PAUL DUBOQIS
STEFAN HINZ
CARSTEN PEDERSEN

MySQL. 5.0
Certification Study Guide

o co I:EIUDE'*' The authoritative study quide to prepare for and pass the
f:ﬁ;‘,_’:,ﬂ";’“:‘m MySOL Certified Developer and MySOL Certified DBA exams

certification exams

MySQL® 5.0 Certification Study Guide

Table of Contents

[670] 1), 1 F24 1 | PPN,
| 203 21 7% L« PO PP
ADOUL the AUTNOTS. . ..cciiiiiiieiieiieieeieeceecrcccecceccescescescescescsscsscsscsscssssscsssssescens
AcCKNOWledgmentsS...cccuiuiiiiiiieiiiiiiiiciceieieiecceccscscssssesscececssscssssssssesesesescscssass
| 1S (S W) 1 L PPN
We Want to Hear from YOU ! .. .ccecceeeeeeeceeceeceeceecencenccncesccsccsccsscsscsscsscsscescssceses
| 53180074 110t 0 00 1+ VR PPN
MySQL Developer EXamS...ccccceeeiceceiecescscacecescssssececsscssssecescssssssescssssssesescsce 23
MySQL Developer I EXam...cccccieieiececececercscscscscecesececesesscscssssssssssesesesesesses 24

ey uw

Chapter 1. ClIEnt/SeIVET CONCEPLS.c.couiuiriiriiirreieienreteeee sttt st s et sttt et b e s sttt s s st ae st b et enaanenis 25
Section 1.1. General MySQL Architecture... w25
Section 1.2. Invoking Client Programes........ ... 26

Section 1.3. Server SQL Modes.............35

Chapter 2. The mysql Client Program...... ...38
Section 2.1. Using mysql Interactively.. ..38
Section 2.2. StatemMENt TEITNINATOTIS. ...cc.ceccvieeeieeeiteeeeieeeiteeecteeeeeeeesteeeeseeeeseeessseeesseeeasaesassseasssesassseesssesssssesssasssesssssesssesnssesans 41
Section 2.3. THe IMYSQL PTOIMPES...ccuceiiierierieeeeeeeetestesteseseestestessessesasssessessessessesssessessessassessesssessessessessesssessessessessesssessessassanss 41
Section 2.4. Using Editing Keys in mysql....
Section 2.5. Using Script Files With MYSQL.......coeoiiioiiiiiiiiiiiiicc ettt 43
Section 2.6. MYSQL OULPUL FOTTNALS.cceeierierteriereerterteneeeestesteseseetestessesseessessessessesssessessasseessessessessesssessessessasssessessessesssenses 43
Section 2.7. Client Commands and SQL Statements...
Section 2.8. UsINg Server-Side HEIP........ccoiiiiiiiiiiiiteeetee ettt s s et 45
Section 2.9. Using the --Safe-UpPdates OPTION.......ccueruiririerierierierertertesteseseestessessessessesssessessessesssessessassassssssessessessesssessassassasse 47

Chapter 3. MySQL Query Browser
Section 3.1. MySQL Query Browser Capabilities.........cceoieuiviiiniiiiniiiiiieinciecnecet ettt seene 48
Section 3.2. Using MYSQL QUETY BIOWSET........ccctiriiriirierienieeterieestessieesteesseesseesseesssessesssesssesssesssasssesssaesssssssesssesssesssesssesns 49
Section 3.3. Using the Query Window

Section 3.4. The MYSQL Table EQIOT........cooiitiririetieieietetesiesieniesie ettt sttt et et et e st e sbesbesae st et et e saesbesseesee st e e entensensenee
Section 3.5. Connection Management
Section 3.6. The Options Dialog
Chapter 4. MYSQL COMIMECTOTS.cc.ccueuiiuerieiiriiteteiietetee sttt sess et sse s st se s et se st sae s et e e s et e sesaesse st ssese st sesse st esesaessensesenseneas
Section 4.1. MYSQL CHENT INTETTACES.eeeeverierterieriinietestestesestestesteetessessesseesessessesssessessesssessessassesssessessesssessassasssessessassens
Section 4.2. MySQL Connector/ODBC.

Section 4.3. MySQL Connector/d......... ...59
Section 4.4. MySQL Connector/NET.... ...60
Chapter 5. Data Types......coceeveereereeunnne ... 61

Section 5.1. Data Type Overview....

Section 5.2. Numeric Data Types... ... 63
Section 5.3. The BIT Data Type...... ... 66
Section 5.4. String Data Types....... ...66
Section 5.5. Temporal Data Types.. .74
Section 5.6. Column Attributes.........ccceeveeeeereeseeseeseeeeeseeeeens ...85
Section 5.7. Using the AUTO_INCREMENT Column Attribute. ...86
Section 5.8. Handling Missing or Invalid Data Values................ .. 92
CRAPLET 6. TAEITITIETS. .eveeueeiieieiieieetetetertese sttt et ettt et et et et esbesae s st et esbe b e sasse s st e st e bessessesatententensasaeseesaestensensessessesssentenss
Section 6.1. ITAENTITIET SYNEAX......ciiiiiiiiiiriiieiet ettt et b e e e sesa et s aen et nenen
Section 6.2. Case Sensitivity of Identifiers..
Section 6.3. USINg QUALIfIEd NAIMES.cceecvirreriritiniirieteterestertesee et este st et e tesae et e tesse st esbessesstessessassasssessesstentensessesssensens
Section 6.4. Using Reserved Words as IAENTITIETS.cccouiiiiriiniiiiiiiicierecteeceere et 101
Chapter 7. Databases .
SECtiON 7.1. DAtADASE PrOPEITIES...ccuververterieieierierieeteiterestetestestesteetestessesst et estessessesstessessesassssessessassesstensessessaensensessesseesente 104
Section 7.2. Creating Databases........cocuerererietirieniieieeteitente st te ettt et et st e s st et e e et e st e s st st et esse e st e st et e bessesatentensesseentensesense 105
Section 7.3. Altering Databases

SeCtion 7.4. DTOPPING DAtADASES.cevirreririierieriirietesteseetestesestetestesteest e sessesatestessessesstessessesatessessessasssesessesssesessessassense 106

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide

Section 7.5. Obtaining Database Metadata....
Chapter 8. Tables and Indexes.........cccervervennen. .
SECHION 8.1. TADIE PTOPETTIES.verververuiruietetentenestetertestessesseetestestestestesseetessessessesstestessessassassesssensensessessesssensensessessesseesensense
Section 8.2. Creating TabDIEs.........cocoiiiiiiiiiiiteteete ettt ettt a et s b e st s n et nenis
Section 8.3. Altering Tables.....
Section 8.4. Dropping Tables...
Section 8.5. Emptying Tables...

SECHION 8.60. INAEKES. ..c.vueveneeuereeieierteteicetet ettt e e bt et et et s b et e b et et e be st e st ebe st e b e s b et e b et eae s b et e st sb et e s et et ese b emtss et entebentesenteneesensen
Section 8.7. DIOPPING INAEXES.ccoveririrrieriereritetesesteitesteste st e stestestesstetessessesstessessassesssessessesstentensessesstessessesseessessessassasssens
Section 8.8. Obtaining Table and Index Metadata.. ...130
Chapter 9. Querying for Data.......cccceceevvereererervenuennes ...135
Section 9.1. Using SELECT to Retrieve Data........... ...135
Section 9.2. Specifying Which Columns t0 RetIIEVE..........cccoueiiiriiiiiniiiiicieicccrce e 136
Section 9.3. Specifying Which ROWS 10 REITIEVE.ccuevuirierererireeeeietestestestesseseseseessessessessessessessessessessesssessessessassassassanse 139
Section 9.4. Aggregating Results
Section 9.5. GrOUPING RESUIES........c.iiuiiiiiiiiiiecce ettt e n et e
Section 9.6. USING UNTON......ccciiriiirieriinierrieerieritesitesteseesseesseessesssesssesssesssesssesssessesssesssesssesssesssesssesssesssssseessasssesssasssesssessseses
Chapter 10. SQL EXPressions.........cecevererreeuennes
Section 10.1. Components of SQL Expressions.... .
Section 10.2. Numeric Expressions................... ..169
SeCtion 10.3. STIING EXPIESSIONS. ...cccutirterrrierrerrteetertenteertesrteesttesseesseeeutessaesseesssessesssesssesssessstesseesssesssesssesssesssesssessseessesseesnee 170
Section 10.4. TEMPOTAl EXPIESSIONS.ccuevutrtrrtirtieieiertenertesteeteetesteste st e stestesse et essessesatesaessee st ebesbesatentesseeseentensessesatesessennes 179
Section 10.5. NULL Values........c.cccceeeveevenenn. .180
Section 10.6. Functions in SQL Expressions.. 181
Section 10.7. Comments in SQL Statements.. ...192
Chapter 11. UPAAtiNg DAtl......c.ceceeveerierrerierierrienesieeeertesiesesseessessessassessessessesssessessassassssssessessesssessessassassssssessessesssessessassasssessassans 193
Section 11.1. UPAAtE OPETAtIONS. ...ccuevvereririeieriertieeetertertessestetestestestessesstessessessesstsstessessessessesssessessessesseessessessessassasssessessens 193

Section 11.2. The INSERT Statement...

Section 11.3. The REPLACE Statement... ...199
Section 11.4. The UPDATE Statement........cccccceeeveerveeeeecveeseeennens ...201
Section 11.5. The DELETE and TRUNCATE TABLE Statements.........cccueevuerreerieneenienieesiesseeseeseeseeessesssessseesssessessssessnes 204
Section 11.6. Privileges Required for Update STAtEIMENTS.cuevuirrieierierienerieertestesestestesteseesessessessesssessessessesssessassassassaens 206
MySQL Developer II EXam....ccccccecececacecacacacesscacacssssacscssssssssssssssssssssssssssss 207
Chapter 12. JOINS...ccceoeverrerrerrereeeeeeeeaennes 208

SECHION 12.1. OVEIVIEW.....eetiuieuieietertertertertete et e st s testee st st et et e s bessesse s st et et et e besbeesee st e st eat et ebessesseententeatentensensensenseestentensens 208
Section 12.2. Writing Inner Joins
Section 12.3. Writing Outer Joins
Section 12.4. Resolving Name Clashes Using Qualifiers and Aliases..

Section 12.5. Multiple-Table UPDATE and DELETE Statements.... ... 224
CRADLET 13, SUDQUETIES. c..eveuieuieieiietieitetetestese et et et s et et et esbesae st et esbessae st et et asbassesstessessassaestententessessesntensesensessaentensessassanns 226
Section 13.1. TYPES Of SUDGUETIES.c.ciuiiiiiiiiiieiiitctcee ettt et ne e s sane 226

Section 13.2. Subqueries as Scalar Expressions

Section 13.3. Correlated Subqueries........cccceveeveevievienenierneenienenennen. 228
Section 13.4. Comparing Subquery Results to Outer Query Columns. ..229
Section 13.5. Comparison USING ROW SUDQUETIES.ccereriiriererieieienieseseestessesseseeeessessessessssssessessesssessessessassassssssessassens 235
Section 13.6. Using Subqueries in the FROM ClaUSE........cccueeterrerereriterienienietertestesesessestessessesssessessessessesssessessessessasssessense 236
Section 13.7. Converting Subqueries to Joins............. .237
Section 13.8. Using Subqueries in Updates.... .240

Chapter 14. VIEWS....coceeveeirvierieneneneneeeeneenees ..242
SeCtion 14.1. REASONS 10 USE VIBWS.....cccueeieeieeiieiestesteesteesteesteesteetestesseesseasssessessseessesssesssesssesssesssasssesseessesssesssesssesssasssesssens 242
SECHION 14.2. CTEATING VIBWS...coutirtiiieriieiieiiiteieeriteste st estteste st estestestessestesseessesssaesseessaestesssesstesstesssessessessesssesssessseensen 243
Section 14.3. Altering Views
SECHION 14.4. DTOPPING VIEWS....cuiiuiitieiirieiertietetest st et este st e et e st esststesse s st et et e b e s st etessessteat e s esbes st enbesseententesensesaeensessesnean
SECHION 14.5. CHECKING VIBWS.....ectertieieiieriesieeietesteseseesestessesseesessessassesssessessessesssessessessessesssessessessesssessessessasssessessessesseessenses
Section 14.6. Obtaining View Metadata......... .
Section 14.7. Privileges Required for Views...

Chapter 15. Importing and Exporting Data.......
Section 15.1. IMport and EXPOTt OPETatiOnsS......cecveveruerierterienieriterieneetetesestestessesseetessessesssessessesssessessesssessessesssessessessaessens
Section 15.2. Importing and Exporting UsINg SQL........ccccccviriiriiiiiniinieiiieieneeteteeriesetee et saesse e se s s saessenis 257
Section 15.3. Importing and Exporting Data from the Command LiNe...........ccccceverierierreenienieneneneeeesensessesesesseessessessenses 266

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide

Chapter 16. USET VATIADLES.......cc.couiiriiiiiiiiiiicietce ettt st ae s 272
SECtioN 16.1. USET VATIADIE SYTTAX.....ccierierterrertireeieriesesiesertessesseseseesessessessessasssessessessessesssessassassassasssessessessessasssessessassasses 272
Section 16.2. USETr Variable PrOPEITIES.......ccovivirrirrieierierierieneeteteterterteste st st et et et estestesbassessaestessessessessesssensensessensessessassasnes 273

Chapter 17. Prepared StATEIMENTS.coteteterieriereneri ettt ettt st et et e et e b et e s b esbe e bt et et et e besbesbesbesaesstent et eneentensessensanns 274

Section 17.1. Benefits of Prepared STAtEIMENTES.c.ccuirerierieriiriiesieneneetetesteseseseestestessessesseessessessessassassesssessessassessesssessesses 274
Section 17.2. Using Prepared Statements from the mySql CHENL......c.coccertirierieririieieienieneetetertesesee et saesaesaees 274
Section 17.3. Preparing @ STATEIMENT.....c..cocuivuiririeiereeeeteeteet ettt ettt sat et e st s b et e sbe s st st e sbe st e st e besbesateneesseeneensensenns 275
Section 17.4. Executing a Prepared STATEIMENT.c.ccververierierierieneeeertesieseetesteseseessessesseessessessasssessessesssessessessasssessassessaesses 276
Section 17.5. Deallocating Prepared STAtEIMENTS.cc.cevuererirriererieiterienentetessesseetestessesstestessesseessessessesssessessessaessessessassaens 278
Chapter 18. Stored Procedures and FUNCHOMNS.coctevterieririeieierieeenteterte et te sttt s bt s e stessesae et e seesbesseeseestesbessesse st eneennes 279
Section 18.1. Benefits 0f STOred ROULINES.cc.ceuertruirieririenieiriceieteieetece ettt ettt et se et e sttt be st et sae st et sae st et beneeneebeneene 280
Section 18.2. Differences Between Stored Procedures and FUNCHONS.c.ccccvuevreruerieieierteerenteeecreeeeneeeeesseseeeseseeeenes 281
Section 18.3. The Namespace for Stored ROULINES.ccccveueriiiriiiiiniiieietetret ettt sae e nes
Section 18.4. Defining Stored Routines....................
Section 18.5. Creating Stored Routines....
Section 18.6. Altering Stored Routines....
Section 18.7. Dropping StOTEA ROULINES.cuecvirererieriiseneeeeitesieseseestessessessesssessessessesseessessessassesssessessessesssessessassesssessassanse
Section 18.8. INVOKING StOTEA ROULINES.....cc.eevverierreririetiienieseseetetertestessestetestestestessessaestessessessessesssensessessassessesssensensessense
Section 18.9. Obtaining Stored Routine Metadata
Section 18.10. Stored Routine Privileges and Execution Security
CRADTET 10. TTIGEETS e euvetererrerreeietetestestessesestestestestessesseestestetestessessassesstensestessessessessaestestensensessessesssensensensessessesseessentensessassasse
Section 19.1. Reasons to Use Triggers...
SECHION 10.2. TTIZZET COMCEPLS...eevirruerieriterierierterteseeeteestessteestestestestessaessesssesssesssassessesssesssesseesseessesssesssesssesssesssesssesasnne
SeCtion 19.3. CreatiNg @ TTIZEET......ccveeeuierreereeeeerteetenstesteestesteseeesse s sessseessesestesstesstesseesseesssesnsesssesssessessseensesasessseessassseesnes
Section 19.4. Restrictions on Triggers
Section 19.5. Referring to Old and New COIUMN VALUES.........cccerieireerierienieneneseertessesseseeeesessessessessesssessessessassassssssessessens 309
Section 19.6. DESITOYING @ TTIZEET......cocuerrterierrierieeeententeetentestesteseestesueeeseesseesseesseesseesntessessseessesaseesseessessseessessseesseessesne
Section 19.7. Privileges Required for Triggers...
Chapter 20. Obtaining Database IMETAAATA..........cceeerrerrerieriieriereseeiertesteseseeeestessessessessesssessessessassassesssessessassessesssessessessassasses
Section 20.1. Overview of Metadata AcCeSs METhOdS.cveerueeiereeririerirenicteee ettt ettt sae s e s e nees
Section 20.2. Using INFORMATION_SCHEMA to Obtain Metadata..
Section 20.3. Using SHOW and DESCRIBE t0 Obtain Metadata..........ccceeveerverererriererreenieneersenessessesesssesseseessessesasssessens
Section 20.4. Using mysqlshow to Obtain Metadatal.........ccceererreerieririenienertetesieseetestesieseestessessestessessesssessessessessessessens
Chapter 21. Debugging MySQL Applications..................
Section 21.1. Interpreting Error Messages......
Section 21.2. The SHOW WARNINGS Statement
Section 21.3. The SHOW ERRORS Statement......
Section 21.4. The perror Utility.......ccccecveueeee.
Chapter 22. Basic Optimizations........cccceceevveeverrerrennenne
Section 22.1. Overview of Optimization Principles..
Section 22.2. Using Indexes for Optimization...
Section 22.3. General Query Enhancement.............
Section 22.4. Choosing Appropriate Storage Engines....
Section 22.5. NOrmaliZation..........cc.eevereeeeeceenreecreereereeeneeeessnenseenns

MySQL DBA EXAINS.cccttetcecscaccsceccscescssescosessescscessssesssssssessssessssessssessessscese 343

MySQL DBA I Exam... 344
Chapter 23. MYSQL ATCRITECTUTE.ceveeterierieierteetertestesert et e see e et ste st st estes st et etesbessasssessessaestesessesssensessesseestessessesssessessesses 345
SEeCtion 23.1. CHENT/SEIVET OVEIVIEW.....cccuveeeeeiereteeseerieeteesteeseeseestessseesseesseesssesssesssassseesssesssessseesssesseesssesssesssessseesssesssasnns 345
Section 23.2. COMMUNICATION PTOTOCOIS.cciuieiiieeiieeieeiteecteeeteeeeeeteesteerteeeteeseeeseeeseesseesssessseessesssessssssseessessesssesssesseesees 346
Section 23.3. The SQL Parser and Storage ENGINe TIETS.......cccccevereruerererinienieerenreneeesseereeeesseesesseeeseesessessesessessesseneeseses 348
Section 23.4. HOW MySQL USES DiSK SPACE.....cccuerueruirriemieieieterierienenieetete st stestessee et et etessesbes st sst et eseesaessesseeseeneentensensense 349
Section 23.5. HOW MYSQL USES MEIMOTY.....c..ccecterierierrieriieriterirestesstesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssasssesssasssassseessens 349
Chapter 24. Starting, Stopping, and Configuring MySQL........ccccecuerertrriererrierienieniterieseestessesesssessesssessesesseessessessaessessasssessens 352
Section 24.1. Types of MySQL DiStIIDULIONS.ccuerutiitirtieieierieeertetestesteet ettt et sttt et e s e st et e ssesae et e te b esse s e ebessesneen 352
Section 24.2. Starting and Stopping MySQL Server 0n WINAOWS........cccceiereerienienierrueneseessesiesseessessesssessessesssessesssessessassasns 354
Section 24.3. Starting and Stopping MySQL Server 0N UNIX........cccevverererrerierserrtertestessesesesessessesssessessessessessessassessssssessesses 358
Section 24.4. Runtime MySQL CONnfiguration.coceveeruerieiritenenieiertesieetetestesree e stessessestessesseestestesse st stessesseeneessessesaens 361
Section 24.5. LOZ And STATUS FIlES.......ccviviiriirieierienenteiteniestetestesteseessessesseessessassassesssessessesssessassassssssessesseessessassassasssessessens 365
Section 24.6. Loading Time Zone TabDIEs.........cccciiriiriiriirieninineetetertetestestessesse st st e ste st estestestessessessassessssssensensessessessessesssenees 368
Section 24.7. Security-Related CONfIGUIAtION.cc.eitiiuiriieiiierereeteteette ettt s et see st ste s b st e saesbesseentenne 369

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide

Section 24.8. Setting the Default SQL IMOGE.cc.coueriiriiriieieieierientetertesteette e te et esre st et e st esbe et e e et essesse et e stessesseententensessenns 370
Section 24.9. UPGrading MYSQL........cccecueeierrerrteruereereestesesesssessesesssessessessesssessessesssessassessssssessessssssessassessssssessessaessassassassaens 370
Chapter 25. Client Programs for DBA WOTK........coccecteriereritinierenteteseetestesestestestesieesessestestessessesssessesssessessessasssessessesssessesses 372
Section 25.1. Overview of AdMINIStrative CHENTS.......cccveeieerierieeieeieriteerteestee e este st ee e e steesseesaeesseessesseessesssessseesssessessseesseens 372
Section 25.2. MYSQL AQMINISITATOTccvertertererreeriertesteseeeestestesesesseessessessessasssessessessessesssessessassasssessessessassssssessessessesssessanse 373
SECHION 25.3. TIYSGL . cuteuteteienieeiertetetertesteste st e et e b et e besbes st st et et esbessessesstestestestessassassaestestesbesessassesaeentessensessensesseessensensente 374
SeCtion 25.4. MYSGIAAINIIL c..coueiiiiriirieieieeeee ettt ettt s et ea et st et s b st et e besbesat et et esbeebe e st et e besse e st eneensesennens 374
SECHION 25.5. TNYSQIITIPOT . .cveeveetieteeeertertertertesessestetessessessassassessessssssessessassessessesseessessessessessassessessasssessessessessessessesssessensassanse 375
SECtiON 25.6. MYSGLAUIMP. ..c.ueeuieiiierierirteterteseee et et ste st et et e testeste st et essessesstestessessassasasensensessesstentessensessesssensessessesseessensense 375
Section 25.7. Client Program LIMItatiOns.......c.cceeeeererrernteitenienertetetestesesteee st e testesse st et et stesaesbe e e st et e sessesseenteeeseessennes 376

Chapter 26. MYSQL AQIMINISITATOT.c.ceieieieieriererererertestestesteseseessessessessessessesssessessassassassassssssessassessessesssessessassassassassssssans 377
Section 26.1. MySQL AdminiStrator Capabilities.........ceveeerrirriereriiirieniriteieseneeterieseetestestesseestessesseestessessesssessessessesssessenne 377
Section 26.2. Using MySQL AdMINISIIATOT.......cocecviriiiriiiiiiiieiecnetete ettt s et n e sae s 378

Section 26.3. Server Monitoring CapabilitiEs.......ccecveverteriererererierertetertestestestestestessesessesesssessessessessessessessessesssessessessassanse 380

Section 26.4. SEIVEr CONFIGUIATION.cc.eeirieierierterereetetert ettt eee et estesbes e st et estesaessesseeseestentessassessessesnsensensessessasseessanes 383

Section 26.5. Backup and Restore Capabilities.ccoueeuieirriirenirierierietetesteeeete ettt ettt et esbe st e sae st eesenne 385

Section 26.6. MySQL Administrator SyStem Tray MONITOT........cccevereerterrerererierseersesesessessessessesesesssessessassasssssessessassessens 386
Chapter 27. CharaCter St SUPPOTL.......coeeieterteriiriereritetertestestetetestestessestestessessesstestessessessassesssensessessesssessessessassasasssessessessens

Section 27.1. Performance Issues
Section 27.2. Choosing Data Types for Character Columns

CRAPLET 28. LOCKING.veeueeuieuieieteteniestestersestetetetestestestestessessessesstentestessessessessessesstsstentestestessessessessessessessesssesensessessessessassessees
Section 28.1. Locking Concepts
Section 28.2. EXPIiCit TADIE LOCKING.cccieieiirierertiitintietertesesesstestesteeseestessesseessessesseessassassesssessessesssessassasssessensassaessassanns 392
Section 28.3. AAVISOTY LOCKITIG.....ccveruirtiriririeietetetentestesese st st ettt et saesae s s e s se st st et et e besbessessessesntenteseestensessensansassessannes 394

Chapter 29. Storage Engines
Section 29.1. MYSQL STOTage ENZINES......ccccevterriiriieriienieiieeiieriesiieesiessteestesstessteessessseesseessessseessesssesssesssassseessasssessseessassseessees 396
Section 29.2. The MYISAM ENZINE......ccccectrrierererierieteniesieseseetetestessessesseseessessessessessesssessessessassassesssessessessessassaessessessessasse 399
Section 29.3. The MERGE Engine
Section 29.4. The INNODB ENGINE.cc.cciverierieriireetertestestesteseseeeeeetetessessessessessessessesssessessessassessassassassassassssssessessassassessens
Section 29.5. The MEMORY ENZINE.....cc.coctirtiriiriiriniirieietertesienesestetestessessessesseestestessessassassessssssensessessessassesssensessessessassasns
Section 29.6. The FEDERATED Engine
Section 29.7. The CIUStEr STOTAZE EINGINE.cciruirieieieieieieterteniesesesseseeeestessessessessessessessesssessessessassassassessessesssessessessanses 426
Section 29.8. Other StOrage ENGINES.cccueeiririiirieririeieseseetetestest et estesteseestessesstestessessassasssessessesssessessassesssessessesssessenses 427

Chapter 30. Table MaAINTENAIICE.cccceueeuirieienierteterteeteeteet et este st et este st s st et et essesae st e saesbe e st e st et esbesseeatentesbeeseentensensesseentensensas 428
Section 30.1. Types of Table Maintenance OPETatiOnS........ceceecveruereereerrerererseessesessesssessessesssessessassesssessassesssessassassesssessessens 428
Section 30.2. SQL Statements for Table MaiNtENAIICE.cccveevverireeiieereerieseeseeseeseeseesseesseesseessessseessasssesssesssesssesssesssesssens 429
Section 30.3. Client and Utility Programs for Table Maintenance..........cccecuevuererererererstenteseeneeseesresseeseseeseeseessessessessessenne 431
Section 30.4. Repairing INNODB TaDIES.......ccccetiriiriirieierienereeitenieseeeestestesseesessessesseessessessesssessassesseessessassesssessessassasssassanes 434
Section 30.5. Enabling MYISAM AUt0-REPAIT........ccectrterirerreniriereeenierteerteteesteesreeeeseetesesseessesse e sessesessetentseneenenseneesennen 435

Chapter 31. The INFORMATION_SCHEMA Database.........ccceeertrruererirrienienieneeitensesstetestessessestessessessteseessessesseessessesseeneeses 437
Section 31.1. INFORMATION_SCHEMA ACCESS SYINTAX.....cceruerrrerrreereerressuersuesseesieesssesssessseesaesssesssesssesssesssesssesssesssassssesns 437
Section 31.2. INFORMATION_SCHEMA VersuS SHOW........ccceeierirrirrterieniinieietesiesesesseessessessessesssessessessessssssessessessasssenes 439
Section 31.3. Limitations of INFORMATION_SCHEMAL.......ccccceeettrrerrientertesteetesseeesseesseesseesssesssesssesssessssssseesssesssssssessses 440

Chapter 32. Data Backup and Recovery Methods....

Section 32.1. Introduction.........ccceceeeeveecveevennnen.

Section 32.2. Binary Versus Textual Backups
Section 32.3. Making Binary Backups..

Section 32.4. Making Text Backups........cccceeuueue

Section 32.5. Backing Up Log and Status Files.........ccccuiiiiiiiiiniiiiiiiiiiictecncneesiesete et s

Section 32.6. Replication as an Aid 10 BACKUD......ccccueciireririieriinietesteseee et esteseetestestes e st esaesseesaessassassssssessesssessensansessaessens

Section 32.7. MySQL Cluster as Disaster Prevention..

Section 32.8. DAt RECOVETY......c.ciuiiiiiiiiieieieiriet ettt ettt et a et e a et b et e e sae st sae s et sesnen

MySQL DBA II Exam..'......'......'......'......... 456

Chapter 33. Using Stored Routines and Triggers for AAMiNiStratioN........cccuecverereeriesesieerienerreesesieesseseseessessessessessesssessenses 457

Section 33.1. Using Stored Routines and Triggers for Security PUIPOSES.........coceeureruerrreruertrinieneeeneeeeeseeeereseeesseseeseesennes 457

Section 33.2. Using Stored Routines to Enhance Performance...........ccccoeeerierenininnienenintereesieeeeteiesreseeeeseesseeeeseessenne 459
Chapter 34. USEr MANAZEIMENT.ccververterrerrererereriereestessessessessessassassassasssessessessessessessessessesssessessessessessassassassassssssessessessassassans 460

Section 34.1. User Account Management....

Section 34.2. ClIENt ACCESS CONTIOL......c.cicuieiieeeieesieeieeiesteetese e et e steeeteestesteeeessteesee st esseasseesseessessassseensasssesnsesssesssesseesseensenns 473
Chapter 35. Securing the MySQL INStAllAtioN......cccceeverirerrterienieneneseseeeeeetessessessessessessessessesssessessessessassessassessesssessessassassanse 478

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide

SECHION 35.1. SECUTTLY ISSUES. ..c.ueeuteieetiriieterteetteteteste et st et et et et e s be s bt st e st e s st e st et et e be s st et e s esstent et e bessesatesesstestetesenseentensens 478
Section 35.2. OPerating SYSLEIM SECUTILY......coveiriiriirierrtertententesteeitesteeiteestesteestesssesseessesssessseessessseesseessaesaessaessesssesssenns 479
SeCtion 35.3. FIlESYSTEIM SECUTILY.....ceoereririeiiriieeetetertere sttt st s et e st st et et e besbesse st esbesses st estestessessesasensensessessaentensanse 480
Section 35.4. LOg FileS And SECUTILY.....cceeirieiiriertirieeteteteteet ettt ettt sttt et et s b sttt sa e b b e st et e b e besae st e neeees 482
SECHION 35.5. NEIWOTK SECUTTLY. .. veevereririieriertintieietetentesteseseseetessessessessesseessessessassessesssessessessassessesssensessassassessesssessessessasses 483
Section 35.6. FEDERATED Table SECUTILY.cccetetruetrierieereieierteereete ettt eseete et e seeeseseeseese st se st sesessesenessennsnenns 487
Chapter 36. Upgrade-Related SECUTILY ISSUES......c.couieiiuiriiriiiiiirieieieiciet ettt et sa et be s saens 488
Section 36.1. Upgrading the Privilege TabDIES.......cccccieieerierierierienineetestestesesteetessessessessesssessessessassassssssessessessessaessessassassases 488
Section 36.2. Security-Related SQL MO VAIUES........ccererrereriririeietetetesiesiesieseseseesessessessessessessessesssessessessessessessassasse 489
Chapter 37. OptmIZING QUETIES.....cc.eertriririeterierteeteeteettet ettt ettt st ettt et e besbe s b e s bt s at st et e besbessessee st e st et et esebensessessesntant 491
Section 37.1. Identifying Candidates for QUETY ANALYSIS.........ccevererrerreerieneneseeeestessesseseseesessessesassessessaessessessessesssessessanse 491

Section 37.2. Using EXPLAIN 10 ANAlyZe QUETIES.....ccccecerrtrrtererieierienienertetessesseestetessesseseessessessessesssessessessesssessessessasssense 493
Section 37.3. Using SHOW WARNINGS fOr OptimiZation.........ccceeeeieirierienenentetenteseesreeseetestessessessesteseessessesseeseesensense 505
Section 37.4. MYISAM INAEX CACHING.cccoieieriecieriereiterteneeeestestesteseesessessesseessessassessesssessessessasssassassessasssensassasssessassassanns 505
Chapter 38. Optimizing DatabDaSES.ceceeteterierierierierereriertertetertestestestesteseseete st etestessessessessesstestessestensessessessassassassasaessesens 508

Section 38.1. General Table OPtiMIZATIONS.ccceeieirtiriererteeeeeet ettt et ettt ettt be st et e s s s st et e stesbeeseeseennens 508
SeCtion 38.2. NOIMAIIZATION.c.cecieeieereeieieeeeeeeeeteeeeesteeeteesseesseeeseessaeeseesseesseessseseessesaesssesaenseenssessessesasseesassssesesssennns 510
Section 38.3. MyISAM-SPecific OPtMIZATIONS.cccverierererieriitetertesteseeeee ettt estessesse st st et et estesbesbassassasssessensessessessesnees 516
Section 38.4. InnoDB-Specific Optimizations
Section 38.5. MERGE-Specific Optimizations

Section 38.6. MEMORY-Specific OptimiZations.ccceeeeerteruerenieieienienieneseseestestessessesseestesessessessessesssessessessessassasssensense 528
Chapter 39. Optimizing the Server

Section 39.1. Interpreting mysqld Server INfOrmMation........ccceecvererieriieriniesieseeeestesteeeesteseeseessessesssessessesssessessesssessessassanns 529

Section 39.2. MeaSuring SEIVET LOAW.......cceeeriritirierinieierienienesitestesseetetestessessestessessesseessessessassasssessessesssessessassassasssessessens 536

Section 39.3. Tuning Memory Parameters..

Section 39.4. USINg the QUETY CACKE.coceeiiiiriiriirieieiectesieseee et et esteste st e s estestessessessesstessessessesssessessessassassessesssessessessessees
Chapter 40. Interpreting DiagNOSTIC MESSAZES. ...co.eeverrerererrterteriereritersessestestessessesessessessessesssessessessasssessessessesssessessessasssessense

Section 40.1. Sources of Diagnostic Information

Section 40.2. Using the Error Log for DiagnoStiC PUIPOSES.......cvecueeererierieerteriereseseeeessessessessesssssessessessessesssessessessassassasnes 547

Section 40.3. Using The Slow Query Log for Diagnostic PUIPOSES........ccevtererererrirrieietentestesiesiesesesessessessessessessessessessens 548
Chapter 41. Optimizing the Environment

Section 41.1. Choosing Hardware for MYSQL USE.........ccecueruerueruereseeesseereesuessessessessesassessassssssessessessassessessassasssessessassassassanss 550

Section 41.2. Configuring DiSKs for MYSQL USE.......ccccectertererrerierrierienienrentetestessesseseseessessessessassasssessessessessssssessessessassasssense 551

SECHION 41.3. NEIWOTK ISSUES. ... eeeuiieieeiieiereeeteeteeteetestestestesstesstesseasseesssasseesssasssesseasseesseesseesseesssesseesssesseesssesssesseesseesseesnes 555

Section 41.4. Optimizing the Operating System for MYSQL USE.......cccecuertererreerueseeriereseessesesssessesesssessessesssessessasssessesssenee 555
Chapter 42. SCAlING MYSQL......ccceerieiirierereritesteseetetesteseseestestessessesstesessessesssessessessessssssessessesstestessessassasssessessesssessessessasasssens 557

Section 42.1. USING MUILIPLE SEIVETS.ccueriririeieieieierteeteeteeieeteetet ettt e saesae st st et stesteseessesse e st et et et estessessessessesatentns 557

SECHION 42.2. REPICATION. .. ccutitiieierientistieeeteitestestestestestestesteeseestessessessessessessessesssessessessessassassassessesssessessessessessessassesseessessenses 559
APPENAIXES.curuinireiairianriranrerassiresseresscsecscsssscssssssessssesssssssssssssssssssssssssssssess 507
APPENAIX A. RETEIEIICES. ...cuveureiteuieiiteieertete ettt ettt ettt b et et b et a et e s e et et a et st et s et et sesa et beseeaeese s eaesaeasentsennen 568
Appendix B. Other Offers........cciiiiiiiiiii et 569

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page: Return to Table of Contents

MySQL 5.0 Certification Study Guide
Copyright © 2006 by MySQL AB

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32812-7
Library of Congress Catalog Card Number: 2005902140
Printed in the United States of America

First Printing: August 2005

09 08 07 6 5 4

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Pearson Education cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as is” basis.

Bulk Sales

Pearson Education offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 2 Return to Table of Contents

N

M
l:'lPress

ASSOCIATE PUBLISHER MANAGING EDITOR INDEXER DESIGNER
Mark Taber Charlotte Clapp Ken Johnson Gary Adair
ACQUISITIONS EDITOR PROJECT EDITOR TECHNICAL EDITOR PAGE LAYOUT
Shelley Johnston George E. Nedeff MySQL AB Brad Chinn
DEVELOPMENT EDITOR COPY EDITOR PUBLISHING Toi Davis
Damon Jordan Mike Henry COORDINATOR

Vanessa Evans

MySQLe Press is the exclusive publisher of technology books and materials that have been authorized by
MySQL AB. MySQL Press books are written and reviewed by the world's leading authorities on MySQL technolo-
gies, and are edited, produced, and distributed by the Que/Sams Publishing group of Pearson Education, the
worldwide leader in integrated education and computer technology publishing. For more information on MySQL
Press and MySQL Press books, please go to www.mysqlpress.com.

AN

MySsQqQu.

MYsQaL HQ GERMANY, AUSTRIA AND FRANCE
MySQL AB SWITZERLAND MySQL AB (France)
Bangardsgatan 8 MySQL GmbH 123, rue du Faubourg St. Antoine
S-753 20 Uppsala SchlosserstraBe 4 75011, Paris
Sweden D-72622 Niirtingen France
UNITED STATES Germany
MySQL Inc. FINLAND
2510 Fairview Avenue East MySQL Finland Oy
Seattle, WA 98102 Tekniikantie 21
USA FIN-02150 Espoo
Finland

MySQLe AB develops, markets, and supports a family of high-performance, affordable database servers and
tools. MySQL AB is the sole owner of the MySQL server source code, the MySQL trademark, and the mysql.com
domain. For information on MySQL AB and MySQL AB products, please go to www.mysgl.com or the following
areas of the MySQL Web site:

L] Training information: www.mysql.com/training
L] Support services: www.mysql.com/support

L] Consulting services: www.mysgl.com/consulting

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prages Return to Table of Contents

Foreword

For the past many years, the MySQLe Relational Database Management System has been
the most widely adopted Open Source database system in the world. With the release of
MySQL version 5.0, adoption of MySQL into the enterprise sector of companies is certain
to grow even faster than ever before. When the first edition of the MySQL Certification
Study Guide was published in April 2004, we noted how MySQL adoption had grown to an
estimated 4 million installations. At the time of writing, that estimate has risen to more than
6 million—and by the time you read this, who knows?

With that kind of adoption rate, the need for qualified personnel to write applications for,
and to manage, MySQL installations increases dramatically. Not only will many more com-
panies be moving to MySQL; many companies that already employ MySQL will be using it
in larger and larger parts of their organizations, perhaps to support new functionality, per-
haps to replace legacy systems.

Whether you are new to MySQL certification, know a little bit about it, or already hold the
Core or Professional certification titles, you should know that many changes are taking place
in the transition from the version 4.0/4.1 exams to the version 5.0 exams.

When we launched the MySQL Certification program in late 2002, two exams gave us
ample opportunity to test on most, if not all, of the important bits of the MySQL universe.
When MySQL 4.1 came out, a small—but significant—set of features was added: prepared
statements, better character set support, subqueries, and more. The additional feature list of
MySQL version 5.0 is much too long to mention here. Suffice to say, there is no way we
could pack all of this into just two exams, and so we have had to revisit and revise the struc-
ture of the certification and the exams.

Another reason to revisit the exam structure are the changes that have evolved among
MySQL users in the last few years. When the certification program was launched, a com-
mon situation in a company using MySQL was that those who wrote application programs
were also the ones doing the database administration. This is of course still the case in many
places, but as MySQL adoption grows, a trend of increasing specialization is becoming
apparent. Today, there is often a more clear-cut split between those who do application
development, and those who do database administration. All in all, this gave us another rea-
son to look into the existing certification exam structure and consider whether it meets the
needs of our users.

Finally, there was a small, but to many certification candidates very annoying, thing about
the MySQL Certification program: The titles of “Core” and “Professional” do not really
convey what the certified user does as part of his or her workday. Moreover, what do you ca//
someone that is Core certified? It’s not exactly easy to come up with a snappy title to go
along with that. Those issues, too, have been addressed by the new exam layout.

So here is what all of those changes amount to for the MySQL version 5.0 exams:

= There are still two levels of certification to pass, but they are now called Developer and
Database Administrator (DBA) certifications.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 4 Return to Table of Contents

= The titles that belong with the two certification levels will be Certified MySQL Developer
(CMDEV) and Certified MySQL Database Administrator (CMDBA), respectively.

= For the 4.x exams, having the Core certification was a prerequisite to attaining the
Professional certification. There is no longer such a prerequisite requirement.

= There will be two exams per certification level. If you wish to attain both titles, you will
need to pass four exams.

The MySQL Developer Certification ensures that the candidate knows and is able to make
use of all the features of MySQL that are needed to develop and maintain applications that
use MySQL for back-end storage.

The MySQL Database Administrator Certification attests that the person holding the certifi-
cation knows how to maintain and optimize an installation of one or more MySQL servers,

and perform administrative tasks such as monitoring the server, making backups, and so
forth.

Passing a MySQL certification exam is no easy feat. That’s not just me saying so; the statis-
tics tell the story: 40 to 50 percent will fail an exam the first time they take it. So how do
you better your chances of passing? This study guide gives you the basis for doing just that:
By reading the main text, you get the needed background knowledge; by following the exam-
ples and doing the exercises, you get the understanding of what is going on inside MySQL
whenever you perform a given action.

There is of course something that no amount of reading and exercise solving can give you,
and that is the experience that allows you to extrapolate from knowledge and understanding
and tackling situations that might at first seem unfamiliar. This you can get only by hands-
on work with MySQL. To this end, MySQL AB (the company that develops MySQL and
related products and services) offers several training programs that could be beneficial to
you. More information on the MySQL training and certification programs may be found on
the MySQL AB Web site (see http://www.mysql.com/training).

Thanks go to Lisa Scothern, Trudy Pelzer and Peter Gulutzan, each of whom made
extensive reviews on the book’s contents and provided a lot of valuable feedback.

Working with people like Stefan and Paul is always a great source of inspiration. And when
the result is something like this book, the sense of enjoyment is certainly not lessened. As
for you, dear reader, I hope you will feel some of the same enjoyment when you get to frame
your new MySQL 5.0 certificate and hang it on the wall.

Good luck on your exams!

— Carsten Pedersen, Certification Manager, MySQL AB

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prages Return to Table of Contents

About the Authors

Paul DuBois is a member of the MySQL documentation team, a database administrator,
and a leader in the Open Source and MySQL communities. He contributed to the online
documentation for the MySQL and is the author of MySQL (Developer’s Library), MySQL
and Per{ for the Web (New Riders Publishing), and MySQL Cookbook, Using csh and tesh, and
Software Portability with imake (O’Reilly and Associates).

Stefan Hinz is the MySQL documentation team lead, a former MySQL trainer, and the
German translator of the MySQL Reference Manual. He is also the translator of Paul’s
MySQL Cookbook (O’Reilly and Associates) and translator and author of MySQL-related
German books. Stefan passed the MySQL Certification exam before he joined MySQL AB.

Carsten Pedersen is the MySQL AB certification manager who has led the development of
the MySQL certification program since its inception in 2002. He has lectured at confer-
ences and taught MySQL courses in many countries, from Silicon Valley, USA in the west,
across Europe, to Beijing, China, in the East. Before joining MySQL AB, he administered
databases in several production systems and maintained a very popular “MySQL FAQ and
Tools” Internet site.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage6 Return to Table of Contents

Acknowledgments
We would like to thank all of our colleagues at MySQL who have helped build the certifi-

cation program over the past 3 years, and without whom this book wouldn’t have come into
existence. A special thank you to Kaj Arno, who was the person to conceive and initiate the
and initiate the MySQL certification program and to Ulf Sandberg, for his continued sup-
port of the program.

References

The MySQL Reference Manual is the primary source of information on MySQL. It is
available in book form and online in several formats and languages from the MySQL AB
Web site (http://dev.mysql.com).

The MySQL Developer’s Zone at http://dev.mysql.com is constantly updated with
technical articles, many of which refer to subjects covered in this book.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage7 Return to Table of Contents

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you’re willing to pass our
Way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that 1 cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone number or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: mysqlpress@pearsoned.com

Mail: Mark Taber
Associate Publisher
Pearson Education/MySQL Press
800 East 96th Street
Indianapolis, IN 46240 USA

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prages Return to Table of Contents

Introduction

About This Book

This is a study guide for the MySQL Developer Certification and the MySQL Database
Administraror Certification. As such, it is a primer for the MySQL certification exams, but not
a replacement for the MySQL Reference Manual or any other MySQL documentation. As
part of your preparation for an exam, make sure that you are thoroughly familiar with the
MySQL Reference Manual, the MySQL Query Browser Manual (for the Developer exams)

and the MySQL Administrator Manual (for the Database Administrator exams). All of these
manuals are available on-line from the MySQL Developer Zone Web site at
http://dev.mysql.com.

This introduction provides some general hints on what to expect from the exam, what to do
in order to take the exam, what happens on the day of the exam, and what happens after you
have passed the exam.

The remainder of this study guide covers each section of the exams, as defined in the
MySQL 5.0 Certification Candidate Guide. The book is divided into two main parts, each
corresponding to one of the two certifications:

= Chapter 1, “Client/Server Concepts,” through Chapter 22, “Basic Optimizations,”
pertain to the Developer certification.

» Chapter 23, “MySQL Architecture,” through Chapter 42, “Scaling MySQL,” pertain to
the Database Administrator certification.

Each of the sections is further subdivided into Parts I and II, as follows:
» Chapter 1, “Client/Server Concepts,” through Chapter 11, “Updating Data,” pertain to
the Developer-I exam.
» Chapter 12, “Joins,” through Chapter 22, “Basic Optimizations,” pertain to the
Developer-II exam.
» Chapter 23, “MySQL Architecture,” through Chapter 32, “Data Backup and Recovery
Methods,” pertain to the DBA-I exam.

» Chapter 33, “Using Stored Routines and Triggers for Administration,” through
Chapter 42, “Scaling MySQL,” pertain to the DBA-II exam.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prageo Return to Table of Contents

2 Introduction

However, the split between parts I and II within a certification title may not always be as
clear-cut as is suggested by the chapter divisions. Therefore, you should be familiar with all
of the material presented for a certification level before going to any particular exam.

There are many cross-references within this book that go across the “boundary” between
the two certifications. For example, Chapter 22, “Basic Optimizations,” which is in the
Developer part of the book, contains a cross reference to Chapter 37, “Optimizing
Queries,” which is in the DBA part of the book. In cases like this, you are not expected to
read the chapter outside the exam for which you're studying. However, doing so will obvi-
ously increase your understanding of the subject area.

You might find that the wording of a topic covered in this guide corresponds exactly to the
wording of a question on an exam. However, that is the exception. Rote memorization of
the material in this guide will not be very effective in helping you pass the exam. You need
to understand the principles discussed so that you can apply them to the exam questions.
Working through the exercises will be very beneficial in this respect. If you find that you are
still having difficulties with some of the materials, you might want to consider the training
classes offered by MySQL AB. These classes are presented in a format that facilitates greater
understanding through interaction with the instructor.

Because the study guide is targeted to MySQL 5.0, it doesn’t normally point out when fea-
tures are unavailable in earlier versions (nor are you expected to know about this on the
exams). This differs from what you might be used to in the MySQL Reference Manual.

Sample Exercises

The CD-ROM that accompanies this book has a number of sample exercises. It’s essential
that you work through the exercises to test your knowledge. Doing so will prepare you to
take the exam far better than just reading the text. Another reason to read the exercises is
that occasionally they augment a topic with more detail than is given in the body of the
chapter.

Note that the exercises are not always in the same format as the exam questions. The exam
questions are in a format that is suited for resting your knowledge. The exercises are
designed to help you get a better understanding of the contents of this book, and to help you
prove to yourself that you really grasp the topics covered.

Other Required Reading

This book will give you a good overall insight into everything you need to know for
MySQL certification. It will not tell you every little detail about how things work in
MySQL; nor does it tell you every detail you need to know about actually attending the
exam. Other material that you can take advantage of is listed in the following sections.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 10 Return to Table of Contents

Introduction 3

Manuals

= Before going to any of the exams, make sure you have familiarized yourself with the
MySQL Reference Manual. Familiarizing yourself with the manual is not the same as
knowing every word in it, but you should at least skim through it and look more closely
at those parts that pertain to the particular exam which you are going to attend.

= Before taking either of the Developer exams, you should read the MySQL Query
Browser Manual.

= Before taking either of the DBA exams, you should read the MySQL Administrator
Manual.

Each of the manuals just listed is available on the MySQL developer Web site,
http://dev.mysql.com. You will also find many good technical articles on that Web site.
These articles do not make up part of the exam curriculum per se, but they explain many of
the concepts presented in this book in a different way and may enable you to get a better
perspective on some details.

Sample Data

Almost all examples and exercises in this study guide use the world database as the sample
data set. The accompanying CD-ROM contains the data for this database and instructions
that describe how to create and populate the database for use with your own MySQL
installation.

Study Guide Errata

Although this book was thoroughly checked for correctness prior to publication, errors
might remain. Any errors found after publication are noted at http://waw.mysq1.com/

certification/studyguides.

Certification Information at www.mysq1.com

The Certification pages at http://waw.mysql.com/certification contain the overview of the
current state of all things you need to know about the MySQL certification program. It is
recommended that you read through this information as you start planning your certifica-
tion, as well as when you plan to go to exams to ensure that you are aware of any last-
minute updates.

The Certification area of the MySQL Web site provides comprehensive information on the
certifications offered, upcoming certifications and betas, training offers, and so forth. After
you’ve taken a certification exam, the Web site is also where you will be able to check the
status of your certification.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 1 Return to Table of Contents

4 Introduction

The MySQL Certification Candidate Guide

Of particular interest on the MySQL certification Web pages is the MySQL Certification
Candidate Guide. It contains the overall description of the MySQL Certification program, as
well as all the practical information you will need in order to write an exam. The latest ver-
sion of the Candidate Guide can be found at http://www.mysq1.com/certification/
candguide.

The Candidate Guide contains a list of items providing practical advice to you as the candi-
date, an overview of the entire certification program, prices, policies, practical details
regarding going to the exam, and so forth.

The Candidate Guide includes the MySQL Certification Non-Disclosure and Logo Usage
Agreement (NDA/LUA). You’ll be asked to agree to the agreement when you go to take the
exam. At that point, legal agreements will probably be the last thing on your mind, so read-
ing the agreement before you go will save you some distraction and also some exam time.

The Certification Mailing List

Anyone considering pursuing MySQL certification should subscribe to the MySQL
Certification mailing list. This is a low-volume list (messages go out once every two months
or s0), to which MySQL AB posts news related to the certification program. The subscrip-
tion address for the mailing list is certification-subscribe@lists.mysql.com. To subscribe,
send an empty message to that address.

Conventions Used in This Book

This section explains the conventions used in this study guide.

Text in this style is used for program and shell script names, SQL keywords, and com-
mand output.

Text in this style represents input that you would type while entering a command or state-
ment.

Text in this style represents variable input for which you’re expected to enter a value of
your own choosing. Some examples show commands or statements that aren’t meant to be
entered exactly as shown. Thus, in an example such as the following, you would substitute
the name of some particular table for table_name:

SELECT * FROM table_name;

In syntax descriptions, square brackets indicate optional information. For example, the fol-
lowing syntax for the DROP TABLE statement indicates that you can invoke the statement with
or without an IF EXISTS clause:

DROP TABLE [IF EXISTS] table_name;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 12 Return to Table of Contents

Introduction 5

Lists of items are shown with items separated by vertical bars. If choosing an item is option-
al, the list is enclosed within square brackets. If choosing an item is mandatory, the list is
enclosed within curly braces:

[iteml | item2 | item3]

{ iteml | item2 | item3 }

In most cases, SQL statements are shown with a trailing semicolon character (‘;’). The
semicolon indicates where the statement ends and is useful particularly in reading multiple-
statement examples. However, the semicolon is not part of the statement itself.

If a statement is shown together with the output that it produces, it’s shown preceded by a
mysq1> prompt. An example shown in this manner is meant to illustrate the output you
would see were you to issue the statement using the mysq1 client program. For example, a
section that discusses the use of the VERSION() function might contain an example like this:

mysq1> SELECT VERSIONQ);

o +
| VERSIONQ |
Fommm e +
| 5.0.10-beta-log |
fommmmmmm oo +

Some commands are intended to be invoked from the command line, such as from a
Windows console window prompt or from a Unix shell prompt. In this guide, these com-
mands are shown preceded by a shel1> prompt. Some Windows-specific examples use a
prompt that begins with C:. The prompt you will actually see on your own system depends
on your command interpreter and the prompt settings you use. (The prompt is likely to be
C:\> for a Windows console and % or $ for a Unix shell.)

SQL keywords such as SELECT or ORDER BY aren’t case sensitive in MySQL and may be speci-
fied in any lettercase when you issue queries. However, for this guide, keywords are written
in uppercase letters to help make it clear when they’re being used as keywords and not in a
merely descriptive sense. For example, “UPDATE statement” refers to a particular kind of SQL
statement (one that begins with the keyword UPDATE), whereas “update statement” is a
descriptive term that refers more generally to any kind of statement that updates or modifies
data. The latter term includes UPDATE statements, but also other statements such as INSERT,
REPLACE, and DELETE.

Sample commands generally omit options for specifying connection parameters, such as
--host or --user to specify the server host or your MySQL username. It’s assumed that
you’ll supply such options as necessary. Chapter 1, “Client/Server Concepts,” discusses con-
nection parameter options.

In answers to exercises that involve invocation of client programs, you might also have to
provide options for connection parameters. Those options generally are not shown in the
answers.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 13 Return to Table of Contents

6 Introduction

Running MySQL on Microsoft Windows

Windows-specific material in this Guide (and the certification exams) assumes a version of
Windows that is based on Windows N'T. This includes Windows NT, 2000, XP, and 2003.
It does not include Windows 95, 98, or Me.

About the Exams

To take a MySQL certification exam, you must go to a Pearson VUE testing center.
MySQL AB creates the exams and defines the content, the passing score, and so forth.
Pearson VUE is responsible for delivering the exams to candidates worldwide.

Registering for an Exam

There are three ways to register for an exam:

= You can use the Pearson VUE Web site, http://www.vue.com/mysql. Note that you
must pre-register on the Web site to set up an account with VUE. VUE processes your
application and notifies you when your account is ready. This process usually takes
about 24 hours. After your account has been set up, you can register for the exam you
want to take.

= You can call one of the VUE call centers. The telephone numbers are listed in on the
Pearson VUE Web site: http://www.vue.com/contact/mysql.

= You can register directly at your local VUE test center on the day of the exam. A com-
plete list of the test centers can be found on the Web at http://www.vue.com/mysql.
Click on the Test Centers link about halfway down the page to find a testing center
near you. Note that many test centers have limited hours of operation, so it’s always a
good idea to call ahead to ensure that you can be accommodated at the time you want
to take the exam.

MySQL AB recommends that you use the VUE Web site for exam registration and pay-
ment, but you're welcome to use any method you choose.

If you register through the Web or a call center, a receipt will be sent to you as soon as the
registration process is completed. If you register directly at the test center, please ask for
your receipt when you submit payment.

Going to the Exam

On the day of your exam, you should ensure that you arrive at the test center well ahead of
the appointed time (at least 15 minutes early is recommended). When you arrive at the test-
ing center, you will be asked by the test administrator to:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 14 Return to Table of Contents

Introduction 7

1. Sign the test log.

2. Provide two forms of identification. One must contain your address, and one must be a

photo ID.

3. Sign a page explaining the test center rules and procedures.

After you’ve completed these steps, you’ll be taken to your testing station. You’ll be fur-
nished with a pen and scratch paper, or an erasable plastic board. During the exam, the test
administrator will be monitoring the testing room, usually through a glass partition in the
wall. As you come to the testing station, your exam will be called up on the screen and the
exam will start when you are ready. Remember to make any adjustments to your chair, desk,
screen, and so forth before the exam begins. Once the exam has begun, the clock will not be
stopped.

The first thing you will be asked on the exam is to accept the MySQL AB Certification Non-
Disclosure and Logo Usage Agreement. As mentioned earlier, it’s a good idea to have read the
copy found in the MySQL Certification Candidate Guide before going to the exam, so you do
not have to spend exam time reading and understanding what it says.

VUE C Candidate [993-999]

MySQL AB Certification Non-Disclosure and Logo Usage Agreement
Introduction

Before taking any test under the MySQL AB Certification Program (a "Certification Exam"), you will be required to accept
the terms of this MySQL AB Certification MNon-Disclosure and Logo Usage Agreement (this "Agreement"),

In addition, before using any Certification Logo (as defined below), you will be required to pass a Certification Exam, and
you must receive electronic or written notice from MySQL AR stating that you may use that particular Certification Logo.

This Agreement is created to protect your certification. By adhering to this Agreement (that is, keeping questions, answers
and other information related to the Certification Exams confidential and by ensuring that the Certification Logos are used
only by you), you help maintain the integrity of the MySQL AB Certification Program. This helps maintain the vatue of your
Certification(s)

By clicking the NEXT button below, you agree that the terms and conditions of this Agreement shall be valid and binding
upon you

Agreement

1. Neun-Disclosure Agreement

=i

Previous [B] | Next (N) | End Exam (E] | Comment (M)

FIGURE IN.1 The Certification Non-Disclosure and Logo Usage Agreement as
it will be presented at the testing station.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 15 Return to Table of Contents

8 Introduction

Taking the Exam

Each MySQL Certification Exam lasts 90 minutes. In that time, you must answer approxi-
mately 70 questions. Beta exams contain more questions, but also allow you more time to
answer them. For more information on Beta exams and their availability, see the certification
pages on http://www.mysql.com.

The questions and answers in any particular exam are drawn from a large question pool.
Each section of the exam will have a different number of questions, approximately propor-
tional to the percentages shown in the following tables. These were the percentages as
planned at the time this book went to press; although they are unlikely to change, you
should consult the MySQL Certification Candidate Guide for the exact details.

TABLE IN.1 Division of Questions on Exam Sections for the Developer Exams

MySQL Developer | Exam MySQL Developer Il Exam

Client/Server Concepts 5% Joins 15%
The mysq1 Client Program 5% Subqueries 10%
MySQL Query Browser 5% Views 10%
MySQL Connectors 5% Importing and Exporting Data 10%
Data Types 15% User Variables 5%
Identifiers 5% Prepared Statements 5%
Databases 5% Stored Procedures and Functions 15%
Tables and Indexes 15% Triggers 5%
Querying for Data 15% Obtaining Database Metadata 5%
SQL Expressions 15% Debugging MySQL Applications 5%
Updating Data 10% Basic Optimizations 15%

TABLE IN.2 Division of Questions on Exam Sections for the DBA Exams

MySQL DBA | Exam MySQL DBA Il Exam
MySQL Architecture 10% Using Stored Routines and
Triggers for Administration 5%
Starting, Stopping, and 15% User Management 15%
Configuring MySQL
Client Programs for 5% Securing the MySQL 10%
DBA Work Installation
MySQL Administrator 10% Upgrade-Related Security 5%
Issues
Character Set Support 5% Optimizing Queries 15%
Locking 10% Optimizing Databases 15%
Storage Engines 15% Optimizing the Server 15%

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 16 Return to Table of Contents

Introduction 9

MySQL DBA | Exam MySQL DBA Il Exam
Table Maintenance 5% Interpreting Diagnostic 5%

Messages
The INFORMATION_SCHEMA 10% Optimizing the Environment 5%
Database
Data Backup and Recovery 15% Scaling MySQL 10%
Methods

This study guide organizes topic material into the sections shown in the Candidate Guide,
but you shouldn’t expect the exam to follow the same format. While you’re taking the exam,
questions may occur in any order. For example, on the Developer-I exam, you might be pre-
sented with a question about indexing, followed by a question pertaining to data types.

Some features in MySQL are version specific. The current exam and this book cover
MySQL 5.0, and you should consider a feature available if it’s available as of MySQL 5.0.
For example, stored procedures and views were implemented for MySQL 5.0, so for purpos-
es of the exam, you should consider them to be topics upon which you might be tested.

Reading Questions

The single most important factor in answering any exam question is first to understand what
the question is asking. The questions are written in very concise language and are thorough-
ly checked for readability. But you also need to know how to interpret any additional infor-
mation presented with the question.

On the exam, you will see some SQL statements followed by a semicolon, and some not.
This occasionally confuses people. What you need to keep in mind is that SQL statements
need only be terminated with a semicolon when used in the context of the mysq1 command-
line client, not in any other contexts. So only when shown in the context of the command-
line client should you expect to see a terminator.

One type of information that’s often provided is a display of the structure of a table.
Instructions for interpreting this information are given later in this introduction (see
“Interpreting DESCRIBE Output”).

Answering Questions

You should attempt to answer all exam questions, because an unanswered question counts as
an incorrect answer. When taking the exam, you’ll be able to move back and forth between
questions. This enables you to initially skip questions you’re unsure of and return to them
as time permits. You’ll also be able to mark a question “for review,” if you want to spend
more time on it later. When you’ve gone through all questions, a review screen will be
presented that contains any questions that you’ve marked for review, as well as all
unanswered questions.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 17 Return to Table of Contents

10 Introduction

All questions are multiple-choice questions, only varying in whether you need to choose
single or multiple correct answers among those presented to you.

You select an answer to a question either by clicking with the mouse on the field to the left
of the answer, or by pressing the corresponding letter on the keyboard.

For a single-answer question, only one response is correct and you must identify the correct
answer from among the possible responses. Some of the responses provided might be par-
tially correct, but only one will be completely correct. In a single-answer question, the fields
that you can select are circles (“radio buttons”) and the text in the status bar below the ques-
tion says “select the best response.”

VUE C Candidate [993-339]

| Select for Review (R) Time Remaining 25:52
Can you declare a primary key to be non-unique 7
(o) Yes
CB No
Select the best response. Item 1 of 70
Previous (P | Next (N] | End Exam (E) | Comment (M)

FIGURE IN.2 A multiple-choice/single-answer question. Note that each
answer key has a circle (“radio button") beside it, and the status bar says
“select the best response.

For a multiple-answer question, you must choose #// correct answers to get credit for your
response. As with single-answer questions, there might be subtle differences between correct
and incorrect answers; take your time to read each possible answer carefully before deciding
whether it is correct. In multiple-answer questions, the fields that you can select are square
(“check boxes”) and the status line says “Select between 1 and n answers,” where n is the
total number of possible answers.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 18 Return to Table of Contents

Introduction 11

VUE C Candidate [393-339]

| Select for Review [B) Time Remaining 17:43

Your operating system and/or filesystern places a limit on the size of files. You need to create a table that is
greater than the maximum file size. Yiou can resalve the problem by ...

A Upgrading/reconfigure the operating system to support larger files
e Using the MySQL RAID table feature

rec Using Hardware RAID

Co Using MERGE tables

Ce Using BDB tabless

CF Using INNODB tables

Select between 1 and B responses. Item 1 of 70

Previous (B) | Nest (M) | End Exam (E) | Commert (M)

FIGURE IN.3 A multiple-choice/multiple-answer question. Note that each
answer key has a square ("check box") beside it, and the status bar says "select
between 1 and 6 answers.

After the Exam

Unless you’re taking part in a Beta exam, you'll receive your grade as soon as you complete
the exam. The test center will provide you with a score report.

If you pass, MySQL AB will mail your certificate four to six weeks after receiving your exam
results from the test center.

Whether you pass or fail, after you’ve taken any MySQL certification exam, you’ll receive a
letter from MySQL AB telling you how to gain access to extra information at
http://www.mysql.com. There are two main entry points into this area:

s The candidate area: http://www.mysql.com/certification/candidate

Here, you will find information specially set aside for MySQL certification candidates.
For example, there might be special offers, information on pre-releases of new certifica-
tions, and so on.

» The results area: http://www.mysql.com/certification/results

In this area, potental clients and employers can confirm that your certificate is valid.
Access for others to this area is controlled by you, using the candidate area.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 19 Return to Table of Contents

12 Introduction

Retaking Exams

If you get a failing grade on the exam, you have the option of retaking it. There is no limit
set on when you are allowed to retake an exam. MySQL AB does not place restrictions on
how soon you can retake an exam, but doing so is not advised until you’ve done some fur-
ther study.

This isn’t just a commonsense warning. The statistics show with great clarity that those who
attempt to retake a failed exam within five days of the first exam are much more likely to fail
once again rather than passing.

Warning

For every popular certification exam, there are always enterprising individuals who set up
so-called “braindump” Internet sites, where people anonymously post questions and answers
purported to be from the exam. Please note these cautions about using or contributing to
these sites:

= If you use such a site, you are very likely to be misled. We’ve seen these sites, and trust
us: The answers they provide are more often wrong than correct. Worse, most of the
questions shown have never been—and are so ludicrous that they never will be—on an
exam; they exist only in the submitter’s head. As a result, instead of being helpful, such
sites lead to confusion.

= If you contribute to such a site by posting your own exam questions and answers, you
risk forfeiting not only the certification for the exam about which you have posted
details, but your involvement in the entire MySQL Certification program. You might
thus never be able to regain MySQL certification credentials.

Interpreting DESCRIBE Output

You should understand how to interpret the output of the DESCRIBE tabTe_name statement.
"This is of particular importance both for this study guide and for taking certification exams.
In both cases, when it’s necessary that you know the structure of a table, it will be shown as
the output of a DESCRIBE statement in the same format as that displayed by the mysq1 pro-
gram. For example, assume that a question requires you to know about a table named City.
The table’s structure will be presented as follows:

mysql> DESCRIBE City;

o o o= +-———- o o +

| Field | Type | Null | Key | Default | Extra |

Fomm Fomm - +-———- +-———- Fo—m - Fmmm - +

| ID | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | | |

| CountryCode | char(3) | NO | | | |
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 20 Return to Table of Contents

Introduction 13

| District | char(20) | NO |
| Population | int(11) | NO |

The output of the DESCRIBE statement contains one row for each column in the table. The
most important features of the output are as follows:

» The Field value indicates the column name.
» The Type value shows the column data type.

» The Nu11 indicator is the word YES if the column can contain NULL values and NO if it
cannot. In the example shown, Nu11 is NO for all columns of the City table. This indi-
cates that none of that table’s columns can contain NULL values.

s The Key indicator may be empty or contain one of three non-empty values:

= An empty Key value indicates that the column in question either isn’t indexed or is
indexed only as a secondary column in a multiple-column, non-unique index. For
purposes of the exam, you should assume that if Key is empty, it’s because the col-
umn is not indexed at all.

» If the Key value is the keyword PRI (as in the output shown for the ID column), this
indicates that the column is a PRIMARY KEY or is one of the columns in a multiple-
column PRIMARY KEY.

» If the Key value is the keyword UNI, this indicates that the column is the first col-
umn of a unique-valued index that cannot contain NULL values.

= If the Key value is the keyword MUL, this indicates that the column is the first col-
umn of a non-unique index or a unique-valued index that can contain NULL values.

It’s possible that more than one of the Key values may apply to a given column of a
table. For example, a column that is a PRIMARY KEY might also be part of other indexes.
When it’s possible for more than one of the Key values to describe an index, DESCRIBE
displays the one with the highest priority, in the order PRI, UNI, MUL.

Because a column can be part of several indexes, the Key values do not necessarily pro-
vide an exhaustive description of a table’s indexes. However, for purposes of the exam,
you should assume that the table descriptions given provide all the information needed
to correctly answer the question.

= Default shows the column’s default value. This is the value that MySQL assigns to the
column when a statement that creates a new record does not provide an explicit value
for the column. (For example, this can happen with the INSERT, REPLACE, and LOAD DATA
INFILE statements.)

= The Extra value displays other details about the column. The only Extra detail about
which you need be concerned for the exam is the value auto_increment. This value
indicates that the column has the AUTO_INCREMENT attribute. The ID column shown in
the example is such an instance.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 21 Return to Table of Contents

14 Introduction

You can read more about data types, default values, and the AUTO_INCREMENT column attribute
in Chapter 5, “Data Types.” Indexing is covered in Chapter 8, “Tables and Indexes.” The
DESCRIBE statement and other methods of obtaining table metadata are covered in more
detail in Chapter 20, “Obtaining Database Metadata.”

Sample Tables

This study guide uses several different database and table names in examples. However, one
set of tables occurs repeatedly: the tables in a database named wor1d. This section discusses
the structure of these tables. Throughout this study guide, you’re assumed to be familiar
with them. To make it easier for you to try the examples, the accompanying CD-ROM
includes the wor1d database. MySQL AB also provides a downloadable copy of the wor1d
database that you can obtain at http://dev.mysq1.com/doc.

The wor1d database contains three tables, Country, City, and CountryLanguage:

s The Country table contains a row of information for each country in the database:
mysql> DESCRIBE Country;

o m e o o +-———- o - +
| Field | Type | Null | Key | Default | Extra |
o e o o= o o +
Code	char(3)	NO	PRI		
Name	char(52)	NO			
Continent	enum(‘Asia’, ...)	NO		Asia	
Region	char(26)	NO			
SurfaceArea	float(10,2)	NO		0.00	
IndepYear	smallint(6)	YES		NULL	
Population	int(11)	NO		0	
LifeExpectancy	float(3,1)	YES		NULL	
GNP	float(10,2)	YES		NULL	
GNPOTd	float(10,2)	YES		NULL	
LocalName	char(45)	NO			
GovernmentForm	char(45)	NO			
HeadOfState	char(60)	YES		NULL	
Capital	int(11)	YES		NULL	
Code2	char(2)	NO			
o e o o= o o +

The entire output of the DESCRIBE statement is too wide to display on the page, so the
Type value for the Continent line has been shortened. The value enum('Asia', ...) as
shown actually stands for enum('Asia’', 'Europe', 'North America', 'Africa’,

'Oceania', 'Antarctica', 'South America').

= The City table contains rows about cities located in countries listed in the Country
table:

mysq1> DESCRIBE City;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 22 Return to Table of Contents

Introduction 15

ommmmmmmm— Fommmmmmm- +-——--- +o-—- e oo +
| Field | Type | Null | Key | Default | Extra |
Fommmmm oo e T oo B R ommmm o +
ID	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO			
District	char(20)	NO			
Population	int(11)	NO		0	
ommmmmmmm— Fommmmmmm- +-——--- +o-—- e oo +

s The CountryLanguage table describes languages spoken in countries listed in the Country

table:

mysql> DESCRIBE CountrylLanguage;

o L E P L o o= o o= +
| Field | Type | Null | Key | Default | Extra |
mmmmmmm e Lt LT LT pmm———- - o= - +
CountryCode	char(3)	NO	PRI		
Language	char(30)	NO	PRI		
IsOfficial	enum('T','F')	NO		F	
Percentage	float(4,1)	NO		0.0	
ommmmmmm e Lt L LTt o= o= T L e +

The Name column in the Country table contains full country names. Each country also has a
three-letter country code stored in the Code column. The City and CountryLanguage tables
each have a column that contains country codes as well, though the column is named
CountryCode in those tables.

In the CountrylLanguage table, note that each country may have multiple languages. For
example, Finnish, Swedish, and several other languages are spoken in Finland. For this rea-
son, CountrylLanguage has a composite (multiple-column) index consisting of both the
Country and Language columns.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 23 Return to Table of Contents

MySQL Developer Exams

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 24 Return to Table of Contents

MySQL Developer | Exam

Client/Server Concepts
The mysq1 Client Program

MySQL Query Browser
MySQL Connectors
Data Types

Identifiers

Databases

Tables and Indexes
Querying for Data

SQL Expressions

O O 00 N o o & W N =

— —
—

Updating Data

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 25 Return to Table of Contents

Client/Server Concepts

This chapter discusses the client/server architecture of the MySQL database system
and basic concepts of how to invoke client programs. The chapter covers the following
exam topics:

= General MySQL architecture
= Syntax for command-line options
= Parameters for connecting to the server with client programs

= Using option files

Using the SQL mode to control server operation

1.1 General MySQL Architecture

MySQL operates in a networked environment using a client/server architecture. In other
words, a central program acts as a server, and various client programs connect to the server
to make requests. A MySQL installation has the following major components:

= MySQL Server, or mysqld, is the database server program. The server manages access to
the actual databases on disk and in memory. MySQL Server is multi-threaded and sup-
ports many simultaneous client connections. Clients can connect via several connection
protocols. For managing database contents, MySQL Server features a modular archi-
tecture that supports multiple storage engines that handle different types of tables (for
example, it provides both transactional and non-transactional tables).

mysqld comes in several configurations. MySQL Max distributions contain a server
named mysqld-max that includes features that are not built into the non-Max version,
such as support for additional storage engines. On Windows, the mysqld-nt and
mysql-max-nt servers provide support for named-pipe connections on Windows N'T,
2000, XP, and 2003. If a given installation includes multiple server programs, you pick
one to run from among those available.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 26 Return to Table of Contents

22 CHAPTER 1 Client/Server Concepts

The exact feature configuration of MySQL Server may change over time, so whenever
you download a new version, it’s wise to check the documentation. For the purposes of
the exam, the preceding information suffices.

As you read this guide, please keep in mind the difference between a server and a bost.
The server is software (the MySQL server program mysqld). Server characteristics
include its version number, whether certain features are included or excluded, and so
forth. The host is the physical machine on which the server program runs. Host charac-
teristics include its hardware configuration, the operating system running on the
machine, its network addresses, and so forth.

» Client programs. These are programs that you use for communicating with the server to
manipulate the information in the databases that the server manages. MySQL AB pro-
vides several client programs. The following list describes a few of them:

= MySQL Query Browser and MySQL Administrator are graphical front ends to the
server.

= mysql is a command-line program that acts as a text-based front end for the server.
It’s used for issuing queries and viewing the results interactively from a terminal
window.

= Other command-line clients include mysqlimport for importing data files,
mysqldump for making backups, mysqladmin for server administration, and
mysqlcheck for checking the integrity of the database files.

s MySQL non-client utilities. These are programs that act independently of the server.
They do not operate by first establishing a connection to the server. myisamchk is an
example. It performs table checking and repair operations. Another program in this cat-
egory is myisampack, which creates compressed read-only versions of MyISAM tables. Both
utilities operate by accessing MyISAM table files directly, independent of the mysq1d data-
base server.

MySQL runs on many varieties of Windows, Unix, and Linux, but client/server communi-
cation is not limited to environments where all computers run the same operating system.
Client programs can connect to a server running on the same host or a different host, and
the client and server host need not have the same operating system. For example, client pro-
grams can be used on Windows to connect to a server that is running on Linux.

Most of the concepts discussed here apply universally to any system on which MySQL runs.
Platform-specific information is so indicated. Unless otherwise specified, “Unix” as used
here includes Linux and other Unix-like operating systems.

1.2 Invoking Client Programs

MySQL client programs can be invoked from the command line, such as from a Windows
console prompt or a Unix shell prompt. When you invoke a client program, you can specify

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 27 Return to Table of Contents

1.2 Invoking Client Programs 23

options following the program name to control its behavior. Options also can be given
in option files. Some options tell the client how to connect to the MySQL server. Other
options tell the program what actions to perform.

You also specify connection parameters for graphical client programs such as MySQL Query
Browser and MySQL Administrator. However, graphical clients provide an interactive inter-
face by which you enter those parameters. See Section 1.2.5, “Establishing a Connection
with a GUI Client.” The graphical clients store connection parameters in their own files, in
XML format. See Section 3.5, “Connection Management.”

This section discusses the following option-related topics:

= The general syntax for specifying options

= Specifying connection parameter options

= Specifying options in an option file
Most examples in this section use the mysql program, but the general principles apply to
other MySQL client command-line programs as well.

To determine the options supported by a MySQL program, invoke it with the --help
option. For example, to find out how to use mysq1, use this command:

shell> mysql --help

To determine the version of a program, use the --version option. For example, the
following output from the mysq1 client indicates that the client is from MySQL 5.0.10:
shell> mysql --version

mysql Ver 14.12 Distrib 5.0.10-beta, for apple-darwin8.2.0 (powerpc)

It is not necessary to run client programs that have the same version as the server. In most
cases, clients that are older or newer than the server can connect to it successfully.

1.2.1 General Command Option Syntax
Options to MySQL programs have two general forms:
= Long options consist of a word preceded by double dashes.

= Short options consist of a single letter preceded by a single dash.

In many cases, a given option has both a long and a short form. For example, to display a
program’s version number, you can use the long --version option or the short -V option.
These two commands are equivalent:

shell> mysql --version
shell> mysql -V

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 28 Return to Table of Contents

24 CHAPTER 1 Client/Server Concepts

Options are case sensitive. --version is recognized by MySQL programs, but lettercase vari-
ations such as --Version or --VERSION are not. This applies to short options as well: -v and
-v are both legal options, but mean different things.

Some options are followed by values. For example, when you specify the --host or -h option
to indicate the host machine where the MySQL server is running, you must follow the
option with the machine’s hostname. For a long option, separate the option and the value by
an equal sign (=). For short options, the option and the value can but need not be separated
by a space. The option formats in the following three commands are equivalent. Each one
specifies myhost.example.com as the host machine where the MySQL server is running:

shel1> mysql --host=myhost.example.com
shel1> mysql -h myhost.example.com
shel1> mysql -hmyhost.example.com

In most cases, if you don’t specify an option explicitly, a program uses a default value. This
makes it easier to invoke MySQL client programs because you need specify only those
options for which the defaults are unsuitable. For example, the default server hostname is
localhost, so if the MySQL server to which you want to connect is running on the local
host, you need not specify any --host or -h option.

Exceptions to these option syntax rules are noted in the following discussion wherever
relevant. The most important exception is that password options have a slightly different
behavior than other options.

1.2.2 Connection Parameter Options

"To connect to a server using a client program, the client must know upon which host the
server is running. A connection may be established locally to a server running on the same
host as the client program, or remotely to a server running on a different host. To connect,
you also must identify yourself to the server with a username and password.

Each MySQL client has its own program-specific options, but all command-line clients sup-
port a common set of options for making a connection to the MySQL server. This section
describes the options that specify connection parameters, and how to use them if the default
values aren’t appropriate. The discussion lists each option’s long form and short form, as
well as its default value.

The primary options for connecting to the server specify the type of connection to make
and identify the MySQL account that you want to use. The following tables summarize
these two sets of options.

Table 1.1 Options for Establishing a Connection

Option Meaning
--protocol The protocol to use for the connection
--host The host where the server is running

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 29 Return to Table of Contents

1.2 Invoking Client Programs 25
Table 1.1 Continued
Option Meaning
--port The port number for TCP/IP connections

--shared-memory-base-name The shared-memory name for shared-memory connections
--socket The Unix socket filename or named-pipe name

Table 1.2 Options for MySQL User Identification

Option Meaning
--user The MySQL account username
--password The MySQL account password

The --protocol option, if given, explicitly selects the communication protocol that the
client program should use for connecting to the server. (In the absence of a --protocol
option, the protocol used for the connection is determined implicitly based on the server
hostname value and the client operating system, as discussed later.) The allowable values for
the --protocol option are given in the following table.

--protocol Value Connection Protocol Allowable Operating Systems
tcp TCP/IP connection to local All
or remote server
socket Unix socket file connection Unix only
to local server
pipe Named-pipe connection to Windows only
local server
memory Shared-memory connection to Windows only
local server

As shown by the table, TCP/IP is the most general protocol. It can be used for connecting
to local or remote servers, and is supported on all operating systems. The other protocols
can be used only for connecting to a local server running on the same host as the client pro-
gram. They also are operating system-specific, and might not be enabled by default.

Named-pipe connections can be used only for connections to the local server on Windows.
However, for the named-pipe connection protocol to be operative, you must use

the mysqld-nt or mysqld-max-nt server, and the server must be started with the
--enable-named-pipe option.

Shared-memory connections can be used only for connections to the local server on
Windows. The server must be started with the --shared-memory option. Specifying this
option has the additional effect that shared memory becomes the default connection proto-
col for local clients.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 30 Return to Table of Contents

26

CHAPTER 1 Client/Server Concepts

The following list describes the other connection parameters. The descriptions indicate how
parameter values may affect which connection protocol to use, but note that the values have

this effect only if the --protocol option is not given.

--host=host_name or -h host_name

This option specifies the machine where the MySQL server is running. The value can
be a hostname or an IP number. The hostname Tocalhost means the local host (that is,
the computer on which you’re running the client program). On Unix, Tocalhost is
treated in a special manner. On Windows, the value . (period) also means the local host
and is treated in a special manner as well. For a description of this special treatment,
refer to the discussion of the --socket option.

The default host value is Tocalhost.

--port=port_number or -P port_number

This option indicates the port number to which to connect on the server host. It applies
only to TCP/IP connections.

The default MySQL port number is 3306.

--shared-memory-base-name=memory_name

This option can be used on Windows to specify the name of shared memory to use for
a shared-memory connection to a local server.

The default shared-memory name is MYSQL (case sensitive).

--socket=socket_name or -S socket_name

This option’s name comes from its original use for specifying a Unix domain socket file.

On Unix, for a connection to the host Tocalhost, a client connects to the server using a
Unix socket file. This option specifies the pathname of that file.

On Windows, the --socket option is used for specifying a named pipe. For Windows
NT-based systems that support named pipes, a client can connect using a pipe by speci-
fying . as the hostname. In this case, --socket specifies the name of the pipe. Pipe
names aren’t case sensitive.

If this option is omitted, the default Unix socket file pathname is /tmp/mysq1.sock. The
default Windows pipe name is MySQL.

As mentioned earlier, if the --protocol option is not given, the connection protocol is deter-
mined implicitly based on the server hostname and the client operating system:

On Windows, a client can establish a named-pipe connection to the local server by
specifying . (period) as the hostname.

On Unix, the hostname Tocalhost is special for MySQL: It indicates that the client
should connect to the server using a Unix socket file. In this case, any port number
specified with the --port option is ignored.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 31 Return to Table of Contents

1.2 Invoking Client Programs 27

= To explicitly establish a TCP/IP connection to a local server, use --protocol=tcp or
else specify a host of 127.0.0.1 (the address of the T'CP/IP loopback interface) or the
server’s actual hostname or IP number.

Two options provide identification information. They indicate the username and password
of the account that you want to use for accessing the server. The server rejects a connection
attempt unless you provide values for these parameters that correspond to a MySQL
account that is listed in the server’s grant tables.

B --user=user_name Or -u user_name

This option specifies the username for your MySQL account. To determine which
account applies, the server uses the username value in conjunction with the name of the
host from which you connect. This means that there can be different accounts with the
same username, which can be used for connections from different hosts.

On Windows, the default MySQL account name is 0DBC. On Unix, client programs use
your system login name as your default MySQL account username.

m --password=pass_value or -ppass_value

This option specifies the password for your MySQL account. There is no default pass-
word. If you omit this option, your MySQL account must be set up to allow you to
connect without a password.

MySQL accounts are set up using statements such as CREATE USER and GRANT, which are dis-
cussed in Chapter 34, “User Management.”

Password options are special in two ways, compared to the other connection parameter
options:

= You can omit the password value after the option name. This differs from the other
connection parameter options, each of which requires a value after the option name. If
you omit the password value, the client program prompts you interactively for a pass-
word, as shown here:
shell> mysql -p
Enter password:

When you see the Enter password: prompt, type in your password and press Enter. The
password isn’t echoed as you type, to prevent other people from seeing it.

= If you use the short form of the password option (-p) and give the password value on
the command line, there must be no space between the -p and the value. That is,
-ppass_val is correct, but -p pass_vaT is not. This differs from the short form for other
connection parameter options, where a space is allowed between the option and its
value. (For example, -hhost_name and -h host_name are both valid.) This exceptional
requirement that there be no space between -p and the password value is a logical
necessity of allowing the option parameter to be omitted.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 32 Return to Table of Contents

28 CHAPTER 1 Client/Server Concepts

If you have a password specified in an option file but you want to connect using an account
that has no password, specify -p or --password on the command line without a password
value, and then press Enter at the Enter password: prompt.

Another option that affects the connection between the client and the server is --compress
(or -C). This option causes data sent between the client and the server to be compressed
before transmission and uncompressed upon receipt. The result is a reduction in the
number of bytes sent over the connection, which can be helpful on slow networks. The cost
is additional computational overhead for both the client and server to perform compression
and uncompression. --compress and -C take no value after the option name.

Here are some examples that show how to specify connection parameters:
= Connect to the server using the default hostname and username values with

no password:

shell> mysql

= Connect to the local server via shared memory (this works only on Windows). Use the
default username and no password:

shell> mysql --protocol=memory

= Connect to the server on the local host with a username of myname, asking mysq1 to
prompt you for a password:

shell> mysql --host=1ocalhost --password --user=myname

= Connect with the same options as the previous example, but using the corresponding
short option forms:

shel1> mysql -h localhost -p -u myname

= Connect to the server at a specific IP address, with a username of myname and password
of mypass:

shell> mysql --host=192.168.1.33 --user=myname --password=mypass

= Connect to the server on the local host, using the default username and password and
compressing client/server traffic:

shel1> mysql --host=1ocalhost --compress

1.2.3 Using Option Files

As an alternative to specifying options on the command line, you can place them in an
option file. The standard MySQL client programs look for option files at startup time and
use any appropriate options they find there. Putting an option in a file saves you time and
effort because you need not specify the option on the command line each time you invoke a
program.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 33 Return to Table of Contents

1.2 Invoking Client Programs 29

Options in option files are organized into groups, with each group preceded by a
[group-name] line that names the group. Typically, the group name is the name of the pro-
gram to which the group of options applies. For example, the [mysq1] and [mysqldump]
groups are for options to be used by mysq1 and mysqldump, respectively. The special group
named [client] can be used for specifying options that you want all client programs to use.
A common use for the [cTient] group is to specify connection parameters because typically
you connect to the same server no matter which client program you use.

To write an option in an option file, use the long option format that you would use on the
command line, but omit the leading dashes. If an option takes a value, spaces are allowed
around the = sign, something that isn’t true for options specified on the command line.
Here’s a sample option file:

[cTient]
host = myhost.example.com
compress

[mysq1]
safe-updates

In this example, the [client] group specifies the server hostname and indicates that the
client/server protocol should use compression for traffic sent over the network. Options in
this group apply to all standard clients. The [mysq1] group applies only to the mysql pro-
gram. The group shown indicates that mysq1 should use the --safe-updates option. (mysq1
uses options from both the [cTient] and [mysql1] groups, so it would use all three options
shown.)

Where an option file should be located depends on your operating system. The standard
option files are as follows:

= On Windows, programs look for option files in the following order: my.ini and my.cnf
in the Windows directory (for example, the C:\Windows or C:\WinNT directory), and then
C:\my.ini and C:\my.cnf.

= On Unix, the file /etc/my.cnf serves as a global option file used by all users. Also, you
can set up your own user-specific option file by creating a file named .my.cnf in your
home directory. If both exist, the global file is read first.

Programs look for each of the standard option files and read any that exist. No error occurs
if a given file is not found. MySQL programs can access options from multiple option files.
To use an option file, create it as a plain text file using an editor.

To create or modify an option file, you must have write permission for it. Client programs
need only read access.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 34 Return to Table of Contents

30 CHAPTER 1 Client/Server Concepts

To tell a program to read a single specific option file instead of the standard option files, use
the --defaults-file=file_name option as the first option on the command line. For exam-
ple, to use only the file C:\my-opts for mysql and ignore the standard option files, invoke the
program like this:

shell> mysql --defaults-file=C:\my-opts

To tell a program to read a single specific option file in addition to the standard option files,
use the --defaults-extra-file=file_name option as the first option on the command line.
To tell a program to ignore all option files, specify --no-defaults as the first option on the
command line.

Option files can reference other files to be read for options by using !include and
tincludedir directives:

= A line that says !include file_name suspends processing of the current option file. The
file £i7e_name is read for additional options, and then processing of the suspended file
resumes.

= A line that says !includedir dir_name is similar except that the directory dir_name is
searched for files that end with a .cnf extension (.cnf and .ini on Windows). Any such
files are read for options, and then processing of the suspended file resumes.

If an option is specified multiple times, either in the same option file or in multiple option
files, the option value that occurs last takes precedence. Options specified on the command
line take precedence over options found in option files.

1.2.4 Selecting a Default Database

For most client programs, you must specify a database so that the program knows where to
find the tables that you want to use. The conventional way to do this is to name the database
on the command line following any options. For example, to dump the contents of the world
database to an output file named worl1d.sql, you might run mysqldump like this:

shell> mysqldump --password --user=user_name world > world.sql
For the mysq1 client, a database name can be given on the command line, but is optional
because you can explicitly indicate the database name for any table when you issue queries.

For example, the following statement selects rows from the table Country in the world
database:

mysql> SELECT * FROM world.Country;
To select or change the default database while running mysq1, issue a USE db_name statement,

where db_name is the name of the database you’d like to use. The following statement makes
world the default database:

mysql> USE world;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppagess Return to Table of Contents

1.3 Server SQL Modes 31

The advantage of selecting a default database with USE is that in subsequent queries you can
refer to tables in that database without having to specify the database name. For

example, with wor1d selected as the default database, the following SELECT statements

are equivalent, but the second is easier to enter because the table name doesn’t need to be
qualified with the database name:

mysql> SELECT * FROM world.Country;
mysql> SELECT * FROM Country;

The default database sometimes is called the current database.

1.2.5 Establishing a Connection with a GUI Client

When you use a graphical client such as MySQL Query Browser or MySQL Administrator,
the parameters used to connect to the server are similar to those used for command-line
clients, but you specify them differently. Instead of reading options from the command line,
the graphical clients present a dialog containing fields that you fill in. These programs also
have the capability of saving sets of parameters as named connection profiles so that you can
select profiles by name later. Section 3.5, “Connection Management,” describes the connec-
tion process for the graphical clients.

1.3 Server SQL Modes

Many operational characteristics of MySQL Server can be configured by setting the SQL
mode. This mode consists of optional values that each control some aspect of query process-
ing. By setting the SQL mode appropriately, a client program can instruct the server how
strict or forgiving to be about accepting input data, enable or disable behaviors relating to
standard SQL conformance, or provide better compatibility with other database systems.
This section discusses how to set the SQL mode. It’s necessary to understand how to do this
because references to the SQL mode occur throughout this study guide.

The SQL mode is controlled by means of the sq1_mode system variable. To assign a value to
this variable, use a SET statement. The value should be an empty string, or one or more
mode names separated by commas. If the value is empty or contains more than one mode
name, it must be quoted. If the value contains a single mode name, quoting is optional. SQL
mode values are not case sensitive, although this study guide always writes them in upper-
case. Here are some examples:

s Clear the SQL mode:
SET sql_mode = '';

= Set the SQL mode using a single mode value:

SET sql_mode = ANSI_QUOTES;
SET sql_mode = 'TRADITIONAL';

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 36 Return to Table of Contents

32 CHAPTER 1 Client/Server Concepts

= Set the SQL mode using multiple mode names:

SET sql_mode = 'IGNORE_SPACE,ANSI_QUOTES';
SET sql_mode = 'STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';

To check the current sq1_mode setting, select its value like this:

mysql> SELECT @@sql_mode;

e e +
| @@sql_mode |
o +
| STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO |
B e et i +

Some SQL mode values are composite modes that actually enable a set of modes. Values in
this category include ANSI and TRADITIONAL. To see which mode values a composite mode
consists of, retrieve the value after setting it:

mysql> SET sql_mode='TRADITIONAL";
Query OK, 0 rows affected (0.07 sec)

mysql> SELECT @@sql_mode\G

Veddededehdededdededehdededddedhdedefdddn l. row Fedkdededdhdedehdededhdededdededhdedehddedn

@@sq1_mode: STRICT_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, TRADITIONAL,
NO_AUTO_CREATE_USER

1 row in set (0.03 sec)

The MySQL Reference Manual lists all available SQL mode values. The following list briefly
describes some of the values referred to elsewhere in this study guide:
= ANSI_QUOTES
This mode causes the double quote character (‘*’) to be interpreted as an identifier-
quoting character rather than as a string-quoting character.
= IGNORE_SPACE
By default, functions must be written with no space between the function name and the
following parenthesis. Enabling this mode causes the server to ignore spaces after func-
tion names. This allows spaces to appear between the name and the parenthesis, but
also causes function names to be reserved words.
= ERROR_FOR_DIVISION_BY_ZERO
By default, division by zero produces a result of NULL and is not treated specially.
Enabling this mode causes division by zero in the context of inserting data into tables to
produce a warning, or an error in strict mode.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 37 Return to Table of Contents

1.3 Server SQL Modes 33

= STRICT_TRANS_TABLES, STRICT_ALL_TABLES
These values enable “strict mode,” which imposes certain restrictions on what values
are acceptable as database input. By default, MySQL is forgiving about accepting values
that are missing, out of range, or malformed. Enabling strict mode causes bad values to
be treated as erroneous. STRICT_TRANS_TABLES enables strict mode for transactional
tables, and STRICT_ALL_TABLES enables strict mode for all tables.

= TRADITIONAL
This is a composite mode that enables both strict modes plus several additional restric-
tions on acceptance of input data.

= ANSI

This is a composite mode that causes MySQL Server to be more “ANSI-like.” That is,
it enables behaviors that are more like standard SQL, such as ANSI_QUOTES (described
earlier) and PIPES_AS_CONCAT, which causes || to be treated as the string concatenation
operator rather than as logical OR.

Section 5.8, “Handling Missing or Invalid Data Values,” provides additional detail about the
use of strict and traditional SQL modes for controlling how restrictive the server is about

accepting input data.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 38 Return to Table of Contents

The mysql Client Program

This chapter discusses mysq1, a general-purpose client program for issuing queries and
retrieving their results. It can be used interactively or in batch mode to read queries from a
file. The chapter covers the following exam topics:

= Using mysq1 interactively and in batch mode

= mysql statement terminators and prompts

= Using the mysql input line-editing capability

= mysql output formats

= mysql internal commands

= Using server-side help

= Using the --safe-updates option to prevent dangerous data changes

2.1 Using mysqT Interactively

The mysq1 client program enables you to send queries to the MySQL server and receive
their results. It can be used interactively or it can read query input from a file in batch
mode:

= Interactive mode is useful for day-to-day usage, for quick one-time queries, and for
testing how queries work.

= Batch mode is useful for running queries that have been prewritten and stored in a file.
It’s especially valuable for issuing a complex series of queries that’s difficult to enter
manually, or queries that need to be run automatically by a job scheduler without user
intervention.

This section describes how to use mysq1 interactively. Batch mode is covered in Section 2.5,
“Using Script Files with mysq1.”

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 39 Return to Table of Contents

36

CHAPTER 2 The mysql Client Program

To invoke mysq1 interactively from the command line, specify any necessary connection
parameters after the command name:

shell> mysql -u user_name -p -h host_name

You can also provide a database name to select that database as the default database:

shell> mysql -u user_name -p -h host_name db_name

mysq1 understands the standard command-line options for specifying connection parameters.
It also reads options from option files. Connection parameters and option files are
discussed in Section 1.2, “Invoking Client Programs.”

After mysq1 connects to the MySQL server, it prints a mysq1> prompt to indicate that it’s
ready to accept queries. To issue a query, enter it at the prompt. Complete the query with a
statement terminator (typically a semicolon). The terminator tells mysq1 that the statement
has been entered completely and should be executed. When mysq1 sees the terminator, it
sends the query to the server and then retrieves and displays the result. For example:

mysql> SELECT DATABASEQ);

e +
| DATABASEQ) |
ommmmmmmmeee +
| world |
e +

A terminator is necessary after each statement because mysq1 allows several queries to be
entered on a single input line. mysq1 uses the terminators to distinguish where each query
ends, and then sends each one to the server in turn and displays its results:

mysq1> SELECT DATABASE(); SELECT VERSIONQ);

dommmmm - +
| DATABASEQ) |
ommmmmmmmeem +
| world |
B it +
dommmmmm e +
| VERSION(Q) |
LT e Pt +
| 5.0.10-beta-log |
o +

Statement terminators are necessary for another reason as well: mysq1 allows a single query
to be entered using multiple input lines. This makes it easier to issue a long query because
you can enter it over the course of several lines. mysq1 will wait until it sees the statement
terminator before sending the query to the server to be executed. For example:

mysql> SELECT Name, Population FROM City
-> WHERE CountryCode = ‘IND’

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 40 Return to Table of Contents

2.1 Using mysq1 Interactively 37

-> AND Population > 3000000;

e e +
| Name | Population |
Fommm oo Fommmm - +
Mumbai (Bombay)	10500000
Delhi	7206704
Calcutta [Kolkata]	4399819
Chennai (Madras)	3841396
R e LT B et +

Further information about statement terminators can be found in Section 2.2, “Statement
Terminators.”

In the preceding example, notice what happens when you don’t complete the statement on a
single input line: mysq1 changes the prompt from mysq1> to -> to give you feedback that it’s
still waiting to see the end of the statement. The full set of mysq1 prompts is discussed in
Section 2.3, “The mysq1 Prompts.”

If a statement results in an error, mysq1 displays the error message returned by the server:
mysql> This is an invalid statement;
ERROR 1064 (42000): You have an error in your SQL syntax.
If you change your mind about a statement that you’re composing, enter \c and mysq1 will
cancel the statement and return you to a new mysq1> prompt:
mysql> SELECT Name, Population FROM City
-> WHERE \c
mysql>
"To quit mysq1, use \q, QUIT, or EXIT:
mysql> \q
You can execute a statement directly from the command line by using the -e or --execute
option:

shell> mysql -e “SELECT VERSIONQ)”

Fommm oo +
| VERSIONQ) |
B e T +
| 5.0.10-beta-log |
o -+

No statement terminator is necessary unless the string following -e consists of multiple
statements. In that case, separate the statements by semicolon characters.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 41 Return to Table of Contents

38 CHAPTER 2 The mysql Client Program

2.2 Statement Terminators

You may use any of several terminators to end a statement. Two terminators are the
semicolon character (‘;’) and the \g sequence. They’re equivalent and may be used
interchangeably:

mysq1> SELECT VERSION(), DATABASEQ);

oo oo +
| VERSIONQ) | DATABASEQ) |
e o +
| 5.0.10-beta-log | world |
o Fommm +
mysql> SELECT VERSION(), DATABASE()\g
o Fo—mm +
| VERSIONQ) | DATABASEQ) |
oo oo +
| 5.0.10-beta-log | world |
e o +

The \G sequence also terminates queries, but causes mysq1 to display query results in a verti-
cal style that shows each output row with each column value on a separate line:

mysq1> SELECT VERSION(), DATABASE(\G

* 1. row
VERSION(Q): 5.0.10-beta-Tog
DATABASE() : world

The \G terminator is especially useful if a query produces very wide output lines because
vertical format can make the result much easier to read.

If you are using mysq1 to define a stored routine or a trigger that uses compound statement
syntax and consists of multiple statements, the definition will contain semicolons internally.
In this case, it is necessary to redefine the ‘;’ terminator to cause mysql to pass semicolons in
the definition to the server rather than interpreting them itself. Terminator redefinition is
covered in Section 18.4, “Defining Stored Routines.”

2.3 The mysql Prompts

The mysq1> prompt displayed by mysq1 is just one of several different prompts that you
might see when entering queries. Each type of prompt has a functional significance because
mysq1 varies the prompt to provide information about the status of the statement you’re
entering. The following table shows each of these prompts.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 42 Return to Table of Contents

2.4 Using Editing Keys in mysq1 39

Prompt Meaning of Prompt
mysql> Ready for new statement

-> Waiting for next line of statement

> Waiting for end of single-quoted string

“> Waiting for end of double-quoted string or identifier

> Waiting for end of backtick-quoted identifier

/%> Waiting for end of C-style comment

The mysq1> prompt is the main (or primary) prompt. It signifies that mysq1 is ready for you
to begin entering a new statement.

The other prompts are continuation (or secondary) prompts. mysql displays them to indicate
that it’s waiting for you to finish entering the current statement. The -> prompt is the most
generic continuation prompt. It indicates that you have not yet completed the current state-
ment, for example, by entering ‘;” or \G. The '>, “>, and > prompts are more specific. They
indicate not only that you’re in the middle of entering a statement, but that you’re in the
middle of entering a single-quoted string, a double-quoted string, or a backtick-quoted
identifier, respectively. When you see one of these prompts, you’ll often find that you have
entered an opening quote on the previous line without also entering the proper closing
quote.

If in fact you have mistyped the current statement by forgetting to close a quote, you
can cancel the statement by entering the closing quote followed by the \c clear-statement
command.

The /*> prompt indicates that you’re in the middle of entering a multiple-line C-style com-
ment (in /* ... */ format).

2.4 Using Editing Keys in mysq1

mysq1 supports input-line editing, which enables you to recall and edit input lines. For exam-
ple, you can use the up-arrow and down-arrow keys to move up and down through previous
input lines, and the left-arrow and right-arrow keys to move back and forth within a line.
Other keys, such as Backspace and Delete, erase characters from the line, and you can type
in new characters at the cursor position. To submit an edited line, press Enter.

mysq1 also supports tab-completion to make it easier to enter queries. With tab-completion,
you can enter part of a keyword or identifier and complete it using the Tab key. This feature
is supported on Unix only.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 43 Return to Table of Contents

40

CHAPTER 2 The mysql Client Program

2.5 Using Script Files with mysqT

When used interactively, mysq1 reads queries entered at the keyboard. mysq1 can also accept
input from a file. An input file containing SQL statements to be executed is known as a
“script file” or a “batch file.” A script file should be a plain text file containing statements in
the same format that you would use to enter the statements interactively. In particular, each
statement must end with a terminator.

One way to process a script file is by executing it with a SOURCE command from within mysq1:

mysq1> SOURCE input_file;

Notice that there are no quotes around the name of the file.
mysq1 executes the queries in the file and displays any output produced.

The file must be located on the client host where you’re running mysq1. The filename must
either be an absolute pathname listing the full name of the file, or a pathname that’s speci-
fied relative to the directory in which you invoked mysq1. For example, if you started mysq1
on a Windows machine in the C:\mysq1 directory and your script file is my_commands.sq1 in
the C:\scripts directory, both of the following SOURCE commands tell mysq1 to execute the
SQL statements in the file:

mysql> SOURCE C:\scripts\my_commands.sql;
mysql> SOURCE ..\scripts\my_commands.sql;

The other way to execute a script file is by naming it on the mysql command line. Invoke
mysql and use the < input redirection operator to specify the file from which to read query
input:

shell> mysql db_name < input_file

If a statement in a script file fails with an error, mysql ignores the rest of the file. To execute
the entire file regardless of whether errors occur, invoke mysq1 with the --force or -f
option.

A script file can contain SOURCE commands to execute other files, but be careful not to create
a SOURCE loop. For example, if filel contains a SOURCE file2 command, file2 should not
contain a SOURCE filel command.

2.6 mysql Output Formats

By default, mysq1 produces output in one of two formats, depending on whether you use it
in interactive or batch mode:

= When invoked interactively, mysq1 displays query output in a tabular format that uses
bars and dashes to display values lined up in boxed columns.

= When you invoke mysq1 with a file as its input source on the command line, mysq1 runs
in batch mode with query output displayed using tab characters between data values.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 44 Return to Table of Contents

2.7 Client Commands and SQL Statements 41

To override the default output format, use these options:

= --batch or -B
Produce batch mode (tab-delimited) output, even when running interactively.
= --tableor -t

Produce tabular output format, even when running in batch mode.

In batch mode, you can use the --raw or -r option to suppress conversion of characters
such as newline and carriage return to escape-sequences such as \n or \r. In raw mode, the
characters are printed literally.

To select an output format different from either of the default formats, use these options:

= —-html or -H
Produce output in HTML format.
= —-xml or -X

Produce output in XML format.

2.7 Client Commands and SQL Statements

When you issue an SQL statement while running mysq1, the program sends the statement to
the MySQL server to be executed. SELECT, INSERT, UPDATE, and DELETE are examples of this
type of input. mysq1 also understands a number of its own commands that aren’t SQL state-
ments. The QUIT and SOURCE commands that have already been discussed are examples of
mysql commands. Another example is STATUS, which displays information about the current
connection to the server, as well as status information about the server itself. Here is what a
status display might look like:

mysql> STATUS;
mysql Ver 14.12 Distrib 5.0.10-beta, for pc-linux-gnu (i686)

Connection id: 14498

Current database: world

Current user: myname@locaTlhost
SSL: Not in use
Current pager: stdout

Using outfile: t
Using delimiter: ;

Server version: 5.0.10-beta-1og

Protocol version: 10

Connection: Localhost via UNIX socket
Server characterset: Tlatinl

Db characterset: Tatinl

Client characterset: Jatinl

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 45 Return to Table of Contents

42 CHAPTER 2 The mysql Client Program
Conn. characterset: latinl
UNIX socket: /tmp/mysql.sock
Uptime: 37 days 16 hours 50 min 3 sec

Threads: 4 Questions: 2439360 Slow queries: 854 Opens: 2523
Flush tables: 3 Open tables: 64 Queries per second avg: 0.749

A full list of mysq1 commands can be obtained using the HELP command.

mysq1 commands have both a long form and a short form. The long form is a full word
(such as SOURCE, STATUS, or HELP). The short form consists of a backslash followed by a single
character (such as \., \s, or \h). The long forms may be given in any lettercase. The short
forms are case sensitive.

Unlike SQL statements, mysq1 commands cannot be entered over multiple lines. For exam-
ple, if you issue a SOURCE input_file command to execute statements stored in a file,
input_file must be given on the same line as SOURCE. It cannot be entered on the next line.

By default, the short command forms are recognized on any input line, except within quoted
strings. The long command forms aren’t recognized except at the mysql> primary prompt.
For example, CLEAR and \c both clear (cancel) the current command, which is useful if you
change your mind about issuing the statement that you’re currently entering. But CLEAR isn’t
recognized after the first line of a multiple-line statement, so you should use \c instead.

To have mysq1 recognize the long command names on any input line, invoke it with the
--named-commands option.

2.8 Using Server-Side Help

The mysq1 program can access server-side help. That is, you can perform lookups in the
MySQL Reference Manual for a particular topic, right from the mysql> prompt. The general
syntax for accessing server-side help is HELP keyword. To display the topmost entries of the
help system, use the contents keyword:

mysql> HELP contents;
You asked for help about help category: “Contents”
For more information, type 'help <item>', where <item> is one of
the following categories:

Administration

Column Types

Data Definition

Data Manipulation

Functions

Geographic features

Transactions

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 46 Return to Table of Contents

2.8 Using Server-Side Help 43

You need not step through the items listed in the contents list to get help on a specific sub-
ject. Suppose that you need to know how to get status information from the server, but can’t
remember the command. Typing in the following command yields some hints:

mysql> HELP STATUS;
Many help items for your request exist
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
SHOW
SHOW MASTER STATUS
SHOW SLAVE STATUS

To get the more specific information offered, use the HELP command with the SHow keyword:

mysq1> HELP SHOW;
Name: 'SHOW'
Description:

SHOW has many forms that provide information about databases,
tables, columns, or status information about the server.
This section describes those following:

SHOW [FULL] COLUMNS FROM tb1_name [FROM db_name] [LIKE 'pattern']
SHOW CREATE DATABASE db_name

SHOW CREATE TABLE tb1_name

SHOW DATABASES [LIKE 'pattern']

SHOW [STORAGE] ENGINES

SHOW ERRORS [LIMIT [offset,] row_count]

SHOW GRANTS FOR user

SHOW INDEX FROM tb1_name [FROM db_name]

SHOW INNODB STATUS

SHOW [BDB] LOGS

SHOW PRIVILEGES

SHOW [FULL] PROCESSLIST

SHOW STATUS [LIKE 'pattern']

SHOW TABLE STATUS [FROM db_name] [LIKE 'pattern']
SHOW [OPEN] TABLES [FROM db_name] [LIKE 'pattern']
SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern']
SHOW WARNINGS [LIMIT [offset,] row_count]

The SHOW statement also has forms that provide information about
replication master and slave servers and are described in [Replication

SQL]:

SHOW BINLOG EVENTS
SHOW MASTER LOGS
SHOW MASTER STATUS

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 47 Return to Table of Contents

44 CHAPTER 2 The mysql Client Program

SHOW SLAVE HOSTS
SHOW SLAVE STATUS

If the syntax for a given SHOW statement includes a LIKE 'pattern' part,
'pattern' is a string that can contain the SQL '%' and '_" wildcard
characters. The pattern is useful for restricting statement output to
matching values.

Server-side help requires the help tables in the mysq1 database to be loaded, but normally
these files will be loaded by default unless you install MySQL by compiling it yourself.

2.9 Using the --safe-updates Option

It’s possible to inadvertently issue statements that modify many rows in a table or that return
extremely large result sets. The --safe-updates option helps prevent these problems. The
option is particularly useful for people who are just learning to use MySQL. --safe-updates
has the following effects:

= UPDATE and DELETE statements are allowed only if they include a WHERE clause that specif-
ically identifies which records to update or delete by means of a key value, or if they
include a LIMIT clause.

= Output from single-table SELECT statements is restricted to no more than 1,000 rows
unless the statement includes a LIMIT clause.

= Multiple-table SELECT statements are allowed only if MySQL will examine no more
than 1,000,000 rows to process the query.

The --i-am-a-dummy option is a synonym for --safe-updates.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 48 Return to Table of Contents

MySQL Query Browser

This chapter discusses MySQL Query Browser, a client program that provides a graphical
interface to the MySQL server for querying and analyzing data. The chapter covers the
following exam topics:

= An overview of MySQL Query Browser features

= Launching MySQL Query Browser

= Query construction and execution capabilities

= The MySQL Table Editor

» Connection management capabilities

= The Options dialog

3.1 MySQL Query Browser Capabilities

MySQL Query Browser is a cross-platform GUI client program that’s intuitive and easy to
use. It provides a graphical interface to the MySQL server for querying and analyzing data.
It’s similar in style of use to MySQL Administrator but is oriented toward accessing database
contents rather than server administration.

The following list describes some of the ways that you can use MySQL Query Browser:

» Interactively enter, edit, and execute queries.

» Navigate result sets with scrolling. Multiple result sets are tabbed so that you can
switch between them easily by selecting the appropriate tab.

» Browse the databases available on the server, the tables and stored routines in databases,
and the columns in tables.

= Browse your query history to see what queries you've issued, or recall and re-execute
previous queries.

» Bookmark queries for easy recall.

» Create or drop databases and tables, and modify the structure of existing tables.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 49 Return to Table of Contents

46 CHAPTER 3 MySQL Query Browser

» Create and edit SQL scripts, with debugging.
» Edit connection profiles that can be used to connect to servers more easily.

= Access information from the MySQL Reference Manual, such as statement syntax and
function descriptions.

MySQL Query Browser supports multiple server connections and opens a separate window
for each connection that you establish.

3.2 Using MySQL Query Browser

MySQL Query Browser is not included with MySQL distributions but can be obtained
from the MySQL AB Web site. It’s available in precompiled form for Windows and Linux,

or it can be compiled from source.

MySQL Query Browser requires a graphical environment such as Windows or the X
Window System. On Linux, MySQL Query Browser is designed for Gnome, but can be run
under KDE if GTK2 is installed. If a MySQL server is running on a host with no graphical
environment, you can connect to it remotely by running MySQL Query Browser on a client
host that does have a graphical environment.

On Windows, the installer creates a desktop icon and an entry in the Start Menu, so you can
start MySQL Query Browser using either of those. The program itself is located in the
installation directory, C:\Program Files\MySQL\MySQL Query Browser 1.1, so you can also
start MySQL Query Browser from the command line by invoking it directly after changing
location into that directory:

C:\> cd "C:\Program Files\MySQL\MySQL Query Browser 1.1"
C:\Program Files\MySQL\MySQL Query Browser 1.1> MySQLQueryBrowser.exe

RPM installations on Linux place MySQL Query Browser in /usr/bin. Assuming that this
directory is in your search path, you can invoke the program as follows:

shel1> mysql-query-browser

For tar file distributions, MySQL Query Browser is installed wherever you unpacked the
distribution, and the program is located in the bin directory under the installation directory.
To invoke the program, change location to that bin directory. For example, if you installed
the distribution at /opt/mysq1-query-browser, start MySQL Query Browser like this:

shell> cd /opt/mysql-query-browser/bin
shell> ./mysql-query-browser

On all platforms, after you start MySQL Query Browser, it displays a Connection dialog. To
connect to a MySQL server, fill in the required connection parameters in the dialog or
select from among any connection profiles that may already have been defined. The
Connection dialog is described in Section 3.5, “Connection Management.”

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 50 Return to Table of Contents

3.3 Using the Query Window 47

After you connect to the MySQL server, MySQL Query Browser displays a window that
you can use for issuing queries. (See Figure 3.1.)

¥ MySQL Query Browser. - root@localhost:3306 / world

File Edt View Query Script Tooks Help
Goback 1l R&:E.
‘ Transaction @ ‘ lig) Ewlan W Comparz ‘ ° e k i @}J ,Eﬁ,
/| @ Resultset 1
¥ Code | Name Continert Aegion
} ABW Aniba Notth America Caribbean S pr——p——
AFG Algharistan Asia Southem and CertalAsia = | ||y~ mysg
AGD Angola Afiica Central Afiica VB tost
AlA Anguila North America Caribbean v 2 word
ALB Albania Europe Southern Europe v [sy
AND Andara Europe Southern Euiope » T countiy
ANT Netherlands Antiles North America Caribbzan » 7] countiylanguage
ARE United Arah Emirales Asia Middle East
ARG Augentina South America South America
ARM Amenia Asia Middle East = Data Definition 2
ASM Ameiican Samoa DOceania Polynesia I MySQL Uity B
ATA Antarclica Antarclica Antarciica & Jrensectional and Locking
ATF French Southem tenitories Antarclica Antarctica > gﬁ;;mwsamow
ATE Anligua and Barbuda Notth America Caribbean OLLBACK
AUS Australia Oceania Australia and New Zealand AVEPOINT
AUT Austiia Europe Westein Europe OLLBACK TO SAVEPOINT
A7F Azerhaiian Asia Middls Fast o OCK TABLES
< | 3 2 UNLOCK TABLES |
239 rows Fetched in 0,1023s (0.022%5) H r | | || ERE 3 SET TRANSACTION b
1t b

FIGURE 3.1 MySQL Query Browser main window.

To open connections to additional servers, select New Instance Connection ... from the File
menu. MySQL Query Browser opens a separate query window for each connection.

As shown in the figure, a query window has several major areas:
= The top part of the window contains an area for entering queries and has several sets of
buttons that aid in query construction and execution.

» At the lower left, a result area displays results from queries. There can be multiple
results, each accessible as a tab so that you can easily switch from one to another.

= At the right, there are two browser areas. The Object Browser allows you to navigate
databases, bookmarked queries, and your query history. The Information Browser pro-
vides access to statement syntax and function documentation and to query parameters.

The query window also contains several menus from which you can access additional fea-
tures. For example, you can access the Script Editor from the File menu.

3.3 Using the Query Window

This section describes how to use the different areas of the MySQL Query Browser query

window.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 51 Return to Table of Contents

48

CHAPTER 3 MySQL Query Browser

3.3.1 Entering Queries

You can enter queries manually by typing them into the query area, or you can construct
queries graphically by using the mouse to select tables, columns, or query components such
as joins or WHERE clauses. If you drag multiple tables into a query, MySQL Query Browser
constructs a join and tries to determine which columns to use for joining tables. It makes
this determination based on foreign key relationships for InnoDB tables, and based on
identical column names for other types of tables.

The query currently displayed in the query area can be executed by clicking the Execute
button, by entering Ctr1-E at the keyboard, or by selecting a query execution option from
the Query menu.

MySQL Query Browser provides syntax highlighting, which helps you see and understand
the structure of queries more readily.

Queries are saved in your query history, and you can bookmark specific queries by dragging
them to the bookmark browser. Previously executed queries can be recalled by using

the bookmark browser or history browser. To use a previous query from one of these
browsers, drag it from the browser area to the query area. Recalled queries are subject to

further editing.

MySQL Query Browser also helps you create views. To use this feature, execute a SELECT
statement and click the Create View button. This brings up a dialog for you to enter the
view name. MySQL Query Browser creates a view with the given name, defined using the
current SELECT statement. (You can also enter a CREATE VIEW statement directly.)

3.3.2 The Result Area

When you execute a query, its results appear in the query window result area. This area pro-
vides flexible result display and has the following characteristics:

» For results that do not fit within the display area, scroll bars appear that allow you to
navigate the result by scrolling. It’s also possible to toggle the result set display to use
the entire query window.

» If a result set is selected from a single table that has a primary key, the result set can be
edited to modify the original table. (There is an Edit button in the result area that
enables editing.) You can modify individual values within rows to update them, enter
new rows, or delete rows.

» The contents of a result are searchable. The result area has a Search button that pro-
vides access to Search and Replace dialogs. You can look for a given value in the entire
result or within specific columns. Searches can be case sensitive or not, and they can be
based on whole word or partial word matching.

» A result is placed within the current tab of the result area, and each successive query
overwrites the tab contents. To prevent this, you can create additional tabs for display-
ing multiple results and then switch between then.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 52 Return to Table of Contents

3.3 Using the Query Window 49

= You can split a result area tab horizontally or vertically to customize its display or to
take advantage of additional features. For example, you can split a tab vertically, load
two results into the left and right halves, and then click the Compare button to compare
the results. MySQL Query Browser matches up the rows in the two halves to make
visual comparison easier. You can also perform master-detail analysis using a split result
tab. This type of analysis displays the relationship between master records in one table
and the corresponding detail records in another table.

3.3.3 The Script Editor

The query area is designed for entry and execution of single SQL statements. To extend this
capability, MySQL Query Browser includes a Script Editor that allows you to edit, execute,
and debug scripts that consist of multiple statements.

The Script Editor presents an interface that is displayed as a tab in the result area. To acti-
vate it, select either New Script Tab or Open Script ... from the File menu, depending on
whether you want to create a new script or edit one that is stored in a file.

The Script Editor offers these features:
= Syntax highlighting
» Line numbering
= Script execution

= Debugging options such as single-stepping and breakpoints

3.3.4 Stored Routine Management
MySQL Query Browser assists you in managing stored procedures several ways:
» It helps you create new routines by prompting for a routine name and taking you to the
Script Editor and providing a template for the routine definition.
= You can edit existing routines.

» The database browser shows stored routines in a database when you expand the display
for the database. If you expand the display for a routine, the browser shows the
routine’s parameters.

3.3.5 The Object and Information Browsers

The right side of the query window contains two browsers: the Object Browser and the
Information Browser. The area for each browser contains several sub-browsers.

The area for the Object Browser provides access to databases and queries:

» The database browser (schemata browser) displays a hierarchical view of your databases.
It lists each database, with the default database name highlighted so that you can tell at

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppages3 Return to Table of Contents

50 CHAPTER 3 MySQL Query Browser

a glance which one is current. The default database is the one used for references to
tables and routines that are not qualified with a database name.

The display for any database can be expanded to show the tables and stored routines
within the database. Likewise, expanding a table display shows its columns and
expanding a routine’s display shows its parameters.

Double-clicking a database name selects it as the default database. Double-clicking a
table name enters a SELECT * FROM table_name statement in the query area.

Right-clicking in the database browser brings up a menu for additional capabilities:
» Right-click in the browser to create a new database or table.
» Right-click on a database name to drop the database.

= Right-click on a table name to drop the table or edit it with the MySQL Table
Editor.

» The bookmark browser lists those queries that you have bookmarked. You can organize
bookmarks hierarchically by creating folders and moving, removing, or renaming
bookmarks.

» The history browser contains previously issued queries, hierarchically organized by day.

» You can drag queries from the bookmark or history browser to the query area for re-
execution. Double-clicking a query also enters it into the query area.

The area for the Information Browser provides access to documentation, query parameters,
and current-transaction information:

» The syntax browser lists SQL statements. Double-clicking on a statement displays syn-
tax information for it from the MySQL Reference Manual. The information appears in a
tab in the result area.

» The function browser lists the built-in functions that you can use in SQL statements.
Double-clicking on a function displays the description for it from the MySQL Reference
Manual. The information appears in a tab in the result area.

» The parameter browser displays query parameters.

» The transaction browser shows the statements that are part of the current transaction.

3.4 The MySQL Table Editor

MySQL Query Browser has a table editor facility that enables you to create tables or edit
the definitions of existing tables. To access the MySQL Table Editor, right-click on a table
name in the database browser and select Edit Table. The MySQL Table Editor also can be
accessed from the MySQL Administrator program: Select the Catalogs section of the main
window, select a database, and then right-click on a table name and select Edit Table.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 54 Return to Table of Contents

3.5 Connection Management 51

The MySQL Table Editor provides a graphic interface for manipulation of table definitions,
as shown in Figure 3.2.

¥ MySQL Table Editor (=]

Table Name: |countty | Database: [workd v| Comment | |

Columns and Indices | Table Options || Advanced Options |

Column Name Datatype HoE | (50 | Flags DefautVaue | Comment
3 Code | & CHAR) v (] BINARY [] ASCIl [] UNIC ~
G Name |3 CHARG2) v [] BINARY [] ASCIl [] UNIC

@ Contirent B ENUM[Asia E v Asia

& Aegion |2 cHaR(ze) v [BINARY [] ASCIl] UNIC

G Sufacshiea |3, FLOAT02) v [] UNSIGNED [ZEROFILL 0.00

@ Indeprear (% SMALLINT(S) [] UNSIGNED [] ZERDFILL L
& Population & INTEGER v [] UNSIGNED [] ZEROFILL O

& LifeErpectancy (3 FLOAT(31) [] UNSIGNED [] ZEROFILL

S GNP 5, FLOATHO.Z) [J UNSIGNED [] ZEROFILL

< GNPOId 5. FLOATND.21 "1 UNSIGNED 71 ZERDFILL]

Indices | Foreign Keys || Column Details|

Index Seltings
T PAIMARY

Inde Columns [Use Drag'nDrop]
Code »

+

[ApplyChanges | [Discard Changss | [Cioss

FIGURE 3.2 MySQL Table Editor.

The MySQL Table Editor enables you to perform the following tasks:

» Create new tables or edit the structure of existing tables

» Rename tables or move tables to a different database

» Change table options, such as the storage engine, character set and collation, or table
comment

= Specify column definitions (name, data type, and attributes)

» Define indexes and foreign keys

The Options dialog has an Editors section that enables you to set MySQL Table Editor
preferences. See Section 3.6, “The Options Dialog.”

3.5 Connection Management

MySQL Query Browser provides a Connection dialog that enables you to connect to a
MySQL server, and a connection editor that you can use to create profiles that store con-
nection parameters for later use. This section describes how to use the Connection dialog
and the connection editor. The discussion also applies to MySQL Administrator, which has
the same connection management facilities.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Pagess Return to Table of Contents

52 CHAPTER 3 MySQL Query Browser

A connection profile is a set of connection parameters to which you assign a name. You can
recall profiles by name later. The use of profiles makes it easy to set up and use connections
for multiple servers. Connection profiles can be created in either MySQL Query Browser
or MySQL Administrator, and are shared by the two programs. That is, a profile created
within one program can be used within the other.

Profiles are stored in a file named mysq1x_user_connections.xml. The location of this file is
the C:\Documents and Settings\user_name\Application Data\MySQL directory on Windows
and the ~/.mysqlgui directory on Unix. Profiles are stored as plain text in XML format,
which means that profiles are portable and have good cross-platform compatibility. A file
containing connection profiles can be given to other users on the same or different
machines. This makes it easy to set up standard profiles and distribute them, a feature that
can be useful in a classroom or training setting, or if you want to distribute standard profiles
along with an application.

The connections file is updated automatically when you use the Connection dialog or con-
nection editor. Because the file is plain text, its contents can be edited by other programs as
well, and the changes will be visible to the connection editor.

3.5.1 Using the Connection Dialog

MySQL Query Browser presents a Connection dialog when it starts or when you select
New Instance Connection ... from the File menu. (See Figure 3.3.) This dialog enables you
to connect to a MySQL server. You can either fill in its fields with the parameters required
to connect to a server or select from among any predefined connection profiles. The
Connection dialog also provides access to the connection editor, which enables you to
create, edit, and delete connection profiles.

MySOL Query Browser 1.1.9 3

[
> &
Query Browser

Cornect to MySOL Server nstance:

Stored Connection ()
SewverHost [locabost | Por: [3306 |
Username; | oot
DefaultSchems: [wald |

[el » | [ok][cear | [cancel |

FIGURE 3.3 Connection dialog.

"To connect to a MySQL server by specifying connection parameters directly, fill in the
appropriate fields beginning with the Username field and click the 0K button. To connect

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 56 Return to Table of Contents

3.6 The Options Dialog 53

using the parameters stored in a connection profile, select the profile from the Connection
drop-down list and click the 0K button. To access the connection editor, click the ... button
next to the Connection drop-down list.

3.5.2 Editing Connection Profiles

The connection editor enables you to create, edit, and delete connection profiles. The con-
nection editor also maintains a history of recent connections. You can access this editor from
the Connection dialog or by selecting Options ... from the Tools menu and selecting the
Connections section of the Options dialog. In either case, the connection editor window is

displayed, as shown in Figure 3.4.

Categay [connections |

[~ Connections Connection Parameters | Advanced Parameters
[coihocalhos
Browser & Hisoy Connection: [o0t@hcahost

Usemame; [1oat

Password: |

General Options

|
|
|
Hostrame: [localhost |

Port: (3305 | Type: [MySAL v

Schema: [world |

Notes:

%
[

Editors

‘Add new Connection

[eeny] [Dt [o

FIGURE 3.4 Connection Editor.

The Connections section has a browser for existing connection profiles. It also displays a
history of previous connections that were made without using a connection profile. The
other part of the Connections section has a tab for specifying general connection parameters
and another for other options. To edit a profile, select it in the browser and then modify

the fields displayed by the two tabs. You can also use the Add New Connection and Delete
buttons to create and delete profiles.

3.6 The Options Dialog

The Options dialog allows you to configure several aspects of MySQL Query Browser
behavior. The settings configured via this dialog are read by MySQL Administrator, so they
affect that program, too.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppages7

Return to Table of Contents

54 CHAPTER 3 MySQL Query Browser

To access the Options dialog, select the Options ... item from the Tools menu. The dialog

has several sections, as shown in Figure 3.5.

| Categoy | [General |

Applications Options
[Z] Store Windows Positions

Langusge: | Englsh v
Browser Show Tip of Day
[[]Disable transparency effects
Password Storage
[] Store passwords Password storage method: [Obscred v
g Application Fonts
Defaul Fant: [MS Sans Serl v See B3 v]nt [Choose..]

Connections

Data Font: | MS Sans Seri v| sie [B3 |v|pt [Choose.. |
9 Code Font. | Bitstieam Vera Sans M v | Width Sie (B3 |9 pt
Edilors

Warnings and Messages

Remove

Igrorelist

o] [omema) (o]

FIGURE 3.5 Options dialog.

The sections in the Options dialog are used as follows:

» The Browser section appears only when you are running MySQL Query Browser. It

allows you to set options that affect MySQL Query Browser general defaults.

» The Administrator section appears only when you are running MySQL Administrator.
It allows you to set options that affect MySQL Administrator general defaults.

» The General Options section customizes program behavior. It controls settings such as
font, language selection, and whether to save passwords in connection profiles.
Passwords can be saved as plain text or in “obscured” format. The latter is weak

encryption that is unsophisticated and will not defeat a determined attack, but it does

make stored passwords not directly visible via simple inspection.

» The Connections section allows you to create, edit, and delete connection profiles. It

also has a browser that provides information about recent connections. The connection

editor is discussed in Section 3.5, “Connection Management.”

» The Editors section configures defaults for the MySQL Table Editor for creating

tables, such as the default storage engine and data type, whether to define columns as
NOT NULL by default, and whether integer columns should be UNSIGNED by default. It also
gives you control over the conventions used when naming indexes and foreign keys.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen
ISBN: 0672328127 Publisher: MySQL Press

Print Publication Date: 2005/08/24

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM

Licensed by Francisco Leon Nieto
User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 58 Return to Table of Contents

4
MySQL Connectors

This chapter discusses the family of MySQL Connectors that provide connectivity to
MySQL Server for client programs. It covers the following exam topics:
= An overview of the programming interfaces available for MySQL client programs
= The MySQL Connector/ODBC driver for programs that use the ODBC (Open
Database Connectivity) interface
= The MySQL Connector/J driver that provides JDBC connectivity to Java programs
= The MySQL Connector/NET driver for programs that use the NET Framework

4.1 MySQL Client Interfaces

MySQL AB provides several application programming interfaces (APIs) for accessing the
MySQL server. The interface included with distributions of MySQL itself is
Tibmysqglclient, the C client library. This API may be used for writing MySQL-based C
programs. It is also the basis for most higher-level APIs written for other languages (the Java
and .NET interfaces are notable exceptions).

MySQL AB also provides drivers that aren’t programs in themselves, but act as bridges to
the MySQL server for client programs that communicate using a particular protocol. These
drivers comprise the family of MySQL Connectors. They are available as separate packages.

= MySQL Connector/ODBC provides a MySQL-specific driver for ODBC. It allows
ODBC-compliant programs to access MySQL.

= MySQL Connector/] is a JDBC driver for use in Java programs. It allows JDBC-
compliant programs to access MySQL.

= MySQL Connector/NET is a driver written in C# that supports the ADO.NET inter-
faces required to run .NET applications that access MySQL.

The MySQL connectors are available for Windows and Unix. To use a connector, you must
install it on the client host. It isn’t necessary for the server to be running on the same

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 59 Return to Table of Contents

56

CHAPTER 4 MySQL Connectors

machine or for the server to be running the same operating system as the client. This
means that MySQL connectors are very useful for providing MySQL connectivity in het-
erogeneous environments. For example, people who use Windows machines can run client
applications that access MySQL databases located on a Linux server host.

Each of the preceding APIs is officially supported by MySQL AB. In addition, many
third-party client interfaces are available. Most of them are based on the C client library and
provide a binding for some other language. These include the mysgl and mysqli extensions
for PHP, the DBD::mysql driver for the Per]l DBI module, and interfaces for other lan-
guages such as Python, Ruby, Pascal, and Tcl. Although you can download these client APIs
from the MySQL Web site and members of the MySQL AB development team often work
closely with the developers of these products, the APIs do not receive official support from
MySQL AB. If you’re embarking on a project that involves these APIs, you should contact
the developers to determine whether future support will be available.

4.2 MySQL Connector/ODBC

MySQL Connector/ODBC acts as a bridge between the MySQL server and client programs
that use the ODBC standard. It provides a MySQL-specific driver for ODBC so that
ODBC-based clients can access MySQL databases.

MySQL Connector/ODBC uses the C client library to implement the client/server commu-
nication protocol. It converts ODBC calls made by the client program into C API
operations that communicate with the server. Connections can be established using TCP/IP,
Unix socket files, or named pipes.

MySQL Connector/ODBC is available for Windows and Unix.

4.3 MySQL Connector/J

MySQL Connector/]J is similar in spirit to Connector/ODBC, but is used by JDBC-based
Java programs. It is not based on the C client library. Instead, it is written in Java and imple-
ments the client/server communication protocol directly. Connections can be established
using TCP/IP or named pipes. MySQL Connector/J converts JDBC calls made by the

client program into the appropriate protocol operations.

MySQL Connector/] is a Type 4 (pure Java) driver that implements version 3.0 of the JDBC

specification.

MySQL Connector/J includes support for MySQL capabilities such as server-side prepared
statements, stored routines, and Unicode.

MySQL Connector/] is available for Windows and Unix.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 60 Return to Table of Contents

4.4 MySQL Connector/NET 57

4.4 MySQL Connector/NET

MySQL Connector/NET enables .NET applications to use MySQL. It is not based on the
C client library. Instead, it is written in C# and implements the client/server communication
protocol directly. Connections can be established using TCP/IP, Unix socket files, named
pipes, or shared memory.

MySQL Connector/NET includes support for MySQL capabilities such as server-side pre-

pared statements, stored routines, and Unicode.

MySQL Connector/NET is available for Windows. If you use Mono, the Open Source
implementation of .NET developed by Novell, it is also available on Linux.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 61 Return to Table of Contents

Data Types

This chapter discusses data types for representing information in MySQL. It covers the

following exam topics:

An overview of available data types

Numeric data types

The BIT data type

String data types

Temporal (date and time) data types

Attributes that modify how columns are handled

The AUTO_INCREMENT attribute for sequence generation

Controlling how MySQL handles missing or invalid input data values

5.1 Data Type Overview

MySQL enables you to store several different types of data, and it’s important to understand
what data types are available so that you can define your tables appropriately for the infor-
mation they’ll contain. Generally speaking, data values can be grouped into the following
categories:

Numeric values. Numbers may or may not have a fractional part and may have a lead-
ing sign. For example, 14, -428.948, and +739 all are legal numbers. Integer values have
no fractional part; columns for values with a fractional part can be declared to have
either a fixed or variable number of decimal places. Numeric columns can be declared
to be unsigned to prevent negative values from being accepted in the column. A BIT
data type holds bit-field values, and a b nnnn' notation is available for writing literal bit
values.

String values. Strings may be non-binary or binary, to store characters or raw bytes,
respectively. Strings that store characters have a character set and collation; they can be
case sensitive or case insensitive. Strings are written within quotes (for example, 'I am

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 62 Return to Table of Contents

60 CHAPTER 5 Data Types

a string'). String columns can be declared as either fixed length or variable length.
BLOB values (binary large objects) are treated as strings in MySQL.

» Temporal values. Temporal values include dates (such as '2005-11-03"), times (such as
'14:23:00'), and values that have both a date and a time part (*2005-11-03 14:23:00").
MySQL also supports a special temporal type that represents year-only values efficient-
ly. Date and time values can be written as quoted strings and may sometimes be written
as numbers in contexts where numeric temporal values are understood.

MySQL also supports manipulation of spatial values using a set of spatial data types. Spatial
types are not covered in this study guide or on the exam. See the MySQL Reference Manual
for details.

When you create a table, the declaration for each of its columns includes the column name,
a data type that indicates what kind of values the column may hold, and possibly some
attributes (options) that more specifically define how MySQL should handle the column.
For example, the following statement creates a table named people, which contains an
integer-valued numeric column named id and two 30-character string columns named

first_name and Tast_name:

CREATE TABLE people

(
id INT,
first_name CHAR(30),
Tlast_name CHAR(30)
)

The column definitions in that CREATE TABLE statement contain only names and data types.
"To more specifically control how MySQL handles a column, add attributes to the column
definition. For example, to disallow negative values in the id column, add the UNSIGNED
attribute. To disallow missing or unknown values in the columns, add NOT NULL to each col-
umn definition so that NULL values cannot be stored. The modified CREATE TABLE statement

looks like this:
CREATE TABLE people
(
id INT UNSIGNED NOT NULL,

first_name CHAR(30) NOT NULL,
Tast_name CHAR(30) NOT NULL
s

For additional control over input data handing, you can set the SQL mode to determine
how forgiving or strict MySQL Server is about accepting invalid values.

For each of the general data categories (number, string, and temporal), MySQL has several
specific data types from which to choose. It’s important to properly understand what data
types are available for representing data, to avoid choosing a type that isn’t appropriate. The

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 63 Return to Table of Contents

5.2 Numeric Data Types 61

following sections describe these data types and their properties. For additional details, see
the MySQL Reference Manual.

5.2 Numeric Data Types

For storing numeric data, MySQL provides integer data types, floating-point types that
store approximate-value numbers, a fixed-point type that stores exact-value numbers, and a
BIT type for bit-field values. When you choose a numeric data type, consider the following
factors:

s The range of values the data type represents
s The amount of storage space that column values require

= The display width indicating the maximum number of characters to use when present-
ing column values in query output

s The column precision and scale for floating-point and fixed-point values

Precision and scale are terms that apply to floating-point and fixed-point values, which can
have both an integer part and a fractional part. Precision is the number of significant digits.
Scale is the number of digits to the right of the decimal point.

5.2.1 Integer Data Types

Integer data types include TINYINT, SVALLINT, MEDIUMINT, INT, and BIGINT. Smaller integer
types require less storage space, but are more limited in the range of values they represent.
For example, TINYINT column values take only one byte each to store, but the type has a
small range (-128 to 127). INT column values require four bytes each, but the type has a
much larger range (-2,147,483,648 to 2,147,483,647). The integer data types are summa-
rized in the following table, which indicates the amount of storage per value that each type
requires as well as its range. For integer values declared with the UNSIGNED attribute, negative
values are not allowed, and the high end of the range shifts upward to approximately double
the maximum positive value of the signed range.

Type Storage Required Signed Range Unsigned Range

TINYINT 1 byte -128 to 127 0 to 255

SMALLINT 2 bytes -32,768 to 32,767 0 to 65,535

MEDIUMINT 3 bytes -8,388,608 to 8,388,607 0to 16,777,215

INT 4 bytes -2,147,683,648 to 0 to 4,294,967,295
2,147,483,647

BIGINT 8 bytes -9,223,372,036,854,775,808 to 0 to 18,446,744,073,
9,223,372,036,854,775,807 709,551,615

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 64 Return to Table of Contents

62 CHAPTER 5 Data Types

Integer data types may be declared with a display width, which affects the number of digits
used to display column values in query output. For example, assume that you declare an INT
column with a display width of 4 like this:

century INT(4)

The result is that values in the century column usually are displayed four digits wide.
However, it’s important to understand that the display width is unrelated to the range of the
data type. The display width specified for a column affects only the maximum number of
digits MySQL uses to display column values. Values shorter than the display width are
padded with spaces as necessary. Note also that the display width is not a hard limit; it won’t
cause output truncation of a value that’s too long to fit within the width. Instead, the full
value is shown. For example, assume that you've inserted the number 57622 into the century
column. When you SELECT the column in a query, MySQL displays the entire value (57622),
not just the first four digits of the value.

The display width for integer types also is unrelated to storage requirements. For example,
an INT(4) column does not require half as much storage per value as INT(8). All values for
the INT data type require four bytes.

If you specify no display width for an integer type, MySQL chooses a default based on the
number of characters needed to display the full range of values for the type (including the
minus sign, for signed types). For example, SMALLINT has a default display width of 6 because
the widest possible value is -32768.

5.2.2 Floating-Point Data Types

The floating-point data types include FLOAT and DOUBLE. Each of these types may be used to
represent approximate-value numbers that have an integer part, a fractional part, or both.
FLOAT and DOUBLE data types represent values in the native binary floating-point format

used by the server host’s CPU. This is a very efficient type for storage and computation, but
values are subject to rounding error.

FLOAT represents single-precision floating-point values that require four bytes each for stor-
age. DOUBLE represents double-precision floating-point values that require eight bytes each
for storage.

You can specify explicit precision and scale values in the column definition to indicate the
number of significant digits and the number of decimal places to the right of the decimal
point. The following definitions specify a single-precision column with a precision of 10
digits and scale of 3 decimals, and a double-precision column with a precision of 20 digits
and scale of 7 decimals:

weight FLOAT(10,3)
avg_score DOUBLE(20,7)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 65 Return to Table of Contents

5.2 Numeric Data Types 63

If you specify no precision or scale, MySQL represents values stored in FLOAT and DOUBLE
columns to the maximum accuracy allowed by the hardware of the MySQL server host. The
following definitions include no explicit precision or scale:

float_col FLOAT
double_col DOUBLE

Floating-point values are stored using mantissa/exponent representation, which means that
the precision is defined by the width of the mantissa and the scale varies depending on the
exponent value. The result of these factors is that stored values are approximate.

5.2.3 Fixed-Point Data Types

The fixed-point data type is DECIMAL. It is used to represent exact-value numbers that have
an integer part, a fractional part, or both.

DECIMAL uses a fixed-decimal storage format: All values in a DECIMAL column have the same
number of decimal places and are stored exactly as given when possible. DECIMAL values are
not processed quite as efficiently as FLOAT or DOUBLE values (which use the processor’s native
binary format), but DECIMAL values are not subject to rounding error, so they are more accu-
rate. In other words, there is an accuracy versus speed tradeoff in choosing which type to
use. For example, the DECIMAL data type is a popular choice for financial applications involv-
ing currency calculations, because accuracy is most important.

DECIMAL columns may be declared with a precision and scale to indicate the number of
significant digits and the number of decimal places to the right of the decimal point. For
example, if you want to represent values such as dollar-and-cents currency figures, you can
do so using a two-digit scale:

cost DECIMAL(10,2)

The precision and scale can be omitted, or just the scale. The defaults for omitted precision
and scale are 10 and 0, respectively, so the following declarations are equivalent:

total DECIMAL
total DECIMAL(10)
total DECIMAL(10,0)

The amount of storage required for DECIMAL column values depends on the precision and
scale. Approximately four bytes are required per nine digits on each side of the decimal
point.

The NUMERIC data type in MySQL is a synonym for DECIMAL. (If you declare a column as
NUMERIC, MySQL uses DECIMAL in the definition.) Standard SQL allows for a difference
between the two types, but in MySQL they are the same. In standard SQL, the precision for
NUMERIC must be exactly the number of digits given in the column definition. The precision
for DECIMAL must be at least that many digits but is allowed to be more. In MySQL, the pre-
cision is exactly as given, for both types.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide rage 66 Return to Table of Contents

64 CHAPTER 5 Data Types

5.3 The BIT Data Type

The BIT data type represents bit-field values. BIT column specifications take a width indicat-
ing the number of bits per value, from 1 to 64 bits. The following columns store 4 and 20
bits per value, respectively:

bit_coll BIT(4)
bit_col2 BIT(20)

For a BIT(n) column, the range of values is 0 to 2 " — 1, and the storage requirement is
approximately INT((n+7)/8) bytes per value.

BIT columns can be assigned values using numeric expressions. To write literal bit values
in binary format, the literal-value notation b'va7' can be used, where vaT indicates a value
consisting of the binary digits 0 and 1. For example, b'1111" equals 15 and b'1000000"
equals 64.

5.4 String Data Types

The following table lists the string data types provided in MySQL.

Type Description

CHAR Fixed-length non-binary string

VARCHAR Variable-length non-binary string

TEXT Variable-length non-binary string

BINARY Fixed-length binary string

VARBINARY Variable-length binary string

BLOB Variable-length binary string

ENUM Enumeration consisting of a fixed set of legal values
SET Set consisting of a fixed set of legal values

When you choose a string data type, consider the following factors:
» Whether you need to store non-binary or binary strings; are character set and collation
important?
= The maximum length of values you need to store.
= Whether to use a fixed or variable amount of storage.
» How trailing spaces are handled for comparison, storage, and retrieval.

» The number of distinct values required; ENUM or SET may be useful if the set of values is
fixed.

The following discussion first describes the general differences between non-binary and
binary strings, and then the specific characteristics of each of the string data types.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 67 Return to Table of Contents

5.4 String Data Types 65

5.4.1 Character Set Support

Strings in MySQL may be treated as non-binary or binary. The differences between these
types of strings make them suited to different purposes. The most general difference is that
non-binary strings have a character set and consist of characters in that character set, where-
as binary strings consist simply of bytes that are distinguished only by their numeric values.
"This section explores the implications of this difference.

Non-binary strings have the following characteristics:

= A non-binary string is a sequence of characters that belong to a specific character set.
Characters may consist of a single byte, or multiple bytes if the character set allows it.
For example, MySQL’s default character set is 1atinl (also known as ISO-8859-1). The
Tlatinl character set uses one byte per character. In contrast, sjis (the Japanese SJIS
character set), contains so many characters that they cannot all be represented in a sin-
gle byte, so each character requires multiple bytes to store.

» Multi-byte character sets may require a fixed or variable number of bytes per character.
The ucs2 Unicode character set uses two bytes per character, whereas the utf8 Unicode
character set uses from one to three bytes per character.

= Non-binary string comparisons are based on the collation (sorting order) of the
character set associated with the string. A given character set may have one or more
collations, but a given string has only one of those collations.

= Multi-byte character comparisons are performed in character units, not in byte units.

» The collation determines whether uppercase and lowercase versions of a given charac-
ter are equivalent. If the collation is not case sensitive, strings such as 'ABC', 'Abc’,
and 'abc' are all considered equal. If the collation is case sensitive, the strings are all
considered different.

s The collation also determines whether to treat instances of a given character with dif-
ferent accent marks as equivalent. The result is that comparisons of non-binary strings
may not be accent sensitive. For example, an ‘a’ with no accent may be considered the
same as the ‘4’ and ‘a’ characters. A given collation may be case or accent sensitive, or

both.

= A collation can be a binary collation. In this case, comparisons are based on numeric
character values. One effect of this is that for character sets with uppercase and lower-
case characters or accented characters, the collation is case sensitive and accent sensitive
because each of these characters has a different numeric value. Comparison based on a
binary collation differs from comparison of binary strings: A binary collation is per-
formed per character, and characters might consist of multiple bytes. Comparisons for
binary strings are always byte-based.

A given character set may have several collations to choose from. This enables you to select
different sort orders for the same character set. For example, with the Tatinl character set,

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 68 Return to Table of Contents

66 CHAPTER 5 Data Types

you can choose from any of the following collations, many of which correspond to the sort-
ing order rules of specific languages:

mysql> SHOW COLLATION LIKE 'Tatinl%';

ommm oo LT e Fomm oo - L +
| Collation | Charset | Id | Default | Compiled | Sortlen |
R L L e Fommm - e e Fomm oo Fommm - +
latinl_germanl_ci	latinl	5			0
latinl_swedish_ci	Tatinl	8	Yes	Yes	1
Tatinl_danish_ci	Tatinl	15			0
latinl_german2_ci	latinl	31		Yes	2
Tatinl_bin	Tatinl	47		Yes	1
latinl_general_ci	latinl	48			0
latinl_general_cs	latinl	49			0
Tatinl_spanish_ci	Tatinl	94			0
LT L et LT et S LT L Fomm oo LB +

Each collation name ends with _ci, _cs, or _bin, signifying that the collation is case insensi-
tive, case sensitive, or binary.

Binary strings have the following characteristics:

= A binary string is treated as a sequence of byte values. It might appear to contain char-
acters, because you can write a binary string value as a quoted string, but it “really”
contains binary data as far as MySQL is concerned.

= Because binary strings contain bytes, not characters, comparisons of binary strings are
performed on the basis of the byte values in the string. This has the implication that the
concept of lettercase does not apply the same way as for non-binary strings. Binary
strings may appear to be case sensitive, but that is because uppercase and lowercase ver-
sions of a given character have different numeric byte values. A binary string also may
appear to be accent sensitive, but that is because versions of a character with different
accents have different byte values.

The following example shows the difference in how non-binary and binary strings are
treated with respect to lettercase. The non-binary string is converted to uppercase by
UPPER() because it contains characters for which lettercase applies. The binary string
remains unchanged because it consists of byte values that have no lettercase.

mysql> SELECT UPPER('AaBb'), UPPER(BINARY 'AaBb');

- B i +
| UPPER('AaBb') | UPPER(BINARY 'AaBb') |
o oo +
| AABB | AaBb [
ommmmmmmm e et L L L EE P L e +

» A multi-byte character, if stored in a binary string, is treated simply as multiple individ-
ual bytes. Character boundaries of the original data no longer apply.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 69 Return to Table of Contents

5.4 String Data Types 67

String comparison rules are addressed in more detail in Section 10.3.1, “Case Sensitivity in
String Comparisons.”

The different treatment of non-binary and binary strings in MySQL is important when it
comes to choosing data types for table columns. You normally base the decision on whether
you want to treat column values as containing characters or raw bytes. Thus, non-binary
columns are more suitable for character strings such as textual descriptions, and binary
columns are more suitable for raw data such as images or compressed data.

Three data types store non-binary strings: CHAR, VARCHAR, and TEXT. Three data types store
binary strings: BINARY, VARBINARY, and BLOB. They’re each described further in the following
sections.

You can mix non-binary and binary string columns within a single table. Also, for non-
binary string columns, different columns can use different character sets and collations. For
example, assume that you want to create a table named auth_info, to store login name and
password authorization information for users of an application, as well as a picture to associ-
ate with each user. You want login names to match in any lettercase, passwords to be case
sensitive, and the picture column must store binary image data. The following table defini-
tion satisfies these requirements:

CREATE TABLE auth_info

(
Togin CHAR(32) CHARACTER SET Tatinl,
password CHAR(32) CHARACTER SET Tatinl COLLATE latinl_general_cs,
picture MEDIUMBLOB

s

5.4.2 Non-Binary String Data Types: CHAR, VARCHAR, TEXT

The CHAR, VARCHAR, and TEXT data types store non-binary strings (that is, strings of characters
that have a character set and collation). The types differ in terms of their maximum allow-
able length and in how trailing spaces are handled.

The CHAR data type is a fixed-length type. To define a CHAR column, provide the column
name, the keyword CHAR, and the maximum length of acceptable values in parentheses. The
length should be a number from 0 to 255.

The CHAR data type holds strings up to the length specified in the column definition. Values
in a CHAR column always take the same amount of storage. For example, a column defined as
CHAR(30) requires 30 characters for each value, even empty values. Values shorter than the
designated length are padded with spaces to that length when they are stored. Trailing
spaces are removed from CHAR values when they are retrieved, so retrieved values might not
be the same length as when stored.

VARCHAR is a variable-length data type. VARCHAR columns are defined similarly to CHAR
columns, but the maximum length can be a number up to 65,535. (The actual allowable

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page70 Return to Table of Contents

68

CHAPTER 5 Data Types

maximum length is a few characters less due to internal restrictions imposed by storage
engines.) A string stored into a VARCHAR column takes only the number of characters
required to store it, plus one or two bytes to record the string’s length. (One byte for
columns declared with a length less than 256, two bytes otherwise.)

Values in a VARCHAR column are stored as given. Trailing spaces are not removed or added for
storage or retrieval.

The TEXT data type comes in four different sizes, differing in the maximum length of values
they can store. All are variable-length types, so an individual value requires storage equal to
the length (in characters) of the value, plus 1 to 4 bytes to record the length of the value.
Trailing spaces are not removed or added for storage or retrieval.

The following table summarizes the non-binary string data types. For the storage require-
ment values, M represents the maximum length of a column. L represents the actual length of
a given value, which may be 0 to M.

Type Storage Required Maximum Length

CHAR(M) M characters 255 characters

VARCHAR (M) L characters plus 1 or 2 bytes 65,535 characters (subject to
limitations)

TINYTEXT L characters + 1 byte 255 characters

TEXT L characters + 2 bytes 65,535 characters

MEDIUMTEXT L characters + 3 bytes 16,777,215 characters

LONGTEXT L characters + 4 bytes 4,294,967,295 characters

For fixed-length (CHAR) columns, MySQL must allocate enough space to store any value
containing up to as many characters allowed by the column declaration. For CHAR(10), 10
bytes are required if the column has a single-byte character set. If the column has a multi-
byte character set, MySQL must allocate 10 times the width of the widest allowed character.
For utf8, each character takes from one to three bytes, so MySQL must allocate three bytes
per character, or 30 bytes per column value. This amount of storage is required even for
storing an empty string.

For variable-length (VARCHAR, TEXT) columns, MySQL allocates only the required amount of
space for each stored value. A 10-character utf8 VARCHAR column requires 10 bytes (plus a
length byte) for a value that contains only single-byte characters, but 30 bytes (plus a length
byte) if it contains only triple-byte characters.

Non-binary strings have a character set and collation, and non-binary string columns by
default are assigned the character set and collation of the table that contains them. The
CHARACTER SET and COLLATE attributes can be used to designate specific values for a column,
as described in Section 5.6, “Column Attributes.”

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage7: Return to Table of Contents

5.4 String Data Types 69

5.4.3 Binary String Data Types: BINARY, VARBINARY, BLOB

The BINARY, VARBINARY, and BLOB data types are the binary string equivalents of the non-
binary CHAR, VARCHAR, and TEXT data types. That is, they store strings that consist of bytes
rather than characters, and they have no character set or collation. Like the corresponding
non-binary types, binary string types differ in terms of their maximum allowable length and
in how trailing spaces are handled.

BINARY is a fixed-length data type. The length should be a number from 0 to 255. Values
shorter than the designated length are padded with spaces to that length when they are
stored. Trailing spaces are removed from BINARY values when they are retrieved, so retrieved
values might not be the same length as when stored. For this reason, BINARY may not be
suited for applications that store binary data if stored values can have trailing spaces. For
example, if an encrypted value happens to end with spaces, the retrieved value will be differ-
ent from the value that was stored.

VARBINARY is a variable-length data type. The maximum length can be a number up to
65,535. (The actual allowable maximum length is a few bytes less due to internal restrictions
imposed by storage engines.) Values in a VARBINARY column are stored as given. Trailing
spaces are not removed or added for storage or retrieval.

The BLOB data type comes in four different sizes, differing in the maximum length of values
they can store. All are variable-length types, so an individual value requires storage equal to
the length (in bytes) of the value, plus 1 to 4 bytes to record the length of the value.

The following table summarizes the binary string data types. For the storage requirement
values, M represents the maximum length of a column. L represents the actual length of a
given value, which may be 0 to M.

Type Storage Required Maximum Length

BINARY (M) Mbytes 255 bytes

VARBINARY (M) L bytes plus 1 or 2 bytes 65,535 bytes (subject to limitations)
TINYBLOB L + 1 bytes 255 bytes

BLOB L + 2 bytes 65,535 bytes

MEDIUMBLOB L + 3 bytes 16,777,215 bytes

LONGBLOB L + 4 bytes 4,294,967,295 bytes

5.4.4 The ENUM and SET Data Types

The ENUM and SET string data types are used when the values to be stored in a column are
chosen from a fixed set of values. You define columns for both types in terms of string val-
ues, but MySQL represents them internally as integers. This leads to very efficient storage,
but can have some results that are unintuitive unless you keep this string/integer duality in
mind.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage72 Return to Table of Contents

70 CHAPTER 5 Data Types

ENUM is an enumeration type. An ENUM column definition includes a list of allowable values;
each value in the list is called a “member” of the list. Every value stored in the column must
equal one of the values in the list. A simple (and very common) use for ENUM is to create a
two-element list for columns that store yes/no or true/false choices. The following table
shows how to declare such columns:

CREATE TABLE booleans
(
yesno ENUMC'Y', 'N"),
truefalse ENUMC'T','F')
)5

Enumeration values aren’t limited to being single letters or uppercase. The columns could
also be defined like this:

CREATE TABLE booleans
(
yesno ENUM('yes', 'no"'),
truefalse ENUM('true', 'false')
)5

An ENUM column definition may list up to 65,535 members. Enumerations with up to 255
members require one byte of storage per value. Enumerations with 256 to 65,535 members
require two bytes per value. The following table contains an enumeration column continent
that lists continent names as valid enumeration members:

CREATE TABLE Countries
(
name char(30),
continent ENUM ('Asia', 'Europe', 'North America', 'Africa',
'Oceania', 'Antarctica', 'South America')

)3

The values in an ENUM column definition are given as a comma-separated list of quoted
strings. Internally, MySQL stores the strings as integers, using the values 1 through n for a
column with n enumeration members. The following statement assigns the enumeration
value 'Africa’ to the continent column; MySQL actually stores the value 4 because
'Africa’ is the fourth continent name listed in the enumeration definition:

INSERT INTO Countries (name,continent) VALUES('Kenya','Africa');

MySQL reserves the internal value 0 as an implicit member of all ENUM columns. It’s used to
represent illegal values assigned to an enumeration column. For example, if you assign 'USA'
to the continent column, MySQL will store the value 0, rather than any of the values 1
through 7, because 'USA" is not a valid enumeration member. If you select the column later,
MySQL displays 0 values as the empty string ' *. (In strict SQL mode, an error occurs if you
try to store an illegal ENUM value.)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 73 Return to Table of Contents

5.4 String Data Types 71

The SET data type, like ENUM, is declared using a comma-separated list of quoted strings that
define its valid members. But unlike ENUM, a given SET column may be assigned a value con-
sisting of any combination of those members. The following definition contains a list of
symptoms exhibited by allergy sufferers:

CREATE TABLE allergy
(
symptom SET('sneezing', 'runny nose','stuffy head','red eyes')

b

A patient may have any or all (or none) of these symptoms, and symptom values therefore
might contain zero to four individual SET members, separated by commas. The following
statements set the symptom column to the empty string (no SET members), a single SET mem-
ber, and multiple SET members, respectively:

INSERT INTO allergy (symptom) VALUES(C'');
INSERT INTO allergy (symptom) VALUES('stuffy head');
INSERT INTO allergy (symptom) VALUES('sneezing,red eyes');

MySQL represents SET columns as a bitmap using one bit per member, so the elements in
the symptom definition have internal values of 1, 2, 4, and 8 (that is, they have the values of
bits 0 through 3 in a byte). Internally, MySQL stores the values shown in the preceding
INSERT statements as 0 (no bits set), 4 (bit 2 set), and 9 (bits 0 and 3 set; that is, 1 plus 8).

A SET definition may contain up to 64 members. The internal storage required for set values
varies depending on the number of SET elements (1, 2, 3, 4, or 8 bytes for sets of up to 8, 16,
24, 32, or 64 members).

If you try to store an invalid list member into a SET column, it’s ignored because it does not
correspond to any bit in the column definition. For example, setting a symptom value to
"coughing, sneezing,wheezing' results in an internal value of 1 (*sneezing'). The 'coughing’
and 'wheezing' elements are ignored because they aren’t listed in the column definition as
legal set members. (In strict SQL mode, an error occurs if you try to store an illegal SET
value.)

As mentioned earlier in this section, the conversion between string and numeric representa-
tions of ENUM and SET values can have unintuitive results. For example, although you would
normally refer to an enumeration column using the string forms of its values, you can also
use the internal numeric values. The effect of this can be very subtle if the string values look
like numbers. Suppose that you define a table t like this:

CREATE TABLE t (age INT, siblings ENUMC'O','1','2','3"','>3"'));
In this case, the enumeration values are the strings '0', '1', '2*, '3', and '>3', and the

matching internal numeric values are 1, 2, 3, 4, and 5, respectively. Now suppose that you
issue the following statement:

INSERT INTO t (age,siblings) VALUES(14,'3');

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage74 Return to Table of Contents

72

CHAPTER 5 Data Types

The siblings value is specified here as the string '3', and that is the value assigned to the
column in the new record. However, you can also specify the siblings value as a number, as
follows:

INSERT INTO t (age,siblings) VALUES(14,3);

But in this case, 3 is interpreted as the internal value, which corresponds to the enumeration
value '2'! The same principle applies to retrievals. Consider the following two statements:

SELECT * FROM t WHERE siblings = '3';
SELECT * FROM t WHERE siblings = 3;

In the first case, you get records that have an enumeration value of '3'. In the second case,
you g

you get records where the internal value is 3; that is, records with an enumeration value of

‘2.

5.5 Temporal Data Types

MySQL provides data types for storing different kinds of temporal information. In the fol-
lowing descriptions, the terms YYYY, MM, DD, hh, mm, and ss stand for a year, month, day of
month, hour, minute, and second value, respectively.

The following table summarizes the storage requirements and ranges for the date and time
data types.

Type Storage Required Range

DATE 3 bytes '1000-01-01" to '9999-12-31"

TIME 3 bytes '-838:59:59' to '838:59:59'

DATETIME 8 bytes '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'

TIMESTAMP 4 bytes '1970-01-01 00:00:00' to
mid-year 2037

YEAR 1 byte 1901 to 2155 (for YEAR(4)),

1970 to 2069 (for YEAR(2))

Each temporal data type also has a “zero” value that’s used when you attempt to store an
illegal value. The “zero” value is represented in a format appropriate for the type (such as
'0000-00-00" for DATE values and '00:00:00"' for TIME) values.

MySQL represents date values in ' YYYY-mM-pD* format when it displays them. This repre-
sentation corresponds to the ANSI SQL date format, also known as ISO 8601 format. If
necessary, you can reformat date values into other display formats using the DATE_FORMAT ()
function.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 75 Return to Table of Contents

5.5 Temporal Data Types 73

For date entry, MySQL also expects to receive dates in ISO format, or at least close to ISO
format. That is, date values must be given in year-month-day order, although some devia-
tion from strict ISO format is allowed:

» Leading zeros on month and day values may be omitted. For example, both '2000-1-1"
and '2000-01-01" are accepted as legal.

s The delimiter between date parts need not be ‘-’; you can use other punctuation char-
acters, such as ‘/’.

= Two-digit years are converted to four-digit years. You should be aware that this conver-
sion is done based on the rule that year values from 70 to 99 represent the years 1970
to 1999, whereas values from 00 to 69 represent the years 2000 to 2069. It’s better to
provide values with four-digit years to avoid problems with conversion of values for
which the rule does not apply.

If you need to load values that aren’t in an acceptable format into a DATE column, you should
convert them into ISO format before loading them. An alternative approach that’s useful in
some circumstances is to load the values into a string column and perform reformatting
operations using SQL string functions to produce ISO format values that can be assigned to
a DATE column.

MySQL represents time values in *hh:mm:ss' format. For TIME value entry, some variation
on this format is allowed. For example, leading zeros on TIME parts may be omitted.

MySQL represents time values in *hh:mm:ss' format when displaying them. If necessary,
you can reformat time values into other display formats using the TIME_FORMAT() function.

For time value entry, some variation on this format is allowed. For example, leading zeros
on TIME parts may be omitted.

5.5.1 The DATE, TIME, DATETIME, and YEAR Data Types

The DATE data type represents date values in ' YyYy-mM-pp' format. The supported range of
DATE values is '1000-01-01' to '9999-12-31"'. You might be able to use earlier dates than
that, but it’s better to stay within the supported range to avoid unexpected behavior.

The TIME data type represents time values in 'hh:mm:ss' format. The range of TIME columns
is '-838:59:59" to '838:59:59'. This is outside the time-of-day range of '00:00:00" to
'23:59:59" because TIME columns can be used to represent elapsed time. Thus, values might
be larger than time-of-day values, or even negative.

The DATETIME data type stores date-and-time values in ' YYYY-MM-DD hh:mm:ss' format. It’s
similar to a combination of DATE and TIME values, but the TIME part represents time of day
rather than elapsed time and has a range limited to '00:00:00"' to '23:59:59'. The date part
of DATETIME columns has the same range as DATE columns; combined with the TIME part, this
results in a DATETIME range from '1000-01-01 00:00:00' to '9999-12-31 23:59:59".

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage76 Return to Table of Contents

74

CHAPTER 5 Data Types

The YEAR data type represents year-only values. You can declare such columns as YEAR(4) or
YEAR(2) to obtain a four-digit or two-digit display format. If you don’t specify any display
width, the default is four digits.

If you don’t need a full date and the range of values you need to store falls into the YEAR
range, consider using YEAR to store temporal values. It’s a very space-efficient data type
because values require only one byte of storage each.

5.5.2 The TIMESTAMP Data Type

The TIMESTAMP type, like DATETIME, stores date-and-time values, but has a different range and
some special properties that make it especially suitable for tracking data modification times.

MySQL displays TIMESTAMP values using the same format as DATETIME values; that is,
"YYYY-MM-DD hh:mm:ss'.

The range of TIMESTAMP values begins at 1970-01-01 00:00:00 (UTC) and extends partway
into the year 2037. TIMESTAMP values actually represent the number of seconds elapsed since
the beginning of 1970 and are stored using four bytes. This provides room for sufficient sec-
onds to represent a date in the year 2037. MySQL Server stores TIMESTAMP values internally
in UTC. It converts TIMESTAMP values from the server’s current time zone for storage, and
converts back to the current time zone for retrieval. It is possible for individual clients to use
connection-specific time zone settings, as described in Section 5.5.3, “Per-Connection Time
Zone Support.”

The TIMESTAMP data type in MySQL is special in that you can cause a TIMESTAMP column to
be initialized or updated automatically to the current date and time without explicitly assign-
ing it a value. That is, you can specify that any single TIMESTAMP column in a table should be
initialized with the current timestamp when the record is created with INSERT or REPLACE,
updated with the current timestamp when the record is changed with UPDATE, or both.
(Setting a column to its current value doesn’t count as updating it.)

It’s important to know about the automatic initialization and update properties of TIMESTAMP.
These properties make TIMESTAMP columns useful for tracking record modification times, but
can be a source of confusion if you’re not aware of them. Do not choose TIMESTAMP for a col-
umn on the basis of the fact that it stores date-and-time values unless you also understand
the circumstances under which the column will update automatically when other columns in
a record change.

To control the initialization and update behavior of a TIMESTAMP column, you add either or
both of the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP attributes to the
column definition when creating the table with CREATE TABLE or changing it with ALTER
TABLE.

The DEFAULT CURRENT_TIMESTAMP attribute causes the column to be initialized with the cur-
rent timestamp at the time the record is created. The ON UPDATE CURRENT_TIMESTAMP attribute

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 77 Return to Table of Contents

5.5 Temporal Data Types 75

causes the column to be updated with the current timestamp when the value of another col-
umn in the record is changed from its current value.

For backward compatibility with older versions of MySQL (before 4.1), if you do not specify
either of the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes when
creating a table, the MySQL server automatically assigns both attributes to the first
TIMESTAMP column:

mysql> CREATE TABLE ts_testl (
-> tsl TIMESTAMP,
-> ts2 TIMESTAMP,
-> data CHAR(30)
->)3
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE ts_testl;

Fomm———— o - ESEEEE e L L - +

| Field | Type | Null | Key | Default | Extra |

Femm———— fommmm e == +-—--- fmmmm e R +

| tsl | timestamp | YES | | CURRENT_TIMESTAMP | |

| ts2 | timestamp | YES | | 0000-00-00 00:00:00 | |

| data | char(30) | YES | | NULL | |

- B et +-—-- - +-—--- B et T +o—-m - +

3 rows in set (0.01 sec)

mysql> INSERT INTO ts_testl (data) VALUES ('original_value');

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM ts_testl;

e o fommm e +

| tsl | ts2 | data

oo oo Fommm e +

| 2005-01-04 14:45:51 | 0000-00-00 00:00:00 | original_value |

B e e e P o - e e e T TR +

1 row in set (0.00 sec)

mysql> . . . time passes .

mysql1> UPDATE ts_testl SET data='updated value';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage78 Return to Table of Contents

76 CHAPTER 5 Data Types

mysql> SELECT * FROM ts_testl;

o o Fommm +
| tsl | ts2 | data |
e Rt E LD EELEL L et e L +
| 2005-01-04 14:46:17 | 0000-00-00 00:00:00 | updated_value |
B e e e e e mm oo T L e L +

1 row in set (0.00 sec)

The same behavior occurs if you specify both DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP explicitly for the first TIMESTAMP column. It is also possible to use just one
of the attributes. The following example uses DEFAULT CURRENT_TIMESTAMP, but omits ON
UPDATE CURRENT_TIMESTAMP. The result is that the column is initialized automatically, but not
updated when the record is updated:

mysql> CREATE TABLE ts_test2 (
-> created_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
-> data CHAR(30)
->);

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO ts_test2 (data) VALUES ('original_value');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM ts_test2;

L L L PP R L e +
| created_time | data |
e o +
| 2005-01-04 14:46:39 | original_value |
e o +

1 row in set (0.00 sec)

mysql> . . . time passes .

mysql1> UPDATE ts_test2 SET data='updated value';
Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM ts_test2;

1 row in set (0.00 sec)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage79 Return to Table of Contents

5.5 Temporal Data Types 77

Note that even though the record is updated, the created_time column is not. In versions of
MySQL Server before 4.1, the UPDATE statement would have caused the created_time col-
umn to be updated as well.

The next example demonstrates how to create a TIMESTAMP column that is not set to the
current timestamp when the record is created, but only when it is updated. In this case,
the column definition includes ON UPDATE CURRENT_TIMESTAMP but omits DEFAULT
CURRENT_TIMESTAMP:

mysql> CREATE TABLE ts_test3 (
-> updated_time TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
-> data CHAR(30)
->)3

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts_test3 (data) VALUES ('original_value');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM ts_test3;

oo oo +
| updated_time | data |
e e +
| 0000-00-00 00:00:00 | original_value |
oo o +

1 row in set (0.00 sec)
mysql> UPDATE ts_test3 SET data='updated_value';
Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysq1> SELECT * FROM ts_test3;

L L LR P L EEE LTt +
| updated_time | data |
Fomm oo Fommmmmmmmm - +
| 2005-01-04 14:47:10 | updated_value |
mmm o oo +

1 row in set (0.00 sec)

Note that you can choose to use CURRENT_TIMESTAMP with neither, either, or both of the
attributes for a single TIMESTAMP column, but you cannot use DEFAULT CURRENT_TIMESTAMP
with one column and ON UPDATE CURRENT_TIMESTAMP with another:

mysql> CREATE TABLE ts_test4 (
-> created TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
-> updated TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
-> data CHAR(30)
->)3

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 8o Return to Table of Contents

78 CHAPTER 5 Data Types

ERROR 1293 (HY000): Incorrect table definition; there can be
only one TIMESTAMP column with CURRENT_TIMESTAMP in DEFAULT
or ON UPDATE clause

Nevertheless, you can achieve the effect of having one column with the creation time and
another with the time of the last update. To do this, create two TIMESTAMP columns. Define
the column that should hold the creation time with DEFAULT 0 and explicitly set it to NULL
whenever you INSERT a new record. Define the column that should hold the updated time
with DEFAULT CURRENT_TIMESTAMP:

mysql> CREATE TABLE ts_test5 (
-> created TIMESTAMP DEFAULT O,
-> updated TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
-> data CHAR(30)
->)3
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts_test5 (created, data)
-> VALUES (NULL, 'original_value');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM ts_test5;

e LELEL L EEEEEL LT R ety L LETLEEE L +
| created | updated | data |
L L L PP R L L EEE LR E et L E T EE e +
| 2005-01-04 14:47:39 | 0000-00-00 00:00:00 | original_value |
o o Fommm e +

1 row in set (0.00 sec)

mysql> . . . time passes .

mysql1> UPDATE ts_test5 SET data='updated value';
Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM ts_test5;

B i L T e et e T L +
| created | updated | data |
o o o +
| 2005-01-04 14:47:39 | 2005-01-04 14:47:52 | updated_value |
mmmmmmmm e R L L P L L et L E L +

1 row in set (0.00 sec)

By default, MySQL defines TIMESTAMP columns as NOT NULL and stores the current timestamp
in the column if you assign it a value of NULL. If you want to be able to store NULL in a
TIMESTAMP column, you must explicitly write the column definition to allow NULL when
creating or altering the column:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Pages: Return to Table of Contents

5.5 Temporal Data Types 79

mysql> CREATE TABLE ts_null (ts TIMESTAMP NULL);
Query OK, 0 rows affected (0.04 sec)

mysql1> DESCRIBE ts_null;

- o - +-——-—- +--—- o oo - +
| Field | Type | Null | Key | Default | Extra |
o o +-——-- === o o +
| ts | timestamp | YES | | NULL | |
o mmmmm e o= o= pmmmmm o +

1 row in set (0.10 sec)

Note that specifying NULL for a TIMESTAMP column implicitly changes its default value from
CURRENT_TIMESTAMP to NULL if no explicit default value is given.

5.5.3 Per-Connection Time Zone Support

In MySQL Server, it is possible to set the current time zone on a per-connection basis.
To discuss time zones, we must first introduce a number of concepts:

s UTCis “Coordinated Universal Time” and is the common reference point for time
measurement. For purposes of this discussion, UTC is the same as Greenwich Mean
Time (GMT), although time zone aficionados get into long discussions about astro-
nomical observations, atomic clocks, “Universal Time” versus “Greenwich Mean Time”
versus “Coordinated Universal Time,” and much else.

s There are three time zone formats available to use with MySQL:

s The signed bour/minute offset of a time zone is expressed as '+hh:mm' or '-hh:mm',
where hh and mm stand for two-digit hours and minutes, respectively. UTC is, in
this format, commonly expressed as '+00:00'. Each time zone bases its offset
according to the distance between it and the UTC time zone. Berlin, Germany, is
one hour ahead of Greenwich, England (for example, the sun rises in Berlin
approximately one hour before it does in Greenwich), so the hour/minute offset
for Berlin is expressed as '+01:00'. In New York, where the sun rises some five
hours after it does in Greenwich, the hour/minute offset is expressed as '-05:00".

» The named time zone for a given location is defined by a string such as
'US/Eastern’, which is translated into the correct time zone by the server. MySQL
supports named time zones through a set of time zone tables in the mysq1 database.
(For named time zones to work, these tables must be properly populated by the
MySQL administrator. See Section 24.6, “Loading Time Zone Tables.”)

» The third format is the SYSTEM time zone. This stands for the time zone value that
the MySQL server retrieves from the server host. The server uses this value as its
default time zone setting when it begins executing.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 82 Return to Table of Contents

80

CHAPTER 5 Data Types

The exact details of support for named time zones differ slightly from one operating system
to the next, and are not covered in any detail on the Developer certification exam. However,
knowing how to use time zone support using signed offsets is mandatory.

Time zone settings are determined by the time_zone system variable. The server maintains a
global time_zone value, as well as a session time_zone value for each client that connects.
The session value is initialized for a given client, from the current value of the global
time_zone variable, when the client connects.

The default setting for the global value is SYSTEM, which thus also becomes each client’s ini-
tial session time_zone value. The global and session time zone settings can be retrieved with
the following statement:

mysql> SELECT @@global.time_zone, @@session.time_zone;

oo o +
| @@global.time_zone | @@session.time_zone |
e e +
| SYSTEM | SYSTEM |
oo o +

1 row in set (0.00 sec)

MySQL Server stores TIMESTAMP values internally in UTC. It converts TIMESTAMP values
from the server’s current time zone for storage, and converts back to the current time zone
for retrieval. The standard setting for both the server and the per-client connection is to use
the SYSTEM setting, which the server retrieves from the host at startup.

If the time zone setting is the same for both storage and retrieval, you will get back the same
value you store. If you store a TIMESTAMP value, and then change the time zone to a different
value, the returned TIMESTAMP value will be different from the one you stored.

The following examples demonstrate how to change the session time zone settings to store
and retrieve TIMESTAMP data. First, we set the session time zone to UTC, that is, '+00:00':
mysql> SET time_zone = '+00:00';

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@session.time_zone;

1 row in set (0.00 sec)
Next, we create a simple table containing just a TIMESTAMP column named ts and insert one
record that assigns the current time to ts. Then we retrieve the record:

mysql> CREATE TABLE ts_test (ts TIMESTAMP);
Query OK, 0 rows affected (0.01 sec)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 83 Return to Table of Contents

5.5 Temporal Data Types 81

mysql> INSERT INTO ts_test (ts) VALUES (NULL);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM ts_test;

o +
| ts |
o +
| 2005-01-04 20:50:18 |
o +

1 row in set (0.00 sec)

Finally, we change the session time zone twice, each time retrieving the value after the
change. This demonstrates that, even though we’re retrieving the same TIMESTAMP value, the
change in time zone setting causes the “localized” display value to be different each time:

mysql> SET time_zone = '+02:00';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM ts_test;

o +
| ts |
e +
| 2005-01-04 22:50:18 |
o +

1 row in set (0.00 sec)

mysql> SET time_zone = '-05:00';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM ts_test;

1 row in set (0.00 sec)

The per-connection time zone settings also influence other aspects of the MySQL server
that depend on the current time, most notably the function NOWQ).

MySQL Server also supports the CONVERT_TZ() function, which performs time zone conver-
sions of datetime values:

mysql> SELECT CONVERT_TZ('2005-01-27 13:30:00', '+01:00', '+03:00');

| CONVERT_TZ('2005-01-27 13:30:00', '+01:00', '+03:00') |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide ragess Return to Table of Contents

82

CHAPTER 5 Data Types

| 2005-01-27 15:30:00

1 row in set (0.00 sec)

CONVERT_TZ() assumes that the given datetime value has the time zone represented by the
first hour/minute offset argument, and converts it to a value in the time zone represented by
the second offset argument. The result is that you get the same datetime value, from the
point of view of a different time zone.

5.6 Column Attributes

The final part of a column definition (following the data type) can include optional attrib-
utes that modify how MySQL handles the column. The following table contains an integer
column that is UNSIGNED and cannot contain NULL values, a string column that has a character
set of utf8, and a date column that has a default value of '1999-12-31":

CREATE TABLE t

(
i INT UNSIGNED NOT NULL,
c CHAR(10) CHARACTER SET utf8,
d DATE DEFAULT '1999-12-31"

DN

The following sections describe the allowable column attributes.

5.6.1 Numeric Column Attributes

Numeric data types other than BIT may have the following attributes:

= UNSIGNED causes negative values to be disallowed.

» ZEROFILL causes retrieved values to be left-padded with leading zeros up to the column’s
display width. For example, if you store the values 0, 14, and 1234 in a column that’s
defined as INT(5) ZEROFILL, MySQL displays them as 00000, 00014, and 01234 when you
retrieve them.

Using the ZEROFILL attribute for a column causes it to be UNSIGNED as well.

= AUTO_INCREMENT applies to integer data types. It’s used to generate sequences of succes-
sive unique values. Defining a column with AUTO_INCREMENT causes a special behavior:
When you insert NULL into the column, MySQL generates the next value in the
sequence automatically and stores that in the column instead. Use of AUTO_INCREMENT
carries with it other requirements: There may be only one AUTO_INCREMENT column per
table, the column must be indexed, and the column must be defined as NOT NULL.
Section 5.7, “Using the AUTO_INCREMENT Column Attribute,” provides further details on
AUTO_INCREMENT columns.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 85 Return to Table of Contents

5.6 Column Attributes 83

5.6.2 String Column Attributes

The following attributes apply to the non-binary string data types (CHAR, VARCHAR, and TEXT):

= CHARACTER SET specifies the character set to use for the column. CHARSET is a synonym
for CHARACTER SET.

= COLLATE specifies the character set collation.

= BINARY is shorthand for specifying the binary collation of the column’s character set.
Note that the BINARY attribute differs from the BINARY data type. The former sets the
collation for a non-binary string column. The latter creates a binary string column.

If both CHARACTER SET and COLLATE are given, the collation must be legal for the character
set. Specifying CHARACTER SET without COLLATE sets the collation to the default collation for
the character set. Specifying COLLATE without CHARACTER SET sets the character set to the col-
lation’s character set. (Each collation is unique to a specific character set.)

If both the CHARACTER SET and COLLATE attributes are omitted, the table defaults are used.

The character set binary is special and modifies the column’s data type: It causes columns
declared using the CHAR, VARCHAR, and TEXT non-binary string types to be created using the
BINARY, VARBINARY, and BLOB binary string types, respectively.

5.6.3 General Column Attributes

The following attributes can be used with all data types, subject to the exceptions noted:

= NULL and NOT NULL apply to all types of columns. They indicate whether a column can
contain NULL values. If you specify neither attribute, the default is to allow NULL values
in the column. The exceptions are that NULL cannot be stored in AUTO_INCREMENT
columns (the next sequence number is stored instead), or in TIMESTAMP columns that are
defined to update automatically with the current timestamp when set to NULL.

= DEFAULT vaTue provides a column with a default value to be used when you create a new
record but don’t explicitly specify a value for the column. For example, default values
are used when you execute an INSERT statement that doesn’t provide values for all
columns in the table.

There are certain limitations on when DEFAULT can be given and on the values that you
can specify:
= DEFAULT can be used with all data types with the exception of TEXT and BLOB
columns, or integer columns that have the AUTO_INCREMENT attribute.

» A default value must be a constant, not an expression whose value is calculated at
record-creation time. The exception is that DEFAULT for a single TIMESTAMP column
in a table can be given as the CURRENT_TIMESTAMP function to specify a default of
“the current date and time.” The rules for declaring TIMESTAMP columns are dis-
cussed in Section 5.5.2, “The TIMESTAMP Data Type.”

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 86 Return to Table of Contents

84 CHAPTER 5 Data Types

» Itis an error to specify a default value of NULL for a NOT NULL column.

» Itis an error to specify a default value that is out of range for the data type, such as
a negative number for an UNSIGNED numeric column.

If you specify no DEFAULT value for a column, MySQL determines whether to add a
DEFAULT clause to the column definition based on whether the column allows NULL val-
ues. If the column allows NULL, MySQL adds DEFAULT NULL to the column definition. If
the column does not allow NULL, MySQL adds no DEFAULT clause to the definition. In
this case, the default value is implicit and may or may not be used when the column is
missing from an INSERT statement, depending on whether the server is operating in
strict SQL mode. Treatment of missing values is described in Section 5.8, “Handling
Missing or Invalid Data Values.”

Implicit default values are defined as follows:

» For numeric columns, the default is zero.

= For string columns other than ENUM, the default is the empty string. For ENUM
columns, the default is the first enumeration member.

» For temporal columns, the default value is the “zero” value for the data type, rep-
resented in whatever format is appropriate to the type (for example, '0000-00-00"
for DATE and '00:00:00" for TIME). For TIMESTAMP, the implicit default is the current
timestamp if the column is defined to be automatically initialized, or the “zero”
value otherwise.

For all data types except BLOB and TEXT, it’s also possible to specify a PRIMARY KEY or UNIQUE
clause at the end of a column definition, although these aren’t really column attributes as
such. They cause the creation of a PRIMARY KEY or UNIQUE index for the column. Adding
either of these clauses to a column definition is the same as defining the index in a separate
clause. For example, the following table definitions are equivalent:

CREATE TABLE t (i INT NOT NULL PRIMARY KEY);

CREATE TABLE t (i INT NOT NULL, PRIMARY KEY (i));

5.7 Using the AUTO_INCREMENT Column Attribute

The AUTO_INCREMENT attribute may be added to an integer column definition to create a
column for which MySQL automatically generates a new sequence number each time you
create a new row. There may be only one AUTO_INCREMENT column per table, the column
must be indexed, and the column must be defined as NOT NULL.

The AUTO_INCREMENT attribute is used in conjunction with an index (usually a primary key)
and provides a mechanism whereby each value is a unique identifier that can be used to refer
unambiguously to the row in which it occurs. MySQL also provides a LAST_INSERT_ID()

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Pragesy Return to Table of Contents

5.7 Using the AUTO_INCREMENT Column Attribute 85

function that returns the most recently generated AUTO_INCREMENT value. The value returned
by LAST_INSERT_IDQ) is specific to the client that generates the AUTO_INCREMENT value. It can-
not be affected by other clients. The LAST_INSERT_ID() function is useful for determining
the identifier when you need to look up the record just created, or when you need to know
the identifier to create related records in other tables.

The following scenario illustrates how you can set up and use an AUTO_INCREMENT column.
Assume that you’re organizing a conference and need to keep track of attendees and the
seminars for which each attendee registers. (When someone submits a registration form for
the conference, the form must indicate which of the available seminars the person wants to
attend.)

Your task is to record seminar registrations and associate them with the appropriate
attendee. Unique ID numbers provide a way to keep track of attendees and an
AUTO_INCREMENT column makes the implementation for the task relatively easy:

1. Setup an attendee table to record information about each person attending the confer-
ence. The table shown here includes columns for ID number, name, and job title:

mysql> CREATE TABLE attendee

-> (

-> att_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
-> att_name CHAR(100),

-> att_title CHAR(40),

-> PRIMARY KEY (att_id)

->);

The att_id column is created as a PRIMARY KEY because it must contain unique values,
and as an AUTO_INCREMENT column because it’s necessary for MySQL to generate values
for the column automatically.

2. Setup a seminar table to record the seminars for which each attendee registers. Assume
that there are four seminars: Database Design, Query Optimization, SQL Standards,
and Using Replication. There are various ways in which these seminars can be repre-
sented; an ENUM column is one that works well because the seminar titles form a small
fixed list of values. The table also must record the ID of each attendee taking part in
the seminar. The table can be created with this statement:

mysql> CREATE TABLE seminar

-> (

-> att_id INT UNSIGNED NOT NULL,

-> sem_title ENUM('Database Design', 'Query Optimization',
-> 'SQL Standards', 'Using Replication'),
-> INDEX (att_id)

->);

Note both the differences and similarities of the att_id column declarations in the two
tables. In attendee, att_id is an AUTO_INCREMENT column and is indexed as a PRIMARY KEY

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Pagess Return to Table of Contents

86 CHAPTER 5 Data Types

to ensure that each value in the column is unique. In seminar, att_id is indexed for
faster lookups, but it isn’t indexed as a PRIMARY KEY. (There might be multiple records
for a given attendee and a PRIMARY KEY does not allow duplicates.) Nor is the column
declared in the seminar table with the AUTO_INCREMENT attribute because ID values
should be tied to existing IDs in the attendee table, not generated automatically. Aside
from these differences, the column is declared using the same data type (INT) and attrib-
utes (UNSIGNED, NOT NULL) as the att_id column in the attendee table.

3. Each time a conference registration form is received, enter the attendee information
into the attendee table. For example:

mysql> INSERT INTO attendee (att_name,att_title)
-> VALUES('Charles Loviness','IT Manager');

Note that the INSERT statement doesn’t include a value for the att_id column. Because
att_id is an AUTO_INCREMENT column, MySQL generates the next sequence number
(beginning with 1) and sets the att_id column in the new row to that value. You can
use the new att_id value to look up the record just inserted, but how do you know
what value to use? The answer is that you don’t need to know the exact value. Instead,
you can get the ID by invoking the LAST_INSERT_ID() function, which returns the most
recent AUTO_INCREMENT value generated during your current connection with the server.
Thus, the record for Charles Loviness can be retrieved like this:

mysql> SELECT * FROM attendee WHERE att_id = LAST_INSERT_IDQ);

ommmmmee ommmmmmmme e ommmmmmme e +
| att_id | att_name | att_title |
Fo—mm— - Fommmmmm o Fommmm - +
| 3 | Charles Loviness | IT Manager |
Hmmmm o o m e +

This output indicates that the Loviness form was the third one entered.

4. Next, enter new records into the seminar table for each seminar marked on the entry
form. The att_id value in each of these records must match the att_id value in the
newly created attendee record. Here again, the LAST_INSERT_ID() value can be used. If
Loviness will participate in Database Design, SQL Standards, and Using Replication,
create records for those seminars as follows:
mysql> INSERT INTO seminar (att_id,sem_title)

-> VALUES (LAST_INSERT_ID(), 'Database Design');
mysq1> INSERT INTO seminar (att_id,sem_title)

-> VALUES (LAST_INSERT_ID(Q), 'SQL Standards');
mysq1> INSERT INTO seminar (att_id,sem_title)

-> VALUES (LAST_INSERT_ID(), 'Using Replication');

To see what the new seminar records look like, use the LAST_INSERT_ID() value to
retrieve them:

mysql> SELECT * FROM seminar WHERE att_id = LAST_INSERT_IDQ);

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 89 Return to Table of Contents

5.7 Using the AUTO_INCREMENT Column Attribute 87

) LT L LT +
| att_id | sem_title |
- oo o- ommm oo +
| 3 | Database Design |
| 3 | SQL Standards |
| 3 | Using Replication |
+-—————- o +

5. When you receive the next registration form, repeat the process just described. For
every new attendee record, the value of LAST_INSERT_ID() will change to reflect the
new value in the att_id column.

The preceding description shows how to use an AUTO_INCREMENT column: how to declare the
column, how to generate new ID values when inserting new records, and how to use the ID
values to tie together related tables. However, the description glosses over some of the
details. These are presented in the following discussion, beginning with declaration syntax
and then providing further information about how AUTO_INCREMENT columns work.

The att_id-related declarations in the attendee table look like this:

att_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (att_id)

These declarations involve the following factors, which you should consider when creating
an AUTO_INCREMENT column:

s The column must have an integer data type. Choose the specific type based on the
number of values the column must be able to hold. For the largest range, use BIGINT.
However, BIGINT requires 8 bytes per value. If you want to use less storage, INT requires
only 4 bytes per value and provides a range that’s adequate for many applications. You
can use integer types smaller than INT as well, but it’s a common error to choose one
that’s 700 small. For example, TINYINT has a range that allows very few unique numbers,
so you’ll almost certainly run into problems using it as an AUTO_INCREMENT column for
identification purposes.

= An AUTO_INCREMENT sequence contains only positive values. For this reason, it’s best to
declare the column to be UNSIGNED. Syntactically, it isn’t strictly required that you
declare the column this way, but doing so doubles the range of the sequence because
an UNSIGNED integer column has a larger maximum value. Defining the column as
UNSIGNED also serves as a reminder that you should never store negative values in an
AUTO_INCREMENT column.

s The most common way to use an AUTO_INCREMENT column is as a primary key, which
ensures unique values and prevents duplicates. The column should thus be defined to
contain unique values, either as a PRIMARY KEY or a UNIQUE index. (MySQL allows you to
declare an AUTO_INCREMENT column with a non-unique index, but this is less common.)

= An AUTO_INCREMENT column must be NOT NULL.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 90 Return to Table of Contents

88 CHAPTER 5 Data Types

After setting up an AUTO_INCREMENT column, use it as follows:

» Inserting NULL into an AUTO_INCREMENT column causes MySQL to generate the next
sequence value and store it in the column. Omitting the AUTO_INCREMENT column from
an INSERT statement is the same as inserting NULL explicitly. In other words, an INSERT
statement that does not provide an explicit value for an AUTO_INCREMENT column
also generates the next sequence value for the column. For example, if 1d is an
AUTO_INCREMENT column in the table t, the following two statements are equivalent:
INSERT INTO t (id,name) VALUES(NULL, 'Hans');

INSERT INTO t (name) VALUES('Hans');

= A positive value can be inserted explicitly into an AUTO_INCREMENT column if the value

isn’t already present in the column. If this value is larger than the current sequence

counter, subsequent automatically generated values begin with the value plus one:

mysql> CREATE TABLE t (id INT AUTO_INCREMENT, PRIMARY KEY (id));

mysql> INSERT INTO t (id) VALUES(NULL), (NULL),(17), (NULL), (NULL);

mysql> SELECT id FROM t;

B

| id |

+o-—t
11
I 2
| 17 |
| 18 |
| 19|
ot

» After an AUTO_INCREMENT value has been generated, the LAST_INSERT_ID() function
returns the generated value. LAST_INSERT_ID() will continue to return the same value,
regardless of the number of times it’s invoked, until another AUTO_INCREMENT value is
generated.

» The value returned by LAST_INSERT_ID() is specific to the client that generates the
AUTO_INCREMENT value. That is, it’s connection-specific, so the LAST_INSERT_ID() value is
always correct for the current connection, even if other clients also generate
AUTO_INCREMENT values of their own. One client cannot change the value that
LAST_INSERT_ID() returns to another, nor can one client use LAST_INSERT_ID() to deter-
mine the AUTO_INCREMENT value generated by another.

» If you update an AUTO_INCREMENT column to NULL or 0 in an UPDATE statement, the col-
umn is set to 0.

» By default, inserting 0 into an AUTO_INCREMENT column has the same effect as inserting
NULL: The next sequence value is generated. However, if the NO_AUTO_VALUE_ON_ZERO
SQL mode is enabled, inserting 0 causes 0 to be stored instead of the next sequence
number.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page o1 Return to Table of Contents

5.7 Using the AUTO_INCREMENT Column Attribute 89

= AUTO_INCREMENT behavior is the same for REPLACE as it is for INSERT. Any existing record
is deleted, and then the new record is inserted. Consequently, replacing an
AUTO_INCREMENT column with NULL causes it to be set to the next sequence value. This
also occurs if you replace the column with 0 unless the NO_AUTO_VALUE_ON_ZERO SQL
mode is enabled.

= When you reach the upper limit of an AUTO_INCREMENT column, an attempt to generate
the next sequence value results in a duplicate-key error. This is a manifestation of
MySQLs general out-of-range value clipping behavior. For example, assume that you
have a TINYINT UNSIGNED column as an AUTO_INCREMENT column and that it currently con-
tains 254 as the maximum sequence value. The upper limit for this data type is 255, so
the next insert generates a sequence value of 255 and successfully stores it in the new
record. However, the insert after that fails because MySQL generates the next sequence
value, which is 256. Because 256 is higher than the column’s upper limit of 255,
MySQL clips 256 down to 255 and attempts to insert that value. But because 255 is
already present in the table, a duplicate-key error occurs.

s If you delete rows containing values at the high end of a sequence, those values are not
reused for MyISAM or InnoDB tables when you insert new records. For example, if an
AUTO_INCREMENT column contains the values from 1 to 10 and you delete the record con-
taining 10, the next sequence value is 11, not 10.

The MyISAM storage engine supports composite indexes that include an AUTO_INCREMENT
column. This allows creation of independent sequences within a single table. Consider the
following table definition:

CREATE TABLE multisequence

(
name CHAR(10) NOT NULL,
name_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (name, name_id)

s

Inserting name values into the multisequence table generates separate sequences for each dis-
tinct name:

mysq1> INSERT INTO multisequence (name)
-> VALUES('Petr'),('Ilya'),('Ilya'),('Yuri'),('Ilya'),('Petr');
mysql1> SELECT * FROM multisequence ORDER BY name, name_id;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 92 Return to Table of Contents

90

CHAPTER 5 Data Types

Note that for this kind of AUTO_INCREMENT column, values deleted from the high end of any
sequence are reused. This differs from MyISAM behavior for single-column AUTO_INCREMENT
sequences.

5.8 Handling Missing or Invalid Data Values

Many database servers perform a great deal of value checking for data inserted into tables
and generate errors for invalid input values that don’t match column data types. MySQL, on
the other hand, historically has been non-traditional and more “forgiving” in its data han-
dling: The MySQL server converts erroneous input values to the closest legal values (as
determined from column definitions) and continues on its way. For example, if you attempt
to store a negative value into an UNSIGNED column, MySQL converts it to zero, which is the
nearest legal value for the column. This forgiving behavior stems from MySQL's origins,
which did not include transactional storage engines. Because a failed or erroneous transac-
tion could not be rolled back, it was deemed preferable to convert the input values as well as
possible and continue on, rather than perform a partial insert or update operation that
processes only some of the rows specified in a data-modifying statement.

MySQL now includes transactional storage engines and in MySQL 5 you can tell the server
to check input values more restrictively and to reject invalid values. The following discussion
describes how to control whether rejection of invalid input values should occur, and the cir-
cumstances under which conversions take place if you allow them. The discussion is framed
in terms of INSERT statements, but REPLACE and UPDATE are handled similarly.

The choice of how strict to be is up to individual applications. If the default forgiving
behavior is suitable, you can continue to use that behavior. An application that requires
more restrictive checking and needs to see errors for invalid input data can select that
behavior instead. The behavior is configurable for each client by setting the SQL mode
through use of the sq1_mode system variable. In this way, MySQL Server accommodates a
broad range of application requirements. General information about setting the SQL mode
is given in Section 1.3, “Server SQL Modes.” The following discussion focuses on using the
SQL mode to control input data handling.

By default, the server uses a sq1_mode value of ' ' (the empty string), which enables no
restrictions. Thus, the server operates in forgiving mode by default. To set the mode this
way explicitly, use the following statement:

SET sql_mode = '';

The most general means of enabling input value restrictions is by using the
STRICT_TRANS_TABLES or STRICT_ALL_TABLES modes:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page o3 Return to Table of Contents

5.8 Handling Missing or Invalid Data Values 91

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode 'STRICT_ALL_TABLES"';

The term “strict mode” refers collectively to both of these modes. They prevent entry of
invalid values such as those that are out of range, or NULL specified for NOT NULL columns.

Another SQL mode, TRADITIONAL, enables strict mode plus other restrictions on date check-
ing and division by zero. Setting the sq1_mode system variable to TRADITIONAL causes
MySQL to act like more traditional database servers in its input data handling:

SET sql_mode = 'TRADITIONAL';

The differences between the two strict modes are discussed later, as are the additional
restrictions turned on by TRADITIONAL mode.

In many cases, type conversion affords you the flexibility to write a statement different ways
and get the same result. For example, if i is an integer column, the following statements
both insert 43 into it, even though the value is specified as a number in one statement and as
a string in the other. MySQL performs automatic string-to-number conversion for the sec-
ond statement:

INSERT INTO t (i) VALUES(43);
INSERT INTO t (i) VALUES('43');

MySQL also performs a conversion to 43 for the following statement, but it generates a
warning as well because the conversion changes the value:

INSERT INTO t (i) VALUES('43x');

In this case, the string '43x" is not completely numeric, so you may want it to be rejected as
invalid with an error rather than a warning. You can do this by enabling strict SQL mode.

When MySQL performs type conversions that change values, it generates warnings that can
be displayed with the SHOW WARNINGS statement.

5.8.1 Handling Missing Values

In MySQL, INSERT statements may be incomplete in the sense of not specifying a value for
every column in a table. Consider the following table definition:

CREATE TABLE t

(
i INT NULL,
3 INT NOT NULL,
k INT DEFAULT -1
K

For this table, an INSERT statement is incomplete unless it specifies values for all three
columns in the table. Each of the following statements is an example of a statement that is
missing column values:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage o4 Return to Table of Contents

92 CHAPTER 5 Data Types

INSERT INTO t (i) VALUES(0);

INSERT INTO t (i,k) VALUES(1,2);
INSERT INTO t (i,k) VALUES(1,2),(3,4);
INSERT INTO t VALUESQ;

In the last statement, the empty VALUES list means “use the default value for all columns.”
MySQL handles missing values as follows:

= If the column definition contains a DEFAULT clause, MySQL inserts the value specified
by that clause. Note that MySQL adds a DEFAULT NULL clause to the definition if it has
no explicit DEFAULT clause and the column can take NULL values. Thus, the definition of
column i actually has DEFAULT NULL in its definition:

mysql> SHOW CREATE TABLE t\G

dedddddd R R R R R Rk]| pop RS E R e e e

Table: t
Create Table: CREATE TABLE "t (
17 int(11) default NULL,
"3 dint(11) NOT NULL,
‘k® int(11) default '-1'
) ENGINE=MyISAM DEFAULT CHARSET=latinl

» Ifa column definition has no DEFAULT clause, missing-value handling depends on
whether strict SQL mode is in effect and whether the table is transactional:

» If strict mode is not in effect, MySQL inserts the implicit default value for the col-
umn data type and generates a warning.

» If strict mode is in effect, an error occurs for transactional tables (and the state-
ment rolls back). An error occurs for non-transactional tables as well, but a partial
update might result: If the error occurs for the second or later row of a multiple-
row insert, the earlier rows will already have been inserted.

The definition of column j has no DEFAULT clause, so INSERT statements that provide no
value for j are handled according to these rules.

DEFAULT clause specification and implicit default values are discussed in Section 5.6,
“Column Attributes.”

5.8.2 Handling Invalid Values in Non-Strict Mode

In general, when operating in non-strict mode, MySQL performs type conversion based on
the constraints implied by a column’s definition. These constraints apply in several contexts:

s When you insert or update column values with statements such as INSERT, REPLACE,
UPDATE, or LOAD DATA INFILE.

» When you change a column definition with ALTER TABLE.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 95 Return to Table of Contents

5.8 Handling Missing or Invalid Data Values 93

s When you specify a default value using a DEFAULT vaTue clause in a column definition.
(For example, if you specify a default value of '43" for a numeric column, that string is
converted to 43 when the default value is used.)

If MySQL is not operating in strict mode, it adjusts invalid input values to legal values when
possible and generates warning messages. These messages can be displayed with the SHow
WARNINGS statement.

The following list discusses some of the conversions that MySQL performs. It isn’t exhaus-
tive, but is sufficiently representative to provide you with a good idea of how MySQL treats
input values and what you’ll be tested on for the exam.

s Conversion of out-of-range values to in-range values. If you attempt to store a value that’s
smaller than the minimum value allowed by the range of a column’s data type, MySQL
stores the minimum value in the range. If you attempt to store a value that’s larger than
the maximum value in the range, MySQL stores the range’s maximum value. For exam-
ple, TINYINT has a range of —128 to 127. If you attempt to store values less than —128 in
a TINYINT column, MySQL stores —128 instead. Similarly, MySQL stores values greater
than 127 as 127. If you insert a negative value into an UNSIGNED numeric column,
MySQL converts the value to 0.

w String truncation. String values that are too long are truncated to fit in the column. If
you attempt to store 'Sakila' into a CHAR(4) column, MySQL stores it as 'Saki' and
discards the remaining characters. (It is not considered an error to trim trailing spaces,
so MySQL will insert 'Saki ' into the column as 'Saki' without generating a warn-
ing.)

w Enumeration and set value conversion. If a value that’s assigned to an ENUM column isn’t
listed in the ENUM definition, MySQL converts it to ' ' (the empty string). If a value
that’s assigned to a SET column contains elements that aren’t listed in the SET definition,
MySQL discards those elements, retaining only the legal elements.

w Conversion to data type default. If you attempt to store a value that cannot be converted
to the column data type, MySQL stores the implicit default value for the type. For
example, if you try to store the value 'Sakila' in an INT column, MySQL stores the
value 0. The “zero” value is '0000-00-00" for date columns and '00:00:00"' for time
columns. The implicit default value for each data type is given in Section 5.6, “Column
Attributes.”

» Handling assignment of NULL to NOT NULL columns. The effect of assigning NULL to a NOT
NULL column depends on whether the assignment occurs in a single-row or multiple-
row INSERT statement. For a single-row INSERT, an error occurs and the statement fails.
For a multiple-row INSERT, MySQL assigns the column the implicit default value for its
data type.

Using ALTER TABLE to change a column’s data type maps existing values to new values accord-
ing to the constraints imposed by the new data type. This might result in some values being
changed. For example, if you change a TINYINT to an INT, no values are changed because all

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 96 Return to Table of Contents

94 CHAPTER 5 Data Types

TINYINT values fit within the INT range. However, if you change an INT to a TINYINT, any val-
ues that lie outside the range of TINYINT are clipped to the nearest endpoint of the TINYINT
range. Similar effects occur for other types of conversions, such as TINYINT to TINYINT
UNSIGNED (negative values are converted to zero), and converting a long string column to a
shorter one (values that are too long are truncated to fit the new size).

If a column is changed to NOT NULL using ALTER TABLE, MySQL converts NULL values to the
implicit default value for the data type.

The following table shows how several types of string values are handled when converted to
DATE or INT data types. It demonstrates several of the points just discussed. Note that only
string values that look like dates or numbers convert properly without loss of information.

String Value Converted to DATE Converted to INT
'2010-03-12" '2010-03-12" 2010
'03-12-2010" '0000-00-00" 3
'0017' '0000-00-00" 17
'500 hats' '0000-00-00" 500
'bartholomew’ '0000-00-00" 0

5.8.3 Handling Invalid Values in Strict Mode

Input values may be invalid for a number of reasons:

» For a numeric or temporal column, a value might be out of range.
» For a string column, a string might be too long.

» For an ENUM column, a value might be specified that is not a legal enumeration value or
as part of a value For a SET column, a value might contain an element that is not a set
member.

» For a column that is defined as NOT NULL, a value of NULL might have been given.

Enabling strict mode turns on general input value restrictions. In strict mode, the server
rejects values that are out of range, have an incorrect data type, or are missing for columns
that have no default. Strict mode is enabled using the STRICT_TRANS_TABLES and
STRICT_ALL_TABLES mode values.

STRICT_TRANS_TABLES enables strict behavior for errors that can be rolled back or canceled
without changing the table into which data is being entered. If an error occurs for a transac-
tional table, the statement aborts and rolls back. For a non-transactional table, the statement
can be aborted without changing the table if an invalid value occurs in a single-row insert

or the first row of a multiple-row insert. Otherwise, to avoid a partial update for a non-
transactional table, MySQL adjusts any invalid value to a legal value, inserts it, and
generates a warning. (Adjustment of NULL inserted into a NOT NULL column is done by insert-
ing the implicit default value for the column data type.)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 97 Return to Table of Contents

5.8 Handling Missing or Invalid Data Values 95

STRICT_ALL_TABLES is similar to STRICT_TRANS_TABLES but causes statements for non-
transactional tables to abort even for errors in the second or later rows of a multiple-row
insert. This means that a partial update might occur, because rows earlier in the statement
will already have been inserted.

5.8.4 Enabling Additional Input Data Restrictions

Strict mode turns on general input value restrictions, but it is not as strict as you can tell the
MySQL server to be. When strict mode is in effect, certain SQL mode values enable addi-
tional restrictions on input data values:

» Division by zero can be treated as an error for data entry by enabling the
ERROR_FOR_DIVISION_BY_ZERO mode value and strict mode. In this case, attempts to enter
data via INSERT or UPDATE statements produce an error if an expression includes division
by zero. (With ERROR_FOR_DIVISION_BY_ZERO but not strict mode, division by zero
results in a value of NULL and a warning, not an error.)

SET sql_mode = 'STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';

= By default, MySQL allows “zero” dates (*0000-00-00") and dates that have zero parts
(*2009-12-00", '2009-00-01"). Such dates are allowed even if you enable strict mode,
but if you want to prohibit them, you can enable the NO_ZERO_DATE and NO_ZERO_IN_DATE
mode values:

SET sql_mode = 'STRICT_ALL_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE';

The TRADITIONAL mode value is a composite mode that enables strict mode as well as the
other restrictions just described. If you want your MySQL server to be as restrictive as pos-
sible about input data checking (and thus to act like other “traditional” database servers), the
simplest way to achieve this is to enable TRADITIONAL mode rather than a list of individual
more-specific modes:

SET sql_mode = 'TRADITIONAL';

Setting the SQL mode by using TRADITIONAL has the additional advantage that if future ver-
sions of MySQL implement other input data restrictions that become part of TRADITIONAL
mode, you won’t have to explicitly enable those modes to take advantage of them.

5.8.5 Overriding Input Data Restrictions

To override input data restrictions that may be enabled, use INSERT IGNORE or UPDATE IGNORE
rather than just INSERT or UPDATE (without IGNORE). The IGNORE keyword causes MySQL to
use non-strict behavior for the statement (for example, to produce warnings rather than
errors).

Before MySQL 5, date values were required only to have month and day values in the range
from 1 to 12 and 1 to 31, respectively. This means that MySQL accepted dates such as

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 98 Return to Table of Contents

96 CHAPTER 5 Data Types

'2009-02-31'. MySQL 5 requires that month and day values correspond to an actual legal
date, so '2009-02-31" is not considered a valid date. MySQL converts it to '0000-00-00" and
generates a warning. In strict mode, '2009-02-31" results in an error.

If you want relaxed date checking that requires only that month and day values be in the
respective ranges of 1 to 12 and 1 to 31, enable the ALLOW_INVALID_DATES SQL mode value:

SET sql_mode = 'ALLOW_INVALID_DATES';

You can use ALLOW_INVALID_DATES for relaxed date checking even in strict mode:

SET sql_mode = 'STRICT_ALL_TABLES,ALLOW_INVALID_DATES';

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 99 Return to Table of Contents

Identifiers

When you write SQL statements, you use names to refer to databases and objects con-
tained in databases such as tables, stored routines, and triggers. Some of these objects have
components with their own names. For example, tables have columns and indexes. It’s also
possible to create aliases, which act as synonyms for table and column names.

This chapter discusses the use of identifiers in SQL statements. It covers the following exam
topics:

= Identifier syntax

= Identifier case sensitivity

» Using qualified names

= Using reserved words as identifiers

6.1 Identifier Syntax

Identifiers may be unquoted or quoted. If unquoted, an identifier must follow these rules:

= An identifier may contain all alphanumeric characters, the underline character (_’), and
the dollar sign (‘$’).

= An identifier may begin with any of the legal characters, even a digit. However, it’s best
to avoid identifiers that might be misinterpreted as constants. For example, 1e3 might
be taken as a number in scientific notation, and 0x1 might be interpreted as a hex con-
stant. Therefore, neither is a good choice for an identifier.

= An identifier cannot consist entirely of digits.

An identifier may be quoted, in which case it can contain characters such as spaces or dashes
that aren’t otherwise legal. To quote an identifier, you may enclose it within backtick (**’)
characters. If the ANSI_QUOTES SQL mode is enabled, you may also quote an identifier by
enclosing it within double quotes (‘*’). Quoting causes the identifier syntax rules to be

relaxed as follows:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 100 Return to Table of Contents

98 CHAPTER 6 Identifiers

= In general, any character may be used in a quoted identifier. Exceptions are that an
identifier cannot contain a byte with a numeric value of 0 or 255, and database and
table names cannot contain ‘.’, ‘/’, or ‘\’.

= A quoted identifier may consist entirely of digits.

An alias identifier can include any character, but should be quoted if it’s a reserved word
(such as SELECT or DESC), contains special characters, or consists entirely of digits. Aliases
may be quoted within single quotes (‘*’), double quotes, or backticks. Within a quoted iden-
tifier, to include the quote character, double it.

If you aren’t sure whether an identifier is legal, quote it. It’s harmless to put quotes around
an identifier that’s legal without them.

6.2 Case Sensitivity of ldentifiers

A property that affects how you use identifiers is whether they’re case sensitive; some identi-
fiers are case sensitive and others are not. You should understand which is which and use
them accordingly.

The rules that determine whether an identifier is case sensitive depend on what kind of
identifier it is:

= For database and table identifiers, case sensitivity depends on the operating system and
filesystem of the server host, and on the setting of the Tower_case_table_names system
variable. Databases and tables are represented by directories and files, so if the operat-
ing system has case-sensitive filenames, MySQL treats database and table identifiers as
case sensitive. If filenames aren’t case sensitive, these identifiers are not either.
Windows systems do not have case-sensitive filenames, but most Unix systems do.
However, if the Tower_case_table_names system variable is set to 1 or 2, database and
table identifiers and table aliases are used in case-insensitive fashion in SQL statements.
If you plan to use this variable, you should set it before creating any databases and tables.

Regardless of the case-sensitive properties of your filesystem, database and table
identifiers must be written consistently with the same lettercase throughout a given
statement.

= Column, index, stored routine, and trigger identifiers are not case sensitive.

= Column aliases are not case sensitive.

6.3 Using Qualified Names

Column and table identifiers can be written in qualified form—that is, together with the
identifier of a higher-level element, with a period (‘.’) separator. Sometimes qualifiers are

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 101 Return to Table of Contents

6.4 Using Reserved Words as Identifiers 99

necessary to resolve ambiguity. Other times you may elect to use them simply to make a
statement clearer or more precise.

A table name may be qualified with the name of the database to which it belongs. For exam-
ple, the Country table in the wor1d database may be referred to as wor1d.Country, where a ‘.’
character is placed between the two identifiers in the name. If wor1d is the default database,
these statements are equivalent:

SELECT * FROM Country;
SELECT * FROM world.Country;

A column name may be qualified with the name of the table to which it belongs. For exam-
ple, the Name column in the Country table may be referred to as Country.Name.

A further level of column qualification is possible because a table name may be qualified
with a database name. So, another way to refer to the Name column is wor1d.Country.Name. If
world is the default database, the following statements are equivalent. They differ only in
having successively more specific levels of name qualification:

SELECT Name FROM Country;
SELECT Country.Name FROM Country;
SELECT world.Country.Name FROM world.Country;

Stored routines and triggers also may be referred to in qualified form. Qualify a stored rou-
tine with the name of the database that it belongs to (db_name.routine_name). A trigger is
associated with a table, so a trigger identifier should be qualified with a table identifier
(table_name.trigger_name).

To use quoted identifiers in a qualified name, quote them separately. For example, quote
world.Country as ‘world". Country’, not as “world.Country .

6.4 Using Reserved Words as Identifiers

Reserved words are special. For example, function names cannot be used as identifiers such
as table or column names, and an error occurs if you try to do so. The following statement
fails because it attempts to create a column named order, which is erroneous because order
is a reserved word (it’s used in ORDER BY clauses):

mysq1> CREATE TABLE t (order INT NOT NULL UNIQUE, d DATE NOT NULL);
ERROR 1064 (42000): You have an error in your SQL syntax. Check
the manual that corresponds to your MySQL server version for the
right syntax to use near 'order INT NOT NULL UNIQUE, d DATE

NOT NULL)' at 1line 1

Similarly, the following statement fails because it uses a reserved word as an alias:

mysql> SELECT 1 AS INTEGER;
ERROR 1064 (42000): You have an error in your SQL syntax. Check

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 102 Return to Table of Contents

100 CHAPTER 6 Identifiers

the manual that corresponds to your MySQL server version for the
right syntax to use near 'INTEGER' at line 1

The solution to these problems is to quote the identifiers properly. The rules depend on the
type of identifier you’re quoting:

= To use a reserved word as a database, table, column, or index identifier, there are
either one or two allowable quoting styles, depending on the server SQL mode. By
default, quoting a reserved word within backtick (’) characters allows it to be used as
an identifier:

mysql> CREATE TABLE t (“order’ INT NOT NULL UNIQUE, d DATE NOT NULL);
Query OK, 0 rows affected (0.00 sec)

If the ANSI_QUOTES SQL mode is enabled, it’s also allowable to quote using double
quotes:

mysql> CREATE TABLE t ("order" INT NOT NULL UNIQUE, d DATE NOT NULL);
Query OK, 0 rows affected (0.00 sec)

If an identifier must be quoted in a CREATE TABLE statement, it’s also necessary to quote
it in any subsequent statements that refer to the identifier.

= To use a reserved word as an alias, quote it using either single quotes, double quotes,
or backticks. The SQL mode makes no difference; it’s legal to use any of the three
quoting characters regardless. Thus, to use INTEGER as an alias, you can write it any of
these ways:

SELECT 1 AS '"INTEGER';
SELECT 1 AS "INTEGER";
SELECT 1 AS "INTEGER';

It’s a good idea to avoid using function names as identifiers. Normally, they aren’t reserved,
but there are circumstances under which this isn’t true:

= Some functions have names that are also keywords and thus are reserved. CHARQ) is one
example.

= By default, a function name and the opening parenthesis that follows it must be written
with no intervening space. This allows the statement parser to distinguish a name in a
function invocation from the same name used for another purpose, such as an identifier.
However, if the IGNORE_SPACE SQL mode is enabled, the server allows spaces between a
function name and the following parenthesis. A side effect of running the server with
this mode enabled is that all function names become ambiguous in certain contexts
because the statement parser no longer can distinguish reliably whether a function
name represents a function invocation or an identifier. Consider the following
statement:

INSERT INTO COUNT (id) VALUES(43);

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 103 Return to Table of Contents

6.4 Using Reserved Words as Identifiers 101

In ignore-spaces mode, this statement might mean “create a new row in the COUNT table,
setting the id column to 43,” or it might simply be a malformed INSERT statement that
has an invocation of the COUNT function where a table name ought to be. The parser
cannot tell.

Reserved words are not case sensitive. They can be given in uppercase, lowercase, or even
mixed case, and need not be written the same way throughout a query. The same is true for
function names.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 104 Return to Table of Contents

Databases

Databases contain tables, which are used for storing data. Databases also contain related
data-manipulation objects such as stored routines or triggers. This chapter discusses each of
the SQL statements that are used in MySQL to define the structural characteristics of your
databases. It covers the following exam topics:

= General database properties
= Creating, modifying, and dropping databases

= Obtaining database metadata

7.1 Database Properties

MySQL Server manages data by performing storage, retrieval, and manipulation of data
records. Records are organized into tables, and tables are organized into databases. In
MySQL, databases are stored in a common location called the “data directory.” Each
MySQL server has a data directory under which it manages the contents of its databases.
With respect to databases, the data directory has the following structure:

= The server represents each database using a subdirectory of the data directory. This
subdirectory is called a “database directory.” The data directory therefore is the parent
of all database directories.

= A database directory has the same name as the database that it represents. For example,
a database named wor1d corresponds to a database directory named wor1d under the
data directory.

= MySQL uses the database directory to manage the components of the database such as
its tables. A database may be empty or have one or more tables. A database directory
may also contain files for other database objects such as triggers.

= Each database directory has a default character set and collation. You can specify these
properties for a database when you create it. The properties are stored in a file named
db.opt in the database directory.

= Databases cannot be nested; one database cannot contain another.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 105 Return to Table of Contents

104

CHAPTER 7 Databases

The preceding description of data directory organization indicates that MySQL Server can
manage multiple databases, each of which may contain multiple tables. MySQL does not
place any limits on the number of databases, although your operating system or filesystem
might: If the filesystem on which the data directory resides has a limit on the number of
subdirectories a directory may contain, MySQL can create no more than that number of
database directories with which to represent databases.

Another word for “database” is “schema.” In MySQL 5, statements that use the DATABASE
keyword can be written with SCHEMA instead. The same is true for DATABASES and SCHEMAS.
For example, CREATE SCHEMA is the same as CREATE DATABASE, and SHOW SCHEMAS is the same
as SHOW DATABASES. This study guide generally uses DATABASE and DATABASES, but you should
recognize that statements may use either pair of keywords. Also, GUI tools such as MySQL
Query Browser and MySQL Administrator use the term “schema.” You should recognize
when using those programs that the two terms mean the same thing.

The structure of database directories in relation to table storage is discussed in Chapter 8,
“Tables and Indexes,” and Chapter 29, “Storage Engines.” The structure of the database
directory is discussed further in Chapter 23, “MySQL Architecture.”

7.2 Creating Databases

To create a new database, use the CREATE DATABASE statement. The following statement
creates a database named mydb:

CREATE DATABASE mydb;

If you try to create a database that already exists, an error occurs. If you simply want to
ensure that the database exists, add an IF NOT EXISTS clause to the statement:

CREATE DATABASE IF NOT EXISTS mydb;

With the additional clause, the statement creates the database only if it does not already
exist. Otherwise, the statement does nothing and no error occurs. This can be useful in
applications that need to ensure that a given database is available, without disrupting any
existing database with the same name.

The CREATE DATABASE statement has two optional clauses, CHARACTER SET and COLLATE, that
assign a default character set and collation for the database. If given, they appear at the end
of the statement following the database name. The following statement specifies that the
mydb database has a default character set of utf8 and collation of utf8_danish_ci:

CREATE DATABASE mydb CHARACTER SET utf8 COLLATE utf8_ danish_ci;
The default character set and collation for the database are used as the defaults for tables

created in the database for which no explicit character set or collation of their own are speci-
fied. The database defaults are stored in the db.opt file in the database directory.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 106 Return to Table of Contents

7.4 Dropping Databases 105

Creating a database has no effect on which database currently is selected as the default data-
base. To make the new database the default database, issue a USE statement:

USE mydb;

After a database has been created, you can populate it with objects such as tables or stored
routines. The CREATE statements for these objects are discussed in later chapters.

7.3 Altering Databases

The ALTER DATABASE statement changes options for an existing database. The allowable
options are the same as for CREATE DATABASE; that is, CHARACTER SET and COLLATE. The fol-
lowing statement changes the default collation of the mydb database to utf8_polish_ci:

ALTER DATABASE mydb COLLATE utf8_polish_ci;

This statement changes both the default character set and collation:

ALTER DATABASE mydb CHARACTER SET Tatinl COLLATE Tatinl_swedish_ci;

Changing the default character set or collation affects only creation of new tables in the
database. It does not affect existing tables.

The database name is optional for ALTER DATABASE. If no database is named, the statement
changes the options for the default database. This requires that there be a currently selected
database. Otherwise, an error occurs.

You cannot use ALTER DATABASE to rename a database. One way to accomplish this is to
dump the database, create a database with the new name, reload the data into the new data-
base, and drop the old database.

7.4 Dropping Databases

When you no longer need a database, you can remove it with DROP DATABASE:

DROP DATABASE mydb;

It is an error if the database does not exist. To cause a warning instead, include an IF EXISTS
clause:

DROP DATABASE IF EXISTS mydb;

Any warning generated when IF EXISTS is used can be displayed with SHOW WARNINGS.

DROP DATABASE does not require the database to be empty. Before dropping the database,
MySQL removes any objects that it contains, such as tables, stored routines, and triggers.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 107 Return to Table of Contents

106

CHAPTER 7 Databases

DROP DATABASE is a dangerous statement and you should use it with care. There is no state-
ment to “undo” DROP DATABASE. If you drop a database by mistake, your only option is to
recover the database and its contents from your backups.

7.5 Obtaining Database Metadata

The INFORMATION_SCHEMA database has a SCHEMATA table that contains database metadata
(information about databases). For example, to display information about the wor1d database,
use this statement:

mysq1> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'world'\G

dedededededeioddd okl el kel kel] ddddekhhhhh kbbb hhhhhh by

row
CATALOG_NAME: NULL
SCHEMA_NAME: world
DEFAULT_CHARACTER_SET_NAME: Tatinl
DEFAULT_COLLATION_NAME: Tatinl_swedish_ci

SQL_PATH: NULL

For further information about INFORMATION_SCHEMA, see Chapter 20, “Obtaining Database
Metadata.”

MySQL also supports a family of SHOW statements that display metadata. The statement that
lists database names is SHOW DATABASES:

mysql> SHOW DATABASES;

| information_schema |
| menagerie |
| mysql |
| test |
| world |

The information_schema database should always be listed by SHOw DATABASES. The mysql and
test databases are created during MySQL installation, so you're likely to see both of them
in the output from the statement as well. The mysq1 database contains the grant tables and
should always be present because the grant tables contain user account information that the
server uses to control access to the databases. The test database will be present unless
someone has removed it.

SHOW DATABASES can take a LIKE 'pattern’ clause. With LIKE, the statement performs a
pattern-matching operation and displays information only about databases with names that

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 108 Return to Table of Contents

7.5 Obtaining Database Metadata 107

match the pattern. Patterns are discussed in Section 10.3.2, “Using LIKE for Pattern
Matching.”

mysq1> SHOW DATABASES LIKE 'm%';

| mysql |

The output of the SHOW DATABASES statement depends on whether you have the SHow
DATABASES privilege. If you have the privilege, the statement shows the names of all existing
databases. Otherwise, it shows only those databases to which you have access.

SHOW CREATE DATABASE shows the CREATE DATABASE statement that creates a database:

mysq1> SHOW CREATE DATABASE worl1d\G
* 1. row *

Database: world
Create Database: CREATE DATABASE ‘world"
/*140100 DEFAULT CHARACTER SET latinl */

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 109 Return to Table of Contents

Tables and Indexes

Tables are used for storing data and tables can be indexed to speed up access to their con-
tents. This chapter discusses each of the SQL statements that are used in MySQL to define
the structural characteristics of your tables. It covers the following exam topics:

» General table properties

» Creating, altering, and dropping tables
» Emptying table contents

» Creating and dropping indexes

» Obtaining table and index metadata

The term “table” can mean either “base table” (a table that contains data) or “view” (a
virtual table). In this chapter, views do not enter the discussion, so “table” means “base
table.” Views are covered in Chapter 14, “Views.”

8.1 Table Properties

Each MySQL server has a directory called the “data directory” under which it stores its
databases. The data directory contains one subdirectory for each database managed by the
server. Each of these is called a “database directory” and has the same name as the database
that it represents. The server uses a given database directory to manage the tables in that
database. Tables have both a logical and physical structure.

Logically, each table in a database consists of rows and columns. A table can be empty (it can
have zero rows of data), but it must have at least one column. A table may also be indexed to
improve query performance. Indexes enable MySQL to look up data values quickly rather
than searching through the entire table. Indexes become increasingly important the larger a
table becomes.

Physically, each table is associated with one or more files on disk. Every table has a format
file in its database directory. The format file is created by the server and contains the defini-
tion, or structure, of the table. The format filename is the same as the table name, plus an

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 110 Return to Table of Contents

110

CHAPTER 8 Tables and Indexes

.frm suffix. For example, the format file for a table named Country in the wor1d database is
named Country. frm and is located in the world database directory under the server’s data
directory.

MySQL manages tables using storage engines, each of which handles tables that have a
given set of characteristics. Different storage engines have differing performance character-
istics, and you can choose which engine most closely matches the characteristics that

you need. For example, you might require transactional capabilities and guaranteed data
integrity even if a crash occurs, or you might want a very fast lookup table stored in memory
for which the contents can be lost in a crash and reloaded at the next server startup. With
MySQL, you can make this choice on a per-table basis. Any given table is managed by a par-
ticular storage engine. In addition to the . frm file that the server creates, a table may be
associated with one or more other files that the storage engine creates in which to store the
table’s contents. The number and types of files vary per storage engine, because each engine
manages table storage differently. Here are some examples:

» The MyISAM engine creates a data file and index file for each table. If Country is a MyISAM
table, the MyISAM storage engine creates data and index files named Country.MYD and
Country.MYI to store data rows and indexes (respectively) for the table.

» By default, the InnoDB engine shares files for multiple tables. If Country is an InnoDB
table, there will be a Country. frm format file created by the in the database directory,
but the InnoDB storage engine itself stores the table data and index information else-
where, in the InnoDB shared tablespace. The tablespace is used by multiple tables. That
is, files for storing table contents are not per-table as for MyISAM but are shared among
tables.

= The MEMORY engine does not use any disk storage at all for table contents. It manages
table contents in memory.

Additional detail on storage management for these engines is given in Chapter 29, “Storage
Engines.”

The MySQL server places no limits on the number of tables in a database, although individ-
ual storage engines might have their own limits. For example, the InnoDB storage engine
allows a maximum of two billion tables to exist within the InnoDB shared tablespace. This
places a limit (albeit a rather high one) on the number of InnoDB tables that can be created
among all databases combined. (The limit isn’t enforced on a per-database basis because the
InnoDB tablespace is shared among all databases.)

A limit on the maximum number of tables allowed might also be imposed by your operating
system or filesystem. For example, the MyISAM storage engine places no limits on the number
of tables in a database. However, MyISAM tables are represented by data and index files in
database directories, so a limit on the number of tables in a database might arise from fac-
tors external to MySQL:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 111 Return to Table of Contents

8.2 Creating Tables 11

= If the operating system or filesystem places a limit on the number of files in a directory,
MySQL is bound by that constraint.

s The efficiency of the operating system in handling large numbers of files in a directory
can place a practical limit on the number of tables in a database. If the time required to
open a file in the directory increases significantly as the number of files increases, data-
base performance can be adversely affected.

» The amount of available disk space limits the number of tables. If you run out of space,
you cannot create more tables.

MySQL storage engines do place limits on the allowable maximum size of individual tables.
These limits vary per storage engine, but they tend to be rather high. Another factor that
limits table size is the maximum file size allowed by your operating system or filesystem. An
operating system may support different types of filesystems, each of which may have a dif-
ferent maximum file size.

For large tables, you might find that you run up against operating system or filesystem limits
on file sizes before you reach MySQLs internal table size limits. Several strategies can be
used for working around file size limits:

= Exploit any features allowed by a given table storage manager for increasing table size.
For example, the contents of a MyISAM table can sometimes be distributed into several
smaller tables, which then can be treated as a single logical unit by combining them
into a MERGE table. This effectively multiplies the maximum table size by the number of
component MyISAM tables in the MERGE table.

= Convert the table for use with a storage engine that allows larger tables. For example,
convert a MyISAM table to an InnoDB table. The InnoDB storage engine manages tables
within a tablespace that can be configured to be much larger than the size of a single
file, and InnoDB tables can grow as large as the available storage within the tablespace.

= Modify your operating system. A factor external to MySQL that can be used to allow
larger tables is to modify your operating system to support larger files. This might be
possible by using a different filesystem type, or by using a newer version of the operat-
ing system that relaxes the limits on file sizes compared to an older version. You might
also consider switching to an operating system that supports larger files than does your
current operating system.

8.2 Creating Tables

MySQL provides several ways to create tables:

= You can create an empty table, either by specifying its definition explicitly or by using
the definition of an existing table.

= You can create a table populated from the result of a SELECT statement.

= You can create temporary tables.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 112 Return to Table of Contents

112 CHAPTER 8 Tables and Indexes

The following discussion describes each of these table-creation methods. All of them use the
CREATE TABLE statement in one form or another.

8.2.1 Creating Tables Using an Explicit Definition

A new table can be created from an explicit definition by using a CREATE TABLE statement that
includes the table name and a list of columns. Each column has its own name and definition.
The table definition may also include index definitions.

This section describes basic CREATE TABLE syntax using columns that have relatively simple
definitions. For more information on the available data types and attributes for column defi-
nitions, see Chapter 5, “Data Types.”

To create a table, give its name followed by a list of column definitions within parentheses:

CREATE TABLE table_name (column_definitions);

In the simplest case, a table contains only one column. The following statement creates a
table named t with a single column named 1id that will contain INT (integer) values:

CREATE TABLE t (id INT);

A column definition may include attributes that define the column data more precisely. For
example, to disallow NULL values in the column, include NOT NULL in the definition:

CREATE TABLE t (id INT NOT NULL);

If you try to create a table that already exists, an error occurs. If you simply want to ensure
that the table exists, add an IF NOT EXISTS clause to the statement:

CREATE TABLE IF NOT EXISTS t (i INT);

However, MySQL does not perform any check on the table structure when you add the IF
NOT EXISTS clause. If a table with the given name exists but has a structure different from the
one you've defined in the CREATE TABLE statement, MySQL will issue no warning.

More complex tables have multiple columns, with the column definitions separated by com-
mas. The following table definition includes, in addition to an id column, two 30-character
columns for storing last names and first names, and a column for storing date values. All
columns are declared NOT NULL to indicate that they require non-NULL values.

CREATE TABLE t

(
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
d DATE NOT NULL

s

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 113 Return to Table of Contents

8.2 Creating Tables 113

Every table must belong to a database. That is, you cannot create a table that is not located
within some database. If the table named in the CREATE TABLE statement is not qualified with
a database name, the table is created in the default database. To indicate explicitly where to
create the table, you can qualify the table name with the name of the desired database, using
db_name. table_name syntax. For example, if you want to create a table called mytable in the
test database, write the CREATE TABLE statement like this:

CREATE TABLE test.mytable (column_definitions);

Use of a database qualifier for the table name is helpful when there’s no default database or
when some other database is currently selected as the default. If test happens to be the
default database, the statement still works. In that case, the database name is unnecessary but
harmless.

When you create a table, you can provide index definitions in addition to the column defini-
tions. Indexes are useful for speeding up queries by reducing record lookup time. Here’s a
simple table that includes two index definitions. The first creates an index on the id column
and requires each id value to be unique. The second index definition creates a two-column
index on the Tast_name and first_name columns of the table:

CREATE TABLE t

(
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
UNIQUE (id),
INDEX (last_name, first_name)
)3

Section 8.6.2, “Creating Indexes,” discusses index creation further.

8.2.2 Specifying the Storage Engine for a Table

Every table is created using one of the storage engines supported by the server. The set of
storage engines available depends both on how the server was compiled when it was built
and on the options used at startup:

» The MyISAM, MERGE, and MEMORY storage engines are always available.
s The InnoDB storage engine is included in all binary distributions.

» Additional storage engines are included in MySQL Max binary distributions.

To see which storage engines your server supports, use the SHOW ENGINES statement.

To specify a storage engine when you create a table, include an ENGINE = engine_name option
in the CREATE TABLE statement. The following statement creates t as an InnoDB table:

CREATE TABLE t (i INT) ENGINE = InnoDB;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 114 Return to Table of Contents

114 CHAPTER 8 Tables and Indexes

The ALTER TABLE statement also understands the ENGINE option. This allows you convert a
table from one storage engine to another. The following statement changes t to use the
MyISAM storage engine:

ALTER TABLE t ENGINE = MyISAM;

If a CREATE TABLE statement includes no ENGINE option, MySQL creates the table using the
default storage engine, which is determined from the value of the storage_engine system
variable. The built-in default value of storage_engine is MyISAM. However, depending on
how MySQL was installed or configured, storage_engine might be set to a different storage
engine. Make sure to double-check the setting to ensure that it is really what you expect.

The default storage engine can be changed at server startup or at runtime:

» The default storage engine can be specified at server startup with the
--default-storage-engine option.

» For a running server, an administrator who has the SUPER privilege can change the
default storage engine globally for all clients by setting the global storage_engine
system
variable:

SET GLOBAL storage_engine = engine_name;

Setting the storage engine this way affects any client that connects after the statement
executes. Clients that are connected at the time of statement execution are unaffected.

» Any client can change its own default storage engine by issuing either of these
statements:

SET SESSION storage_engine = engine_name;
SET storage_engine = engine_name;

If an ENGINE clause names a storage engine that is legal but not available, the server uses
the storage_engine system variable to determine which engine to use. (A storage engine
might be unavailable if it was not compiled in or was disabled at startup time.) If the server
uses the default storage engine rather than the one specified in the CREATE TABLE statement,
it issues a warning. For example, ISAM is a legal storage engine name, but is no longer sup-
ported in MySQL 5. (ISAM was the predecessor to MyISAM.) The following example shows
what happens if the default storage engine is InnoDB and you issue a request to create an
ISAM table:

mysql> SET storage_engine = InnoDB;

mysql> CREATE TABLE t (i INT) ENGINE = ISAM;
Query OK, 0 rows affected, 1 warning (0.01 sec)
mysq1> SHOW WARNINGS\G

*], pow FREEEww
Level: Warning
Code: 1266

Message: Using storage engine InnoDB for table 't'

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 115 Return to Table of Contents

8.2 Creating Tables 115
8.2.3 Creating Tables Based on Existing Tables
MySQL provides two ways to create a table based on another table:
= CREATE TABLE ... SELECT creates a table and populates it from the result set returned

by an arbitrary SELECT statement. In this case, the “other table” is the set of rows and
columns retrieved by the SELECT.

= CREATE TABLE ... LIKE creates an empty table using the definition of another existing
table.
CREATE TABLE ... SELECT can create a table that is empty or non-empty, depending on what

is returned by the SELECT part. The following statements create a table that contains the
entire content of the City table, a table that contains partial content from City, and an
empty copy of City:

CREATE TABLE CityCopyl SELECT * FROM City;

CREATE TABLE CityCopy2 SELECT * FROM City WHERE Population > 2000000;
CREATE TABLE CityCopy3 SELECT * FROM City WHERE 0;

Using the LIKE keyword with CREATE TABLE creates an empty table based on the definition of
another table. The result is a new table with a definition that includes all column attributes
and indexes of the original table. Suppose that table t looks like this:

mysql> CREATE TABLE t
-> (i INT NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (i))
-> ENGINE = InnoDB;

The result of CREATE TABLE ... LIKE differs from the result of using CREATE TABLE ...
SELECT to create an empty table. Either of the following statements will create an empty
copy of the table t:

mysql> CREATE TABLE copyl SELECT * FROM t WHERE 0;
mysql> CREATE TABLE copy2 LIKE t;

However, the resulting copies differ in the amount of information retained from the original
table structure:

mysq1> SHOW CREATE TABLE copyl\G;

Table: copyl
Create Table: CREATE TABLE “copyl® (
i int(11) NOT NULL default 'O’

) ENGINE=MyISAM DEFAULT CHARSET=latinl
mysql> SHOW CREATE TABLE copy2\G;

* . row *

Table: copy?2
Create Table: CREATE TABLE “copy2™ (

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 116 Return to Table of Contents

116

CHAPTER 8 Tables and Indexes

i int(11) NOT NULL auto_increment,
PRIMARY KEY (i)
) ENGINE=InnoDB DEFAULT CHARSET=latinl

The CREATE TABLE ... SELECT statement copies the column name and data type from the
original table, but does not retain the PRIMARY KEY index information or the AUTO_INCREMENT
column attribute information. The new table also uses the default storage engine, rather
than the storage engine utilized by table t. The copy created with CREATE TABLE ... LIKE has
none of these problems.

Some table attributes are not copied, even when issuing CREATE TABLE ... LIKE. The most
notable examples are:

= If the original table is a MyISAM table for which the DATA DIRECTORY or INDEX DIRECTORY
table options are specified, those options are not copied to the new table. The data
and index files for the new table will reside in the database directory for the chosen
database.

» Foreign key definitions in the original table are not copied to the new table. If you wish
to retain the foreign key definitions, they must be re-specified with ALTER TABLE after
creating the copy.

8.2.4 Using TEMPORARY Tables

Each storage engine in MySQL implements tables with a particular set of characteristics.
One characteristic held in common by all storage engines is that by default they create tables
that exist until they are removed with DROP TABLE. This behavior may be changed by using
CREATE TEMPORARY TABLE rather than CREATE TABLE. A TEMPORARY table differs from a non-
TEMPORARY table in the following ways:

» It’s visible only to the client that created it and may be used only by that client. This
means that different clients can create TEMPORARY tables that have the same name and no
conflict occurs.

= A TEMPORARY table exists only for the duration of the connection in which it was created.
The server drops a TEMPORARY table automatically when the client connection ends if the
client has not already dropped it. This is convenient because you need not remember to
remove the table yourself.

= A TEMPORARY table may have the same name as a non-TEMPORARY table. The non-
TEMPORARY table becomes hidden to the client that created the TEMPORARY table as long as
the TEMPORARY table exists.

= A TEMPORARY table can be renamed only with ALTER TABLE. You cannot use RENAME TABLE.

A table created with TEMPORARY is not the same thing as a MEMORY table. A MEMORY table is tem-
porary in the sense that its contents are lost if you restart the server, but the table definition
continues to exist in its database. A TEMPORARY table exists only while the client that created it

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 117 Return to Table of Contents

8.3 Altering Tables 117

remains connected, and then disappears completely. Given that a server restart necessarily
involves termination of all client connections, it also results in removal of all TEMPORARY
tables. Another difference is that a MEMORY table is available to any client that has permission
to access it, not just to the client that created it.

8.3 Altering Tables

After creating a table, you might discover that its structure is not quite suited to its intended
use. If that happens, you can change the table’s structure. One way to do this is to remove
the table with DROP TABLE and then issue another CREATE TABLE statement that defines the
table correctly. However, that can be a drastic method: If the table already contains data,
dropping and re-creating the table destroys its contents unless you first make a backup. To
change a table “in place,” use the ALTER TABLE statement. The following list describes some
of the modifications to a table’s structure that ALTER TABLE makes possible:

= Adding or dropping columns

» Changing the name or definition of a column

= Adding or dropping indexes
= Renaming the table

This section describes how to perform each of these changes except for adding and dropping
indexes, topics that are covered later in the chapter. (See Section 8.6.2, “Creating Indexes.”)

Most of the examples shown in this section use a table named Head0OfState, designed to keep
track of world leaders. Assume that the table initially has the following structure:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL
D

The initial DESCRIBE output for the table looks like this:

mysql> DESCRIBE HeadOfState;

| LastName
| FirstName

char(30)

|
+

int(11) | NO
|
char(30) |
+

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 118 Return to Table of Contents

118 CHAPTER 8 Tables and Indexes

8.3.1 Adding and Dropping Columns

To add a new column to a table, use ALTER TABLE with an ADD clause that specifies the col-
umn’s definition. A column definition uses the same syntax for ALTER TABLE as for CREATE
TABLE. For example, to add a DATE column named Inauguration for recording the dates that
the leaders listed in the table assumed office, you can issue this statement:

ALTER TABLE HeadOfState ADD Inauguration DATE NOT NULL;

That ALTER TABLE statement changes the table structure as follows:

mysq1> DESCRIBE HeadOfState;

Fmmmmmmm—m e mmmmmmmm e o= el mmmmmm—e- pmm———-- +
| Field | Type | Null | Key | Default | Extra |
Fommm e o o= +---== - - +
ID	int@1)	NO			
LastName	char(30)	NO			
FirstName	char(30)	NO			
Inauguration	date	NO			
e o == +--=== o o +

As shown by the DESCRIBE output, when you add a new column to a table, MySQL places it
after all existing columns. This is the default placement unless you specify otherwise. To
indicate that MySQL should place the new column in a specific position within the table,
append either the keyword FIRST or the keyword-identifier combination AFTER column_name
to the column definition. For example, assume that you had executed this ALTER TABLE state-
ment instead of the previous one:

ALTER TABLE HeadOfState ADD Inauguration DATE NOT NULL FIRST;
The FIRST keyword tells ALTER TABLE to place the new column before all existing columns (in
the “first” position), resulting in the following table structure:

mysq1> DESCRIBE HeadOfState;

o e o iuiat pmmmmm e pmmmm +
| Field | Type | Null | Key | Default | Extra |
Fommm e o o= +---== - - +
Inauguration	date	NO			
ID	int(11)	NO			
LastName	char(30)	NO			
FirstName	char(30)	NO			
e o == +--=== o o +

Using AFTER column_name tells ALTER TABLE to place the new column after a specific existing
column. For example, to place the new Inauguration column after the existing FirstName
column, you would issue this statement:

ALTER TABLE HeadOfState ADD Inauguration DATE NOT NULL AFTER FirstName;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 119 Return to Table of Contents

8.3 Altering Tables 119

That ALTER TABLE statement results in a table structure that looks like this:

mysql> DESCRIBE HeadOfState;

o o o o= o o +
| Field | Type | Null | Key | Default | Extra |
o pmmmmm e o i o o +
ID	int(11)	NO			
LastName	char(30)	NO			
FirstName	char(30)	NO			
Inauguration	date	NO			
o o o R i fommmm - o +

Column names within a table must be unique, so you cannot add a column with the same
name as one that already exists in the table. Also, column names are not case sensitive, so if
the table already contains a column named ID, you cannot add a new column using any of
these names: ID, id, Id, or iD. They all are considered to be the same name.

To drop a column, use a DROP clause that names the column to be removed:

ALTER TABLE table _name DROP column_name;

8.3.2 Modifying Existing Columns

There are two ways to change the definition of an existing column within a table. One of
these also enables you to rename the column.

The first way to alter a column definition is to use a MODIFY clause. You must specify the
name of the column that you want to change, followed by its new definition. Assume that
you want to change the ID column’s data type from INT to BIGINT, to allow the table to
accommodate larger identification numbers. You also want to make the column UNSIGNED to
disallow negative values. The following statement accomplishes this task:

ALTER TABLE HeadOfState MODIFY ID BIGINT UNSIGNED NOT NULL;

DESCRIBE now shows the table structure to be as follows::

mysql> DESCRIBE HeadOfState;

Fomm o e +-——- +-——— - - +
| Field | Type | Null | Key | Default | Extra |
o e o it o o +
ID	bigint(20) unsigned	NO			
LastName	char(30)	NO			
FirstName	char(30)	NO			
Inauguration	date	NO			
o e o it pmmmmm e o +

Note that if you want to disallow NULL in the column, the column definition provided for
MODIFY must include the NOT NULL attribute, even if the column was originally defined with

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 120 Return to Table of Contents

120

CHAPTER 8 Tables and Indexes

NOT NULL. This is true for other column attributes as well. If you don’t specify them explicitly,
the new definition won’t carry them over from the old definition.

The second way to alter a column definition is to use a CHANGE clause. CHANGE enables you to
modify both the column’s definition and its name. To use this clause, specify the CHANGE key-
word, followed by the column’s existing name, its new name, and its new definition, in that
order. Note that this means you must specify the existing name twice if you want to change
only the column definition (and not the name). For example, to change the LastName column
from CHAR(30) to CHAR(40) without renaming the column, you’d do this:

ALTER TABLE HeadOfState CHANGE LastName LastName CHAR(40) NOT NULL;
To change the name as well (for example, to Surname), provide the new name following the
existing name:

ALTER TABLE HeadOfState CHANGE LastName Surname CHAR(40) NOT NULL;

8.3.3 Renaming a Table

Renaming a table changes neither a table’s structure nor its contents. The following state-
ment renames table t1 to t2:

ALTER TABLE tl RENAME TO t2;

Another way to rename a table is by using the RENAME TABLE statement:

RENAME TABLE t1 TO t2;

RENAME TABLE has an advantage over ALTER TABLE in that it can perform multiple table
renames in a single operation. One use for this feature is to swap the names of two tables:

RENAME TABLE t1 TO tmp, t2 TO tl, tmp TO t2;

For TEMPORARY tables, RENAME TABLE does not work. You must use ALTER TABLE instead.

8.3.4 Specifying Multiple Table Alterations

You can specify multiple alterations for a table with a single ALTER TABLE statement. Just sep-
arate the actions by commas. For example:

ALTER TABLE HeadOfState RENAME TO Countryleader,
MODIFY ID BIGINT UNSIGNED NOT NULL,
ADD Salutation CHAR(30) NULL AFTER FirstName;

8.4 Dropping Tables

To remove a table when you no longer need it, use the DROP TABLE statement:

DROP TABLE t;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 121 Return to Table of Contents

8.5 Emptying Tables 121

In MySQL, a single DROP TABLE statement can name several tables to be dropped
simultaneously:

DROP TABLE t1, t2, t3;

Normally, an error occurs if you attempt to drop a table that does not exist:
mysql> DROP TABLE no_such_table;
ERROR 1051 (42S02): Unknown table 'no_such_table'

To prevent an error from occurring if a table does not exist when you attempt to drop it,
add an IF EXISTS clause to the statement. In this case, a warning occurs if the table does not
exist, which can be displayed with SHOW WARNINGS:

mysql> DROP TABLE IF EXISTS no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;

- o o +
| Level | Code | Message |
o o e +
| Note | 1051 | Unknown table 'no_such_table' |
o o e +

1 row in set (0.00 sec)

If you drop a table by mistake, you must recover it from backups, so be careful.

8.5 Emptying Tables

To remove records from a table without removing the table itself, use the DELETE or
TRUNCATE TABLE statement. Either of the following statements completely empties the named
table:

DELETE FROM t;
TRUNCATE TABLE t;

DELETE takes an optional WHERE clause that identifies which records to remove. This is useful
when you want to delete only a given subset of records from a table. The following state-
ment removes only those records from t that have a status column value of 'expired':

DELETE FROM t WHERE status = 'expired';
DELETE and TRUNCATE TABLE are discussed further in Section 11.5, “The DELETE and TRUNCATE

TABLE Statements,” where you can find a comparative breakdown of their operational
characteristics.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 122 Return to Table of Contents

122

CHAPTER 8 Tables and Indexes

8.6 Indexes

Tables in MySQL can grow very large, but as a table gets bigger, retrievals from it become
slower. To keep your queries performing well, it’s essential to index your tables. Indexes
allow column values to be found more efficiently, so retrievals based on indexes are faster
than those that are not. For large tables, the presence of an index can make the difference
between a query that executes quickly and one that is unacceptably slow.

Another reason to use indexes is that they can enforce uniqueness constraints to ensure that
duplicate values do not occur and that each row in a table can be distinguished from every
other row.

This section discusses the following index-related topics:
= Types of indexes
» Defining indexes at table creation time with CREATE TABLE
» Using primary keys
» Adding indexes to existing tables with ALTER TABLE or CREATE INDEX
» Dropping indexes from tables with ALTER TABLE or DROP INDEX

» Choosing an indexing algorithm

8.6.1 Types of Indexes
MySQL supports three general types of indexes:

= A primary key is an index for which each index value differs from every other and
uniquely identifies a single row in the table. A primary key cannot contain NULL values.

» A unique index is similar to a primary key, except that it can be allowed to contain NULL
values. Each non-NULL value uniquely identifies a single row in the table.

» A non-unique index is an index in which any key value may occur multiple times.

There are also more specialized types of indexes:

= A FULLTEXT index is specially designed for text searching.
= A SPATIAL index applies only to columns that have spatial data types.

FULLTEXT indexes are covered in Section 38.3.3, “FULLTEXT Indexes.” SPATIAL indexes are not
covered in this study guide or on the exam.

8.6.2 Creating Indexes

You can create indexes at the same time that you create a table by including index definitions
in the CREATE TABLE along with the column definitions. It is also possible to add indexes to
an existing table with ALTER TABLE or CREATE INDEX.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 123 Return to Table of Contents

8.6 Indexes 123

8.6.2.1 Defining Indexes at Table Creation Time

To define indexes for a table at the time you create it, include the index definitions in the
CREATE TABLE statement along with the column definitions. An index definition consists of
the appropriate index-type keyword or keywords, followed by a list in parentheses that
names the column or columns to be indexed. Suppose that the definition of a table
HeadOfState without any indexes looks like this:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL

)3

To create the table with the same columns but with a non-unique index on the date-valued
column Inauguration, include an INDEX clause in the CREATE TABLE statement as follows:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL,
INDEX (Inauguration)

)

The keyword KEY may be used instead of INDEX.

To include multiple columns in an index (that is, to create a composite index), list all the col-
umn names within the parentheses, separated by commas. For example, a composite index
that includes both the LastName and FirstName columns can be defined as follows:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL,
INDEX (LastName, FirstName)

)3

Composite indexes can be created for any type of index.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 124 Return to Table of Contents

124 CHAPTER 8 Tables and Indexes

The preceding indexing examples each include just one index in the table definition, but a
table can have multiple indexes. The following table definition includes two indexes:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL,
INDEX (LastName, FirstName),
INDEX (Inauguration)

s

To create a unique-valued index, use the UNIQUE keyword instead of INDEX. For example, if
you want to prevent duplicate values in the ID column, create a UNIQUE index for it like this:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL,
UNIQUE (ID)

)5

There’s one exception to the uniqueness of values in a UNIQUE index: If a column in the index
may contain NULL values, multiple NULL values are allowed. This differs from the behavior for
non-NULL values.

A PRIMARY KEY is similar to a UNIQUE index. The differences between the two are as follows:

= A PRIMARY KEY cannot contain NULL values; a UNIQUE index can. If a unique-valued index
must be allowed to contain NULL values, you must use a UNIQUE index, not a PRIMARY KEY.

» Each table may have only one index defined as a PRIMARY KEY. (The internal name for a

PRIMARY KEY is always PRIMARY, and there can be only one index with a given name.) It’s
possible to have multiple UNIQUE indexes for a table.

It follows from the preceding description that a PRIMARY KEY is a type of unique-valued index,
but a UNIQUE index isn’t necessarily a primary key unless it disallows NULL values. If it does, a
UNIQUE index that cannot contain NULL is functionally equivalent to a PRIMARY KEY.

To index a column as a PRIMARY KEY, use the keywords PRIMARY KEY rather than UNIQUE and
declare the column NOT NULL to make sure that it cannot contain NULL values.

The use of PRIMARY KEY and UNIQUE to create indexes that ensure unique identification for
any row in a table is discussed in the next section.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 125 Return to Table of Contents

8.6 Indexes 125

8.6.2.2 Creating and Using Primary Keys

The most common reason for creating an index is that it decreases lookup time for opera-
tions that search the indexed columns, especially for large tables. Another important use for
indexing is to create a constraint that requires each index value to be unique.

An index with unique values allows you to identify each record in a table as distinct from any
other. This kind of index provides a primary key for a table. Without a primary key, there
might be no way to identify a record that does not also identify other records at the same
time. That is a problem when you need to retrieve, update, or delete a specific record in a
table. A unique ID number is a common type of primary key.

Two kinds of indexes can be used to implement the concept of a primary key:

= An index created with the PRIMARY KEY keywords
= An index created with the UNIQUE keyword

In both cases, the column or columns in the index should be declared as NOT NULL. For a
PRIMARY KEY, this is a requirement; MySQL won’t create a PRIMARY KEY from any column that
may be NULL. (If you omit NOT NULL from the definition of any PRIMARY KEY column, MySQL
adds it implicitly to enforce the NOT NULL requirement.) For a UNIQUE index, declaring
columns as NOT NULL is a logical requirement if the index is to serve as a primary key. If a
UNIQUE index is allowed to contain NULL values, it may contain multiple NULL values. As a
result, some rows might not be distinguishable from others and the index cannot be used as

a primary key.

The following definition creates a table t that contains an id column that’s NOT NULL and
declared as a primary key by means of a PRIMARY KEY clause:

CREATE TABLE t

(
id INT NOT NULL,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)

)

A primary key on a column also can be created by replacing PRIMARY KEY with UNIQUE in the
table definition, provided that the column is declared NOT NULL:

CREATE TABLE t

(
id INT NOT NULL,
name CHAR(30) NOT NULL,
UNIQUE (id)

)

An alternative syntax is allowed for the preceding two statements. For a single-column pri-
mary key, you can add the keywords PRIMARY KEY or UNIQUE directly to the end of the column
definition. The following CREATE TABLE statements are equivalent to those just shown:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 126

126

CHAPTER 8 Tables and Indexes

CREATE TABLE t

(
id INT NOT NULL PRIMARY KEY,
name CHAR(30) NOT NULL

);

CREATE TABLE t
(
id INT NOT NULL UNIQUE,
name CHAR(30) NOT NULL
K

Like other indexes, you can declare a PRIMARY KEY or UNIQUE index as a composite index that
spans multiple columns. In this case, the index must be declared using a separate clause.
(You cannot add the PRIMARY KEY or UNIQUE keywords to the end of a column definition
because the index would apply only to that column.) The following definition creates a pri-
mary key on the last_name and first_name columns using a PRIMARY KEY clause:

CREATE TABLE people

(
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
PRIMARY KEY (last_name, first_name)
b

This primary key definition allows any given last name or first name to appear multiple
times in the table, but no combination of last and first name can occur more than once.

If the columns are declared NOT NULL, you can also create a multiple-column primary key
using UNIQUE:

CREATE TABLE people

(
Tlast_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
UNIQUE (last_name, first_name)
)5

Primary keys are an important general database design concept because they allow unique
identification of each row in a table. For MySQL in particular, primary keys are frequently
defined as columns that are declared with the AUTO_INCREMENT attribute. AUTO_INCREMENT
columns provide a convenient way to automatically generate a unique sequence number for
each row in a table and are described in Section 5.7, “Using the AUTO_INCREMENT Column
Attribute.”

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen

ISBN: 0672328127 Publisher: MySQL Press
Print Publication Date: 2005/08/24

Return to Table of Contents

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
Licensed by Francisco Leon Nieto

User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 127 Return to Table of Contents

8.6 Indexes 127

8.6.2.3 Naming Indexes

For all index types other than PRIMARY KEY, you can name an index by including the name
just before the column list. For example, the following definition uses names of NameIndex
and IDIndex for the two indexes in the table:

CREATE TABLE HeadOfState

(
ID INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL,
INDEX NameIndex (LastName, FirstName),
UNIQUE IDIndex (ID)

s

If you don’t provide a name for an index, MySQL assigns a name for you based on the name
of the first column in the index.

For a PRIMARY KEY, you provide no name because the name is always PRIMARY. A consequence
of this fact is that you cannot define more than one PRIMARY KEY per table because indexes,
like columns, must have unique names.

Index names are displayed by the SHOW CREATE TABLE or SHOW INDEX statement.

8.6.2.4 Adding Indexes to Existing Tables

To add an index to a table, you can use ALTER TABLE or CREATE INDEX. Of these statements,
ALTER TABLE is the most flexible, as will become clear in the following discussion.

To add an index to a table with ALTER TABLE, use ADD followed by the appropriate index-type
keywords and a parenthesized list naming the columns to be indexed. For example, assume
that the HeadOfState table used earlier in this chapter is defined without indexes as follows:

CREATE TABLE HeadOfState

(
D INT NOT NULL,
LastName CHAR(30) NOT NULL,
FirstName CHAR(30) NOT NULL,
CountryCode CHAR(3) NOT NULL,
Inauguration DATE NOT NULL

)3

To create a PRIMARY KEY on the ID column and a composite index on the LastName and
FirstName columns, you could issue these statements:

ALTER TABLE HeadOfState ADD PRIMARY KEY (ID);
ALTER TABLE HeadOfState ADD INDEX (LastName,FirstName);

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 128 Return to Table of Contents

128

CHAPTER 8 Tables and Indexes

However, MySQL allows multiple actions to be performed with a single ALTER TABLE state-
ment. One common use for multiple actions is to add several indexes to a table at the same
time, which is more efficient than adding each one separately. Thus, the preceding two
ALTER TABLE statements can be combined as follows:

ALTER TABLE HeadOfState ADD PRIMARY KEY (ID), ADD INDEX (LastName,FirstName);

The syntax for CREATE INDEX is as follows, where the statements shown create a single-
column UNIQUE index and a multiple-column non-unique index, respectively:

CREATE UNIQUE INDEX IDIndex ON HeadOfState (ID);
CREATE INDEX NameIndex ON HeadOfState (LastName,FirstName);

Note that with CREATE INDEX, it’s necessary to provide a name for the index. With ALTER
TABLE, MySQL creates an index name automatically if you don’t provide one.

Unlike ALTER TABLE, the CREATE INDEX statement can create only a single index per statement.
In addition, only ALTER TABLE supports the use of PRIMARY KEY. For these reasons, ALTER TABLE
is more flexible.

8.6.3 Choosing an Indexing Algorithm

When you create an index, it is possible to specify the indexing algorithm to be used. The
only engine for which this feature is currently applicable is the MEMORY engine that manages
in-memory tables. For other engines, the syntax is recognized but ignored.

MEMORY tables use hash indexes by default. This index algorithm provides very fast lookups
for all operations that use a unique index. However, hash indexes are usable only for com-
parisons that use the = or <=> operator. Also, for non-unique indexes, operations that change
the indexed values (including DELETE statements) can become relatively slow when there are
many duplicate index values.

If you will have only unique indexes on a MEMORY table, you should create them as HASH
indexes. Because HASH indexes are the default for MEMORY tables, you can do so when defining
an index either by specifying an explicit USING HASH clause or by omitting the index algo-
rithm specification entirely. The following two statements are equivalent:

CREATE TABLE lookup
(

id INT,

INDEX USING HASH (id)
) ENGINE = MEMORY;

CREATE TABLE Tookup
(

id INT,

INDEX (id)
) ENGINE = MEMORY;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 129 Return to Table of Contents

8.7 Dropping Indexes 129

On the other hand, if a MEMORY table contains only non-unique indexes for which you expect
that there will be many duplicate values in the index key, a BTREE index is preferable. BTREE
indexes also are usable if the indexed column will be used with comparison operators other
than = or <=>. For example, BTREE can be used for range searches such as id < 100 or id
BETWEEN 200 AND 300. To create an index that uses the BTREE algorithm, include a USING
BTREE clause in the index definition:

CREATE TABLE Tookup (
id INT,
INDEX USING BTREE (id)
) ENGINE = MEMORY;

If you have already created the table, you can add a new index using either ALTER TABLE

or CREATE INDEX, making use of the USING 7ndex_type clause. If the Tookup table had been
created without the index on the id column, either of the following statements would add a
BTREE index on that column:

ALTER TABLE Tookup ADD INDEX USING BTREE (id);
CREATE INDEX id_idx USING BTREE ON Tookup (id);

Although choosing between alternative indexing algorithms currently is limited to MEMORY
tables, work is ongoing on extending this functionality to other storage engines such as
MyISAM and InnoDB.

8.7 Dropping Indexes

To drop an index from a table, use ALTER TABLE or DROP INDEX.

With ALTER TABLE, use a DROP clause and name the index to be dropped. Dropping a PRIMARY
KEY is easy:

ALTER TABLE HeadOfState DROP PRIMARY KEY;

To drop another kind of index, you must specify its name. If you don’t know the name, you
can use SHOW CREATE TABLE to see the table’s structure, including any index definitions, as
shown here:

mysq1> SHOW CREATE TABLE HeadOfState\G

© 1. row *¥*

Table: HeadOfState
Create Table: CREATE TABLE “HeadOfState ™ (
"ID' int(11) NOT NULL default '0',
“LastName™ char(30) NOT NULL default '',
‘FirstName™ char(30) NOT NULL default '',
"CountryCode” char(3) NOT NULL default '',
“Inauguration” date NOT NULL default '0000-00-00',

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 130 Return to Table of Contents

130 CHAPTER 8 Tables and Indexes

KEY “NameIndex' (LastName', FirstName')
) ENGINE=MyISAM DEFAULT CHARSET=latinl

The KEY clause of the output shows that the index name is NameIndex, so you can drop the
index using the following statement:

ALTER TABLE HeadOfState DROP INDEX NameIndex;

After you’ve dropped an index, you can recover it merely by re-creating it:

ALTER TABLE HeadOfState ADD INDEX NameIndex (LastName, FirstName);

Dropping an index differs from dropping a database or a table, which cannot be undone
except by recourse to backups. The distinction is that when you drop a database or a table,
you're removing data. When you drop an index, you aren’t removing table data, you’re
removing only a structure that’s derived from the data. The act of removing an index is a
reversible operation as long as the columns from which the index was constructed have not
been removed. However, for a large table, dropping and recreating an index may be a time-
consuming operation.

To drop an index with DROP INDEX, indicate the index name and table name:

DROP INDEX NameIndex ON t;

To drop a PRIMARY KEY with DROP INDEX, refer to the index name (PRIMARY), but use a quoted
identifier because this name is a reserved word:

DROP INDEX "PRIMARY" ON t;

Unlike ALTER TABLE, the DROP INDEX statement can drop only on a single index per statement.

8.8 Obtaining Table and Index Metadata

The SELECT statement retrieves the information contained in your tables. You can also ask
MySQL to show you table metadata; that is, information about your tables. Metadata
includes information such as table names or column or index definitions.

The INFORMATION_SCHEMA database has a TABLES table that contains table metadata. For
example, to display information about the wor1d.City table, use this statement:

mysq1> SELECT * FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA = 'world'
-> AND TABLE_NAME = 'City'\G
Fedededededede e de Sl NSt de ottt 1 row Fedededededede e el dede ettt dhn
TABLE_CATALOG: NULL
TABLE_SCHEMA: world
TABLE_NAME: City

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 131

Return to Table of Contents

TABLE_TYPE: BASE TABLE
ENGINE: MyISAM
VERSION: 10
ROW_FORMAT: Fixed
TABLE_ROWS: 4079
AVG_ROW_LENGTH: 67
DATA_LENGTH: 273293
MAX_DATA_LENGTH: 18858823439613951
INDEX_LENGTH: 43008
DATA_FREE: 0
AUTO_INCREMENT: 4080

CREATE_TIME:
UPDATE_TIME:

2005-05-28 20:20:22
2005-05-29 20:54:51

CHECK_TIME: NULL
TABLE_COLLATION: Tlatinl_swedish_ci
CHECKSUM: NULL

8.8 Obtaining Table and Index Metadata

131

CREATE_OPTIONS:
TABLE_COMMENT:

Information about indexes is available from INFORMATION_SCHEMA in the STATISTICS table.

For further information about INFORMATION_SCHEMA, see Chapter 20, “Obtaining Database
Metadata.”

MySQL also supports a family of SHOW statements that display metadata. Some that pertain
to tables are SHOW TABLES and SHOW CREATE TABLE.

To determine the tables that a particular database contains, use SHOW TABLES:

mysq1> SHOW TABLES FROM world;

o +
| City |
| Country |
| CountrylLanguage |
e e e e +

The FROM clause names the database whose table names you want to determine. With no
FROM clause, SHOW TABLES displays the names of the tables in the default database. If there is
no default database, an error occurs:

mysql> SHOW TABLES;
ERROR 1046 (3D000): No database selected

SHOW TABLES can take a LIKE 'pattern' clause. With LIKE, the statement performs a pattern-
matching operation and displays information only about tables with names that match the
pattern. Patterns are discussed in Section 10.3.2, “Using LIKE for Pattern Matching.”

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM

MySQL® 5.0 Certification Study Guide Prage 132 Return to Table of Contents

132 CHAPTER 8 Tables and Indexes

mysq1> SHOW TABLES FROM world LIKE '%tr%';

o +
| Tables_in_world (%tr%) |
o +
| Country |
| CountrylLanguage |
o +

SHOW CREATE TABLE shows the CREATE TABLE statement that corresponds to a table’s definition,
including its columns, indexes, and any table options the table has:

mysql> SHOW CREATE TABLE CountrylLanguage\G

“* 1. row *
Table: CountrylLanguage

Create Table: CREATE TABLE “CountrylLanguage ™ (
“CountryCode” char(3) NOT NULL default '',
“Language” char(30) NOT NULL default '',
‘IsOfficial” enum('T','F') NOT NULL default 'F',
"Percentage” float(4,1) NOT NULL default '0.0',
PRIMARY KEY (" CountryCode’, ‘Language)

) ENGINE=MyISAM DEFAULT CHARSET=latinl

DESCRIBE is another statement that displays table structure metadata. You’re already familiar
with DESCRIBE; its output format was discussed in the Introduction and it has been used in
several examples earlier in this study guide. Here is an example of its output:

mysql> DESCRIBE CountrylLanguage;

Fommmmm e B L L o el pommm—m - o +
| Field | Type | Null | Key | Default | Extra |
fmmmmmmmm e T e e L o o= pmmmmmmmee o= +
Country	char(3)	NO	PRI		
Language	char(30)	NO	PRI		
IsOfficial	enum(C'T','F')	NO		F	
Percentage	float(3,1)	NO		0.0	
Fo—mmm o Fommmm e +--—--- +----- +-—mm +-—————- +

DESCRIBE table_name is a synonym for SHOW COLUMNS FROM table_name or SHOW FIELDS FROM
table_name. These statements are equivalent:

DESCRIBE CountrylLanguage;
SHOW COLUMNS FROM CountrylLanguage;
SHOW FIELDS FROM CountrylLanguage;

You can also use SHOW to obtain index information. To find out what indexes a table has, use
SHOW CREATE TABLE to display the CREATE TABLE statement that corresponds to the table struc-
ture, including its indexes. For more detailed information about the indexes, use SHOW INDEX.
For example, SHOw INDEX produces the following output for the Country table of the world
database:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 133 Return to Table of Contents

8.8 Obtaining Table and Index Metadata 133

mysql> SHOW INDEX FROM Country\G

dedededededdededdedededededededd

3

dedededededekd] row *

Table: Country
Non_unique: 0
Key_name: PRIMARY

Seq_in_index: 1
Column_name: Code
Collation: A
Cardinality: NULL

Sub_part: NULL
Packed: NULL
NulT:
Index_type:
Comment:

BTREE

The output indicates that the table has a single index, a primary key on the Code column.
For the CountrylLanguage table, the output has two rows because the primary key includes
two columns, Country and Language:

mysq1> SHOW INDEX FROM CountrylLanguage\G

dedededededededededede e dodede e dede ek row Fedededededdededdedefdhddehddehddehddhd

Table: CountrylLanguage
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 1
Column_name: Country
Collation: A
Cardinality: NULL
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:

Fedededededdedek

Fedededededededededede e dedehddek

Fededededek 2. row dedededk

Table: CountrylLanguage
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 2
Column_name: Language
Collation: A
Cardinality: NULL
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM

MySQL® 5.0 Certification Study Guide Prage 134 Return to Table of Contents

134 CHAPTER 8 Tables and Indexes

The Seq_in_index values show the order of the columns within the index. They indicate that
the primary key columns are Country first and Language second. That information corre-
sponds to the following PRIMARY KEY declaration:

PRIMARY KEY (Country, Language)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 135 Return to Table of Contents

Querying for Data

This chapter discusses how to use the SELECT statement to retrieve information from data-

base tables. It covers the following exam topics:

Specifying which columns to retrieve and the table from which to retrieve them
Using WHERE to identify the characteristics that define which records to retrieve
Using ORDER BY to sort query results

Using LIMIT to limit the output to a specific number of the rows retrieved
Using DISTINCT to eliminate duplicates

Computing summary values from groups of rows

Using UNION to combine results from multiple queries into a single result set

9.1 Using SELECT to Retrieve Data

The SELECT statement retrieves information from one or more tables. Retrievals tend to be

the most common database operation, so it’s important to understand how SELECT works and

what you can do with it.

This chapter provides general instructions on how to write SELECT statements and how to

use the various parts of its syntax to get the results you want. A representative syntax for the

SELECT statement is as follows:

SELECT values_to_display

FROM table_name
WHERE expression
GROUP BY how_to_group
HAVING expression
ORDER BY how_to_sort
LIMIT row_count;

The syntax shown here is simplified from the full SELECT syntax, which includes additional

clauses that aren’t covered in this chapter.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 136 Return to Table of Contents

136 CHAPTER 9 Querying for Data

All clauses following the output column list (values_to_display) are optional. For example,
you don’t need to include a LIMIT clause when writing a SELECT statement. However, any
clauses that you do include must be specified in the order shown.

The examples in this chapter use SELECT statements for retrievals involving no more than a
single table, but it’s possible to retrieve records from more than one table in a single query.
One way is by selecting records from one table after the other with multiple SELECT state-
ments and concatenating the results using the UNION keyword. UNION is covered in Section
9.6, “Using UNION.” Other multiple-table queries use joins and subqueries, which are covered
in later chapters.

In most cases, the sample queries shown here assume that you've already selected a default
database. If that isn’t true, you can select a database named db_name by issuing a USE db_name
statement. For example, select the world database like this:

mysql> USE world;
Database changed

9.2 Specifying Which Columns to Retrieve

To indicate what values to retrieve, name them following the SELECT keyword. In the sim-
plest case, you specify an expression or list of expressions. MySQL evaluates each expression
and returns its value. Expressions may return numbers, strings, temporal values, or NULL.
The following SELECT statement retrieves a value of each of those types:

mysql> SELECT 2+2, REPEAT('x',5), DATE_ADD('2001-01-01',6INTERVAL 7 DAY), 1/0;

o= oo e o= +
| 2+2 | REPEAT('x',5) | DATE_ADD('2001-01-01',INTERVAL 7 DAY) | 1/0 |
o= o e o +
| 4 | xxxxx | 2001-01-08 | NULL |
+--—-- o Rttt - +

The first expression is a sum of numbers and returns the number 4. The second expression
returns a string (' xxxxx') consisting of the character ‘x’ repeated five times. The third
expression returns a date value. The fourth expression returns NULL because it involves a
divide-by-zero condition. In general, if MySQL finds it impossible to evaluate an expression
because it involves some exceptional condition, the result is NULL or an error occurs.

SELECT can retrieve the values of expressions, as just shown, but it’s more commonly used to
retrieve columns from tables. To select information from a table, it’s necessary to identify
the table by adding a FROM tabTe_name clause following the list of columns to retrieve. The
names of the columns can be seen with DESCRIBE:

mysql1> DESCRIBE City;
fommmm - oo o= R i o oo +
| Field | Type | Null | Key | Default | Extra

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 137 Return to Table of Contents

9.2 Specifying Which Columns to Retrieve 137
ommmmmmm e ommmmmeen R et pommmmmee L EE Lt +
ID	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO			
District	char(20)	NO			
Population	int(11)	NO		0	
- - - == - o m o +

To retrieve the contents of these columns, write the SELECT statement as follows:

SELECT ID, Name, CountryCode, District, Population FROM City;

MySQL returns a result set consisting of one row of output for each row in the table. (The
term “result set” refers to the set of rows resulting from a SELECT statement.) If the table is
empty, the result will be empty, too. An empty result set is perfectly legal. A syntactically
valid SELECT that returns no rows is not considered erroneous.

For a SELECT operation that retrieves every column from a table, the shortcut * can be used
to specify the output columns. The * stands for “all columns in the table,” so for the City
table, the following statements are equivalent:

SELECT ID, Name, CountryCode, District, Population FROM City;
SELECT * FROM City;

The * shorthand notation is clearly more convenient to type than a list of column names.
However, you should understand when it is useful and when it isn’t:

= If you want to retrieve all columns from a table and you don’t care about the order in
which they appear from left to right, * is appropriate. If you want to ensure that the
columns appear left to right in a particular order, * cannot be used because it gives you
no control over the order in which columns will appear. You should name the columns
explicitly in the order you want to see them.

= If you don’t want to retrieve all the columns from the table, you cannot use *. Instead,
name the columns in the order they should appear.

You should not issue a SELECT * query to find out the current left-to-right display order for
the columns in a table and then assume that they will always be displayed in that same order
for future queries. The left-to-right column order produced by SELECT * retrievals depends
implicitly on the internal structure of the table, which is determined by the order of the
columns in the table definition. However, the table’s internal structure can be changed with
ALTER TABLE, so a SELECT * statement might return different results before and after an ALTER
TABLE statement.

9.2.1 Renaming Retrieved Columns

Output column names, by default, are the same as the column or expression selected. To
rename a column, provide an alias following the column in the output list:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 138 Return to Table of Contents

138 CHAPTER 9 Querying for Data

mysql> SELECT 1 AS One, 4*3 'Four Times Three';
+o—-—- LT +
| One | Four Times Three |

Columns aliases are used as follows:

= The keyword AS is optional.
= An alias may be quoted. If it consists of multiple words, it must be quoted.

» You can refer to a column alias elsewhere in the query, in the GROUP BY, HAVING, or ORDER
BY clause. However, you cannot refer to aliases in the WHERE clause.

9.2.2 Identifying the Database Containing a Table

When you name a table in a SELECT statement, it’s normally assumed to be a table in the
default database. (This is true for other statements as well.) For example, if wor1d is the
default database, the following statement selects rows from the Country table in the world
database:

SELECT * FROM Country;

If there’s no default database, the statement results in an error because MySQL cannot tell
where to find the table:

mysql> SELECT * FROM Country;
ERROR 1046 (3D000): No database selected

To specify a database explicitly in the SELECT statement itself, qualify the table name. That is,
precede the table name with the database name and a period:

SELECT * FROM world.Country;

The database name acts as a qualifier for the table name. It provides to the server a context
for locating the table. Qualified table names are useful under several circumstances:

» When there’s no default database. In this case, a qualifier is necessary for accessing the
table.

» When you want to select information from a table that’s located somewhere other than
the default database. In this situation, it’s possible to issue a USE statement to select the
other database as the default, a SELECT that uses the unqualified table name, and then
another USE to select the original database as the default. However, qualifying the table
name in the SELECT allows the two USE statements to be avoided.

» When you aren’t sure what the default database is. If the default isn’t the database in
which the table is located, the qualifier enables the server to locate the table. If the

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 139 Return to Table of Contents

9.3 Specifying Which Rows to Retrieve 139

default happens to be the same as the named database, the qualifier is unnecessary, but
harmless.

9.3 Specifying Which Rows to Retrieve

If you specify no criteria for selecting records from a table, a SELECT statement retrieves
every record in the table. This is often more information than you need, particularly for
large tables. To be more specific about which rows are of interest, include a WHERE clause that
describes the characteristics of those rows.

A WHERE clause can be as simple or complex as necessary to identify the rows that are rele-
vant for your purposes. For example, to retrieve records from the Country table for those
countries that achieved independence after the year 1990, it’s sufficient to use a WHERE clause
that specifies a single condition:

SELECT * FROM Country WHERE IndepYear > 1990;

More complex WHERE clauses specify multiple conditions, which may be combined using
logical operators such as AND and OR. The following statement returns rows with Population
values in the range from 1 million to 2 million:

SELECT * FROM Country
WHERE Population >= 1000000 AND Population <= 2000000;

For testing values in a range, you can also use the BETWEEN operator:
SELECT * FROM Country

WHERE Population BETWEEN 1000000 AND 2000000;

Some operators have higher precedence than others. For example, AND has a higher prece-
dence than OR. To control the order of evaluation of terms within a complex expression (or
simply to make the evaluation order explicit), use parentheses to group expression terms.
Consider the following WHERE clause:

WHERE GNP < 1000 AND Continent = 'Africa' OR Continent = 'Asia'

Because AND has a higher precedence than 0R, the preceding expression is equivalent to the
following one:

WHERE (GNP < 1000 AND Continent = 'Africa') OR Continent = 'Asia’

That expression finds all records with a GNP value less than 1000 that also have a Continent
value of 'Africa’, as well as all records with a Continent value of 'Asia’ (regardless of
their GNP value). However, a different placement of parentheses results in a very different
meaning:

WHERE GNP < 1000 AND (Continent = 'Africa' OR Continent = 'Asia')

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 140 Return to Table of Contents

140 CHAPTER 9 Querying for Data

That expression finds records that have a GNP value less than 1000 and a Continent value of
either 'Africa’ or 'Asia’'.

More information on writing expressions can be found in Chapter 10, “SQL Expressions.”
Detailed descriptions of the operators and functions that you can use in expressions are pro-
vided in the MySQL Reference Manual.

It’s possible to prevent SELECT statements that might generate a great deal of output from
returning more than 1,000 rows. The mysq1 client supports this feature if you invoke it
with the --safe-updates option. For more information, see Section 2.9, “Using the
--safe-updates Option.”

9.3.1 Using ORDER BY to Sort Query Results

By default, the rows in the result set produced by a SELECT statement are returned by the
server to the client in no particular order. When you issue a query, the server is free to
return the rows in any convenient order. This order can be affected by factors such as the
order in which rows are actually stored in the table or which indexes are used to process the
query. If you require output rows to be returned in a specific order, include an ORDER BY
clause that indicates how to sort the results.

The examples in this section demonstrate ORDER BY using a table t that has the following
contents (id is numeric, Tast_name and first_name are strings, and birth contains dates):

mysql> SELECT id, last_name, first_name, birth FROM t;

- o - - o +
| did | last_name | first_name | birth |
o= o e it o +
| 1 | Brown | Bill | 1972-10-14 |
| 2 | Larsson | Sven | 1965-01-03 |
| 3 | Brown | Betty | 1971-07-12 |
| 4 | Larsson | Selma | 1968-05-29 |
o= oo e e +

ORDER BY provides a great deal of flexibility for sorting result sets. It has the following
characteristics:

= You can name one or more columns, separated by commas, to use for sorting. With a
single sort column, rows are sorted based on the values in that column:

mysql> SELECT id, last_name, first_name, birth FROM t
-> ORDER BY birth;

+-————= Homm - tomm - Fomm +

| id | Tast_name | first_name | birth |

+--———= Fommm - Fomm Fommm - +

| 2 | Larsson | Sven | 1965-01-03 |

| 4 | Larsson | Selma | 1968-05-29 |

| 3 | Brown | Betty | 1971-07-12 |
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 141

Return to Table of Contents

9.3 Specifying Which Rows to Retrieve

| 1| Brown | Bill | 1972-10-14 |

o= o e it oo +

If there are additional sort columns, rows with the same value in the first sort column
are sorted together, and are then further sorted using the values in the second and
remaining sort columns. The following query sorts the Browns before the Larssons,
and then within each group of rows with the same last name, sorts them by first name:

mysql> SELECT +id, last_name, first_name, birth FROM t
-> ORDER BY Tlast_name, first_name;

- Fommm e e o m e +
| id | Tast_name | first_name | birth |
o o o o m e +
| 3 | Brown | Betty | 1971-07-12 |
| 1 | Brown | Bil1l | 1972-10-14 |
| 4 | Larsson | Selma | 1968-05-29 |
| 2 | Larsson | Sven | 1965-01-03 |
o o o o +

By default, ORDER BY sorts values in ascending order (smallest to largest). Any sort col-
umn may be followed with ASC if you want to specify ascending order explicitly. These
ORDER BY clauses are equivalent:

ORDER BY Tlast_name, first_name
ORDER BY Tast_name ASC, first_name ASC

To sort values in descending order (largest to smallest), follow the sort column name
with DESC:

mysql> SELECT 1id, last_name, first_name, birth FROM t
-> ORDER BY 1id DESC;

o e o o +
| did | Tast_name | first_name | birth |
+-———-- ettt +--—m— - Hommmm - +
4	Larsson	Selma	1968-05-29
3	Brown	Betty	1971-07-12
2	Larsson	Sven	1965-01-03
1	Brown	Bil1l	1972-10-14
+-———- ettt Bttt Fommm - +

When you name a column followed by ASC or DESC, the sort direction specifier applies
only to that column. It doesn’t affect sort direction for any other columns listed in the
ORDER BY clause.

ORDER BY typically refers to table columns by name:

SELECT Tlast_name, first_name FROM t ORDER BY last_name, first_name;

141

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen
ISBN: 0672328127 Publisher: MySQL Press

Print Publication Date: 2005/08/24

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM

Licensed by Francisco Leon Nieto
User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 142 Return to Table of Contents

142 CHAPTER 9 Querying for Data

However, it’s possible to refer to columns in other ways. If a column is given an alias in
the output column list, you should refer to that column in the ORDER BY column by its
alias:

SELECT last_name AS Tlast, first_name AS first FROM t ORDER BY Tlast, first;

Or you can specify a number corresponding to the column’s position in the column
output list (1 for the first output column, 2 for the second, and so forth) :

SELECT Tast_name, first_name FROM t ORDER BY 1, 2;

However, the syntax for specifying columns by position has been removed from the
SQL Standard (in SQL:1999) and is obsolete. Application developers should consider
using one of the other column specification methods.

» It’s possible to perform a sort using an expression result. If the expression appears in the
output column list, you can use it for sorting by repeating it in the ORDER BY clause.
Alternatively, you can refer to the expression by an alias given to it. The following
queries each sort the output rows by month of the year:

SELECT 1id, last_name, first_name, MONTH(birth)
FROM t ORDER BY MONTH(birth);

SELECT id, last_name, first_name, MONTH(birth) AS m
FROM t ORDER BY m;

You can also refer to the expression by its column position, although this is not
recommended.

» Output sorting can be based on values that don’t appear in the output at all. The fol-
lowing statement displays month names in the output, but sorts the rows using the
numeric month value:

mysql> SELECT id, last_name, first_name, MONTHNAME(birth) FROM t
-> ORDER BY MONTH(birth);

+---——= Hommmmm - o Fomm - +
| id | Tast_name | first_name | MONTHNAME(birth) |
+----—= Hommm - Fo—mm R +
2	Larsson	Sven	January
4	Larsson	Selma	May
3	Brown	Betty	July
1	Brown	Bill	October
+-————= ittt o Fomm e +

= ORDER BY doesn’t require the sorted columns to be indexed, although a query might run
faster if such an index does exist.

= ORDER BY is useful together with LIMIT for selecting a particular section of a set of sorted
rows. (See Section 9.3.3, “Limiting a Selection Using LIMIT.”)

= ORDER BY can be used with DELETE or UPDATE to force rows to be deleted or updated in a
certain order. (These uses of ORDER BY are covered in Chapter 11, “Updating Data.”)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 143 Return to Table of Contents

9.3 Specifying Which Rows to Retrieve 143

9.3.2 The Natural Sort Order of Data Types

Each type of data managed by MySQL has its own natural sort order. For the most part,
these orders are fairly intuitive. The rules for string sorting are the most complex because
they depend on whether the strings are non-binary, binary, or come from ENUM or SET
columns.

= A numeric column sorts in ascending numeric order by default, or descending order if
DESC is specified.

= A temporal column sorts in ascending time order by default, with oldest values first and
most recent values last. The order is reversed if DESC is specified.

= The sort order for a string column that has a data type other than ENUM or SET depends
on whether the column contains non-binary or binary values. Non-binary strings
sort in the order defined by their collation. This order can be case sensitive or not,
depending on the collation. Binary strings sort based on the numeric values of the bytes
contained in the strings. For example, assume that a table t has a CHAR column c that
has the Tatinl character set and that contains the following values:

mysql> SELECT c¢ FROM t;

o +
lc |
e +
| a [
A
8
A
b
la |
i +

A CHAR column is non-binary, so its contents sort according to the column’s collation. If
the collation is not case sensitive, values sort lexically without regard to lettercase:

mysql> SELECT c FROM t ORDER BY c;

i +
lc |
o +
la |
LA
| A [
la |
8
b
e +

Notice that the results come out in letter order, but the rows for a given letter are not
further sorted by lettercase.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 144 Return to Table of Contents

144 CHAPTER 9 Querying for Data

If the collation is case sensitive, lettercase becomes significant. You can force a string
column sort to be case sensitive by using the COLLATE operator with a case-sensitive
collation:

mysql> SELECT c¢ FROM t ORDER BY c COLLATE latinl_general_cs;

o= +
| c |
o +
LA
LA
la |
| a |
8 |
b
o= +

If the collation is binary, numeric character values are the determining factor:
mysql> SELECT c FROM t ORDER BY c COLLATE Tlatinl_bin;

o= +
| c |
o +
LA
LA
8 |
la |
la |
b
o= +

s The sort order for members of an ENUM or SET column is based on their internal
numeric values. These values correspond to the order in which the enumeration or set
members are listed in the column definition. Suppose that a table t contains a column
mon that is an ENUM listing abbreviations for months of the year:

CREATE TABLE t
(
mon ENUM('Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug', 'Sep','Oct', 'Nov', 'Dec')
)5

Assume that table t has 12 rows, one for each of the possible enumeration values.
When you sort this column, the values come out in month-of-year order:

mysql> SELECT mon FROM t ORDER BY mon;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 145 Return to Table of Contents

9.3 Specifying Which Rows to Retrieve 145

Feb
Mar

This occurs because 'Jan' through 'Dec' are assigned internal values 1 through 12
based on their order in the column definition, and those values determine the sort
order. To produce a lexical string sort instead, use CAST() to convert the enumeration
values to CHAR values:

mysql> SELECT mon FROM t ORDER BY CAST(mon AS CHAR);

SET columns also sort using the internal values of the set’s legal members. The ordering
is more complex than with ENUM because values may consist of multiple SET members.
For example, the following SET column contains three members:

CREATE TABLE t (hue SET('red','green','blue'));

Assume that t contains the following rows:
mysql> SELECT hue FROM t;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 146 Return to Table of Contents

146 CHAPTER 9 Querying for Data

| red,green |
| red,green,blue |
| red,blue |
| green,blue |

The SET members 'red', 'green’, and 'blue’ have internal values of 1, 2, and 4, respec-
tively. Thus, the rows of the table have internal numeric values of 1+2 =3, 1+42+4 =7,
1+4 =5, and 2+4 = 6. An ORDER BY on the column sorts using those numeric values:

mysq1> SELECT hue FROM t ORDER BY hue;

fmmmmm e +

| hue |

B iaiaie il +
red,green
red,blue

green,blue
red,green,blue

As with ENUM, SET values can be sorted lexically by using CAST(Q) to convert them to
strings:
mysql> SELECT hue FROM t ORDER BY CAST(hue AS CHAR);

green,blue
red,blue
red,green
red,green,blue

= NULL values in a column sort together at the beginning for ascending sorts and at the
end for descending sorts.

9.3.3 Limiting a Selection Using LIMIT

MySQL supports a LIMIT clause in SELECT statements, which tells the server to return only
some of the rows selected by the statement. This is useful for retrieving records based on
their position within the set of selected rows.

LIMIT may be given with either one or two arguments:

LIMIT row_count
LIMIT skip_count, row_count

Each argument must be given as an integer constant. You cannot use expressions, user vari-
ables, and so forth.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 147 Return to Table of Contents

9.3 Specifying Which Rows to Retrieve 147

When followed by a single integer, row_count, LIMIT returns the first row_count rows from
the beginning of the result set. To select just the first 10 rows of a result set, use LIMIT 10:

SELECT * FROM Country LIMIT 10;

When followed by two integers, skip_count and row_count, LIMIT skips the first skip_count
rows from the beginning of the result set, and then returns the next row_count rows. To skip
the first 20 rows and then return the next 10 rows, do this:

SELECT * FROM Country LIMIT 20,10;

The single-argument form of LIMIT is applicable only when the rows you want to retrieve
appear at the beginning of the result set. The two-argument form is more general and can
be used to select an arbitrary section of rows from anywhere in the result set.

When you need only some of the rows selected by a query, LIMIT is an efficient way to
obtain them. For a client application that fetches rows from the server, you get better per-
formance by adding LIMIT to the query than by having the client fetch all the rows and
discard all but the ones of interest. By using LIMIT, the unwanted rows never cross the net-
work at all.

It’s often helpful to include an ORDER BY clause to put the rows in a particular order when you
use LIMIT. When ORDER BY and LIMIT are used together, MySQL applies ORDER BY first and
then LIMIT. One common use for this is to find the row containing the smallest or largest
values in a particular column. For example, to find the row in a table t containing the small-
est id value, use this statement:

SELECT * FROM t ORDER BY id LIMIT 1;

To find the largest value instead, use DESC to sort the rows in reverse:

SELECT * FROM t ORDER BY 1id DESC LIMIT 1;

The two-argument form of LIMIT is useful in conjunction with ORDER BY for situations in
which you want to process successive sections of a result set. For example, in Web applica-
tions, it’s common to display the result of a large search across a series of pages that each
present one section of the result. To retrieve sections of the search result this way, issue a
series of statements that all specify the same number of rows to return in the LIMIT clause,
but vary the number of initial rows to skip:

SELECT * FROM t ORDER BY id LIMIT 0, 20;
SELECT * FROM t ORDER BY id LIMIT 20, 20;
SELECT * FROM t ORDER BY id LIMIT 40, 20;
SELECT * FROM t ORDER BY id LIMIT 60, 20;

It’s possible to abuse the LIMIT feature. For example, it isn’t a good idea to use a clause such
as LIMIT 1000000, 10 to return 10 rows from a query that normally would return more than
a million rows. The server must still process the query to determine the first million rows

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 148 Return to Table of Contents

148

CHAPTER 9 Querying for Data

before returning the 10 rows. It’s better to use a WHERE clause to reduce the query result to a
more manageable size, and then use LIMIT to pull rows from that reduced result. This also
makes the use of ORDER BY with LIMIT more efficient because the server need not sort as large
a row set before applying the limit.

The UPDATE and DELETE statements also support the use of LIMIT, which causes only a certain
number of rows to be updated or deleted. See Chapter 11, “Updating Data.”

9.3.4 Using DISTINCT to Eliminate Duplicates

If a query returns a result that contains duplicate rows, you can remove duplicates to pro-
duce a result set in which every row is unique. To do this, include the keyword DISTINCT
after SELECT and before the output column list.

Suppose that a query returns a result set that contains duplicated rows:

mysql> SELECT last_name FROM t;

- +
| Tast_name |
oo +
| Brown |
| Larsson |
| Brown |
| Larsson |
o +

Adding DISTINCT removes the duplicates and returns only unique rows:

mysq1> SELECT DISTINCT last_name FROM t;

- +
| last_name |
- +
| Brown |
| Larsson |
- +

Duplicate elimination for string values happens differently for non-binary and binary
strings. The strings 'ABC', 'Abc’, and 'abc' are considered distinct if they’re binary strings.
If they are non-binary strings, they are considered distinct if they have different values based
on their collation.

DISTINCT treats all NULL values within a given column as having the same value. Suppose that
a table t contains the following rows:

mysql> SELECT i, j FROM t;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 149 Return to Table of Contents

9.3 Specifying Which Rows to Retrieve 149

For purposes of DISTINCT, the NULL values in the second column are the same, so the second
and third rows are identical. Adding DISTINCT to the query eliminates one of them as a
duplicate:

mysql> SELECT DISTINCT i, j FROM t;

o o +
| i (] |
o et +
| 1] 2 |
| 1 | NULL |
oo e +

Using DISTINCT is logically equivalent to using GROUP BY on all selected columns with no
aggregate function. For such a query, GROUP BY just produces a list of distinct grouping val-
ues. If you display and group by a single column, the query produces the distinct values in
that column. If you display and group by multiple columns, the query produces the distinct
combinations of values in the column. For example, the following two queries produce the
same set of rows:

SELECT DISTINCT id FROM t;

SELECT id FROM t GROUP BY 1id;

As do these:

SELECT DISTINCT 1id, name FROM t;

SELECT id, name FROM t GROUP BY 1id, name;

Another correspondence between the behavior of DISTINCT and GROUP BY is that for purposes
of assessing distinctness, DISTINCT considers all NULL values the same. This is analogous to
the way that GROUP BY groups NULL values.

A difference between DISTINCT and GROUP BY is that DISTINCT doesn’t cause row sorting. In
MySQL, GROUP BY does cause sorting.

DISTINCT can be used with the COUNT(Q) function to count how many distinct values a column
contains. In this case, NULL values are ignored:

mysql> SELECT j FROM t;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 150 Return to Table of Contents

150 CHAPTER 9 Querying for Data

mysq1> SELECT COUNT(DISTINCT j) FROM t;

o +
| COUNT(DISTINCT j) |
e +
| 1|
e m e +

COUNT(DISTINCT) is discussed further in Section 9.4.3, “The COUNT() Aggregate Function.”

9.4 Aggregating Results

A SELECT statement can produce a list of rows that match a given set of conditions. The list
provides the details about the selected rows, but if you want to know about the overall char-
acteristics of the rows, you’ll be more interested in getting a summary instead. When that’s
your goal, use aggregate functions to calculate summary values, possibly combined with a
GROUP BY clause to arrange the selected rows into groups so that you can get summaries for
each group.

Grouping can be based on the values in one or more columns of the selected rows. For
example, the Country table indicates which continent each country is part of, so you can
group the records by continent and calculate the average population of countries in each
continent:

SELECT Continent, AVG(Population) FROM Country GROUP BY Continent;

Functions such as AVGQ) that calculate summary values for groups are known as “aggregate”
functions because they’re based on aggregates or groups of values. There are several types of
aggregate functions. Those discussed here are as follows:

= MINO and MAXQ) find smallest and largest values.
= SUMQO and AVG() summarize numeric values to produce sums (totals) and averages.
= COUNT(Q) counts rows, values, or the number of distinct values.

= GROUP_CONCAT() concatenates a set of strings to produce a single string value.

Aggregate functions may be used with or without a GROUP BY clause that places rows into
groups. Without a GROUP BY clause, an aggregate function calculates a summary value based
on the entire set of selected rows. (That is, MySQL treats all the rows as a single group.)
With a GROUP BY clause, an aggregate function calculates a summary value for each group.
For example, if a WHERE clause selects 20 rows and the GROUP BY clause arranges them into
four groups of five rows each, a summary function produces a value for each of the four
groups.

This section describes the aggregate functions available to you. Section 9.5, “Grouping
Results,” shows how to use GROUP BY to group rows appropriately for the type of summary
you want to produce.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 151 Return to Table of Contents

9.4 Aggregating Results 151

9.4.1 The MIN() and MAX() Aggregate Functions

MINQ) and MAX() are comparison functions. They return smallest or largest numeric values,
lexically first or last string values, and earliest or latest temporal values. The following
queries determine the smallest and largest country populations and the lexically first and last
country names:

mysql> SELECT MIN(Population), MAX(Population) FROM Country;

e e P e e e +
| MIN(Population) | MAX(Population) |
o o +
| 0 | 1277558000 |
e EE e - +
mysql> SELECT MIN(Name), MAX(Name) FROM Country;
D e e T e +

| MIN(Name) | MAX(Name) |
Fommm +-mmm - +

| Afghanistan | Zimbabwe |
Fommm - +

For string values, the behavior of MINO) and MAX() depends on whether the strings are non-
binary or binary. Consider a table t that contains the following string values:

mysql1> SELECT name FROM t;

o +
| name |
- +
| Calvin |
| alex |
o +

If the name column has a non-binary string data type such as CHAR or TEXT, MAX(name) deter-
mines which value is greatest based on the string collation. For the default case-insensitive
collation of Tatinl_swedish_ci, MAX() returns 'Calvin' because ‘c’ is greater than ‘a’

mysql> SELECT MAX(name) FROM t;

R LT +
| MAX(name) |
+-—mm - +
| Calvin |
Fo—m - +

If the name column has a binary string data type such as BINARY or BLOB, its values are com-
pared using the numeric values of the bytes in the strings. If ‘C’ has a smaller numeric value
‘a’ (as is true if characters are stored using ASCII codes), MAX(name) returns 'alex':

mysql> ALTER TABLE t MODIFY name BINARY(20);
mysql> SELECT MAX(name) FROM t;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 152 Return to Table of Contents

152 CHAPTER 9 Querying for Data

MINQO and MAXQ) ignore NULL values.

9.4.2 The SUM() and AVG() Aggregate Functions

The suM() and AVGQ) functions calculate sums and averages. For example, the Country table
in the wor1d database contains a Population column, so you can calculate the total world
population and the average population per country like this:

mysql> SELECT SUM(Population), AVG(Population) FROM Country;

o mmmmmmmm oo o mmmmmm oo +
| SUM(Population) | AVG(Population) |
B e T B e T +
| 6078749450 | 25434098.1172 |
Bt o mmmm e +

SUMQO and AVGQ) are most commonly used with numeric values. If you use them with other
types of values, those values are subject to numeric conversion, which might not produce a
sensible result.

SUMO and AVGQ) ignore NULL values.

9.4.3 The COUNT() Aggregate Function

The COUNT() function can be used in several ways to count either rows or values. To illus-
trate, the examples here use the following table that has several rows containing various
combinations of NULL and non-NULL values:

mysql> SELECT i, j FROM t;

- o +
| i [3 |
o= o= +
| 1 NULL |
| NULL | 2 |
| 1| 1|
| 1] 1
1] 3
| NULL | NULL |
| 1] NULL |
o= o= +

COUNT() may be used as follows:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 153 Return to Table of Contents

9.4 Aggregating Results 153

» COUNT(*) counts the total number of rows:
mysql> SELECT COUNT(*) FROM t;

o +
| COUNT(®) |
e +
| 7
o +

= COUNT(expression) counts the number of non-NULL values of the given expression. It’s
common for expression to be a column name, in which case COUNT() counts the num-
ber of non-NULL values in the column:

mysql> SELECT COUNT(i), COUNT(j) FROM t;

o o +
| COUNT(i) | COUNT(3) |
mmmmmmmm e Fmmmmm e m e +
| 5] 4
o B i +

= COUNT(DISTINCT expression) counts the number of distinct (unique) non-NULL values of
the given expression. expression can be a column name to count the number of distinct
non-NULL values in the column:
mysql> SELECT COUNT(DISTINCT i), COUNT(DISTINCT j) FROM t;

o o +
| COUNT(DISTINCT i) | COUNT(DISTINCT j) |

It’s also possible to give a list of expressions separated by commas. In this case, COUNTQ
returns the number of distinct combinations of values that contain no NULL values. The
following query counts the number of distinct rows for which neither i nor j is NULL:

mysql> SELECT COUNT(DISTINCT i, j) FROM t;

e +
| COUNT(DISTINCT i, j) |
o +
| 2|
et i +

9.4.4 The GROUP_CONCAT() Function

The purpose of the GROUP_CONCAT() function is to concatenate column values into a single
string. This is useful if you would otherwise perform a lookup of many rows and then con-
catenate them on the client end. For example, the following query displays the languages
spoken in Thailand, one per line:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 154 Return to Table of Contents

154 CHAPTER 9 Querying for Data

mysql> SELECT Language
-> FROM CountrylLanguage WHERE CountryCode = 'THA';

Chinese
Khmer

To concatenate the values into a single string, use GROUP_CONCAT ():

mysq1> SELECT GROUP_CONCAT(Language)
-> AS Languages
-> FROM CountrylLanguage WHERE CountryCode = 'THA';

B e +
| Languages

E e L L L L P e e e +
| Chinese,Khmer,Kuy,Lao,Malay,Thai |
B e e L L e L L e e e +

GROUP_CONCAT() supports several modifiers:

» The default string separator used by GROUP_CONCATQ) is ‘,’ (comma). To change the sep-
arator, use a SEPARATOR clause:
mysql> SELECT GROUP_CONCAT(Language SEPARATOR ' - ')
-> AS Languages
-> FROM CountrylLanguage WHERE CountryCode = 'THA';

B et e +
| Languages |
oo +
| Chinese - Khmer - Kuy - Lao - Malay - Thai |
e e L L L L PP L PP et +

= GROUP_CONCAT() adds strings to the result in the order in which the database server

reads them. To change the concatenation order, add an ORDER BY clause. You can specify
ASC or DESC to control the direction of sorting, just as when you use ORDER BY in other
contexts:
mysql> SELECT

-> GROUP_CONCAT (Language ORDER BY Language DESC)

-> AS Languages

-> FROM CountrylLanguage WHERE CountryCode = 'THA';

| Languages |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 155 Return to Table of Contents

9.4 Aggregating Results 155

= DISTINCT removes duplicates from the set of concatenated strings. The following two
statements both select the languages spoken in North and South Korea, but the second
statement eliminates duplicates:

mysql> SELECT
-> GROUP_CONCAT (Language)
-> AS Languages
-> FROM CountryLanguage WHERE CountryCode IN('PRK','KOR');

B e et +
| Languages |
e L E T +
| Chinese,Korean,Chinese,Korean |
e e L e L +

mysql> SELECT
-> GROUP_CONCAT(DISTINCT Language)
-> AS Languages
-> FROM CountrylLanguage WHERE CountryCode IN('PRK','KOR');

GROUP_CONCAT() ignores NULL values.

9.4.5 Aggregation for NULL Values or Empty Sets

In general, aggregate functions ignore NULL values. The exception is COUNT(), which behaves
as follows:

= COUNT(*) does not ignore NULL values because it counts rows, even those that contain
NULL values.

» COUNT(expression) and COUNT(DISTINCT) do ignore NULL values.

A SELECT statement might produce an empty result set if the table is empty or the WHERE
clause selects no rows from it. If the set of values passed to an aggregate function is empty,
the function computes the most sensible value. For COUNT(), the result is zero. But functions
such as MINQ, MAX(), SUMQ), AVG(), and GROUP_CONCAT() return NULL. They also return NULL if
a non-empty result contains only NULL values. These behaviors occur because there is no way
for such functions to compute results without at least one non-NULL input value.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 156 Return to Table of Contents

156 CHAPTER 9 Querying for Data

9.5 Grouping Results

If a query does not contain a GROUP BY clause to place rows of the result set into groups, an
aggregate function produces a result that is based on all the selected rows. A GROUP BY clause
may be added to generate a more fine-grained summary that produces values for subgroups
within a set of selected rows.

Suppose that a table named personnel contains the following information about company
employees:

mysql> SELECT * FROM personnel;

Fommmm - Fom—mm— - fommm - e Fommm +
| pers_id | name | dept_id | title | salary |
- o o o o +
| 1 | Wendy | 14 | Supervisor | 38000.00 |
| 2 | wally | 7 | Stock clerk | 28000.00 |
| 3 | Ray | 7 | Programmer | 41000.00 |
| 4 | Burton | 14 | Secretary | 32000.00 |
| 5 | Gordon | 14 | President | 78000.00 |
| 6 | Jeff | 7 | Stock clerk | 29000.00 |
| 7 | Doris | 7 | Programmer | 48000.00 |
| 8 | Daisy | 7 | Secretary | 33000.00 |
| 9 | Bea | 7 | Accountant | 40000.00 |
o Fmmmmm mmmmm it o +

Use of COUNT(*) to count rows when there is no GROUP BY produces a single value for the
entire set of rows:

mysql> SELECT COUNT(*) FROM personnel;

o +
| COUNT(®) |
o +
| 9 |
o +

Adding a GROUP BY clause arranges rows using the values in the grouping column or columns.
The result is that COUNT(*) produces a count for each group. To find out how many times
each title occurs, do this:

mysql> SELECT title, COUNT(*) FROM personnel
-> GROUP BY title;

Ee oo +
| title | COUNT(*) |
Fommmm - o +
Accountant	1
President	1
Programmer	2
Secretary	2

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 157 Return to Table of Contents

9.5 Grouping Results 157

| Stock clerk | 2 |
| Supervisor | 1|
B R +

To count the number of people in each department, group by department number:

mysql> SELECT dept_id, COUNT(*) FROM personnel
-> GROUP BY dept_iid;

4mmmmmm o gmmmmm e +
| dept_id | COUNT(¥) |
gmmmmm e Hmmmm e +
| 7 |
| 14 | 3
gmmmmm o e +

A GROUP BY that names multiple columns arranges rows according to the combinations of val-
ues in those columns. For example, to find out how many times each job title occurs in each
department, group by both department and title:

mysql> SELECT dept_id, title, COUNT(*) FROM personnel
-> GROUP BY dept_id, title;

o e e +
| dept_id | title | COUNT(*) |
o o o +
7	Accountant	1
7	Programmer	2
7	Secretary	1
7	Stock clerk	2
14	President	1
14	Secretary	1
14	Supervisor	1
o o o +

The preceding queries use COUNT(*) to count rows, but you can also use summary functions
to compute results based on values in specific columns of the rows in each group. For
example, numeric functions can tell you about the salary characteristics of each title or
department:

mysql> SELECT title, MIN(salary), MAX(salary), AVG(salary)
-> FROM personnel
-> GROUP BY title;

Fomm - Fomm Fomm Fomm - +

| title | MIN(salary) | MAX(salary) | AVG(salary) |

Fomm Fomm Fomm Fomm +

| Accountant | 40000.00 | 40000.00 | 40000.000000 |

| President | 78000.00 | 78000.00 | 78000.000000 |

| Programmer | 41000.00 | 48000.00 | 44500.000000 |

| Secretary | 32000.00 | 33000.00 | 32500.000000 |
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 158

158

CHAPTER 9 Querying for Data

| Stock clerk | 28000.00 | 29000.00 | 28500.000000 |
| Supervisor | 38000.00 | 38000.00 | 38000.000000 |
fmmmmmmm e fmmmmmmm e fmmmmm e fmmmmm oo +
mysql> SELECT dept_id, MIN(salary), MAX(salary), AVG(salary)
-> FROM personnel
-> GROUP BY dept_id;

et e e o +
| dept_id | MIN(salary) | MAX(salary) | AVG(salary) |
+ommm— o e e D e T Fommmm e +
| 7 | 28000.00 | 48000.00 | 36500.000000 |
| 14 | 32000.00 | 78000.00 | 49333.333333 |
B et - - o +

If you want the results from AVGQ) to be displayed to two decimals, use
ROUND(AVG(salary),2).

If you combine the GROUP_CONCAT() function with GROUP BY, GROUP_CONCAT() produces a
concatenated result from each group of strings. The following example creates lists of the
countries that have a particular form of government on the South American continent:

mysql> SELECT GovernmentForm, GROUP_CONCAT(Name) AS Countries
-> FROM Country
-> WHERE Continent = 'South America'
-> GROUP BY GovernmentForm\G

* 1. row *

GovernmentForm: Dependent Territory of the UK
Countries: Falkland Islands
* 2. row *
GovernmentForm: Federal Republic
Countries: Argentina,Venezuela,Brazil
¥ ¥ %% 3. row *
GovernmentForm: Overseas Department of France
Countries: French Guiana

Fedededededdededdde e d et d e dhd 4 row Fedededededededehddehd ekt ddhd

GovernmentForm: Republic
Countries: Chile,Uruguay,Suriname,Peru,Paraguay,Bolivia,
Guyana, Ecuador,Colombia

The default string separator used by GROUP_CONCAT() is ‘,” (comma). Records are added to
the resulting string in the order in which the database server reads them. To change the sep-
arator and the concatenation order, add SEPARATOR and ORDER BY clauses, respectively, within
the parentheses. For ORDER BY, you can specify ASC or DESC, just as when you use it in other
contexts:

mysql> SELECT GovernmentForm,
-> GROUP_CONCAT(Name ORDER BY Name ASC SEPARATOR ' - ')
-> AS Countries
-> FROM Country

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen

ISBN: 0672328127 Publisher: MySQL Press
Print Publication Date: 2005/08/24

Return to Table of Contents

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
Licensed by Francisco Leon Nieto

User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 159 Return to Table of Contents

9.5 Grouping Results 159

-> WHERE Continent = 'South America'

-> GROUP BY GovernmentForm\G
Fedededededdededdede ke d bt d ekt 1. row Fedededededdededdede e d et d e ddtd
GovernmentForm: Dependent Territory of the UK

Countries: Falkland Islands
Fedededededdededde e dehd ek ddhdde R ddhd 2. row Fedededededdededdededdehd ek d e ddehddhd
GovernmentForm: Federal Republic

Countries: Argentina - Brazil - Venezuela
Fedededededede e de e dede e dede S hddk 3 row Fedededededede e de e dede e dedehdede ek dd
GovernmentForm: Overseas Department of France

Countries: French Guiana
dek 4 row *

GovernmentForm: Republic
Countries: Bolivia - Chile - Colombia - Ecuador - Guyana -
Paraguay - Peru - Suriname - Uruguay

The next example for this function returns the continents that contain countries that have a
name beginning with ‘I’, as well as the form of government for those countries. The exam-
ple demonstrates that GROUP_CONCAT () accepts a DISTINCT clause to remove duplicates from
the concatenated list. The first query shows what the result looks like without DISTINCT, and
the second uses DISTINCT to display each form of government only once:

mysql1> SELECT Continent,
-> GROUP_CONCAT (GovernmentForm ORDER BY GovernmentForm ASC)
-> AS 'Government Form'
-> FROM Country
-> WHERE Name LIKE 'I%'
-> GROUP BY Continent;

+
| Continent |
B ittt e +
| Asia | Federal Republic,Islamic Republic,Republic,Republic,Republic |
| Europe | Republic,Republic,Republic |
F ittt e +
mysql> SELECT Continent,

-> GROUP_CONCAT (DISTINCT GovernmentForm

-> ORDER BY GovernmentForm ASC)

-> AS 'Government Form'

-> FROM Country

-> WHERE Name LIKE 'I%'

-> GROUP BY Continent;

+
| Continent |

o i it +
| Asia | Federal Republic,Islamic Republic,Republic |
| Europe |
o - +

Republic |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 160 Return to Table of Contents

160 CHAPTER 9 Querying for Data

Note that in each of the preceding queries, the output columns consist only of the columns
listed in the GROUP BY clause, and values produced by summary functions. If you try to
retrieve table columns other than those listed in the GROUP BY clause, the values displayed for
the extra columns are unpredictable.

9.5.1 GROUP BY and Sorting

In MySQL, a GROUP BY clause has the side effect of sorting rows. If you already have a GROUP
BY clause in your query that produces the desired sort order, there’s no need for an ORDER BY.
Use of ORDER BY is necessary with GROUP BY only to produce a different sort order than that
resulting from the GROUP BY. However, this isn’t a portable behavior. For database engines
other than MySQL, GROUP BY might not sort rows. To write more portable queries, add an
ORDER BY even if MySQL does not require it.

9.5.2 Selecting Groups with HAVING

It could be when you use GROUP BY that you're interested only in groups that have particular
summary characteristics. To retrieve just those groups and eliminate the rest, use a HAVING
clause that identifies the required group characteristics. HAVING acts in a manner somewhat
similar to WHERE, but occurs at a different stage of query processing:

WHERE, if present, identifies the initial set of records to select from a table.

GROUP BY arranges the selected records into groups.

Aggregate functions compute summary values for each group.

O U S

HAVING identifies which groups to retrieve for the final result set.

The following example shows how this progression works, using the personnel table shown
earlier in the chapter:

1. A query with no GROUP BY clause or aggregate functions selects a list of records. This list
provides details, not overall characteristics:

mysql> SELECT title, salary
-> FROM personnel WHERE dept_id = 7;

Fommmm - Fommm - +
| title | salary |
o o +
Stock clerk	28000.00
Programmer	41000.00
Stock clerk	29000.00
Programmer	48000.00
Secretary	33000.00
Accountant	40000.00
Fommmm oo Hommmm - +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 161 Return to Table of Contents

9.5 Grouping Results 161

2. Adding GROUP BY and aggregate functions arranges rows into groups and computes sum-
mary values for each.
mysql> SELECT title, COUNT(*), AVG(salary)
-> FROM personnel WHERE dept_id = 7
-> GROUP BY title;

o +-——— - Fommm +
| title | COUNT(*) | AVG(salary) |
Lt LD EL mmmmmm e o +
Accountant	1	40000.000000
Programmer	2	44500.000000
Secretary	1	33000.000000
Stock clerk	2	28500.000000
mmmmmmmm e mmmmmmm - tommmm e +

3. Finally, adding HAVING places an additional constraint on the output rows. In the follow-
ing query, only those groups consisting of two or more people are displayed:

mysql> SELECT title, salary, COUNT(*), AVG(salary)
-> FROM personnel WHERE dept_id = 7
-> GROUP BY title
-> HAVING COUNT(*) > 1;

e it oo o o +
| title | salary | COUNT(*) | AVG(salary) |
e it mmmmm e o o +
| Programmer | 41000.00 | 2 | 44500.000000 |
| Stock clerk | 28000.00 | 2 | 28500.000000 |
o oo o o +

Sometimes it’s possible to place selection criteria in either the WHERE clause or the HAVING
clause. In such cases, it’s better to do so in the WHERE clause because that eliminates rows
from consideration sooner and allows the query to be processed more efficiently. Choosing
values in the HAVING clause might cause the query to perform group calculations on groups
in which you have no interest.

9.5.3 Using GROUP BY and WITH ROLLUP

The WITH ROLLUP modifier can be used in the GROUP BY clause to produce multiple levels
of summary values. Suppose that you need to generate a listing of the population of each
continent, as well as the total of the population on all continents. One way to do this is
by running one query to get the per-continent totals and another to get the total for all
continents:

mysql> SELECT Continent, SUM(Population) AS pop
-> FROM Country
-> GROUP BY Continent;

- $-——mm - +

| Continent | pop |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 162 Return to Table of Contents

162 CHAPTER 9 Querying for Data
dommmmmmmmem e ommmmmmm e +
Asia	3705025700
Europe	730074600
North America	482993000
Africa	784475000
Oceania	30401150
Antarctica	0
South America	345780000
dommmmmmmmem e ommmmmmmeeee +

mysql> SELECT SUM(Population) AS pop
-> FROM Country;

Fommmm oo +
| pop |
e it +
| 6078749450 |
Fommm e +

Another way to get the results requires some application programming: The application can
retrieve the per-continent values and sum those to calculate the total population value.

To avoid either of those approaches, use WITH ROLLUP. This enables you to use a single query
to get both the detailed results as well as the total sum of all rows, eliminating the need for
multiple queries or extra processing on the client side:

mysql> SELECT Continent, SUM(Population) AS pop
-> FROM Country
-> GROUP BY Continent WITH ROLLUP;

e EEE L et ommm oo +
| Continent | pop |
o m e o m e +
Asia	3705025700
Europe	730074600
North America	482993000
Africa	784475000
Oceania	30401150
Antarctica	0
South America	345780000
NULL	6078749450
dommmmmmmmem e ommmmmmmeeee +

The difference in the output from this statement compared to one without WITH ROLLUP
occurs on the last line, where the Continent value contains NULL and the pop value contains
the total sum of all populations.

WITH ROLLUP performs a “super-aggregate” operation. It does not simply generate a sum of
the numbers that appear in the pop column. Instead, the final line comprises applications of
the given aggregate function, as it is written in the SELECT clause, on every single row selected.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 163 Return to Table of Contents

9.5 Grouping Results 163

To illustrate this, consider the following example in which we calculate columns using the
AVGQ function rather than SUMQ). The final rollup line contains the overall average, not the
sum of averages:

mysql> SELECT Continent, AVG(Population) AS avg_pop

-> FROM Country
-> GROUP BY Continent WITH ROLLUP;

e EEE L PPt et +
| Continent | avg_pop |
o mm Fommm e +
Asia	72647562.7451
Europe	15871186.9565
North America	13053864.8649
Africa	13525431.0345
Oceania	1085755.3571

Antarctica	0.0000
South America	24698571.4286
NULL	25434098.1172
ommmmmemmmm e R L L +

In other words, the rollup line contains the numbers that would appear had there been no
grouping columns for the query:

mysql> SELECT AVG(Population) AS avg_pop
-> FROM Country;

Fommmmmmm e +
| avg_pop [
Fommm oo +
| 25434098.1172 |
Fommmm e +

Without WITH ROLLUP, getting the per-continent and overall AVGQ) results produced would
require two separate statements: one to get the per-continent data and one to get the overall
totals. For large data sets, WITH ROLLUP is more efficient because the data need be scanned
only once.

The use of WITH ROLLUP gets more interesting when several columns are grouped at once.
The results include a summary for each column named in the GROUP BY clause, as well as a
final summary row:

mysql> SELECT Continent, Region,
-> SUM(Population) AS pop,
-> AVG(Population) AS avg_pop
-> FROM Country
-> GROUP BY Continent, Region WITH ROLLUP;
e o o o +
| Continent | Region | pop | avg_pop
o m F— o o +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 164

Return to Table of Contents

164 CHAPTER 9 Querying for Data

| Asia | Eastern Asia

| Asia | Middle East

| Asia | Southeast Asia

| Asia | Southern and Central Asia

| Asia | NULL

| Europe | Baltic Countries

| Europe | British Islands

| Europe | Eastern Europe

| Europe | Nordic Countries

| Europe | Southern Europe
Europe Western Europe
Europe NULL
North America | Caribbean

North America
North America
North America
Africa

Africa
Africa
Africa

Africa
Africa
Oceania

Oceania
Oceania
Oceania

| Oceania

| Oceania

| Antarctica

| Antarctica

| South America
| South America
| NULL

Note how the groupwise summaries are presented in the result: In addition to the final

Central America
North America
NULL

Central Africa

Eastern Africa
Northern Africa
Southern Africa

Western Africa
NULL
Australia and New Zealand

Melanesia
Micronesia
Micronesia/Caribbean

Polynesia
NULL
Antarctica
NULL

South America
NULL

NULL

|
|
|
|
|
|
|
+

1507328000
188380700
518541000

1490776000

3705025700

7561900
63398500

307026000
24166400
144674200

183247600
730074600

38140000
135221000
309632000
482993000

95652000

246999000
173266000
46886000

221672000
784475000
22753100

6472000
543000
0

633050
30401150

0

0
345780000
345780000
6078749450

|
|
|
|
|
|
|
+

188416000.0000
10465594.4444
47140090.9091

106484000.0000
72647562.7451

2520633.3333
31699250.0000

30702600.0000 |
3452342.8571
9644946.6667

20360844 .4444 |
15871186.9565 |
1589166.6667
16902625.0000 |
61926400.0000 |
13053864.8649 |
10628000.0000 |

12349950.0000 |
24752285.7143 |
9377200.0000 |

13039529.4118 |
13525431.0345 |
4550620.0000 |

1294400.0000 |
77571.4286 |
0.0000 |

63305.0000 |
1085755.3571

0.0000 |

0.0000 |

24698571.4286 |

24698571.4286 |

25434098.1172 |

summary line, the output includes an intermediate summary of the rows for a given conti-
nent whenever the Continent value changes. In these intermediate summary lines, Region is

set to NULL.

MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen
ISBN: 0672328127 Publisher: MySQL Press

Print Publication Date: 2005/08/24

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM

Licensed by Francisco Leon Nieto
User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 165 Return to Table of Contents

9.6 Using UNTON 165

9.6 Using UNION

The UNION keyword enables you to concatenate the results from two or more SELECT state-
ments. The syntax for using it is as follows:

SELECT ... UNION SELECT ... UNION SELECT ...

The result of such a statement consists of the rows retrieved by the first SELECT, followed by
the rows retrieved by the second SELECT, and so on. Each SELECT must produce the same
number of columns.

By default, UNION eliminates duplicate rows from the result set. To retain all rows, replace
each instance of UNION with UNION ALL. (UNION ALL is more efficient for the server to process
because it need not perform duplicate removal. However, returning the result set to the
client involves more network traffic.)

UNION is useful under the following circumstances:

= You have similar information in multiple tables and you want to retrieve rows from all
of them at once.

= You want to select several sets of rows from the same table, but the conditions that
characterize each set aren’t easy to write as a single WHERE clause. UNION allows retrieval
of each set with a simpler WHERE clause in its own SELECT statement; the rows retrieved
by each are combined and produced as the final query result.

Suppose that you run three mailing lists, each of which is managed using a different
MySQL-based software package. Each package uses its own table to store names and email
addresses, but they have slightly different conventions about how the tables are set up. The
tables used by the list manager packages look like this:

CREATE TABLE Tistl

(
subscriber CHAR(60),
email CHAR(60)
)5
CREATE TABLE Tist2
(
name CHAR(96),
address CHAR(128)
b

CREATE TABLE T1ist3
(
email CHAR(50),
real_name CHAR(30)
s

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 166 Return to Table of Contents

166 CHAPTER 9 Querying for Data

Note that each table contains similar types of information (names and email addresses), but
they don’t use the same column names or types, and they don’t store the columns in the
same order. To write a query that produces the combined subscriber list, use UNION. It
doesn’t matter that the tables don’t have exactly the same structure. To select their combined
contents, name the columns from each table in the order you want to see them. A query to
retrieve names and addresses from the tables looks like this:

SELECT subscriber, email FROM 1istl
UNION SELECT name, address FROM Tist2
UNION SELECT real_name, email FROM Tist3;

The first column of the result contains names and the second column contains email
addresses. The names of the columns resulting from a UNION are taken from the names of
the columns in the first SELECT statement. This means that the result set column names are
subscriber and email. If you provide aliases for columns in the first SELECT, the aliases are
used as the output column names.

The data types of the output columns are determined by considering the values retrieved by
all of the SELECT statements. For the query shown, the data types will be CHAR(96) and
CHAR(128) because those are the smallest types that are guaranteed to be large enough to
hold values from all three tables.

ORDER BY and LIMIT clauses can be used to sort or limit a UNION result set as a whole. To do
this, surround each SELECT with parentheses and then add ORDER BY or LIMIT after the last
parenthesis. Columns named in such an ORDER BY should refer to columns in the first SELECT
of the statement. (This is a consequence of the fact that the first SELECT determines the
result set column names.) The following statement sorts the result of the UNION by email
address and returns the first 10 rows of the combined result:

(SELECT subscriber, email FROM Tistl)
UNION (SELECT name, address FROM Tist2)
UNION (SELECT real_name, email FROM 1ist3)
ORDER BY email LIMIT 10;

ORDER BY and LIMIT clauses also can be applied to individual SELECT statements within a
UNION. Surround each SELECT with parentheses and add ORDER BY or LIMIT to the end of the
appropriate SELECT. In this case, an ORDER BY should refer to columns of the particular SELECT
with which it’s associated. (Also, although LIMIT may be used by itself in this context, ORDER
BY has no effect unless combined with LIMIT. The optimizer ignores it otherwise.) The fol-
lowing query sorts the result of each SELECT by email address and returns the first five rows
from each one:

(SELECT subscriber, email FROM 1istl ORDER BY email LIMIT 5)
UNION (SELECT name, address FROM Tist2 ORDER BY address LIMIT 5)
UNION (SELECT real_name, email FROM Tist3 ORDER BY email LIMIT 5);

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 167 Return to Table of Contents

10
SQL Expressions

This chapter discusses how to use expressions in SQL statements. It covers the following
exam topics:

= Components of expressions

» Using numeric, string, and temporal values in expressions

= Properties of NULL values

» Types of functions that can be used in expressions

» Writing comments in SQL statements

10.1 Components of SQL Expressions

Expressions are a common element of SQL statements, and they occur in many contexts.
For example, expressions often occur in the WHERE clause of SELECT, DELETE, or UPDATE state-
ments to identify which records to retrieve, delete, or update. But expressions may be used
in many other places; for example, in the output column list of a SELECT statement, or in
ORDER BY or GROUP BY clauses.

Terms of expressions consist of constants (literal numbers, strings, dates, and times), NULL
values, references to table columns, and function calls. Terms may be combined using opera-
tors into more complex expressions. Many types of operators are available, such as those for
arithmetic, comparison, logical, and pattern-matching operations.

Here are some examples of expressions:

» The following statement refers to table columns to select country names and popula-
tions from the Country table:

SELECT Name, Population FROM Country;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 168 Return to Table of Contents

168 CHAPTER 10 SQL Expressions

= You can work directly with literal data values that aren’t stored in a table. The following
statement refers to several literal values: an integer, an exact-value decimal value, an
approximate-value floating-point value in scientific notation, and a string value:

SELECT 14, -312.82, 4.32E-03, 'I am a string';

= Another way to produce data values is by invoking functions. This statement calls func-
tions that return the current date and a server version string:

SELECT CURDATE(), VERSIONQ);

All these types of values can be combined into more complex expressions to produce other
values of interest. The following statement demonstrates this:

mysql> SELECT Name,
-> TRUNCATE(Population/SurfaceArea,2) AS 'people/sq. km',
-> IF(GNP > GNPO1d, 'Increasing', 'Not increasing') AS 'GNP Trend'
-> FROM Country ORDER BY Name LIMIT 10;

e oo o mm e +

| Name | people/sq. km | GNP Trend |
e Fomm e o +
Afghanistan	34.84	Not increasing
Albania	118.31	Increasing
Algeria	13.21	Increasing
American Samoa	341.70	Not increasing
Andorra	166.66	Not increasing
Angola	10.32	Not increasing
Anguilla	83.33	Not increasing
Antarctica	0.00	Not increasing
Antigua and Barbuda	153.84	Increasing
Argentina	13.31	Increasing
e o o +

The expressions in the preceding statement use these types of values:

» Table columns: Name, Population, SurfaceArea, GNP, and GNPO1d. (“GINP” means “gross
national product.”)

» Literal values: 'Increasing’, 'Not increasing', and the column aliases are all string
constants.

» Functions: The numeric function TRUNCATE() formats the population/area ratio to two
decimal places, and the logical function IFQ) tests the expression in its first argument
and returns its second or third argument depending on whether the expression is true
or false.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 169 Return to Table of Contents

10.2 Numeric Expressions 169

10.2 Numeric Expressions

Numbers can be exact-value literals or approximate-value literals. Exact-value literals are
used just as given in SQL statements when possible and thus are not subject to the inexact-
ness produced by rounding error. On the other hand, approximate-value literals are subject
to rounding error and may not necessarily be used exactly as given.

Exact-value literals are written with no exponent. Approximate-value literals are written in
scientific notation with an exponent. For example, the numeric values -43, 368.93, and
.00214 are exact values, whereas -4.3E1, 3.6893E2, and 2.14E-3 are approximate values. Even
though the two sets of numbers look like they have the same values, internally they are rep-
resented in different ways:

» Exact-value numbers are integer values with no fractional part after the decimal point
or decimal values with a fractional part. They’re represented internally like an integer
or DECIMAL data type. Operations on integers are performed with the precision of BIGINT
values (that is, 64 bits). Operations on decimal values have a precision of up to 64 deci-
mal digits. Currently, the scale for decimal values allows up to 30 decimal digits after
the decimal point.

= Approximate-value literals are represented as floating-point numbers (like the DOUBLE
data type) and have a mantissa and exponent. The mantissa allows up to 53 bits of
precision, which is about 15 decimal digits.

When numbers are used in an arithmetic or comparison operation, the result of the opera-
tion may depend on whether it involves exact or approximate values. Consider the following
two comparisons:

mysql> SELECT 1.1 + 2.2 = 3.3, 1.1E0 + 2.2E0 = 3.3EO;

Fom - o +
| 1.1 + 2.2 = 3.3 | 1.1E0 + 2.2E0 = 3.3E0 |
e e +
| 1] 0 |
B L L LT L e L T +

In the first expression, exact values are used, so the comparison involves exact calculations.
In the second expression, approximate values are used and rounding error is possible. This
illustrates that if you use approximate values in comparisons, you cannot expect exact-value
precision. The internal representation of floating-point numbers inherently allows for the
possibility of rounding error.

If you mix numbers with strings in numeric context, MySQL converts the strings to num-
bers and performs a numeric operation:

mysql> SELECT 1 + '1', 1 = '1';

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 170 Return to Table of Contents

170

CHAPTER 10 SQL Expressions

Several functions take numeric arguments or return numeric values. Section 10.6,
“Functions in SQL Expressions,” presents some representative examples, including a
description of how rounding works for the ROUND() function.

10.3 String Expressions

Literal strings in expressions are written as quoted values. By default, either single quotes or
double quotes can be used, although single quotes are more standard. Also, if the
ANSI_QUOTES SQL mode is enabled, double quotes are interpreted as identifier-quoting char-
acters, so literal strings can be quoted only with single quotes.

The data types for representing strings in tables include CHAR, VARCHAR, BINARY, VARBINARY,
and the TEXT and BLOB types. You choose which type to use depending on factors such as the
maximum length of values, whether you require fixed-length or variable-length values, and
whether the strings to be stored are non-binary or binary.

Direct use of strings in expressions occurs primarily in comparison operations. Otherwise,
most string operations are performed by using functions.

The usual comparison operators apply to string values (=, <>, <, BETWEEN, and so forth). The
result of a comparison depends on whether strings are non-binary or binary and, for non-
binary strings that have the same character set, on their collation. (A comparison between
strings that have different character sets typically results in an error.) String comparisons are
dealt with further in Section 10.3.1, “Case Sensitivity in String Comparisons.” Pattern
matching is another form of comparison; it’s covered in Section 10.3.2, “Using LIKE for
Pattern Matching.”

String concatenation is done with the CONCAT() function:

mysq1> SELECT CONCAT('abc','def',REPEAT('X',3));

oo +
| CONCAT('abc','def',REPEAT('X',3)) |
R e +
| abcdefXXX |
o +

The || operator is treated as the logical OR operator by default, but can be used for string
concatenation if you enable the PIPES_AS_CONCAT SQL mode:

mysql> SELECT 'abc' || 'def';
mmm e +
| 'abc' || 'def' |
dommmmmmmmmm e +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide rage 171 Return to Table of Contents

10.3 String Expressions 171

1 row in set, 2 warnings (0.00 sec)

mysql> SET sql_mode = 'PIPES_AS_CONCAT';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'abc' || 'def';
dommmmmm e +
| 'abc' || 'def' |
Fmmm e +
| abcdef |
e +

1 row in set (0.00 sec)

In the first SELECT statement, | | performs a logical OR operation. This is a numeric opera-
tion, so MySQL converts the strings in the expression to numbers first. Neither looks like a
number, so MySQL converts them to zero, which is why there is a warning count of two.
The resulting operands for the operation are zero, so the result also is zero. After
PIPES_AS_CONCAT is enabled, | | produces a string concatenation instead.

Several functions take string arguments or return string values. Some types of operations
these functions can perform are to convert lettercase, calculate string lengths, or search for,
insert, or replace substrings. Section 10.6, “Functions in SQL Expressions,” presents some
representative examples.

10.3.1 Case Sensitivity in String Comparisons

String comparisons are somewhat more complex than numeric or temporal comparisons.
Numbers sort in numeric order and dates and times sort in temporal order, but string com-
parisons depend not only on the specific content of the strings, but on whether they are
non-binary or binary. A letter in uppercase may compare as the same or different than the
same letter in lowercase, and a letter with one type of accent may be considered the same or
different than that letter with another type of accent.

The earlier discussion in Chapter 5, “Data Types,” describes how strings may be non-binary
or binary, and how the properties of these two types of strings differ. To summarize:

= A non-binary string contains characters from a particular character set, and is associated
with one of the collations (sorting orders) available for the character set. Characters
may consist of single or multiple bytes. A collation can be case insensitive (lettercase is
not significant), case sensitive (lettercase is significant), or binary (comparisons are
based on numeric character values).

= A binary string is treated as raw bytes. It has no character set and no collation.
Comparisons between binary strings are based on numeric byte values.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 172 Return to Table of Contents

172

CHAPTER 10 SQL Expressions

The rules that govern string comparison apply in several ways. They determine the result of
comparisons performed explicitly with operators such as = and <, and comparisons per-
formed implicitly by ORDER BY, GROUP BY, and DISTINCT operations.

The default character set and collation for literal strings depend on the values of the
character_set_connection and collation_connection system variables. The default charac-
ter set is Tatinl. The default collation is Tatinl_swedish_ci, which is case insensitive as
indicated by the “_ci” at the end of the collation name. Assuming these connection settings,
literal strings are not case sensitive by default. You can see this by comparing strings that
differ only in lettercase:

mysql> SELECT 'Hello' = 'hello';
o +
| 'Hello' = 'hello' |
o +
| 1]
o +

A given collation might cause certain accented characters to compare the same as other
characters. For example, ‘4’ and ‘ue’ are different in the default 1atinl_swedish_ci collation,
but with the Tatinl_german2_ci collation (“German phone-book” collation), they have the
same sort value and thus compare as equal:

mysql> SELECT 'Miller' = 'Mueller';
B e L L e +

| 'Miller' = 'Mueller' |

P e e L e +

| 0|

P et e L T +

mysql> SET collation_connection = latinl_german2_ci;
mysql> SELECT 'Miller' = 'Mueller';
P e e e +

| 'Miller' = 'Mueller' |

P e e +

| 1]

B e L e +

For binary strings, lettercase is significant. However, this is not because binary strings are
case sensitive per se, because binary strings have no character set. Rather, it is because upper-
case and lowercase versions of a character have different numeric values.

A non-binary string can be treated as a binary string by preceding it with the BINARY
keyword. If either string in a comparison is binary, both strings are treated as binary:

mysql> SELECT BINARY 'Hello' = 'hello’';

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 173 Return to Table of Contents

10.3 String Expressions 173

| 0]
oo +
mysql> SELECT 'Hello' = BINARY 'hello’';
B e E T T +
| 'Hello' = BINARY 'hello' |
et e e +
| 0]
B e e TP +

The sorting principles just described were demonstrated using literal strings, but the same
principles apply to string-valued table columns. Suppose that a table t contains a column c
and has the following rows:

mysql> SELECT c FROM t;

o +
| c |
o +
| Hello |
| goodbye |
| Bonjour |
| au revoir |
- +

If c is a CHAR column that has the Tatinl_swedish_ci collation, it is a non-binary column
with a case-insensitive collation. Uppercase and lowercase letters are treated as identical and
a sort operation that uses ORDER BY produces results like this:

mysql> SELECT c¢ FROM t ORDER BY c;

oo +
| c |
o +
| au revoir |
| Bonjour |
| goodbye |
| Hello |
F e ittt +

If c is declared as a BINARY column instead, it has no character set or collation. ORDER BY sorts
using raw byte codes and produces a different result. Assuming that the values are stored on
a machine that uses ASCII codes, the numeric values for uppercase letters precede those for
lowercase letters and the result looks like this:

mysql> SELECT c FROM t ORDER BY c;

o +
| c |
o +
| Bonjour |
| Hello |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 174 Return to Table of Contents

174 CHAPTER 10 SQL Expressions

| au revoir |
| goodbye |

String comparison rules also apply to GROUP BY and DISTINCT operations. Suppose that t has a
column c with the following contents:

mysq1> SELECT c FROM t;

| Hello |
| hello |
| Goodbye |
| goodbye |

If c is a non-binary, case-insensitive column, GROUP BY and DISTINCT do not make lettercase
distinctions:

mysql> SELECT c, COUNT(*) FROM t GROUP BY c;

+-——————-- Fo—mm - +
| c | COUNT(*) |
o o +

| Goodbye | 2 |

| Hello | 2 |
F-——————- Fo—m - +

mysql> SELECT DISTINCT c FROM t;
e +

| c |

Fmmmmmmmee +

| Hello |

| Goodbye |

Fmmmm— e +

On the other hand, if ¢ is a BINARY column, those operations use byte values for sorting:

mysql> SELECT c, COUNT(*) FROM t GROUP BY c;

+--—————- +--mm - +
| c | COUNT(*) |
F-——————- Fo—— - +

| Goodbye | 1|

| Hello | 1|

| goodbye | 1|

| hello | 1|
o o +

mysq1> SELECT DISTINCT c FROM t;
Fmmmm— e +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 175 Return to Table of Contents

10.3 String Expressions 175

| Hello |
| hello |
| Goodbye |
| goodbye |

The preceding discussion shows that to understand sorting and comparison behavior for
strings, it’s important to know whether they are non-binary or binary. This is important
when using string functions as well. String functions may treat their arguments as non-
binary or binary strings, or return binary or non-binary results. It depends on the function.
Here are some examples:

= LENGTHQ) returns the length of a string in bytes, whereas CHAR_LENGTH(Q) returns the
length in characters. For strings that contain only single-byte characters, the two func-
tions return identical results. For strings that contain multi-byte characters, you should
choose the function that is appropriate for the type of result you want. For example, the
sjis character set includes characters that require two bytes to represent. The value of
LENGTHQ) for any string containing such characters will be greater than the value of
CHAR_LENGTHQ).

» The UPPERQ and LOWER(Q) functions perform case conversion only if the argument is a
non-binary string. Suppose that 'AbCd" is non-binary. In that case, the two functions
return a value in the requested lettercase:
mysq1> SELECT UPPER('AbCd'), LOWER('AbCd');

Hommm oo Fommmmmmmmm - +
| UPPER('AbCd"')

However, if 'AbCd" is a binary string, it has no character set. In that case, the concept of
lettercase does not apply, and UPPER() and LOWER() do nothing:

mysq1> SELECT UPPER(BINARY 'AbCd'), LOWER(BINARY 'AbCd');

oo o m oo +
| UPPER(BINARY 'AbCd') | LOWER(BINARY 'AbCd') |
e L EE Lt o m e +
| AbCd | AbCd |
o o +

To make the two functions perform case conversion for a binary string, convert it to a
non-binary string. For example:

mysq1> SELECT UPPER(CONVERT(BINARY 'AbCd' USING Tatinl));

| UPPER(CONVERT(BINARY 'AbCd' USING latinl)) |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 176 Return to Table of Contents

176 CHAPTER 10 SQL Expressions
e o +
| ABCD
e +

= MD5Q) takes a string argument and produces a 32-byte checksum represented as a string
of hexadecimal digits. It treats its argument as a binary string:

mysql> SELECT MD5('a');

e e L Lt +
| MD5(C'a") |
B iatatetet bbbl bt +
| 0ccl75b9c0flb6a831c399e269772661 |
o +
mysql> SELECT MD5('A');

L il +
| MDSC'A") |
e e e e L L E Lt +
| 7fc56270e7a70fa8la5935b72eache29 |
ettt bl bt +

These examples demonstrate that you must take into account the properties of the particular
function you want to use. If you don’t, you might be surprised at the results you get. See the
MySQL Reference Manual for details on individual functions.

10.3.2 Using LIKE for Pattern Matching

Operators such as = and != are useful for finding values that are equal to or not equal to a
specific exact comparison value. When it’s necessary to find values based on similarity
instead, a pattern match is useful. To perform a pattern match, use value LIKE 'pattern’,
where value is the value you want to test and 'pattern' is a pattern string that describes the
general form of values that you want to match.

Patterns used with the LIKE pattern-matching operator can contain two special characters
(called “metacharacters” or “wildcards”) that stand for something other than themselves:

» The ‘%’ character matches any sequence of zero or more characters. For example, the
pattern 'a%' matches any string that begins with ‘@’, '%b' matches any string that ends
with ‘b’, and '%c%' matches any string that contains a ‘c’. The pattern '%' matches any
string, including empty strings.

» The ‘_’ (underscore) character matches any single character. 'd_g' matches strings such
as 'dig’, 'dog', and 'd@g'. Because ‘_’ matches any single character, it matches itself
and the pattern 'd_g' also matches the string 'd_g".

A pattern can use these metacharacters in combination. For example, '_%' matches any
string containing at least one character.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 177 Return to Table of Contents

10.3 String Expressions 177

LIKE evaluates to NULL if either operand is NULL, but any non-NULL literal value matches itself.
Likewise, a function call that produces a non-NULL value matches itself (with one exception).
Thus, the following expressions evaluate as true:

'ABC' LIKE 'ABC'
column_name LIKE column_name
VERSION() LIKE VERSION(Q)

The exception is that different invocations of the RAND() random-number function might
return different values, even within the same query:

mysql> SELECT RAND(), RANDQ);

Fomm e o +
| RANDQO | RANDO I
s oo oo +
| 0.15430032289987 | 0.30666533979277 |
Fmmm e oo +

As a result, the expression RANDQ) LIKE RAND() normally will be false.

LIKE performs a non-binary comparison if both operands are non-binary strings; otherwise,
the comparison is binary:

mysql> SELECT 'ABC' LIKE 'abc', 'ABC' LIKE BINARY 'abc';

o o +
| 'ABC' LIKE 'abc' | '"ABC' LIKE BINARY 'abc' |
o o +
| 1 0|
e e +

To invert a pattern match, use NOT LIKE rather than LIKE:

mysql> SELECT 'ABC' LIKE 'A%', 'ABC' NOT LIKE 'A%';

oo oo +
| 'ABC' LIKE 'A%' | 'ABC' NOT LIKE 'A%' |
o o +
| 1] 0|
o s +

MySQL, unlike some other database systems, allows use of LIKE with non-string values.
This can be useful in some cases. For example, the expression d LIKE '19%" is true for date
values d that occur during the 1900s. MySQL evaluates such comparisons by converting
non-string values to strings before performing the pattern match.

It’s possible to specify the pattern in a LIKE expression using a table column. In this case, the
actual pattern that a value is compared to can vary for every row of a result set. The follow-
ing table has one column containing patterns and another column that characterizes the type
of string each pattern matches:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 178 Return to Table of Contents

178 CHAPTER 10 SQL Expressions

mysql> SELECT pattern, description FROM patlist;

The patterns in the table can be applied to specific values to characterize them:

mysql> SELECT description, IF('' LIKE pattern,'YES','NO')
-> FROM patlist;

| empty string
| non-empty string
| string of exactly 3 characters

mysql> SELECT description, IF('abc' LIKE pattern,'YES', 'NO')
-> FROM patlist;

o o e

| description

e e L L L L e e Pt +
| IFC'abc' LIKE pattern,'YES','NO') |
B e e e e e e LT +
|
|
|

| empty string NO |
| non-empty string YES |
| string of exactly 3 characters | YES |
e F +

mysql> SELECT description, IF('hello' LIKE pattern,'YES','NO')
-> FROM patlist;

B e et +
| description | IFC'hello' LIKE pattern,'YES','NO') |
e e +
empty string	NO
non-empty string	YES
string of exactly 3 characters	NO
B it e +

To match a pattern metacharacter literally, escape it by preceding it by a backslash:

mysql> SELECT 'AA' LIKE 'A%', 'AA' LIKE 'A\%', 'A%' LIKE 'A\%';

LR R LB e P L EE R TR +
| 'AA' LIKE 'A%' | 'AA' LIKE 'A\%' | 'A%' LIKE 'A\%' |
e e e +
| 1] 0 | 1
o oo oo +

mysql> SELECT 'AA' LIKE 'A_‘', 'AA' LIKE 'A_', 'A_' LIKE 'A_';

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 179 Return to Table of Contents

10.4 Temporal Expressions 179

o o o +
| 'AA' LIKE 'A_' | 'AA' LIKE 'A_' | 'A_' LIKE 'A_"' |
o oo oo +
| 1 0| 1]
o o o +

To specify a given character as the escape character, use an ESCAPE clause:

mysql> SELECT 'AA' LIKE 'A@%' ESCAPE '@', 'A%' LIKE 'A@%' ESCAPE '@';

e e +
| 'AA' LIKE 'A@%' ESCAPE '@' | 'A%' LIKE 'A@%' ESCAPE '@' |
oo ittt +
| 0| 1
oo o +

10.4 Temporal Expressions

Temporal values include dates, times, and datetime values that have both a date and time.
More specialized temporal types are timestamp (commonly used for recording “current date
and time”) and year (for temporal values that require a resolution only to year units).

Direct use of temporal values in expressions occurs primarily in comparison operations, or
in arithmetic operations that add an interval to or subtract an interval from a temporal value.
Otherwise, most temporal value operations are performed by using functions.

The usual comparison operators apply to temporal values (=, <>, <, BETWEEN, and so forth).
To perform interval arithmetic, use the INTERVAL keyword and a unit value:

mysql> SELECT '2010-01-01' + INTERVAL 10 DAY, INTERVAL 10 DAY + '2010-01-01';

B it e +
| '2010-01-01' + INTERVAL 10 DAY | INTERVAL 10 DAY + '2010-01-01' |
R el o +
| 2010-01-11 | 2010-01-11 |
o R +

For addition of temporal and interval values, you can write the operands in either order, as
just shown. To subtract an interval from a temporal value, the interval value must be second
(it doesn’t make sense to subtract a temporal value from an interval):

mysql> SELECT '2010-01-01' - INTERVAL 10 DAY;

B T +
| '2010-01-01' - INTERVAL 10 DAY |
o +
| 2009-12-22 |
e L L P Lt +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 180 Return to Table of Contents

180 CHAPTER 10 SQL Expressions

Intervals can be specified in units such as SECOND, MINUTE, HOUR, DAY, MONTH, or YEAR. Consult
the MySQL Reference Manual for the full list.

Several functions take temporal arguments or return temporal values. Some types of opera-
tions these functions can perform are to extract parts of a value, convert a value to seconds
or days, or reformat values. Section 10.6, “Functions in SQL Expressions,” presents some
representative examples.

10.5 NULL Values

NULL is unusual because it doesn’t represent a specific value the way that numeric, string, or
temporal values do. Instead, NULL stands for the absence of a known value. The special
nature of NULL means that it often is handled differently than other values. This section
describes how MySQL processes NULL values in various contexts.

Syntactically, NULL values are written in SQL statements without quotes. Writing NULL is dif-
ferent from writing 'NULL' or "NULL". The latter two values are actually strings that contain
the word “NULL?”. Also, because it is an SQL keyword, NULL is not case sensitive. NULL and
nu11 both mean “a NULL value,” whereas the string values 'NULL' and 'nu11' may be different
or the same depending on whether they are non-binary or binary strings.

Note that some database systems treat the empty string and NULL as the same value. In
MySQL, the two values are different.

Use of NULL values in arithmetic or comparison operations normally produces NULL results:

mysql> SELECT NULL + 1, NULL < 1;

Fomm - - +
| NULL + 1 | NULL < 1 |
o o +
| NULL | NULL |
Fommmmmmme mmmmmmmee +

Even comparing NULL to itself results in NULL, because you cannot tell whether one unknown
value is the same as another:

mysq1> SELECT NULL = 1, NULL != NULL;

EEECEL LT mmmmmm—mmm e +
| NULL = 1 | NULL != NULL |
- fommm - +
[NULL | NULL |
Fomm - Fom e +

LIKE evaluates to NULL if either operand is NULL:

mysql> SELECT NULL LIKE '%', 'abc' LIKE NULL;
oo e +
| NULL LIKE '%"' | 'abc' LIKE NULL |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 181 Return to Table of Contents

10.6 Functions in SQL Expressions 181

The proper way to determine whether a value is NULL is to use the IS NULL or IS NOT NULL
operators, which produce a true (non-zero) or false (zero) result:

mysq1> SELECT NULL IS NULL, NULL IS NOT NULL;

o o +
| NULL IS NULL | NULL IS NOT NULL |
o o +
| 1 0|
o oo - +

You can also use the MySQL-specific <=> operator, which is like = except that it works with
NULL operands by treating them as any other value:

mysql> SELECT 1 <=> NULL, O <=> NULL, NULL <=> NULL;

Fomm - Fomm - Fomm - +
| 1 <=> NULL | 0 <=> NULL | NULL <=> NULL |
Fmmmmm B ittt e +
| 0| 0| 1]
Fommmmmmm e T et L P LT +

ORDER BY, GROUP BY, and DISTINCT all perform comparisons implicitly. For purposes of these
operations, NULL values are considered identical. That is, NULL values sort together, group
together, and are not distinct.

Expressions that cannot be evaluated (such as 1/0) produce NULL as a result. However, in the
context of inserting data into tables, division by zero can be treated as an error to prevent
invalid data from being entered. This behavior is controlled by setting the SQL mode to
enable strict mode in conjunction with the ERROR_FOR_DIVISION_BY_ZERO mode. For addi-
tional details about data handling and the SQL mode, see Section 5.8, “Handling Missing or
Invalid Data Values.”

Section 10.6.7, “NuLL-Related Functions,” discusses functions intended for use with NULL
values.

10.6 Functions in SQL Expressions

This section describes the categories of functions that are available in MySQL and provides
examples that show how to use several of them. (Some of the constructs mentioned here
really are operators, even though the section titles all say “functions.”)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 182 Return to Table of Contents

182 CHAPTER 10 SQL Expressions

Note

Many functions are available in MySQL. The following sections demonstrate some representative
examples, but those shown make up only a fraction of the number available. Consult the functions
chapter in the MySQL Reference Manual for a complete list of functions and how to use them. In
studying for the exam, you should familiarize yourself with all the SQL functions listed in that
chapter. You're not expected to know every little detail about each one, but you'll be expected to
know their general behavior.

Functions can be invoked within expressions and return a value that is used in place of the
function call when the expression is evaluated. When you invoke a function, there must be
no space after the function name and before the opening parenthesis. It’s possible to change
this default behavior by enabling the IGNORE_SPACE SQL mode to cause spaces after the
function name to be ignored:

mysql> SELECT PI Q;

ERROR 1305 (42000): FUNCTION world.PI does not exist

mysql> SET sql_mode = 'IGNORE_SPACE';

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT PI Q;

- +
[PT O |
dommmmm———— +
| 3.141593

ommmmmme- +

1 row in set (0.00 sec)

10.6.1 Comparison Functions

Comparison functions enable you to test relative values or membership of one value within a
set of values.

LEAST() and GREATEST() take a set of values as arguments and return the one that is smallest
or largest, respectively:

mysql> SELECT LEAST(4,3,8,-1,5), LEAST('cdef','ab','ghi');

oo oo +
| LEAST(4,3,8,-1,5) | LEAST('cdef','ab', 'ghi') |
e e +

| -1] ab |
o e +

mysql> SELECT GREATEST(4,3,8,-1,5), GREATEST('cdef','ab', 'ghi');
o o +

| GREATEST(4,3,8,-1,5) | GREATEST('cdef','ab','ghi') |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 183 Return to Table of Contents

10.6 Functions in SQL Expressions 183

INTERVAL() takes a comparison value as its first argument. The remaining arguments should
be a set of values in sorted order. INTERVAL() compares the first argument to the others and
returns a value to indicate how many of them are less than or equal to it.

mysql> SELECT INTERVAL(2,1,2,3,4);

o +
| INTERVAL(2,1,2,3,4) |

dommmmmm e +

| 2 |
oo +

mysql> SELECT INTERVAL(O0,1,2,3,4);
o +

| INTERVAL(0,1,2,3,4) |
o +

| 0|

dommmmmem e +

mysq1> SELECT INTERVAL(6.3,2,4,6,8,10);
ittt +

| INTERVAL(6.3,2,4,6,8,10) |
o +

| 3
i +

It’s sometimes necessary to determine whether a value is equal to any of several specific val-
ues. One way to accomplish this is to combine several equality tests into a single expression
with the OR logical operator:

. WHERE id = 13 OR id = 45 OR id = 97 OR id = 142
. WHERE name = 'Tom' OR name = 'Dick' OR name = 'Harry'

However, MySQL provides an INQ) operator that performs the same kind of comparison
and that is more concise and easier to read. To use it, provide the comparison values as a
comma-separated list of arguments to INQ:

. WHERE 1id IN(13,45,97,142)
. WHERE name IN('Tom','Dick', 'Harry')

Using INQ is equivalent to writing a list of comparisons with OR, but INQ) is much more
efficient.

Arguments to IN() may be of any type (numeric, string, or temporal), although generally all
values given within a list should all have the same type.

Elements in a list may be given as expressions that are evaluated to produce a value. If the
expression references a column name, the column is evaluated for each row.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 184 Return to Table of Contents

184 CHAPTER 10 SQL Expressions

INQ always returns NULL when used to test NULL. That is, NULL IN(77st) is NULL for any list of
values, even if NULL is included in the list. This occurs because NULL IN(NULL) is equivalent to
NULL = NULL, which evaluates to NULL.

INQ tests membership within a set of individual values. If you’re searching for a range of
values, a range test might be more suitable. The BETWEEN operator takes the two endpoint
values of the range and returns true if a comparison value lies between them:

. WHERE id BETWEEN 5 AND 10

The comparison is inclusive, so the preceding expression is equivalent to this one:

. WHERE id >= 5 AND 1id <= 10

10.6.2 Control Flow Functions

Control flow functions enable you to choose between different values based on the result of
an expression. IFQ) tests the expression in its first argument and returns its second or third
argument depending on whether the expression is true or false:

mysql> SELECT IF(1 > 0, 'yes','no');

B +
| IF(1 > 0, 'yes','no') |
B +
| yes |
B e L L T T +

The CASE construct is not a function, but it too provides flow control. It has two forms of
syntax. The first looks like this:

CASE case_expr
WHEN when_expr THEN result
[WHEN when_expr THEN result]
[ELSE result]

END

The expression case_expr is evaluated and used to determine which of the following clauses
in the rest of the CASE to execute. The when_expr in the initial WHEN clause is evaluated and
compared to case_expr. If the two are equal, the expression following THEN is the result of
the CASE. If when_expr is not equal to case_expr, and there are any following WHEN clauses,
they are handled similarly in turn. If no WHEN clause has a when_expr equal to case_expr, and
there is an ELSE clause, the expression in the ELSE clause becomes the CASE result. If there is
no ELSE clause the result is NULL.

The following CASE expression returns a string that indicates whether the value of the @val
user variable is 0, 1, or something else:

mysql> SET @val = 1;
mysql> SELECT CASE @val

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 185 Return to Table of Contents

10.6 Functions in SQL Expressions 185

-> WHEN 0 THEN '@val 1is 0'
-> WHEN 1 THEN '@val 1is 1'
-> ELSE '@val 1is not 0 or 1'
-> END AS result;

B +
| result |
B ittt +
| @val is 1 |
o +

The second CASE syntax looks like this:

CASE
WHEN when_expr THEN result
[WHEN when_expr THEN result]
[ELSE result]

END

For this syntax, the conditional expression in each WHEN clause is executed until one is found
to be true, and then its corresponding THEN expression becomes the result of the CASE. If
none of them are true and there is an ELSE clause, its expression becomes the CASE result. If
there is no ELSE clause the result is NULL.

The following CASE expression tests whether the value of the @val user variable is NULL or
less than, greater than, or equal to 0:

mysql> SET @val = NULL;

mysql> SELECT CASE
-> WHEN @val IS NULL THEN '@val is NULL'
-> WHEN @val < O THEN '@val 1is less than 0'
-> WHEN @val > 0 THEN '@val 1is greater than 0'
-> ELSE '@val is 0'
-> END AS result;

Fmmm - +
| result |
dmmmmmmmm—m e +
| @val is NULL |
T +

Note that IF() and CASE as used in expressions have somewhat different syntax than the IF
and CASE statements that can be used within compound statements (the statements end with
END CASE, not just END). For the syntax of the latter, see Section 18.5.8, “Flow Control.”
That section also contains some discussion about the kinds of test for which each type of
CASE statement syntax are appropriate; the same remarks apply to CASE expressions.

10.6.3 Aggregate Functions

Aggregate functions perform summary operations on a set of values, such as counting,
averaging, or finding minimum or maximum values. Aggregate functions often are used in

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 186 Return to Table of Contents

186

CHAPTER 10 SQL Expressions

conjunction with a GROUP BY clause to arrange values from a result set into groups. In this
case, the aggregate function produces a summary value for each group. The use of aggregate
functions in MySQL is covered in Section 9.4, “Aggregating Results.”

10.6.4 Mathematical Functions

Numeric functions perform several types of operations, such as rounding, truncation,
trigonometric calculations, or generating random numbers.

The ROUND(Q) function performs rounding of its argument. The rounding method applied to
the fractional part of a number depends on whether the number is an exact or approximate

value:

» For positive exact values, ROUNDQ) rounds up to the next integer if the fractional part is
.5 or greater, and down to the next integer otherwise. For negative exact values, ROUND()
rounds down to the next integer if the fractional part is .5 or greater, and up to the next
integer otherwise. Another way to state this is that a fraction of .5 or greater rounds
away from zero and a fraction less than .5 rounds toward zero:
mysql> SELECT ROUND(28.5), ROUND(-28.5);

B e T e e e +
| ROUND(28.5)

» For approximate values, ROUND() uses the rounding method provided in the C library
used by the MySQL server. This can vary from system to system, but typically rounds
to the nearest even integer:

mysql> SELECT ROUND(2.85E1), ROUND(-2.85E1);
o fmm - +
| ROUND(2.85E1) | ROUND(-2.85E1) |

FLOORQ) returns the largest integer not greater than its argument, and CEILING() returns the
smallest integer not less than its argument:

mysq1> SELECT FLOOR(-14.7), FLOOR(14.7);

e o +
| FLOOR(-14.7) | FLOOR(14.7) |
e E e ittt +
[-15 | 14 |
Fomm fmmm - +

MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto

Print Publication Date: 2005/08/24

User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 187 Return to Table of Contents

10.6 Functions in SQL Expressions 187

mysql> SELECT CEILING(-14.7), CEILING(14.7);

o - +
| CEILING(-14.7) | CEILING(14.7) |
oo oo +
[-14 | 15 |
fmmmmmmmm e T L e +

ABS() and SIGN(Q) extract the absolute value and sign of numeric values:

mysql> SELECT ABS(-14.7), ABS(14.7);

Fomm - - +
| ABS(-14.7) | ABS(14.7) |

o o +

| 14.7 | 14.7 |

fmmmmm e o +

mysql> SELECT SIGN(-14.7), SIGN(14.7), SIGN(0);
oo e B L oo +

| SIGN(-14.7) | SIGN(14.7) | SIGN(O) |

Fomm - Fomm - o +

| -1] 1] 0|
o o o +

A family of functions performs trigonometric calculations, including conversions between
degrees and radians:

mysql> SELECT SIN(C0), COS(0), TAN(O);

Fo—mm Fo-mm———= Fo—mm———- +
| SINCO) | COS(C0) | TAN(O) |

Fommmmm - Fommm - Fommmm +

| 0| 1] 0 |

+--————- +-—————- - +

mysql> SELECT PI(), DEGREES(PI()), RADIANS(180);
+ommm Fomm o m e +
| PIO | DECREES(PI()) | RADIANS(180) |
to—mmm - tommmmmmm oo to-mmmmmm oo +
| 3.141593 | 180 | 3.1415926535898 |
Fommmm e Fommm oo Fommm e +

To generate random numbers, invoke the RAND() function:

mysq1> SELECT RAND(), RAND(Q), RANDQ);

o fmm - - +
| RANDQ) | RANDQO | RANDQ) |
o B LB e B it +
| 0.55239934711941 | 0.16831658330589 | 0.18438490590489 |
e e e +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 188 Return to Table of Contents

188 CHAPTER 10 SQL Expressions

10.6.5 String Functions

String functions calculate string lengths, extract pieces of strings, search for substrings or
replace them, perform lettercase conversion, and more.

The LENGTHO and CHAR_LENGTHQ) functions determine string lengths in byte and character
units, respectively. The values returned by the two functions will differ for strings that con-
tain multi-byte characters. The following example shows this, using the Tatinl single-byte
character set and the ucs2 double-byte character set:

mysql> SET @s = CONVERT('MySQL' USING T1atinl);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);

o e +
| LENGTH(@s) | CHAR_LENGTH(@s) |
o o +
| 5 51
oo o +

mysql> SET @s = CONVERT('MySQL' USING ucs2);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);

o e +
| LENGTH(@s) | CHAR_LENGTH(@s) |
o oo +
| 10 | 5
oo o +

CONCAT() and CONCAT_WS() concatenate strings. CONCAT() concatenates all of its arguments,
whereas CONCAT_WS () interprets its first argument as a separator to place between the follow-
ing arguments:

mysql> SELECT CONCAT('aa','bb','cc','dd');

R e +
| CONCAT('aa','bb','cc','dd') |

B e L BT +

| aabbccdd |

F i +

mysql> SELECT CONCAT_WS('aa','bb','cc','dd');
e +

| CONCAT_WS('aa','bb','cc','dd") |
e +

| bbaaccaadd |
o +

The two functions also differ in their handling of NULL values. CONCAT() returns NULL if any
of its arguments are null. CONCAT_WS() ignores NULL values:

mysql> SELECT CONCAT(C'/','a',NULL,'b'), CONCAT_WS('/','a',NULL,'b');
e EEEE TP P et LT e R PPt +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 189 Return to Table of Contents

10.6 Functions in SQL Expressions 189

| CONCAT(C'/','a',NULL,'b') | CONCAT_WS(C'/','a',NULL,'b") |

The STRCMP() function compares two strings and returns —1, 0, or 1 if the first string is less
than, equal to, or greater than the second string, respectively:

mysql> SELECT STRCMP('abc', 'def'), STRCMP('def','def'), STRCMP('def','abc');

e e oo +
| STRCMP('abc','def') | STRCMP('def','def') | STRCMP('def','abc') |
e e oo +
| -1 0] 1]
e e e +

MySQL encrypts passwords in the grant tables using the PASSWORD() function. This function
should be considered for use only for managing MySQL accounts, not for general user
applications. One reason for this is that applications often require reversible (two-way)
encryption, and PASSWORD() performs irreversible (one-way) encryption. Another reason that
applications should avoid reliance on PASSWORD() is that its implementation may change. (In
fact, it did change in MySQL 4.1.0 and again in 4.1.1.)

For applications that work with data that must not be stored in unencrypted form, MySQL
provides several pairs of functions that perform two-way encryption and decryption:

= ENCODE() and DECODE()
= DES_ENCRYPT() and DES_DECRYPT()
= AES_ENCRYPT() and AES_DECRYPT()

Cryptographically, AES_ENCRYPT() and AES_DECRYPT() can be considered the most secure of
the pairs. DES_ENCRYPT() and DES_DECRYPT() can be used if SSL support is enabled. Other
details can be found in the MySQL Reference Manual.

10.6.6 Temporal Functions

Temporal functions perform operations such as extracting parts of dates and times, refor-
matting values, or converting values to seconds or days. In many cases, a temporal function
that takes a date or time argument also can be given a datetype argument and will ignore the
irrelevant part of the datetime value.

There are functions for extracting parts of date or time values:

mysql> SET @ = '2010-04-15', @t = '09:23:57"';
mysql> SELECT YEAR(@d), MONTH(@d), DAYOFMONTH(@d);
dommmmm———— dommmmmm———— T L L e L LT +

| YEAR(C@d) | MONTH(@d) | DAYOFMONTH(@d) |
ommmmmme- ommmmmmmme Hmmmmmm oo +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 190 Return to Table of Contents

190 CHAPTER 10 SQL Expressions
[2010 | 4 | 15
Fo—m - Fo—m Fommm +
mysql> SELECT DAYOFYEAR(@d);
Fommm oo +
| DAYOFYEAR(@d) |
Fommmm e +
| 105 |
Fomm e +
mysq1> SELECT HOUR(@t), MINUTE(@t), SECOND(@t);
F-—— - it gt +@———————--- +

| HOUR(@t) | MINUTE(@t) | SECOND(@t) |

MAKEDATE() and MAKETIME() compose dates and times from component values. MAKEDATE ()
produces a date from year and day of year arguments:

mysq1> SELECT MAKEDATE(2010,105);

E e L Et +
| MAKEDATE(2010,105) |
R +
| 2010-04-15

o +

MAKETIME(Q) produces a time from hour, minute, and second arguments.

mysql> SELECT MAKETIME(9,23,57);

e +
| MAKETIME(9,23,57) |
o mm e ee +
| 09:23:57 |
o +

If you need to determine the current date or time, use CURRENT_DATE or CURRENT_TIME. To get
the current date and time as a single value, use CURRENT_TIMESTAMP or NOW():

mysq1> SELECT CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP;

Fommm - Fom - o +
| CURRENT DATE | CURRENT TIME | CURRENT TIMESTAMP |
Fom - Fommm - o +
| 2005-05-31 | 21:40:18 | 2005-05-31 21:40:18

o e o +

The three functions in the preceding statement are unlike most functions in that they can be
invoked with or without parentheses following the function name.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 191 Return to Table of Contents

10.6 Functions in SQL Expressions 191

10.6.7 NULL-Related Functions

Functions intended specifically for use with NULL values include ISNULL(Q) and IFNULLQ).
ISNULLQ) is true if its argument is NULL and false otherwise:

mysq1> SELECT ISNULL(NULL), ISNULL(O), ISNULL(L);

o pmmmmm e o +
| ISNULL(NULL) | ISNULLCO) | ISNULL(L) |
Fomm - Fmmmm - o +
| 1] 0| 0 |
o o - +

IFNULLQ) takes two arguments. If the first argument is not NULL, that argument is returned;
otherwise, the function returns its second argument:
mysql> SELECT IFNULL(NULL,'a'), IFNULL(CO,'b');

o oo +
| IFNULL(NULL,'a') | IFNULLCO,'b') |

Other functions handle NULL values in various ways, so you have to know how a given func-
tion behaves. In many cases, passing a NULL value to a function results in a NULL return value.
For example, any NULL argument passed to CONCAT() causes it to return NULL:

mysql> SELECT CONCAT('a','b'), CONCAT('a',NULL,'b');

o o +
| CONCAT('a','b') | CONCAT('a',NULL,'b") |
e e +
| ab | NULL |
B L L LT B e e L L E L P T +

But not all functions behave that way. CONCAT_wS() (concatenate with separator) simply
ignores NULL arguments entirely:

mysql> SELECT CONCAT_WS('/','a','b'), CONCAT_WS('/','a',NULL,'b');

Fommmm e R iieb bbbl +
| CONCAT_WS('/','a','b') | CONCAT_WS('/','a',NULL,'b") |
Ho e mm oo B bbbl bbb +
| a/b | a/b |
i oo +

For information about the behavior of specific functions with respect to NULL, consult the
MySQL Reference Manual.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 192 Return to Table of Contents

192 CHAPTER 10 SQL Expressions

10.7 Comments in SQL Statements

MySQL supports three forms of comment syntax. One of those forms has variants that
allow special instructions to be passed through to the MySQL server.

s A ‘# character begins a comment that extends to the end of the line. This commenting
style is like that used by several other programs, such as Perl, Awk, and several Unix
shells.

= A /* sequence begins a comment that ends with a */ sequence. This style is the same as
that used for writing comments in the C programming language. A C-style comment
may occur on a single line or span multiple lines:
/* this is a comment */
/7’:
this
is a
comment,
too

s‘:/

= A -- (double dash) sequence followed by a space (or control character) begins a com-
ment that extends to the end of the line. This syntax requires a space and thus differs
from standard SQL syntax, which allows comments to be introduced by -- without the
space. MySQL disallows a double dash without a space as a comment because it’s
ambiguous. (For example, does 1--3 mean “one minus negative three” or “one followed
by a comment”?)

C-style comments can contain embedded SQL text that’s treated specially by the MySQL
server, but ignored by other database engines. This is an aid to writing more portable SQL
because it enables you to write comments that are treated as part of the surrounding state-
ment if executed by MySQL and ignored if executed by other database servers. There are
two ways to write embedded SQL in a C-style comment:

» If the comment begins with /*! rather than with /*, MySQL executes the body of the
comment as part of the surrounding query. The following statement creates a table
named t, but for MySQL creates it specifically as a MEMORY table:

CREATE TABLE t (i INT) /*! ENGINE = MEMORY */;

» If the comment begins with /*! followed by a version number, the embedded SQL is
version specific. The server executes the body of the comment as part of the surround-
ing query if its version is at least as recent as that specified in the query. Otherwise, it
ignores the comment. For example, the FULL keyword for SHOW TABLES was added in
MySQL 5.0.2. To write a comment that’s understood only by servers from MySQL
5.0.2 and up and ignored by older servers, write it as follows:

SHOW /*150002 FULL */ TABLES;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 193 Return to Table of Contents

1
Updating Data

This chapter discusses SQL statements that modify the contents of database tables. It cov-
ers the following exam topics:

= Using the INSERT and REPLACE statements to add new records to a table

» Using the UPDATE statement to modify existing table records

= Using the DELETE and TRUNCATE statements to remove records from a table

» Handling duplicate key values

= Privileges required for statements that modify tables

11.1 Update Operations

The statements covered in this chapter modify the contents of database tables. Another
statement that modifies table contents is LOAD DATA INFILE, which reads records from a data
file and loads them into a table. It’s discussed in Chapter 15, “Importing and Exporting
Data.”

For purposes of discussion here, the term “update statement” is used in a collective sense to
refer to various kinds of statements that modify tables. “UPDATE statement” refers specifically
to statements that begin with the UPDATE keyword. Also, keep in mind the following termi-
nology with regard to indexes:

» The term “unique-valued index” is a generic term meaning any index that contains only
unique values.

» The term “primary key” is a generic term meaning a unique-valued index that cannot
contain NULL values.

= “UNIQUE index” means specifically a unique-valued index created using the keyword
UNIQUE.

= “PRIMARY KEY” means specifically a unique-valued index created using the keywords
PRIMARY KEY.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 194 Return to Table of Contents

194

CHAPTER 11 Updating Data

See Section 8.6, “Indexes,” for further information about types of indexes.
Much of the discussion in this chapter uses the following table as a source of examples:

CREATE TABLE people

(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(40) NOT NULL DEFAULT '',
age INT NOT NULL DEFAULT 0,
PRIMARY KEY (id)
s

11.2 The INSERT Statement

The INSERT statement adds new records to a table. It has two basic formats, one of which
allows for insertion of multiple rows using a single statement:

INSERT INTO table_name (column_Tist) VALUES (value_Tlist);

INSERT INTO table_name
SET column_name = value [, column_name = value] ... ;

The first syntax for INSERT uses separate column and value lists following the name of the
table into which you want to add the record. The number of columns and values must be
the same. The following statement uses this syntax to create a new record in the people
table with id set to 12, name set to 'William', and age set to 25:

INSERT INTO people (id,name,age) VALUES(12,'William',25);
The second INSERT syntax follows the table name by a SET clause that lists individual column
assignments separated by commas:

INSERT INTO people SET id = 12, name = 'William', age = 25;

The SET clause must assign a value to at least one column.

For any column not assigned an explicit value by an INSERT statement, MySQL sets it to its
default value if it has one. For example, to have MySQL set the id column to its default, you
can simply omit it from the statement. The following example shows statements using each
INSERT syntax that assign no explicit id value:

INSERT INTO people (name,age) VALUES('William',25);
INSERT INTO people SET name = 'William', age = 25;
In both statements, the effect for the people table is the same: The id column is set to its

default value. id is an AUTO_INCREMENT column, so its default is the next sequence number.

In general, if a column has no default value, the effect of omitting it from the INSERT state-
ment depends on whether it can take NULL values and on the SQL mode:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 195 Return to Table of Contents

11.2 The INSERT Statement 195

» If the column can take NULL values, it is set to NULL.

» If the column cannot take NULL values, it is set to the implicit default for the column
data type if strict SQL mode is not enabled. If strict mode is enabled, an error occurs.

MySQL can be configured to allow or reject attempts to insert invalid data into a row. For
details about handling of such values, see Section 5.8, “Handling Missing or Invalid Data
Values.”

The VALUES form of INSERT has some variations:

» If both the column list and the VALUES list are empty, MySQL creates a new record with
each column set to its default:

INSERT INTO people () VALUESQ);

The preceding statement creates a record with id, name, and age set to their defaults
(the next sequence number, the empty string, and 0, respectively).

= It’s allowable to omit the list of column names and provide only the VALUES list. In this
case, the list must contain one value for every column in the table. Furthermore, the
values must be listed in the same order in which the columns are named in the table’s
definition. (This is the order in which the columns appear in the output from DESCRIBE
table_name.) The following INSERT statement satisfies these conditions because it pro-
vides three column values in id, name, and age order:

INSERT INTO people VALUES(12, 'William',25);

On the other hand, this statement is illegal because it provides only two values for a
three-column table:

INSERT INTO people VALUES('William',25);

The following INSERT statement is syntactically legal because it provides a value for
every column, but it assigns 25 to name and 'William' to age, which is not likely to serve
any useful purpose:

INSERT INTO people VALUES(12,25,'William');

The statement also will cause an error in strict SQL mode because the age column
requires a number and 'William' cannot be converted to a number.

= You can insert multiple records with a single statement by providing several values lists
after the VALUES keyword. This is discussed in Section 11.2.1, “Adding Multiple Records
with a Single INSERT Statement.”

As noted, for an INSERT statement that provides data values in the VALUES list, it’s permissible
to omit the list of column names if the statement contains a data value for every column.
However, it isn’t necessarily advisable to do so. When you don’t include the list of column
names, the VALUES list must not only be complete, the data values must be in the same order
as the columns in the table. If it’s possible that you’ll alter the structure of the table by

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 196 Return to Table of Contents

196

CHAPTER 11 Updating Data

adding, removing, or rearranging columns, such alterations might require any application
that inserts records into the table to be modified. This is much more likely if the INSERT
statements don’t include a list of column names because they’re more sensitive to the struc-
ture of the table. When you use an INSERT statement that names the columns, rearranging
the table’s columns has no effect. Adding columns has no effect, either, if it’s appropriate to
set the new columns to their default values.

11.2.1 Adding Multiple Records with a Single
INSERT Statement

A single INSERT ... VALUES statement can add multiple records to a table if you provide
multiple VALUES lists. To do this, provide a parenthesized list of values for each record and
separate the lists by commas. For example:

INSERT INTO people (name,age)
VALUES('William',25), ('Bart',15),('Mary',12);

The statement shown creates three new people records, assigning the name and age columns
in each record to the values listed. The id column is not listed explicitly, so MySQL assigns
its default value (the next sequence value) in each record.

Note that a multiple-row INSERT statement requires a separate parenthesized list for each
row. Suppose that you have a table t with a single integer column i:

CREATE TABLE t (i INT);

To insert into the table five records with values of 1 through 5, the following statement does
not work:

mysql> INSERT INTO t (i) VALUES(1,2,3,4,5);
ERROR 1136 (21S01): Column count doesn't match value count at row 1

The error occurs because the number of values between parentheses in the VALUES list isn’t
the same as the number of columns in the column list. To write the statement properly, pro-
vide five separate parenthesized lists:

mysq1> INSERT INTO t (i) VALUES(1),(2),(3),(4),(5);
Query OK, 5 rows affected (0.00 sec)
Records: 5 Duplicates: 0 Warnings: O

It’s allowable to omit the list of column names in multiple-row INSERT statements. In this
case, each parenthesized list of values must contain a value for every table column.

The preceding example illustrates something about multiple-row INSERT statements that
isn’t true for single-row statements: MySQL returns an extra information string containing
several counts. The counts in each field of this string have the following meanings:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 197 Return to Table of Contents

11.2 The INSERT Statement 197

= Records indicates the number of records inserted.

= Duplicates indicates how many records were ignored because they contained duplicate
unique key values. This value can be non-zero if the statement includes the IGNORE key-
word. The action of this keyword is described in Section 11.2.2, “Handling Duplicate
Key Values.”

= Warnings indicates the number of problems found in the data values. These can occur if
values are converted. For example, the warning count is incremented if an empty string
is converted to 0 before being stored in a numeric column. To see what caused the
warnings, issue a SHOW WARNINGS statement following the INSERT.

A multiple-row INSERT statement is logically equivalent to a set of individual single-row
statements. However, the multiple-row statement is more efficient because the server can
process all the rows at once rather than as separate operations. When you have many
records to add, multiple-row statements provide better performance and reduce the load on
the server. On the other hand, such statements are more likely to reach the maximum size of
the communication buffer used to transmit information to the server. (This size is controlled
by the max_allowed_packet variable, which has a default value of 1IMB.)

MySQL treats single-row and multiple-row INSERT statements somewhat differently for pur-
poses of error-handling. These differences are described in Section 5.8, “Handling Missing
or Invalid Data Values.”

11.2.2 Handling Duplicate Key Values

If a table has a unique-valued index, it might not be possible to use INSERT to add a given
record to the table. This happens when the new record contains a key value for the index
that’s already present in the table. Suppose that every person in the people table has a
unique value in the id column. If an existing record has an id value of 347 and you attempt
to insert a new record that also has an id of 347, it duplicates an existing key value. MySQL
provides three ways to deal with duplicate values in a unique-valued index when adding new
records to a table with INSERT:

= If you don’t indicate explicitly how to handle a duplicate, MySQL aborts the statement
with an error and discards the new record. This is the default behavior. (For multiple-
record INSERT statements, treatment of records inserted before a record that causes a
duplicate-key violation is dependent on the storage engine. For MyISAM, the records are
inserted. For InnoDB, the entire statement fails and no records are inserted.)

= You can tell MySQL to ignore the new record without producing an error. To do this,
modify the statement so that it begins with INSERT IGNORE rather than with INSERT. If
the record does not duplicate a unique key value, MySQL inserts it as usual. If the
record does contain a duplicate key, MySQL ignores it. Client programs that terminate
on statement errors will abort with INSERT but not with INSERT IGNORE.

= You can use the ON DUPLICATE KEY UPDATE clause to update specific columns of the
existing record.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 198 Return to Table of Contents

198 CHAPTER 11 Updating Data

If you want to replace the old record with the new one when a duplicate key occurs, use the
REPLACE statement instead of INSERT. (See Section 11.3, “The REPLACE Statement.”)

Note that for a unique-valued index that can contain NULL values, inserting NULL into an
indexed column that already contains NULL doesn’t cause a duplicate-key violation. This is
because such an index can contain multiple NULL values.

11.2.3 Using INSERT ... ON DUPLICATE KEY UPDATE

Normally, if you attempt to insert a row into a table that would result in a duplicate-key
error for a unique-valued index, the insertion fails. In some cases, you can use the REPLACE
statement instead, which deletes the old row and inserts the new one in its place. (See
Section 11.3, “The REPLACE Statement.”) However, REPLACE is not suitable if you wish to
change only some columns of the old row. By using the ON DUPLICATE KEY UPDATE clause
with INSERT, you have the option of choosing to update one or more columns of the existing
row, rather than letting the INSERT statement fail or using REPLACE to replace the entire row.

The ON DUPLICATE KEY UPDATE clause allows you to do in one statement what otherwise
requires two (INSERT and UPDATE). Also, for non-transactional tables, it saves you from having
to explicitly lock the table to prevent UPDATE errors when the referenced row may have been
deleted in between the INSERT and UPDATE.

One case where this new behavior is especially useful is when you have a table with counters
that are tied to key values. When it’s time to increment a counter in the record for a given
key, you want to create a new record if none exists for the key, but just increment the
counter if the key does exist. For example, suppose that we are tracking elephants in the wild
and want to count the number of times each elephant has been spotted at a given location.
In this case, we can create a log table to log elephant sightings based on the unique key of
elephant name and location:

mysq1> CREATE TABLE Tlog (
-> name CHAR(30) NOT NULL,
-> Tlocation CHAR(30) NOT NULL,
-> counter INT UNSIGNED NOT NULL,
-> PRIMARY KEY (name, location));
Query OK, 0 rows affected (0.07 sec)

Then, every time we wish to log a sighting, we can use INSERT without first checking
whether the record exists. This simplifies application logic by reducing the number of con-
ditions that must be tested. For example, if we have just created the table, and the first two
sightings that occur are for the elephant “Tantor” over by the waterhole, we would use the
same INSERT statement each time. The first instance of the statement inserts a record and
the second causes it to be updated:

mysql> INSERT INTO log (name, location, counter)
-> VALUES ('Tantor', 'Waterhole', 1)
-> ON DUPLICATE KEY UPDATE counter=counter+l;
Query OK, 1 row affected (0.00 sec)

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 199 Return to Table of Contents

11.3 The REPLACE Statement 199

mysql> SELECT * FROM Tog;

R Fmmmmm - Fomm - +
| name | location | counter |
- Fmmmmmm———— ommmmm——— +
| Tantor | Waterhole | 1|
et Hmmmmmmmeee L L +

1 row in set (0.00 sec)

mysql> INSERT INTO log (name, location, counter)
-> VALUES ('Tantor', 'Waterhole', 1)
-> ON DUPLICATE KEY UPDATE counter=counter+l;
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT * FROM log;

o o o +
| name | location | counter |
o e o +
| Tantor | Waterhole | 2 |
+--—————- o +--mm— - +

1 row in set (0.00 sec)

Notice the difference in the “rows affected” value returned by the server for each INSERT
statement: If a new record is inserted, the value is 1; if an already existing record is updated,
the value is 2.

11.3 The REPLACE Statement

The REPLACE statement, like INSERT, add new records to a table. The two statements have
very similar syntax. The primary difference between them lies in how they handle duplicate
records. Also, REPLACE does not support the ON DUPLICATE KEY UPDATE clause.

If a table contains a unique-valued index and you attempt to insert a record containing a key
value that already exists in the index, a duplicate-key violation occurs and the row is not
inserted. What if you want the new record to take priority over the existing one? You could
remove the existing record with DELETE and then use INSERT to add the new record.
However, MySQL provides REPLACE as an alternative that is easier to use and is more effi-
cient because it performs both actions with a single statement. REPLACE is like INSERT except
that it deletes old records as necessary when a duplicate unique key value is present in a
new record. Suppose that you’re inserting a record into the people table, which has id as a
PRIMARY KEY:

» If the new record doesn’t duplicate an existing id value, MySQL just inserts it.

» If the new record does duplicate an existing id value, MySQL first deletes any old
records containing that value before inserting the new record.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 200 Return to Table of Contents

200 CHAPTER 11 Updating Data

An advantage of using REPLACE instead of an equivalent DELETE (if needed) and INSERT is that
REPLACE is performed as a single atomic operation. There’s no need to do any explicit table
locking as there might be were you to issue separate DELETE and INSERT statements.

For a comparison of REPLACE with UPDATE, see Section 11.4, “The UPDATE Statement.”

The action of REPLACE in replacing rows with duplicate keys depends on the table having a
unique-valued index:

» In the absence of any such indexes, REPLACE is equivalent to INSERT because no dupli-
cates will ever be detected.

= Even in the presence of a unique-valued index, if an indexed column allows NULL values,
it allows multiple NULL values. A new record with a NULL value in that column does not
cause a duplicate-key violation and no replacement occurs.

REPLACE returns an information string that indicates how many rows it affected. If the count

is one, the row was inserted without replacing an existing row. If the count is two, a row was
deleted before the new row was inserted. If the count is greater than two, it means the table

has multiple unique-valued indexes and the new record matched key values in multiple rows,
resulting in multiple duplicate-key violations. This causes multiple rows to be deleted, a sit-

uation that’s described in more detail later in this section.

REPLACE statement syntax is similar to that for INSERT. The following are each valid forms of
REPLACE. They’re analogous to examples shown earlier in the chapter for INSERT:
» A single-record REPLACE with separate column and value lists:
REPLACE INTO people (id,name,age) VALUES(12,'William',25);

= A multiple-record REPLACE that inserts several rows:

REPLACE INTO people (id,name,age)
VALUES (12, 'William',25), (13, 'Bart',15), (14, 'Mary"',12);

The rows-affected count for a multiple-row REPLACE often is greater than two because
the statement may insert (and delete) several records in a single operation.

» A single-record REPLACE with a SET clause that lists column assignments:
REPLACE INTO people SET id = 12, name = 'William', age = 25;

If a table contains multiple unique-valued indexes, a new record added with REPLACE
might cause duplicate-key violations for multiple existing records. In this case, REPLACE
replaces each of those records. The following table has three columns, each of which has a
UNIQUE index:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 201 Return to Table of Contents

11.4 The UPDATE Statement 201

CREATE TABLE multikey

(
i INT NOT NULL UNIQUE,
j INT NOT NULL UNIQUE,
k INT NOT NULL UNIQUE
)

Suppose that the table has these contents:

mysql1> SELECT * FROM multikey;

i3] k]
R e
11 1]1]
l2121]2]
313131
[4141]4]
i e e

Using REPLACE to add a record that duplicates a row in each column causes several records to
be replaced with the new row:

mysql> REPLACE INTO multikey (i,j,k) VALUES(1,2,3);

Query OK, 4 rows affected (0.00 sec)

mysql> SELECT * FROM multikey;

The REPLACE statement reports a row count of four because it deletes three records and
inserts one.

11.4 The UPDATE Statement

The UPDATE statement modifies the contents of existing records. To use it, name the table
you want to update, provide a SET clause that lists one or more column value assignments,
and optionally specify a WHERE clause that identifies which records to update:

UPDATE table_name
SET column_name = value [, column_name = value]
WHERE ... ;

For example, to set the age column to 30 for the people table record that has an id value of
12, use this statement:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 202 Return to Table of Contents

202

CHAPTER 11 Updating Data

UPDATE people SET age = 30 WHERE id = 12;

"To update multiple columns, separate the column value assignments in the SET clause by
commas:

UPDATE people SET age = 30, name = 'Wilhelm' WHERE id = 12;

The WHERE clause specifies the conditions that records must satisfy to be selected for updat-
ing. If you omit the WHERE clause, MySQL updates every row in the table.

The effects of column assignments made by an UPDATE are subject to column type con-
straints, just as they are for an INSERT or REPLACE. By default, if you attempt to update a
column to a value that doesn’t match the column definition, MySQL converts or truncates
the value. If you enable strict SQL mode, the server will be more restrictive about allowing
invalid values. See Section 5.8, “Handling Missing or Invalid Data Values.”

It’s possible for an UPDATE statement to have no effect. This can occur under the following
conditions:

» When the statement matches no records for updating. This always occurs if the table is
empty, of course. It might also occur if no records match the conditions specified in the
WHERE clause.

» When the statement does not actually change any column values. For example, if you
set a date-valued column to '2000-01-01' and the column already has that date as its
value, MySQL ignores the assignment.

UPDATE reports a rows-affected count to indicate how many rows actually were changed. This
count doesn’t include rows that were selected for updating but for which the update didn’t
change any columns from their current values. The following statement produces a row
count of zero because it doesn’t actually change any values, even if there is a record with an
id value of 12:

mysql> UPDATE people SET age = age WHERE id = 12;
Query OK, 0 rows affected (0.00 sec)

If a table contains a TIMESTAMP column that has ON UPDATE CURRENT_TIMESTAMP in its defini-
tion, that column is updated automatically only if another column changes value. An UPDATE
that sets columns to their current values does not change the TIMESTAMP. If you need

the TIMESTAMP to be updated for every UPDATE, you can set it explicitly to the value of the
CURRENT_TIMESTAMP function.

Some client programs or APIs enable you to ask the MySQL server to return a rows-
matched count rather than a rows-affected count. This causes the row count to include all
rows selected for updating, even if their columns weren’t changed from their present values.
The C API provides an option for selecting the type of count you want when you establish a
connection to the server. The MySQL Connector/J Java driver tells the server to operate in
rows-matched mode because that behavior is mandated by the JDBC specification.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 203 Return to Table of Contents

11.4 The UPDATE Statement 203

With respect to handling of records with unique key values, UPDATE is similar to REPLACE in
some ways, but the two aren’t equivalent:

= UPDATE does nothing if there’s no existing record in the table that contains the specified
key values. REPLACE doesn’t require an existing record with the key values and adds one
if none exists.

= UPDATE can be used to change some columns in an existing record while leaving others
unchanged. REPLACE entirely discards the existing record. To achieve the effect of
leaving some columns unchanged with REPLACE, the new record must specify the same
values in those columns that the existing record has. (Another way to update only some
columns for an insert operation is to use INSERT with the ON DUPLICATE KEY UPDATE
clause.)

11.4.1 Using UPDATE with ORDER BY and LIMIT

UPDATE by default makes no guarantee about the order in which rows are updated. This can
sometimes result in problems. Suppose that the people table contains two rows, where id is
a PRIMARY KEY:

mysql> SELECT * FROM people;

D S +
| id | name | age |
B Fo-—m-- +
| 2| Victor | 21 |
| 3| Susan | 15 |
e +o-—m-- +

If you want to renumber the id values to begin at 1, you might issue this UPDATE statement:

UPDATE people SET id = id - 1;

The statement succeeds if it updates id values first by setting 2 to 1 and then 3 to 2.
However, it fails if it first tries to set 3 to 2. That would result in two records having an 1id
value of 2, so a duplicate-key violation occurs. To solve this problem, add an ORDER BY clause
to cause the row updates to occur in a particular order:

UPDATE people SET id = id - 1 ORDER BY 1id;
UPDATE also allows a LIMIT clause, which places a limit on the number of records updated.

For example, if you have two identical people records with a name value of 'Nicolas' and
you want to change just one of them to 'Nick', use this statement:

UPDATE people SET name = 'Nick' WHERE name = 'Nicolas' LIMIT 1;

ORDER BY and LIMIT may be used together in the same UPDATE statement.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 204 Return to Table of Contents

204 CHAPTER 11 Updating Data

11.4.2 Preventing Dangerous UPDATE Statements

As mentioned earlier, an UPDATE statement that includes no WHERE clause updates every row
in the table. Normally, this isn’t what you want. It’s much more common to update only a
specific record or small set of records. An UPDATE with no WHERE is likely to be accidental, and
the results can be catastrophic.

It’s possible to prevent UPDATE statements from executing unless the records to be updated
are identified by key values or a LIMIT clause is present. This might be helpful in preventing
accidental overly broad table updates. The mysq1 client supports this feature if you invoke it
with the --safe-updates option. See Section 2.9, “Using the --safe-updates Option,” for
more information.

11.4.3 Multiple-Table UPDATE Statements

UPDATE supports a multiple-table syntax that enables you to update a table using the contents
of another table. This syntax also allows multiple tables to be updated simultaneously. The
syntax has much in common with that used for writing multiple-table SELECT statements, so
it’s discussed in Section 12.5, “Multiple-Table UPDATE and DELETE Statements.”

11.5 The DELETE and TRUNCATE TABLE Statements

To remove records from tables, use a DELETE statement or a TRUNCATE TABLE statement. The
DELETE statement allows a WHERE clause that identifies which records to remove, whereas
TRUNCATE TABLE always removes all records. DELETE therefore can be more precise in its effect.

To empty a table entirely by deleting all its records, you can use either of the following
statements:

DELETE FROM table_name;
TRUNCATE TABLE table_name;

The word TABLE in TRUNCATE TABLE is optional.

"To remove only specific records in a table, TRUNCATE TABLE cannot be used. You must issue a
DELETE statement that includes a WHERE clause that identifies which records to remove:

DELETE FROM table_name WHERE ... ;

When you omit the WHERE clause from a DELETE statement, it’s logically equivalent to a
TRUNCATE TABLE statement in its effect, but there is an operational difference: If you need to
know how many records were deleted, DELETE returns a true row count, but TRUNCATE TABLE
returns 0.

If a table contains an AUTO_INCREMENT column, emptying it completely with TRUNCATE TABLE
might have the side effect of resetting the sequence. This may also happen for a DELETE
statement that includes no WHERE clause. Resetting the sequence causes the next record

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 205 Return to Table of Contents

11.5 The DELETE and TRUNCATE TABLE Statements 205

inserted into the table to be assigned an AUTO_INCREMENT value of 1. If this side effect is unde-
sirable when emptying the table, use a WHERE clause that always evaluates to true:

DELETE FROM table_name WHERE 1;

The presence of the WHERE clause in this statement causes MySQL to evaluate it for each
row. The expression 1 is always true, so the effect of the WHERE clause is to produce a
row-by-row table-emptying operation. Note that although this form of DELETE avoids the
side effect of resetting the AUTO_INCREMENT sequence when performing a complete-table dele-
tion, the disadvantage is that the statement executes much more slowly than a DELETE with
no WHERE.

The following comparison summarizes the differences between DELETE and TRUNCATE TABLE:
DELETE:

= Can delete specific rows from a table if a WHERE clause is included
s Usually executes more slowly

= Returns a true row count indicating the number of records deleted

TRUNCATE TABLE:

» Cannot delete just certain rows from a table; always completely empties it
= Usually executes more quickly

= Returns a row count of zero rather than the actual number of records deleted

11.5.1 Using DELETE with ORDER BY and LIMIT

DELETE supports ORDER BY and LIMIT clauses, which provides finer control over the way
records are deleted. For example, LIMIT can be useful if you want to remove only some
instances of a given set of records. Suppose that the people table contains five records where
the name column equals 'Emily . If you want only one such record, use the following state-
ment to remove four of the duplicated records:

DELETE FROM people WHERE name = 'Emily' LIMIT 4;

Normally, MySQL makes no guarantees about which four of the five records selected by the
WHERE clause it will delete. An ORDER BY clause in conjunction with LIMIT provides better con-
trol. For example, to delete four of the records containing 'Emily"' but leave the one with
the lowest id value, use ORDER BY and LIMIT together as follows:

DELETE FROM people WHERE name = 'Emily' ORDER BY id DESC LIMIT 4;

11.5.2 Multiple-Table DELETE Statements

DELETE supports a multiple-table syntax that enables you to delete records from a table based
on the contents of another table. This syntax also allows records to be deleted from multiple

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 206 Return to Table of Contents

206 CHAPTER 11 Updating Data

tables simultaneously. The syntax has much in common with that used for writing multiple-
table SELECT statements, so it’s discussed in Section 12.5, “Multiple-Table UPDATE and DELETE
Statements.”

11.6 Privileges Required for Update Statements

The privileges required for statements that modify tables are straightforward:
= INSERT, UPDATE, and DELETE require the INSERT, UPDATE, and DELETE privileges,
respectively.
= REPLACE inserts records, possibly after deleting old records, so it requires the INSERT and
DELETE privileges.
= TRUNCATE TABLE is like DELETE in that it deletes records, so it requires the DELETE
privilege.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 207

Return to Table of Contents

12
13
14
15
16
17
18
19
20
21
22

MySQL Developer

Joins

Subqueries

Views

Importing and Exporting Data
User Variables

Prepared Statements

Stored Procedures and Functions
Triggers

Obtaining Database Metadata
Debugging MySQL Applications

Basic Optimizations

Il Exam

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen

ISBN: 0672328127 Publisher: MySQL Press
Print Publication Date: 2005/08/24

Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM

Licensed by Francisco Leon Nieto
User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 208 Return to Table of Contents

12

Joins

This chapter covers the following exam topics:

» Writing inner joins using the comma (‘,’) operator and INNER JOIN
» Writing outer joins using LEFT JOIN and RIGHT JOIN

= Resolving name clashes using qualifiers and aliases

» Writing self-joins

= Multiple-table UPDATE and DELETE statements

12.1 Overview

The SELECT queries shown thus far in this study guide retrieve information from a single
table at a time. However, not all questions can be answered using just one table. When it’s
necessary to draw on information that is stored in multiple tables, use a join—an operation
that produces a result by combining (joining) information in one table with information in
another.

A join between tables is an extension of a single-table SELECT statement, but involves the fol-
lowing additional complexities:

= The FROM clause names all the tables needed to produce the query result, not just one
table. The examples in this chapter focus on two-table joins, although in MySQL 5 a
join can be extended up to 61 tables as necessary.

= A join that matches records in one table with records in another must specify how to
match up the records. These conditions often are given in the WHERE clause, but the par-
ticular syntax depends on the type of join.

» The list of columns to display can include columns from any or all of the tables

involved in the join.

» Ifajoin refers to a column name that appears in more than one table, the name is
ambiguous and you must indicate which table you mean each time you refer to the
column.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 209 Return to Table of Contents

210 CHAPTER 12 Joins

These complications are addressed in this chapter, which covers the following join-related
topics:

» Writing inner joins, which find matches between tables. Inner joins are written using
either the comma operator or the INNER JOIN keywords.

= Writing outer joins, which can find matches between tables, but also can identify mis-
matches (rows in one table not matched by any rows in the other). Outer joins include
left and right joins, written using the LEFT JOIN and RIGHT JOIN keywords.

» Using qualifiers and aliases to resolve ambiguity between identifiers that have the same
name. Some queries involve tables or columns that have identical names (for example, if
two tables each have an id column). Under these circumstances, it’s necessary to pro-
vide the appropriate database or table name to specify the query more precisely.
Aliasing can also be useful in some cases to resolve ambiguities.

» Writing self-joins that join a table to itself.

= Multiple-table UPDATE and DELETE statements. These involve some of the same join con-
cepts as multiple-table SELECT statements.

The material in this chapter builds directly on the single-table SELECT concepts described
earlier in this study guide, and it’s assumed that you’re familiar with those concepts. See
Chapter 9, “Querying for Data.”

The examples in this chapter are based primarily on the tables in the wor1d database. These
tables contain information that can be combined using joins to answer questions that cannot
be answered using a single table. For example, you might ask, “What are the names of the
countries where people speak Swedish?” The CountryLanguage table lists languages per
country, but it contains three-letter country codes, not full names. The Country table lists
three-letter codes and full names, so you can use the codes to match up records in the tables
and associate a country name with each language.

12.2 Writing Inner Joins

A join that identifies combinations of matching rows from two tables is called an inner join.
Inner joins may be written using two different syntaxes. One syntax lists the tables to be
joined separated by a comma. The other uses the INNER JOIN keywords.

12.2.1 Writing Inner Joins with the Comma Operator

A simple question you might ask about the information in the wor1d database is, “What lan-
guages are spoken in each country?” That question has a trivial answer if you don’t mind
listing countries by code. Just select the information from the CountryLanguage table. Two of
its columns list three-letter country codes and language names:

mysql> SELECT CountryCode, Language FROM CountrylLanguage;

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 210 Return to Table of Contents

12.2 Writing Inner Joins 211

o e +
| CountryCode | Language |
o o +
ABW	Dutch
ABW	English
ABW	Papiamento
ABW	Spanish
AFG	Balochi
AFG	Dari
AFG	Pashto
AFG	Turkmenian
AFG	Uzbek
AGO	Ambo
AGO	Chokwe
AGO	Kongo
AGO	Luchazi
AGO	Luimbe-nganguela
AGO	Luvale

That result would be more meaningful and easier to understand if it displayed countries
identified by full name. However, that cannot be done using just the CountryLanguage table,
which contains country codes and not names. Country names are available in the wor1d
database, but they’re stored in a different table (the Country table that contains both the
three-letter codes and the names):

mysql1> SELECT Code, Name FROM Country;

o= e +
| Code | Name |
+-—--— o m e +
AFG	Afghanistan
NLD	Netherlands
ANT	Netherlands Antilles
ALB	Albania
DZA	Algeria
ASM	American Samoa
AND	Andorra
AGO	Angola
AIA	Anguilla
ATG	Antigua and Barbuda
ARE	United Arab Emirates
ARG	Argentina
ARM	Armenia
ABW	Aruba
AUS	Australia

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 211 Return to Table of Contents

212 CHAPTER 12 Joins

A query to display languages and full country names can be written as a join that matches
the country codes in the CountryLanguage table with those in the Country table. To do that,
modify the CountrylLanguage query in the following ways:

» Change the FROM clause to name both the CountryLanguage and Country tables,
separated by a comma. This tells MySQL that it must consult multiple tables to process
the query.

» Add a WHERE clause that indicates how to match records in the two tables. A join has the
potential to generate all combinations of rows from the two tables, which generally is
more information than is desirable or of interest. A WHERE clause restricts the output by
telling MySQL which of these combinations you want to see. To choose the proper
matches for the query in question, use the country code values that are common to the
two tables. That is, match CountryCode values in the CountryLanguage table with Code
values in the Country table.

» Change the output column list to display the Name column from the Country table rather
than the CountryCode column from the CountrylLanguage table.
The statement that results from these changes is as follows:

mysql> SELECT Name, Language FROM CountrylLanguage, Country
-> WHERE CountryCode = Code;

E it o +
| Name | Language |
e o +
Afghanistan	Balochi
Afghanistan	Dari
Afghanistan	Pashto
Afghanistan	Turkmenian
Afghanistan	Uzbek
Netherlands	Arabic
Netherlands	Dutch
Netherlands	Fries
Netherlands	Turkish
Netherlands Antilles	Dutch
Netherlands Antilles	English
Netherlands Antilles	Papiamento
Albania	Albaniana
Albania	Greek
Albania	Macedonian

Essentially what this query does is treat Country as a lookup table. For any given country
code in the CountryLanguage table, the query uses that code to find the corresponding row in
the Country table and retrieves the country name from that row.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 212 Return to Table of Contents

12.2 Writing Inner Joins 213

Note several things about this query and the result that it produces:

» For an inner join, the order in which the FROM clause names the tables doesn’t matter.
Both of these FROM clauses would work:

FROM CountryLanguage, Country
FROM Country, CountrylLanguage

» The output column list of the join displays one column from each table: Name from
Country and Language from CountryLanguage. However, that is not a necessary charac-
teristic of joins. The list can name any columns that are appropriate for your purposes,
from any of the joined tables. Suppose that you want to show both country code and
name, as well as the continent in which each country is located. The following state-
ment does that by adding two columns to the output column list:
mysql> SELECT Code, Name, Continent, Language

-> FROM CountrylLanguage, Country
-> WHERE CountryCode = Code;

o oo o m e o +
| Code | Name | Continent | Language |
o o o B it +
AFG	Afghanistan	Asia	Balochi
AFG	Afghanistan	Asia	Dari
AFG	Afghanistan	Asia	Pashto
AFG	Afghanistan	Asia	Turkmenian
AFG	Afghanistan	Asia	Uzbek
NLD	Netherlands	Europe	Arabic
NLD	Netherlands	Europe	Dutch
NLD	Netherlands	Europe	Fries
NLD	Netherlands	Europe	Turkish
ANT	Netherlands Antilles	North America	Dutch
ANT	Netherlands Antilles	North America	English
ANT	Netherlands Antilles	North America	Papiamento
ALB	Albania	Europe	Albaniana
ALB	Albania	Europe	Greek
ALB	Albania	Europe	Macedonian

Or suppose that you want to display each language together with the percentage of
people who speak it. Select the Percentage column from the CountrylLanguage table:

mysql> SELECT Name, Language, Percentage FROM CountrylLanguage, Country
-> WHERE CountryCode = Code;

o o - Fomm - +

| Name | Language | Percentage |

o tomm - Fomm +

| Afghanistan | Pashto | 52.4 |

| Netherlands | Dutch | 95.6 |

| Netherlands Antilles | Papiamento | 86.2 |
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 213 Return to Table of Contents

214 CHAPTER 12 Joins
Albania	Albaniana	97.9
Algeria	Arabic	86.0
American Samoa	Samoan	90.6
Andorra	Spanish	44.6
Angola	Ovimbundu	37.2
Anguilla	English	0.0
Antigua and Barbuda	Creole English	95.7
United Arab Emirates	Arabic	42.0
Argentina	Spanish	96.8
Armenia	Armenian	93.4
Aruba	Papiamento	76.7
Australia	English	81.2

= As with any other SELECT, the output rows from a join do not appear in any particular
order by default. To sort the results, add an ORDER BY clause. Output from the preceding
query would be more easily understood with the rows sorted by country name and
language percentage. That enables you to see which languages are most prevalent for
countries in which multiple languages are spoken.

mysql> SELECT Name, Language, Percentage FROM CountrylLanguage, Country
-> WHERE CountryCode = Code ORDER BY Name, Percentage;

o o it +
| Name | Language | Percentage |
o o e +
Afghanistan	Balochi	0.9
Afghanistan	Turkmenian	1.9
Afghanistan	Uzbek	8.8
Afghanistan	Dari	32.1
Afghanistan	Pashto	52.4
Albania	Macedonian	0.1
Albania	Greek	.8
Albania	Albaniana	97.9
Algeria	Berberi	14.0
Algeria	Arabic	86.0
American Samoa	English	3.1
American Samoa	Tongan	3.1
American Samoa	Samoan	90.6
Andorra	French	6.2
Andorra	Portuguese	10.8

The joins shown thus far each have included a WHERE clause. Syntactically, the WHERE clause in
a join is optional. However, it’s usually necessary in practice to include a WHERE clause to keep
the join from producing output far in excess of what you really want to see and to make sure
that the output contains only information that’s meaningful for the question you’re asking.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Prage 214 Return to Table of Contents

12.2 Writing Inner Joins 215

A join can produce every combination of rows from the two tables, which is in fact what
you’ll get from an unrestricted join that includes no WHERE clause. This is called a Cartesian
product, and the number of rows in the result is the product of the number of rows in the
individual tables. For example, the Country and CountryLanguage tables contain approxi-
mately 240 and 1,000 rows, respectively, so a Cartesian product between them produces
about 240,000 rows. But much of such output is irrelevant because most of the combinations
aren’t meaningful.

The following query shows what happens if you join records in the CountryLanguage and
Country tables without a WHERE clause. The query displays the code from both tables to show
that even non-matching combinations are produced by an unrestricted join:

mysql> SELECT Code, Name, CountryCode, Language
-> FROM CountryLanguage, Country;

+——— e e o +
| Code | Name | CountryCode | Language |
oo fmmm o fmmm - fmmm oo +
AFG	Afghanistan	ABW	Dutch
AFG	Afghanistan	ABW	English
AFG	Afghanistan	ABW	Papiamento
AFG	Afghanistan	ABW	Spanish
AFG	Afghanistan	AFG	Balochi
AFG	Afghanistan	AFG	Dari
AFG	Afghanistan	AFG	Pashto
AFG	Afghanistan	AFG	Turkmenian
AFG	Afghanistan	AFG	Uzbek
AFG	Afghanistan	AGO	Ambo
AFG	Afghanistan	AGO	Chokwe
AFG	Afghanistan	AGO	Kongo
AFG	Afghanistan	AGO	Luchazi
AFG	Afghanistan	AGO	Luimbe-nganguela
AFG	Afghanistan	AGO	Luvale

If you're using the mysq1 client program and want to guard against the possibility of
generating huge result sets due to forgetting a WHERE clause, invoke the program with the
--safe-updates option (which, despite its name, also affects output from joins). See Section
2.9, “Using the --safe-updates Option,” for more information.

The WHERE clause for a join specifies how to match records in the joined tables and elimi-
nates non-corresponding combinations of rows from the output. The WHERE clause also can
include additional conditions to further restrict the output and answer more specific ques-
tions. Here are some examples:

w In which countries is the Swedish language spoken? To answer this, include a condition that
identifies the language in which you are interested:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 215 Return to Table of Contents

216 CHAPTER 12 Joins

mysql> SELECT Name, Language FROM CountrylLanguage, Country
-> WHERE CountryCode = Code AND Language = 'Swedish';

Ho—mmm—m - Fommm - +
| Name | Language |
o m fommm +
Norway	Swedish
Sweden	Swedish
Finland	Swedish
Denmark	Swedish
o m Fommm +

» What languages are spoken in the country of Sweden? This question is the complement of
the previous one, and can be answered by using a condition that identifies the country
of interest rather than the language:

mysql> SELECT Name, Language FROM CountrylLanguage, Country
-> WHERE CountryCode = Code AND Name = 'Sweden';

Fo——— - o +
| Name | Language |
o it +
Sweden	Arabic
Sweden	Finnish
Sweden	Norwegian
Sweden	Southern Slavic Languages
Sweden	Spanish
Sweden	Swedish
+o-mm—— - o +

Joins can use any of the constructs allowed for single-table SELECT statements. The following
join uses the COUNT() function and a GROUP BY clause to summarize the number of languages
spoken per country, and a HAVING clause to restrict the output to include only those countries
where more than 10 languages are spoken:

mysql> SELECT COUNT(*), Name
-> FROM CountrylLanguage, Country
-> WHERE CountryCode = Code
-> GROUP BY Name
-> HAVING COUNT(*) > 10;

dommmmm———— LI L L EEEEEE Lt +
| COUNT(*) | Name |
ommmmmme- e L L L PP +
12	Canada
12	China
12	India
12	Russian Federation
11	South Africa
11	Tanzania

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 216 Return to Table of Contents

12.3 Writing Outer Joins 217

12 | United States
Fomm oo - B e +

12.2.2 Writing Inner Joins with INNER JOIN

The form of inner join syntax just discussed uses the comma operator in the FROM clause to
name the joined tables. Another inner join syntax uses the INNER JOIN keywords. With this
syntax, those keywords replace the comma operator between table names in the FROM clause.
Also, with INNER JOIN, the conditions that indicate how to perform record matching for the
tables move from the WHERE clause to become part of the FROM clause.

There are two syntaxes for specifying matching conditions with INNER JOIN queries:

= Add oN and an expression that states the required relationship between tables. Suppose
that a join performs a country code match between the CountryLanguage and Country
tables. With the comma operator, you write the join as follows:

SELECT Name, Language
FROM CountrylLanguage, Country WHERE CountryCode = Code;

With INNER JOIN and ON, write the query like this instead:

SELECT Name, Language
FROM CountrylLanguage INNER JOIN Country ON CountryCode = Code;

= If the name of the joined column is the same in both tables, you can add USING() rather
than ON after the table names, and list the name within the parentheses. For example, if
the country code column happened to be named Code in both tables, you could write
the query like this:
SELECT Name, Language
FROM CountrylLanguage INNER JOIN Country USING(Code);

If you’re joining the tables using more than one pair of like-named columns, list the
column names within the parentheses of the USING() clause separated by commas.

JOIN and CROSS JOIN are synonymous with INNER JOIN.

12.3 Writing Outer Joins

As described in the preceding sections, an inner join produces results by selecting combina-
tions of matching rows from the joined tables. However, it cannot find non-matches; that is,
instances where a row in one table has no match in another table. For example, an inner join
can associate country names listed in the Country table with the languages spoken in those
countries through a join based on country codes with the CountryLanguage table. But it can-
not tell you which countries aren’t associated with any language in the CountrylLanguage
table. Answering the latter question is a matter of identifying which country codes present in
the Country table are nor present in the CountrylLanguage table.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 217 Return to Table of Contents

218 CHAPTER 12 Joins

To write a join that provides information about mismatches or missing records, use an outer
join. An outer join finds matches (just like an inner join), but also identifies mismatches.
Furthermore, with an appropriate WHERE clause, an outer join can filter out matches to dis-
play only the mismatches.

Two common forms of outer joins are left joins and right joins. These are written using
the LEFT JOIN or RIGHT JOIN keywords rather than the comma operator or the INNER JOIN
keywords.

Left and right joins can answer the same kinds of questions and differ only slightly in their
syntax. That is, a left join can always be rewritten into an equivalent right join.

In the following sections, the terms “left table” and “right table” refer to the tables named
first and second in the FROM clause, respectively.

12.3.1 Writing LEFT JOIN Queries

A left join is a type of outer join, written using the LEFT JOIN keywords. A left join treats the
left table (the first one named) as a reference table and produces output for each row
selected from it, whether or not the row is matched by rows in the right table. Like a join
written with the INNER JOIN keywords, a LEFT JOIN is written using either ON or USING() after
the table names in the FROM clause. The examples here use the ON syntax. See Section 12.2.2,
“Writing Inner Joins with INNER JOIN,” for details on USING() syntax.

To see the difference between an inner join and a left join, begin with the former. An inner
join between the CountryLanguage and Country tables might be written like this:

mysql> SELECT Name, Language
-> FROM Country INNER JOIN CountrylLanguage ON Code = CountryCode;

o e +

| Name | Language |

B it e +

| Afghanistan | Balochi |

| Afghanistan | Dari |

| Afghanistan | Pashto |

| Afghanistan | Turkmenian |

| Afghanistan | Uzbek |

| Netherlands | Arabic |

| Netherlands | Dutch |

| Netherlands | Fries |

| Netherlands | Turkish |

| Palestine | Arabic |

| Palestine | Hebrew |

| United States Minor Outlying Islands | English |

e e +
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 218 Return to Table of Contents

12.3 Writing Outer Joins 219

That query displays information from table row combinations that have matching country
code values. A LEFT JOIN has a similar syntax (replace INNER JOIN with LEFT JOIN), but pro-
duces a different result:

mysql> SELECT Name, Language
-> FROM Country LEFT JOIN CountrylLanguage ON Code = CountryCode;

e e +
| Name | Language |
o e +
Afghanistan	Balochi
Afghanistan	Dari
Afghanistan	Pashto
Afghanistan	Turkmenian
Afghanistan	Uzbek
Netherlands	Arabic
Netherlands	Dutch
Netherlands	Fries
Netherlands	Turkish
Palestine	Arabic
Palestine	Hebrew
Antarctica	NULL
Bouvet IsTand	NULL
British Indian Ocean Territory	NULL
South Georgia and the South Sandwich Islands	NULL
Heard Island and McDonald Islands	NULL
French Southern territories	NULL
United States Minor Outlying Islands	English
it B i +

In this query, the left table is the one named first (Country) and the right table is the one
named second (CountrylLanguage).

Notice that the LEFT JOIN finds both matches and non-matches. That is, it displays all the
rows produced by the inner join, plus a few more besides:

» Ifarow from the left table matches any right table rows, the result includes for each
match a row containing the left table columns and the right table columns. These are
rows that an inner join also will produce.

» If the left table row doesn’t match any right table rows, the result includes a row con-
taining the left table column values and NULL for any columns from the right table.
These are rows that an outer join will produce but an inner join will not.

For the LEFT JOIN just shown, rows in Country not matched by any CountryLanguage rows
correspond to countries for which no language is listed. These are the extra rows not pro-
duced by an inner join. Any columns that come from CountryLanguage are set to NULL. The
NULL values serve two purposes:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 219 Return to Table of Contents

220 CHAPTER 12 Joins

» For a query such as the preceding one that displays both matches and non-matches, the
NULL values identify which output rows represent non-matches.

» Ifyou’re interested only in non-matches, you can add a condition that restricts the out-
put to only those rows that contain these NULL values.

For example, the question “Which countries have no languages listed?” is equivalent to
asking which country codes in the Country table aren’t matched by codes in the
CountryLanguage table. To answer the question, write a LEFT JOIN and require row combina-
tions to have NULL in the right table column:

mysql1> SELECT Name, Language
-> FROM Country LEFT JOIN CountrylLanguage ON Code = CountryCode
-> WHERE CountryCode IS NULL;

A o +
| Name | Language |
e o +
Antarctica	NULL
Bouvet Island	NULL
British Indian Ocean Territory	NULL
South Georgia and the South Sandwich Islands	NULL
Heard Island and McDonald Islands	NULL
French Southern territories	NULL
o Hommmm - +

Because Language is always NULL in the output, you probably would not bother displaying it:

mysql> SELECT Name
-> FROM Country LEFT JOIN CountrylLanguage ON Code = CountryCode
-> WHERE CountryCode IS NULL;

| Antarctica |
| Bouvet Island |
| British Indian Ocean Territory |
| South Georgia and the South Sandwich IsTands |
| Heard Island and McDonald Islands |
| French Southern territories |

As mentioned earlier, the order in which you name the tables in the FROM clause doesn’t mat-
ter for an inner join. The query results are the same regardless of which table you name
first. That is not true for an outer join; the output depends very much on the order in which
the tables are named. With a LEFT JOIN, the reference table should be listed on the left and
the table from which rows might be missing should be listed on the right.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 220 Return to Table of Contents

12.3 Writing Outer Joins 221

If you’re looking only for matches between tables, you can do so with either an inner or
outer join. In such cases, it’s better to use an inner join because that allows the MySQL opti-
mizer to choose the most efficient order for processing the tables. Outer joins require that
the reference table be processed first, which might not be the most efficient order.

12.3.2 Writing RIGHT JOIN Queries

A right join is another type of outer join, written using the RIGHT JOIN keywords. Every right
join corresponds to an equivalent left join. The only difference is that the roles of the tables
in a right join are reversed relative to the roles in a left join. That is, the right table is the
reference table, so a RIGHT JOIN produces a result for each row in the right table, whether or
not it has any match in the left table. Thus, if you write a LEFT JOIN as follows:

SELECT ... FROM t1 LEFT JOIN t2 ON tl_column = t2_column ...

You can convert it to a RIGHT JOIN like this:

SELECT ... FROM t2 RIGHT JOIN tl ON t2_column = t1_column

For example, a LEFT JOIN query to display countries in the Country table that have no lan-
guages listed in the CountryLanguage table can be written this way:

mysql> SELECT Name
-> FROM Country LEFT JOIN CountrylLanguage ON Code = CountryCode
-> WHERE CountryCode IS NULL;

| Antarctica |
| Bouvet Island |
| British Indian Ocean Territory |
| South Georgia and the South Sandwich Islands |
| Heard Island and McDonald Islands |
| French Southern territories |

The corresponding RIGHT JOIN looks like this:

mysql> SELECT Name
-> FROM CountrylLanguage RIGHT JOIN Country ON CountryCode = Code
-> WHERE CountryCode IS NULL;

| Antarctica |
| Bouvet Island |
| British Indian Ocean Territory |
| South Georgia and the South Sandwich Islands |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 221 Return to Table of Contents

222 CHAPTER 12 Joins

| Heard Island and McDonald Islands |
| French Southern territories |

Syntactically, converting a left join to a right join requires only that you reverse the order in
which you name the tables. It isn’t necessary to also reverse the order in which you name the
columns in the ON clause, but it can help make the query clearer to name the columns in the

same order as the tables in which they appear.

12.4 Resolving Name Clashes Using
Qualifiers and Aliases

When you join tables, it’s often the case that the tables contain columns with the same
names. If you refer to such a column in the query, it’s ambiguous which table the column
reference applies to. This ambiguity usually can be addressed by qualifying column names
with table names. However, if you join a table to itself, even the table name is ambiguous
and it’s necessary to use aliases to disambiguate table references. This section describes
how to address naming issues in queries by qualifying column and table names and by
using aliases.

12.4.1 Qualifying Column Names

In each of the joins shown earlier in this chapter, the column names are unambiguous
because no query refers to a column that appears in more than one of the joined tables. But
it will often be the case that a join involves tables that have similarly named columns. If a
column name used in the query appears in more than one table, the name is ambiguous and
it’s necessary to provide information that identifies which table you mean. To do this, qualify
the column name with the appropriate table name.

Suppose that you want to list, for each country named in the Country table, all of its cities
named in the City table. In principle, this is a simple query that associates country names
and city names based on the country codes that are common to the two tables. In practice,
there is a small complication:

mysq1> SELECT Name, Name FROM Country, City
-> WHERE Code = CountryCode;
ERROR 1052 (23000): Column: 'Name' in field Tist is ambiguous

The problem here is that the country name column in the Country table and the city name
column in the City table both are called Name. MySQL has no way to know which instance
of Name in the query goes with which table.

To resolve this ambiguity, qualify the references to Name with the appropriate table name so
that MySQL can tell which table to use for each reference:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 222 Return to Table of Contents

12.4 Resolving Name Clashes Using Qualifiers and Aliases 223

mysql> SELECT Country.Name, City.Name FROM Country, City
-> WHERE Code = CountryCode;

o o +
| Name | Name |
e o +
Afghanistan	Kabul
Afghanistan	Qandahar
Afghanistan	Herat
Afghanistan	Mazar-e-Sharif
Netherlands	Amsterdam
Netherlands	Rotterdam
Netherlands	Haag
Netherlands	Utrecht
Netherlands	Eindhoven
Netherlands	Tilburg
Netherlands	Groningen
Netherlands	Breda
Netherlands	Apeldoorn
Netherlands	Nijmegen
Netherlands	Enschede

Although it might not always be necessary to provide table qualifiers in a join, it’s always
allowable to do so. Thus, Code and CountryCode in the preceding example are unambiguous
because each appears in only one table, but you can qualify them explicitly if you want to
do so:

mysql> SELECT Country.Name, City.Name FROM Country, City
-> WHERE Country.Code = City.CountryCode;

Fmmmmm e Fommm e +
| Name | Name |
e e +
Afghanistan	Kabul
Afghanistan	Qandahar
Afghanistan	Herat
Afghanistan	Mazar-e-Sharif
Netherlands	Amsterdam
Netherlands	Rotterdam
Netherlands	Haag
NetherTlands	Utrecht
Netherlands	Eindhoven
Netherlands	Tilburg
Netherlands	Groningen
Netherlands	Breda
Netherlands	Apeldoorn
Netherlands	Nijmegen
Netherlands	Enschede

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 223 Return to Table of Contents

224 CHAPTER 12 Joins

Adding qualifiers even when they aren’t necessary to enable MySQL to understand a query
often can make the query easier for people to understand, particularly those who are
unfamiliar with the tables. Without the qualifiers, it might not be evident which table each
column comes from.

More complex queries might involve multiple ambiguous columns. For example, the Country
and City tables each have a Population column, and you can compare them to identify cities
that contain more than 75% of their country’s population:

mysql> SELECT Country.Name, Country.Population, City.Name, City.Population
-> FROM City, Country
-> WHERE City.CountryCode = Country.Code
-> AND (Country.Population * .75) < City.Population;

B ettt e o e +
| Name | Population | Name | Population |
F i Fommm B ittt F e ittt +
Falkland IsTands	2000	Stanley	1636
Gibraltar	25000	Gibraltar	27025
Cocos (Keeling) Islands	600	Bantam	503
Macao	473000	Macao	437500
Pitcairn	50	Adamstown	42
Saint Pierre and Miquelon	7000	Saint-Pierre	5808
Singapore	3567000	Singapore	4017733
F i Fommm B ittt F e ittt +

Both Name and Population require table qualifiers in this query because each is ambiguous.

12.4.2 Qualifying and Aliasing Table Names

Qualifying column names with table names resolves many column name ambiguities, but
sometimes even the table name is ambiguous. This happens in two ways.

First, you might perform a join between tables that have the same name but come from dif-
ferent databases. In this case, you provide not only table names as qualifiers, but database
names as well. Suppose that two databases wor1d1 and wor1d2 both have a table named
Country and that you want to determine which names are present in both tables. The query
can be written like this:

SELECT worldl.Country.Name
FROM worldl.Country, world2.Country
WHERE worldl.Country.Name = world2.Country.Name;

Second, a table name is always ambiguous when you join the table to itself using a self-join.
For example, the Country table in the wor1d database contains an IndepYear column indicat-
ing the year in which each country achieved independence. To find all countries that have
the same year of independence as some given country, you can use a self-join. However, you
cannot write the query like this:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 224 Return to Table of Contents

12.5 Multiple-Table UPDATE and DELETE Statements 225

mysql> SELECT IndepYear, Name, Name

-> FROM Country, Country

-> WHERE IndepYear = IndepYear AND Name = 'Qatar’';
ERROR 1066 (42000): Not unique table/alias: 'Country'

Furthermore, you cannot remove the ambiguity from column references by preceding them
with table name qualifiers because the names remain identical:

mysql> SELECT Country.IndepYear, Country.Name, Country.Name
-> FROM Country, Country
-> WHERE Country.IndepYear = Country.IndepYear
-> AND Country.Name = 'Qatar';

ERROR 1066 (42000): Not unique table/alias: 'Country'

It doesn’t even help to add a database name qualifier because the database is the same for
both tables. To address this naming issue, create an alias for one or both table references and
refer to the aliases elsewhere in the query. The aliases give you alternative unambiguous
names by which to refer to each instance of the table in the query. Here is one solution that
aliases both tables:

mysql> SELECT tl.IndepYear, tl.Name, t2.Name
-> FROM Country AS tl, Country AS t2
-> WHERE tl.IndepYear = t2.IndepYear AND tl.Name = 'Qatar';

Fo—mm - +-————- o +
| IndepYear | Name | Name |
o o oo +
1971	Qatar	United Arab Emirates
1971	Qatar	Bahrain
1971	Qatar	Bangladesh
1971	Qatar	Qatar
oo o oo +

12.5 Multiple-Table UPDATE and DELETE
Statements

MySQL allows the use of join syntax in UPDATE and DELETE statements to enable updates or
deletes that involve multiple tables. Such statements can be used to perform the following
operations:

= Update rows in one table by transferring information from another table

= Update rows in one table, determining which rows to update by referring to another
table

= Update rows in multiple tables with a single statement

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 225 Return to Table of Contents

226 CHAPTER 12 Joins

= Delete rows from one table, determining which rows to delete by referring to another
table

= Delete rows from multiple tables with a single statement

Some of the principles involved in writing joins in SELECT statements also apply to multiple-
table UPDATE and DELETE statements. This section provides a brief overview of their syntax.

A multiple-table UPDATE is an extension of a single-table statement:

» Following the UPDATE keyword, name the tables involved in the operation, separated by
commas. (You must name all the tables used in the query, even if you aren’t updating all
of them.)

= In the WHERE clause, describe the conditions that determine how to match records in the
tables.

= In the SET clause, assign values to the columns to be updated. These assignments can
refer to columns from any of the joined tables.

For example, this statement identifies matching records in two tables based on id values, and
then copies the name column from t2 to t1:

UPDATE t1, t2 SET tl.name = t2.name WHERE tl.id = t2.1id;

Multiple-table DELETE statements can be written in two formats. The following example

demonstrates one syntax, for a query that deletes rows from a table t1 where the id values
match those in a table t2:

DELETE t1 FROM t1, t2 WHERE tl.id = t2.id;

The second syntax is slightly different:

DELETE FROM t1 USING tl1, t2 WHERE tl.id = t2.id;

To delete the matching records from both tables, the statements are:
DELETE t1, t2 FROM tl1, t2 WHERE tl.id = t2.1id;
DELETE FROM t1, t2 USING tl, t2 WHERE tl.id = t2.1id;

The ORDER BY and LIMIT clauses normally supported by UPDATE and DELETE aren’t allowed
when these statements are used for multiple-table operations.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 226 Return to Table of Contents

13

Subqueries

A subquery is a SELECT statement that is placed within parentheses inside another SQL
statement. This chapter discusses how to use subqueries. It covers the following exam topics:

= Type of subqueries
» Using each type of subquery
» Converting subqueries to inner and outer joins

» Using subqueries in statements that modify tables

13.1 Types of Subqueries

In this chapter, we divide subqueries into four general categories, which affect the contexts
in which they can be used:

w Scalar subqueries return a single value; that is, one row with one column of data.
» Row subqueries return a single row with one or more columns of data.
» Colummn subqueries return a single column with one or more rows of data.

w» Tuble subqueries return a result with one or more rows containing one or more columns
of data.

The following example shows how a simple subquery works. We use the two tables Country
and Countrylanguage from the wor1d database to find the languages spoken in Finland:

mysql> SELECT Language
-> FROM CountrylLanguage
-> WHERE CountryCode = (SELECT Code

-> FROM Country
-> WHERE Name='Finland');
R e +
| Language |
+omm - +
| Estonian |

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 227 Return to Table of Contents

228 CHAPTER 13 Subqueries
| Finnish |
| Russian |
| Saame |
| Swedish |
e +

The following statement uses a subquery to determine which country has the most populous

city in the world:

mysql> SELECT Country.Name
-> FROM Country, City
-> WHERE Country.Code = City.CountryCode
-> AND City.Population = (SELECT MAX(Population)

-> FROM City);
+--—m - +
| Name |
- +
| India |
+-—————- +

As you will undoubtedly notice in many of the descriptions and examples in this section,
many uses of subqueries can be rewritten to completely equivalent (and often more efficient)
queries using joins. Nonetheless, subqueries are preferred by many as an alternative way of
specifying relations that otherwise requires complex joins or unions. Some users insist on
using subqueries simply because they find them much more readable and easier to maintain
than queries involving complex joins. Reasons to convert a subquery to a join are that the
join may be more efficient than the equivalent subquery, or you might need to run a query
using an older version of MySQL that does not support subqueries. (Subquery support was
added in MySQL 4.1.)

13.2 Subqueries as Scalar Expressions

Scalar subqueries can appear almost anywhere that a scalar value is allowed by the SQL
syntax. This means that you can use subqueries as function parameters, use mathematical
operators on subqueries that contain numeric values, and so forth. The following example
shows how to use a scalar subquery as a parameter to the CONCAT() function:

mysq1> SELECT CONCAT('The country code for Finland is: ',

-> (SELECT Code

-> FROM Country

-> WHERE Name='Finland')) AS sl;
B e e L L +
| sl |
B e e L LT +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 228 Return to Table of Contents

13.3 Correlated Subqueries 229

Notice that the subquery must be enclosed in parentheses here, just as in any other context
where a subquery may appear.

The next example shows the use of scalar subqueries in a mathematical expression that
calculates the ratio of the people living in cities to that of the world population:

mysq1> SELECT (SELECT SUM(Population) FROM City) /

-> (SELECT SUM(Population) FROM Country) AS ratio;
e +
| ratio |
+ommm— - +
| 0.24 |
+-—————- +

A scalar subquery result can be assigned to a user variable for later use. The previous exam-
ple can be written with user variables as follows:

SET @city_pop = (SELECT SUM(Population) FROM City);
SET @country_pop = (SELECT SUM(Population) FROM Country);
SELECT @city_pop / @country_pop;

There are some contexts in which scalar subqueries are not allowed. You cannot use a scalar
subquery when a literal value is required, such as for an argument in a LIMIT clause.

13.3 Correlated Subqueries

Subqueries can be non-correlated or correlated:

= A non-correlated subquery contains no references to the outer query and is not
dependent on it. As a result, a non-correlated subquery could be evaluated as a com-
pletely separate statement.

= A correlated subquery contains references to the values in the outer query and cannot
be evaluated independently of it.

In the following correlated subquery, we calculate which country on each populated conti-
nent has the largest population. The value of the column Continent, which appears in the
outer query, is used to limit which rows to consider for the MAX() calculation in the
subquery:

mysql> SELECT Continent, Name, Population

-> FROM Country c
-> WHERE Population = (SELECT MAX(Population)

-> FROM Country c2
-> WHERE c.Continent=c2.Continent
-> AND Population > 0
->);
e L e Lt e e L T - - +

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 229 Return to Table of Contents

230 CHAPTER 13 Subqueries
| Continent | Name | Population |
o e o +
Oceania	Australia	18886000
South America	Brazil	170115000
Asia	China	1277558000
Africa	Nigeria	111506000
Europe	Russian Federation	146934000
North America	United States	278357000
dommmmmmmmem e L LR P e PRt ommmmmmmeeee +

Note how the table qualifiers c and c2 are used in the example. This is necessary because
the columns that are used to correlate values from the inner and outer queries come from
different references to the same table and thus have the same name.

13.4 Comparing Subquery Results to
Outer Query Columns

The scalar subquery examples shown in previous sections use the = equality operator to
compare a single column to the value returned by the subquery. But you are not limited to
using the = equality operator. When comparing the values in the outer query with those
returned by a scalar subquery, you can use any of the usual comparison operators, such as =,

<, >, <>, and >=.

When a comparison requires a scalar subquery, it is an error if the subquery returns more
than a single value. Suppose that we wanted to find out whether there is a country that has a
city with a population of less than 100, using the following subquery:

mysql> SELECT Code c, Name
-> FROM Country
-> WHERE 100 > (SELECT Population
-> FROM City
-> WHERE CountryCode = c);
ERROR 1242 (21000): Subquery returns more than 1 row

The subquery returns more than one value, so the statement fails.

Other subquery comparison operations do not require scalar subqueries. The following sec-
tions describe operations that allow column subqueries. Section 13.5, “Comparison Using
Row Subqueries,” discusses how to compare rows.

13.4.1 Using ALL, ANY, and SOME

To perform a comparison between a scalar value and a subquery that returns several rows of
data in a single column (a column subquery), we must use a quantified comparison. The quan-
tifier keywords ALL, ANY, and SOME allow comparison to multiple-row results.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 230 Return to Table of Contents

13.4 Comparing Subquery Results to Outer Query Columns 231

Using the ALL keyword in a comparison with a column subquery limits the result set to only
those records where the comparison is true for #// values produced by the subquery.
Consider the following statement, which tells us the average country population for each of
the world’s continents:

mysql> SELECT Continent, AVG(Population)
-> FROM Country
-> GROUP BY Continent;

o e +
| Continent | AVG(Population) |
o +---g--—-E - +
Asia	72647562.7451
Europe	15871186.9565
North America	13053864.8649
Africa	13525431.0345
Oceania	1085755.3571
Antarctica	0.0000
South America	24698571.4286
o e +

Now, suppose that we would like to know all the countries in the world where the popula-
tion is larger than the average country population of all of the world’s continents. To get this
information, we can use ALL in conjunction with the > operator to compare the value of the
country population with every average continent population from the preceding result:

mysql> SELECT Name, Population
-> FROM Country
-> WHERE Population > ALL (SELECT AVG(Population)

-> FROM Country
-> GROUP BY Continent)
-> ORDER BY Name;
B it Fomm - +
| Name | Population |
Fomm - Fommm +
Bangladesh	129155000
Brazil	170115000
China	1277558000
Germany	82164700
India	1013662000
Indonesia	212107000
Japan	126714000
Mexico	98881000
Nigeria	111506000
Pakistan	156483000
Philippines	75967000
Russian Federation	146934000
United States	278357000
MySQL® 5.0 Certification Study Guide
MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 231 Return to Table of Contents

232 CHAPTER 13 Subqueries

Vietnam 7
i 9832000
e e e L e B et e +

Note that Continent has been removed from the subquery’s SELECT clause, because a quanti-
fied subquery can produce only a single column of values. If the subquery is written to select
both the Continent column and the calculated column, MySQL cannot tell which one to use
in the comparison and issues a complaint:

mysql> SELECT Name
-> FROM Country
-> WHERE Population > ALL (SELECT Continent, AVG(Population)
-> FROM Country
-> GROUP BY Continent)
-> ORDER BY Name;
ERROR 1241 (21000): Operand should contain 1 column(s)

The keyword ANY (as well as the other quantified comparison keywords) is not limited to
working with the = operator. Any of the standard comparison operators (=, <, >, <>, >=, and
so forth) may be used for the comparison.

Comparisons using the word ANY will, as the name implies, succeed for any values in the
column of data found by the subquery which succeed in the comparison. The following
example finds the countries on the European continent, and, for each one, tests whether the
country is among the worldwide list of countries where Spanish is spoken:

mysql> SELECT Name
-> FROM Country
-> WHERE Continent = 'Europe'
-> AND Code = ANY (SELECT CountryCode

-> FROM CountrylLanguage
-> WHERE Language = 'Spanish')
-> ORDER BY Name;

Fommm - +

| Name |

o +

| Andorra |

| France |

| Spain |

| Sweden |

- +

Compare that query to the following one using ALL: We run the same query, changing = ANY
to = ALL to see if the European continent covers all those countries where Spanish is spoken:

mysql> SELECT Name
-> FROM Country
-> WHERE Continent = 'Europe'
-> AND Code = ALL (SELECT CountryCode

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 232 Return to Table of Contents

13.4 Comparing Subquery Results to Outer Query Columns 233
-> FROM CountrylLanguage
-> WHERE Language = 'Spanish')

-> ORDER BY Name;
Empty set (0.00 sec)

Because the result is empty, we can conclude that the European continent is not the only
one where Spanish is spoken.

The word SOME is an alias for ANY, and may be used anywhere that ANY is used. The SQL
standard defines these two words with the same meaning to overcome a limitation in the
English language. Consider the following statement, in which we use <> ANY to negate the
sense of the previous ANY example. As you read the example, try to form a sentence in your
head to describe the output you would expect from the query (the output has been reduced
to enhance readability):

mysql1> SELECT Name
-> FROM Country
-> WHERE Continent = 'Europe'’
-> AND Code <> ANY (SELECT CountryCode
-> FROM CountrylLanguage
-> WHERE Language = 'Spanish')

| Albania
| Andorra |
| Austria

| Finland |
| France |
| Germany |

| Svalbard and Jan Mayen |
| Sweden |
| Switzerland |
| Ukraine |
| United Kingdom |
| Yugoslavia |

You probably expected this query to find “all the countries on the European continent where
Spanish is not spoken,” or something similar. Yet the query actually finds every single coun-
try on the European continent.

In the English language, we expect “not any” to mean “none at all.” However, in SQL, <>
ANY means “one or more do not match.” In other words, the statement is really saying
“return all the countries, where there are somze people that do not speak Spanish.” In our

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 233 Return to Table of Contents

CHAPTER 13 Subqueries

example, for all of the four countries where there are Spanish speakers, we do in fact also
find speakers of other languages.

To alleviate the confusion that might arise from the use of <> ANY, the SQL standard
includes the SOME keyword as a synonym for ANY. Using the <> SOME construct makes it easier
to understand the expected outcome of the SQL statement:

SELECT Name
FROM Country
WHERE Continent = 'Europe'
AND Code <> SOME (SELECT CountryCode
FROM CountrylLanguage
WHERE Language = 'Spanish')
ORDER BY Name;

13.4.2 Using IN

From Section 10.6.1, “Comparison Functions,” you are already familiar with the variant of
IN that may be used in an expression, as shown in the following example:
mysql> SELECT Name

-> FROM Country
-> WHERE Code IN ('DEU', 'USA', 'JPN');

o +
| Name |
Fomm e +
| Germany |
| Japan |
| United States |
e +

In this case, using IN is merely a shorthand for writing WHERE Code="'DEU" OR Code="'USA' OR
Code="JPN". It has nothing to do with subqueries.

When 1IN is used with a subquery, it is functionally equivalent to = ANY (note that the = sign
is part of the equivalence). Many consider IN to be more readable than = ANY, because what
you really want to know is “does this value appear in the subquery?” As an example, consider
the equivalent IN version of the = ANY example shown in the previous section:

q P p

SELECT Name
FROM Country
WHERE Continent = 'Europe'
AND Code IN (SELECT CountryCode
FROM CountrylLanguage
WHERE Language = 'Spanish')
ORDER BY Name;

IN cannot be combined with any comparison operators such as = or <>.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 234 Return to Table of Contents

13.4 Comparing Subquery Results to Outer Query Columns 235

NOT IN is another “shorthand.” However, it is 7ot an alias of <> ANY as you might otherwise
expect. It is an alias of <> ALL. In other words, NOT IN is only true if none of the records of
the subquery can be matched by the outer query. In the example for SOME, we demonstrated
that <> ANY would return records of countries where some people didn’t speak Spanish. The
same query, using NOT IN (thatis, <> ALL) will return only those countries where Spanish is
not spoken at all. Although it may seem logically flawed that IN and NOT IN are aliases of two
very different statements, it fits better with the way that we usually understand the equiva-
lent English terms.

13.4.3 Using EXISTS

The EXISTS predicate performs a simple test: It tells you whether the subquery finds any
rows. It does not return the actual values found in any of the rows, it merely returns TRUE if
any rows were found. As does one of our previous examples, the following example finds
countries on the European continent where Spanish is spoken. But with this query, no actual
comparison is made between the data in the outer query and the rows found in the inner
query.
mysql1> SELECT Code c, Name

-> FROM Country

-> WHERE Continent = 'Europe'’
-> AND EXISTS (SELECT *

-> FROM CountrylLanguage
-> WHERE CountryCode = c
-> AND Language = 'Spanish');

EEEEET e +

| ¢ | Name |

+----= +o-mmm - +

| AND | Andorra |

| ESP | Spain |

| FRA | France |

| SWE | Sweden |

+---—= +ommm +

The use of SELECT * in EXISTS subqueries is purely by tradition. You can use a different col-
umn list as long as the subquery is syntactically correct. No column values are ever needed
for comparison, so MySQL never actually evaluates the column list given in the subquery
SELECT. For example, you could replace the * with a constant value such as 1, 0, or even NULL.

EXISTS can be negated using NOT EXISTS, which, as the name implies, returns TRUE for sub-
query result sets with no rows. Replacing EXISTS with NOT EXISTS in the previous example
shows those 42 countries on the European continent in which Spanish is not spoken at all.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 235 Return to Table of Contents

236 CHAPTER 13 Subqueries

13.5 Comparison Using Row Subqueries

For row subqueries, we can perform an equality comparison for all columns in a row. The
subquery must return a single row. This method of comparison is not often used, but can
provide some convenience for certain comparison operations. In the following example, we
find the name of the capital of Finland. The query makes use of the fact that the city’s name
is stored in the City table, whereas the ID of a country’s capital city is stored in the Country
table:

mysql> SELECT City.Name

-> FROM City
-> WHERE (City.ID, City.CountryCode) =
-> (SELECT Capital, Code
-> FROM Country
-> WHERE Name='Finland');
B ettt b +
| Name |
e +
| Helsinki [Helsingfors] |
B +

Notice the use of the construct (City.ID, City.CountryCode). This creates a tuple of values
and is known as a “row constructor.” An equivalent method of defining a row is using ROWQ),
to underscore the fact that the values are used to construct a row of data for comparison. In
this case, we would have written ROW(City.ID, City.CountryCode).

Trying to compare a tuple created by the row constructor with a subquery that returns sev-
eral rows at once produces an error. The following example is similar to the preceding one,
but does not work because there is no limit on the number of rows returned by the sub-

query:
mysql> SELECT City.Name
-> FROM City
-> WHERE (City.ID, City.CountryCode) =
-> (SELECT Capital, Code
-> FROM Country);

ERROR 1242 (21000): Subquery returns more than 1 row

Row constructors can be used only for equality comparison using the = operator. You may
not use other comparison operators such as <, >, or <>; nor may you use special words such
as ALL, ANY, IN, or EXISTS.

Row constructors are commonly used with row subqueries, but they can be used in other
contexts, and they may contain any type of scalar expression. For example, the following is a
legal statement:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 236 Return to Table of Contents

13.6 Using Subqueries in the FROM Clause 237

mysql> SELECT Name, Population
-> FROM Country
-> WHERE (Continent, Region) = ('Europe', 'Western Europe');

oo it +
| Name | Population |
oo e +
Netherlands	15864000
Belgium	10239000
Austria	8091800
Liechtenstein	32300
Luxembourg	435700
Monaco	34000
France	59225700
Germany	82164700
Switzerland	7160400
e Fommm e +

In practice, row constructors are often inefficient when used like this, so it is more common
to write the equivalent expression using AND. The query optimizer performs better if you
write the WHERE clause like this:

SELECT Name, Population
FROM Country
WHERE Continent = 'Europe' AND Region = 'Western Europe';

13.6 Using Subqueries in the FROM Clause

Subqueries may be used in the FROM clause of a SELECT statement. In the following query, we
find the average of the sums of the population of each continent:

mysql1> SELECT AVG(cont_sum)
-> FROM (SELECT Continent, SUM(Population) AS cont_sum

-> FROM Country
-> GROUP BY Continent
->) AS t;
e L LT +
| AVG(cont_sum) |
e L +
| 868392778.5714 |
R L L e +

Every table that appears in a FROM clause must have a name, so a subquery in the FROM clause
must be followed by a table alias.

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 237 Return to Table of Contents

238 CHAPTER 13 Subqueries

The SELECT in the FROM clause can be a table subquery, even if not all of its values are used by
the outer query. This is shown by the preceding example, where the Continent column
selected by the subquery is not used by the outer query.

Subqueries in FROM clauses cannot be correlated with the outer statement.

13.7 Converting Subqueries to Joins

Standard SQL allows a SELECT statement to contain a nested SELECT, which is known as a
subquery. MySQL implements subqueries as of version 4.1. For MySQL 4.0 and earlier,
subqueries sometimes can be rewritten as joins, which provides a workaround for lack of
subqueries in many cases. Even for MySQL 4.1 and up, a join might be handled by the opti-
mizer more efficiently than an equivalent statement expressed as a subquery.

A subquery that finds matches between tables often can be rewritten as an inner join. A sub-
query that finds mismatches often can be rewritten as an outer join. The following sections
describe how to do this.

13.7.1 Converting Subqueries to Inner Joins

One form of SELECT that uses subqueries finds matches between tables. For example, an IN

subquery that identifies countries for which languages are listed in the CountryLanguage table
looks like this:

mysq1> SELECT Name FROM Country
-> WHERE Code IN (SELECT CountryCode FROM CountrylLanguage);

| Afghanistan |
| Netherlands |
| Netherlands Antilles

| Albania |
| Algeria |
| American Samoa

| Andorra |
| Angola |
| Anguilla

| Antigua and Barbuda |
| United Arab Emirates

| Argentina |

To convert this into an inner join, do the following:

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Ppage 238 Return to Table of Contents

13.7 Converting Subqueries to Joins 239

1. Move the CountryLanguage table named in the subquery to the FROM clause.

2. The WHERE clause compares the Code column to the country codes returned from the
subquery. Convert the IN expression to an explicit direct comparison between the
country code columns of the two tables.

These changes result in the following inner join:

mysq1> SELECT Name FROM Country, CountrylLanguage
-> WHERE Code = CountryCode;

=
oY)
3
m

Afghanistan |
Afghanistan |
Afghanistan |
Afghanistan |
Afghanistan |
Netherlands |
Netherlands |
Netherlands |
Netherlands |
Netherlands Antilles |
Netherlands Antilles |
Netherlands Antilles |

Note that this output is not quite the same as that from the subquery, which lists each
matched country just once. The output from the join lists each matched country once each
time its country code occurs in the CountryLanguage table. To list each name just once, as in
the subquery, add DISTINCT to the join:

mysql> SELECT DISTINCT Name FROM Country, CountrylLanguage
-> WHERE Code = CountryCode;

=
oY)
3
]

Afghanistan |
Netherlands |
NetherTlands Antilles |
Albania |
Algeria |
American Samoa

Andorra |
Angola |
Anguilla |
Antigua and Barbuda

MySQL® 5.0 Certification Study Guide

MySQL® 5.0 Certification Study Guide By Paul DuBois, Stefan Hinz, Carsten Pedersen Prepared for Francisco Leon Nieto, Safari ID: Francisco.Leon@Sun.COM
ISBN: 0672328127 Publisher: MySQL Press Licensed by Francisco Leon Nieto
Print Publication Date: 2005/08/24 User number: 1276591

© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

MySQL® 5.0 Certification Study Guide Page 239 Return to Table of Contents

240 CHAPTER 13 Subqueries

| United Arab Emirates |
| Argentina |

13.7.2 Co