30:29 Admin user password has been set.

Finally, runntop as a daemon, and start the SSL server on your favorite port (4242, for example):

ntop -u ntop -P /usr/local/etc/ntop -W4242 -d

By default, ntop also runs a standard HTTP server on port 30
either at your firewall or by using command-line iptables rules [Hack #33] .

0. You sh

uld seriously consider locking down access to these ports,

Let ntop run for a while, then connect to httis://your.server.here:4242/. You can find out all sorts of details about what traffic has been

seen on your network, as shown in figure 5-3.

Frery

Figure 5-3. Displaying a host's statistics in ntop's web interface

Welcome bo niog!

[Eenderveusw apple Mac Amaron elay Vahoo!

[Ah et r Tatal [Recw T Sert r SEats I IFTraI"ﬁl:. T IF Frodos T Admin |

(o » Halla Al +] Stupiioz 1680414242,

= - I

. %

LT TR

Y

b Siailsbes
Wil
Trafic

Haosis

Loaal Irio
Nabwork Load

D& imalm

& 1ERE-2003
bry Luscw D

o

Info about host ...
[IP Address | 192168060 fumicast]
|FirsbiLasn Gesn [OO 17 26:50 - U004 17.260:47 [1:57)
| Domain [nne
[MAC Address 19 | DO.0A 95.F5 F1-AS
|Host Location | Local gnside specifiediocal subnet)
(1P TTL (Wi b Livea [B84 [0 hopsisl]
| Tatal D S | 4.5 KB BS Pria Belran, Pkis (0%
|Brondcas: Pics Sem | 1 Piis
Lol Rismy
|u-: Sl Shals |1m,'.| | 0%
P HovIF
|Il' ug, Mor-IF Sent |1m1’. 0%
[Teital Drata Fieed [54,5 MR 7 Fhist) Reiran. Piis |05
Lesal AT
|D|u Fiewd Saate 208 % | |
P Mo IF
|||= ws. HoselP Ao |1ﬂ:|‘l'- 0%
Sent Ficwd
|h-u wa, Fesud Biiia | | 1.8 %
= Fovd
|5-1t-n. Rcwd Data |31_5$._| | e85 %
Host Traffic Stats

| Time | Tob Tradlic Sem * Traffic Sent | Tob Trafo Rowd % Traiic Rowd
Mgt - 1AM | i | 0 0.0 %
[1AM - 24M | i 0.0 % | [it %
|2AM - AW | o e | [o0 %
[38m - 48M | o 00 5| [} [T
| [i 0.0 %

0.0 % |

o

While tools like tcpdump and Ethereal give you detailed, interactive analysis of network traffic, ntop delivers a wealth of statistical
information in a very slick and easy-to-use web interface. When properly installed and locked down, it will likely become a favorite tool in
your network analysis tool chest

—Rob Flickenger (Linux Server Hacks)

Hack 64 Audit Network Traffic

liea

Use Argus to monitor your network and to keep an audit trail of your traffic.

Wouldn't it be nice if you could keep a complete record of everything that happened on your network? It would certainly help to track
down problems and would be invaluable in the event of a security incident, but it would just take up too much space to keep all of that
ata around. The next best thing would be to keep a log of all the packets, but not actually keep the data. You can do this with Argus
(http://www.gosient.com/argus).

Argus, or the Audit Record Generation and Utilization System, is a tool that can log network transactions in a variety of ways and can
even collect performance metrics on every connection that it is able to see. Argus also contains several utilities that can make queries
against the logs, so you can easily extract the information you need. These tools allow you to generate ASCII-, RMON-, or
XML-formatted information from an Argus log file. Argus also provides a Perl interface for accessing its log files, so you can easily write
custom scripts to make use of the data it collects.

To set up Argus, you'll first need to download the source distribution and unpack it. Then change into the directory that it creates:

$ tar xfz argus-2.0.5.tar.gz

$ cd argus-2.0.5

To compile Argus, run this command:

$./configure && make

After compilation has finished, you can install Argus by becoming root and running this command:

make install

To get a quick demo of Argus, run it and then let it collect some data for a little while:

argus -d -e "hostname’ -w /tmp/arguslog

This command will start argus in daemon mode and have it write its logs to/tmp/argus.

After letting it collect some data, try querying it with the ra command. This will show you an ASCII representation of the packets that
argus has logged:

$ra-r tmp/arguslog

12 Jan 04 05:42:48 udp plunder.nnc.netbios-ns -> 192.168.0.255.nethios-ns INT
12 Jan 04 05:43:09 udp 192.168.0.250.snmptrap -> 255.255.255.255.snmptrap INT
12 Jan 04 05:43:15 udp print.nnc.netbios-dgm -> 192.168.0.255.nethios-dgm INT
12 Jan 04 05:43:28 llc 0:¢0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:43:28 nvl 0:¢0:2:57:98:79 -> Broadcast INT

12 Jan 04 05:43:28 llc 0:c0:2:57:98:79.null -> Broadcast.null INT

netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
netsechacks-CHP-5-SECT-5.html
http://www.qosient.com/argus/

12 Jan 04 05:43:28 llc 0:¢0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:44:19 udp kryten.nnc.56581 -> 255.255.255.255.2222 TIM

12 Jan 04 05:43:34 udp sunder.nnc.netbios-ns -> 192.168.0.255.netbios-ns INT
12 Jan 04 05:44:08 arp plunder.nnc who-has sirius.nnc INT

12 Jan 04 05:44:08 udp plunder.nnc.netbios-ns -> 192.168.0.255.nethios-ns INT
12 Jan 04 05:44:15 udp print.nnc.netbios-dgm -> 192.168.0.255.nethios-dgm INT
12 Jan 04 05:45:06 udp sunder.nnc.netbios-dgm -> 192.168.0.255.netbios-dgm TIM
12 Jan 04 05:40:26 man pkts 734 bytes 75574 drops 0 CON

12 Jan 04 05:44:28 nvl 0:¢0:2:57:98:79 -> Broadcast INT

12 Jan 04 05:44:28 llc 0:¢0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:44:28 llc 0:¢0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:44:28 llc 0:¢0:2:57:98:79.null -> Broadcast.null INT

12 Jan 04 05:45:08 udp plunder.nnc.netbios-ns -> 192.168.0.255.nethios-ns INT
12 Jan 04 05:45:09 tcp kryten.nnc.54176 ?> colossus.nnc.ssh EST

12 Jan 04 05:45:15 udp print.nnc.netbios-dgm -> 192.168.0.255.nethios-dgm INT

This is just a few minutes of logs from one host, but it is stored in a very compact manner. In fact, during testing, a whole day's worth of
logs consumed only 1.4 MB!

The ra command can also take tcpdump-style filters so that you can query the logs for packets that match a specific host, protocol, port,
or any number of other characteristics.

For instance, if you wanted to query the logs for all packets sent either to or from the host named kryten, you could used a command
similar to this one:

$ra-r /tmp/argus - "host kryten"

12 Jan 04 09:26:34 udp kryten.nnc.55689 -> 255.255.255.255.2222 TIM
12 Jan 04 09:26:36 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST
12 Jan 04 09:27:37 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST
12 Jan 04 09:28:34 udp kryten.nnc.55691 -> 255.255.255.255.2222 TIM
12 Jan 04 09:28:05 icmp kryten.nnc <-> linux-vmm.nnc ECO

12 Jan 04 09:28:06 icmp kryten.nnc <-> linux-vmm.nnc ECO

12 Jan 04 09:29:06 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST
12 Jan 04 09:30:34 udp kryten.nnc.55692 -> 255.255.255.255.2222 TIM
12 Jan 04 09:32:34 udp kryten.nnc.55693 -> 255.255.255.255.2222 TIM

12 Jan 04 09:33:06 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

12 Jan 04 09:34:34 udp kryten.nnc.55694 -> 255.255.255.255.2222
12 Jan 04 09:53:44 tcp kryten.nnc.54176 ?> linux-vmm.nnc.ssh EST

You can also generate a new Argus log file containing only the results of your query by using thew option to ra and specifying a file to
write the results to.

To get XML output fromArgus, you can use the raxml utility to make queries, much in the same way as you can witha. For instance,
here's the first record returned by using the previous query for all packets that matched the hostname of kryten:

$ raxml -r /tmp/arguslog - "host kryten"

<ArgusFlowRecord ArgusSourceld = "192.168.0.41" SequenceNumber = "3"
Cause = "Status" StartDate = "2004-01-12" StartTime = "09:25:26"
StartTimeusecs = "319091" LastDate = "2004-01-12"

LastTime ="09:25:32" LastTimeusecs = "521982"

Duration = "6.202891" TransRefNum = "0">

<MACAddrs SrcAddr = "0:a:95:¢7:2b:10" DstAddr = "0:¢:29:e2:2b:c1" />
<Flow> <IP SrcIPAddr = "192.168.0.60" DstIPAddr = "192.168.0.41"

Proto = "tcp" Sport = "56060" Dport = "22" Ipld = "27b8" /> </Flow>
<FlowAttrs SrcTTL ="64" DstTTL = "64" SrcTOS = "10" DstTOS = "10" />
<ExtFlow> <TCPExtFlow TCPState = "EST" TCPOptions = "TIME"
SynAckuSecs = "0" AckDatauSecs ="0" >

<TCPExtMetrics SrcTCPSeqBase = "4204580547"
SrcTCPAckBytes = "527" SrcTCPBytes = "528"
SrcTCPRetrans = "0" SrcTCPWin = "65535" SrcTCPFlags = "PA"
DstTCPSeqBase = "3077608383" DstTCPAckBytes = "1135"
DstTCPBytes = "992" DstTCPRetrans = "0" DstTCPWin = "9792"
DstTCPFlags = "PA" />
</TCPExtFlow>
</ExtFlow>
<Metrics SrcCount = "24" DstCount = "17" SrcBytes = "2112"
DstBytes = "2258" SrcAppBytes = "528" DstAppBytes = "1136" />
</ArgusFlowRecord>
As you can see, Argus keeps track of much more information than it would seem if you were just going by the output generated by ra.
This is where Argus really shines, because it can store such a large amount of information about your network traffic in a small amount

of space. In addition, Argus makes it easy to convert this information into other formats, such as XML, which makes it easy to write
applications that can understand the data.

Hack 65 Collect Statistics with Firewall Rules

lics

Make your firewall ruleset do the work for you when you want to collect statistics

If you want to start collecting statistics on your network traffic but dread setting up SNMP, you don't have to worry. You can use the
firewalling code in your operating system to collect statistics for you.

For instance, if you were using Linux, you could use iptables commands similar to the following to keep track of bandwidth consumed
by a particular machine that passes traffic through your firewall:

iptables -N KRYTEN && iptables -A KRYTEN -j ACCEPT

#iptables -N KRYTEN_IN && iptables -A KRYTEN_IN -j KRYTEN

iptables -N KRYTEN_OUT && iptables -A KRYTEN_OUT -j KRYTEN
iptables -A FORWARD -s 192.168.0.60 -] KRYTEN_OUT

iptables -A FORWARD -d 192.168.0.60 -j KRYTEN_IN

This leverages the packet and byte counters associated with each iptables rule to provide input and output bandwidth statistics for traffic
forwarded through the firewall. It works by first defining a chain named KRYTEN, which is named after the host that the statistics will be
collected on. This chain contains an unconditional accept rule and will be used to quickly add up the total bandwidth that kryten
consumes. To itemize the downstream bandwidth kryten is using, another chain is created called KRYTEN_IN. This chain contains only
one rule, which is to unconditionally jump to the KRYTEN chain in order for the inbound bandwidth to be added with the outbound
bandwidth being consumed. Similarly, the KRYTEN_OUT chain tallies outbound bandwidth being consumed and then jumps to the
KRYTEN chain so that the outbound bandwidth will be added to the inbound bandwidth being consumed. Finally, rules are added to the
FORWARD chain that direct the packet to the correct chain, depending on whether it's coming from or going to kryten.

After applying these rules, you can then view the total bandwidth (inbound and outbound) consumed by kryten by running a command
like this:

iptables -vx -L KRYTEN
Chain kryten (2 references)
pkts bytes target prot optin out source destination
442 46340 ACCEPT all -- any any anywhere anywhere
You can easily parse out thebytes field, and thereby generate graphs with RRDtoo, by using a command like this:
iptables -vx -L KRYTEN | egrep -v 'Chain|pkts' | awk '{print $2}'

To get the inbound or outbound bandwidth consumed, just replace KRYTEN with KRYTEN_IN or KRYTEN_OUT, respectively. Of
course, you don't have to limit your statistic collection criteria to just per-computer bandwidth usage. You can collect statistics on
anything that you can create an iptables rule for, including ports, MAC addresses, or just about anything else that passes through your
network.

netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html
netsechacks-CHP-5-SECT-6.html

Hack 66 Sniff the Ether Remotely

lics

Monitor your networks remotely with rpcapd.

! 0 monitor network traffic from another segment and use a graphical protocol analyzer likeEthereal
(http://www.ethereal.coml), you know how time-consuming it can be. First you have to capture the data. Then you have to get it onto the
workstation that you're running the analyzer from, and then you have to load the file into the analyzer itself. This creates a real problem
because it increases the time between performing an experiment and seeing the results, which makes diagnosing and fixing network
problems take much longer than they should.

One tool that solves this problem is rpcapd, a program included with WinPcap (Lttp://winpcap.polito.i{). rpcapd is a daemon that monitors
network interfaces in promiscuous mode and sends the data that it collects back toa sniffer running on a remote machine. You can run

rpcapd either from the command line or as a service. To start rpcapd, you will probably want to use the-n flag, which tells the daemon to
use null authentication. Using this option, you will be able to monitor the data stream that rpcapd produces with any program that uses
the WinPcap capture interface. Otherwise, special code will have to be added to the program that you are using that will allow it to
authenticate itself with rpcapd. Since the -n option allows anyone to connect to the daemon, you'll also want to use the-I option, which

allows you to specify a comma-separated list of hosts that can connect.
So, to run rpcapd from the command line, use a command similar to this:
C:\Program Files\WinPcap>rpcapd -l obsidian -n

Press CTRL + C to stop the server...

When run as a service, rpcapd uses the rpcapd.ini file for its configuration information. This file resides in the same directory as the
executable and is easily created by running rpcapd with the -s switch, which instructsrpcapd to save its configuration to the file you

specify.

To create a pcap.ini, run a command like this:

C:\Program Files\WinPcap>rpcapd -l obsidian -n -s rpcapd.ini
Press CTRL + C to stop the server...

Now press Ctrl-C and see what the file contains:

C:\Program Files\WinPcap>type rpcapd.ini

Configuration file help.

Hosts which are allowed to connect to this server (passive mode)

Format: PassiveClient = <name or address>

PassiveClient = obsidian

netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
netsechacks-CHP-5-SECT-7.html
http://www.ethereal.com
http://winpcap.polito.it

Hosts to which this server is trying to connect to (active mode)

Format: ActiveClient = <name or address>, <port | DEFAULT>
Permit NULL authentication: YES or NOT

NullAuthPermit = YES
To start the service, you can either use the Services control panel applet or use the net command from the command line:

C:\Program Files\WinPcap>net start rpcapd

The Remote Packet Capture Protocol v.0 (experimental) service was started

successfully.

Now, to connect to the daemon you will need to find out the name that WinPcap uses to refer to the network device you want to monitor.
To do this, you can use either WinDump, a command-line packet sniffer for Windows, or Ethereal. WinDump is available from the same
web site as WinPcap.

To get the device name with WinDump simply run it with the -D flag:

C:\Program Files\WinPcap>windump -D

1.\Device\NPF_{EE07A5AE-4D19-4118-97CE-3BF656CD718F} (NDIS 5.0 driver)

You can use Ethereal to obtain the device name by starting up Ethereal, going to the Capture menﬂ‘ ing Start. After you do that,
igure 5-4

a dialog will open that has a list of the available adapters on the system, much like the one seen in |. The device names in the
list are those that you will later specify when connecting to rpcapd from a remote system.

Figure 5-4. Ethereal Capture Options dialog

Z) Ethereal: Capture Dplions =17 %l

Capture

Intedface: |NDIS 5.0 drver | /
_j Limit each g S S S S
r Capture pHEW
Filter |

Capture fila(=)

e

_1Use ring buffer urmber of fles |2

P

Dizplay options
_jUpdate list of packets in real timea

JAutomatic scroliing in Ine capture

Capture limits

- Stop capture after | -} packet(s) captured
_ Stop capture after |/ _}r kilobyte(s) captured
- Stop capture after |/ —} second(s)

Marne resalution
r Enabla MALC name resalution

_j Enable network narme resolution

r Enable transport name resolution

ok | cancel

When you connect to a remote machine with your favorite sniffer, simply put the device name for the interface you want to monitor
prefixed by rpcap and the hostname, like this:

rpcap://plunder\Device\NPF_{EE07ASAE-4D19-4118-97CE-3BF656CD718F}

You can see an example of this with Ethereal in .

Figure 5-5. Using a remote capture source with Ethereal

@ Ethereal: Capture. =101 x]

Capture
Intedace: |kpcap AplunderfDevice\PF_[EED7 ASS s"'l

_i Limit each packet to | % bytes

r Capture packets in promiscuous mode

Fil1er:| I

Capture fileis)
File:| |

_JUse g buffer irribie

o

Dizplay options
_j Update list of packets in real tima

_J Automat ing | tu
Capture limits
- Stop capture after |1 —} packet(s) captured

- Stop capture after |1 J;r kilobyte(s) captured

- Stop capture after |/ —} second(s)
Mama resalution
r Enabla MAC name resolution

_j Enable network name resolution

r Enable transport name resolution

([| Cancel

If you've set up everything correctly, you should see traffic streaming from the remote end into your sniffer just as if it were being
captured from a local interface.

Chapter 6. Secure Tunnels

acks #67-8

lSection 67. Set Up IPsec Under Linu>l

bection 68. Set Up IPsec Under FreeBSd

lSection 69. Set Up IPsec in OpenBSd

lSection 70. PPTP TunnelincJ

bection 71. Opportunistic Encryption with FreeS/WAl\‘

lSection 72. Forward and Encrypt Traffic with SSD—I

lSection 73. OQuick Logins with SSH Client Keysl

bection 74. Squid Proxy over SS!—I

lSection 75. Use SSH as a SOCKS Proxd

lSection 76. Encrypt and Tunnel Traffic with SSLI

bection 77. _Tunnel Connections Inside HTTFI

lSection 78. Tunnel with VTun and SSI—I

lSection 79. Automatic vtund.conf Generatol

bection 80. Create a Cross-Platform VP!\I

lSection 81. Tunnel PPFI

netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html
netsechacks-CHP-6.html

Hacks #67-81

Untrusted computer networks (such as the Internet and public wireless networks) can be pretty hostile environments, but they can be
tamed to some degree. By leveraging encryption and some encapsulation tricks, you can build more trustworthy networks on top of
whatever network you choose, even if it is full of miscreants trying to watch or otherwise manipulate your data. This chapter primarily
deals with how to set up secure, encrypted communications over networks that you don't completely trust. Some of the hacks focus
mainly on providing a secure and encrypted transport mechanism, while others discuss how to create a virtual private network (VPN).

In reading this chapter, you'll learn how to set up Ipsec-based encrypted links on several operating systems, how to create virtual
network interfaces that can be tunneled through an encrypted connection, and how to forward TCP connections over an encrypted
channel. In addition, you'll also learn how to set up a cross-platform VPN solution.

The beauty of most of these hacks is that after reading them, you can mix and match transport-layer encryption solutions with whatever
virtual network-oriented approach that best meets your needs. In this way, you can safely build vast, powerful private networks
leveraging the public Internet as infrastructure. You can use these techniques for anything from securely connecting two remote offices
to building a completely routed private network enterprise on top of the Internet.

netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html
netsechacks-CHP-6-SECT-1.html

Hack 67 Set Up IPsec Under Linux

lie7

Secure your traffic in Linux with FreeS/WAN.

The most popular way of configuring IPsec connections under Linux is to use the FreeS/WAN (http://mww.freeswan.orcj) package.
FreeS/WAN is made up of two components, KernelL IP Security (KLIPS) andpluto. KLIPS is the kernel-level code that actually encrypts
and decrypts the data; it also manages the Security Policy Database (SPD).pluto is a user-land daemon that controls IKE negotiation.

The FreeS/WAN build process builds a new kernel and the required management utilities. Download the latest FreeS/WAN source from
the project's web site and unpack the source tree in /usr/src. The documentation that comes withFreeS/WAN is very extensive and can
help you tailor the installation to suit your needs. The kernel component can be either installed as a kernel-loadable module or statically
compiled directly into your kernel. In order to compile FreeS/WAN, the kernel source must be installed on your machine. During the
compilation process, the kernel configuration utility will launch. This is normal. Compile FreeS/WAN using your kernel configuration
method of choice (such the menu-based or X11-based options). Once the compilation is complete, install the kernel and user-land tools
per the FreeS/WAN documentation (typically a make install will suffice).

FreeS/WAN configuration is controlled by two configuration files: /etc/ipsec.conf and /etc/ipsec.secrets. The examples given in this hack
are very limited in scope and apply only to a wireless network. The manpages for both files are quite informative and useful for more
complicated connection requirements. Another excellent resource for more information is the book Building Linux Virtual Private
Networks (VPNSs), by Oleg Kolesnikov and Brian Hatch (New Riders).

The ipsec.conf file breaks a VPN connection into right- and lefthand segments. This difference is merely a logical division. The lefthand
side can be either the internal or external network; this allows the same configuration file to be used for both ends of a VPN
network-to-network tunnel. Unfortunately, in our case, there will be differences between the client and gateway configurations.

The file is broken up into a configuration section (config) and a connection section €onn). The config section specifies basic parameters
for Ipsec, such as available interfaces and specific directives to be passed to pluto. The conn section describes the various connections
that are available to the VPN. There is a global conn section (conn %defaulf) where you can specify values that are common to all
connections, such as the lifetime of a key and the method of key exchange.

The following ipsec.conf encrypts all information to the Internet with a VPN endpoint on your gateway:

letclipsec.conf
Set configuration options
config setup
interfaces=%defaultroute
Debug parameters. Set either to "all* for more info
klipsdebug=none
plutodebug=none
standard Pluto configuration
plutoload=%search

plutostart=%search

netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
netsechacks-CHP-6-SECT-2.html
http://www.freeswan.org

make sure there are no PMTU Discovery problems
overridemtu=1443

default configuration settings

conn %default
Be aggressive in rekeying attempts
keyingtries=0
use IKE
keyexchange=ike
keylife=12h
use shared secrets
authby=secret

setup the VPN to the Internet

conn wireless_connectionl
type=tunnel
left is the client side
left=192.168.0.104
right is the internet gateway
right=192.168.0.1
rightsubnet=0.0.0.0/0
automatically start the connection
auto=start

Now add the shared secret to ipsec.secrets:

192.168.0.104 192.168.0.1: PSK "supersecret"

That's it. Once your gateway is configured, try to ping your default gateway. pluto will launch automatically and the connection should
come up. If you have a problem reaching the gateway, check the syslog messages on both the client and gateway.

The gateway configuration is largely the same as the client configuration. Given the intelligence of the ipsec.conf file, very few changes
need to be made. Since your gateway has more than one Ethernet interface, you should hard-set the IPsec configuration to use the right
interface:

assume internal ethernet interface is ethO
interfaces="ipsecO=eth0"

You will then need to add a connection for each internal client. This can be handled in different ways as your network scales, but the
following configuration should work for a reasonable number of clients:

conn wireless_connection2
type=tunnel
left=192.168.0.105
right=192.168.0.1
rightsubnet=0.0.0.0/0
auto=start

conn wireless_connection3
type=tunnel
left=192.168.0.106
right=192.168.0.1
rightsubnet=0.0.0.0/0

auto=start

Finally, add the shared secrets for all the clients to ipsec.secrets:
192.168.0.105 192.168.0.1: PSK "evenmoresecret"
192.168.0.106 192.168.0.1: PSK "notsosecret"

Clients should now be connecting to the Internet via a VPN tunnel to the gateway. Check the log files or turn up the debug level if the
tunnel does not come up.

Hack 68 Set Up IPsec Under FreeBSD

lics

Use FreeBSD's built-in IPsec support to secure your traffic.

Using IPsec with IKE under FreeBSD requires enabling IPsec in the kernel and installing a user-land programracoon, to handle the
IKE negotiations.

You'll need to make sure that your kernel has been compiled with the following options:

options IPSEC #IP security
options IPSEC_ESP #IP security (crypto; define w/ IPSEC)
options IPSEC_DEBUG #debug for IP security

If it hasn't, you'll need to define them and then rebuild and install the kernel. After you've done that, reboot to verify that it works.

racoon can be installed using the network section of the ports tree, or it can be downloaded fronl‘tp://ftp.kame.net/pub/kame/miscj. Install

raccoon per the instructions provided with the distribution.
On the client, you should first configure racoon. You will need to modify this exampleracoon.conf to suit your needs:

path include "/usr/local/etc/racoon” ;
path pre_shared_key "/usr/local/etc/racoon/psk.txt" ;

remote anonymous

exchange_mode aggressive,main;
my_identifier user_fgdn "userl@domain.com”;
lifetime time 1 hour;

initial_contact on;

proposal {
encryption_algorithm 3des;
hash_algorithm shail;
authentication_method pre_shared_key ;

dh_group 2 ;

netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
netsechacks-CHP-6-SECT-3.html
ftp://ftp.kame.net/pub/kame/misc/

sainfo anonymous

{
pfs_group 1;
lifetime time 30 min;
encryption_algorithm 3des ;
authentication_algorithm hmac_shai;
compression_algorithm deflate ;

}

In your firewall configuration, be sure you allow IKE connections to your machine (UDP port 500)racoon needs to be configured to start
at boot time. Save the following script in /ust/local/etc/rc.d/racoon.sh:

#1/bin/sh

This script will start racoon in FreeBSD

case "$1" in

start)

start racoon

echo -n 'starting racoon’

Jusr/local/shin/racoon

stop)

Delete the MAC address from the ARP table

echo 'stopping racoon’

killall racoon

)
Standard usage statement

echo "Usage: "basename $0° {start|stop}" >&2

esac

exit 0
Make sure the file is executable by performing this command:
chmod 755 /usr/local/etc/rc.d/racoon.sh

The /usr/local/etc/racoon/psk.txt file contains your credentials. This file must be readable only by root. If the permissions are not set
correctly, racoon will not function. For a shared-secret IPsec connection, the file contains your identification (in this case your email
address) and the secret. For instance, you can set up a psk.txt as the following:

userl@domain.com supersecret

Finally, you must set up the security policy, using the setkey utility to add entries to the kernel SPD. Create the following client.spd that
can be loaded by setkey. For this setup, the station IP is 192.168.0.104 and the gateway is 192.168.0.1:

spdadd 192.168.0.104/32 0.0.0.0/0 any -P out ipsec \
esp/tunnel/192.168.0.104-192.168.0.1/require ;
spdadd 0.0.0.0/0 192.168.0.104/32 any -P in ipsec \

esp/tunnel/192.168.0.1-192.168.0.104/require ;

The first entry creates a security policy that sends all traffic to the VPN endpoint. The second entry creates a security policy that allows
all traffic back from the VPN endpoint. Note that in this configuration the client is unable to talk to any hosts on the local subnet, except
for the VPN gateway. In a wireless network where the client is a prime target for attack, this is probably a good thing for your
workstation.

Load the SPD by running:
setkey -f client.spd

The gateway racoon.conf is the same as the file for the client side. This allows any client to connect. Thesk.txt file must contain all the
identification and shared secrets of all clients who may connect. For instance:

userl@domain.com supersecret
user2@domain.com evenmoresecret
user3@domain.com notsosecret

Again, make sure psk.txt is readable only by root. Startracoon and make sure there are no errors. Finally, set up @ateway.spd that
creates an SPD for each client. The following example assumes your clients are at 192.168.0.10[4-6]:

spdadd 0.0.0.0/0 192.168.0.104/32 any -P out ipsec \
esp/tunnel/192.168.0.1-192.168.0.104/require ;

spdadd 192.168.0.104/32 0.0.0.0/0 any -P in ipsec \
esp/tunnel/192.168.0.104-192.168.0.1/require ;

spdadd 0.0.0.0/0 192.168.0.105/32 any -P in ipsec \
esp/tunnel/192.168.0.1-192.168.0.105/require ;

spdadd 192.168.0.105/32 0.0.0.0/0 any -P out \

ipsec esp/tunnel/192.168.0.105-192.168.0.1/require ;

spdadd 0.0.0.0/0 192.168.0.106/32 any -P in ipsec \

esp/tunnel/192.168.0.1-192.168.0.106/require ;
spdadd 192.168.0.106/32 0.0.0.0/0 any -P out ipsec \

esp/tunnel/192.168.0.106-192.168.0.1/require ;

Load the SPD by issuing setkey -f gateway.spd. Verify the SPD entries using thespddump command in setkey. At this point, you should
be able to ping a client from the gateway. It may take a packet or two for the VPN negotiation to complete, but the connection should be
solid after that. If you are unable to ping, examine your syslog output for errors and warnings.

Hack 69 Set Up IPsec in OpenBSD

lies

Use IPsec the OpenBSD way.
Setting up IPsec in OpenBSD is fairly easy since it's compiled into the kernel that ships with each release and is enabled by default. All
that is left to do is to create the appropriate /etc/isakmpd/isakmpd.conf and /etc/isakmpd/isakmpd.policy files and startisakmpd (the
IPsec key-management daemon). This may sound daunting, but OpenBSD's outstanding documentation and example configuration files
make it easier.
First of all, you'll need to put something similar to this in your /etc/isakmpd/isakmpd.policy:
KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase:mypassword"
Conditions: app_domain == "IPsec policy" &&
esp_present == "yes" &&
esp_enc_alg == "aes" &&
esp_auth_alg == "hmac-sha" -> "true";
This sets a password to use for the IPsec connection.

Now you'll need to edit your /etc/isakmpd/isakmpd.conf to contain the following:

[General]

Listen-on= 192.168.1.1

Shared-SADB= Defined

[Phase 1]

Default= ISAKMP-peer-remote

#Default= ISAKMP-peer-remote-aggressive
[Phase 2]

Passive-Connections=IPsec-local-remote

netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html
netsechacks-CHP-6-SECT-4.html

[ISAKMP-peer-remote]

Phase= 1

Transport= udp

Local-address= 192.168.1.1
Configuration= Default-main-mode
Authentication= mypassword

[ISAKMP-peer-remote-aggressive]

Phase= 1

Transport= udp

Local-address= 192.168.1.1
Configuration= Default-aggressive-mode
Authentication= mypassword

[IPsec-local-remote]

Phase= 2

ISAKMP-peer= ISAKMP-peer-remote
Configuration= Default-quick-mode
Local-ID= Net-local
Remote-ID= Net-remote
[Net-remote]

ID-type= IPV4_ADDR
Address= 0.0.0.0

[Net-local]

ID-type= IPV4_ADDR
Address= 0.0.0.0

[Default-main-mode]

DOI= IPSEC

EXCHANGE_TYPE= ID_PROT

Transforms= 3DES-SHA

[Default-aggressive-mode]

DOI= IPSEC
EXCHANGE_TYPE= AGGRESSIVE
Transforms= 3DES-SHA-RSA

[Default-quick-mode]

DOI= IPSEC
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-AES-SHA-PFS-SUITE

This configuration will allow anyone to connect with the passwordmypassword.
After you've edited the configuration files, you can startisakmpd by running this command:
Isbin/isakmpd

To have isakmpd start up with each system boot, you should edit youretc/rc.conf.local (or create one if it doesn't exist) and put the
following line in it:

isakmpd_flags=""

That should do it. As usual, check your system logs if your tunnel has trouble connecting.

Hack 70 PPTP Tunneling

E HAGK
Set up quick and easy VPN access using the Point-to-Point Tunneling Protocol.

The Point-to-Point Tunneling Protocol (PPTP) is basically a means to set up PPP tunnels automatically without needing to
manually start a PPP daemon on the remote machine. The main benefit of using PPTP is that bothWindows and Mac OS X natively
support the creation of VPN connections, and both provide easy-to-use GUIs for setting up the connections on the client side. Thus, you
can provide a VPN solution without much effort on your users' part.

To set up the server end, you can use PoOPToP (I\ttp:llwww.poptop.ord), an open source PPTP server. You can get a very simple PPTP
VPN going with minimal effort—just download the source distribution and unpack it, then go into the directory it created.

After you've done that, you can run this command to compile it:
$./configure && make

Then become root and run this command to install PoPToP:

make install

The PPTP daemon that this installs is called pptpd. Now you'll need to create a configuration file forpptpd (i.e., /etc/pptpd.conf) and a
pppd options file to use with it.

Here's a suitable /etc/pptpd.conf to start out with:
option /etc/ppp/options.pptpd

localip 10.0.0.1

remoteip 10.0.0.2-100

This defines the IP address of the local end of the PPTP connection as 10.0.0.1 and creates a pool of addresses to be dynamically
allocated to clients (i.e., 10.0.0.2-100). When you create your pptpd.conf file, you should use addresses from the range used by your
internal network. In addition, this configuration file tells pptpd to set up the PPP interface using /etc/ppp/options.pptpd when it startspppd.
Otherwise it would use the default of /etc/ppp/options, which probably isn't what you want.

Now you'll need to create the aforementioned /etc/ppp/options.pptpd:
lock

name pptpd

auth

These options basically tell pppd to use authentication (auth), and indicate what entries in the/etc/ppp/chap-secrets file correspond to this
instance of pppd (name pptpd). So, to finish configuring authentication for pptpd, you'll need to create an entry for each client in the
/etc/ppp/chap-secrets file.

Here's a simple entry that allows someone with the username of andrew to connect with the passwordmypassword from any remote IP
address:

Secrets for authentication using CHAP

netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
netsechacks-CHP-6-SECT-5.html
http://www.poptop.org

client server secret IP addresses

andrew pptpd mypassword *

The pptpd in the server field should be replaced with whatever you used in thexame directive in your/etc/ppp/options.pptpd file (if you
didn't use pptpd). You can of course limit the client to specific IP addresses by listing them.

Now that you have a basic setup for PoOPToP , you can try it out by connecting to it with a Windows machine. Go to your Network
Connections folder and click "Create a new connection" (this is for Windows XP: for Windows 2000, look for "Make New Connection").
After you click this, a wizard dialog should appear that looks similar to figure 6-1.

Figure 6-1. Windows XP's New Connection Wizard

Hew Connection Wizard 1.‘

Welcome to the New Connection
Wizard

This wirerd helps you
* Lonnect to the Imbemet.

* Conresct 10 3 private network, such 3 your wodiplace
network

* Set up a home or amall office network:.

To contnue, olick Mex.

<ok [THeds] Canca |

Click Next and then select the "Connect to the network at my workplace" radio button, as shown in .

Figure 6-2. Choosing the connection type

Hew Connection Wirard

Metwork Connecticn Type
Wihat do yeu want to da?

™ Cornect to the Intemet
Connect to the Infemet 50 you can browse the Web and read emai.

& Carnedi to ihe nivork ot o workloce

Connect to & buzneas network [using dalup or VPN eo you can work from home,
a field office, ar ancther location.

™ Set up a home or small office nelwork
Connect to an essting home or smal office netwons or 2&f up 2 new ane.

™ Sat up an advanced connection

Caonnect directhy to ancther computer using your sedal, parallel, or infrared port, or
=t up this computer 2o that cther compauters can connect to £

After you've done thxt again and then click the "Virtual Private Network connection” radio button. You should now see

something similar to Figure 6-3.

Figure 6-3. Selecting a VPN connection

Hew Connection Wizand

Metwork: Conneclicn
Hevas dioyau want to conmect (o the netwark al youwr workplace 7

Creale the follewing connection

™ Dialup conneclion
Connect using a modem and & reqular phone ine or an Integrsted Services Digital
Metwark {IS0N) phane ne

 Mirtual Privale Network conneclion
Cionnsct to the network wsing a vibusl prvate networs (VP N) connection over the
Infemet.

< Back et = Cancel

Click Next and fill in a name for the newly created connection (e.g., POPToP Test). After you've done that, click Next once again and then
enter the external IP address of the server running pptpd. Now click Next and then Finish. You'll then be presented with a login dialog

similar to the one shown in fFigure 6-4.

Figure 6-4. The connection login dialog

Connect PoPToP Test b

™ Save this user name and password for the following ussrs:
Me oy

© Anpone wha ees this computer

Connact Cancsl Propestias I Help

Before entering the username and password that you specified in the /etc/ppp/chap-secrets file, you'll need to click Properties and locate
the Securijty tab, After you've done that, locate the "Require data encryption" checkbox and uncheck it. You should now see something
similar to figure 6-3.

Figure 6-5. Changing the security properties

& PoPToP Tesl Properiies

Generl | Options Secuty | Netwerking | Advanced |

@ [Typical recommended seflings}
Walidate mry identity as follows:
IFhaq.llrE sacuned passwond :]

™ Automatically uze my Windows logon name and
password (and domain i am)

™ Require deta encryplion (disconnect # none)

™ Advanced fcustom settings)
Using these setlings requres: a knowledge

TR T Selbngs...
|PSec Settings... |
QK Cancel

Now click OK, enter your login information, and then click Connect. In a few seconds you should be connected to the PPTP server and

will be allocated an IP address from the pool that you specified. You should now test the connection by pinging the remote end of the

tunnel. With the PPTP connection active, all traffic leaving the client side will be encrypted and sent to the PoPToP server. From there,
traffic will make its way to its ultimate destination.

Hack 71 Opportunistic Encryption with FreeS/WAN

E HAGK
Use FreeS/WAN and DNS TXT records to automatically create encrypted connections between machines.

One particularly cool feature supported by FreeS/WAN is opportunistic encryption with other hosts runningFreeS/WAN.
This allows FreeS/WAN to transparently encrypt traffic between all hosts that also support opportunistic encryption. To do this, each
host must have a public key generated to use with FreeS/WAN. This key can then be stored in aDNS TXT record for that host. When a
host that is set up for opportunistic encryption wishes to initiate an encrypted connection with another host, it will look up the host's public
key through DNS and use it to initiate the connection.

To begin, you'll need to generate a key for each host that you want to use this feature with. You can do that by running this command:
ipsec newhostkey --output /tmp/"hostname™.key

Now you'll need to add the contents of the file that was created by that command to /etc/ipsec.secrets:

cat /tmp/"hostname’.key >> /etc/ipsec.secrets

Next, you'll need to generate a TXT record to put into your DNS zone. You can do this by running a command similar to this one:

ipsec showhostkey --txt @colossus.nnc
; RSA 2192 bits colossus Mon Jan 12 03:02:07 2004

IN TXT "X-IPsec-Server(10)=@colossus.nnc" "
AQOR7rM7ZMBXuZ2ej/1vizhNnMayZO1jwVHUyAlubTKpd/
PyTMogJBAdbb310xzGLaxadPGfigPN2AQNn76zLIsYFMJInoMbBTDY/2xK1X/
pWFRUUIHzJUQCBIijVWEMLNrlhdZbeils5/
MgYIPaX20UL+yAdxV4RUU3JJQhV7adVzQqEmdaNUnCjZOvZG6m4zv6dGROrVEZmJIFP54v6WhckYf
gSkQu3zkctfFgzJ/rMTB6Y 38yObyBg2HUWZMtWI*
"8VITQQi7IGGHK+mWk+wSoXer3iFD7JxRTzPOxLk6ihAIMibtKna3j7QP9ZHGONm7NZ/
L5M9VpK+Rfe+evUUMUTfAtSdIpus2BleXGWcPfz6rw305H9"

Now add this record to your zone and reload it. You can verify that DNS is working correctly by running this command:

ipsec verify

Checking your system to see if IPsec got installed and started correctly
Version check and ipsec on-path [OK]

Checking for KLIPS support in kernel [OK]

Checking for RSA private key (/etc/ipsec.secrets) [OK]

netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html
netsechacks-CHP-6-SECT-6.html

Checking that pluto is running [OK]

DNS checks.

Looking for TXT in forward map: colossus [OK]

Does the machine have at least one non-private address [OK]
Now just restart FreeS/WAN by running a command similar to this:
letcl/init.d/ipsec restart

You should now be able to connect to any other host that supports opportunistic encryption. But what if other hosts want to connect to
you? To allow this, you'll need to create a TXT record for your machine in your reverse DNS zone.

You can generate the record by running a command similar to this:
ipsec showhostkey --txt 192.168.0.64
; RSA 2192 bits colossus Tue Jan 13 03:02:07 2004

IN TXT "X-IPsec-Server(10)=192.168.0.64" "
AQOR7rM7ZMBXuZ2ej/1vtzhNnMayZO1jwVHUyAlubTKpd/
PyTMogJBAdbb310xzGLaxadPGfigPN2AQNn76zLISYFMJINoMbBTDY/2xK1X/
pWFRUUIHzJUQCBIij)VWEMLNrIhdZbeils5/
MgYIPaX20UL+yAdxV4RUU3JIQhV7adVzQqEmdaNUnCjZOvZG6m4zv6dGROrVEZmJIFP54v6WhekYf
gqSkQu3zkctfFgzJ/rMTB6Y38yObyBg2HUWZMtWI"
"8VITQQi7IGGHK+mWk+wSoXer3iFD7JxRTzPOxLk6ihAIMibtKna3j7QP9ZHGONm7NZ/
L5M9VpK+Rfe+evUUMUTfAtSdIpus2BleXGWcPfz6rw305H9"
Add this record to the reverse zone for your subnet, and other machines will be able to initiate opportunistic encryption with your

machine. With opportunistic encryption in use, all traffic between the hosts will be automatically encrypted, protecting all services
simultaneously. Pretty neat, huh?
|II!I|III|II'||
||||| LR LRGN

Hack 72 Forward and Encrypt Traffic with SSH

iz

Keep network traffic to arbitrary ports secure with ssh port forwarding.

In addition to providing remote shell access and command execution, OpenSSH can also forward arbitrary TCP ports to the other
end of your connection. This can be extremely handy for protecting email, web, or any other traffic that you need to keep private (at least,
all the way to the other end of the tunnel).

ssh accomplishes local forwarding by binding to a local port, performing encryption, sending the encrypted data to the remote end of the
ssh connection, then decrypting it and sending it to the remote host and port you specify. Start an ssh tunnel with the -L switch (short for

Local):

ssh -f -N -L 110:mailhost:110
user

@

mailhost

Naturally, substitute user with your username, andmailhost with your mail server's name or IP address. Note that you will have to be root
for this example, since you'll be binding to a privileged port (110, the POP3 port). You should also disable any locally running POP3
daemon (look in /etc/inetd.conf) or it will get in the way.

Now, to encrypt all of your POP3 traffic, configure your mail client to connect to localhost port 110. It will happily talk to mailhost as if it
were connected directly, except that the entire conversation will be encrypted. Alternatively, you could tell ssh to listen on a port above
1024 and eliminate the need to run it as root; however, you would have to configure your email client to also use this port, rather than
port 110.

-f forks ssh into the background, and -N tells it not to actually run a command on the remote end (just do the forwarding). One interesting
feature is that when using the -N switch you can still forward a port, even if you do not have a valid login shell on the remote server.
However, for this to work you'll need to set up public key authentication with the account beforehand. If your ssh server supports it, you
can also try the -C switch to turn on compression. This can significantly reduce the time it takes to download email. In addition,
connections can be sped up even more by using the blowfish cipher, which is generally faster than 3des (the default). To use the
blowfish cipher, type -c blowfish. You can specify as many-L lines as you like when establishing the connection. To also forward
outbound email traffic, try this:

#ssh -f -N -L 110:mailhost:110 -L 25:mailhost:25
user

@

mailhost

Now set your outbound email host to localhost, and your email traffic will be encrypted as far as mailhost. Generally, this is useful only if
the email is bound for an internal host, or if you can't trust your local network connection (as is the case with most wireless networks).
Obviously, once your email leaves mailhost, it will be transmitted in the clear, unless you've encrypted the message with a tool such as

pgp or gpg.

netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html
netsechacks-CHP-6-SECT-7.html

If you're already logged into a remote host and need to forward a port quickly, try this:

1. Press Enter.

2. Type ~C.

3. You should be at anssh> prompt; enter the-L line as you would from the command line.
For example:

rob@catlin:~$

rob@catlin:~$ ~C (it doesn't echo)
ssh>-L8080:localhost:80

Forwarding port.
Your current shell will then forward local port 8000 tocatlin's port 80, as if you had entered it in the first place.

You can also allow other (remote) clients to connect to your forwarded port, with the -g switch. If you're logged into a remote gateway
that serves as a NAT for a private network, then use a command like this:

$ ssh -f -g -N -L8000:localhost:80 10.42.4.6

This will forward all connections from the gateway's port 8000 to internal host 10.42.4.6's port 80. If the gateway has a live Internet
address, this will allow anyone from the Net to connect to the web server on 10.42.4.6 as if it were running on port 8000 of the gateway.

One last point worth mentioning: the forwarded host doesn't have to be localhost; it can be any host that the machine you're connecting
to can access directly. For example, to forward local port 5150 to a web server somewhere on an internal network, try this:

$ ssh -f -N -L5150:intranet.insider.nocat:80 gateway.nocat.net

Assuming that you're running a private domain called .nocat, and thatgateway.nocat.net also has a connection to the private network, all
traffic to port 5150 of remote will be obligingly forwarded to intranet.insider.nocat:80. The addressintranet.insider.nocat doesn't have to
resolve in DNS to remote; it isn't looked up until the connection is made to gateway.nocat.net, and then it's gateway that does the lookup.
To securely browse that site from remote, try connecting to http://localhost:5150/ .

—Rob Flickenger (Linux Server Hacks)

Hack 73 Quick Logins with SSH Client Keys

E HAGK
Use SSH keys instead of password authentication to speed up and automate logins.

When you're an admin on more than a few machines, being able to navigate quickly to a shell on any given server is critical. Having to
type ssh my.server.com (followed by a password) is not only tedious, but it also breaks your concentration. Suddenly having to shift from
"where's the problem?" to "getting there" and then back to "what's all this, then?" has led more than one admin to premature senility. It
promotes the digital equivalent of "Why did | come into this room, anyway?"

At any rate, more effort spent logging into a machine means less effort spent solving problems. Recent versions of SSH offer a secure
alternative to endlessly entering a password: public key exchange.

For these examples, | assume that you're using OpenSSHv3.4p1l or later. To use public keys with an SSH server, you'll first need to
generate a public/private key pair:

$ ssh-keygen -t rsa

You can also use -t dsa for DSA keys, or-t rsal if you're using Protocol v1. (And shame on you if you are using v1! Upgrade to v2 as
soon as you can!) If at all possible, use RSA keys—there are some problems with DSA keys, although they are very rare.

After you enter the command, you should see something like this:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/rob/.ssh/id_rsa):

Just press Enter there. It will then ask you for a passphrase; just press Enter twice (but read the following section,). Here's
what the results should look like:

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/rob/.ssh/id_rsa.

Your public key has been saved in /home/rob/.ssh/id_rsa.pub.

The key fingerprint is:

a6:5c:c3:eb:18:94:0b:06:al1:a6:29:58:fa:80:0a:bc rob@localhost

This created two files: ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub. To use this key pair on a server, try this:
$ cat .ssh/id_rsa.pub |\

ssh
server

"mkdir .ssh && chmod 0700 .ssh && cat > .ssh/authorized_keys2"

Of course, substitute your server name for server. Now, simply ssh server and it should log you in automatically, without a password. And

netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html
netsechacks-CHP-6-SECT-8.html

yes, it will use your shiny new public key for scp, too.

If this didn't work for you, check your file permissions on both ~/.ssh/* and server:~/.ssh/*. Your private key (id_rsa) should be mode 0600
(and be present only on your local machine), and everything else should be mode 0655 or better. In addition, your home directory on the
server will need to be mode 755 or better. If it is group writable, someone that belongs to the group that owns your home directory could
remove ~/.ssh, even if~/.ssh is not writable by that group. This might not seem obvious at first, but if they can do that, then they can
create their own ~/.ssh and an authorized_keys?2 file, which could contain whatever keys they wish. Luckily, the SSH daemon will catch
this and deny public key authentication until your permissions are fixed.

Security Concerns

Some consider the use of public keys a potential security risk. After all, one only has to steal a copy of your private key to obtain
access to your servers. While this is true, the same is certainly true of passwords.

Ask yourself, how many times a day do you enter a password to gain shell access to a machine (or scp a file)? How frequently is it the
same password on many (or all) of those machines? Have you ever used that password in a way that might be questionable (on a web
site, a personal machine that isn't quite up-to-date, or possibly with an SSH client on a machine that you don't directly control)? If any of
these possibilities sound familiar, then consider that an SSH key in the same setting would make it virtually impossible for an attacker to
later gain unauthorized access (providing, of course, that you keep your private key safe).

Another way to balance ease of use with security is to use a passphrase on your key, but use the SSH agent to manage your keys for
you. When you start the agent, it will ask you for your passphrase once, and will cache it until you kill the agent. Some people even go as
far as to store their SSH keys on removable media (such as a USB key chain), and take their keys with them wherever they go. However
you choose to use SSH keys, you'll almost certainly find that they're a very useful alternative to traditional passwords.

—Rob Flickenger (Linux Server Hacks)

Hack 74 Squid Proxy over SSH

li7a

Secure your web traffic from prying eyes—and improve performance in the process.

Squid (http://www.squid-cache.orcl) is normally used as an HTTP accelerator. It is a large, well-managed, and full-featured caching
HTTP proxy that is finding its way into many commercial web platforms. Best of all, squid is open source and freely available. Since it
performs all of its magic on a single TCP port, it is an ideal candidate for use with an SSH tunnel. This not only helps to secure your web
browser when using wireless networks, but also potentially makes your browser run even faster.

First, choose a server on which to host your squid cache. Typifumm_bg_amior BSD machine on your local wired
network—although squid also runs in Windows, under Cygwin fttp://www.cygwin.com{). You want to have a fast connection to your
cache, so choosing a squid cache at the other end of a dial-up connection is probably a bad idea (unless you enjoy simulating what the

Internet was like in 1995). On a home network, this is typically the same machine you use as a firewall or DNS server. Fortunately, squid
isn't very demanding when it supports only a few simultaneous users, so it can happily share a box that runs other services.

It is beyond the scope of this hack to include full squid installation instructions, but configuration isn't especially difficult. Just be sure to
check your access rules and set a password for i ing i un, check out Jennifer
Vesperman's "Installing and Configuring Squid" (http://linux.oreillynet.com/pub/a/linux/2001/07/26/squid.html).

When squid is installed and running, it binds to TCP port 3128 by default. Once you have it running, you should test it manually by setting

your HTTP proxy to the server. For example, suppose your server is running proxy.example.com. In Mozilla, go to Preferences

Advanced ; Proxies, as in .

Figure 6-6. Testing your squid using the HTTP Proxy field in Mozilla

netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
netsechacks-CHP-6-SECT-9.html
http://www.squid-cache.org
http://www.cygwin.com/
http://linux.oreillynet.com/pub/a/linux/2001/07/26/squid.html

La Preferences

Category Proxies
B Appearance

B Hawegated Conflgure Proxies to Access the Interniet

F Composer
. [urect connection to the Internet
¥ Mail & Hewsgraups
¥ Prosacy & Security s pariual proxy conflguration
B ChatZilla HTTP Proowy proxy.example Lam Port: 3128
¥ Adhvanced CEL Prowy Poert
sScripes & Pluging
FTF Proxsg Port: [
Keyhoard Naviga
Cache Gopher Proxy PosrE
Proxies SORC S Hiogt Pesrt
HTTF Hareo rking @ socksvd () SOCKS ws

Software Installan...
Mouze Wheel
DM Inspectar

Mo Praxy far
Examgle: moilln.org, neLhag

Automatic prowy configuraton UEL

Help Cancel | 0K

Enter "proxy.example.com" as the HTTP Proxy host and "3128" for the port. Click OK, and try to load any web page. You should
immediately see the page you requested. If you see an Access Denied error, look over the http_access lines in yoursquid.conf, and
restart squid if necessary.

Once you are satisfied that you have a happy squid, then you need only forward your connection to it over SSH. Set up a local listener
on port 3128, forwarding to proxy.example.com:3128 like this:

rob@caligula:~$ ssh -L 3128:localhost:3128 proxy.example.com -f -N

This will set up an SSH tunnel and fork into the background automatically. Next, change the HTTP Proxy host in your browser to
localhost, and reload your page. As long as your SSH tunnel is running, your web traffic will be encrypted all the way to
proxy.example.com, where it is decrypted and sent on to the Internet.

The biggest advantage of this technique (compared to using the SSH SOCKS 4 proxy [Hack #75]) is that virtually all browsers support
the use of HTTP proxies, while not every browser supports SOCKS 4. Also, if you are using Mac OS X, there is support for HTTP
proxies built into the OS itself. This means that every properly written application will use your proxy settings transparently.

Note that HTTP proxies have the same difficulties with DNS as a SOCKS 4 proxy, so keep those points in mind when using your proxy.
Typically, your squid proxy is used from a local network, so you don't usually run into the DNS schizophrenia issue, But yowquid can
theoretically run anywhere (even behind a remote firewall), so be sure to check out the notes on DNS in[Hack #75] .

Running squid takes a little bit of preparation, but it can both secure and accelerate your web traffic when using wireless. Of courssquid
will support as many simultaneous wireless users as you care to throw at it, so be sure to set it up for all of your regular wireless users,
and keep your web traffic private

—Rob Flickenger (Wireless Hacks)

Hack 75 Use SSH as a SOCKS Proxy

E HAGK
Protect your web traffic using the basic VPN functionality built into SSH itself.

In the search for the perfect way to secure their wireless networks, many people overlook one of the most useful features c§SH: the
-D switch. This simple little switch is buried within the SSH manpage, toward the bottom. Here is a direct quote from the manpage:

-D port

Specifies a local "dynamic" application-level port forwarding. This works by allocating a socket to listen to port on
the local side, and whenever a connection is made to this port, the connection is forwarded over the secure
channel, and the application protocol is then used to determine where to connect to from the remote machine.
Currently the SOCKS 4 protocol is supported, and SSH will act as a SOCKS 4 server. Only root can forward
privileged ports. Dynamic port forwardings can also be specified in the configuration file.

This turns out to be an insanely useful feature if you have software that is capable of using a SOCKS 4 proxy. It effectively gives you an
instant encrypted proxy server to any machine that you can SSH to. It does this without the need for further software, either on your
machine or on the remote server.

Just as with SSH port forwarding [Hack #72], the -D switch binds to the specified local port and encrypts any traffic to that port, sends it
down the tunnel, and decrypts it on the other side. For example, to set up a SOCKS 4 proxy from local port 8080 to remote, type the
following:

rob@caligula:~$ ssh -D 8080
remote

That's all there is to it. Now you simply specify localhost:8080 as the SOCKS 4 proxy in your application, and all connections made by

that application will be sent down the encrypted tunnel. For example, to set your SOCKS proxy in Mozilla, go to Preferences ;

Advanced ; Proxies, as shown in.

Figure 6-7. Proxy settings in Mozilla.

netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html
netsechacks-CHP-6-SECT-10.html

L Preferences

Canegnery
N Proxies

B Appearance

K Hasigarns Configure Praxies to Access the nternst
¥ Composer
[5

[

¥

¥

Mail & Hewsgraups Durect connection to the Inmerner
L

Prevacy & Security ‘o) Marual proxy confiquration
Lhatlilla HTTP Prowy Port: [
Advanced SEL Prowy Port; [
scriprs & Flumins
FTP Proey Posrt: [}
Eeyboard Naviga
Cachig Gophar Proxy Part: 0
Pries SOECKS Host: localhost Parlt: BOS0
HTTP Heteorking M osockswd [) SOCKS w8

Software Installat
Mouze Wheel
DOIM Inspectar

Mo Praxy far
Example: mozilla.org, .neLhnz

Automatic proxy configuratian URL:

Help) Cancel | 0K

Select "Manual proxy configuration”, then type in localhost as the SOCKS host. Enter the port number that you passed to theD switch,
and be sure to check the SOCKSv4 button.

Click OK, and you're finished. All of the traffic that Mozilla generates is now encrypted and appears to originate from the remote machine
that you logged into with SSH. Anyone listening to your wireless traffic now sees a large volume of encrypted SSH traffic, but your actual
data is well protected.

One important point to keep in mind is that SOCKS 4 has no native support for DNS traffic. This has two important side effects to keep
in mind when using it to secure your wireless transmissions.

First of all, DNS lookups are still sent in the clear. This means that anyone listening in can still see the names of sites that you browse to,
although the actual URLs and data are obscured. This is rarely a security risk, but it is worth keeping in mind.

Second, you are still using a local DNS server, but your traffic originates from the remote end of the proxy. This can have interesting
(and undesirable) side effects when attempting to access private network resources.

To illustrate the subtle problems that this can cause, consider a typical corporate network with a web server calledintranet.example.com.
This web server uses the private address 192.168.1.10 but is accessible from the Internet through the use of a forwarding firewall. The
DNS server for intranet.example.com normally responds with different IP addresses depending on where the request comes from,
perhaps using the views functionality in BIND 9. When coming from the Internet, you would normally access intranet.example.com with
the IP address 208.201.239.36, which is actually the IP address of the outside of the corporate firewall.

Now suppose that you are using the SOCKS proxy example just shown, and remote is actually a machine behind the corporate firewall.
Your local DNS server returns 208.201.239.36 as the IP address for intranet.mybusiness.com (since you are looking up the name from
outside the firewall). But the HTTP request actually comes from remote and attempts to go to 208.201.239.36. Many times, this is
forbidden by the firewall rules, as internal users are supposed to access the intranet by its internal IP address, 192.168.1.10. How can
you work around this DNS schizophrenia?

One simple method to avoid this trouble is to make use of a local hosts file on your machine. Add an entry like this tdetc/hosts (or the
equivalent on your operating system):

192.168.1.10 intranet.example.com

Likewise, you can list any number of hosts that are reachable only from the inside of your corporate firewall. When you attempt to
browse to one of those sites, the local hosts file is consulted before DNS, so the private IP address is used. Since this request is actually
made from remote, it finds its way to the internal server with no trouble. Likewise, responses arrive back at the SOCKS proxy omemote,
are encrypted and forwarded over your SSH tunnel, and appear in your browser as if they came in from the Internet.

SOCKS 5 support is planned for an upcoming version of SSH, which will also make tunneled DNS resolution possible. This is
particularly exciting for Mac OS X users, as there is support in the OS for SOCKS 5 proxies. Once SSH supports SOCKS 5, every
native OS X application will automatically be able to take advantage of encrypting SSH socks proxies. In the meantime, we'll just have to
settle for encrypted HTTP proxies

—Rob Flickenger (Wireless Hacks)

Hack 76 Encrypt and Tunnel Traffic with SSL

76

Use stunnel to add SSL encryption to any network service.

Stunnel (http://www.stunnel.ortj) is a powerful and flexible program that, using SSL, encrypts traffic to and from any TCP port in
several different ways. It can tunnel connections, much like SSH can, by providing a local port to connect to. It will encrypt the traffic sent
to this port, forward it to a remote system, decrypt the traffic, and finally forward it to a local port on that system. Stunnel can also provide
transparent SSL support for inetd-compatible services.

To install stunnel, simply run./configure from the directory that was created when you unpacked the archive file that you downloaded.

Since stunnel requires OpenSSL (l]ttp://www.openssl.ord), download and install that first if it is not already installed. If you would like to
compile stunnel with TCP wrappers support or install OpenSSL in a nonstandard location, you'll probably want to make use of the
--with-tcp-wrappers or --with-ssl command-line options for configure.

For example, this will configure stunnel to include TCP wrapper support, using the OpenSSL installation under/opt/:
$./configure --with-tcp-wrappers --with-ssl=/opt/openssl

After the script runs, you'll need to run make to actually compile stunnel. You will then be prompted for information to create a self-signed

certificate. Not only will this certificate be_self-signed, but it is valid for only one year. If this is not what you want, you should create your
own certificate and Certificate Authority [Hack #45] .

With the older 3.x versions of stunnel, it was possible to configure all options from the command line. The newer 4.x versions make use
of a configuration file, stunnel.conf. A sample configuration file can usually be found in either/etc/stunnel/stunnel.conf-sample or
lusr/local/etc/stunnel/stunnel.conf-sample.

Let's take a look at the basic form of a configuration file used to forward a local port to a remote port withstunnel.
The client side:
pid =

client = yes

[<server port>]
accept = <forwarded port>
connect = <remote address>:<server port>

The server side:

cert = /etc/stunnel/stunnel.pem
pid =

client = no

netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
netsechacks-CHP-6-SECT-11.html
http://www.stunnel.org
http://www.openssl.org

[<forwarded port>]

accept = <server port>

connect = <forwarded port>

You can use the default configuration file or choose another file. If you want to use the default configuration file, you can start stunnel
without any arguments. Otherwise, you can specify the configuration file as the first argument to stunnel.

With this setup, a program will be able to connect to <forwarded port> on the client side. Then stunnel will encrypt the traffic it receives
on this port and send it to <server port>on the remote system specified by<remote address>. On the remote system, stunnel will decrypt
the traffic that it receives on this port and forward it to the program that is listening on <forwarded port> on the remote system.

The equivalent ssh port-forwarding command would be:
ssh -f -N -L <forwarded port>:<remote address>:<forwarded port>\
<remote address>

If you wish to specify a PID file, you can set thepid variable to whatever filename you wish. Leaving thepid variable in the configuration
file without giving it a value causes stunnel to not create a PID file. However, if you leave out thepid variable completely, stunnel will try to
create either /var/run/stunnel.pid or /usr/local/var/run/stunnel.pid (i.e., $prefix/var/run/stunnel.pid), depending on how you configured it at
compile time.

In addition to providing SSH-style port forwarding, stunnel can also be used to add SSL capabilities to inetd-style services. This is perfect
for adding SSL capabilities to email or other services that don't have native SSL functionality.

Here's an inetd.conf entry for SWAT, Samba's web-based configuration tool:

swat stream tcp nowait.400 root /usr/local/samba/bin/swat swat

To add SSL support to SWAT, you first need to create a configuration file for stunnel to use. Let's call it swat.conf and put it in
[etc/stunnel:

cert = /etc/stunnel/swat.pem

exec = /usr/local/samba/bin/swat

execargs = swat

Now modify the entry in inetd.conf to look like this:

swat stream tcp nowait.400 root /usr/sbin/stunnel stunnel \

/etc/stunnel/swat.conf

Now you can access SWAT securely with your favorite SSL-enabled web browser.

Alternatively, you can do away with inetd altogether and have stunnel listen for connections from clients and then spawn the service
process itself. To do this, create a configuration file with contents similar to this:

cert = /etc/stunnel/swat.pem

[swat]

accept =901

exec = /usr/local/samba/bin/swat

execargs = swat

Then start stunnel with the path to the configuration file:
stunnel /etc/stunnel/swat.conf
In addition, you can start it at boot time by putting the previous command in your startup scripts (i.e/gtc/rc.local).

Stunnel is a very powerful tool: not only can it forward connections through an encrypted tunnel, but it can also be used to add SSL
capabilities to common services. This is especially nice when clients with SSL support for these services already exist. Thus, you can
use stunnel solely on the server side, enabling encryption for the service with no need for the client to install any extra software.

Hack 77 Tunnel Connections Inside HTTP

77

Break through draconian firewalls by using httptunnel.

If you've ever been on the road and found yourself in a place where the only connectivity to the outside world is through an incredibly
restrictive firewall, you probably know the pain of trying to do anything other than sending and receiving email or basic web browsing.

Here's where httptunnel (I"uttp://www.nocrew.orq/software/httptunnel.htm) comes to the rescue. Httptunnel is a program that allows you to

tunnel arbitrary connections through the HTTP protocol to a remote host. This is especially useful in situations like the one mentioned
earlier, when web access is allowed but all other services are denied. Of course, you could just use any kind of tunneling software and
configure it to use port 80, but where would that leave you if the firewall is actually a web proxy? This is roughly the same as an
application-layer firewall, and will accept only valid HTTP requests. Fortunately, httptunnel can deal with these as well.

To compile httptunnel, download the tarball and runconfigure and make:

$ tar xfz httptunnel-3.3.tar.gz
$ cd httptunnel-3.3

$./configure && make

Install it by running make install, which will install everything under/usr/local. If you want to install it somewhere else, you can use the
standard --prefix= option to the configure script.

The httptunnel client program is called htc, and the server ishts. As with sshfHack #76], httptunnel can be used to listen on a local TCP
port for connections, forward the traffic that it receives on this port to a remote server, and then decrypt and forward the traffic to another
port outside of the tunnel.

Try tunneling an SSH connection over HTTP. On the server, run a command like this:
hts -F localhost:22 80

Now, run a command like this on the client:

htc -F 2222 colossus:80

In this case, colossus is the remote server, andhtc is listening on port 2222. You can use the standard port 22 if you aren't running a local
sshd. If you're curious, you can verify thathtc is now listening on port 2222 by usinglsof:

lusr/sbin/lsof -i | grep htc

htc 2323 root 6u IPv4 0x02358a30 0t0 TCP *:2222 (LISTEN)
And now to try out the tunnel:

[andrew@kryten andrew]$ ssh -p 2222 localhost

andrew@localhost's password:

[andrew@colossus andrew]$

You can also forward connections to machines other than the one that you're running hts on. To do this, just replace thelocalhost in the

netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
netsechacks-CHP-6-SECT-12.html
http://www.nocrew.org/software/httptunnel.html

hts command with whatever remote host you wish to forward to.
For instance, to forward the connection to oceana.ingsoc.net instead of colossus, you could run this command:
hts -F oceana.ingsoc.net:22 80

If you're curious to see what an SSH connection tunneled through the HTTP protocol looks like, you can take a look at it with a packet
sniffer. Here's the initial portion of the TCP stream that is sent to the httptunnel server by the client:

POST /index.html?crap=1071364879 HTTP/1.1
Host: linux-vm:80
Content-Length: 102400

Connection: close

SSH-2.0-OpenSSH_3.6.1p1+CAN-2003-0693

If your tunnel needs to go through a web proxy, no additional configuration is needed as long as the proxy is transparent and does not
require authentication. If the proxy is not transparent, you can specify it with the -P switch. Additionally, if you do need to authenticate
with the proxy, you'll want to make use of the -A or --proxy-authorization options, which allow you to specify a username and password to
authenticate with.

Here's how to use these options:
htc -P myproxy:8000 -A andrew:mypassword -F 22 colossus:80

If the port that the proxy listens on is the standard web proxy port (8080), then you can just specify the proxy by using its IP address or

hostname.
|IIII|III|II'||||
||||| LR LRGN

Hack 78 Tunnel with VTun and SSH

E HAGK
Connect two networks using VTun and a single SSH connection.

VTun is a user-space tunnel server, allowing entire networks to be tunneled to each other using théun universal tunnel kernel driver.
An encrypted tunnel such as VTunallows roaming wireless clients to secure all of their IP traffic using strong encryption. It currently runs
under Linux, BSD, and Mac OS X. The examples in this hack assume that you are using Linux.

The procedure described next will allow a host with a private IP address (10.42.4.6) to bring up a new tunnel interface with a real, live,
routed IP address (208.201.239.33) that works as expected, as if the private network weren't even there. Do this by bringing up the
tunnel, dropping the default route, and then adding a new default route via the other end of the tunnel.

To begin with, here is the (pretunneled) network configuration:

root@client:~# ifconfig eth2

eth2 Link encap:Ethernet HWaddr 00:02:2D:2A:27:EA

inet addr:10.42.3.2 Bcast:10.42.3.63 Mask:255.255.255.192
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:662 errors:0 dropped:0 overruns:0 frame:0

TX packets:733 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

RX bytes:105616 (103.1 Kb) TX bytes:74259 (72.5 Kb)

Interrupt:3 Base address:0x100

root@client:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.42.3.0 * 255.255.255.192 U 0 0 O eth2

loopback * 255.0.0.0U000 Io

default 10.42.3.1 0.0.0.0 UG 0 0 0 eth2

As you can see, the local network is 10.42.3.0/26, the IP is 10.42.3.2, and the default gateway is 10.42.3.1. This gateway provides
network address translation (NAT) to the Internet. Here's what the path looks like toyahoo.com:

root@client:~# traceroute -n yahoo.com

netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html
netsechacks-CHP-6-SECT-13.html

traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets
110.42.3.1 2.848 ms 2.304 ms 2.915 ms

2209.204.179.1 16.654 ms 16.052 ms 19.224 ms

3208.201.224.194 20.112 ms 20.863 ms 18.238 ms

4208.201.224.5 213.466 ms 338.259 ms 357.7 ms

5206.24.221.217 20.743 ms 23.504 ms 24.192 ms

6 206.24.210.62 22.379 ms 30.948 ms 54.475 ms

7 206.24.226.104 94.263 ms 94.192 ms 91.825 ms

8 206.24.238.61 97.107 ms 91.005 ms 91.133 ms

9 206.24.238.26 95.443 ms 98.846 ms 100.055 ms

10 216.109.66.7 92.133 ms 97.419 ms 94.22 ms

11 216.33.98.19 99.491 ms 94.661 ms 100.002 ms

12 216.35.210.126 97.945 ms 93.608 ms 95.347 ms

13 64.58.77.41 98.607 ms 99.588 ms 97.816 ms

In this example, we are connecting to a tunnel server on the Internet at 208.201.239.5. It has two spare live IP addresses

(208.201.239.32 and 208.201.239.33) to be used for tunneling. We'll refer to that machine as the server, and our local machine as the
client.

Now let's get the tunnel running. To begin with, load the tun driver on both machines:
modprobe tun

It is worth noting that the tun driver will sometimes fail if the server and client kernel versions don't match. For best results, use a recent
kernel (and the same version, e.g., 2.4.20) on both machines.

On the server machine, save this file to/usr/local/etc/vtund.conf;

options {

port 5000;

ifconfig /shin/ifconfig;

route /shin/route;

syslog auth;

default {

compress no,

speed 0;

home {
type tun;
proto tcp;
stat yes;

keepalive yes;

pass sHHH; # Password is REQUIRED.

up {
ifconfig "%% 208.201.239.32 pointopoint 208.201.239.33";
program /shin/arp "-Ds 208.201.239.33 %% pub";
program /shin/arp "-Ds 208.201.239.33 eth0 pub”;

route "add -net 10.42.0.0/16 gw 208.201.239.33";

down {
program /shin/arp "-d 208.201.239.33 -i %%";
program /shin/arp "-d 208.201.239.33 -i eth0";

route "del -net 10.42.0.0/16 gw 208.201.239.33";

Launch the vtund server like so:

root@server:~# vtund -s

Now you'll need avtund.conf file for the client side. Try this one, again irusr/local/etc/vtund.conf:

options {
port 5000;
ifconfig /sbin/ifconfig;

route /shin/route;

default {
compress no;

speed 0;

home {
type tun;
proto tcp;

keepalive yes;

pass sHHH; # Password is REQUIRED.

up {
ifconfig "%% 208.201.239.33 pointopoint 208.201.239.32 arp";
route "add 208.201.239.5 gw 10.42.3.1";
route "del default";

route "add default gw 208.201.239.32";

down {
route "del default";
route "del 208.201.239.5 gw 10.42.3.1";

route "add default gw 10.42.3.1";

Finally, run this command on the client:

root@client:~# vtund -p home server

Presto! Not only do you have a tunnel up between client and server, but also a new default route via the other end of the tunnel. Take a
look at what happens when we traceroute to yahoo.com with the tunnel in place:

root@client:~# traceroute -n yahoo.com

traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets

1208.201.239.32 24.368 ms 28.019 ms 19.114 ms
2208.201.239.1 21.677 ms 22.644 ms 23.489 ms
3208.201.224.194 20.41 ms 22.997 ms 23.788 ms

4 208.201.224.5 26.496 ms 23.8 ms 25.752 ms
5206.24.221.217 26.174 ms 28.077 ms 26.344 ms

6 206.24.210.62 26.484 ms 27.851 ms 25.015 ms

7 206.24.226.103 104.22 ms 114.278 ms 108.575 ms
8 206.24.238.57 99.978 ms 99.028 ms 100.976 ms

9 206.24.238.26 103.749 ms 101.416 ms 101.09 ms
10 216.109.66.132 102.426 ms 104.222 ms 98.675 ms
11 216.33.98.19 99.985 ms 99.618 ms 103.827 ms

12 216.35.210.126 104.075 ms 103.247 ms 106.398 ms
13 64.58.77.41 107.219 ms 106.285 ms 101.169 ms

This means that any server processes running on the client are now fully available to the Internet, at IP address 208.201.239.33. This
has all happened without making a single change (e.g., port forwarding) on the gateway 10.42.3.1.

Here's what the new tunnel interface looks like on the client:

root@client:~# ifconfig tun0

tun0 Link encap:Point-to-Point Protocol

inet addr:208.201.239.33 P-t-P:208.201.239.32 Mask:255.255.255.255
UP POINTOPOINT RUNNING MULTICAST MTU:1500 Metric:1

RX packets:39 errors:0 dropped:0 overruns:0 frame:0

TX packets:39 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:10

RX bytes:2220 (2.1 Kb) TX bytes:1560 (1.5 Kb)

And here's the updated routing table (note that we still need to keep a host route to the tunnel server's IP address via our old default
gateway; otherwise, the tunnel traffic can't get out):

root@client:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
208.201.239.5 10.42.3.1 255.255.255.255 UGH 0 0 0 eth2
208.201.239.32 * 255.255.255.255 UH 0 0 0 tunO

10.42.3.0 * 255.255.255.192 U 0 0 0 eth2

10.42.4.0 * 255.255.255.192 U 0 0 0 ethO

loopback * 255.0.0.0U000 lo

default 208.201.239.32 0.0.0.0 UG 0 0 0 tun0

To bring down the tunnel, simply kill the vtund process on client. This restores all network settings back to their original states.

This method works fine if you trust VTun to use strong encryption and to be free from remote exploits. Personally, | don't think you can be

too paranoid when it comes to machines connected to the Internet. To use VTunover SSH (and therefore rely on the strong
authentication and encryption that SSH provides), simply forward port 5000 on the client to the same port on the server. Give this a try:

root@client:~# ssh -f -N -c blowfish -C -L5000:localhost:5000 server
root@client:~# vtund -p home localhost
root@client:~# traceroute -n yahoo.com
traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets
1208.201.239.32 24.715 ms 31.713 ms 29.519 ms
2208.201.239.1 28.389 ms 36.247 ms 28.879 ms
3208.201.224.194 48.777 ms 28.602 ms 44.024 ms
4208.201.224.5 38.788 ms 35.608 ms 35.72 ms
5206.24.221.217 37.729 ms 38.821 ms 43.489 ms
6 206.24.210.62 39.577 ms 43.784 ms 34.711 ms
7 206.24.226.103 110.761 ms 111.246 ms 117.15 ms
8 206.24.238.57 112.569 ms 113.2 ms 111.773 ms
9 206.24.238.26 111.466 ms 123.051 ms 118.58 ms
10 216.109.66.132 113.79 ms 119.143 ms 109.934 ms
11 216.33.98.19 111.948 ms 117.959 ms 122.269 ms
12 216.35.210.126 113.472 ms 111.129 ms 118.079 ms
13 64.58.77.41 110.923 ms 110.733 ms 115.22 ms
In order to discourage connections to vtund on port 5000 of the server, add a net filter rule to drop connections from the outside world:
root@server:~# iptables -A INPUT -t filter -i eth0\
-p tcp --dport 5000 -j DROP

This allows local connections to get through (since they use loopback), and therefore requires an SSH tunnel to the server before
accepting a connection.

As you can see, this can be an extremely handy tool to have around. In addition to giving live IP addresses to machines behind a NAT,
you can effectively connect any two networks if you can obtain a single SSH connection between them (originating from either direction).

If your head is swimming from this vtund.conf configuration or you're feeling lazy and don't want to figure out what to change when
setting up your own client's vtund.conf file, take a look at the automatic vtund.conf generator [Hack #79] .

—~Rob Flickenger (Linux Server Hacks)

Hack 79 Automatic vtund.conf Generator

75

Generate a vtund.conf on the fly to match changing network conditions.
If you've just come from[Hack #78], then the following script will generate a working/tund.conf for the client side automatically.

If you haven't read the previous hack (or if you've never used VTun), then go back and read it before attempting to grok this bit of Perl.
Essentially, it attempts to take the guesswork out of changing the routing table around on the client side by auto-detecting the default
gateway and building the vtund.conf accordingly.

To configure the script, take a look at the Configuration section. The first line of $Config contains the addresses, port, and secret that we
used in the VTun hack. The second line simply serves as an example of how to add more.

To run the script, either call it as vtundconf home or set $TunnelName to the one you want to default to. Better yet, make symlinks to the
script, like this:

#In -s vtundconf home
In -s vtundconf tunnel2

Then you can generate the appropriate vtund.conf by calling the symlink directly:
vtundconf home > /usr/local/etc/vtund.conf

You might be wondering why anyone would go to all of the trouble to make a vtund.conf-generating script in the first place. Once you get
the settings right, you'll never have to change them, right?

Well, usually that is the case. But consider the case of a Linux laptop that uses many different networks in the course of the day (say, a
DSL line at home, Ethernet at work, and maybe a wireless connection at the local coffee shop). By running vtundconf once at each
location, you will have a working configuration instantly, even if your IP and gateway is assigned by DHCP. This makes it easy to get up
and running quickly with a live, routable IP address, regardless of the local network topology.

Incidentally, VTun currently runs well on Linux, FreeBSD, Mac OS X, Solaris, and others.
Save this file as vtundconf, and run it each time you use a new wireless network to generate an appropriatetund.conf for you on the fly:

#!/usr/bin/perl -w

#

vtund wrapper in need of a better name.
#

(¢c)2002 Schuyler Erle & Rob Flickenger
#

#HHHHEAH CONFIGURATION

netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html
netsechacks-CHP-6-SECT-14.html

If TunnelName is blank, the wrapper will look at @ARGV or $0.

#

Config is TunnelName, LocallP, RemotelP, TunnelHost, TunnelPort, Secret

#

my $TunnelName =",

my $Config = q{

home 208.201.239.33 208.201.239.32 208.201.239.5 5000 sHHH

tunnel2 10.0.1.100 10.0.1.1 192.168.1.4 6001 foobar

HHHHEAHH MAIN PROGRAM BEGINS HERE

use POSIX 'tmpnam’;

use 10::File;

use File::Basename;

use strict;

Where to find things...

#

$ENV{PATH} ="/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/[RETURN]sbin";

my $IP_Match = "((?:\d{1,3)\.){8N\d{1,3})’; # match XXX.XXX.XXX.XXX

my $lfconfig = "ifconfig -a";

my $Netstat = "netstat -rn";

my $Vtund = "/bin/echo";

my $Debug = 1;

Load the template from the data section.

#

my $template = join(™,);

Open a temp file -- adapted from Perl Cookbook, 1st Ed., sec. 7.5.

#

my ($file, $name) = (", ");

$name = tmpnam()

until $file = 10::File->new($name, O_RDWR|O_CREAT|O_EXCL);

END { unlink($name) or warn "Can't remove temporary file $namel\n"; }

If no TunnelName is specified, use the first thing on the command line,

or if there isn't one, the basename of the script.

This allows users to symlink different tunnel names to the same script.

#

$TunnelName [|= shift(@ARGV) || basename($0);

die "Can't determine tunnel config to use!\n" unless $TunnelName;

Parse config.

#

my ($LocallP, $RemotelP, $TunnelHost, $TunnelPort, $Secret);

for (split(/\r*\n+/, $Config)) {

my ($conf, @vars) = grep($_ ne ", split(\s+/));

next if not $conf or $conf =~ /Ms*#/0; # skip blank lines, comments

if ($conf eq $TunnelName) {

($LocallP, $RemotelP, $TunnelHost, $TunnelPort, $Secret) = @vars;

last;

die "Can't determine configuration for TunnelName '$TunnelName'\n"

unless $RemotelP and $TunnelHost and $TunnelPort;

Find the default gateway.
#

my ($GatewaylP, $ExternalDevice);

for (gx{ $Netstat }) {

In both Linux and BSD, the gateway is the next thing on the line,

and the interface is the last.

if (/7(2:0.0.0.0|default)\s+(\S+)\s+*2(\S+)\s*$/0) {

$GatewaylP = $1;

$ExternalDevice = $2;

last;

die "Can't determine default gateway!\n" unless $GatewayIP and $ExternalDevice;

Figure out the LocallP and LocalNetwork.

#

my ($LocalNetwork);

my ($iface, $addr, $up, $network, $mask) ="

sub compute_netmask {

($addr, $mask) = @_;

We have to mask $addr with $mask because linux /sbin/route

complains if the network address doesn't match the netmask.

#

my @ip = split(/\./, $addr);

my @mask = split(/\./, $mask);

$ip[$_] = ($ip[$_] + 0) & ($mask[$_] + 0) for (0..$#ip);

$addr = join(".", @ip);

return $addr;

for (gx{ $lfconfig }) {

last unless defined $_;

If we got a new device, stash the previous one (if any).

if (IN([(Ms:]+)/0) {

if ($iface eq $ExternalDevice and $network and $up) {

$LocalNetwork = $network;

last;

$iface = $1;

$up =0;

Get the network mask for the current interface.

if (/addr:$IP_Match.*?mask:$IP_Match/io) {

Linux style ifconfig.

compute_netmask($1, $2);

$network = "$addr netmask $mask";

} elsif (/inet $IP_Match.*?mask Ox([a-f0-9]{8})/io) {

BSD style ifconfig.

($addr, $mask) = ($1, $2);

$mask = join(".", map(hex $_, $mask =~ /(..)/gs));

compute_netmask($addr, $mask);

$network = "$addr/$mask";

Ignore interfaces that are loopback devices or aren't up.

$iface = " if \bLOOPBACK\b/o;

$up++ if AbUP\b/o;

die "Can't determine local IP address!\n" unless $LocallP and $LocalNetwork;

Set OS dependent variables.

#

my ($GW, $NET, $PTP);

if ($°0 eq "linux") {

$GW = "gw"; $PTP = "pointopoint"; $NET = "-net";

}else {

$GW = $PTP = $NET =",

Parse the config template.

#

$template =~ s/(\$\w+)/$1/gee;

Write the temp file and execute vtund.

#

if ($Debug) {

print $template;

}else {

print $file $template;

close $file;

system("$Vtund $name");

_ _DATA_ _

options {

port $TunnelPort;

ifconfig /sbin/ifconfig;

route /sbin/route;

default {
compress no;

speed 0;

'mytunnel’ should really be “basename $0° or some such
for automagic config selection
$TunnelName {

type tun;

proto tcp;

keepalive yes;

pass $Secret;

up {

ifconfig "%% $LocallP $PTP $RemotelP arp"”;
route "add $TunnelHost $GW $Gateway|P";
route "delete default";

route "add default $SGW $RemotelP";

route "add $NET $LocalNetwork $GW $GatewayIP";

down {

ifconfig "%% down";

route "delete default";

route "delete $TunnelHost $GW $Gateway!P";
route "delete $NET $LocalNetwork";

route "add default $GW $Gateway!P";

—Rob Flickenger (Linux Server Hacks)

Hack 80 Create a Cross-Platform VPN

E HAGK
Use OpenVPN to easily tie your networks together.

Creating a VPN can be quite difficult, especially when dealing with clients using multiple platforms. Quite often, a single VPN
implementation isn't available for all of them. As an administrator, you can be left with trying to get different VPN implementations to
operate on all the different platforms that you need to support, which can become a nightmare.

LIEJQK v, someone has stepped jn to fill the void in cross-platform VPN packages and has written OpenVPN
(http://openvpn.sourceforge.nej). It supports Linux, Solaris, OpenBSD, FreeBSD, NetBSD, Mac OS X, and Windows 2000/XP. OpenVPN
achieves this by implementing all of the encryption, key-management, and connection-setup functionality in a user-space daemon,
leaving the actual tunneling portion of the job to the host operating system.

To accomplish the tunneling, OpenVPN makes use of the host operating system's virtual TUN or TAP device. These devices export a
virtual network interface, which is then managed by the openvpn process to provide a point-to-point interface between the hosts
participating in the VPN. Instead of traffic being sent and received on these devices, it's sent and received from a user-space program.
Thus, when data is sent across the virtual device, it is relayed to the openvpn program, which then encrypts it and sends it to the
openvpn process running on the remote end of the VPN link. When the data is received on the other end, thepenvpn process decrypts it
and relays it to the virtual device on that machine. It is then processed just like a packet being received on any other physical interface.

OpenVPN uses SSL and relies on the OpenSSL library (http://www.openssl.ord) for encryption, authentication, and certification
functionality. Tunnels created with OpenVPN can either use preshared static keys or take advantage of TLS dynamic keying and digital
certificates. Since OpenVPN makes use of OpenSSL, it can support any cipher that OpenSSL supports. The main advantage of this is
that OpenVPN will be able to transparently support any new ciphers as they are added to the OpenSSL distribution.

If you're using a Windows-based operating system, all you need to do is download the executable installer and configure OpenVPN. On

all other platforms, you'll need to compile OpenVPN yourself. Before you Ig;Qmp' e and install OpenVPN. make sure that you have
OpenSSL installed. You can also install the LZO compression library (attp://www.oberhumer.com/opensource/lzof), which is generally
a good idea. Using LZO compression can make much more efficient use of your bandwidth, and even greatly improve performance in
some circumstances. To compile and install OpenVPN, download the tarball and type something similar to this:

$ tar xfz openvpn-1.5.0.tar.gz

$ cd openvpn-1.5.0

$./configure && make

If you installed the LZO libraries and header files somewhere other than /usr/lib and /usr/include, you will probably need to use the
--with-Izo-headers and --with-Izo-lib configure script options.

For example, if you have installed LZO under the /usr/local hierarchy, you'll want to run the configure script like this:
$./configure --with-Izo-headers=/usr/local/include \
--with-1zo-lib=/usr/local/lib

If the configure script cannot find the LZO libraries and headers, it will print out a warning that looks like this:

LZO library and headers not found.

LZO library available from http://www.oberhumer.com/opensource/Izo/

netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
netsechacks-CHP-6-SECT-15.html
http://openvpn.sourceforge.net
http://www.openssl.org
http://www.oberhumer.com/opensource/lzo/

configure: error: Or try ./configure --disable-lzo

If the script does find the LZO libraries, you should see output on your terminal that is similar to this:

configure: checking for LZO Library and Header files...

checking Izolx.h usability... yes

checking lzo1x.h presence... yes

checking for Izolx.h... yes

checking for Izolx_1_15_compress in -llzo... yes

Now that that's out of the way, you can install OpenVPN by running the usual make install. If you are running Solaris or Mac OS X, you'll

also need to install a TUN/TAP driver. The other Unix-based operating systems already include one, an i i i
the driver for you. You can get the source code to the Solaris driver frQ j :/Ivtun.sourceforge.net/tunl).

The Mac OS X driver is available in both source and binary form from pttp://chrisp.de/en/projects/tunnel.htm|.

Once you have LZO, OpenSSL, the TUN/TAP driver, and OpenVPN all installed, you can test everything by setting up a rudimentary
VPN from the command line.

On machine A (kryten in this example), run a command similar to this one:
openvpn --remote zul --dev tunO --ifconfig 10.0.0.19 10.0.0.5

The command that you'll need to run on machine B (zul) is a lot like the previous command, except the arguments to-ifconfig are
swapped:

openvpn --remote kryten --ifconfig 10.0.0.5 10.0.0.19
The first IP address is the local end of the tunnel, and the second is for the remote end; this is why you need to swap the IP addresses
on the other end. When running these commands, you should see a warning about not using encryption, as well as some status
messages. Once OpenVPN starts, run ifconfig to see that the point-to-point tunnel device has been set up:
[andrew@kryten andrew]$ /sbhin/ifconfig tun0
tunO: flags=51<UP,POINTOPOINT,RUNNING> mtu 1300

inet 10.0.0.19 --> 10.0.0.5 netmask Oxffffffff

Now try pinging the remote machine, using its tunneled IP address:

[andrew@kryten andrew]$ ping -c 4 10.0.0.5

PING 10.0.0.5 (10.0.0.5): 56 data bytes

64 bytes from 10.0.0.5: icmp_seq=0 ttI=255 time=0.864 ms
64 bytes from 10.0.0.5: icmp_seqg=1 ttI=255 time=1.012 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttI=255 time=0.776 ms

64 bytes from 10.0.0.5: icmp_seq=3 ttI=255 time=0.825 ms

--- 10.0.0.5 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 0.776/0.869/1.012 ms

http://vtun.sourceforge.net/tun/
http://chrisp.de/en/projects/tunnel.html

Now that you have verified that OpenVPN is working properly. it is time to create a configuration that's a little more useful in the real
world. First you will need to create SSL certificates[Hack #45] for each end of the connection. After you've done this, you'll need to
create configuration files and connection setup and teardown scripts for each end of the connection.

Let's look at the configuration files first. For these examples, zul will be the gateway into the private network andkryten will be the
external client.

The configuration file for zul that is used forkryten is stored in/etc/openvpn/openvpn.conf. Here are the contents:
dev tunO

ifconfig 10.0.0.5 10.0.0.19

up /etc/openvpn/openvpn.up
down /etc/openvpn/openvpn.down
tls-server

dh /etc/openvpn/dh1024.pem

ca /etc/ssl/ca.crt

cert /etc/ssl/zul.crt

key /etc/ssl/private/zul.key

ping 15

verb 0

You can see that the dev and ifconfig options are used in the same way as they are on the command line. Thep and down options
specify scripts that will be executed when the VPN connection is initiated or terminated. The tls-server option enables TLS mode and
specifies that you want to designate this side of the connection as the server during the TLS handshaking process. The dh option
specifies the Diffie-Hellman parameters to use during key exchange.These are encoded in a .pem file and can be generated with the
following openssl command:

openssl dhparam -out dh1024.pem 1024

The next few configuration options deal with the SSL certificates. The ca option specifies the Certificate Authority's public certificate, and
the cert option specifies the public certificate to use for this side of the connection. Similarly, thekey option specifies the private key that
corresponds to the public certificate. To help ensure that the VPN tunnel doesn't get dropped from any intervening firewalls that are doing
stateful filtering, the ping option is used. This causes OpenVPN to ping the remote host everyn seconds so that the tunnel's entry in the
firewall's state table does not time out.

On kryten, the following configuration file is used:

dev tunO

remote zul

ifconfig 10.0.0.19 10.0.0.5

up /etc/openvpn/openvpn.up
down /etc/openvpn/openvpn.down
tls-client

ca /etc/ssl/ca.crt

cert /etc/ssl/kryten.crt

key /etc/ssl/private/kryten.key
ping 15

verb 0

The main differences with this configuration file are that the remote and tls-client options have been used. Other than that, the arguments
to the ifconfig option have been swapped, and the file useskryten's public and private keys instead ofzul's. To turn on compression, add
the comp-Izo option to the configuration files on both ends of the VPN.

Finally, create the openvpn.up and openvpn.down scripts on both hosts participating in the tunnel. These scripts set up and tear down the
actual routes and other networking requirements.

The openvpn.up scripts are executed whenever a VPN connection is established. Onkryten it looks like this:

#1/bin/sh

/sbin/route add -net 10.0.0.0 gw $5 netmask 255.255.255.0

This sets a route telling the operating system to send all traffic destined for the 10/24 network to the remote end of our VPN connection.
From there it will be routed to the interface on zul that has been assigned an address from the 10/24 address range. The$5 in the script
is replaced by the IP address used by the remote end of the tunnel. In addition to adding the route, you might want to set up
nameservers for the network you are tunneling into in this script. Unless you are doing something fancy, the openvpn.down script on
kryten is empty, since the route is automatically dropped by the kernel when the connection ends.

No additional routes are needed on zul, because it already has a route to the network thakryten is tunneling into. In addition, sincetunO
on zul is a point-to-point link between itself andkryten, there is no need to add a route to pass traffic tokryten—by virtue of having a
point-to-point link, a host route will be created for kryten.

The only thing that needs to be in the openvpn.up script on zul is this:

#1/bin/sh

arp -s $5 00:00:d1:1f:3f:f1 permanent pub

This causes zul to answer ARP queries forkryten, since otherwise the ARP traffic will not be able to reactkryten. This sort of
configuration is popularly called proxy arp . In this particular example,zul is running OpenBSD. If you are running Linux, simply remove
the permanent keyword from the arp command. Again, the $5 is replaced by the IP address that is used at the remote end of the
connection, which in this case is kryten's.

The openvpn.down script on zul simply deletes the ARP table entry:

#!/bin/sh

arp -d kryten

Unfortunately, since scripts run through the down configuration file option are not passed an argument telling them what IP address they
should be dealing with, you have to explicitly specify the IP address or hostname to delete from the ARP table. Now the only thing to
worry about is firewalling. You'll want to allow traffic coming through your tun0 device, as well as UDP port 5000.

Finally, you are ready to run openvpn on both sides, using a command like this:
openvpn --config /etc/openvpn/openvpn.conf --daemon

Setting up OpenVPN under Windows is even easier. Simply run the installer, and everything you need will be installed onto your system.

This includes OpenSSL, the TUN/TAP driver, and OpenVPN itself. The installer will also associate the .ovpn file extension with
OpenVPN. Simply put your configuration information in a .ovpn file, double-click it, and you're ready to go.

This should get you started using OpenVPN, but it has far too many configuration options to discuss here. Be sure to look at the
OpenVPN web site for more information.

Hack 81 Tunnel PPP

E HACK
Use PPP and SSH to create a secure VPN tunnel.

There are so many options to choose from when creating aVPN or tunneled connection that it's mind-boggling. You may not be aware
that all the software you need to create a VPN is probably already installed on your Unix machines—namely PPP and SSH daemons.

You might have used PPP back in the day to connect to the Internet over a dial-up connection, so you may be wondering how the same
PPP can operate over SSH. Well, when you used PPP in conjunction with a modem, it was talking to the modem through what the
operating system presented as a TTY interface, which is, in short, a regular terminal device. The PPP daemon on your end would send
its output to the TTY, which the operating system would send out the modem and across the telephone network until it reached the
remote end, where the same thing would happen in reverse.

The terminals that you use to run shell commands on (e.g., the console, an xterm, etc.) use pseudo-TTY interfaces, which are
designed to operate similarly to TTYs. Because of this, PPP daemons can also operate over pseudo-TTYs. So, you can replace the
serial TTYs with pseudo-TTYs, but you still need a way to connect the local pseudo-TTY to the remote one. Here's where SSH comes
into the picture.

You can create the actual PPP connection in one quick command. For instance, if you wanted to use the IP 10.1.1.20 for your local end
of the connection and 10.1.1.1 on the remote end, you could run a command similar to this:

lusr/sbin/pppd updetach noauth silent nodeflate \

pty "/usr/bin/ssh root@colossus /usr/shin/pppd nodetach notty noauth" \
ipparam 10.1.1.20:10.1.1.1

root@colossus's password:

local IP address 10.1.1.20

remote IP address 10.1.1.1

The first line of the command starts the pppd process on the local machine and tells it to fork into the background once the connection
has been established (updetach). It also tells pppd to not do any authentication (hoauth)—the SSH daemon already provides very strong
authentication. The pppd command also turns off deflate compression (nodeflate). The second line of the command tellspppd to run a

program and to communicate with it through the program's standard input and standard output. This is used to log into the remote
machine and run a pppd process there. Finally, the last line specifies the local and remote IP addresses that are to be used for the PPP

connection.

After the command returns you to the shell, you should be able to see a ppp interface in the output ofifconfig:
$ /shin/ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol

inet addr:10.1.1.20 P-t-P:10.1.1.1 Mask:255.255.255.255

UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1

netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html
netsechacks-CHP-6-SECT-16.html

RX packets:58 errors:0 dropped:0 overruns:0 frame:0
TX packets:50 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:3

RX bytes:5372 (5.2 Kb) TX bytes:6131 (5.9 Kb)

Now to try pinging the remote end's IP address:

$ ping 10.1.1.1

PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.

64 bytes from 10.1.1.1: icmp_seqg=1 ttI=64 time=4.56 ms
64 bytes from 10.1.1.1: icmp_seq=2 ttI=64 time=4.53 ms
64 bytes from 10.1.1.1: icmp_seq=3 ttI=64 time=5.45 ms

64 bytes from 10.1.1.1: icmp_seq=4 ttI=64 time=4.51 ms

---10.1.1.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3025ms

rtt min/avg/max/mdev = 4.511/4.765/5.451/0.399 ms

And finally, the ultimate litmus test—actually using the tunnel for something other than ping:
$ssh 10.1.1.1

The authenticity of host '10.1.1.1 (10.1.1.1)' can't be established.

RSA key fingerprint is 56:36:db:7a:02:8b:05:b2:4d:d4:d1:24:€9:4:35:49.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.1.1.1' (RSA) to the list of known hosts.
andrew@10.1.1.1's password:

[andrew@colossus andrew]$

Before deciding to keep this setup, you may want to generate login keys to use withssh , so that you don't need to type in a
password each time. In addition, you may want to create a separate user for logging in on the remote machine and starting pppd.
However, pppd needs to be started as root, so you'll have to make use of sud. Also, you can enable SSH's built-in
compression by adding a-C to the ssh command. In some circumstances, SSH compression can greatly improve the speed of the link.
Finally, to tear down the tunnel, simply kill the ssh process that pppd spawned.

Although it's ugly and might not be as stable and full of features as actual VPN implementations, the PPP and SSH combination can help
you create an instant encrypted network without the need to install additional software.

See Also

® The section "Creating a VPN with PPP and SSH" in Virtual Private Networks, Second Edition, by Charlie Scott, Paul Wolfe,
and Mike Erwin (O'Reilly)

Chapter 7. Network Intrusion Detection

acks #82-95

lSection 82.

Detect Intrusions with Snor{

bection 83.

Keep Track of AIertsI

lSection 84.

Real-Time Monitorind

lSection 85.

Manage a Sensor Networl«]

bection 86.

Write Your Own Snort Rulesl

lSection 87.

Prevent and Contain Intrusions with Snort inIinJ

lSection 88.

Automated Dynamic Firewalling with SnortSanl

bection 89.

Detect Anomalous Behaviovl

lSection 90.

Automatically Update Snort's Rulesl

lSection 91.

Create a Distributed Stealth Sensor NetworlJ

bection 92.

Use Snort in High-Performance Environments with Barnyard

lSection 93.

Detect and Prevent Web Application Intrusionsl

lSection 94.

Simulate a Network of Vulnerable Hostsl

bection 95.

Record Honeypot Activit\j

netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html
netsechacks-CHP-7.html

Hacks #82-95

One class of tools that's come to the forefront in network security in recent years isnetwork intrusion detection systems (NIDS). These
systems can be deployed on your network and monitor the traffic until they detect suspicious behavior, when they spring into action and
notify you of what is going on. They are excellent tools to use in addition to your logs, since a network IDS can often spot an attack
before it reaches the intended target or has a chance to end up in your logs.

Currently, there are two main types of NIDS. The first type detects intrusions by monitoring the traffic for specific byte patterns that are
similar to known attacks. A NIDS that operates in this manner is known as a signature-based intrusion detection system. The other type
of network IDS is a statistical monitor. These monitor the traffic on the network, but instead of looking for a particular pattern or signature,
they maintain a statistical history of the packets that pass through your network, and report when they see a packet that falls outside of
the normal network traffic pattern. NIDS that employ this method are known as anomaly-based intrusion detection systems.

In this chapter you'll learn how to set up Snort, a signature-based IDS. You'll also learn how to set up Snort with SPADE, which adds
anomaly-detection capabilities to Snort, giving you the best of both worlds. This chapter also demonstrates how to set up several
different applications that can help you to monitor and manage your NIDS once you have it deployed.

Finally, you'll see how to set up a system that appears vulnerable to attackers, but is actually quietly waiting and monitoring everything it
sees. These systems are called honeypots, and the last few hacks will show you how to quickly and easily set one up, and how to
monitor intruders that have been fooled and trapped by it.

netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html
netsechacks-CHP-7-SECT-1.html

Hack 82 Detect Intrusions with Snort

o)

Use one of the most powerful (and free) network intrusion detection systems available to help you keep an eye on your
network.

Monitoring your logs can take you only so far in detecting intrusions. If the logs are being generated by a service that has been
compromised, welcome to the security admin's worst nightmare: you can no longer trust your logs. This is where NIDS come into play.
They can alert you to intrusion attempts, or even intrusions in progress.

The undisputed champion of open source NIDS is Snort (Fttp://www.snort.ora). Some of the features that make Snort so powerful are its
signature-based rule engine and its easy extensibility through plug-ins and preprocessors. These features allow you to extend Snort in
whichever direction you need. Consequently, you don't have to depend on anyone else to provide you with rules when a new exploit
comes to your attention: with a basic knowledge of TCP/IP, you can write your own rules quickly and easily. This is probably Snort's most
important feature, since new attacks are invented and reported all the time. Additionally, Snort has a very flexible reporting mechanism
that allows you to send alerts to a syslogd, flat files, or even a database.

To compile and install a plain-vanilla version of Snort, download the latest version and unpack it. Run the configure script and thermake:
$./configure && make
Then become root and run:

make install

Note that all the headers and libraries for libpcap (I]ttg:llwww.tcgdumg.ord) must be installed before you start building Snort, or else
compilation will fail. Additionally, you may need to make use of the --with-libpcap-includes and --with-libpcap-libraries configure options to
tell the compiler where it can find the libraries and headers. However, you should only need to do this if you have installed the libraries
and headers in a nonstandard location (i.e., somewhere other than the /usr or /usr/local hierarchy).

For example, if you have installed libpcap within the /opt hierarchy, you would use this:
$./configure --with-libpcap-includes=/opt/include\
--with-libpcap-libraries=/opt/lib

Snort has the ability to respond to the host that has triggered one of its rules. This capability is called flexible response . To enable this
functionality, you'll also need to use the --enable-flexresp option, which requires the libnet packet injection library

(http://www.packetfactory.net/projects/libnet]). After ensuring that this package is installed on your system, you can use the
--with-libnet-includes and --with-libnet-libraries switches to specify its location.

If you want to include support for sending alerts to a database, you will need to make use of either the-with-mysq|, --with-postgresq|, or
--with-oracle options. To see the full list of configure script options, you can type./configure --help.

After you have installed Snort, test it out by using it in sniffer mode. You should immediately see some traffic:

.Isnort -evi ethO
Running in packet dump mode

Log directory = /var/log/snort

netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
netsechacks-CHP-7-SECT-2.html
http://www.snort.org
http://www.tcpdump.org
http://www.packetfactory.net/projects/libnet/

Initializing Network Interface ethO

--== Initializing Snort ==--
Initializing Output Plugins!

Decoding Ethernet on interface ethO

--== Initialization Complete ==--

-*> Snort! <*-

Version 2.0.5 (Build 98)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

12/14-16:25:17.874711 0:A:95:C7:2B:10 -> 0:C:29:E2:2B:C1 type:0x800 len:0x42
192.168.0.60:53179 -> 192.168.0.41:22 TCP TTL:64 TOS:0x10 ID:56177 IpLen:20 DgmLen:52 DF
xrx\kkik Seq: O0X67E53951 Ack: 0x2BA09FF7 Win: OXFFFF TcplLen: 32

TCP Options (3) => NOP NOP TS: 3426501948 469087

=4=+=+=+=+=+=+=4+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=4+=+=+=+=+=+=4+=+=+=+=+=+=+=+

12/14-16:25:17.874828 0:C:29:E2:2B:C1 -> 0:A:95:C7:2B:10 type:0x800 len:0x252
192.168.0.41:22 -> 192.168.0.60:53179 TCP TTL:64 TOS:0x10 ID:50923 IpLen:20 DgmLen:580 DF
*xAP** Seq: 0Xx2BA09FF7 Ack: 0x67E53951 Win: 0x2200 TcpLen: 32

TCP Options (3) => NOP NOP TS: 469100 3426501948

B = o e e e e e = = e = =

Some configuration files are provided with the Snort source distribution in theetc/ directory, but they are not installed when runningmake
install. You can create a directory to hold these in‘etc or /usr/local/etc and copy the pertinent files to it by running something similar to this:

mkdir /usr/local/etc/snort &&\

cp etc/[*Makefile]* /usr/local/etc/snort

You'll probably want to copy the rules directory to there as well.

Now you need to edit the snort.conf file. Snort's sample snort.conf file lists a number of variables. Some are defined with default values,
and all are accompanied by comments that make this section mostly self-explanatory. Of particular note, however, are these two
variables:

var HOME_NET any

var EXTERNAL_NET any

HOME_NET specifies which IP address spaces should be considered local. The default is set so that any IP address is included as part
of the home network. Networks can be specified using CIDR notation (i.e.,xxx.xxx.xxx.xxx/yy). You can also specify multiple subnets and
IP addresses by enclosing them in brackets and separating them with commas:

var HOME_NET [10.1.1.0/24,192.168.1.0/24]

HOME_NET can also be automatically set to the network address of a particular interface by setting the variable tdbethO_ADDRESS. In
this particular case, $eth0_ADDRESS sets it to the network address of ethO.

The EXTERNAL_NET variable allows you to explicitly specify IP addresses and networks that are not a part ofOME_NET. Unless a
subset of HOME_NET is considered hostile, you can just keep the default value, which isany.

The rest of the variables that deal with IP addresses or network ranges— DNS_SERVERS, SMTP_SERVERS, HTTP_SERVERS,
SQL_SERVERS, and TELNET_SERVERS—are set to SHOME_NET by default. These variables are used within the ruleset that comes
with the Snort distribution and can be used to fine-tune a rules behavior. For instance, rules that deal with SMTP-related attack
signatures use the SMTP_SERVERS variable to filter out traffic that isn't actually related to the rule. Fine-tuning these variables not only
leads to more relevant alerts and less false positives, but also to higher performance.

Another important variable is RULE_PATH, which is used later in the configuration file to include rulesets. The sample configuration file
sets it to ../rules but, to be compatible with the previous examples, this should be set ta/rules since snort.conf and the rules directory are
both in /usr/local/etc/snort.

The next section in the configuration file allows you to configure Snort's built-in preprocessors. These do anything from reassembling
fragmented packets to decoding HTTP traffic to detecting portscans. For most situations, the default configuration is sufficient. However,
if you need to tweak any of these settings, the configuration file is fully documented with each preprocessor's options.

If you've compiled in database support, you'll probably want to enable the database output plug-in, which will cause Snort to store any
alerts that it generates in your database. Enable this plug-in by putting lines similar to these in your configuration file:

output database: log, mysql, user=snort password=snortpass dbname=SNORT \ host=dbserver
output database: alert mysql, user=snort password=snortpass dbname=SNORT \ host=dbserver

The first line configures Snort to send any information generated by rules that specify théog action to the database. Likewise, the second
line tells Snort to send any information generated bf rules that specify the alert action to the database. For more information on the

difference between the log and alert actions, see|[Hack #86] .

If you're going to use a database with Snort, you'll need to create a new database, and possibly a new database user account. The
Snort source code's contrib directory includes scripts to create databases of the supported types.create_mssq|, create_mysql,
create_oracle.sql, and create_postgresq|.

If you are using MySQL, you can create a database and then create the proper tables by running a command like this:
mysql SNORT -p < ./contrib/create_mysql

The rest of the configuration file deals mostly with the rule signatures Snort will use when monitoring network traffic for intrusions. These
rules are categorized and stored in separate files, and are activated by using the include directive. For testing purposes (or on networks
with light traffic) the default configuration is sufficient, but you should look over the rules and decide which rule categories you really need
and which ones you don't.

Now that all of the hard configuration and setup work is out of the way, you should test your snort.conf file. You can do this by running
something similar to the following command:

snort -T -c /usr/local/etc/snort/snort.conf
Snort will report any errors that it finds and then exit. If there aren't any errors, run Snort with a command similar to this:
snort -Dd -z est -c /usr/local/etc/snort/snort.conf

Two of these flags, -d and -c, were used previously (to tell Snort to decode packet data and to use the specified configuration file,
respectively). The other two are new. The -D flag tells Snort to print out some startup messages and then fork into the background. Thez
est argument tells Snort's streams preprocessor plug-in to ignore TCP packets that aren't part of established sessions, which makes your

Snort system much less susceptible to spoofing attacks and certain DoS attacks. Some other useful options are -u and -g, which let Snort
drop its privileges and run under the user and group that you specify. These are especially useful with the -t option, which willchroot()
Snort to the directory that you specify. Now you should start to see logs appearing in /var/log/snort.

See Also

L4 Chapter 11, "Simple Intrusion Detection Techniques," inBuilding Secure Servers with Linux by Michael D. Bauer (O'Reilly)

Hack 83 Keep Track of Alerts

E HAGK
Use ACID to make sense of your IDS logs.

Once you have set up Snort to log information to your databasegHack #82]), you may find it hard to cope with all the data that it
generates. Very busy and high-profile sites car,wa_hmmmm[fnort warnings that eventually need to be tracked down. One
way to alleviate the problem is to install ACID (http://acidlab.sourceforge.nef).

ACID , otherwise known as the Analysis Console for Intrusion Databases,is a web-based frontend to databases that contain alerts from
intrusion detection systems. It features the ability to search for alerts based on a variety of criteria, such as alert signature, time of
detection, source and destination address and ports, as well as payload or flag values. ACID can display the packets that triggered the
alerts, as well as decode their layer-3 and layer-4 information. ACID also contains alert management features that allow you to group
alerts based on incident, delete acknowledged or false positive alerts, email alerts, or archive them to another database. ACID also
provides many different statistics on the alerts in your database based on time, the sensor they were generated by, signature, and
packet-related statistics such as protocol, address, or port.

To install ACID, you'll first need a web server and a working installation of PHP (e.g., Apache andmod_php), as well as a Snort

jgured to log to a database (e.g., MySQL). You wi le of PHP code libraries: ADODB
for database abstraction and either PHPIot (http://www.phplot.com}) or JPGraph

for graphics rendering.

After you have downloaded these packages, unpack them into a directory that can be used to execute PHP content on the web server.
Next, change to the directory that was created by unpacking the ACID distribution (i.e., ./acid) and edit the acid_conf.php file. Here you
will need to tell ACID where to find ADODB and JPGraph, as well as how to connect to your Snort database.

You can do this by changing these variables to similar values that fit your situation:
$Dblib_path ="../adodb";

$Dbtype = "mysql";

$alert_dbname = "SNORT";

$alert_host = "localhost";

$alert_port ="";
$alert_user="snort";
$alert_password = "snortpass";

This will tell ACID to look for the ADODB code in the adodb directory at the same directory level as theacid directory. In addition, it will tell
ACID to connect to a MySQL database called SNORT that is running on the local machine, using the usesnort with the password
snortpass. Since it is connecting to a MySQL server on the local machine, there is no need to specify a port number. If you want to
connect to a database running on another system, you should specify 3389, which is the default port used by MySQL.

Additionally, you can configure an archive database forACID using variables that are similar to the ones used to configure the alert
database. The following variables will need to be set to use ACID's archiving features:

$archive_dbname

netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
netsechacks-CHP-7-SECT-3.html
http://acidlab.sourceforge.net
http://php.weblogs.com/adodb
http://www.phplot.com
http://www.aditus.nu/jpgraph

$archive_host
$archive_port
$archive_user
$archive_password

To tell ACID where to find the graphing library that you want to use, you will need to set the $ChartLib_path variable. If you are using
JPGraph 1.13 and have unpacked it from the same directory you unpacked theACID distribution, you would enter something like this:

$ChartLib_path = "../jpgraph-1.13/src";

Congratulations! You're finished mucking about in configuration files for the time being. Now open a web browser and go to the URL th

corresponds to the directory where you unpacked ACID. You should then be greeted with a database setup page as shown igigure 7-1.

Figure 7-1. The ACID database setup page

Tl B Ser
. fit LA i + | 83 hitp: S fzulfacidsadd_db_setup.php = k=5

[I] FRendezvousv Apple Mac Amazon eBay Yahoo! BMewsw

| Back |
Operation | Description | Stalus
ACID tables Agds tables to exiend the Snon OB 1o suppo the ACID funcliomality Create ACID AG
Search [Cptional} Adds indexes 1o tha Snon DB 1o optimize the speed of tha
Indexes LIS

[Loaded in 0 seconds)

ACID v0.9.60623 | by as par of the project |

Before you can use ACID, it must create some database tables for its own use. To do this, click the Create ACID AG button. After this,
you should see a screen confirming that the tables were created. In addition, you can have ACID create indexes for your events table if
this was not done prior to setting up ACID. Indexes will greatly speed up queries as your events table grows, at the expense of using a

,ﬁdisk space. Once you are done with the setup screen, you can click the Home link to go to the main ACID page, as seen in
Figure 7-4.

Figure 7-2. ACID's main page

A TA Anadvis Console far Wrruskon Darabases WCI0H
[4 & | | o | [+ A E‘ b | b aci e d_main, php B0- |

[randerows~ Sppls Mar bmsron aBey Vaksa! Weas T

Analysis Console for Intrusion Databases

Eorabaee: SHOFTEorahet jschema verdan; 1000
Timwas window: |Z003-065-11 DE20011] - | E03-07-25 22 241

sars: | Trathic Proha by Pralocol

¥ Alarts: & | O calsgoriss TER {151

Furribser of ek 195 =

» Soume P addrecemy 17 UDF [17%4]

& (gl P paiemgean: J 1

& Umigue [F inks 17 U [

|

¥ S Podis:
& TCR (&) LUOP {7

» Dasl Poris: 3 ™ D—
 TCF (2] LDP {7 snean Talte

& Hesich
o Demph Slern dais

= Brispshot
» Mowi mce Serin: arwy profocal, TOP, UDF, ICHP & PMoat fregusrt & Alsris
& Today's: s unique, listing IF oo § dei
» Lagl 34 Fiogr: pleds unique, listing |F wec | dei & Paou: Feegquent Sopse Foms: any . TCR | UDP
» Lag| 72 Fiowrs: plers unigue, listing |F e 0 i & Pdoar Feegusnt Dessfiromaon Podls: sny . TEP | UDF
& Wi recEmd 10 Unbgpas Rlsris

w Pboar irequent 15 JOONGS 58S sOUFTe. dessnatdon
Lol Bowrce Pons: asy . TCF . LIDP
w Landl (D rdelon P g |, TEF | UDP
& Graph slei deiscsion sme

& Blgn Graip WG mslnenence
& B pladibom coche and slatus

[Loaded in & seconds)

Raman Danyli= BINCERT

4

ACID has a fairly intuitive user interface. The main table provides plenty of links to see many useful views of the database at a glance,
such as the list of source or destination IP addresses associated with the alerts in your database, as well as the source and destination
ports.

Hack 84 Real-Time Monitoring

E HAGK
Use Sguil's advanced GUI to monitor and analyze IDS events in a timely manner.

One thing that's crucial when analyzing your IDS events is to be able to correlate all your audit data from various sources, to
determine the exact trigger for the alert and what actions should be taken. This could involve EMDLDQ.L&MUJ.D.IMﬁing a database
for similar alerts to viewing TCP stream conversations. One tool to help facilitate this is Sguil (http://sguil.sourceforge.nef), the Snort GUI

for Lamerz. In case you're wondering, Sguil is pronounced "sgweel" (to rhyme with "squeal").

Sguil is a graphical analysis console written in Tcl/TK that brings together the power of such tools asEthereal (Lttp://www.ethereal.conl),
TcpFlow (pttp://www.circlemud.org/~jelson/software/tcpflowl]), and Snort's portscan and TCP stream decoding processors into a single
unified application, where it correlates all the data from each of these sources. Sguil uses a client/server model and is made up of three
parts: a plug-in for Barnyard (op_guil), a server (sguild), and a client (sguil.tk). Agents installed on each of your NIDS sensors are used to
report back information to the Sguil server. The server takes care of collecting and correlating all the data from the sensor agents, and
handles information and authentication requests from the GUI clients.

Before you begin, you'll need to download the Sguil distribution from the project's web site and unpack it somewhere. This will create a
directory that reflects the package and its version number (e.g., sguil-0.3.0).

The first step in setting up Sguil is creating a MySQL database for storing its information. You should also create a user thaSguil can
use to access the database:

$ mysql -u root -p
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 546 to server version: 3.23.55

Type 'help;' or \h' for help. Type ‘\c' to clear the buffer.

mysql> CREATE DATABASE SGUIL,;

Query OK, 1 row affected (0.00 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON SGUIL.*\

TO sguil IDENTIFIED BY 'sguilpass’;
Query OK, 0 rows affected (0.06 sec)

mysql> FLUSH PRIVILEGES;

netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
netsechacks-CHP-7-SECT-4.html
http://sguil.sourceforge.net
http://www.ethereal.com
http://www.circlemud.org/~jelson/software/tcpflow/

Query OK, 0 rows affected (0.06 sec)

mysql>

Now you'll need to create Sguil 's database tables. To do this, locate thecreate_sguildb.sql file. It should be in theserver/sql_scripts
subdirectory of the directory that was created when you unpacked the Sguil distribution. You'll need to feed this as input to the mysq|l
command like this:

$ mysql -u root -p SGUIL < create_sguildb.sql

sguild requires several E_mkmmmﬁhe firstis Tclx (http://tclx.sourceforqe.ne‘), which is an extensions library for Tcl.
The second is mysqltcl (http://www.xdobry.de/mysgltclf). Both of these can be installed with the standard/configure && make install

routine.

You can verify that they were installed correctly by running the following commands:
$ tcl

tcl>package require Tclx

8.3

tcl>package require mysqltcl

2.40

tcl>

Ifyou want to use SSL to encrypt the traffic between the GUI and the server, you will also need to instalicltls
(http://sourceforge.net/projects/tls]). After installing it, you can verify that it was installed correctly by running this command:

$ tcl

tcl>package require tls
1.41

tcl>

Now you'll need to go about configuring sguild. First, you'll need to create a directory suitable for holding its configuration files (i.e.,
/etc/sguild). Then copy sguild.users, sguild.conf, sguild.queries, and autocat.conf to the directory that you created.

For example:

mkdir /etc/sguild

cd server

cp autocat.conf sguild.conf sguild.queries \

sguild.users /etc/sguild

This assumes that you're in the directory that was created when you unpacked the Sguil distribution. You'll also want to copy the sguild
script to somewhere more permanent, such as /usr/local/sbin or something similar.

Now edit sguild.conf and tell it how to access the database you created. If you used the database commands shown previously to create
the database and user for Sguil, you would set these variables to the following values:

set DBNAME SGUIL

set DBPASS sguilpass

http://tclx.sourceforge.net
http://www.xdobry.de/mysqltcl/
http://sourceforge.net/projects/tls/

set DBHOST localhost
set DBPORT 3389

set DBUSER sguil

In addition, sguild requires access to the Snort rules used on each sensor in order for it to correlate the different pieces. You can tefiguild
where to look for these by setting the RULESDIR variable.

For instance, the following line will tell sguild to look for rules in/etc/snort/rules:

set RULESDIR /etc/snort/rules

However, sguild needs to find rules for each sensor that it monitors here, so this is really just the base directory for the rules. When
looking up rules for a specific host it will look for them in a directory corresponding to the hostname within the directory that you specified
(e.g., zul's rules would be in/etc/snort/rules/zul).

Qpti if you wantto use SSL to encrypt sguild's traffic (which you should), you'll need to create an SSL certificate and key pair
Hack #45] . After you've done that, move them to/etc/sguild/certs and make sure they're namedsguild.key and sguild.pem.

Next, you'll need to add users for accessing sguild from the Sguil GUI. To do this, use a command similar to this:
sguild -adduser andrew

Please enter a passwd for andrew:

Retype passwd:

User 'andrew' added successfully

You can test out the server at this point by connecting to it with the GUI client. All you need to do is edit the sguil.conf file and change the
SERVERHOST variable to point to the machine on whichsguild is installed. In addition, if you want to use SSL, you'll need to change the
following variables to values similar to these:

set OPENSSL 1
set TLS_PATH /ustr/lib/tls1.4/libtls1.4.so

Now test out the client and server by runningsguil.tk. After a moment you should see a login window Iik.

Figure 7-3. The Sguil login dialog

% Snort GUI for Lamerz [sguil] - SGUIL-0.3.0

Swart GUI For Lamerz [3guil]
Coppright {C) 2002 Robert {Bamm) Viaacher cbaumim:zaate o oom:

Thig progran is dislributed ander (he Perms of version 1.0 of the
Q Public License, See LICENSE.GPL for further details.

This progran is distrbuled in the hope thal it will be wseful,
bt WATHOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABILITY or FITHESS FOR A PARTICULAR PURPOSE.

Pleagze Login
|ium:
Password:
Ok, Exil

nter in the information that you used when you created the user and click OK. After you've done that, you should see a dialog like
Figure 7-4.

Figure 7-4. Sguil's no available sensors dialog

| Smort GUI for Lamerz [sguil] - SGUIL-0.3.0

Suart GUI For Lamerz [2guil]
Coppright {C) 2002 Robert {Banwm) Vieacher baumim:Eaate o ooom:

This progran is dislibited ader Ihe Yeqng of version 1.0 of the
0 Putlic Licenze, See LICENSE.OPL for further details,

Thiis progran i3 distiboted in the hoge thal it will be useful,
bt WAITHOUT ARNY WAHRANTY; without ewen the miplied warranby of
MERCHANTABILITY or FITMNESS FOR A PARTICULAR PURPOSE.

Theve are Mo seasors cunrenty in the DB bo maniter,
Press «Start SGUIL» bo laomech e GUI anpway,

Select AN Start SGUIL Exiit

Since you won't have any sensors to monitor yet, click Exit.

To set up a Sguil sensor, you'll need to patch your Snort source code. You can find the patches that you'll need in the
sensor/snort_mods/2_0/ subdirectory of the Sguil source distribution. Now change to the directory that contains the Snort source code,
go to the src/preprocessors subdirectory, and patchspp_portscan.c and spp_stream4.c.

For example:

$ cd ~/snort-2.0.5/src/preprocessors
$ patch spp_portscan.c <\

~/sguil0.3.0/sensor/snort_mods/2_0/spp_portscan_sguil.patch
patching file spp_portscan.c

$ patch spp_stream4.c <\

~/sguil-0.3.0/sensor/snort_mods/2_0/spp_stream4_sguil.patch
patching file spp_stream4.c

Hunk #9 succeeded at 988 (offset -5 lines).
Hunk #11 succeeded at 3324 (offset -5 lines).
Hunk #13 succeeded at 3674 (offset -5 lines).

Then compile Snort just as you normally would [Hack #82] . After you've done that, edit yoursnort.conf and enable the portscan and
stream4 preprocessors:

preprocessor portscan: $HOME_NET 4 3 /var/log/snort/portscans gw-ext0
preprocessor stream4: detect_scans, disable_evasion_alerts, keepstats db \
/var/log/snort/ssn_logs

The first line enables the portscan preprocessor and tells it to trigger a portscan alert if connections to four different ports within a
three-second interval have been received from the same host. In addition, the portscan preprocessor will keep its logs in
Ivar/log/snort/portscans. The last field on the line is the name of the sensor. The second line enables thestream4 preprocessor, directs it
to detect stealth portscans, and to not alert on overlapping TCP datagrams. It also tells the stream4 preprocessor to keep its logs in
Ivarflog/snort/ssn_logs.

You'll also need to set up Snort to use its unified output format, so that you can useBarnyard to handle logging Snort's alert and log
events:

output alert_unified: filename snort.alert, limit 128
output log_unified: filnemae snort.log, limit 128

Next, create a crontab entry for the log_packets.sh script that comes withSguil. This script starts an instance of Snort solely to log
packets. This crontab line will have the script restart the Snort logging instance every hour:

00 0-23/1 * * * Jusr/local/bin/log_packets.sh restart

You should also edit the variables at the beginning of the script and change them to suit your needs. These variables tell the script where
to find the Snort binary (SNORT_PATH), where to have Snort log packets to (LOG_DIR), what interface to sniff on (INTERFACE), and
what command-line options to use (OPTIONS). Pay special attention to the OPTIONS variable. Here is where you can tellsnort what
user and group to run as; the default won't work unless you've created a sguil user and group. In addition, you can specify what traffic to
not log by setting the FILTER variable to a BPF (i.e., tcpdump-style) filter.

Next, you'll need to compile and install BarnyardHack #92], but only run the configure step for now. After that, patch in thep_sguil
output plug-in provided by Sguil. To do this, copy sensor/barnyard_mods/op_sguil.* to the output-plugins directory in the Barnyard source
tree.

For instance:

$ cd ~/barnyard-0.1.0/src/output-plugins

$ cp ~/sguil-0.3.0/sensor/barnyard_mods/op_sguil .*.

Now edit the Makefile in that directory to add op_sguil.c and op_sguil.h to the libop_a_SOURCES variable, and addop_sguil.o to the
libop_a_ OBJECTS variable.

After you've done that, edit op_plugbase.c and look for a line that says:
#include "op_acid_db.h"
Add another line below it so that it becomes:

#include "op_acid_db.h"

#include "op_sguil.h"

Now look for another line like this:

AcidDbOplnit();

and add another line below it so that it looks like this:
AcidDbOplnit();

SguilOplnit();

Now run make from the current directory; when that completes, change to the top-level directory of the source distribution and ruimake
install. To configure Barnyard to use the Sguil output plug-in, add a line similar to this one to your barnyard.conf:

output sguil: mysqg|l, sensor_id 0, database SGUIL, server localhost, user sguil,
sguilpass, sguild_host localhost, squild_port 7736
Now you can start Barnyard as you would normally. After you do that, you'll need to set upSguil 's sensor agent script,sensor_agent.tcl,

which can be found in the sensor directory of the source distribution. Before running the script, you'll need to edit several variables to fit
your situation:

set SERVER_HOST localhost

set SERVER_PORT 7736

set HOSTNAME gw-ext0

set PORTSCAN_DIR /var/log/snort/portscans

set SSN_DIR /var/log/snort/ssn_logs

set WATCH_DIR /var/log/snort

The PORTSCAN_DIR and SSN_DIR variables should be set to where the Snortportscan and stream4 preprocessors log to.

Now all you need to do is set up xscriptd on the same system that you installedsguild on. This script is responsible for collecting the

packet dumps from each sensor, pulling out the requested information, and then sending it back to the GUI client. Before running it, you'll
need to edit some variables in this script too:

set LOCALSENSOR 1
set LOCAL_LOG_DIR /var/log/snort/archive
set REMOTE_LOG_DIR /var/log/snort/dailylogs

If you're running xscriptd on the same host as the sensor, sel OCALSENSOR to 1. Otherwise, set it to 0. The LOCAL_LOG_DIR variable
sets where xscriptd will archive the data it receives when it queries the sensor, an(REMOTE_LOG_DIR sets where xscriptd will look on

the remote host for the packet dumps. If you're installing xscriptd on a host other than the sensor agent, you'll need to set up SSH client
keys [Hack #731in order for it to retrieve data from the senso ! installtcpflow
(l]ttp:/lwww.circlemud.org/~'elson/software/tcgflow and pOf (http://www.stearns.org/pOf]) on the host that you installxscriptd on.

Now that everything's set up, you can start sguild and xscriptd with commands similar to these:

sguild -O /usr/lib/tls1.4/libtls1.4.s0

xscriptd -O /usr/lib/tls1.4/libtls1.4.s0

If you're not using SSL, you should omit the -O /usr/lib/tls1.4/libtls1.4.so portions of the commands. Otherwise, you should make sure
that the argument to -O points to the location oflibtls on your system.

Getting Sguil running isn't trivial, but it is well worth the effort. Once everything is running, you will have a very good overview of precisely

http://www.circlemud.org/~jelson/software/tcpflow/
http://www.stearns.org/p0f/

what is happening on your network. Sguil presents data from a bunch of sources simultaneously, giving you a good view of the big
picture that is sometimes impossible to see when simply looking at your NIDS logs.
|II!I|III|II'||||
||||| L EDEL DU CARRY

Hack 85 Manage a Sensor Network

E HAGK
Use SnortCenter's easy-to-use web interface to manage your NIDS sensors.

Managing an IDS sensor and keeping track of the alerts it generates can be a daunting task, and even more so when you're dealing

vﬁm_mmw_ﬂuay to unify all your IDS management tasks into a single application is to use SnortCenter
(http://lusers.pandora.be/larcl), a management system for Snort.

SnortCenter is comprised of a web-based console and sensor agents that are run on each machine in your NIDS infrastructure. It lets
you unify all of your management and monitoring duties into one program, which can help you get your work done quickly. SnortCenter
has its own user authentication scheme, and supports encrypted communication between the web-based management console and the
individual sensor agents. This enables you to update multiple sensors with new Snort rules or create new rules of your own and push
them to your sensors securely. SnortCenter also allows you to start and stop your sensors remotely through its management interface.
To monitor the alerts from your sensors, SnortCenter can integrate with ACID .

To set up SnortCenter , you'll first need to install the management console on a web server that has bothPHP support and access to a
MySQL database server where SnortCenter can store jts configuration database. To install the management console, download the
distribution from the download page (http://users.pandora.be/larc/downloadf) and unpack it. This will create a directory calledwww (so be
sure not to unpack it where there's already a www directory) containing SnortCenter's PHP scripts, graphics, and SQL schemas. Then,
copy the contents of the www directory to a suitable location within your web server's document root.

For example:

tar xfz snortcenter-v1.0-RC1.tar.gz

cp -R www /var/www/htdocs/snortcenter

In order for SnortCenter to communicate with your database, you'll need to install ADODB (lmp://php.webloqs.com/adodd) as well. This
is a PHP package that provides database abstraction functionality. After you've downloaded the ADODB code, unpack it into your
document root (e.g., /var/www/htdocs).

You'll also need to install curl (pttp://curl.haxx.sg). Download the source distribution, unpack it, and run/configure && make install.
Alternatively, it might be available with your operating system (Red Hat has a curl RPM, and *BSD includes it in the ports tree).

After that's out of the way, you'll need to edit SnortCenter 's config.php (e.g., /var/www/htdocs/snortcenter/config.php) and change these
variables to similar values that fit your situation:

$DBIlib_path = "../adodb/";
$DBtype = "mysql";

$DB_dbname ="SNORTCENTER";

$DB_host = "localhost";
$DB_port =",
$DB_user = "snortcenter";

$DB_password = "snortcenterpass”;

netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
netsechacks-CHP-7-SECT-5.html
http://users.pandora.be/larc/
http://users.pandora.be/larc/download/
http://php.weblogs.com/adodb
http://curl.haxx.se

$hidden_key_num =1823701983719312;

This configuration will tell SnortCenter to look for the ADODB code in the adodb directory located at the same directory level as the one
containing SnortCenter. In addition, it will tellSnortCenter to connect to a MySQL database called SNORTCENTER that is running on
the local machine as the user snortcenter with the passwordsnortcenterpass. Since it is connecting to a MySQL server on the local

machine, there is no need to specify a port. If you want to connect to a database running on another system, you should specify 3389 for
the port, which is the default used by MySQL. Set $hidden_key_num to a random number.

After you're done editing config.php, you'll need to create the database and user you specified and set the proper password for it:
$ mysql -u root -p mysql

Enter password:

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 27 to server version: 3.23.55
Type 'help;' or \h' for help. Type ‘\c' to clear the buffer.

mysql> create database SNORTCENTER;

Query OK, 1 row affected (0.01 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON SNORTCENTER.* TO \
snortcenter@localhost IDENTIFIED BY 'snortcenterpass’;

Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.02 sec)

mysql> Bye
Now create the database tables:

$ mysql -u root -p SNORTCENTER < snortcenter_db.mysq|l

Congratulations, it's PMMMUMO this, go to the URL that corresp here you installed it within your
document root (e.g., http://example.com/snortcentery). You should see something likefigure 7-§.

http://example.com/snortcenter/

Figure 7-5. The SnortCenter login page

Enter in the default login/password admin/change, and then click the Login button. After you do that, you should see a page similar to

Figure 7-4.

Figure 7-6. The initial SnortCenter main page

FrmeyC gy v L BT C sgyriabl O 10 L BT Seafen Ben

Now that you know that the management console has been installed successfully, you can move on to installing the agent. But before

doing that, you should change the password for the admin account. To do this, click on the Admin button. then on the User
Administration menu item that appears. After that, click on View Users. You should then see a page like figure 7-1.

Figure 7-7. SnortCenter's user listing page

LR B] JE3L JEE] el Cwm

Clicking on the icon to the left of the username should bring you to a page similar to ; here you can edit the admin account's
information, including the password.

Figure 7-8. Changing the admin account's password and email address

JEILJEE] kinfde Ewm

Now you can go on to set up your sensor agents (really, I'm serious this time).

SnortCenter's sensor agents are written in Perl and require the Net::SSLeay module to communicate with the management console
through a secure channel. If you have Perl's CPAN module installed, you can install Net::SSLeay easily by running the following

command:
perl -MCPAN -e "install Net::SSLeay"

To install the sensor code, you'll first need to unpack it. This will create a directory called sensor containing all of the sensor agent code.
Then copy that directory to a suitable permanent location.

For example:

tar xfz tmp/snortcenter-agent-v1.0-RC1l.tar.gz

cp -R sensor /usr/local/snortcenter

Next you'll need to create an SSL certificate for the sensor. You can do this by running the following command:
cd /usr/local/snortcenter

mkdir conf

openssl req -new -x509 -days 3650 -nodes \

-out conf/sensor.pem -keyout conf/sensor.pem
Alternatively, you can create a signed certificate [Hack #45] and use that.
After you've done that, run the sensor agent's setup script:

sh setup.sh

* Welcome to the SnortCenter Sensor Agent setup script, version 1.0 RC1 *

Installing Sensor in /usr/local/snortcenter ...

The Sensor Agent uses separate directories for configuration files and log files.

Unless you want to place them in a other directory, you can just accept the defaults.

Config file directory [/usr/local/snortcenter/conf]:

This script will prompt you for several pieces of information, such as the sensor agent's configuration file and log directories, the full path
to the perl binary (e.g., /usr/bin/perl), as well as the location of yoursnort binary and rules. In addition, it will ask you questions about your
operating system, what port and IP address you want the sensor agent to listen on (the default is TCP port 2525), and what IP
addresses are allowed to connect to the agent. In particular, it will ask you to set a login and password that the management console will
use for logging into the agent. After it has prompted you for all the information it needs, it will start the sensor agent on the port and IP
address specified in the configuration file. You can no the sensor agent by accessing it with your web browser (be sure to use
https instead of http). You should see a page similar tii;ure 7-9 after entering the login information contained in the setup script.

Figure 7-9. The sensor agent direct console page

ot L A &3+ | Phripeiirud- 1525 -

=]

[0 mendemvowa+ spple Maz &macen cBay Yakos! Nowss s

Snartlenter Direil Sdnsoi Consdde

Tt 1L na g e] TrEEt vEra ks PIIET 3tiEn

Now you can go back to the main management console and add the sensor to it. To do this, log back intg th
select Add Sensor from the Sensor Console menu. After doing this, you should see something similar to

nagement console and

Figure 7-10. Adding a sensor agent

Nrnuer Carsasle Barrrnar Cumhy e s oL s

Craala & mane B8 nssr

L s L N gyl JE3L D Ml B

Fill in the information that you used when running the setup script and click the Save button. When the next page loads, the sensor that
you just added should appear in the sensor list. You can push a basic configuration to the sensor by opening the Admin menu, then
selecting the Import/Update Rules item, and then Update from Internet. After you've done that, go back to the sensor list by clicking View

Sensors in the Sensor Consoles menu, and then click the Push hy,

erlink for t

Start link. After you've done that, you should see a page similar to figure 7-11].

e sensor. To start Snort on that particular sensor, click the

Figure 7-11. SnortCenter's sensor list after starting a sensor

Smroess mappags

§Lar b Snmrk

Srvrpe Cpndnd Saor] Caplapero] o Pl

e matar oy 10 B | S agepraghi FEE HET fravar Do

You can now configure your sensor by using the Sensor Config and Resources menus. Once you've created a configuration you're
satisfied with, you can push it to your sensor(s) by going back to the sensor list and selecting Push.

Hack 86 Write Your Own Snort Rules

E HAGK
Customize Snort for your own needs quickly and easily by leveraging its flexible rule engine and language

One of the best features of Snort is its rule engine and language. Snort's rule engine provides an extensive language that enables you
to write your own rules, allowing you to extend it to meet the needs of your own network.

A Snort rule can be broken down into two basic parts, the rule header and options for the rule. The rule header contains the action to
perform, the protocol that the rule applies to, and the source and destination addresses and ports. The rule options allow you to create a
descriptive message to associate with the rule, as well as check a variety of other packet attributes by making use of Snort's extensive
library of plug-ins.

Here's the general form of a Snort rule:

action proto src_ip src_port direction dst_ip dst_port (options)

When a packet comes in, its source and destination IP addresses and ports are then compared to the rules in the ruleset. If any of them
are applicable to the packet, then the options are compared to the packet. If all of these comparisons return a match, then the specified
action is taken.

Snort provides several built-in actions that you can use when crafting your rules. To simply log the packet that matches a rule, use tiay
action. The alert action generates an alert using the method specified in your configuration file or on the command line, in addition to
logging the packet. One nice feature is that you can have very general rules and then create exceptions by writing a rule that uses the
pass action. This works especially well when you are using the rules distributed with Snort, but are frequently getting false positives for
some of them. If this happens and it's not a security risk to ignore them, you can simply write a pass rule for it.

The last two built-in rule actions are used together to dynamically modify Snort's ruleset at runtime. These are the activate and
dynamic actions. Rules that use thedynamic action are just like alog rule, except they will be considered only after they have been
enabled by an activate rule. To accomplish this, Snort enforces the use of theactivates and activated_by rule options in order to know
what dynamic rules to enable once anactivate rule has been triggered. In addition, dynamic rules are required to specify acount option in
order for Snort to limit how many packets the rule will record.

For instance, if you wanted to start recording packets once an exploit of a SSH daemon on 192.168.1.21 was noticed, you could use a
couple of rules similar to these:

activate tcp any any -> 192.168.1.21 22 (content:"/bin/sh"; activates:1; \
msg:"Possible SSH buffer overflow";)

dynamic tcp any any -> 192.168.1.21 22 (activated_by:1; count:100;)

These two rules aren't completely foolproof, but if someone were to run an exploit with shell code against an SSH daemon, it would most
likely send the string /bin/sh in the clear in order to spawn a shell on the system being attacked. In addition, since SSH is encrypted,
strings like that wouldn't be sent to the daemon under normal circumstances. Once the first rule is triggered, it will activate the second
one, which will record 100 packets and then stop. This is useful, since you might be able to catch the intruder downloading or installing a
root kit within those first few packets and be able to analyze the compromised system much more quickly.

You can also define custom rule actions, in addition to those that Snort has built-in. This is done with theuletype keyword:

ruletype redalert

netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html
netsechacks-CHP-7-SECT-6.html

type alert
output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host=localhost

This custom rule action tells Snort that it behaves like the alert rule action, but specifies that the alerts should be sent to the syslog

daemon, while the packet will be logged to a database. When defining a custom action, you can use any of Snort's output plug-ins, just
as you would if you were configuring them as your primary output method.

Snort's detection engine supports several protocols. The proto field is used to specify what protocol your rule applies to. Valid values for
this field are ip, icmp, tcp, and udp.

The next fields in a Snort rule are used to specify the source and destination IP addresses and ports of the packet, as well as the
direction the packet is traveling. Snort can accept a single IP or a list of addresses. When specifying a list of IP address, you should
separate each one with a comma and then enclose the list within square brackets, like this:

[192.168.1.1,192.168.1.45,10.1.1.24]

When doing this, be careful not to use any whitespace. You can also specify ranges of IP addresses using CIDR notation, or even
include CIDR ranges within lists. Snort also allows you to apply the logical NOT operator (!) to an IP address or CIDR range to specify
that the rule should match all but that address or range of addresses.

As with IP addresses, Snort can accept single ports as well as ranges. To specify a range, use a colon character to separate the lower
bound from the upper bound. For example, if you wanted to specify all ports from 1 to 1024, you would do it like this:

1:1024

You can also apply the NOT operator to a port, and you can specify a range of ports without an upper or lower bound.
For instance, if you only wanted to examine ports greater than 1024, you would do it this way:

1024:

Similarly, you could specify ports less than 1024 by doing this:

11024
If you do not care about the IP address or port, you can simply specify any.

Moving on, the direction field is used to tell Snort which IP address and port is the source and which pair is the destination. In earlier
versions of Snort you could use either -> or <- to specify the direction. However, the<- operator was removed since you can make either
one equivalent to the other by just switching the IP addresses and port numbers. Snort does have another direction operator in addition
to ->, though. Specifying <> as the direction tells Snort that you want the rule to apply bidirectionally. This is especially useful when using
log rules or dynamic rules, since you can log both sides of the TCP stream rather than just one direction.

The next part of the rule includes the options. This part lets you specify many other attributes to check against. Each option is
implemented through a Snort plug-in. When a rule that specifies an option is triggered, Snort will run through the option's corresponding
plug-in to perform the check against the packet. Snort has over 40 plug-ins—too many to cover in detail in this hack. Here are some of
the more useful ones.

The single most useful option is msg. This option allows you to specify a custom message that will be logged in the alert when a packet
matching the rule is detected. Without it, most alerts wouldn't make much sense at first glance. This option takes a string enclosed in
quotes as its argument.

For example, this specifies a logical message whenever Snort notices any traffic that is sent from 192.168.1.35:

alert tcp 192.168.1.35 any -> any any (msg:"Traffic from 192.168.1.35";)

Be sure not to include any escaped quotes within the string. Snort's parser is a simple one and does not support escaping characters.

Another useful option is content, which allows you to search a packet for a sequence of characters orhexadecimal values. If you are
searching for a string, you can just put it in quotes. In addition, if you want it to do a case-insensitive search, you can adeocase; to the
end of all your options. However, if you are looking for a sequence of hexadecimal digits, you must enclose them in| characters.

This rule will trigger when it sees the digit 0x90:
alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|";)

This digit is the hexadecimal equivalent of the NOP instruction on the x86 architecture and is often seen in exploit code since it can be
used to make buffer overflow exploits easier to write.

The offset and depth options can be used in conjunction with thecontent option to limit the searched portion of the data payload to a
specific range of bytes.

If you wanted to limit content matches for NOP instructions to between bytes 40 and 75 of the data portion of a packet, you could modify
the previously shown rule to look like this:

alert tcp any any -> any any (msg:"Possible exploit”; content:"|90["; \
offset:40; depth:75;)

You can also match against packets that do not contain the specified sequence by prefixing it with a !. In addition, many shell code
payloads can be very large compared to the normal amount of data carried in a packet sent to a particular service. You can check the
size of a packet's data payload by using thedsize option. This option takes a number as an argument. In addition, you can specify an
upper bound by using the < operator, or you can choose a lower bound by using the> operator. Upper and lower bounds can be
expressed with <>.

For example:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|"; \

offset:40; depth:75; dsize: >6000;)

This modifies the previous rule to match only if the data payload's size is greater than 6000 bytes, in addition to the other options criteria.

To check the TCP flags of a packet, Snort provides theflags option. This option is especially useful for detecting portscans that employ
various invalid flag combinations.

For example, this rule will detect when the SYN and FIN flags are set at the same time:

alert any any -> any any (flags: SF,12; msg: "Possible SYN FIN scan";)

Valid flags are S for SYN, F for FIN, R for RST, P for PSH, A for ACK, and U for URG. In addition, Snort lets you check the values of the
two reserved flag bits. You can specify these by using either 1 or 2. You can also match packets that have no flags set by usind). There
are also several operators that the flags option will accept. You can prepend either a+ , *, or! to the flags, to match on all the flags plus
any others, any of the flags, or only if none of the flags are set, respectively.

One of the best features of Snort is that it provides many plug-ins that can be used in the options field of a rule. The options discussed
here should get you off to a good start. However, if you want to write more complex rules, consult Snort's excellent rule documentation,

i i ipti mples for each of Snort's rule options. The Snort User's Manual is available at
ttp://www.snort.org/docs/writing _rules).

http://www.snort.org/docs/writing_rules/

Hack 87 Prevent and Contain Intrusions with Snort_inline

E HAGK
Install Snort_inline on your firewall to contain intrusions, or to stop them as they're happening.

Wouldn't it be nice if your NIDS could not only detect intrusions, but also do something about them? It would be nice if it could actually
stop the intrusion occurring on the host that was being attacked, but theﬁg&mwm_fe to block the network traffic that's
propagating the attack. One tool that can do this for you is Snort_inline (http://snort-inline.sf.netf).

Snort_inline is a patch to Snort that modifies it to read data from the Linux kernel's Netfilter queue, which allows Snort to effectively
integrate itself with the firewall. This allows it to not only detect intrusions, but to decide whether to drop packets or to forward them to

another host (using Libnet). This of course requires that your kernel be compiled with IP queue support, either statically or as a
module.

You can see if you have the module by running a command like this:

$ locate ip_queue.o

lusr/src/linux-2.4.20-8/net/ipv4/netfilter/ip_queue.o

lusr/srcllinux-2.4.20-8/net/ipv4/netfilter/.ip_queue.o.flags

/lib/modules/2.4.20-8/kernel/net/ipv4/netfilter/ip_queue.o

In this case, you can see that the module is available by looking at the last line of the output. If that doesn't exist, you can check to see
whether the file /proc/net/ip_queue exists. If you can't find the module, but that file exists, then it means IP queue support is compiled into

your kernel statically. If neither file exists, you'll need to enable it in your kernel and recompile.

In addition to requiring IP queue support, Snort_inline also needs libipg. This is a library that comes with Netfilter and is used by
applications to communicate with Netfilter's queue. You can check to see if it's installed on your system by running this command:

$ locate libipq
{usr/include/libipg.h

Nlib/libipg.a

If you don't see output similar to this, chances are that you don't have libipq installed. You can install it by ing the iptables
source from the Netffilter distribution site (http://www.netfilter.ord). For instructions on compiling it, refer tofHack #41] . After compilation is
finished, run make install-dev, since libipq is not installed by default.

In addition to those libraries, you'll also need the Libnet packet injection library (lwttp://www.packetfactory.net/proiects/libnet]). To install
Libnet, simply download the source distribution, unpack it, and then run ./configure && make install as root.

Now that all the prerequisites are out of the way, you can compile Snort_inline. First download and unpack the source distribution, and
then change to the directory that it creates. Then run this command:

$./configure --enable-inline && make
You can also use any configure options that you'd normally use with Snort, since at it's heart Snort_inline is still Snort.

Don't be alarmed if your compile aborts with the following error:

netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
netsechacks-CHP-7-SECT-7.html
http://snort-inline.sf.net
http://www.netfilter.org
http://www.packetfactory.net/projects/libnet/

gcc -DHAVE_CONFIG_H -l -I. -l../.. -1..1.. -l..[..[src -I..]../src/sfutil
-l/usr/include/pcap -I../../src/output-plugins -I../../src/detection-plugins -I../../src/
preprocessors -l../../src/preprocessors/flow -I../../src/preprocessors/portscan -I../../
src/preprocessors/flow/int-snort -I../../src/preprocessors/Httpinspect/include -1/usr/
include/pcre -l/usr/local/include -g -O2 -Wall -DGIDS -D_BSD_SOURCE -D__BSD_SOURCE -D_
_FAVOR_BSD -DHAVE_NET_ETHERNET_H -DLIBNET_LIL_ENDIAN -c ‘test -f 'spo_alert_fast.c' ||
echo "./"spo_alert_fast.c
In file included from /usr/include/linux/netfilter_ipv4/ip_queue.h:10,

from /usr/include/libipg.h:37,

from ../../srclinline.h:8,

from ../../src/snort.h:38,

from spo_alert_fast.c:51:
{usr/include/linux/if.h:59: redefinition of “struct ifmap"
{usr/include/linux/if.h:77: redefinition of “struct ifreq'
{usr/include/linux/if.h:126: redefinition of “struct ifconf'
make[3]: *** [spo_alert_fast.o] Error 1
make[3]: Leaving directory ‘/home/andrew/snort_inline-2.1.0/src/output-plugins'
make[2]: *** [all-recursive] Error 1
make[2]: Leaving directory ‘/home/andrew/snort_inline-2.1.0/src'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory ‘/home/andrew/snort_inline-2.1.0'
make: *** [all] Error 2

This is caused by /usr/include/linux/netfilter_ipv4/ip_queue.h including/usr/include/linux/if.h instead of /usr/include/net/if.h (a problem that
the author encountered while writing this). You can fix this by simply editing ip_queue.h and changing this line near the top of the file:

#include <linux/if.h>
to this:

#include <net/if.h>

You can then restart the compilation from where it left off by simply typing make, or, if you're paranoid, you can use this command to
completely start over:

$ make clean && make
After compilation has finished, become root and type make install.

You can now configure Snort_inline just as you would configure Snort regularly. However, it's recommended that you run a separate
instance of Snort if you want alerting and use Snort_inline solely for setting firewall rules.

In addition to modifying Snort to capture packets from Netffilter rather than libpcap, theSnort_inline patch also adds three new rule types,
as well as a new rule option. The new rule types are drop , sdrop, andreject. The drop rule type will drop the packet that triggered the
rule without notifying the sending host, much like the iptables DROP target, and will log that it has done so. Thesdrop rule type is similar,
except that packets are silently dropped with no log entry to tell you that it occurred. Using the reject rule type will block the offending
packet, but will notify the sending host with either a TCP RST or an ICMP port unreachable message, depending on whether the packet
that triggered the rule used the TCP or UDP protocols, respectively. The new rule option added by Snort_inline allows you to replace
arbitrary content within a packet with whatever you choose. The only restriction is that the replacement byte stream must be the same
length as the original. This is implemented with the replace rule option and is used in conjunction with thecontent rule option to select
what is to be replaced.

To run Snort_inline, start it just as you would start SnortSnort_inline does add a new command-line switch, though: -Q tells it to use IP
gueues rather than libpcap to gather packets. So, you'll need to use this option if you want to use it in inline mode.

The only thing left to do before actually running it in inline mode is to configure the kernel to send the packets to the IP queues. This is
done with the iptables command:

iptables -F
iptables -A INPUT -j QUEUE

iptables -A OUTPUT -j QUEUE

iptables -A FORWARD -j QUEUE

This will push all traffic going in, out, and through the machine into an IP queue from which Snort_inline will read its packets. You can
then start snort_inline as you would Snort (just don't forget to use the-Q option):

snort_inline -Qvc /etc/snort/snort_inline.conf

If you're administering the machine remotely, you'll probably want to start snort_inline before enabling the QUEUE targets, since it's
snort_inline that will actually pass the packets back and forth. Otherwise, your remote logins will be dropped as soon as you put the
iptables rules in place. If you're particularly paranoid, have your QUEUE target rules ignore packets coming from a certain IP address or

range of addresses.

Hack 88 Automated Dynamic Firewalling with SnortSam

E HAGK
Use SnortSam to prevent intrusions by putting dynamic firewall rules in place to stop in-progress attacks.

An alternative to running Snort on your firewall and having it activate filtering rules on the machine it's running ofHack #87] is to have

Snort communicateﬁmjgnmmlﬁjhggld be put in place when the an intrusion is detected on an external firewall. To do this, you
can use SnortSam (pttp://www.snortsam.net).

SnortSam uses Snort's plug-in architecture and extends Snort with the ability to notify a remote firewall, which then dynamically applies
filtering rules to stop attacks that are in progress. Unlike Snort_inline, which is highly dependent on Linux,SnortSam supports a wide
variety of firewalls, such as Checkpoint, Cisco, Netscreen, Firebox, OpenBSD's pf, and even Linux's ipchains and iptables interfaces to
Netfilter. SnortSam is made up of two components, a Snort plug-in and a daemon.

To set up SnortSam, first download the source distribution and then unpack it. After you've done that, go into the directory it created and
run this command:

$ sh makesnortsam.sh
This will build the snortsam binary, which you can then copy to a suitable place in your path (e.g/usr/bin or /usr/local/bin).
Now download the patch for Snort, which you can get from the same site as SnortSam. After you've done that, unpack it:

$ tar xvfz snortsam-patch.tar.gz
NOTE

patchsnort.sh

patchsnort.sh.asc

snortpatch8

snortpatch8.asc

snortpatch9

snortpatch9.asc

snortpatchb

snortpatchb.asc

Next, run patchsnort.sh and specify the directory where you're keeping Snort's source:
$ sh patchsnort.sh snort-2.0.5
Patching Snort version 2.0...
patching file spo_alert_fwsam.c

patching file spo_alert_fwsam.h

netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
netsechacks-CHP-7-SECT-8.html
http://www.snortsam.net

patching file twofish.c

patching file twofish.h

patching file plugbase.c

Hunk #1 succeeded at 29 with fuzz 2 (offset -73 lines).
Hunk #2 succeeded at 639 with fuzz 2 (offset 77 lines).
Patching Makefiles...

Done

Now compile Snort as you would normally [Hack #82] .

Before running SnortSam, you must create a configuration file for it. SnortSam'’s configuration syntax is pretty easy to use, but there are
quite a few options, so only a subset of the available ones will be discussed here.

One useful option is accept, which lets you tellSnortSam what Snort sensors are allowed to connect to it. This option can take a
CIDR-format address range, a hostname, or a single IP address. You can optionally specify a password as well. If you don't specify a
password, the one specified by the defaultkey option is used.

For example, if you wanted to allow all hosts from the network 192.168.1.0/24 with the password qwijybo, you could put a line like this in
your configuration file:

accept 192.168.1.0/24, qwijybo
To specify multiple hosts on network address ranges, you can use multiple accept entries.

Another useful option is dontblock . This enables you to construct a whitelist of hosts and networks thaSnortSam will not block under any
circumstances. This option takes hostnames, single IP addresses, and CIDR addresses; you can also use multiple dontblock entries, just
as you can with accept.

To improve SnortSam's performance, you may want to use theskipinterval option. This option lets you tellSnortSam how long to skip

identical blocking requests before it will resume applying rules for that request. This ensures that SnortSam isn't constantly requesting
the firewall to block the same IP address and port over and over again. The skipinterval option takes a single number as its argument,
which specifies how many seconds to wait.

You'll probably want to keep tabs on what SnortSam's doing, since you're allowing it to modify your firewall's rules. One way is to use the
logfile option, which will causeSnortSam to log events such as program start, blocking and unblocking requests, and any errors that were
encountered. This option takes a single argument, which is the filename that the logs will be written to. The log file that you specify will be
created in /var/log.

A couple of other useful options are daemon and bindip. The daemon option simply tells SnortSam to fork into the background and run
as a daemon; it does not take any arguments. The bindip option, on the other hand, allows you to specify which IP address to listen on,
which is useful when the machine that SnortSam is running on has multiple addresses available.

For instance, if you wanted SnortSam to listen only on 192.168.1.15, you would use a line like this:
bindip 192.168.1.15
In addition, the default port that SnortSam listens on is 898, but you can change this with the port option.

After you're done with SnortSam's options, you'll need to tell it what kind of firewall to communicate with and how to do it. To use
SnortSam with a Checkpoint Ffwexec or fwsamW-1 firewall, you can specify either thefwexec or fwsam keywords. Use fwexec when you
when you want to run SnortSam on the host that the firewall is install fwexec or fwsamed on, and use fwsam when you want to
communicate with a remote firewall.

The fwexec keyword takes the full pathname to thefw executable as its only argument, whereas thefwsam keyword uses the hostname
or IP of the firewall. In addition, you'll need to modify the fwopsec.conf file on your firewall to include the following line:

sam_server port 1813

To use SnortSam with a PIX firewall, you'll need to use the pix keyword and specify the IP address of the firewall as well as the Telnet
and enable mode passwords.

For example:
pix 192.16.1.2 telnetpw enablepw
Or, if your firewall is set up to do user authentication, you can useuser/password in place of the Telnet password.

If you want to use SnortSam with OpenBSD's PF or Linux's iptables, you'll need to use the pf or iptables keywords. For basic usage, all
you need to do is specify the interface on which to block packets.

To configure the Snort side of things, you'll need to add thealert_fwsam output plug-in to the output plug-ins that you're already using.
This plug-in takes a hostname and an optional port to connect to, along with a password. If SnortSam is using the default port, you don't
need to specify the port here.

For example:
output alert_fwsam: firewall/mypassword firewall2:1025/mypassword
Notice that you can list multiple instances of SnortSam to send block requests to by separating them with whitespace.

Any rules that you want to trigger a firewall rule should be modified to use théwsam rule option. This option takes as its arguments what
to block and for how long the block should be in effect. To block the source of the packet that caused the alert, use src; to block the
destination, use dst. If you want to block both, use either. For the duration you can use a number along with a modifier specifying what
unit it's in (i.e., seconds, minutes, hours, days, weeks, months, or years), or you can use 0 to specify an indefinite period of time.

For instance, to block the source address of the packet that triggered a rule for five minutes, you could add this to your rule options:
fwsam: src, 5 minutes;

Now that everything is configured, startSnortSam by running a command similar to this:

snortsam /usr/local/etc/snortsam.conf

Of course, you'll need to substitute the full path to your configuration file if it's not /usr/local/etc/snortsam.conf. As for Snort, just start it as
you normally would.

For more information on using SnortSam with other types of firewalls, be sure to check out the README files included with the source
distribution.

Hack 89 Detect Anomalous Behavior

E HAGK
Detect attacks and intrusions by monitoring your network for abnormal traffic, regardless of the actual content

Most NIDS monitor the network for specific signatures of attacks and trigger alerts when one is spotted on the network. Another means
of detecting intrusions is to generate a statistical baseline of the traffic on the network and flag any traffic that doesn't fit the statistical
norms. One intrusion detection system of this type is Spade (http://www.silicondefense.com/software/spicel).

Spade, or the Statistical Anomaly Detection Engine, is actually a modified version of Snort that extends its functionality into the realm of
anomaly-based intrusion detection. The Spade preprocessor uses Snort to monitor the network and then constructs probability tables
based on the traffic that it sees. It then uses this table to generate an anomaly between and 1 for each packet (i.e., O is a definite normal,
and 1 is a definite anomaly).

Installing Spade is easy. Just download the source distribution, unpack it, and change into the directory that it created. Then type a
command similar to this, which will patch your Snort source code:

$ make SNORTBASE=../snort-2.0.5
Of course, if your Snort source tree isn't at../snort-2.0.5, you'll need to specify a different path.

Now change to the directory containing the Snort source code, and compile and install Snort as you normally would . Once
you've done that, you'll need to configure Snort to use Spade. You have two choices here: setting it up to use onlySpade functionality or
using normal Snort functionality along with Spade. For the former, you can use thespade.conf located in the Spade source distribution as
a starting point.

Most of the defaults are fine. However, you will need to set the SPADEDIR variable to a place where Snort has read and write access.
Spade will keep various logs and check-pointing information here so that it does not lose its probability table whenever Snort is
restarted.

For example:
var SPADEDIR /var/log/snort/spade

It is also important that you tell Spade what network is your "home" network. You can do this by using a line similar to this one in your
configuration file:

peprocessor spade-homenet: 192.168.1.0/24
You can specify multiple networks by separating them with commas and enclosing the list in square brackets.

If you want to run Snort with Spade and traditional Snort functionality, you can just include your spade.conf in yoursnort.conf with a line
like this:

include spade.conf

Run Snort just as you did before. Spade will now send its output to any of the output plug-ins that you have configured when it detects
anomalous behavior. This is triggered when a given packet's anomaly score is in the range of .8 to .9 (it depends on the type of packet).
Any alerts generated by Spade will be prefixed withSpade: and will include a description of the packet's deviant behavior and its
anomaly score.

netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
netsechacks-CHP-7-SECT-9.html
http://www.silicondefense.com/software/spice/

Hack 90 Automatically Update Snort's Rules

E HAGK
Keep your Snort rules up-to-date with Oinkmaster.

If you have only a handful of IDS sensors, keeping your Snort rules up-to-date is a fairly quick and easy process. However, as the
n difficult. Luckily, you automatically update your Snort rules with Oinkmaster
(http://oinkmaster.sourceforge.net/news.shtmj).

Oinkmaster is a Perl script that does much more than just download new Snort rules. It will also modify the newly downloaded rules
according to rules that you specify or selectively disable them, which is useful when you've modified the standard Snort rules to fit your
environment more closely or have disabled a rule that was reporting too many false positives.

To install Oinkmaster, simply download the source distribution and unpack it. Then copy theoinkmaster.pl file from the directory that it
creates to some suitable place on your system. In addition, you'll need to copy the oinkmaster.conf file to either /etc or /usr/local/etc. The
oinkmaster.conf that comes with the source distribution is full of comments explaining all the minute options that you can configure.
Oinkmaster is most useful for when you want to update your rules but have a set of rules that you don't want enabled and that are
already commented out in your current Snort rules. To have Oinkmaster automatically disable these rules, use thedisablesid directive
with the Snort rule ID that you want disabled when your rules are updated.

For instance, you may get a lot of ICMP unreachable datagrams on your network and have determined that you don't want to receive
alerts when Snort detects this type of traffic. So, you decided to comment out the rule in your icmp.rules file:

alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Communication Administratively Prohibited)"; itype: 3; icode: 13; sid:485;
classtype:misc-activity; rev:2;)

This is only one rule, so it's easy to remember to go back and comment it out again after updating your rules, but this can become quite a
chore when you've done the same thing with several dozen other rules. If you use Oinkmaster, putting the following line in your
oinkmaster.conf file will disable the preceding rule afterOinkmaster has updated your rules with the newest ones available fronsnort.org:

disablesid 485
Then, when you want to update your rules, ruroinkmaster.pl and tell it where you'd like the updated rules to be placed:
oinkmaster.pl -o /etc/snort/rules

Now you won't have to remember which rules to disable ever again.

netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
netsechacks-CHP-7-SECT-10.html
http://oinkmaster.sourceforge.net/news.shtml

Hack 91 Create a Distributed Stealth Sensor Network

lisi

Keep your IDS sensors safe from attack, while still giving yourself access to their data.

Your IDS sensors are the early warning system that can both alert you to an attack and provide needed evidence for investigating a
break-in after one has occurred. You should take extra care to protect them and the data that they collect. One way to do this is to run
your IDS sensors in stealth mode.

To do this, simply don't configure an IP address for the interface that your IDS software will be collecting data from. Putting the interface
up, but without specifying an IP address, can do this.

For example:

#tcpdump -i ethl

tcpdump: bind: Network is down

ifconfig ethl up promisc

ifconfig ethl

ethl Link encap:Ethernet HWaddr 00:DE:AD:BE:EF:00
UP BROADCAST PROMISC MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Interrupt:11 Base address:0x1c80

lusr/sbin/tcpdump -i ethl
tcpdump: WARNING: eth1: no IPv4 address assigned

tcpdump: listening on ethl

After you've put the interface up, just start your IDS [Hack #82] . Your IDS will run as normal, but since there is no way to directly access
the machine, it is very difficult to attack it.

However, just like potential attackers, you will be unable to access the machine remotely. Therefore, if you want to manage the sensor
remotely, you'll need to put in a second network interface. Of course, if you did this and hooked it up to the same network that the IDS
sensor is monitoring, it would totally defeat the purpose of running the other interface without an IP address. To keep the traffic isolated,
you should create a separate network for managing the IDS sensors. You can of course attach this network to one that is remotely

netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html
netsechacks-CHP-7-SECT-11.html

accessible and then firewall it heavily.

Another approach is to access the box using an alternate channel, such as a serial port connected to another machine that does have a
network connection. Just run a console on the serial port, and take care to heavily secure the second machine. You could also connecta
modem (remember those?) to an unlisted phone number or, better yet, an unlisted extension on your office's PBX. Depending on your
situation, simply using the console for access may be the simplest and most secure method.

Whichever method you decide to use for remote access is a choice you'll have to make by weighing the value of increased security
against the inconvenience of jumping through hoops to access the machine. Security nearly always involves a trade-off between
convenience and confidence.
AL
L

Hack 92 Use Snort in High-Performance Environments with Barnyard

oo

Decouple Snort's output stage so it can keep pace with the packets.

Snort by itself is fine for monitoring small networks or networks with low amounts of traffic, but it does not scale very well without some
additional help. The problem is not with Snort's detection engine itself, but stems from the fact that Snort is a single-threaded application.
Because of this, whenever an alert or log event is triggered, Snort must first send the alert or log entry to its final destination before it can
go back to looking at the incoming data stream. This isn't such a big deal if you're just having Snort write to a file, but it can become a
problem if you are logging to a database, which can cause Snort to wait a relatively long time for the database insert to complete. This of
course is exacerbated when you're having Snort log to a remote database server.

To solve this, another application called Barnyard (http://www.snort.orq/dI/barnyardJ) was written. Functionally, Barnyard is the
equivalent of Snort's output plug-ins all rolled into one program, with a frontend for reading in files that Snort generates and then sending

them to the same database or other destination that you would normally have Snort log to. The only draw back to Barnyard is its limited
database support: Barnyard supports only MySQL, whereas Snort supports MySQL, PostgreSQL, Oracle, and ODBC outputs Barnyard
claims to support PostgreSQL, but unfortunately its current support is shaky at best).

After downloading Barnyard and unpacking it, change to the directory it created and run its configure script:
$./configure --enable-mysql

This will enable MySQL support when Barnyard is compiled. If you've installed your MySQL libraries and include files in a nonstandard
place (i.e., underneath the /usr or /usr/local hierarchies), you'll probably need to add the --with-mysql-includes and --with-mysq|-libraries

command-line options.

After you're done with the configure script, you can compile Barnyard by running make. When it finishes compiling, install it by becoming
root and running make install.

Before you use Barnyard, you'll need to configure Snort to use its unified output format. This is a binary format that includes both the
alert information and the data for the packet that triggered the alert, and it is the only type of input that Barnyard will understand.

To configure Snort to use the unified output format for bothalert and log events, add lines similar to these to your Snort configuration
(e.g., /etc/snort/snort.conf or /usr/local/etc/snort/snort.conf):

output alert_unified: filename snort.alert, limit 128
output log_unified: filnemae snort.log, limit 128

The filenames specified here are the basenames for the files that Snort will write its alert and log event information to. When it writes a
file, it will append the current Unix timestamp to the end of the basename. In addition, the size of these files will be limited to 128MB.

Now you'll need to create a configuration file for use withBarnyard. To runBarnyard in daemon mode and have it automatically fork itself
into the background, add this line to your configuration file:

config daemon

If you're going to be logging to a database for use with ACID [Hack #83], you'll also want to add two lines similar to these:

config hostname: colossus

config interface: ethO

netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
netsechacks-CHP-7-SECT-12.html
http://www.snort.org/dl/barnyard/

These two lines should be set to the name of the machine that you're running Barnyard on and the interface that Snort is reading
packets from. Next, you'll need to actually tell Barnyard to read your unified log files.

You can do this for alert events by using this line:
processor dp_alert

Or, if you want to process log events, use this line:
processor dp_log

Note that Barnyard can process only one type of unified log at a time. So, if you want it to process both alert and log events, you'll need
to run an instance of Barnyard for each type.

Now all that's left to configure is where Barnyard will send the data. If you want to use Snort's fast alert mode to generate single-line
abbreviated alerts, you can use the alert_fast output plug-in:

output alert_fast: fast_alerts.log
Or, if you want Barnyard to generate ASCII packet dumps of the data contained in the unified logs, you can use a line similar to this:
output log_dump: ascii_dump.log

To have Barnyard output to your syslog daemon, you can use the alert_syslog plug-in just like you would in yoursnort.conf. For instance,
if you wanted to send data to the local syslogd and use the auth facility and the alert log level, you could use a line like this:

output alert_syslog: LOG_AUTH LOG_ALERT
Or, if you want to send to a remote syslog daemon, you can use a line similar to this:
output alert_syslog: hostname=loghost, LOG_AUTH LOG_ALERT

You can also have Barnyard create Pcap-formatted files from the data in the unified logs. This is useful for analyzing the data later in
tools such as Ethereal. To do this, use the log_pcap plug-in:

output log_pcap: alerts.pcap

Finally, you can also have Barnyard output to a database by using thealert_acid_db plug-in for logging alert events and thelog_acid_db
for capturing log events.

For instance, this line would send alerts to the SNORT MySQL database running on dbserver using the usernamesnort:
output alert_acid_db: mysq|, sensor_id 0, database SNORT, server dbserver, user snort

The sensor_id is the one assigned byACID to the particular instance of Snort that is gathering the data. You can find what sensor ID to

use by clicking on the Sensors link on ACID's front page [Hack #83], which will show you a list of the sensors that are currently logging
to ACID.

The log_acid_db plug-in is similar, except it does not use thesensor_id option:
output log_acid_db: mysql, database SNORT, server dbserver, user snort, detail full

You can start Barnyard by simply using a command similar to the following if Snort's configuration files are stored irfetc/snort and Snort is
set to keep its logs in /var/log/snort:

barnyard -f snort.alert

Of course, this assumes that you used snort.alert when configuring Snort's alert_unified plug-in. If your Snort configuration files aren't
stored in /etc/snort, you can specify the locations of all the files thaBarnyard needs to access by running a command similar to this one:

barnyard -c /usr/local/etc/snort/barnyard.conf \

-g /usr/locall/etc/snort/gen-msg.map \

-s lusr/local/etc/snort/sid-msg.map -f snort.alert

This would tell Barnyard where to find all the files it needs if they are in /ust/local/etc/snort (and are too stubborn to create a symlink to
/etc/snort). If you're using a directory other than'var/log/snort to store Snort's logs, you can specify it with the-d option.

Congratulations. With Barnyard running, you should be able to handle much larger volumes of traffic without dropping log entries or
missing a single packet.
|II!I|III||I'||||
||||| AL LAREAN

Hack 93 Detect and Prevent Web Application Intrusions

Mliss

Protect your web server and dynamic content from intrusions.

Detecting intrusions that utilize common protocols and services is a job that a network intrusion detection system is well suited for.
However, due to the complexity of web applications and the variety of attacks they can be vulnerable to, it is more difficult to detect and
prevent intrusions without generating many false positives. This is especially true for web applications that use SSL, since this requires
you to jump through hoops to enable the NIDS to actually get access to the unencrypted traffic coming to and from the web server. One
W jssyes is to integrate the intrusion i i he web server itself. This is just whatmod_security
(bttp://www.modsecurity.ord) does for the popular Apache fhttp://www.apache.ord) web server.

mod_security, as the name suggests, is a module for the Apache web server that is meant to increase the security of a web server by
providing facilities for filtering requests and performing arbitrary actions based on user-specified rules. In addition, mod_security will also
perform various sanity checks that normalize the requests that the web server receives. With the proper filtering rules, mod_security can
be effective at defeating directory traversal, cross-site scripting, SQL injection, and buffer overflow attacks.

To install mod_security, download and unpack the source distribution. If you wish to install it as a DSO (i.e., a module), you can do so
easily with the apxs utility. First change to the directory appropriate for the version of Apache that you are using—apachel or apache?2.
Then run a command like this:

apxs -cia mod_security.c

This will compile mod_security and configure Apache to load it at startup. If you would like to statically compile mod_security, you will
have to rebuild Apache. If you are using Apache 1.x, you can compile it statically by copying mod_security.c to the src/modules/extra
directory in the Apache source tree. Then, when you run Apache's configure script, use these command-line switches:

--activate-module=src/modules/extra/mod_security
--enable-module=security

Now that mod_security has been installed, you'll need to enable it. You can do this by putting the following lines in your httpd.conf file:

<IfModule mod_security.c>
SecFilterEngine On
</IfModule>

This will enable the request normalization features ofmod_security for all requests made to the web server. Alternatively, you can
enable it only for dynamic content by setting the SecFilterEngine variable to DynamicOnly. When mod_security is enabled, it will intercept
all requests coming into the web server and perform several checks on it before passing it through any user-defined filters and finally
either servicing or denying the requests. During these sanity checks, mod_security will convert several different types of evasive
character sequences to their more commonly used equivalent forms. Thus the character sequences // and/./ will be transformed to /, and
on Windows the \ character will be converted to/. In addition, any URL-encoded characters will be decoded. In addition to these checks,
mod_security can also be configured to scan the payload of POST method requests and validate URL encoding and Unicode encoding
contained within requests.

To enable these features, add these lines to your httpd.conf:

SecFilterScanPOST On

netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
netsechacks-CHP-7-SECT-13.html
http://www.modsecurity.org
http://www.apache.org

SecFilterCheckURLEnNcoding On

SecFilterCheckUnicodeEncoding On

URL encoding allows someone making a request to encode characters by usinghexadecimal values, which use the numbers 0 through
9 and the letters A through F prefixed by the % character. When URL-encoding validation is enabled, mod_security simply ensures that
any URL-encoded characters don't violate the hexadecimal numbering system. When performing Unicode validation, mod_security
basically does the same type of thing—ensure that the string seen by the web server in fulfilling the request is a valid Unicode string.
Unicode validation is useful if your web server is running on an operating system that supports Unicode or your web application makes
use of it.

To avoid buffer overflow exploits, you can also limit the range of bytes that are allowed in request strings. For instance, to allow only
printable characters (and not ones that might show up in exploit shell code), add a line like this to your httpd.conf:

SecFilterForceByteRange 32 126

User-defined filters are created with either theSecFilter or the SecFilterSelective keyword. You can use SecFilter to search just the
query string, or you can use SecFilterSelective if you would like to filter requests based on the value of an internal web server variable.
Both of these filtering keywords can accept regular expressions.

The following are filtering rules that can help prevent some common attacks.
The following rule will filter out requests that contain the character sequence ../:
SecFilter "\.\./"

Even though the web server will interpret the ../ correctly and disallow access if it ends up resolving to something outside of its document
root, that may not be the case for scripts or applications that are on your server. This rule prevents such requests from being processed.

Cross-site scripting (XSS) attacks are invoked by insertingHTML or JavaScript into an existing page so that other users will execute it.
Such attacks can be used to read a user's session cookie and gain full control of that user's information. You can prevent these attacks
by having mod_security filter out requests that contain JavaScript.

To disallow JavaScript in requests, use a rule like this:
SeckFilter "<[[:space:]]*script"

In addition, you can disallow HTML by using this rule:
SecFilter "<(.[\n)+>"

SQL-injection attacks are similar to XSS attacks, except in this case attackers modify a variable that is used for an SQL query in such a
way that they can execute arbitrary SQL commands.

To protect against this class of attacks, you can employ rules similar to these:

SecFilter "delete[[:space:]]+from"

SecFilter "insert[[:space:]]+into"

SeckFilter "select.+from"

This rule prevents SQL injection in a cookie called sessionid:

SecFilterSelective COOKIE_sessionid ""(|[0-9]{1,9})$"

If a sessiondid cookie is present, the request can proceed only if the cookie contains one to nine digits.
This rule requires HTTP_USER_AGENT and HTTP_HOST headers in every request:
SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "$"

You can search on multiple variables by separating each variable in the list with a | character. Attackers often investigate using simple
tools (even Telnet) and don't send all headers as browsers do. Such requests can be rejected, logged, and monitored.

This rule rejects file uploads:

SecFilterSelective "HTTP_CONTENT_TYPE" multipart/form-data

This is a simple but effective protection, rejecting requests based on the content type used for file upload.
This rule logs requests without an Accept header, so you can examine them later:

SeckFilterSelective "HTTP_ACCEPT" "*$" log,pass

Again, manual requests frequently do not include all HTTP headers. The Keep-Alive header is another good candidate. Notice that in
addition to the variable and search string this rule contains the keywords log and pass, which specify the actions to take if a request
matches the rule. In this case, any requests that match will be logged to Apache's error log, and then the request will go on for further
processing by the web server. If you do not specify an action for a filter rule, the default action will be used.

You can specify the default action like this:

SecFilterDefaultAction "deny,log,status:500"

If you set this as the default action, the web server will deny all requests that match filter rules and that do not specify a custom action. In
addition, they will be logged and then redirected to an HTTP 500 status page, which will inform the client that an internal server error
occurred. Other possible actions are allow, which is similar to pass, but stops other filters from being tried;redirect, which redirects the
client to an arbitrary URL; exec, which executes an external binary or script; andchain, which allows you to effectively AND rules together.

In addition to filtering, mod_security provides extensive auditing features, allowing you to keep logs of the full request sent to the server.
To turn on audit logging, add lines similar to these to your httpd.conf:

SecAuditEngine On
SecAuditLog logs/audit_log

However, this will log all requests sent to the web server. Obviously, this can generate quite a lot of data very quickly. To only log
requests that triggered a filter rule, set the SecAuditEngine variable to RelevantOnly. Alternatively, you can set this variable to
DynamicOrRelevant, which will log requests to dynamic content or requests that triggered a filter rule.

As with most other Apache configuration directives, you can enclose mod_security configuration directives within a <Location> tag to
specify individual configurations for specific scripts or directory hierarchies.

mod_security is a very powerful tool for protecting your web applications, but it should not take the place of actually validating input in
your application or other secure coding practices. If at all possible, it is best to employ such methods in addition to using a tool such as
mod_security.

See Also

® "Introducing mod_security": I]ttg://www.onIamg.com/gub/a/agache/2003/1l/26/mod securig.html

L4 Mod_security Reference Manual v1.7.4:lmp://www.modsecuritv.orq/documentation/modsecuritv-manual-l.7.4.pdl

http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html
http://www.modsecurity.org/documentation/modsecurity-manual-1.7.4.pdf

Hack 94 Simulate a Network of Vulnerable Hosts

E HAGK
Use honeyd to fool would-be attackers into chasing ghosts.

As the saying goes, you will attract more flies with honey than with vinegar. (I've never understood that saying; who wants to attract
flies, anyway?) A honeypot is used to attract the "flies" of the Internet: script kiddies and hacker wannabes that have nothing better to do
with their time than scan for vulnerable hosts and try to attack them. A honeypot does this by pretending to be a server running
vulnerable services, but is in fact collecting information about the attackers who think themselves so clever.

Whether you want to simulate one or one thousand vulnerable network hosts, honeyd (I"uttp://www.honeyd.orcl) makes the job as simple
as editing a configuration file and running a daemon. The honeyd daemon can simulate thousands of hosts simultaneously and will le
you configure what operating system each host will appear as when scanned with operating system detection tools like Nma
. Each system that honeyd simulates will appear to be a fully functioning node on the network. Besides simply creating hosts that
respond to pings and traceroutes, honeyd also lets you configure what services each host appears to be running. You can either use
simple scripts to emulate a given service or have honeyd act as a proxy and forward requests to another host for servicing.

honevd has several prerequisites that vou'll need to i ildi gemon itself. These arelibeven
(http://www.monkey.org/~provos/libevent]), libdnet (nttp:/libdnet.sourceforge.nej), and libpcap (http://www.tcpdump.ord). These can be

easily installed by downloading and unpacking them and then using the standard./configure && make installprocedure. After the libraries

are installed, you can install honeyd the same way. Then copy the service emulation scripts from the source distribution to somewhere
more permanent (e.g., /usr/local/share/honeyd/scripts). There are o i i i re additional
service emulation scripts available on honeyd's contributions page (http://www.citi.umich.edu/u/provos/honeyd/contrib.htm]).

Once honeyd has been installed, you'll need to create a configuration file that defines the types of operating systems andservices
honeyd will emulate, and the IP addresses honeyd will respond to. First, create some operating system templates:

Windows computers

create windows-web

set windows-web personality "MS Windows2000 Professional
RC1/W2K Advance Server Beta3"

set windows-web default tcp action reset

set windows-web default udp action reset

add windows-web tcp port 80 "perl scripts/win2k/iisemulator-0.95

liisemul8.pl"

add windows-web tcp port 139 open

add windows-web tcp port 137 open

add windows-web tcp port 5900 "sh scripts/win2k/vnc.sh

add windows-web udp port 137 open

netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
netsechacks-CHP-7-SECT-14.html
http://www.honeyd.org
http://www.monkey.org/~provos/libevent/
http://libdnet.sourceforge.net
http://www.tcpdump.org
http://www.citi.umich.edu/u/provos/honeyd/contrib.html

add windows-web udp port 135 open

create windows-xchng

set windows-xchng personality "MS Windows2000 Professional RC1/W2K Advance Server Beta3"
set windows-xchng default tcp action reset

set windows-xchng default udp action reset

add windows-xchng tcp port 25 "sh scripts/win2k/exchange-smtp.sh"
add windows-xchng tcp port 110 “sh scripts/win2k/exchange-pop3.sh”
add windows-xchng tcp port 119 "sh scripts/win2k/exchange-nntp.sh"
add windows-xchng tcp port 143 “sh scripts/win2k/exchange-imap.sh"
add windows-xchng tcp port 5900 "sh scripts/win2k/vnc.sh"

add windows-xchng tcp port 139 open

add windows-xchng tcp port 137 open

add windows-xchng udp port 137 open

add windows-xchng udp port 135 open

Linux 2.4.x computer

create linux

set linux personality "Linux 2.4.7 (X86)"
set linux default tcp action reset

set linux default udp action reset

add linux tcp port 110 "sh scripts/pop3.sh”
add linux tcp port 25 "sh scripts/smtp.sh”
add linux tcp port 21 "sh scripts/ftp.sh”

And then bind them to the IP addresses that you want to use:

bind 192.168.0.10 windows-web

bind 192.168.0.11 windows-xchng

bind 192.168.0.12 linux

Save this configuration file in a good place (e.g., /usr/local/share/honeyd/honeyd.conf). Then starthoneyd and arpd like this:

#arpd 192.168.0.10-192.168.0.12

cd /usr/local/share/honeyd

honeyd -p nmap.prints -x xprobe2.conf -a nmap.assoc \

-0 pf.os -f honeyd.conf

honeyd[5861]: started with -p nmap.prints -x xprobe2.conf -a nmap.assoc -0 pf.os -f
honeyd.conf

honeyd[5861]: listening on ethO: (arp or ip proto 47 or (ip)) and not ether src
00:0c:29:e2:2b:cl

Honeyd starting as background process

Now try running Nmap on the IP addresses thathoneyd is handling:

#nmap -sS -sU -0 192.168.0.10-12

Starting nmap V. 3.00 (www.insecure.org/nmap/)

Interesting ports on (192.168.0.10):

(The 3063 ports scanned but not shown below are in state: closed)

Port State Service

80/tcp open http

135/udp open loc-srv

137/tcp open netbios-ns

137/udp open netbios-ns

139/tcp open netbios-ssn

5900/tcp open vnc

Remote operating system guess: MS Windows2000 Professional RC1/W2K
Advance Server Beta3

Uptime 2.698 days (since Sun Jan 11 03:52:35 2004)

Interesting ports on (192.168.0.11):

(The 3060 ports scanned but not shown below are in state: closed)
Port State Service

25/tcp open smtp

110/tcp open pop-3

119/tcp open nntp

135/udp open loc-srv

137/tcp open netbios-ns

137/udp open netbios-ns

139/tcp open netbios-ssn

143/tcp open imap2

5900/tcp open vnc

Remote operating system guess: MS Windows2000 Professional RC1/W2K Advance Server Beta3

Uptime 2.172 days (since Sun Jan 11 16:29:38 2004)

Interesting ports on (192.168.0.12):

(The 1598 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

25/tcp open smtp

110/tcp open pop-3

Remote operating system guess: Linux 2.4.7 (X86)

You can certainly see that honeyd fools Nmap. But what happens when you try to access one of the services that are purportedly
running? Try connecting to the port 25 of the fake Windows mail server:

$ telnet 192.168.0.11 25

Trying 192.168.0.11...

Connected to 192.168.0.11.

Escape character is "]'.

220 bps-pc9.local.mynet Microsoft ESMTP MAIL Service, Version: 5.0.2195.5329 ready at

Mon Jan 12 12:55:04 MST 2004

EHLO kryten

250-bps-pc9.local.mynet Hello [kryten]

250-TURN

250-ATRN

250-SIZE

250-ETRN

250-PIPELINING

250-DSN

250-ENHANCEDSTATUSCODES
250-8bitmime

250-BINARYMIME

250-CHUNKING

250-VRFY

250-X-EXPS GSSAPI NTLM LOGIN
250-X-EXPS=LOGIN

250-AUTH GSSAPI NTLM LOGIN
250-AUTH=LOGIN
250-X-LINK2STATE
250-XEXCH50}

250 OK

Pretty effective at first glance isn't it? If you'd like to specify some real services for attackers to play with, you can use the proxy keyword

to forward any port to a host on another machine. For example, this will forward SSH requests from our imaginary Linux host to the
machine at 192.168.1.100:

add linux tcp port 22 proxy 192.168.0.100:22

In addition to running the service emulation scripts, honeyd can limit inbound or outbound bandwidth, or even slow down access to a
particular service. This can be used to tie up spammer's resources, by holding open an apparently open mail relay. The possibilities
provided by honeyd are limited only by your imagination and the time you're willing to spend building your virtual fly-catching network.

Hack 95 Record Honeypot Activity

[lios

Keep track of everything that happens on your honeypot.

Once an attacker has fallen prey to your honeypot and gained access to it, it is critical that you monitor all activity on that machine. By
monitoring every tiny bit of activity on your honeypot, you can not only learn the intentions of your uninvited guest, but can often leam
about new techniques for compromising a system as the intruder tries to gain further access. Besides, if you're not interested in what
attackers are trying to do, why run a honeypot at all?

One of the most effective methods for tracking every packet and keystroke is to use a kernel-based monitoring tool. This way nearly
everything that the attacker does on your honeypot can be monitored, even if the attackers use encryption to protect their data or
ne i kage for monitoring a honeypot at the kernel level is Sebek
(pttp://www.honeynet.org/tools/sebekl).

Sebek is a loadable kernel module for Linux and Solaris that intercepts key system calls in the kernel and monitors them for interesting
information. It then transmits the data to a listening server and hides the presence of the transmissions from the local system. Sebek is
actually made up of two kernel modules. The first, sebek.o, actually does the monitoring. The other module iscleaner.o, which protects
sebek.o from being discovered.

To build the kernel modules on Linux, first make sure that /usr/src/linux-2.4 points to the source code of the kernel that you want to
compile the modules for. Either unpack the kernel source under this directory or symlink it to an existing kernel source tree. You can then
download the source distribution, unpack it, and build it with the usual commands:

$./configure
$ make

This will generate a tar archive containing the kernel modules and an installer script. Copy this archive to your honeypot to complete the
installation.

Here's what's inside:

$ tar tf sebek-linux-2.1.4-bin.tar
sebek-linux-2.1.4-bin/
sebek-linux-2.1.4-bin/sebek.o
sebek-linux-2.1.4-bin/cleaner.o
sebek-linux-2.1.4-bin/sbk_install.sh

Before installing the modules on your honeypot, you'll need to edit the sbk_install.sh script and modify several variables that tellsebek.o
where to send the information that it collects. These variables are DESTINATION_MAC, DESTINATION_IP, SOURCE_PORT, and
DESTINATION_PORT. These should all be set to point to theSebek server that you will build in a moment. Make sure to use the same
DESTINATION_PORT for all honeypots that you'll be operating. In addition, you'll need to set theMAGIC_VAL variable to the same value
on all your honeypots. This variable, in conjunction with DESTINATION_PORT, is used to hide traffic from other honeypots that you are
operating. If you want Sebek to only collect keystrokes from your honeypot, you can set theKEYSTROKE_ONLY variable to 1.

Now run the install script on your honeypot:

sh sbk_install.sh

netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
netsechacks-CHP-7-SECT-15.html
http://www.honeynet.org/tools/sebek/

Installing Sebek:
sebek.o installed successfully
cleaner.o installed successfully
cleaner.o removed successfully

Once Sebek is installed, be sure to remove the archive and installation files. The presence of these files on a system is a pretty clear
indication that it is a honeypot, and it could tip off intruders.

There are two ways to receive the data from Sebek. The simplest is to run theSebek server, which will sniff for the information and
automatically extract it for you. If you prefer to collect the data manually, you can use a sniffer on the host that you configured in the
sbk_install.sh script and later useSebek's data extraction utility to pull the information out of your packet dumps.

To install the server, download the source distribution, unpack it, and go into the directory that it created. Then run this command:
$./configure && make

After compilation has finished, become root and run make install. This will installsbk_extract, sbk_ks_log.pl, and sbk_upload.pl. To
extract information sent from a honeypot, use sbk_extract. You can run it in sniffer mode by using thei and -p options to specify which
interface to listen on and which destination port to look for, respectively. If you want to process packets that have already been captured
using a packet capture tool, use the -f option to specify the location of the packet dump file. Once you've extracted the data, you can use
sbk_ks_log.pl to display the attacker's keystrokes.

Sebek also has an optional web interface that uses PHP and MySQL to allow more complex queries of the collected data. In addition to
logged keystrokes, the web interface can extract files that have been uploaded to the honeypot. The sbk_upload.pl script uploads the

logs to the web interface. Installation of the web interface is T;I_hummmw_;mum@jn Apache server, PHP, and a MySQL
4 database. For more details, consult Sebek's homepage at http://www.honeynet.org/tools/sebek| .

http://www.honeynet.org/tools/sebek/

Chapter 8. Recovery and Response

acks #96-10d

lSection 96. Image Mounted Filesvstemsl

bection 97. Verify File Integrity and Find Compromised Filesl

lSection 98. Find Compromised Packages with RPN{

lSection 99. Scan for Root Kitsl

bection 100. Find the Owner of a NetworlJ

netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html
netsechacks-CHP-8.html

Hacks #96-100

Incident recovery and response is a very broad topic, and there are many opinions on the proper methods to use and actions to take
once an intrusion has been discovered. Just as the debate rages on regarding vi versus emacs, Linux versus Windows, and BSD versus
everything else, there is much debate in the computer forensics crowd on the "clean shutdown" versus "pull the plug" argument. A whole
book could be written on recovering from and responding to an incident since there are many things to consider when doing so, and the
procedure you should use is far from well defined.

With this in mind, this chapter is not meant to be a guide on what to do when you first discover an incident, but it does show you how to
perform tasks that you might decide to undertake in the event of a successful intrusion. In reading this chapter, you will learn how to
properly create a filesystem image to use for forensic investigation of an incident, methods for verifying that files on your system haven't
been tampered with, and some ideas on how to quickly track down the owner of an IP address.

netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html
netsechacks-CHP-8-SECT-1.html

Hack 96 Image Mounted Filesystems

E HAGK
Make a bit-for-bit copy of your system's disk for forensic analysis.

Before you format and reinstall the operating system on a recently compromised machine, you should take the time to make duplicates
of all the data stored on the system. Having an exact copy of the contents of the system is not only invaluable for investigating a
break-in, but may be necessary for pursuing any future legal actions. Before you begin, you should make sure that your md5sum , dd
and fdisk binaries are not compromised (youare running Tripwire . or otherwise have installed your packages using RP

, right?).

But hang on a second. Once you start wondering about the integrity of your system, where do you stop? Hidden processes could be
running, waiting for the root user to log in on the console and ready to remove all evidence of the break-in. Likewise, there could be
scripts installed to run at shutdown to clean up log entries and delete any incriminating files. Once you've determined that it is likely that a
machine has been compromised, you may want to simply power down the machine (yes, just switch it off!) and boot from an alternate
media. Use a boot CD or another hard drive that has a known good copy of the operating system. That way you can know without a
doubt that you are starting the system from a known state, eliminating the possibility of hidden processes that could taint your data
before you can copy it. The downside to this procedure is that it will obviously destroy any evidence of running programs or data stored
on a RAM disk. However, chances are very good that the intruder has installed other backdoors that will survive a reboot, and these
changes will most certainly be saved to the disk.

To make a bit-for-bit copy of our disks, we'll use thedd command. But before we do this we'll generate achecksum for the disk so that
we can check our copy against the disk contents, to ensure that it is indeed an exact copy.

To generate a checksum for the partition we wish to image, run this command:
md5sum /dev/hda2 > /tmp/hda2.md5

In this case we're using the second partition of the first IDE disk on a Linux system. Now that that's out of the way, it's time to make an
image of the disk:

dd if=/dev/hda of=/tmp/hda.img

Note that you will need enough space in /tmp to hold a copy of the entire/dev/hda hard drive. This means that/tmp shouldn't be a RAM
disk and should not be stored on /dev/hda. Write it to another hard disk altogether.

Why do you want to image the whole disk? If you image just a partition, it is not an exact copy of what is on the disk. An attacker could
store information outside of the partition, and this wouldn't be copied if you just imaged the partition itself. In any case, we can always
reconstruct a partition image as long as we have an image of the entire disk.

In order to create separate partition images, we will need some more information. Run fdisk to get the offsets and sizes for each partition
in sectors. To get thesectors offsets for the partition, run this:

fdisk -l -u /dev/hda
Disk /dev/hda: 4294 MB, 4294967296 bytes
255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors

Units = sectors of 1 * 512 = 512 bytes

netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html
netsechacks-CHP-8-SECT-2.html

Device Boot Start End Blocks Id System
/dev/hdal * 63 208844 104391 83 Linux
/dev/hda2 208845 7341704 3566430 83 Linux
/dev/hda3 7341705 8385929 522112+ 82 Linux swap
Be sure to save this information for future reference, just in case you want to create the separate image files at a later date.
Now create an image file for the second partition:
dd if=hda.img of=hda2.img bs=512 skip=208845 count=$[7341704-208845]
7132859+0 records in
7132859+0 records out

Note that the count parameter does some shell math for us: the size of the partition is the location of the last block (7341704) minus the
location of the first block (208845). Be sure that the bs parameter matches the block size reported byfdisk (usually 512, but it's best to
check it when you run fdisk). Finally, we'll generate a checksum of the image file and then compare it against the original one we created:

md5sum hda2.img > /tmp/hda2.img.md5 && diff /tmp/hda2.md5 /tmp/hda2.img.md5

The checksum for the image matches that of the actual partition exactly, so we know we have a good copy. Now you can rebuild the
original machine and look through the contents of the copy at your leisure.

Hack 97 Verify File Integrity and Find Compromised Files

E HAGK
Use Tripwire to alert you to compromised files or verify file integrity in the event of a compromise.

?ng tool that can help you detect 'm;irsions on a host and also ascertain what happened after the fact igripwire
(pttp://sourceforge.net/projects/tripwird). Tripwire is part of a class of tools known as file integrity checkers, which can detect the
presence of important changed files on your systems. This is desirable because intruders who have gained access to a system will often
install what's known as a root kit , in an attempt to both cover their tracks and maintain access to the system. A root kit usually
accomplishes this by modifying key operating system utilities such as ps, Is, and other programs that could give away the presence of a
backdoor program. This usually means that these programs will be patched to not report that a certain process is active or that certain
files exist on the system. Attackers could also modify the system's MD5 checksum program (e.g., md5 or md5sum) to report correct
checksums for all the binaries that they have replaced. Since using MD5 checksums is usually one of the primary ways to verify whether
a file has been modified, it should be clear that something else is sorely needed.

This is where Tripwire comes in handy. It stores a snapshot of your files in a known state, so you can periodically compare the files
against the snapshot to discover discrepancies. With this snapshot, Tripwire can track changes in a file's size, inode number,
permissions, or other attributes, such as the file's contents. To top all of this off, Tripwire encrypts and signs its own files, to detect if it
has been compromised itself.

Tripwire is driven by two main components: a policy and a database. The policy lists all files and directories thatripwire should snapshot,
along with rules for identifying violations (i.e., unexpected changes). For example, a simple policy might treat any changes in /root, /shin,
/bin, and/lib as violations. TheTripwire database contains the snapshot itself, created by evaluating the policy against your filesystems.
Once setup is complete, you can compare filesystems against the snapshot at any time, and Tripwire will report any discrepancies.

Along with the policy and database, Tripwire also has configuration settings, stored in a file that controls global aspects of its behavior.
For example, the configuration specifies the locations of the database, policy file, and tripwire executable.

Tripwire uses two cryptographic keys to protect its files. The site key protects the policy file and the configuration file, and the local key
protects the database and generated reports. Multiple machines with the same policy and configuration may share a site key, but each
machine must have its own local key for its database and reports.

One caveat with Tripwire is that its batch-oriented method of integrity checking gives intruders a window of opportunity to modify a file
after it has been legitimately modified and before the next integrity check has been run. The modified file will be flagged, but it will be
expected (because you know that the file is modified) and probably dismissed as a legitimate change to the file. For this reason, it is best
to update your Tripwire snapshot as often as possible. Failing that, you should note the exact time that you modified a file, so you can
compare it with the modification time that Tripwire reports.

Tripwire is available with the latest versions of Red Hat and as a port on FreeBSD. However, if you're not running either of those, you'll
need to compile it from source. To compile Tripwire, download the source package and unpack it. Next, check whether you have a
symbolic link from /usr/bin/gmake to /usr/bin/make. (Operating systems outside the world of Linux don't always come with GNU make,
so Tripwire explicitly looks for gmake, but this is simply called make on most Linux systems.) If you don't have such a link, create one.

Another thing to check for is a full set of subdirectories in /usr/share/man. Tripwire will need to place manpages inman4, man5, and
man8. On systems where these are missing, the installer will create files named after those directories, rather than creating directories
and placing the files within the appropriate ones. For instance, a file called /usr/man/man4 would be created instead of a directory of the
same name containing the appropriate manual pages.

Now change your working directory to Tripwire source's root directory (e.g., ./tripwire-2.3.1-2) and read the README and INSTALL files.
Both are brief but important.

Finally, change to the source tree's src directory (e.g., ./tripwire-2.3.1-2/src) and make any necessary changes to the variable definitions

netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
netsechacks-CHP-8-SECT-3.html
http://sourceforge.net/projects/tripwire

in src/Makefile. Be sure to verify that the appropriateSYSPRE definition is uncommented (SYSPRE = i686-pc-linux or SYSPRE =
sparc-linux, etc.).

Now you're ready to compile. While still in Tripwire's src directory, enter this command:
$ make release
Then, after compilation has finished, run these commands:

$cd..

$ cp .Jinstall/install.cfg .

$ cp ./intall/install.sh

Now open install.cfg with your favorite text editor to fine-tune the configuration variables. While the default paths are probably fine, you
should at the very least examine the Mail Options section, which is where we initially tell Tripwire how to route its logs. Note that these
settings can be changed later.

If you set TWMAILMETHOD=SENDMAIL and specify a value forTWMAILPROGRAM, Tripwire will use the specified local mailer
(sendmail by default) to deliver its reports to a local user or group. If instead you seTWMAILMETHOD=SMTP and specify values for
TWSMTPHOST and TWSMTPPORT, Tripwire will mail its reports to an external email address via the specified SMTP server and port.

Once you are done editinginstall.cfg, it's time to installTripwire. While still in the root directory of theTripwire source distribution, enter the
following:

sh ./install.sh

You will be prompted for site and local passwords: the site password protects Tripwire's configuration and policy files, whereas the local
password protects Tripwire's databases and reports. This allows the use of a single policy across multiple hosts, to centralize control of
Tripwire policies but distribute responsibility for database management and report generation.

If you do not plan to use Tripwire across multiple hosts with shared policies, there's nothing wrong with setting the site and local Tripwire
passwords on a given system to the same string. In either case, choose a strong passphrase that contains some combination of upper-
and lowercase letters, punctuation (which can include whitespace), and numerals.

When you install Tripwire (whether via binary package or source build), a default configuration file is created/etc/tripwire/tw.cfg. You
can't edit this file, because it's an encrypted binary, but for your convenience, a clear-text version of it, twcfg.txt, should also reside in
[etc/tripwire. If it does not, you can create the text version with this command:

twadmin --print-cfgfile > /etc/tripwire/twcfg.txt

By editing this file, you can make changes to the settings you used when installing Tripwire, and you can change the location where
Tripwire will look for its database. This can be done by setting the DBFILE variable. One interesting use of this is to set the variable to a
directory within the /mnt directory hierarchy. Then, after the database has been created you can copy it to a CD-ROM and remount it
there whenever you need to perform integrity checks.

After you are done editing the configuration file, you can re-encrypt it by running this command:
twadmin --create-cfgfile --site-keyfile ./site.key twcfg.txt

You should also remove the twcfg.txt file.

You can then initialize Tripwire's database by running this command:

tripwire --init

Since this uses the default policy file that Tripwire installed, you will probably see errors related to files and directories not being found.
These errors are nonfatal, and the database will finish initializing. If you want to get rid of these errors, you can edit the policy and
remove the files that were reported as missing.

First you'll need to decrypt the policy file into an editable plain text format. You can do this by running the following command:

twadmin --print-polfile > twpol.txt

Then comment out any files that were reported as missing. You will probably want to look through the file and determine whether any

iles that you would like to catalog aren't already in there. For instance, you will probably want to monitor all SUID files on your system
Tripwire's policy-file language can allow for far more complex constructs than simply listing one file per line; read thmvpolicy(4)
manpage for more information if you'd like to use some of these features.

After you've updated your policy, you'll also need to update Tripwire's database. You can do this by running the following command:
tripwire --update-policy twpol.txt

To perform checks against your database, run this command:

tripwire --check

This will print a report to the screen and leave a copy of it irvar/lib/tripwire/report. If you want Tripwire to automatically email the report to
the configured recipients, you can add --email-report to the end of the command. You can view the reports by runningwprint.

For example:

twprint --print-report --twrfile \

Ivar/lib/tripwire/report/colossus-20040102-205528.twr

Finally, to reconcile changes thatTripwire reports with its database, you can run a command similar to this one:

tripwire --update --twrfile \

Ivarl/lib/tripwire/report/colossus-20040102-205528.twr

You can and should schedule Tripwire to run its checks as regularly as possible. In addition to keeping your database in a safe place,

such as on a CD-ROM, you'll also want to make backup copies of your configuration, policy, and keys. Otherwise you will not perform an
integrity check in the event that someone (malicious or not) deletes them.

See Also

® wpolicy (4)

® The section "Using Tripwire" inBuilding Secure Servers with Linux by Michael D. Bauer (O'Reilly)

Hack 98 Find Compromised Packages with RPM

E HAGK
Verify operating system installed files in an RPM-based distribution.

So you've had a compromise and need to figure out which files (if any) were modified by the intruder, but you didn't instalfipwire? Well,
all is not lost if your distribution uses ~ RPM for its package management system. While not as powerful asTripwire, RPM can be useful
for finding to what degree a system has been compromised. RPM keeps MDS5 signatures for all the files it has ever installed. We can
use this functionality to check the packages on a system against its signature database. In addition to MD5 checksums, you can also
check a file's size, user, group, mode, and modification time against that which is stored in the system's RPM database.

To verify a single package, run this:

rom -V
package

If the intruder modified any binaries, it's very likely that the ps command was one of them. Let's check its signature:
which ps

/bin/ps

#rpm -V ‘rpm -qf /bin/ps’

S.5...T /bin/ps

Here we see from the S, 5, and T that the file's size, checksum, and modification time has changed from when it was installed—not good
at all. Note that only files that do not match the information contained in the package database will result in output.

If we want to verify all packages on the system, we can use the usual rpm option that specifies all packages,-a:
#rpm -Va

S.5...T /bin/ps

S.5...T c /etc/pam.d/system-auth

S.5....T ¢ /etc/security/access.conf

S.5....T ¢ /etc/pam.d/login

S.5....T c /etc/rc.d/rc.local

S.5....T c /etc/sysconfig/pcmcia

....... T c /etc/libuser.conf

S.5...T c /etc/ldap.conf

....... T c /etc/mail/sendmail.cf

netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html
netsechacks-CHP-8-SECT-4.html

S.5....T ¢ letc/sysconfig/rhn/up2date-uuid
....... T c /etclyp.conf

S.5...T /usr/bin/md5sum

....... T c /etc/krb5.conf

There are other options that can be used to limit what gets checked on each file. Some of the more useful ones are -nouser, -nogroup,
-nomtime, and -nomode. These can be used to eliminate a lot of the output that results from configuration files that you've modified.

Note that you'll probably want to redirect the output to a file, unless you narrow down what gets checked by using the command-line
options. Running rpm -Va without any options can result in quite a lot of output resulting from modified configuration files and such.

This is all well and good, but ignores the possibility that someone has compromised key system binaries and that they may have
compromised the RPM database as well. If this is the case, we can still use RPM, but we'll need to obtain the file the package was
installed from in order to verify the installed files against it.

The worst-case scenario is that the rpm binary itself has been compromised. It can be difficult to be certain of this unless you boot from
an alternate media, as mentioned earlier. If this is the case, you should locate a safe rpm binary to use for verifying the packages.

First find the name of the package that owns the file. You can do this by running:

rpm -qf
filename

Then you can locate that package from your distribution media, or download it from the Internet. After doing so, you can verify the
installed files against what's in the package using this command:

rpm -Vp
package file

RPM can be used for quite a number of useful things, including verifying the integr inari it should not be relied
on for this purpose. If at all possible, something like Tripwire [Hack #97] or AIDE (http://sourceforge.net/projects/aidd) should be used

instead.
[l |||||'||||
||||| LR

http://sourceforge.net/projects/aide

Hack 99 Scan for Root Kits

E HAGK
Use chkrootkit to determine the extent of a compromise.

If you suspect that you have a compromised system, it is a good idea to check for root kits that the intruder may have installed. In
short, a root kit is a collection of programs that intruders often install after they have compromised the root account of a system. These
programs will help the intruders clean up their tracks, as well as provide access back into the system. Because of this, root kits will
sometimes leave processes running so that the intruder can come back easily and without the system administrator's knowledge. This
means that some of the system's binaries (like ps, Is, and netstat) will need to be modified by the root kit in order to not give away the
backdoor processes that the intruder has put in place. Unfortunately, there are so many different root k
time-consuming to learn the intricacies of each one and look for them manually. Scripts like chkrootkit (pttp://www.chkrootkit.ord) will do
the job for you automatically.

In addition to detecting over 50 different root kits, chkrootkit will also detect network interfaces that are in promiscuous mode, altered
lastlog files, and alteredwtmp files. These files contain times and dates of when users have logged on and off the system, so if they

have been altered, this is evidence of an intruder. In addition, chkrootkit will perform tests in order to detect kernel module-based root
kits. C programs that are called by the main chkrootkit script perform all of these tests.

Itisn't a good idea to install chkrootkit on your system and simply run it periodically, since an attacker may simply find the installation and
change it so that it doesn't detect his presence. A better idea may be to compile it and put it on removable or read-only media. To
compile chrootkit, download the source package and extract it. Then go into the directory that it created and typenake sense.

Running chkrootkit is as simple as just typing ./chkrootkit from the directory it was built in. When you do this, it will print each test that it
performs and the result of the test:

./chrootkit

ROOTDIR is /'

Checking "amd'... not found
Checking “basename'... not infected
Checking "biff'... not found
Checking “chfn'... not infected
Checking “chsh'... not infected
Checking “cron'... not infected
Checking “date'... not infected
Checking “du'... not infected
Checking “dirname'... not infected
Checking “echo'... not infected

Checking “egrep'... not infected

netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
netsechacks-CHP-8-SECT-5.html
http://www.chkrootkit.org

Checking “env'... not infected
Checking “find'... not infected
Checking “fingerd'... not found
Checking “gpm'... not infected
Checking “grep'... not infected
Checking “hdparm'... not infected
Checking “su'... not infected

That's not very interesting, since the machine hasn't been infected (yet). chrootkit can also be run on disks mounted in another machine;
just specify the mount point for the partition with the -r option, like this:

/chrootkit -r /mnt/hda2_image

Also, since chrootkit_depends on several system binaries, you may want to verify them before running the script (using the Tripwire

or RPMmethods). These binaries areawk, cut, egrep, find, head, id, Is, netstat, ps, strings, sed, and uname.
However, if you have known good backup copies of these, you can specify the path to them by using the -p option. For instance, if you
copied them to a CD-ROM and then mounted it under /mnt/cdrom, you would use a command like this:

/chrootkit -p /mnt/cdrom

You can also add multiple paths by separating each one with a :. | intaini separate copy of each of these binaries, you
could simply keep a statically compiled copy of BusyBox handy (http://www.busybox.net). Intended for embedded systems, BusyBox
can perform the functions of over 200 common binaries, and does so using a very tiny binary with symlinks. A floppy, CD, or USB
keychain (with the read-only switch enabled) with chkrootkit and a static BusyBox installed can be a quick and handy tool for checking
the integrity of your system.

http://www.busybox.net

Hack 100 Find the Owner of a Network

oo

Track down network contacts using WHOIS databases.

Looking through your IDS logs, you've seen some strange traffic coming from another network across the Internet. When you look up
the IP address in DNS, it resolves as something like dhcp-103.badguydomain.com. Who do you contact to help track down the person
who sent this traffic? You're probably already aware that you can use the whois command to find out contact information for owners of
Internet domain names. If you haven't usedwhois, it's as simple as typing, well, "whois":
$ whois badguydomain.com

Registrant:

Dewey Cheatum

Registered through: GoDaddy.com

Domain Name: BADGUYDOMAIN.COM

Domain servers in listed order:
PARK13.SECURESERVER.NET
PARK14.SECURESERVER.NET

For complete domain details go to:

http://whois.godaddy.com

Unfortunately, this whois entry isn't as helpful as it might be. Normallf administrative and technical contacts are listed, complete with a

phone number and email and snail mail addresses. Evidently, podaddy.con] has a policy of releasing this information only through their
web interface, apparently to cut down on spam harvesters. But if the registrant's name is listed as "Dewey Cheatum," how accurate do
you think the rest of this domain record is likely to be? Although domain registrants are "required" to give legitimate information when
setting up a domain, | can tell you from experience that using whois in this way is a great tool for tracking down honest people.

Since this approach doesn't get you anywhere, what other options do you have? You can use the whois command again, this time
using it to query the number registry for the IP address block of the offending address.

Number registries are entities that owners of large blocks of IP addresses must register with, and are split up according to geographic
region. The main difficulty is picking the correct registry to query, but the WHOIS server for ARIN (American Registry for Internet
Numbers) is generally the best bet—it will tell you the correct registry to query if the IP address is not found in its own database.

With that in mind, let's try out a query using the offending IP address:

whois -h whois.arin.net 208.201.239.103

netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
netsechacks-CHP-8-SECT-6.html
file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/O'Reilly%20-%20Network%20Security%20Hacks.chm/0596006438/godaddy.com

[Querying whois.arin.net]

[whois.arin.net]

Final results obtained from whois.arin.net.

Results:

UUNET Technologies, Inc. UUNET1996B (NET-208-192-0-0-1)

208.192.0.0 - 208.255.255.255

SONIC.NET, INC. UU-208-201-224 (NET-208-201-224-0-1)

208.201.224.0 - 208.201.255.255

ARIN WHOIS database, last updated 2004-01-18 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

Our query returned multiple results, which will happen sometimes when an owner of a larger IP block has delegated a subblock to
another party. In this case, UUNET has delegated a subblock to Sonic.net.

Now we'll run a query with Sonic.net's handle:

whois -h whois.arin.net NET-208-201-224-0-1

Checking server [whois.arin.net]

Results:

OrgName: SONIC.NET, INC.

OrglD: SNIC

Address: 2260 Apollo Way

City: Santa Rosa

StateProv: CA

PostalCode: 95407

Country: US

ReferralServer: rwhois://whois.sonic.net:43

NetRange: 208.201.224.0 - 208.201.255.255

CIDR: 208.201.224.0/19

NetName: UU-208-201-224

NetHandle: NET-208-201-224-0-1

Parent: NET-208-192-0-0-1
NetType: Reallocated
Comment:

RegDate: 1996-09-12

Updated: 2002-08-23

OrgTechHandle: NETWO144-ARIN
OrgTechName: Network Operations
OrgTechPhone: +1-707-522-1000

OrgTechEmail: noc@sonic.net

ARIN WHOIS database, last updated 2004-01-18 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

From the output, you can see that we have a contact listed with a phone number and email. This is most likely the ISP who serves the
miscreant who is causing the trouble. Now you have a solid contact who should know exactly who is behind badguydomain.com. You
can let them know about the suspicious traffic you're seeing, and get the situation resolved.

Incidentally, you may have trouble using whois if you are querying some of the new TLDs (such as.us, .biz, .info, etc.). One great
shortcut for automatically finding the proper whois server is to use the whois proxy at geektools.com . It automatically forwards your
request to the proper whois server, based on the TLD you are requesting. | specify an alias such as this in my .profile to always use the
geektools proxy:

alias whois='whois -h whois.geektools.com’

Now when | run whois from the command line, | don't need to remember the address of a single whois server. The folks at geektools
have a bunch of other nifty tools to make sysadmin tasks easier. Check them out at pttp://geektools.co .

—Rob Flickenger

http://geektools.com

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels. Distinctive covers
complement our distinctive approach to technical topics, breathing personality and life into potentially dry subjects.

The image on the cover of Network Security Hacks is barbed wire. The type of barbed wire pictured in the cover image was patented by
Joseph Glidden in 1874. Glidden improved on earlier attempts at manufacturing wire fencing by fashioning sharp barbs, spacing them
along a smooth wire, and then twisting another wire around the first to hold the barbs in place. Advertised as "Cheaper than dirt and
stronger than steel," barbed wire was immediately adopted by farmers in the American west as a way to control their herds. The days of
free-roaming cattle and cowboys were soon numbered, but battles over barbs were fought both in court and on the ranch. Opponents
called barbed wire "the Devil's rope," and the Cole Porter song "Don't Fence Me In" mourned this change in the western landscape.
Barbed wire was here to stay, though--in addition to agricultural use, it has become a ubiquitous component of warfare and is a common
feature of high-security areas such as prisons.

Genevieve d'Entremont was the production editor and copyeditor for Network Security Hacks . Brian Sawyer proofread the book. Philip
Dangler and Claire Cloutier provided quality control. Jamie Peppard provided production support. Ellen Troutman-Zaig wrote the index.
Rob Flickenger wrote the Preface.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is a photograph from
gettyimages.com . Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's Helvetica Neue and ITC Garamond fonts.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was converted by Andrew Savikas to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra that uses Perl and
XML technologies. The text font is Linotype Birka; the heading font is Adobe Helvetica Neue Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn
Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie Cutler) using a set of
Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff
Liggett.

netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html
netsechacks-COLOPHON.html

index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html

brsol BB LB BEEHIMOMEEEEEHUGL &G

! (logical NOT) operator

lnatchinq IP_addresses and ports for Snort rulesl

|TCP flag matching, Snort rulesl

I<> (direction operator), in Snort rulesl

I’operator, TCP flag matching in Snort rulesl

L operator, TCP flag matching in Snort rulesl

I> (direction operator), in Snort rulesl

lnolisten tcp option for startup commandJ

|./ character sequence in requestsl

rej files, finding

Idev/mem and /dev/kmem, preventing access td

lproc directory, restricting access with qrsecurit\I

I (colon), in port ranges for Snort rulesl

| character

lenclosinq hexadecimal vales in Snort rulesi

Isearchinq on multiple variablesl

brusol fHECEBEEIGROIUNEEEEDOUWL G

lac command (process accountinqi

Igccegt header, logging requests withoul

Iaccept option, SnortSanl

laccess.conf file (pam _access modulei

IACID (Analysis Console for Intrusion Databasesi

Llrchivinq database, confiqurincj

l3arnvard logging of Snort events!

liatabase tables, creating f0||

lqraphinq, confiqurinc‘

ibraries used wit|

lACLs (access control Iistsi

lapplication availability, restricting for usersl

prsecurity

ll\lindows event logs, securind

lactivate and dynamic actions, Snort rulesl

IAddress Resolution Protocol [See ARP]

Iaddress space layouts, randomization with qrsecurit\,l

address spoofing

betecting ARP sgoofind

l:)reventinq for internal addresses with FiIterPackei

IADODB (PHP code Iibraryi

AIDH

alerts

Lonfiqurinq Snort f0||

benerated by Sgadé

IDS sensor, trackin(l

Snort NIDS

Bnalyzing with Squi

handlinq with Barnyard

racking with ACID
Lnified output formai

l&nalysis Console for Intrusion Databasesl [See ACID]

lanomalous network behavior, detecting with Spadel

Apache web server

l:onfiqurinq to listen on specific interfacel

Installinq with SSL and suEXECI

od_securit

Iappend-only (file attributei

l)reventinq removal o‘

applications

lestrictinq availability to usersl

[estricting with grsecurit)]

IgggSec program (Windowsi

IArqus (Audit Record Generation and Utilization Svstemi
[a command, guerying Wittl

IARIN (American Reqistry for Internet Numbersi

ARP (Address Resolution Protocol)

larpd, starting with honevc‘

Lreating static ARP tabld

hetectinq ARP spoofinc]

proxy arg

Lniﬁdet tool, ARP tes{

frp command

I‘indinq system MAC addressl

Arpwatc

[See also entries under individual attack names]

I‘ilterinq rules that help to preven{

auditing

lenablinq on Windows svstemsl

lnod security features fol

Euthenticated gateway. creatind

authentication

}\/IvSQL source, using with proftp(J

EAM controlling login accesg
Euthgf shell gOgenBSDI

IAutoRPM (system update packaqei

Igvaya Labs, LibSafe technolog;]

brusol fHECEBEEIGROIUNEEEEDOUWL G

backdoors

Installed during root kit attacksl

Iisteninq services that check f0||

bandwidth usage

Hraphing

lrackinq for machine with firewall rulesl
ompiling and installing for Squﬂ
Lonfiguring Barnyard

|imited database supporl

bash shell

Isettinq up in chroot() environmen|

[]

l)inaries, disallowing execution o‘

etuid, cautions with sudo utilit\j

SUID or SGID bi

BIND, securing

[O7 |

lestrictinq zone transfersl

bindig option, SnortSaEI

Lit-for-bit copy of system disksl

l)lock—policv option (PacketFiIteri

lnodifvinq for specific rulesl

Lootinq compromised machine from an alternate medin

browsers

Eccegtable formats for CA certg

Internet Explorer, listing files opened b\j

l\/lozilla, testing squid proxJ

Isecurinq and accelerating with squid proxy over SSI—I

BSDs

IPsec connections under FreeBSd

lPsec connections under OpenBS[J

Iﬂetstat program, listing listening portsl

bpenBSD and PacketFiItell

Becurelevels

Isystrace, restricting system calls witr{

buffer overflow attacks

Iavoidinq by limiting range of bytes in request strinqs]

ernel-based, preventing with grsecurit

Etack-based Qreventingl

l3uszox, performing functions of system binariesl

brusol fHECEBEEIGROIUNEEEEDOUWL G

IC library calls supported by Uni>J

@ [See Certificate Authority]

I:ache poisioning (ARP{

ICAP LINUX IMMUTABLE capabilit\j

Lapabilities model (Linux), modifvinc]

I:entralized logging, aggregating logs from remote sites{

ICertificate Authority (CAi

l)ublic and private keysl

ljistributinq CA certificate to clientsl

lNeII-known Certificate Authoritiesl

I:ertificate-siqninq reques{

certificates, SSL

Iggache SSL installatio;l

l:reatinq and using with OpenVPI\I

l:reatinq for use with Squil

l‘or SnortCenter sensorl

IMAP and POP, creating forl

l\lessus, generating fo‘

Belf-signed, creating

ICGI interface, running Perl scripts and PHP programs throuq}l

ICGI scripts, enabling for user directoriesl

hains (Netfilter

I:heck ssh plug-in (Naqiosi

checksums

}\/ID5, maintained by RPM for installed fiIesJ

lnodification of system MD5 program by attackersl

Isystem disk, generating fol

I:hroot() environmen{

lavailability of other programs Withirl

BIND, running i

L.-nhanced security using qrsecurit\j

SQL, running i
Bervices running i
ID 0, risks o

CIDR notation

tor network addresseé

lanqes of IP_addresses for Snort ruIesJ

I;Iocks (server) synchronizingl
Lode examples usind

l:ommands, logging use by usersl

I;omgiler—based solutions to stack-smashing attackg

compression

LZO, use with OpenVPl\]

I:onnect time, analyzing for users on systen‘l

l:ontem option, Snort rulesl
I;ontent type for file ugloagl

I:ookies, preventing SOL injection irl

l:opvinq system disks, bit—for—bil

I;ross—site scripting (XSS) attackJ

I:rvptoqraphic signature verification, automatinc]

cryptography
Encrygted tunnel, VTud

lencryptinq IMAP and POP with SSLI

lencrvptinq temp folder on Windows]

Encrygting traffic with SSI;‘

Levs for protection of Tripwire filesl

l)pportunistic encryption with FreeS/\NAl\‘

bublic keys, security concerns Witd

ISFS (Self-certifying File Svstemi

|! LS encryption, setting up for SMTd

I:urses-based GUI, configuring kernel to enable qrsecurit\j

brusol fHECEBEEIGROIUNEEEEDOUWL G

haemon option, SnortSarrl

bata size for packets (Snort, dsize ogtionl

databases

Barnyard output td
Earnyard support fogl
[See MySQL]

l\lIDS, tracking alerts with ACII:I

lound-robin database (RRDJ

bnort, configuring to usel

ripwire databasd
Hd command

ljebuqqinq, logging information forl

hefault shares (Windows networksi

befaultkey option, SnortSaEI

ljeny policy (PacketFiIterJ

hepth and offset options, Snort rulesl

IDESX encryption alqorithnl

device nodes

In chroot() environmen|

l;reatinq from programs in chroot() environmenl

l‘or daemons in sandbox environmenl

l)reventinq creation of with qrsecurit\I

directories

ljividinq into read-only and read-writel

Ioose permissions, scanning f0||

hmesq utility, preceventing nonroot users from usincl

DNS

l—ITTP proxy difficulties Witrl

ISOCKS 4 problems witH

lestinq by sniffdet tool

hXT records, using in encrypted connectionsl

homain name, scanning remote Windows systems b\j

ljomain registrants, findinc]

hontblock option, SnortSanl

bro;:_) option (PacketFiIteri

ljrop, sdrop, and reject rules, Snort inIineI

hsize option, Snort rulesl

ljynamic and activate actions, Snort rulesl

brusol fHECEBEEIGROIUNEEEEDOUWL G

L}ffective UID (EUID), changing to 0 in chroot() environmeml

leqress filtering of network traffid

lEthereaI protocol analyzell

hevice name for monitoring, obtaininc]

lemote capture device, using witr{

Squil, use witl

iEthernet addresses, translation of IP addresses tcl

lEthernet sniffers, detecting remoteI\j

szent logs (Windowsi

securing
pxec action, swatcl

Lxecution of binaries, disallowinc]

brusol fHECEBEEIGROIUNEEEEDOUWL G

I‘acilities and priorities, filtering log messages orl

disk command

l:fwexec or fwsamW-1 firewall, using with SnortSan{

i:IFO restrictions (qrsecurityi

ile attributes, protecting logs wit

ile command

I‘ile integrity checker, Tripwirel

tile uploads, filter rule that re'ectg

files

liisablinq default sharing on Windowsl

Inteqrity verification with RPI\/‘

open

|istinq for Windows svstemsl

|istinq with Isof utilit\j

l/erifyinq integrity of and finding compromised filesl

filesystems

Eontrolling access th

Inountinq activity, quqind
i\IFS, security problems witfl
Eelf-certifyinq File System (SFSi

filtering

lnod security features fol

Iactions to take if request matches the rulel

lules to prevent common attacksl

ser-defined filters

l)utbound network traffid
lsysloq facilities and prioritiesl

find command

l‘iles ending in .rej, IocatinrJ

Iscanninq directories for loose permissionsl

Iscanninq for SUID and SGID binariesl

I‘inqerprintinq attempts on operating systemsl

I‘irewall rules, nmap ancj

firewalls

l:ollectinq statistics with rulese{

Lonfiqurinq to allow IKE connections on FreeBSd

TTP tunneling and
effilte

AC filtering wit

lSnort integration witf{

Lreating authenticated gatewaﬂ
l)ackets used for operating-system probes, bIockin(J
EnortSam using Wittl
indowg
hags option, Snort ruleé
hexible response (Snorti

I‘ormat—strinq attacksl

ORWARD chai

I‘orwardinq traffic with SSI—I

l:Port tool (for Windowsi

tragment reassembly gPacketFilterl

FreeS/WAN

Linux IPsec connections, using fol

bggortunistic encryption Wittl
tsread and fswrite aliases gsystracel

I‘Iester (firewall testeri

I‘_tQ daemon (proftpd), using with MySQL authentication sourcé

brusol fHECEBEEIGROIUNEEEEDOUWL G

batewav, authenticated

GCC compilers

|-f0mit-frame-pointer flag, LibSafe an(]

Etackquard and ProPolice versionsl

lrampoline functions, PaX anc‘

Leektools.com, whois proxxl

IGMP (GNU multiple precision math Iibrarvi

GnuPG

huervinq key servers for key ID and downloading resuld

l/erifyinq signature of software witrl

pradm utility
[estricting specific agglicationg

lqraphical analysis consolel [See Sguil]

graphing
IDHPIot or JPGraph, using with ACIEI

lrends on the networlJ

broup—writable permissions for directoriesl

groups
privileged, GIDs fol

lesource limits, enforcincJ

Ispecifvinq for scripts executed within virtual hos1l

Ispecifyinq for use of sudd

lDaX code, enabling nonexecutable memory paqu

lestrictinq applications witrl

brusol fHECEBEEIGROIUNEEEEDOUWL G

handle tool (for WindowsJ

hexadecimal values

Isearchinq packets for with Snor{

l—iFNetChk tool (for Windowsi

lunninq Nmap on IP addresses handled b\,l

Iservices emulated by, attempts to accessl

I\oneypot activity, monitorin(J

Eebek package, usind

hosts ntop statistics fol

I-ITML, use in cross-site scripting attacksl

HTTP

Isquid proxy over SSH, runnin(J

lunnel connections insidel

HTTP headers

l—|TTP ACCEPT header, logging requests withoull

l—ITTP USER AGENT and HTTP_HOST, requiring in requestsl

lmpd.conf file, limiting range of bytes in request strinqsl

httptunnel

ljownloadinq and compilin(l

brusol fHECEBEEIGROIUNEEEEDOUWL G

ICMP types and codesl

d command

identd daemon

lunninq under qrsecuritxl

Bystrace policy fo

ifconfig command

Lhanqinq MAC address of Ethernet card used for sniffin(J

l‘indinq MAC address of an interfacel

brsecurity ACLs an(J

IKE negotiations

l:reeBSD, controlling with racoorl

Linux, controlling with pIut(J

IMAP, encrypting with SSLI

|ncident recovery and responsd

l‘indinq compromised packages with RPI\/‘

l‘indinq the owner of a networlJ

Imaqe mounted filesvstemsl

loot kits, scanning f0||

l/erifvinq file integrity and finding compromised filesl

inetd

Inetd.conf entry for SWA'Il

Isystrace policy, generating fol

|nitial sequence numbers (|SNS{

Internet domain name, finding owner o‘

Internet Explorer, listing files opened b\j

ntrusion detectio

lietectinq anomalous behaviovl

histributed stealth sensor networll

Iﬂetwork intrusion detection systems (NIDS{

lecordinq honeypot activitxl

Isensor network, manaqincl

Equil, analyzing Snort eventsi

Isimulatinq network of vulnerable hostsl

Snort NIDS

Ialerts, tracking with ACId

lules, automatically updatin(J

l/vritinq your own rulesl

Enort inline, preventing and containing intrusionsl

lyeb application intrusionJ

Inod security, Apache!

|nvent0rvinq your networll

IP addresses

ljeleqated by block owners to other partiesl

birection specifying for Snort ruleg

honroutable RFC 1918 address, handling with PacketFiItenl

lDacketFiIter table for nonroutable RFC 1918 addresses]

bairing with MAC addresses monitorind

huervinq number registry for address bIocksJ

lscanninq ranges of with nmad

Snort variables fo

lSnortSam. specifying f0||

lsource and destination, in Snort rulesl

Egoofing of, preventing with egress filterind

lranslation to hardware Ethernet addressesl

l‘or honeyd responses]

lP IDs, randomizing for Qrotectiod

lP Personality proiecl

lP gueue support, Linux kernel

IP Security Policy Management snap-in (Windowsi

|p queue.h file, editing for Snort inIinel

IPsec connections

Lonfiguring under FreeBSd

l:onfiqurinq under Linu>l

l:onfiqurinq under OpenBSd

P (policy) switc

Iallowinq a particular MAC addressl

bandwidth used by particular machine, tracking‘

l:onfiqurinq kernel to send pakets to IP queuesl

P Personality patc
EnortSam using Wittl

|sakmpd (IPsec key-management daemoni

brsol fBEDEBEEIGKOMEEEEEHUGL &G

ail command

|JavaScript, use in cross-site scripting attacksl

l;onfiqurinq ACID to usel

brusol fHECEBEEIGROIUNEEEEDOUWL G

kerberos header filesl

kernel

P gueue suppor

Iockinq down with qrsecurit\l

onfiguring kernel after applying grsecurit

I(erneL IP_Security (KLIPSJ

I(ernel module-based root kits, chkrootkit tests fol

key pairs

beneratinq for use with SSH servell

Isecurity concerns with public keysl

ISFS server, creating fol

ESL, creating for Squil

ey serverg

I(evrinq, specifying for key IDEI

sh shell, restricted

brusol fHECEBEEIGROIUNEEEEDOUWL G

|astcomm command (process accountinqi

|ast|oq files (altered), detection by chkrootkill

|ibipq library (Netfilteri
|ibnet packet injection IibrarJ ﬁ

libraries

IC library calls supported by Uni>J

bMP (GNU multiple precision math Iibrer

LibSafe, protecting against buffer overflowJ

|imits.c0nf file (pam _limits modulei

Linux

letc/pam.d contents on RedHat Linux svsterr{

l)inary formats used b\]

l)ypassinq noexec option for fileysytem moun{

Eagabilities model modiyind

brsecurity kernel patcfi

IPsec connections, confiqurind

I(ernel support for IP queuel

ibSafe technology

Iisteninq ports and their owning processes, IistincJ

Eebek honeypot monitoring moduld

Isystem update package (AutoRPMl

lunnelinq with VTun and SSI—I

|ist open files (Isof) utM\J

|isteninq services, checking fol

Iistinq listening ports and owning processes with socksta{

sof utility, usingd

hetstat program, using on BSd

l]etstat program, using on Linuﬂ

|oq files, protecting from tamperind

|oq levels for syslog facilitiesl

quqreqatinq logs from remote sitesl

barnvard, used with Snor{

l;hanqinq maximum log file size (on Windowsi

l‘ilesvstem mounting with qrsecurit\j

Integrating Windows into syslod

lnonitorinq logs automaticaII\I

l]etwork traffic audit with Arqusl

I:unning central syslog servel

lsecurinq Windows event qusl
Ignified output formai

Eummarizing logs automaticall)]

lsvsloq, filtering information into separate filesl

Lser activity with process accountind

quin access, controlling with PAN{

ogin keys for SS
logins

buick using SSH client keyg

lsecuritv concerns with public keysl

quon event auditing (Windowsi

loopback interface

I<eepinq unfiltered (PacketFiIteri

lemovinq filtering froni

s -l command

Isof (list open files) utM\J

Z0O compressio

brusol fHECEBEEIGROIUNEEEEDOUWL G

NAC (Media Access Control) addressesl

l‘i Itering with Netfiltell

l:)airinq with IP addresses, monitorin(J

Lse by Ethernet switchesl

Mac OS X

l‘ile command, running on a binar\I

l—ITTP proxies, built-in support fo‘

EOCKS 5 proxies, support foJ
UN/TAP drive
L/PN connections, support forl

ail action, swatc

mail transfer agents (MTAS)

Isettinq up to use TLSI

support for FLY
akefile targetd

Lnan-in-the-middle attackJ

Inark functionality of syslocl

MD5 checksums

lnaintained by RPM for installed filesl

l)roqram modification by attackersl

Isystem binary, compromise o{

Nedia Access Control [See MAC addresses]

Igemory pages nonexecutablé

Inemory, virtual memory management (VMMJ

Nicrosoft Baseline Security Analvzerl

l\/licrosoft Knowledge Base articlesl

l\/licrosoft Network Security Hotfix Checkevl [See HFNetChk tool]

lnknod or mount program in chroot environmen{

Lnod perl and mod php, incompatibility with suEXEd

puditing featured

iltering features

lDOST method requests, scannin(l

l)reventinq cross-site scripting attacksl

I:eguest normalization featureé
nicode validatio

LJRL encoding validatiorl

od _sqg

od_ss

Inodules (Perl), for use with Ftestel

[See network monitoring]

mounting filesystems

In chroot() environmenl

quqinq of with qrsecurit\j

Eecuring mount gointg
Mozilla testing squid proxy igl

Insq option, Snort rulesl
MySQL

lauthentication source, using with proftpcl

barnvard, using Witl’I

l:reatinq database for Squil

Iisteninq on TCP socket, disablincl

Eebek package, use b\I

securing

I:hrooted environment, setting ud

Idisablinq LOAD DATA LOCAL INFILE commancl

Eegarate my.conf file for utilities and servegl

lSnort NIDS, using witl’l

EnortCenter databasel

sqltcl packagd

brusol fHECEBEEIGROIUNEEEEDOUWL G

Nagios
I:ontactqroups.ch filel

l)luq—ins, downloading and installind

l1ame server, attacker scans for vulnerable versions of BINd

l\amed policy (systracei

NAT (network address translation)

brovided by Internet gatewa;]

landomizinq IP IDs to prevent counting of machines on networll

l\IESSUS security scannel

l)rute-force logins to servicesl

lients fo

oy

enerating certificate forl

osts, scanning

=1

ort scans, options forI

eports on scang

{I

ulnerability types, selectin

'\Iet::PcapUtiIs Perl moduld

}\Iet::RaWIP Perl modulel

LIet::SSLeay modulé
'\IetBIOS name, specifying for remote svsten{
Rietie]

saving all ruled

@
i,,
=
. x

|

tateful packet-inspection engin

I/veb site for downloadsl

}\IetPacket Perl moduld

l\etwork intrusion detection systems (NIDS{ [See intrusion detection]

etwork monitoring

lauditinq network traffid

l:ollectinq statistics with firewall rulesl

Lontact groups for hostJ

l:ontacts for notification messaqesl

hosts configuring fogl

htop, running for real-time statisticsl

lemote monitoring with rpcapcl

erviced

Iwetwork owner, findinol

I]etwork security checker for Windowsl [See HFNetChk tool]

I1etwork segment, scanning under WindowJ

Iwetwork time protocol (NTPi

'\IFS, security problems witI'I

LIIDS (network intrusion detection systemsl [See intrusion detection]

Nmap

ljetectinq operating system Witf{

lfooling by emulating another operating systed

Inventorvinq your networll

lunninq on IP addresses handled by honeycl

hobody account gAgacheI

Imdev, noexec, and nosuid flags (mounti

'\IOPASSWD: flag (sudoi
'\ITP (network time protocoli
Lonfiguration program usingl

I1umber registries for IP_address bIockJ

brusol fHECEBEEIGROIUNEEEEDOUWL G

Lffset and depth options, Snort rulesl

binkmaster automatically updating Snort ruleg
l)p squil output pluq-irl
[See also SSL]

Installing for Agaché

Lse of libraries by OpenVPl\l

[See also VPNSs]
Eomgiling and installind

LZO compression, usincl

lunnelinq with host system virtual TUN or TAP devicei

operating system detection

l)lockinq [O] finqerprintin(l

l‘oolinq remote OS detection softwarel

map, using fo

Lperatinq systems, emulation by honevcl

Lpportunistic encryption with FreeS/WAV\l

l)ptions entry (svloq-nq.conf{

Lutbound network traffic, fiIterin(J

DUTPUT chai

l)wner of a network, findind

brusol fHECEBEEIGROIUNEEEEDOUWL G

l)ackaqes (compromised), finding with RPI\/I

packet sniffers

L:xamininq SSH connection tunneled through HTTFI

lpcapd remote capture device, using Witrl

PacketFilter (PF

Lauthenticated gateway, creatind

locking packets used for operating-system probe.

pf.conf file, editing

hefininq table of IP addressesl

packet-filtering ruleg

lraffic normalization ruled

bnortSam, using wiﬂl

l)aqinq file (Windows), clearing at shutdowrl

IEAM (pluggable authentication modulesi

l:)am access module]

pam_limits modulg
pam _stack moduld
pam_time moduld

l)artitions (disk), imaqin(J

l)asswd program, SUID or SGID bil

[See also authentication]

Lommand execution without password

atch utility, applying grsecurity patch to kerne!

l)atchinq system security holes, automation o‘

PaX (grsecurit

I%ap-formatted files, creating with Barnvach

IDerI modules, necessary for swatch tool

IDerI scripts, running through CGI interfacel

IDerI, sensor agents for SnortCenterI

permissions

l:reatinq flexible hierarchies with POSIX ACle

l/vorld- and qroup-writablel
E [See PacketFilter]

pfctl command

PHP

Iibraries for SnortCentell

l)roqrams, running through CGI interfacd

Eebek package, use b)]

PIDs (process IDs)

Iistinq for listening servicesl
Stunnel PID filg

ping program

I‘indinq system MAC addressl

lnonitorinq statistics from web servell

pipe action, swatc

lDIX firewall, using with SnortSanl

bluggable authentication moduleg [See PAM]

tq

=

lDOint—to—Point Tunneling Protocol [See PPTP tunneling]

l)oisioninq the ARP cachel

policies, systrace

Iautomated generation o‘

IZOP encrypting with SSI_.I

IDOP3 traffic, encrypting and forwarding with SSI—I

lDOPToP (PPTP serveri

l:onnectinq to with Windows machinel

port forwarding
oneyd, using wit

ttptunnel, using

SH, using as SOCKS prox

SSH, using fo

i

Stunnel, using

Ioort security (Ethernet switchesi

ports

onitor por

l)pen, listing for Windows svstemel

lscanninq for listening servicesl

|

nortSam port optio.

lspecifyinq for packets in Snort rulesl

l)ortscan and stream4 preprocessors, Snorl

IDOST method requests, scanning by mod securit\l

I:’PP tunnels, setting up with PPTP tunnelincl

IDPP, using with SSH to create secure VPN tunnel

IDPTP (Point-to-Point Tunneling Protocol) tunnelinc]

briorities, for Ioggind

l:onfiqurinq for sysloq—nol

process accounting

pC_ command
astcomm command

Eummarizing with sa command

processes

Increasinq security with qrsecurit\i

Iistinq for listening servicesl

|istinq for open files on Windowsl

Iistinq for running services on Windowsl

lnemorv address space layouts, randomization with qrsecurit\,l

broﬂgd using with MySOL authentication sourcé

l)romiscuous mode (network interfacesi

ljetectinq to prevent intrusior{

betection with chkrootkil

lnonitorinq with rpcapcl

ProPol

[See Ethereal protocol analyzer ntop tool]

protocols

l‘or Snort rule applicatiorl

ecifying protocol for Snort rul

proxies

httgtunnel connections through web grox;]

lsquid proxy over SSI—I

ESH, using as SOCKS prox»l

hois proxy, geektools.co

l)seudo—TTY interfaces, PPP _daemons operating overI

psk.txt file (racoon

brusol fHECEBEEIGROIUNEEEEDOUWL G

la command (Arqusi

lacoon program, IKE negotiations under FreeBSI:I

Starting at boo

lanqes of IP_addresses, scanning with nmad

law 1/0, removing ability fol

Registry

liisablinq default sharesl

}\/Iemorv Management key, editin(J

leqular expressions for swatch tool

leiect rule, Snort inlind

lemote machines (Windows), scanning for system updatesl

leplace rule option, Snort inIineI

lequest normalization features, mod securit\,l

lesource limits, enforcincl

leturn option (PacketFiIteri

loot access, selectively qrantin(]

root privileges

ladministrative role delegation an(J

leffective UID (EUID) ofd

Linux, modifying capabilities f0||

Iservices not needincl

lOOt user, running nmap asl

loot—exploitable programs, checking fol

lound-robin databasé

lpcapd, remote monitoring witr{

RPM

IAutoRPM for system updateJ

l‘indinq compromised packaqesl

brusol fHECEBEEIGROIUNEEEEDOUWL G

Isa command (process acountinql

lSamba. SWAT configuration tool

Isandboxed environmente{ [See also chroot(environment)]

lestrictinq services witll

Isecuritv enhancement with qrsecurit\,l

Iscrub rules (PacketFiIterJ

Isdrop rule, Snort inlinel

Eearching packets, Snort rule ogtioné

ISebek (honeypot monitoring packaqei

SecFilter keyword

lSecFiIterSeIective kevworol

Isectors offsets for a partitior{

pecure tunnelq [See tunnels, secure]
Eecurelevels (BSD systemsl

Isecurity holes (system), automating patching 0{

security policy

lauditinq on WindowJ

l:reatinq for Windows firewall

Isettinq up for IPsec connections on FreeBSd

Security Policy Database (SPD)

i:reeBSD, IPsec connections’

Linux, IPsec connectionsl

Eecurity scanner (Nessusl

belf-certifyinq File System (SFS{

Iself—siqned certificatesl

bendmaill setting up to use TLé
sensor_id (ACID

Iserver clocks, keeping synchronized

services

l:ommon port numbers]

lemulated by honevcj

pttempts to access

l:)reventinq from binding to an interfacd

lestrictinq with sandboxed environmentsl

lunninq, listing on Windowsl

Iscanninq for vulnerabilities with Nessus]

Isession cookies, attacks usind

Isession-timeout values, setting for PacketFiIteI

Efscd (SES client daemonl

ISGID or SUID programs, scanning fol

Squil

l:lient and server, testincj

l:ompilinq and installing BarnvartJ

l:reatinq a MySOL databasd
batabase tables creatingl

Iog packets.sh script, setting ud
l)p squil output pluq—ir{

Eensor agent script, setting ud

SSL, using witl

Etarting up squild and xscrigtd

|! cl packages reguiregl
Kscriptd, setting up

Ishared—medium Ethernet networks, sniffers and

Ehares (default). disabling on Windows

Isharinq files, using SES (Self-certifying File Svstemi

Ehell scripts, SUID or SGID bits ogl

shells

lexploit with shell code against SSH daemorl

lsiqnature verification, automatincl

Simple WATCHe| [See swatch]
Ekiginterval option SnortSaEl

ISMTP (TLS-enabled), setting ud

ISNMP interface statistics (for SNMP daemon on a routeri

Enmpget utility

ISnort GUI for LamerJ [See Squil]

alerts

pnalyzing with Squi

racking with ACID

Eutomatic rule updates with Oinkmaste]

Earnvard. using to increase performancel

Lnified output format for Snor{

configuration

built—in QregrocessorJ
leditinq snort.conf filei
hles provided with distributio;l

ljatabase support, enabling output pluq—ir{

bownloading and installind

l‘irewallinq with SnortSan{

l:onfiqurinq SnortSarA

hrewall communications, setting ud

putput plug-ing

lules that trigger firewall rulesl

l)reventinq and containing intrusions with Snort inIinel
Eensor network managind
Euggort for sending alerts to a databasé

lestinq in sniffer model

l/vritinq your own rulesl

lactivate and dynamic actionsi
befining custom actionJ
lP addresses and ports for packetsl
bnline rule documentatiod
l)rotocol, specifying for ruld
lule header and ogtioné
Iadmin account information, editincj
Lonfig.ghg file editingl
lsensor agent, adding to main management consolel
Eensor agents, setting ud
Isockets (open), listing with Isof utM\J
EOCKS proxy, using SSH ag

Isoftware authenticity, checkincl

Solaris

lSebek honeypot monitoring moduld

Eource entries gsyslog—ngi

@ [See Security Policy Database]

spoofing addresses

l)reventinq IP_spoofing with egress fiIterin(J

l)reventinq with FiIterPacke{

ISQL-iniection attacksl

Isquid proxy over SSD—I

SSH

puthpf shell and
Exgloit launched against daemon monitorind

l‘orwardinq and encrypting traffic Witfl

l<evs, automating client quinsl

Eecurity concerns with public keyg

quin keys, generating fol

lDPP, using with to create secure VPN tunnel

EOCKS proxy, using ag

unneling connection over HTTP with httptunne

Tun, using ove

SSL

rr—

lApache, installing wit}{

lencryptinq and tunneling traffic witl'l

lencrvptinq IMAP and POP witkl

DpenVPN, use by

EnortCenter sensor, using witrl

Lsinq for HTTPS with ntod

stacks

buffer overflows based od
Istartup, running commands out of system rc filesl
Etartx command, -nolisten tcp ogtiogl

lStatisticaI Anomaly Detection Enqinel [See Spade IDS]

Etatistics (network), collecting with firewall ruleg

lstealth mode, running IDS sensors iA

Istickv bit set on directories, scanning forI

Etream4 preprocessor, enabling for Snor]

lstrinqs, searching packets for with Snorl

stunne
Lonfiguration file stunnel.coni

l‘orwardinq local port to remote por{

EUEXEC (Apache

Ienablinq and confiqurincl

SUID bit, disabling

EUID files, monitoring on your svsterrl

ISUID or SGID programs, scanning fol

ISUID wrapper program, used by Apachel

ISWAT (Samba's web-based configuration tooli

Iswatch (log file monitori

[egular expressions to match log messageg

lsymlink restrictions (qrsecuritvi

Isvsctl.conf file, enabling packet forwardincj

syslog

Eggregating logs from remote siteg
Barnyard output td

Lentralized server runnind

l‘ilterinq information into separate fileel

Inteqratinq Windows intc]

Byslog-ng

l:onfiquration file entrieel

lencrvptinq tunnel for secure traffic between daemonsl

Eyslog.conf translating to source, destination, and log entrieJ

CP _suppor

eb sitg

Eyslog.conf file, translating to syslog-ng configuration entrieJ

system binaries

lnodification by root kitsl

berforming functions of with BusyBoJ

l/erifyinq for chrootkil

system calls

Interception by SebelJ

[See systrace utility]

stem groups, specifying for use of sud

lsvstem logs, protecting from tampering by intruders]

system updates

utomating

—

indows, checking forl

Bystrace utility
policied

l)olicv—qeneration tool

D
Iﬂ
1%}
@
0

brusol fHECEBEEIGROIUNEEEEDOUWL G

|Tc| packages, required for Squil

clx packagd

|TCP flags of a packet, checking (Snort flags optioni

| CP _support syslog-nd

|'I'CP/IP stack, disguising to prevent remote OS detectior{

lemporary files folder, encrypting on WindowJ

lhrottle action, swatcd

time

l;onnect time for users, analvzincj

'\ITP (network time protocoli

pam_time moduldg

hk-based GUI, configuring kernel to enable qrsecurit\l

|'I'LDs, querying with whoisl

TLS (Transport Layer Security)

etting up for SMTH

PN connectiond

|ToS (Type-of-Service) field in 1P headell

lraffic normalization rules (PacketFiIteri

rampoline functiong

|Transport Layer Securit\l [See TLS]

lrends on the network, qraphind

ripwirdg

ryptographic keys that protect its file

Hatabasd

"ﬁ

fatabase, updating

nstalling

policy

l)olicy file, decrypting and editind

eports, handling o

lstored snapshots of filesl

Subdirectories

l/ulnerabilitv to file modification by intrudersl

Trojan horses

ljistribution in softwarel

l)reventinq in.common directorieJ

|'I'TYs, PPP daemons operating over pseudo—TTYsI

hUN/TAP driver for Solaris or Mac OS ><]

unnels, securg

l:ross—platform VPN, creatind

Encrygting and tunneling traffic with SSIJ

l‘orwardinq and encrypting traffic with SSI—I

l—ITTP, tunnel connections insidel

lPsec setting up under FreeBSd

IPsec, setting up under Linu>I

IPsec, setting up under OpenBSI:I

l)pportunistic encryption with FreeS/WAI\J

lDPP and SSH, using to create secure VPN tunnel

PPTP tunneling
Eguid proxy over SSI;I

ISSH client keys, quick logins witﬂ

ESH, using as SOCKS prox»l

L/Tun and SSH, usind

l/tund.conf, automatically qeneratinc]

[See DNS TXT records]

hvpe—of—Service (ToS) field in 1P headell

brusol fHECEBEEIGROIUNEEEEDOUWL G

UDP DNS traffic

ule for FilterPacke
ules for Netfilte

lJDP ports, listening services and

bDP use by syslogd

lJID 0, risks posed in chroot() environmen{

lJIDs for privileged accounts and qroupsl

limit command

lJnicode validation, mod securit\I

lJniversity of Washington, IMAP daemor‘l

Unix
ost security

lestricted shell environmentsl

Eecure mount Qointg

lsharinq files secureI\,I

Isystem updates, automatin(J

L/PN, built-in software fol

Lntrusted networks, secure communication overl [See tunnels, secure]

lJRL encoding, validation by mod securit\I

Lser-defined security fiItersl

users

reating for Nessug

0gging activity with process accountin

lesource limits, enforcin(J

lestrictinq applications available t(J

Ispecifvinq for scripts executed within virtual hos1l

brusol fHECEBEEIGROIUNEEEEDOUWL G

l/erification of cryptographic siqnaturesl

l/irtual host, configuring for suEXEd

l/irtual memory management (VMM{

VPNs (virtual private networks)

l)uilt-in functionality in SSI—I

l:ross-platform, creatin(J

IPsec connections under Linu>l

lDPP and SSH, using to create secure tunne|

lDPTP tunneling, usinrJ

VTun

lunnelinq with VTun and SSI—I

SSH, VTun ove

lunnel interface on clien‘

l/tund.conf file for cIien{

l/tund.conf file for servel

l/tund.conf, automatically qeneratind

l/ulnerabilities, scanning your network fol

l/ulnerable network hosts, simulatin(J

brusol fHECEBEEIGROIUNEEEEDOUWL G

l/veb applications, detecting and preventing intrusionsj

[See browsers]

l/veb page (for this booki
[See also Apache web server]
lnonitorinq with NaqioJ

lNeII-known Certificate Authoritiesl

whois command

l‘indinq owner of Internet domairI

hueryinq new TLDs witrl

bueryinq number registry for IP address blocll

Windows
puditing, enabling

l:hanqinq maximum log file size{

Ehecking servers for applied Qatcheé

ljefault shares, disablincl

léncrvptinq temp foldel

irewalling wit

lP Security Policy Management snap-irl

Isecurity policy, setting ud

Integrating into syslod

Iistinq open files and owning processes]

Iistinq running services and open portsl

l1etw0rk security checkell [See HFNetChk tool]

OpenVPN

hownloadinq and compilin(J

l:)aqinq file, clearing at shutdowrl

l’oPToP (PPTP server), connecting th

[estricting applications available to useré

lpcapd, remote network monitoring wittl

Isecurinq system qusl

L/PN connections using PPTP tunnelind

lNinDump (command-line packet snifferi

lNinPcap, rpcapd proqrarr{

l/vorld- and group-writable permissions for directorieJ

rite action, swatc|

l/vtmp files (altered), detection by chkrootkhl

brusol fHECEBEEIGROIUNEEEEDOUWL G

|>(11 server, preventing from listening on TCP portl

XML

putput from Argus

L(SS (cross-site scripting) attacksl

A L T
|||I.|| A0 AN OERIRDIE U AR

brusol fHECEBEEIGROIUNEEEEDOUWL G

Izone transfers, restricting for DNS serversl

	Network Security Hacks
	Table of Contents
	Copyright
	Credits
	About the Author
	Contributors
	Acknowledgments

	Preface
	Why Network Security Hacks?
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Got a Hack?

	Chapter 1. Unix Host Security
	Hacks #1-20
	Hack 1 Secure Mount Points
	Hack 2 Scan for SUID and SGID Programs
	Hack 3 Scan For World- and Group-Writable Directories
	Hack 4 Create Flexible Permissions Hierarchies with POSIX ACLs
	Hack 5 Protect Your Logs from Tampering
	Hack 6 Delegate Administrative Roles
	Hack 7 Automate Cryptographic Signature Verification
	Hack 8 Check for Listening Services
	Hack 9 Prevent Services from Binding to an Interface
	Hack 10 Restrict Services with Sandboxed Environments
	Hack 11 Use proftp with a MySQL Authentication Source
	Hack 12 Prevent Stack-Smashing Attacks
	Hack 13 Lock Down Your Kernel with grsecurity
	Hack 14 Restrict Applications with grsecurity
	Hack 15 Restrict System Calls with Systrace
	Hack 16 Automated Systrace Policy Creation
	Hack 17 Control Login Access with PAM
	Hack 18 Restricted Shell Environments
	Hack 19 Enforce User and Group Resource Limits
	Hack 20 Automate System Updates

	Chapter 2. Windows Host Security
	Hacks #21-30
	Hack 21 Check Servers for Applied Patches
	Hack 22 Get a List of Open Files and Their Owning Processes
	Hack 23 List Running Services and Open Ports
	Hack 24 Enable Auditing
	Hack 25 Secure Your Event Logs
	Hack 26 Change Your Maximum Log File Sizes
	Hack 27 Disable Default Shares
	Hack 28 Encrypt Your Temp Folder
	Hack 29 Clear the Paging File at Shutdown
	Hack 30 Restrict Applications Available to Users

	Chapter 3. Network Security
	Hacks #31-53
	Hack 31 Detect ARP Spoofing
	Hack 32 Create a Static ARP Table
	Hack 33 Firewall with Netfilter
	Hack 34 Firewall with OpenBSD's PacketFilter
	Hack 35 Create an Authenticated Gateway
	Hack 36 Firewall with Windows
	Hack 37 Keep Your Network Self-Contained
	Hack 38 Test Your Firewall
	Hack 39 MAC Filtering with Netfilter
	Hack 40 Block OS Fingerprinting
	Hack 41 Fool Remote Operating System Detection Software
	Hack 42 Keep an Inventory of Your Network
	Hack 43 Scan Your Network for Vulnerabilities
	Hack 44 Keep Server Clocks Synchronized
	Hack 45 Create Your Own Certificate Authority
	Hack 46 Distribute Your CA to Clients
	Hack 47 Encrypt IMAP and POP with SSL
	Hack 48 Set Up TLS-Enabled SMTP
	Hack 49 Detect Ethernet Sniffers Remotely
	Hack 50 Install Apache with SSL and suEXEC
	Hack 51 Secure BIND
	Hack 52 Secure MySQL
	Hack 53 Share Files Securely in Unix

	Chapter 4. Logging
	Hacks #54-60
	Hack 54 Run a Central Syslog Server
	Hack 55 Steer Syslog
	Hack 56 Integrate Windows into Your Syslog Infrastructure
	Hack 57 Automatically Summarize Your Logs
	Hack 58 Monitor Your Logs Automatically
	Hack 59 Aggregate Logs from Remote Sites
	Hack 60 Log User Activity with Process Accounting

	Chapter 5. Monitoring and Trending
	Hacks #61-66
	Hack 61 Monitor Availability
	Hack 62 Graph Trends
	Hack 63 Run ntop for Real-Time Network Stats
	Hack 64 Audit Network Traffic
	Hack 65 Collect Statistics with Firewall Rules
	Hack 66 Sniff the Ether Remotely

	Chapter 6. Secure Tunnels
	Hacks #67-81
	Hack 67 Set Up IPsec Under Linux
	Hack 68 Set Up IPsec Under FreeBSD
	Hack 69 Set Up IPsec in OpenBSD
	Hack 70 PPTP Tunneling
	Hack 71 Opportunistic Encryption with FreeS/WAN
	Hack 72 Forward and Encrypt Traffic with SSH
	Hack 73 Quick Logins with SSH Client Keys
	Hack 74 Squid Proxy over SSH
	Hack 75 Use SSH as a SOCKS Proxy
	Hack 76 Encrypt and Tunnel Traffic with SSL
	Hack 77 Tunnel Connections Inside HTTP
	Hack 78 Tunnel with VTun and SSH
	Hack 79 Automatic vtund.conf Generator
	Hack 80 Create a Cross-Platform VPN
	Hack 81 Tunnel PPP

	Chapter 7. Network Intrusion Detection
	Hacks #82-95
	Hack 82 Detect Intrusions with Snort
	Hack 83 Keep Track of Alerts
	Hack 84 Real-Time Monitoring
	Hack 85 Manage a Sensor Network
	Hack 86 Write Your Own Snort Rules
	Hack 87 Prevent and Contain Intrusions with Snort_inline
	Hack 88 Automated Dynamic Firewalling with SnortSam
	Hack 89 Detect Anomalous Behavior
	Hack 90 Automatically Update Snort's Rules
	Hack 91 Create a Distributed Stealth Sensor Network
	Hack 92 Use Snort in High-Performance Environments with Barnyard
	Hack 93 Detect and Prevent Web Application Intrusions
	Hack 94 Simulate a Network of Vulnerable Hosts
	Hack 95 Record Honeypot Activity

	Chapter 8. Recovery and Response
	Hacks #96-100
	Hack 96 Image Mounted Filesystems
	Hack 97 Verify File Integrity and Find Compromised Files
	Hack 98 Find Compromised Packages with RPM
	Hack 99 Scan for Root Kits
	Hack 100 Find the Owner of a Network

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Z

