
 < Day Day Up >

Mastering FreeBSD and OpenBSD Security

By Paco Hope, Yanek Korff, Bruce Potter

...

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00626-8

Pages: 464

Table of Contents | Index | Errata

FreeBSD and OpenBSD are increasingly gaining traction in educational institutions, non-profits, and corporations worldwide because

they provide significant security advantages over Linux. Although a lot can be said for the robustness, clean organization, and stability of

the BSD operating systems, security is one of the main reasons system administrators use these two platforms.

There are plenty of books to help you get a FreeBSD or OpenBSD system off the ground, and all of them touch on security to some

extent, usually dedicating a chapter to the subject. But, as security is commonly named as the key concern for today's system

administrators, a single chapter on the subject can't provide the depth of information you need to keep your systems secure.

FreeBSD and OpenBSD are rife with security "building blocks" that you can put to use, and Mastering FreeBSD and OpenBSD Security

shows you how. Both operating systems have kernel options and filesystem features that go well beyond traditional Unix permissions

and controls. This power and flexibility is valuable, but the colossal range of possibilities need to be tackled one step at a time. This book

walks you through the installation of a hardened operating system, the installation and configuration of critical services, and ongoing

maintenance of your FreeBSD and OpenBSD systems.

Using an application-specific approach that builds on your existing knowledge, the book provides sound technical information on

FreeBSD and Open-BSD security with plenty of real-world examples to help you configure and deploy a secure system. By imparting a

solid technical foundation as well as practical know-how, it enables administrators to push their server's security to the next level. Even

administrators in other environments--like Linux and Solaris--can find useful paradigms to emulate.

Written by security professionals with two decades of operating system experience, Mastering FreeBSD and OpenBSD Security features

broad and deep explanations of how how to secure your most critical systems. Where other books on BSD systems help you achieve

functionality, this book will help you more thoroughly secure your deployments.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.oreilly.com/catalog/mfreeopenbsd/errata/

 < Day Day Up >

Mastering FreeBSD and OpenBSD Security

By Paco Hope, Yanek Korff, Bruce Potter

...

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00626-8

Pages: 464

Table of Contents | Index | Errata

 Copyright

 Preface

 Audience

 Assumptions This Book Makes

 Contents of This Book

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Safari Enabled

 Acknowledgments

 Part I: Security Foundation

 Chapter 1. The Big Picture

 Section 1.1. What Is System Security?

 Section 1.2. Identifying Risks

 Section 1.3. Responding to Risk

 Section 1.4. Security Process and Principles

 Section 1.5. System Security Principles

 Section 1.6. Wrapping Up

 Section 1.7. Resources

 Chapter 2. BSD Security Building Blocks

 Section 2.1. Filesystem Protections

 Section 2.2. Tweaking a Running Kernel: sysctl

 Section 2.3. The Basic Sandbox: chroot

 Section 2.4. Jail: Beyond chroot

 Section 2.5. Inherent Protections

 Section 2.6. OS Tuning

 Section 2.7. Wrapping Up

 Section 2.8. Resources

 Chapter 3. Secure Installation and Hardening

 Section 3.1. General Concerns

 Section 3.2. Installing FreeBSD

 Section 3.3. FreeBSD Hardening: Your First Steps

 Section 3.4. Installing OpenBSD

 Section 3.5. OpenBSD Hardening: Your First Steps

 Section 3.6. Post-Upgrade Hardening

 Section 3.7. Wrapping Up

 Section 3.8. Resources

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
toc.html
http://www.oreilly.com/catalog/mfreeopenbsd/errata/

 Chapter 4. Secure Administration Techniques

 Section 4.1. Access Control

 Section 4.2. Security in Everyday Tasks

 Section 4.3. Upgrading

 Section 4.4. Security Vulnerability Response

 Section 4.5. Network Service Security

 Section 4.6. Monitoring System Health

 Section 4.7. Wrapping Up

 Section 4.8. Resources

 Part II: Deployment Situations

 Chapter 5. Creating a Secure DNS Server

 Section 5.1. The Criticality of DNS

 Section 5.2. DNS Software

 Section 5.3. Installing BIND

 Section 5.4. Installing djbdns

 Section 5.5. Operating BIND

 Section 5.6. Operating djbdns

 Section 5.7. Wrapping Up

 Section 5.8. Resources

 Chapter 6. Building Secure Mail Servers

 Section 6.1. Mail Server Attacks

 Section 6.2. Mail Architecture

 Section 6.3. Mail and DNS

 Section 6.4. SMTP

 Section 6.5. Mail Server Configurations

 Section 6.6. Sendmail

 Section 6.7. Postfix

 Section 6.8. qmail

 Section 6.9. Mail Access

 Section 6.10. Wrapping Up

 Section 6.11. Resources

 Chapter 7. Building a Secure Web Server

 Section 7.1. Web Server Attacks

 Section 7.2. Web Architecture

 Section 7.3. Apache

 Section 7.4. thttpd

 Section 7.5. Advanced Web Servers with Jails

 Section 7.6. Wrapping Up

 Section 7.7. Resources

 Chapter 8. Firewalls

 Section 8.1. Firewall Architectures

 Section 8.2. Host Lockdown

 Section 8.3. The Options: IPFW Versus PF

 Section 8.4. Basic IPFW Configuration

 Section 8.5. Basic PF Configuration

 Section 8.6. Handling Failure

 Section 8.7. Wrapping Up

 Section 8.8. Resources

 Chapter 9. Intrusion Detection

 Section 9.1. No Magic Bullets

 Section 9.2. IDS Architectures

 Section 9.3. NIDS on BSD

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Section 9.4. Snort

 Section 9.5. ACID

 Section 9.6. HIDS on BSD

 Section 9.7. Wrapping Up

 Section 9.8. Resources

 Part III: Auditing and Incident Response

 Chapter 10. Managing the Audit Trails

 Section 10.1. System Logging

 Section 10.2. Logging via syslogd

 Section 10.3. Securing a Loghost

 Section 10.4. logfile Management

 Section 10.5. Automated Log Monitoring

 Section 10.6. Automated Auditing Scripts

 Section 10.7. Wrapping Up

 Section 10.8. Resources

 Chapter 11. Incident Response and Forensics

 Section 11.1. Incident Response

 Section 11.2. Forensics on BSD

 Section 11.3. Digging Deeper with the Sleuth Kit

 Section 11.4. Wrapping Up

 Section 11.5. Resources

 Colophon

 Index

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are

also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional

sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly

Media, Inc. Mastering FreeBSD and OpenBSD Security, the image of the fencers, and related trade dress

are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a

trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
mfreeopenbsd-PREFACE-1.html
http://safari.oreilly.com
mailto:corporate@oreilly.com

 < Day Day Up >

Preface

Before I built a wall I'd ask to know

What I was walling in or walling out,

And to whom I was like to give offence.

Something there is that doesn't love a wall,

That wants it down.

—Robert Frost

"Mending Wall"

 FreeBSD and OpenBSD are often considered the "other" free operating systems besides Linux. However,

in recent Netcraft surveys, the five most reliable web sites on the planet run FreeBSD. OpenBSD, too, is

deployed on thousands of security servers around the world. These two BSD-based operating systems are

rapidly gaining traction in educational institutions, non-profits, and corporations worldwide.

Plenty of books exist to help you get a FreeBSD or OpenBSD system off the ground. All of them touch on

security, but most only dedicate a chapter to it. In sharp contrast, we think it's worth spending an entire book

on the subject. FreeBSD and OpenBSD are rife with security "building blocks" that you can use to really take

security and "kick it up a notch."

These operating systems have kernel options and filesystem features that go well beyond traditional Unix

permissions and controls. This power and flexibility is valuable, but the colossal range of possibilities will

leave you dizzy if you don't take things one step at a time. Mastering FreeBSD and OpenBSD Security

complements existing books on FreeBSD and OpenBSD administration. Where others help you achieve

functionality, we help you build security-minded deployments. This book walks you through the installation of

a hardened operating system, the installation and configuration of critical services, and ongoing maintenance

of your FreeBSD and OpenBSD systems.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html
mfreeopenbsd-PREFACE-2.html

 < Day Day Up >

Audience

This book is written by system administrators for system administrators. If you're looking for a complete idiot

or dummy guide, this book is not for you. We're talking to administrators who have installed a Unix-like

operating system before. Almost any will do, but this book is all about what sets FreeBSD and OpenBSD

apart from other Unices. You'll get the most out of this book if you're comfortable administering BSD

operating systems and want to take your experience one step farther.

Administrators at various skill levels and in organizations of any size can benefit from secure BSD systems.

Junior administrators who know how to get a Unix system off the ground can use this book to develop a

sound foundation in systems security. Experienced administrators, like experienced cooks, will find new

recipes that they can add to their existing repertoire. If you're part of (or all of) a small staff that runs only a

handful of servers, you'll see how choosing one of the BSDs can let you spend less time on security concerns

and more on your other duties. If you're part of a large staff running many servers, you'll see how BSD

servers can be solid pillars in your infrastructure. They're easy to deploy and scale, and maintaining them is a

breeze. Securing them is easy enough, too, with the help of this book.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html
mfreeopenbsd-PREFACE-2-SECT-1.html

 < Day Day Up >

Assumptions This Book Makes

We're really focused on improving the skill set of an established system administrator, so we aren't going to

explain a lot of basics. We assume you can find your way to a command line and work your way through the

filesystem with speed and grace. We expect that you already have a solid understanding of basic Unix

permissions, are comfortable installing and configuring hardware and software, and so on.

If at any time you feel you're in over your head, fear not. Both operating systems have strong followings and

easy to find documentation for all the basics. You can look at FAQs, HOWTOs, and handbooks online, or you

can buy one of the many good references in print. The "Resources" section at the end of every chapter

always lists good resources that provide additional coverage of relevant topics. In many cases, these

additional resources provide the foundation in the technology you need to leverage the recommendations in

this book.

The Internet is everywhere, and every administrator needs a basic understanding of local- and wide-area

networking. We're not going to tell you what TCP/IP is, how DHCP works, or how to cable up your switches

and hubs. We'll explain what you need to know when we get into a security topic that is rooted in the deep,

dark corners of a protocol specification or some other relatively obscure topic. Network security and

configuration are important, but we assume you've already got that under control.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html
mfreeopenbsd-PREFACE-2-SECT-2.html

 < Day Day Up >

Contents of This Book

We've tried to break the book up into three sections. We begin by establishing a foundation in FreeBSD and

OpenBSD, move on to discuss specific deployment scenarios based on this foundation, and we wrap up with

a broader look at these operating systems in your existing network.

Part I: Security Foundation

The goal of Part I is to give you the foundation for building and running secure systems with FreeBSD or

OpenBSD.

Chapter 1 is an introduction to system security and general security topics that are relevant to the rest of our

discussion. It tells you what you're up against and gives you some ideas about how we'll approach securing

systems.

Chapter 2 is all about the fundamental building blocks you get for securing systems based on either

OpenBSD or FreeBSD. There are some differences, so we highlight those as we go. We cover filesystem

features, kernel features, inherent operating system features, and tweaking your kernel to enhance specific

security postures.

Chapter 3 augments what you already know about installation. We explore the security-related options,

trade-offs, and configurations you must consider when installing. We walk through installing both FreeBSD

and OpenBSD, but dwell mainly on areas where choices at installation time can have important security

ramifications.

Chapter 4 is a tour de force of administration concerns. You've got it installed, you're running it day-to-day, so

now what? We describe controlling access, installing and upgrading software, network security, backups, and

system monitoring.

Part II: Deployment Situations

Every server has a specific purpose in life, and FreeBSD and OpenBSD systems are ideal candidates for

handling critical infrastructure services like DNS servers, firewalls, mail gateways, and web servers. Part II

covers these deployments and how you can leverage specific BSD features to improve the security posture

of the services you provide. We don't tell you everything about deploying the specific service, however; just

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html
mfreeopenbsd-PREFACE-2-SECT-3.html

the extra options and special circumstances where you can take advantage of OpenBSD or FreeBSD. The

goal of this section is to offer guidelines for securely deploying the software that will run critical services in

your network.

With each of these critical network services, we take time to explain the kinds of risks you face, the sorts of

attacks you might need to repel, and why you and your organization care about running the service securely.

When we talk about installing and configuring software, though, we refer back to the general techniques and

building blocks that we laid out in Part I. You'll want to be at least passingly familiar with the techniques,

because we combine them in interesting and sometimes subtle ways.

Chapter 5 describes DNS and how to build a secure DNS server. DNS is critical to every Internet service,

and getting it right is fundamentally important, so we cover it first. We talk about both BIND and djbdns and

how they can be installed, configured, and operated securely.

Chapter 6 covers mail: arguably the most critical electronic communication you support in your organization.

We discuss setting up a secure mail architecture as well as filtering and rejecting unwanted mail. We

describe both Sendmail and Postfix and how to securely install, configure, and administer them.

Chapter 7 offers a wealth of information on securing Apache-based web servers. We cover risks and threats,

configuration and installation, and managing what options your users can set. We also describe thttpd, a

small, fast, no-frills web server that can perform admirably in certain situations. In the end we talk about some

interesting combinations of FreeBSD's jails and web servers to isolate and contain lots of web sites in their

own sandboxes.

Chapter 8 is about building firewalls. OpenBSD and FreeBSD make excellent choices as firewall platforms.

Getting a firewall operational isn't too hard, but making sure that it's appropriately secured needs to be done

carefully. In this chapter, we'll talk about ipfw on FreeBSD and pf now available on both platforms.

Chapter 9 outlines the topic of intrusion detection system (IDS) on FreeBSD or OpenBSD. We cover the

purposes for using IDSes as well as alternative approaches such as log analysis and intrusion prevention.

We give you some good guidance on how to build an effective architecture and monitor it for nefarious

activity.

Part III: Auditing and Incident Response

Auditing and incident response are topics in system administration theory that are critical but often

overlooked. They are not specific services that you run as much as concerns you keep in the back of your

mind all the time.

Chapter 10 talks about managing the audit trails. A properly configured system should be warning you about

suspicious activity, but how do you manage all the alerts and warnings? We talk about what you want to log,

how you can log it securely, and how to manage the logs you generate.

Chapter 11 describes incident response and computer forensics. When the inevitable happens and you have

an incident to respond to, how will you do it? We talk about responding to attacks, and tracking down how the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

attack succeeded, through forensic analysis.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Conventions Used in This Book

We use both typography and common Unix documentation conventions to give you additional information in

the text.

Typographic Conventions

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and

Ctrl).

Italic

Indicates new or technical terms, system calls, URLs, hostnames, email addresses, filenames, file

extensions, pathnames, and directories.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, objects, HTML

tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html
mfreeopenbsd-PREFACE-2-SECT-4.html

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

There are times when it is very important to pay attention to the typography because it distinguishes between

two similarly named, but different concepts. For example, the host command and the /etc/hosts file, or the

jail(2) system call versus the jail(8) command. Sometimes the typeface is an important clue to help you

remember which one we're referring to in a given context.

Conventions in Examples

You will see two different prompts in the examples we give for running commands. We follow the

time-honored Unix convention of using % to represent a non-root shell (e.g., one running as your normal user

ID) and # to represent a root-equivalent shell. Commands that appear after a % prompt can (and probably

should) be run by an unprivileged user. Commands that appear after a # prompt must be run with root

privileges. Example P-1 shows three different commands that illustrate this point.

Example P-1. Several commands with different prompts

% ls -lo /var/log

% sudo ifconfig lo0 127.0.0.2 netmask 255.255.255.255

shutdown -r now

The ls command runs as a normal user. The ifconfig command runs as root, but only because a normal user

uses sudo to elevate his privileges momentarily (sudo is discussed in detail in Chapter 4). The last

command shows the # prompt, assuming that you have already become root somehow before executing the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

shutdown command.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your

programs and documentation. You do not need to contact us for permission unless you're reproducing a

significant portion of the code. For example, writing a program that uses several chunks of code from this

book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books does

require permission. Answering a question by citing this book and quoting example code does not require

permission. Incorporating a significant amount of example code from this book into your product's

documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and

ISBN. For example: Mastering FreeBSD and OpenBSD Security by Yanek Korff, Paco Hope, and Bruce

Potter. Copyright 2005 O'Reilly Media, Inc., 0-596-00626-8.

If you feel your use of code examples falls outside fair use or the permissions given above, feel free to

contact us at permissions@oreilly.com.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mfreeopenbsd-PREFACE-2-SECT-5.html
mailto:permissions@oreilly.com

 < Day Day Up >

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can

access this page at:

http://www.oreilly.com/catalog/mfreeopenbsd/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our

web site at:

http://www.oreilly.com

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
mfreeopenbsd-PREFACE-2-SECT-6.html
http://www.oreilly.com/catalog/mfreeopenbsd/
file:///C:/DOCUME~1/leetg/LOCALS~1/Temp/Mastering_FreeBSD_and_OpenBSD_Security__OReilly-1ed__2005.chm/0596006268/bookquestions@oreilly.com
http://www.oreilly.com

 < Day Day Up >

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,

that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of

top tech books, cut and paste code samples, download chapters, and find quick answers when you need the

most accurate, current information. Try it for free at http://safari.oreilly.com.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
mfreeopenbsd-PREFACE-2-SECT-7.html
http://safari.oreilly.com

 < Day Day Up >

Acknowledgments

Many people helped make this book possible, some of them in big ways and others in critical, yet nearly

invisible ways. We'd like to acknowledge them here.

Yanek Korff

First and foremost, I'd like to thank my wife, whose patience continues to surprise me. This book would never

have been possible without her help and her support. Also, although she's not old enough to harbor a grudge

or appreciate gratefulness, I'd like to thank my one-year-old daughter. She's only ever known a workaholic

father and doesn't realize she should be jealous.

An obvious thank you to my parents for putting me on the road to geekdom back in early 90s, and of course

putting me through college. May my educators forgive me for everything I've forgotten.

I'd also like to thank Viren Shah who introduced me to FreeBSD. I wouldn't be where I am today without the

support and mentoring he's provided me over the years.

Finally, thanks to my good friend Matt Rowley, owner of much computer junk. Some of that junk and the

advice that came with it were integral to this book's creation.

Paco Hope

I'd like to thank my wife, Rebecca, who administered everything that doesn't run FreeBSD (like children,

houses, and pets) while I was building Frankenstein's BSD lab in our basement. I am grateful for my time in

the Department of Computer Science at the University of Virginia, where I cut my teeth as a system

administrator. I thank the folks at Cigital, Inc. for introducing me to risk-based approaches to software and

system security. Lastly, I thank Adrian Filipi, who gave me my first BSD/386 floppies back in 1993.

Bruce Potter

I would like to thank my wife for being incredibly understanding throughout the writing of this book and the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html
mfreeopenbsd-PREFACE-2-SECT-8.html

million other things I had going on in the last year. She was amazing, even when I was not. I'd like to thank

my kids, Terran and Bobby, and "Uncle Andy" for giving me time to write. Also, I would like to thank all the

members of The Shmoo Group for helping me become the geek I am today. Without their friendship and

expertise, I don't know where my career would be today (full of moose, no doubt). The same goes to my folks

who supported me through my fits and starts in college. And finally, a specific thanks to Joel Sadler, who

gave me my first FreeBSD disk in 1995 telling me, "Here, try this. It's better than Linux."

Our Reviewers

We appreciate all the feedback we received from our technical reviewers. They definitely kept us on our toes

and made this book better by lending their expert advice and opinions. Thanks to Flávio Marcelo Amaral, Ren

Bitonio, Mark Delany, Adrian Filipi, Eric Jackson, Jose Nazario, Neil Neely, Wayne Pascoe, Viren Shah, and

Shi-Min Yeh.

O'Reilly

Finally, we thank the staff at O'Reilly, especially Tatiana Diaz, Nathan Torkington, Allison Randal, David Chu,

Andrew Savikas, and the innumerable others who have made this book a reality without our knowledge of

their existence. An extra thank you goes to Tatiana for helping us reboot this effort after it locked up in the

middle of 2004.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Part I: Security Foundation

The goal of Part I is to give you the foundation for building and running secure systems

with FreeBSD or OpenBSD.

Chapter 1, The Big Picture

Chapter 2, BSD Security Building Blocks

Chapter 3, Secure Installation and Hardening

Chapter 4, Secure Administration Techniques

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html
mfreeopenbsd-PART-1.html

 < Day Day Up >

Chapter 1. The Big Picture

First we crack the shell, then we crack the nuts inside.

—Rumble

The Transformers: The Movie

Security is hard. We have all heard this phrase as a rationale for insecure systems and poor administrative

practices. What's worse, administrators seem to have different ideas about what "security" entails. There are

two common approaches to securing systems: some view security as a destination while others see it as a

journey.

Those who see security as a destination tend to characterize system security in terms of black and white;

either a system is secure or it is not. This implies that you can attain security. You can arrive at the end of a

journey and you'll somehow be secure; you win. One problem with this viewpoint is determining where

"there" is. How do you know when you've arrived? Furthermore, how do you stay there? As your system

changes, are you still at your secure goal? Did you move away from it, orwere you not there to begin with?

As you can probably tell, this is not our philosophy.

 Instead of being a destination, we think security is best described as a journey—a product of ongoing risk

management. Rather than trying to make your system impregnable, you continually evaluate your exposure

to risks and keep the system as secure as you need it to be. An appropriate level of security is achieved

when the risks facing a system balance against the level of effort spent mitigating those risks. No one buys a

$5,000 vault to safeguard a pair of fuzzy slippers. You judge the value of what you're protecting against the

kinds of threats it faces and the likelihood those threats will succeed, and then you apply appropriate

safeguards. This is a much more practical way to view modern day information security.

When following a risk mitigation process, you will periodically pass up the opportunity to enable certain

security mechanisms, even though you're capable of doing so. The additional effort may not be warranted

given the level of risk your organization faces. You will eventually reach a point of diminishing returns where

you simply accept some risks because they are too costly to mitigate relative to the likelihood of the threat or

the actual damage that would occur. Sure, it may be fun to use encrypted filesystems, store all OS data on a

CD-ROM, and deploy every other countermeasure you can think of, but do you really need to?

We define security in the context of risk. Risk is present as long as the system exists, and risks are

constantly changing, so security cannot be a destination; it must be an ongoing process. "Doing security,"

then, is an iterative process of identifying and responding to risks. This is the philosophy that we encourage

you to take in securing your infrastructure.

As you'll see in the rest of this book, FreeBSD and OpenBSD are robust operating systems that offer myriad

ways to maintain secure systems. Throughout the book we provide security-minded walkthroughs of software

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html
mfreeopenbsd-CHP-1.html

installation, configuration, and maintenance. Along the way you'll notice that we seem to point out more

security-related configuration options than you care to implement. Just because we explore options doesn't

mean that you should implement them. Come at it from the perspective of managing risk and you'll maximize

the cost-benefit of "doing security."

Before we get ahead of ourselves, however, we need to cover a few concepts and principles. In this chapter,

we define system security, specifically for OpenBSD and FreeBSD systems, but also more generally. We

look at a variety of attacks so that you, as an administrator, will have some perspective on what you're trying

to defend against. We'll look at risk response and describe how exactly you can go about securing your

FreeBSD and OpenBSD systems.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

1.1. What Is System Security?

 Security professionals break the term security into three parts: confidentiality, integrity, and availability. This

"CIA Triad" is a set of security requirements; if you're not taking into account all three of these concerns,

you're not working towards providing security. We offer a lot of recommendations in this book that should

help you work towards building secure systems, but we don't tell you how these recommendations fit in with

the CIA Triad. That's not what this book is about, and it would detract from the real message. Nevertheless,

as you're looking at building encrypted tunnels for transferring files, jailing applications, and so on, think about

what part of the Triad you're focusing on. Make sure you've addressed all three parts before your project is

done.

Whether we're talking about physical security, information security, network security, or system security, the

CIA Triad applies. The question is, exactly how does it apply to system security?

1.1.1. Confidentiality

 Confidentiality is all about determining the appropriate level of access to information. Confidentiality is

often implemented at the most basic level on FreeBSD and OpenBSD systems by traditional Unix

permissions. There are a variety of files scattered across the filesystem that are readable only by the root

user. Most notable, perhaps, is /etc/master.passwd, which contains hashes for users' passwords. The vast

majority of files are readable by everyone, however. Even system configuration files like /etc/resolv.conf,

/etc/hosts, and so on are world readable. Is this wrong? Not necessarily. Again, confidentiality isn't about

having to protect data from prying eyes; it's about classifying data and making sure that information deemed

sensitive in some way is protected appropriately.

 Filesystem level protections are of course only one facet of confidentiality. Data may be exposed

through some service designed to serve information like DNS, or a web server. In these cases, the method

you employ to protect data won't necessarily be filesystem permissions; perhaps you'll control what systems

are allowed to query your DNS server, or which web-authenticated users are permitted to view a certain

document tree. When you need to protect data from eavesdropping as it moves across a network, you'll

probably use encryption. When implemented appropriately, it helps ensure that only the intended recipient

can read the transmitted data.

1.1.2. Integrity

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html
mfreeopenbsd-CHP-1-SECT-1.html

 Data integrity relates to trust. If you cannot guarantee the integrity of some information on your system,

you can't trust it. Consequently, resources for which integrity is an important issue need to be identified and

appropriately protected against modification.

Confidentiality may not have been an issue for your /etc/resolv.conf file. Allowing users to see what

resolvers your system depends on is okay. Allowing users to modify the list of resolvers is not! Your system's

resolvers are a data source. When you access a server providing anonymous CVS access to your OpenBSD

sources, your system will ask one of the servers listed in /etc/resolv.conf to find the IP address for the name

you provided. If you can't guarantee the integrity of the data in this file, you can't trust the IP address you get

from the resolver. As a consequence, you can't trust the sources you download either.

Like confidentiality, the filesystem permissions model helps enforce data integrity. Unfortunately file

permissions aren't enough by themselves. If someone has broken through your filesystem protections

somehow, you won't know that your data has been tampered with. That is, not without good auditing.

Moreover, you won't be able to restore a known good configuration without data backups.

Data integrity is also an issue during network transfers. How can you be sure that the information has not

been modified in transit? The BSD operating systems will provide "signatures," which uniquely identify file

distributions. When you download a package or source tarball or install a port, you can check your local files

against the remote signatures. If it's a match, your file has not been modified while in transit.

1.1.3. Availability

 Often overlooked by administrators, availability is the last key component of security. Protecting your

systems from information disclosure and tampering is important but not sufficient. If a user on your system

"accidentally" copies his 120GB MP3 music collection to your file server and you run out of disk space on /,

your system will suddenly cease being useful. If you had separated your home directories into their own

partition, and additionally configured filesystem quotas, this would not have been a problem.

Availability does not only pertain to services, it can also apply to data, though most examples you might

immediately think of are really data integrity issues. What would happen if a virus infected your workstation

and destroyed the only private keys that decrypt vital data? You probably have a backup of that encrypted file

and have otherwise taken care of integrity issues, but suddenly that data may as well have been deleted. It's

no longer available for use.

System availability can be one of the most difficult areas of providing system security. The number of ways

(both physical and electronic) an attacker can make your server unavailable is staggering.

1.1.4. Summary

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

So, after all this, what is system security? For our purposes, providing "system security" is about responding

to risks that threaten the confidentiality or integrity of data that resides on or passes through our systems,

and working to guarantee the availability of the services and data. If you made it through this section,

congratulations. This is pretty dry stuff, but it's important. We won't explicitly talk about the elements of the

CIA Triad in this book, but we encourage you to keep these principles in mind when working on protecting

your systems.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

1.2. Identifying Risks

We are going to consider a variety of risks that we might face and then talk about how we can respond to

them. In this chapter, we lay the groundwork for many general risks. In each of the application-specific

chapters, we will identify application-specific risks that make concrete examples from the concepts here. We

are not going to give you advice on how to identify lightning strikes as a risk and use FreeBSD or OpenBSD

features to help protect your data against them. Instead, we think mostly about hackers and other malicious

adversaries and how you identify and assess the damage they can wreak on your infrastructure.

1.2.1. Attacks

 An attack against a system is an intentional attempt to bypass system security controls or organizational

policies to affect the operation of the system (active attack) or gain access to information (passive attack).

Attacks can be classified into insider attacks in which someone from within an organization who is authorized

to access a system uses it in an unauthorized way, or outsider attacks, which originate outside of the

organization's security perimeter, perhaps on the Internet at large.

Attacks motivate system administrators, supervisors, and organizational leaders into caring about security,

but where's the damage in an attack? What kind of major assault is required to wreak the kind of havoc

required to get all these people worked up? Despite our definition of attack, we still do not have enough

information to determine for a given system, where the risks lie.

In order for active and passive attacks to succeed, something must be at fault. Attacks necessarily leverage

fundamental behavioral problems in software, improper configuration and use of software, or both. In this

chapter, we examine these classes of attacks including the special-case denial of service (DoS) attack.

Remember that while attacks are necessarily intentional, system disruptions

due to software failure or misconfiguration probably are not. In either case, the

end result is the same: system resources are abused. In the latter case,

however, this does not come as a consequence of someone's malevolence.

Fortunately, defending against attacks tends to help defend against

unintentional disruptions, too.

 At a slightly higher level, it is also important to distinguish between attacks that originate locally on the

system and those that may be carried out over a network. Keep in mind that, although this distinction is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html
mfreeopenbsd-CHP-1-SECT-2.html

important when thinking about mitigating risk, local attacks can quickly become network-exploitable if the

system can be breached over the network in any way.

In order to provide system security for a single DNS server, a firewall, or a farm of web servers, it is important

to understand what you are actually defending against. By understanding the classes of attacks you will

come under, and the technology behind these attacks, you will be in a better position to maintain a secure

configuration.

1.2.2. Problems in Software

 Attacks that exploit problems in software are the most common. Security forums such as Bugtraq and

Full Disclosure focus on software problems. These are somewhat high volume lists and over the years have

recorded thousands of vulnerabilities in software. The kinds of vulnerabilities recorded vary as widely as the

associated impact.

In order to be able to understand a security advisory and react accordingly, it is imperative that you

understand the common types of software-based vulnerabilities. This knowledge will prove useful when you

build and configure your systems, resulting in a more well-thought-out deployment of your infrastructure.

1.2.2.1 Buffer overflows

 Probably the most widely publicized software security flaw is the buffer overflow. Buffer overflows are

discussed on highly technical security lists, mass media, and as a result of this press coverage, by company

executives. Buffer overflows are the result of (sometimes trivial) tactical coding errors that often could have

been prevented. Exploits can be devastating. Buffer overflows are made even more dangerous when the

software is reachable over the Internet. For instance, the Morris Worm (1988), used a buffer overflow in the

fingerd utility as one of its exploit mechanisms. The Code Red worm, which infected hundreds of thousands

of computers in 2001, exploited a buffer overflow in Microsoft's IIS web server to do its damage.

So what is a buffer, and how does it overflow? A buffer is a portion of memory set aside by a program to

store data. In languages like C, the buffer generally has some predefined size. The C program will allocate

the exact amount of memory required to accommodate this buffer. The developer must ensure that the data

put into the buffer never exceeds the capacity of the buffer. If, through programming error and some

unexpected input, too much data is inserted into the buffer, it will "overflow" overwriting adjacent memory

locations that store other information.

The developer may feel that there is no pressing need to ensure the data being placed into a buffer will fit.

After all, if it does not fit, the program will probably crash. The user did something stupid, and the user will

pay for it. In Example 1-1, if the user inputs more than 20 characters in response to the gets(3) function, the

buffer will not be able to store all the data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 1-1. A simple buffer that can overflow

int main() {

 char buffer[20];

 gets (buffer);

 printf("%s\n", buffer);

}

The excess data will be written sequentially in memory past the end of the buffer into other parts of the

processes' memory space. There are not necessarily security ramifications in this case—this example is

purely academic.

Taken at face value, running past the end of a buffer seems like a pretty innocuous problem. The data ends

up in other parts of the processes' memory space thereby corrupting the processes' memory and eventually

crashing the program, right? Well, attackers can use specially crafted data to intentionally overflow the buffer

with instructions that ultimately will be executed by the operating system.

One popular attack strategy is to overwrite the return location of the function containing the exploitable

buffer. Thus at the end of the function, instead of continuing to execute the program right after that function

was called, the program's execution continues from some other point in memory. With a little knowledge and

effort, an attacker can first inject malicious code (e.g., shellcode) which, if executed, would give the attacker

access to the system. Then by setting the return location to point to their injected shellcode, the operating

system will happily read the overwritten memory containing the new return location and execute the

shellcode at the end of the function. This is only one example of a how a buffer overflow can lead to some

additional access on the system.

Fortunately the BSD operating systems have been extensively audited to protect against these, and similar,

software flaws. OpenBSD includes built-in protections that prevent programs from writing beyond their

allocated memory space thus preventing the execution of arbitrary code. This kind of protection can be very

useful since not all of the third-party programs you install on your systems will have undergone the kind of

scrutiny the operating system went through.

For non-programmers, this might seem complicated and difficult to digest. Computer science geeks will

probably find this very familiar. Application security experts and others well versed in exploiting software

vulnerabilities may already be wondering why we are not covering heap-based overflows in addition to the

trivial example above. For the curious, additional resources are plentiful online. To succeed as a

security-minded system administrator, understanding buffer overflows to this level should be sufficient.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.2.2.2 SQL injection

Although buffer overflow attacks get a great deal of attention, there are many other problems in software

that give rise to vulnerabilities. With the increasing number of deployed web-based applications, attackers

have become quite savvy at attacking web sites. Web-based attacks may target the web server software, a

web-based application, or data accessed by the application. Some web-based attacks may even go right to

the core operating system and attempt to exploit the host itself. The most common forms of web-based

attacks, however, are those that lead to the manipulation of application data or escalation of application

privileges.

Complex web applications often work directly with vast quantities of data. This is almost a guarantee when

the web application is used by a financial institution or a data warehousing company but also common with

smaller e-commerce sites, online forums, and so on. The only reasonable way to manage a large volume of

data is by storing it in a database. When the application accesses the database, it must communicate using

some defined database query language, most often Structured Query Language (SQL).

SQL is a tremendously easy language to learn, and web developers often feel comfortable working with it

after only a few days or weeks of exposure. Hence, there is an abundance of web applications that

dynamically construct SQL statements as part of their response to user requests. In general, these

statements are constructed based on what a site visitor has selected, checked, and/or typed into form fields

on a web page.

Unfortunately, developers are often unaware of how their SQL query can be abused if the input from the

user is not properly sanitized. An attacker can often inject her own SQL statements as part of the input to the

web application in an effort to completely alter the dynamically generated SQL query sent to the database.

These queries may result in data being changed in the database or may give the attacker the ability to view

data she is not authorized to view.

There are, of course, ways to defend against SQL injection attacks from within web applications. One

common approach is to parse every value provided by the user. Make sure it doesn't contain any undesirable

characters like backticks, quotes, semi-colons, and so on. Also ensure that the valid characters are

appropriate for the value being returned. To get around the problem completely, developers may be able to

use stored procedures and avoid dynamically creating SQL.

1.2.2.3 Other software problems

We have only scratched the surface of application level vulnerabilities. What follows is a brief synopsis of

additional software programming errors that have been known to lead to security problems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Format string error

Format strings are used by some languages, notably C, to describe how data should be displayed

(e.g., by printf(3) and derivatives). Unfortunately attackers can sometimes manipulate these format

strings to write their own data to memory on the target host. This attack is like a buffer overflow in

that it will allow an attacker to run his own code on the victim host. However, it is not actually

overflowing a buffer so much as abusing a feature in the programming language.

Race conditions

 Race conditions exist when there is contention for access to a particular resource. Race

conditions are common software engineering problems, but they can also have security

ramifications. For instance, assume an application wants to write password information to a file it

creates. The application first checks to see if a file exists. Then the application creates the file and

starts to write to it. An attacker can potentially create a file after the application checks for the file's

existence but before the application creates the file. If the attacker does something interesting, like

create a symbolic link from this protected file to a world readable file in another directory, sensitive

password information (in this example) would be disclosed. This specific kind of race condition is

referred to as a time-of-check-to-time-of-use or TOCTTOU vulnerability.

Web-based attacks

 There are a staggering number of web-based attacks available in the hacker's arsenal. SQL

injection, and other code injection attacks, comprise one class of web-based attack. Through poor

web application design, weak authentication, and sloppy configuration, a variety of other attacks are

possible. Cross-site scripting (XSS) attacks attempt to take advantage of dynamic sites by injecting

malicious data. These attacks often target site visitors; web developers and site administrators may

be left unaware. Handcrafted URLs can sometimes bypass authentication mechanisms. Malicious

web spiders can crawl the Web, signing your friends and family up for every online mailing list

available. These types of attacks are so common that there are many security companies that focus

specifically on web-based security.

1.2.2.4 Protecting yourself

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

As a system administrator or security engineer, you generally do not have control over the security within the

software installed on your servers.

FreeBSD and OpenBSD are open source operating systems, as is most

application software they run. Although you certainly have the option of

modifying the source code of applications, you probably do not want to do that.

System administrators rarely have time to properly develop and maintain

software. As a result, managing custom code will usually lead to software

maintenance nightmares.

 You may be able to choose one server product over another: while building a mail relay, you might

consider Sendmail, Postfix, and qmail. To help guide your decision, you might want to evaluate the particular

software's security track record. Be wary, for much like mutual funds, past trends are not a reliable indicator

of future performance. With custom, internally developed code you usually have no options at all; your

company has developed custom software and your systems must run it.

At this point, you may be wondering if there is any way to mitigate the risks associated with vulnerabilities in

software. As it turns out, there is. Being aware of vulnerabilities is a good first step. Subscribe to mailing lists

that disclose software vulnerabilities in a timely fashion. Have a response plan in place and stay on top of

patching. Watch your systems, especially your audit trails, and be aware when your systems are behaving

unnaturally. Finally, be security-minded in your administration of systems. What this entails is described later

in this chapter and embodied by the rest of this book.

1.2.3. Denial of Service Attacks

 DoS attacks are active—they seek to consume system resources and deny the availability of your systems

to legitimate users. The root cause of a system or network being vulnerable to a DoS attack may be based on

a software vulnerability, as a result of improper configuration and use, or both. DoS attacks can be

devastating, and depending on how they are carried out, it can be very difficult to find the source. DoS

attacks have a diverse list of possible targets.

1.2.3.1 Target: physical

 DoS attacks can occur at the physical layer. In an 802.11 wireless network, an attacker can flood the

network by transmitting garbage in the same frequency band as the 802.11 radios. A simple 2.4 GHz

cordless phone can render an 802.11 network unusable. With physical access to an organization's premises,

cutting through an Ethernet cable can be equally devastating on the wired side.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.2.3.2 Target: network

 At the data link and network layers, traffic saturation can interfere with legitimate communications.

Flooding a network with illegitimate and constantly changing arp requests can place an extreme burden on

networking devices and confuse hosts. Attempting to push a gigabit of data per second through a 100 Mbps

pipe will effectively overrun any legitimate network traffic. Too much traffic is perhaps the quintessential

example of a DoS attack.

 Network-level DoS attacks can stop nearly all legitimate incoming and/or outgoing traffic thereby

shutting down all services offered on that network. If a network-level DoS attack is conducted using spoofed

source IP addresses, victims must often work with their ISPs to track down the source of the flood of data.

Even still, this process is extremely time consuming and may not even be possible depending on the

capabilities of the ISP. Worse yet, distributed denial of service (DDoS) attacks use different attacking hosts

on different networks, making it nearly impossible to block all the sites participating in the attacks. DDoS

attacks are difficult to defend against, especially at the host level.

1.2.3.3 Target: application

Even at the application level, a DoS attack can be devastating. These DoS attacks generally use up some

finite resource on a host such as CPU, memory, or disk I/O. An attacker may send several application

requests to a single host in order to cause the application to consume an excessive amount of system

resources. She may simply exploit a bug in code once that causes the application to spiral out of control or

simply crash. Some services that fork daemons at every new connection may be subject to a DoS if tens or

hundreds of thousands of connections are made within a short period of time.

These DoS situations may not always come as a result of an attack. Sometimes, an unexpected and sudden

increase in the number of legitimate requests can render a service unusable.

1.2.3.4 Protecting yourself

Physical and network-based DoS attacks are difficult to defend against and are out of the scope of

host-based security. At the operating system level, you can do little to mitigate the risks associated with these

kinds of attacks. Generally, some form of physical access controls help with physical attacks and specialized

network devices like load balancers assist with network-based attacks.

IDS hosts may be used to help detect these kinds of attacks and automatically update firewall or router

configurations to drop the traffic. Although this may protect one service, if the sheer volume of data is too

much, blocking it at your firewall will not be useful. You will need to coordinate with your ISP.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Application-level attacks are something the security-minded system administrator can do something about. If

you've been reading about the other forms of attacks, you might already have an idea of the kinds of

mitigation techniques you can use against DoS attacks: secure architecture and build, controlled

maintenance, and monitoring logs. Any mitigation techniques you have in place to protect from software

vulnerabilities and avoid improper configuration and use will help make DoS attacks more difficult. Additional

anomaly detection specific to identifying DoS attacks will go even farther.

1.2.4. Improper Configuration and Use

 Even if the software you are using is bulletproof, that does not mean that you are home free. Even good

software can go bad when configured or used in an insecure fashion. Security options can often be disabled,

user roles can be jumbled together allowing excessive access, and passwords can be sent across the

network in the clear. High-quality software configured poorly, can be as vulnerable as poor-quality software

doing its best.

1.2.4.1 Sloppy application configuration

 One of the most dangerous forms of improper use and configuration comes at the hands of the

administrator. The security of a host is directly affected by the security of the applications running on that

host. Careless configuration of installed services will almost certainly lead to trouble.

Let's say you need to build a mail server that supports user authentication so that your users can send mail

from foreign networks. If you fail to provide an encrypted session over which the authentication information

can travel, you will be exposing your organization's usernames and passwords.

You might also need to deploy a set of DNS servers. Without careful configuration restricting who is allowed

to query the servers and how, you may be opening yourself up to denial-of-service attacks or worse. Again,

careful configuration will help mitigate these risks.

Chapters 5-8 focus on providing common services from FreeBSD and OpenBSD systems. By understanding

the application and the risks associated with providing service, you will be able to carefully configure and

deploy these services safely.

1.2.4.2 Protecting yourself

Insecure configuration and use comes in many shapes and sizes. There are nearly an infinite number of

ways to misconfigure a host or an application and compromise its security.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Again, as with application security, auditing is vital. But in this case, it is not simply to catch attackers. In

order to maintain a controlled configuration on production hosts, you must have a configuration management

process. At a technical level this means structured change control, and possibly even revision control

procedures. In even more formal environments, a daily meeting where production changes are discussed

and approved can go a long way toward keeping configuration changes sane. Auditing hosts that are under

configuration management allows you to detect when changes have been made. Any unauthorized changes

will be discovered and can be backed out before they cause security problems.

Change control procedures are more extensively discussed in Chapter 4.

1.2.4.3 Accounts and permissions

 At the heart of the Unix security model are users and groups. The concept is pretty straightforward.

Files and directories on a Unix filesystem are protected by user, group, and other (often referred to as world)

permissions. The user represents the finest resolution of access control. Users can also be members of a

group that has specific access rights over filesystem data. To make things more flexible, a user can be a

member of multiple groups. Finally, the world permissions apply to all users on the system, regardless of

group membership. Permissions are further broken down into access modes specific to the owner, the group,

and world. Each class may have read (r), write (w), and/or execute (x) rights to the file. These filesystem

permissions are likely familiar to anyone with background in Unix operating systems. However, despite being

well understood, it is imperative that filesystem permissions are closely monitored.

One particularly dangerous set of permissions can make user and group ownership sticky. The

set-user-identifier permission (setuid or suid) causes a program to assume the user ID of the owner of the

file, not the person who executed the file. The setuid permission is represented by an s in place of the user

execute bit. For instance, the traceroute(8) program that is included with FreeBSD 5.x is setuid by default.

-r-sr-xr-x 1 root wheel 23392 Jun 4 21:57 traceroute

When a normal, non-root user runs TRaceroute, the process nevertheless runs as root. This is done

because traceroute needs access to low level network capability that a normal user does not have. Similarly,

the set-group-identifier (setgid or sgid) permission can be set to change the group owner of a file or

directory.

While all this can be useful for making programs work in certain ways, it can lead to mistakes. The setuid bit

should only be applied to programs that absolutely need it. setuid root files are often the target of attackers

who try to make the program do something it should not. If a setuid program can be made to execute

arbitrary code, or clobber files, it will do so as root. This could easily lead to escalated privileges on the

system. Programs should never have setuid bits applied to them after the fact—the fact that they will be

running setuid should be part of the application design process.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To find setuid and setgid files on your BSD system, run the following command:

% find / -type f \(-perm -2000 -o -perm -4000 \) -print

If non-root users on your system don't need to run these setuid executables, the setuid and/or setgid bit can

often be safely removed. OpenBSD administrators will be happy to know that the OpenBSD team has spent

considerable time reducing the number of setuid binaries on the system, and using privilege separation to

mitigate the risks of the remaining ones.

The BSD-based operating systems also have a special group: wheel. In order for users to use the su(1)

command to launch a root shell, they must be in the wheel group. Other than controlling access to the root

account, several files and devices on the operating system are group-owned by wheel. Be very careful about

who you add to this group.

According to Eric Raymond's jargon file (http://www.catb.org/~esr/jargon/), the

wheel group was derived from the term "big wheel," which means "a powerful

person." When Unix hosts were less common and far more expensive, being in

the wheel group was really a position of power. With the advent of free

BSD-based operating systems that run on cheap x86-based hardware, being

in the wheel group on your home PC does not seem like the honor it once was.

 In general, permissions on files and directories should always be carefully controlled and audited.

Administrators are often tempted while debugging problems to change the permissions on files or directories

to 777 (everyone can read, write, and execute the file or change into the directory) in trying to determine

whether the problem is permissions related. In some cases, especially in test environments, this may not be a

terrible thing to do—as long as permissions are quickly restored to normal. Unfortunately, in many cases the

administrator will have made several changes at once; when the application starts working again he might be

tempted to leave everything as it is. This can lead to a very dangerous situation, especially on production

systems.

1.2.4.4 Passwords and other account problems

 Beyond permissions, accounts themselves can be the source of security problems. First and foremost,

weak passwords are a bane to any security-minded system administrator. Make an effort to enforce strong

passwords on your systems and for your applications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.catb.org/~esr/jargon/

Strong Passwords

Strong passwords are generally at least eight characters in length and should contain a variety

of letters (both lowercase and uppercase), numbers, and special characters. Avoid passwords

that closely resemble dictionary words, proper nouns, or other words and numbers with any

personal significance. Here are a few quick examples.

Donut is clearly a lousy password. The introduction of some number substitution in D0nut1

may make you feel better but will not really improve the strength of the password very much.

The password sremrofsnart may look good at first glance, but it is merely transformers spelled

backward. Likewise, substitution in sremrofsn@rt does not significantly improve the password.

A mnemonic such as Tsij6wl! (This song is just 6 words long!) is a better all-round password

than the others. Arbitrary choices of letters, numbers, and special characters that are easy to

type are often also good candidates. Finally, passwords should be something easy enough to

remember that they do not have to be written down.

Your goal in enforcing strong passwords that satisfy the aforementioned requirements is to

prevent passwords from being cracked or guessed. To better understand this concept, explore

password crackers and develop an understanding of how they operate. These are the tools

that will be used against your password database, given the opportunity.

 As time passes, even good passwords can lose strength, in a way. There is a continually increasing

chance that a given password has been stolen. This can be accomplished by sniffing traffic on the network,

watching users type them in, or compromising a host and running a password-cracking program against

/etc/master.passwd. After some period of time, your password should be changed. For some organizations

this period is annual, for others it is monthly.

Improper use of accounts is another common problem on production machines. Administrators will

sometimes create a single account for many people to use. This happens often in technical support groups

where turnover is high. Rather than finding an easier way to perform account maintenance, an administrator

may make a single account for all tech support people and give everyone the password. It is also

commonplace to use system accounts with a generic name such as www and let several web developers log

in under this user ID.

The practice of assigning multiple human beings to one account on the system makes auditing impossible.

There is now no way to know what human being performed what actions on a given host because, from the

perspective of the operating system, there is only one user involved. Changing passwords on these kinds of

accounts is also a hassle as it must be done whenever someone leaves, and everyone must be told the new

password immediately.

 We continue to discuss managing user permissions in Chapter 4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.2.5. Network Versus Local Attacks

 We know that attacks can target faults in software, faults in configuration, or both, and this helps us tell

how attacks might succeed, but it's also important to consider where attacks come from. A buffer overflow

that allows for code execution on a host can lead to a host being compromised. However, if the buffer

overflow vulnerability exists in some setuid binary that is only accessible to logged-in users, the risk

associated with the vulnerability is severely limited. In fact, any vulnerability that requires local access is

difficult to exploit, unless would-be attackers can gain access to the host.

On the other hand, if a buffer overflow exists in software that is reachable from the network, ftpd for example,

then the danger is much greater. Simply being connected to the Internet exposes this vulnerability to

everyone on the Internet. The risk associated with remotely exploitable vulnerabilities is often so much

greater than with local exploits that administrators tend to respond much more quickly to these kinds of

problems.

Just because network-based attacks are more dangerous does not mean you should ignore, or even put off

fixing, local vulnerabilities. System administrators, due to lack of time, carelessness or both, sometimes patch

the most critical vulnerabilities early and leave the rest "for later." Eventually, a few months or years down the

road, this practice is likely to lead to a compromise. It may become possible to combine a vulnerability that

had previously only been locally exploitable with another, remotely exploitable, vulnerability to compromise

the system. An attacker may be able to break into the system through this service's vulnerability and gain a

shell prompt. At this point, just one of those "minor," locally exploitable vulnerabilities is exactly what the

attacker needs to gain escalated privileges and compromise the host. From there, other presumed minor

vulnerabilities (in services accessible only if you are already behind the firewall, for instance) become prime

targets and a means to compromise the rest of your network.

The lesson here is to follow your instincts in patching the most critical vulnerabilities first. However, if you fail

to also patch minor software issues in a timely manner, they will be exactly what the attacker needs to own

your network.

1.2.6. Physical Security

 From boulders to armed guards, physical security can take many different forms. However in most

organizations, physical security and information security are controlled by two separate parts of the

organization. Firewall administrators usually do not take care of giving out physical keys for the office doors.

Sometimes it's tough to remember that physical security is an integral part of computer security.

If physical security breaks down, nearly all computer security constructs are rendered useless. An attacker

who has physical access to a host has completely bypassed any network protections in front of the host. No

one has invented a firewall (yet) that will detect a physical intruder, remove itself from a rack, and beat the

intruder senseless.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Once physical security has been breached, an attacker can remove hard drives, or force a machine to boot to

alternate media in order to subvert the core operating system. This will obviously cause a service interruption

for the host, but a truly motivated attacker with physical access may not care about completely destroying a

host in order to steal data or simply wreak havoc.

 While this may seem abundantly obvious, security professionals often lose sight of the importance of

physical security. We constantly weigh risks, decide which firewall configuration is best, or determine how

best to handle groups on a server. However, decisions like that may be pointless if the data center holding

your hosts is in an unlocked or an unattended building. Remember to take physical security into account

when weighing risk. It would be a shame to get ipfw or pf configured on your BSD firewall only to see some

guy running down the street with it the next day.

1.2.7. Summary

At this point, you should have a pretty good idea of the attacks your system will face after you attach it to a

network. Throughout this book we point out how you can defend against these attacks: where you should go

for software updates, how to keep track of and respond to security advisories, and how to be diligent and

careful in your system administration practices. In the next chapter, we'll describe in detail some of the

building blocks the BSD operating systems provide to further mitigate the risks of system compromise. Before

we get there, though, we close the loop on the topic of risk.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

1.3. Responding to Risk

Risk mitigation starts at the top. If you're working in an environment where you identify systems that need

protection, determine how much effort you will put forth to protect systems, and perform the subsequent

remediation, then you're doing too much.

In order to be able to respond to risk, the first step is to identify the resources that are important. Your

organizational leadership is responsible for providing this high level assessment of information system

criticality. Once this is done, senior security professionals get involved so that management can understand

the kinds of risks given resources will face and perform a cost/benefit analysis for risk remediation.

The Security Policy

One important artifact that comes from the discussion about risk by management and security

professionals is the organization's security policy. This document provides a very high level

overview of security requirements for the organization.

If your organization does not yet have a security policy, now is a great time to push for its

development. The security policy is a document driven by requirements at the highest level of

the organization. With organizational leadership supporting a policy, the administrator has the

motivation from management to provide a security infrastructure and the support to do so from

management.

There are a variety of resources to assist in the development of a security policy. RFC 2196

provides a guide to setting up security policies. The SANS Security Policy Project at

http://sans.org/resources/policy/ will help you develop a security policy by providing templates

and guidance.

So how is this analysis done? If you work for a fairly small organization, you may be very involved in this

process. So, let's take a moment to look at how to decide how much security is the "right amount." This is

useful both in the context of defining priorities for the organization and at a smaller scale. For instance, your

security policy may state that your DMZ systems must be protected by "strong authentication." Security

policies in general are not much more explicit than this. It's up to security (and possibly also system)

administrators to figure out how to get this done.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
mfreeopenbsd-CHP-1-SECT-3.html
http://sans.org/resources/policy/

1.3.1. How Much Security?

There are two considerations that influence how much time you spend "doing" system security:

risk/consequence considerations and usability. The greater the risk or the higher the consequence, the more

effort you must spend securing your systems. With respect to usability, if your application of security

principles makes administration more difficult—worse yet, if it discourages administrators from maintaining

systems because of the hassle—you may have gone too far.

Be careful to differentiate between inappropriate security requirements and

lazy administration. Not every administrator who shirks at jumping through a

few hoops is pointing out your paranoia.

1.3.1.1 Risk and consequence

The role of your system combined with its exposure to risk helps you determine to what lengths you should

go in locking down your system. If you are building a server that provides DNS functionality to your network, a

failure or compromise of this system would easily lead to widespread problems. An incident involving a

server that provides only NTP however may merely disrupt clock synchronization until the service can be

restored, but may not immediately affect the rest of your network.

The location of your system both physically and logically on your network is also an important consideration.

Systems located on a perimeter network are exposed to external attacks frequently. A computer providing

Internet access at a library may have hundreds of users a day—and not all of them trustworthy. Servers on

an office network are only directly exposed to other systems on that network.

Be careful here! Many administrators blithely assume an internal system is not

prone to attack and spend almost no time or effort securing the system. This is

why the few attacks that originate within the organization so often succeed.

So, what if there were a compromise of a system? What would the impact be to you and your organization?

Your organization may suffer from bad press and/or loss of revenue. You may be deemed incompetent and

then fired. The effects of a security compromise are not always obvious. The higher the cost of a security

breach of the system currently being built, the more time you need to spend securing the system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Some argue that, because the system they are building is not that important,

the security of that system is not worth any great effort. However,

compromised systems often are not an end in themselves; instead they

provide attackers with a staging ground from which to initiate further attacks.

From a risk perspective, the amount of effort you must put forth "doing" system security relates directly to the

amount of risk involved and the expected consequences of risk realization. Table 1-1 summarizes the effect

that probability and impact have on risk.

Table 1-1. Relationship between risk and probability/impact

 Probability

Impact Very probable Possible Very unlikely

Disasterous HIGH RISK HIGH RISK Medium Risk

Significant HIGH RISK Medium Risk Medium Risk

Moderate Medium Risk Medium Risk Low Risk

Minimal Medium Risk Low Risk Low Risk

This makes sense. Buying a house on an eroding precipice is a high risk proposition. The chances of your

house sliding into the abyss are pretty likely. The impact to your house and your belongings certainly qualify

as "disasterous." Maybe you'd rather build a house on a mountain. The chances of being buried under a

mudslide or avalanche are probably on the low side, depending of course on the mountain's history. The

impact would likely be fairly significant though. We're looking at medium risk proposition here. You get the

idea. The higher the impact and/or probability, the higher the risk.

1.3.1.2 Security versus functionality

You might wonder why you don't just use every security tool you have on and around every system. Security

costs something. At the very least, the time you spend performing security-related tasks is one kind of cost.

The associated loss of functionality or convenience is another form of cost.

Envision building a webmail gateway so that users are able to access internal email even when they are

offsite. This has the potential to expose private email to users on the Internet, so you may decide that a few

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

extra notches of security are necessary. So you lock down the webmail system. You remove all webmail

plugins except those that are absolutely necessary. You enable HTTP-digest based authentication in your

web server. You require that users also come through a proxy server that requires a different layer of

authentication. Finally, you mandate that users carry around signed certificates so that their identity can be

validated to the server.

This example may be contrived, but security overkill is not always so obvious. In our example, users will

become so frustrated with the passwords they must remember, the USB drives they must carry, and the

overall hassle that they will eschew webmail altogether. Instead, they may very well start forwarding all their

corporate mail to their personal account, which is far more accessible. As a security-minded system

administrator, you have just lost: security came at too great a loss of convenience. Similar problems arise if

the balance between security and maintainability is lost.

In less structured environments, administrators often have a lot of leeway. If you choose to boot your

OpenBSD system from CD-ROM and store all binaries and libraries on this read-only media, you may have

gone a long way to keeping your system inviolate. However, what happens when a critical vulnerability is

announced and you have to immediately patch vulnerable servers? It will take a great deal of effort to build a

new standard configuration onto a CD, test it in your QA environment, and finally deploy it in production. This

effort may make you want to wait to perform the upgrades later, delaying your response to a critical event.

The maintenance hassle of making your security posture "go to 11" just increased the window of opportunity

for attackers.

The danger here is obvious. If you put off patching known vulnerabilities because of the effort required to do

so, then you can be worse off than if you had spent a little less effort on your secure configuration. In some

very strict environments, you may not have a choice and be required to build, test, and deploy new CD boot

images that night.

1.3.2. Choosing the Right Response

After the important resources have been identified and some cost/benefit analysis has been performed to

figure out what it's going to take to secure the resource, it's time to decide whether to do it or not. It's pretty

obvious what you do when the cost is low and the benefit is high: you act! But what about when the cost is

high? If the benefit is high, do you do it anyway? The following outlines what you can typically do with risks

after you've identified them.

1.3.2.1 Mitigate risk

If the fallout from a realized risk is significant and the costs of mitigation can be tolerated, you should take

action to mitigate the risk. Some, but perhaps not all, tasks will fall to the system administrator. She is

responsible for things like patching vulnerabilities to keep attackers at bay and system backup to prevent

accidental or intentional data destruction.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.3.2.2 Accept risk

These risks are identified, evaluated, but not mitigated. The realization of these risks fails to significantly

affect the organization, the likelihood of risk realization is too low, or no mitigation can be enacted for some

reason. For example, a university might categorize the potential for an outside observer using

intelligence-grade surveillance equipment to remotely observe the registrar's grade entry as a risk. The

likelihood of this occurrence is as low as the cost of mitigation is high. Should the risk be realized, the

consequences are probably not dire. Therefore, the risk remains and the university will accept the

ramifications if this risk is realized.

1.3.2.3 Transfer risk

Risk transference is a form of mitigation in which the risk is transferred to another party. This might involve

outsourcing a system or process, or keeping it in-house while taking out insurance to cover potential loss. If

your system is processing credit card information, there is a risk that the credit card numbers stored on your

systems could be stolen by an attacker or insider. Standard mitigation techniques (firewalls, strict access

control, and encrypted data) may keep out external eyes, but a rogue employee with access rights may be

able to steal and sell this information. The costs associated with the realization of this risk are too immense

for the organization to handle, but the likelihood of it happening is low to moderate. A risk like this is a good

candidate for being transferred to another entity, like an insurance company.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

1.4. Security Process and Principles

We now have an idea of the kinds of attacks your host will face. Management has made it clear what

resources are important, what must be protected, and what is too expensive to protect. What we're left with is

a bunch of risks that need mitigation. We know that to mitigate the risks, we have to balance security needs

against required functionality and convenience. We also know that the more critical the resource, the more

effort we should go through in securing systems. So let's bring this all into focus in terms of FreeBSD and

OpenBSD system administration.

This book is about "doing security" for your BSD systems. This book presents one major framework for

building security into your BSD system deployments: security through the system lifecycle. What does this

mean? Well, this is a daunting undertaking, to be sure. To make these kinds of tasks easier, we break them

into discrete parts; building a secure initial configuration, performing ongoing maintenance, and auditing and

incident response.

1.4.1. Initial Configuration

Secure initial configuration is an obvious topic when discussing system-level security. And why not? A host

with a secure initial configuration is more likely to stay that way. Careful installation and good decisions early

on will leave you with a well- configured, fairly secure system. There is a strong motivation to be diligent in

ongoing maintenance because it is easier to maintain a clean slate than it is to solve security issues while not

breaking functionality. Furthermore, well-maintained systems who were built from secure initial configurations

assist in containment. An attacker that manages to break into a well-maintained box somehow will have a

hard time continuing his assault because unneeded services are disabled, file permissions are carefully

controlled, and applications are tightly secured.

Properly configuring a host requires a solid understanding of the technology at hand. Unless an administrator

knows the ins and outs of the core operating system and the applications running on it, she will not be able to

know what actions to take to lock down the host. While there are plenty of host-lockdown templates on the

Web for various operating systems, none of them is a one-size-fits-all solution. Administrators often blindly

follow security templates only to make their host so secure that it becomes unusable. Or, they follow a

template that doesn't apply well to their actual situation. It gives them a feeling of added security because

they took proactive security initiatives. But its poor applicability means they have left important weaknesses

unaddressed. We urge you to understand the service you are trying to provide and the risks associated with

it. From there you can figure out how to appropriately lockdown your system.

Initial configuration is a common area of focus for many books. Configuration is very tangible and the myriad

options can be very confusing. Every application has its own unique options and architecture considerations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html
mfreeopenbsd-CHP-1-SECT-4.html

On any modern OS, there are many applications and aspects to the core system that require specific

attention. Authors and readers find it easy to focus on these issues because there is so much ground to

cover.

However, securing the initial configuration is not the only aspect of system security. System security is a

complicated subject, users rarely see the big picture. Even systems that are thought to have a secure initial

configuration can be administered poorly, eventually causing gaps in the security stance of the machine. It is

important to look beyond secure configuration options and think about the broader security picture.

Building a secure initial configuration, as far as the operating system is concerned, is the primary focus of

Chapter 3. Every application-specific chapter in this book will also focus on the secure initial configuration of

the relevant application.

1.4.2. Ongoing Maintenance

Regardless of the role a host plays, once it is deployed, it begins to change. Managing this change is key in

maintaining the integrity and security of the host. Assuming you have paid attention to the details of

configuring the host, it is in a known good state when it is deployed. Every service request, attempted attack,

applied patch, and administrative login has the potential to change the security stance of the machine.

Staying ahead of this change requires a disciplined and coordinated effort. For instance, patch

management procedures need to be in place long before you start applying patches. Vendor patches are

often released in response to a vulnerability discovered and announced in a public forum. From the point a

vulnerability is discovered to the point your systems are patched, the security of your host is a matter of

chance. A worm may be written to automatically crawl through the Internet exploiting this vulnerability. An

attacker may use the vulnerability to target your organization directly. Thus response to security advisories

must be quick and effective.

 While this may sound simple as a concept, in practice, patching can be very disruptive. Patches may

interrupt service when they are installed. They may even have adverse effects that force you to roll the patch

out of your systems until the effects can be mitigated. Successful patch management is not simply composed

of technical aspects like how to download and install the patch. Patch management includes regression

testing the patch in a lab, getting buy-in from stakeholders and assuring them that the patch will not interfere

with organizational operations, and being prepared to roll back when necessary. By understanding the

subtleties in patch management, you are helping ensure the security of a host over the long haul.

Other issues, such as using secure transport mechanisms when accessing a host for administrative

purposes and proper user management, are also vital for the long-term security of a host. Understanding the

ins and outs of secure management is critical on any platform. Implementing these secure management

processes can vary dramatically depending on the operating system and applications being used. Luckily,

FreeBSD and OpenBSD have a long history of being very maintainable systems. These operating systems

are implemented in a manner that makes keeping them secure straightforward and relatively easy to upgrade

when security vulnerabilities are discovered.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

System maintenance with a goal of maintaining system security is the primary topic of Chapter 4.

1.4.3. Auditing and Incident Response

 Sometimes, bad things will happen to good hosts. Even with a secure initial configuration and proper

administration techniques, an attacker will periodically successfully bypass the security perimeter of a host.

At the very least, auditing will help you determine when you're dealing with an incident. You then need to be

prepared to ensure service is restored as rapidly as possible and the damage contained.

Proper incident response relies on both technical and business knowledge. On the technical side, individuals

responding to a security incident must have a playbook already created that describes how to get machines

redeployed in a secure fashion. Every incident will differ to some extent causing changes in the original plan

to restore service. By understanding the core operating system, the applications running, and the manner of

attack being executed, an administrator responding to an incident can modify the path to recovery to match

the attack that was used.

From a business perspective, the administrator needs to understand the impact the attack has on the

business and react accordingly. For instance, if a new product has recently been deployed on the web

servers, restoring service immediately may take precedence over preserving the attacker's footprints. Or if an

attacker has a history with your organization, you may want to verify that you have a complete audit trail of

her actions before restoring servers to known good states. Security is a means to an end. The organization's

goals are the ultimate end in most cases, so your actions when responding to an incident should reflect that.

After an incident has been contained through proper response, there may be forensic work required. Some

organizations choose to analyze the technical aspect of every incident in an effort to learn what actions the

attacker took. This allows them to determine the real loss caused by the attack as well as whether or not civil

and criminal chargers should be pursued. Other organizations generally do not do forensic investigation

unless the attack is obviously damaging enough to pursue legal action. These types of organizations have

determined that the reward for the investigation does not normally warrant the effort required to determine

what the attacker has done.

Regardless of your organization's stance on incident response, you may be called upon to perform forensic

analysis of a compromised host. The level of diligence required when performing analysis will vary

depending on if the investigation is internal or if the data will be used in a court of law. However, from a

technical perspective, performing a forensic analysis requires deep technical knowledge of the structure and

operation of the operating systems and applications in question. It also requires understanding of the tricks

attackers may use to hide or store data and processes.

Forensic analysis is really detective work. It involves looking for clues and understanding the motivation of

the attacker. It also involves knowledge of how things work. The lead character in any TV detective show is

not just a good interrogator. These fictitious detectives generally have years of broad fictitious experience

they can leverage to solve heinous fictitious crimes. Examining a compromised host is very similar; but your

experience had better be real and the more you know when you start the analysis, the better analysis you will

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

be able to perform.

 Auditing and incident response are the major focuses in the last section of this book.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

1.5. System Security Principles

Security through the system lifecycle is a useful framework for understanding how security can be woven

throughout your administrative duties. This lifecycle is "what you do" for system security. It's time to turn our

attention to "how you do it."

We've talked about building a secure system, maintaining it in a clear and controlled way, and responding to

threats. Following this system administration lifecycle helps us maintain a secure environment and maintain

our organizational operations. However, the details of how to actually conduct these lifecycle activities are not

nearly as straightforward.

Understanding how to build, deploy, and maintain a secure system involves technology specific information.

In this book, we will give you a great deal of information on FreeBSD and OpenBSD, arming you with the

"domain expertise" required to use these operating systems securely. But beyond that, you must have the

right mindset. To be a security-minded system administrator, you need to have the right set of guiding

principles. The principles outlined in this chapter should be applied at every stage of a system's lifecycle.

Whether you're designing your system or dealing with an ongoing incident, these principles should be

valuable in making the right decisions along the way.

 As we walk through the system lifecycle in this book, you'll notice that in making decisions or justifying

claims, we refer to a variety of security principles along the way. In the book Building Secure Software

(Addison Wesley) by Gary McGraw and John Viega, the authors present 10 guiding principles for software

security. Our focus in this book is not specifically on writing secure code (software security) but in building

secure FreeBSD and OpenBSD systems. Nevertheless, many of these principles map directly to secure

administration practices and we present them explicitly here.

1.5.1. Apply Security Evenly

The application of security must be consistent across everything you do. The "weakest link" principle means

that the strength of your overall security posture will be no stronger than the weakest link. This makes sense.

We've already looked an example of this. If your information security stance is strong—your host has been

defended against all network-based and local shell-based attacks—you're in good shape. But if your server is

located in an unattended or unlocked co-location facility, all someone really has to do is walk up and take

your machine away.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html
mfreeopenbsd-CHP-1-SECT-5.html

1.5.2. Practice Defense in Depth

 One of the most important and frequently touted principles is defense in depth, also referred to as the

"layered approach." Defense in depth suggests that multiple levels of security are better than one single layer

of protection. In our example of the physically unprotected server, to apply defense in depth we would move

the system to a co-location facility that is locked. Not only should the building be locked, the system should

be in a locked cage. Cameras should monitor arrivals and departures. Guards should also be posted to

discourage would-be attackers.

Will all of this make our server impenetrable? No, but every additional layer of security makes compromise

less likely.

1.5.3. Fail Safe

In case of failure, fail in a safe way. Err on the side of caution. If our server that's now in a guarded vault

performs virus checking for your organization's incoming mail, what should happen when the server fails?

Should your mail servers simply say "Hmm . . . my virus-checking host is unreachable. Well, the mail must go

through!" Ideally, no. If your organization can tolerate a slight delay in mail delivery, your mail server should

probably allow mail to spool until the virus-checking host is available again.

1.5.4. Enforce Least Privilege

Least privilege is the concept that an entity, be it a person, process, or otherwise, is given the bare minimum

privilege required to carry out a particular task. The idea is relatively straightforward.

Let's say you send one of your interns to go fix the broken server, but the server is in the same cage as a

bunch of your organization's financial systems. The principle of least privilege would indicate that you make

sure that the intern you're sending can access the broken server and nothing else. Perhaps you could ask

the co-location facility staff to disconnect the host and leave it in a room with a crash cart and a network drop

so your intern can work on it without having access to anything else.

 One useful way to build least privilege into your infrastructure is to approach deployment and

configuration with a default deny mindset. In a firewall context, this means your first rule is to block all traffic.

On a system, you only add a user account if and when a specific user needs access. By default, the user is

placed into a group that has no access to anything on the system. Should the need arise, the user can be

added to additional groups. Even the now well-guarded co-location facility follows this strategy. By default,

they will not let anyone access the systems they host for you. You need to specifically authorize users.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.5.5. Segregate Services

When it comes to system security, don't put all your eggs in one basket. When given the opportunity,

separate the services running on systems as much as possible. In some cases, you may want to give one

single role to multiple systems so that if one system fails, the service can still be available.

We might have been foolish enough to put our financial data on the same system that performs virus

checking. Perhaps, given the volume of mail we receive, virus checking is barely utilizing the resources of the

system. Coupling virus checking with data storage at least allows us to use some of that barren 200GB of

mirrored disk space that came with the host. It's a good thing we didn't do that. When the system failed, not

only would our mail flow have been temporarily interrupted, our financial group would have been unable to

issue invoices, reconcile their registers, or (heaven forbid) perform payroll processing!

1.5.6. Simplify

Complexity is a bane when it comes to maintenance. It is easy to maintain a system that is configured in

some sane way. When you create too many interdependencies and complex configurations, however,

maintenance quickly becomes a nightmare. You're more likely to break something when you touch the

machine than fix something.

When your intern finally gets to the system to repair it, he might need to find out what went wrong. If it's a

standard FreeBSD install on a pair of hardware-mirrored (RAID 1) drives with packages where one would

expect to find them, he stands a good chance of figuring out the problem. What if, on the other hand, you

decided that installing using ports or packages wasn't good enough? You compiled your virus scanning

software from source and linked all the binaries against custom libraries. If your intern hasn't been fully

briefed as to how this works, he'll never discover that the last system upgrade wiped out your custom binaries

and that's why the virus scanning software broke.

Keeping things simple ensures that anyone with the right skill set will be able to fix the problem. When

complex configurations are unavoidable, they can be simplified through comprehensive documentation.

1.5.7. Use Security Through Obscurity Wisely

People say that security through obscurity is no security at all. Sure enough, if obscurity is your only means

of providing security, you are not providing security after all. On the other hand, there are a variety of tactics

you can use to be a little more secure in conjunction with other secure configuration and administration

techniques. These are generally less effective than "real" security, but a little additional obscurity (defense in

depth) doesn't hurt.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Let us suppose that after your intern finishes fixing your virus scanning server, you tell him that he needs to

reconfigure the web server on the same system that acts as a frontend management tool for the virus

software. Instead of running this server on port 80, he should make it listen for connections on 4000. Like

most security-through-obscurity techniques, this alone has limited value. While some vulnerability scanners

might just wander across systems finding systems with a listening port 80, most probe thousands of ports per

system. Moving your web server is of minimal use because network probes will eventually find it anyway. If

he were to also configure the web server so that it doesn't announce what kind of service it is, network

scanners will have a little more difficulty telling the person running the scan what kind of service is listening

on port 4000.

The key here is that you shouldn't waste time on obscurity when you can spend your time constructively on

security. Secure your systems and your services. Document your configuration. If you happen to have a few

extra seconds to obscure some information an attacker could otherwise get for free, then by all means do so.

1.5.8. Doubt by Default

If you can help it, don't trust anything. Seems a little paranoid, and taken to the extreme, paranoia will

certainly be more of a hindrance than an aid. Still, a little doubt by default will go a long way.

Examples of this are everywhere. If you were to receive a phone call from a director you've never talked to

before, and she's asking for the dial-up password—would you tell her? No. At least, not until she's verified

that she is who she claims to be. When you visit an SSL-enabled site, does your browser automatically install

the certificate and consider it trusted? Of course not. The certificate needs to be signed by a trusted

certification authority, it must be valid, and the name on the certificate must correspond to the name of the

site you are visiting. Finally, will the co-location staff let your intern in simply because he says he works with

Doughnuts, Inc? No way. They'll check his ID and cross-reference his name with their access list.

Every system you build will have services that interact with other systems and users. Think about what you

can do to help your running services doubt by default.

1.5.9. Stay Up to Date

Being up to date applies both to your systems and to administrators. Both OpenBSD and FreeBSD are easy

to maintain through well-documented upgrade processes. Upgrading application packages can also be a

straightforward procedure with tools like portupgrade in FreeBSD. Keeping your systems up to date will help

ensure vulnerabilities get patched.

The resources available to the system administrator are vast. As it turns out, Google (or your other favorite

search engine) is one of the best tools you have at your disposal for information gathering. Keep up to date

on what's happening with FreeBSD and OpenBSD. Stay abreast of trends, subscribe to mailing lists, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

receive security advisories. Research products thoroughly before you decide to install something. Last, but

not least, talk to your peers and share knowledge and ideas. You'll learn something. They will, too.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

1.6. Wrapping Up

System security is a complex problem. It requires knowledge of the underlying operating systems, the

applications running on the host, the network infrastructure, the business goals, and your potential attackers.

System security is also divided into phases revolving around the lifecycle of a host. All these aspects must be

pulled together in an attempt to keep a host secure and the system usable. As complicated as this may

sound, there is hope. Many resources are available to assist in understanding the scope of system security.

This book will help you install and configure a secure FreeBSD or OpenBSD system to provide critical

services for your organization and hopefully provide insight that will be useful to you as you attempt to tackle

the problems that you face.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html
mfreeopenbsd-CHP-1-SECT-6.html

 < Day Day Up >

1.7. Resources

The following is a list of resources pertaining to the topics covered in this chapter.

1.7.1. General Security Resources

Building Secure Software, John Viega and Gary McGraw (Addison-Wesley), 2001

Full Disclosure: http://lists.netsys.com/mailman/listinfo/full-disclosure/

Security Focus (BugTraq et al.): http://www.securityfocus.com/

"Smashing the Stack for Fun and Profit," Elias Levy, Phrack 49: article 14(http://www.phrack.org)

1.7.2. General Security-Related Request for Comments (RFCs)

RFC 2196: Site Security Handbook

RFC 2504: Users' Security Handbook

RFC 2828: Internet Security Glossary

RFC 3013: Recommended Internet Service Provider Security Services and Procedures

RFC 3365: Strong Security Requirements for Internet Engineering Task Force Standard Protocols

RFC 3631: Security Mechanisms for the Internet

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
mfreeopenbsd-CHP-1-SECT-7.html
http://lists.netsys.com/mailman/listinfo/full-disclosure/
http://www.securityfocus.com/
http://www.phrack.org

 < Day Day Up >

Chapter 2. BSD Security Building Blocks

Phenomenal, cosmic power! Itty-bitty living space.

—The Genie

Disney's Aladdin

FreeBSD and OpenBSD provide unique and powerful features that make excellent building blocks for any

secure deployment. This chapter gives you a tour of the most important ones and describes how you can get

the most out of them. We will be uncovering functionality that has been in these operating systems for years,

yet you may never have known it was there. In the end, you'll have a whole new set of tools you can apply to

the different security challenges you face.

The goal of this chapter is to provide you with a set of building blocks that will become rudiments in your

security repertoire. In later chapters we discuss how to combine these different rudiments to create more

complex security structures that protect individual processes or whole systems. We group our building blocks

into five categories.

The filesystem

 If you've worked with any kind of Unix filesystem in the past, this chapter will start in familiar

territory. It's only a stepping-off point, however. The BSD systems offer significantly advanced

features in their filesystems that are not duplicated on many other Unix-like operating systems. We

explore these new features in depth, tell you how to use them, and describe some of the situations

where they apply well.

The kernel

 The BSD kernels provide a variety of tunable options, many of which can help us secure our

systems. We cover what they do and how to modify the kernel's behavior to use the features you

want.

User process controls

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html
mfreeopenbsd-CHP-2.html

 There are a variety of controls that are on the border between the kernel and user applications

that help us isolate what our applications can do. We explore two technologies, namely chroot(2)

and jail(2), for protecting user-level processes from each other.

Inherent protections

 One of the reasons OpenBSD and FreeBSD make such phenomenal choices for critical

infrastructure systems is because of a slew of inherent security-related enhancements. The BSD

development teams are working to create systems that are secure by default. We tell you about

some of the benefits you "get for free" by running the BSDs, like buffer overflow protections in

OpenBSD and hardware cryptography support in both operating systems.

Optimizations

 Related to our discussion of ensuring system availability in Chapter 1, there are ways to make

sure your system allocates its resources and attention to the jobs that are most important to you.

For example, you can emphasize file I/O or network transactions instead of just running a

general-purpose system.

Remember that there is no magic security pill and no single prescription that repels all ills. You will combine

these blocks in whatever ways make sense in your situation.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

2.1. Filesystem Protections

 Anyone familiar with Unix operating systems knows about standard Unix file permissions that have

been around since the earliest days. They specify what one user, one group, and everybody else may do

with a file, directory, or device. They identify only three possible actions: read, write, and execute. It's

somewhat sad that after so many years, there are no more sophisticated means of controlling permissions

that are standard across all Unices. A variety of proprietary controls have been developed over the years, but

each is typically implemented in only one Unix. Most operating systems are still unique in what filesystem

permissions they offer, and only the three read-write-execute bits are common to all.

2.1.1. Overview

 FreeBSD and OpenBSD (along with NetBSD and Mac OS X) use some derivative of the BSD "Unix

filesystem" (UFS). In addition to the standard Unix permissions that are common across all Unices, these

BSD systems also implement special filesystem flags that can change the operating system's behavior with

respect to certain files. The flags help a system administrator protect key files from misuse and corruption.

 In recent years, FreeBSD has evolved UFS to Version 2 (UFS2), incorporating POSIX 1/e access

control lists (ACLs) at about the same time. These more advanced discretionary access controls add further,

fine-grained control over permissions. Different users can be given different sets of permissions without

relying on traditional Unix groups.

The intended use of your system will determine where and when flags or ACLs make the most sense. If

you're maintaining a server with many interactive users, ACLs probably make sense because of their flexible

permission structure. If your system is more like a dedicated server, the flags will probably be all you need.

Flags are one-size-fits-all by nature.

2.1.2. UFS Filesystem Flags

 Flags are coarse-grained, but very carefully defined, controls on how a file can be modified, and how

it should be handled in backups. Unlike traditional permissions or ACLs, flags enforce the same behavior for

all users. If the immutable flag is set on a file, for example, no one can write to it—not even root. The BSD

kernel is responsible for enforcing these controls, and your ability to adjust varies, depending on your kernel

securelevel (see "Kernel Security Level," later in this chapter). In particular, several flags cannot be unset

once the kernel securelevel is raised above zero. If your system runs at a securelevel less than 1, the flags

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html
mfreeopenbsd-CHP-2-SECT-1.html

are of only moderate value. An attacker who can compromise the root account can unset these flags at will,

but they will certainly impede automated attacks like rootkits. Although you can't turn them off whenever you

want, you can set flags on an unflagged file at any time, regardless of the kernel's current securelevel.

2.1.2.1 Manipulating flags

 Flags are set with the chflags(1) command. Naming a flag will set it, and prepending "no" to the

flag's name will unset it. For example, to set the system immutable flag on /kernel, you run chflags schg

/kernel. To unset it, you run chflags noschg /kernel. The nodump flag is an exception to this convention,

since its primary function is to prevent files from being dumped (see "nodump flag," later in this chapter). It is

turned on with nodump and turned off with dump. For example: chflags dump /var/db/foo.

Specifying 0 in place of a flag name will turn off all the flags on a file. It's an

inelegant little shortcut, but it works. For example, chflags 0 foo will turn off

all the flags on the file foo.

To view the active flags on a file, use the -o argument to the ls(1) command. Example 2-1 shows a /var/log

directory with a variety of file flags highlighted. Note that this is a contrived example: logfiles with flags set this

way could not effectively be rotated, deleted, or otherwise archived.

Example 2-1. Example output of ls -lo in a contrived /var/log

-rw------- 1 root wheel sappnd 1862 Sep 30 22:39 auth.log

-rw------- 1 root wheel sappnd 38374 Sep 30 22:45 cron

-rw------- 1 root wheel nodump 3157 Sep 30 03:06 dmesg.today

-rw-r--r-- 1 root wheel sappnd 28056 Sep 30 22:39 lastlog

-rw-r--r-- 1 root wheel - 0 Jun 4 21:57 lpd-errs

-rw-r----- 1 root wheel sappnd 2160 Sep 30 03:06 maillog

-rw-r--r-- 1 root wheel sappnd 15547 Sep 30 22:47 messages

-rw-r----- 1 root mail sappnd 628 Sep 30 03:06 sendmail.st

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

-rw-r----- 1 root mail schg 3455 Sep 29 22:00 sendmail.st.0

-rw-r----- 1 root mail schg 5543 Jun 4 21:57 sendmail.st.1

Table 2-1 lists the flags, who can set them, and a brief description of what they do. They are listed in relative

order of usefulness, with the most useful flags first.

Table 2-1. UFS filesystem flags

Flag
Can be

set by
Behavior

schg Root only

System immutable. No part of it can change, not even metadata. Root cannot unset

this flag unless the system is in single-user mode or the system is at securelevel 0 or

less.

uchg
Owner or

root

User immutable. Like the schg flag, above, but can be set and unset by root and the

file's owner.

nodump
Owner or

root

Skip dump. Tell the dump(8) program not to include a file when it backs up a

filesystem.

sappnd Root only
System append only.No one may truncate the file or write to it at any point other than

its end. It can be read at any point, but only written at the end.

uappnd
Owner or

root

User append only. Like the sappnd flag, above, but can be set and unset freely, both

by root and the file's owner.

sunlnk
Root only

System unlink. No one, not even root, can unlink (delete) the file, regardless of the

permissions on the parent directory or file.

uunlnk
Owner or

root

User unlink. The owner cannot unlink (delete) the file, regardless of the Unix

permissions on the parent directory or file.

opaque
Owner or

root

Opaque directories. Set only on directories. Makes them opaque when directories

are unionfs mounted on top of them, i.e., underlying filesystems will not "show

through," just like a typical mount-over.

arch Root only Archive. The archive flag is not used.

2.1.2.2 System immutable flag (schg)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This flag is the workhorse of filesystem security. Despite the fact that its abbreviation, schg, is derived from

"system change," it is universally referred to as the "immutable" flag. When the system immutable flag is set

on a file, nothing can modify any part of it. Its metadata (modification times, permissions, owner, group, and

so on) cannot be changed, nor can its contents. It cannot be renamed, unlinked (i.e., deleted), or moved,

either. Nothing about it can change.

Directories can be made immutable also. They will be just as unalterable as a file, but this will have broader

ramifications to the maintenance of the system. If your /usr/local/bin directory, for example, is immutable,

then you won't be able to install any software in that directory while your system runs at a non-zero security

level (see "Kernel Security Level," later in this chapter). The way around this limitation is to reboot into an

insecure security level, unset the immutable flags, and then perform the installations. Once the installations

are complete, you can run chflags to re-enable the immutable flags and then run sysctl(8) to increase the

kernel security level to its normal level (see "Tweaking a Running Kernel: sysctl," later in this chapter).

2.1.2.3 User immutable flag (uchg)

The user immutable flag is a kinder, gentler immutable flag that is not affected by the kernel securelevel.

Users can set and unset this on their own files and directories, just as root can. Unlike the system immutable

flag, this one can be unset at any time. In order to be able to set this flag, you must be either the file's owner

or root. A user with write access via Unix groups or ACLs, for example, still cannot set this flag.

This flag serves as a useful additional hurdle for an attacker and as a reminder to an administrator. The

automatic tools favored by "script kiddies" will probably not account for the possibility that files are set

immutable. Failures in their tools, then, give you an opportunity to spot their activities before they completely

succeed, and it might even be enough to keep the unsophisticated script kiddies out entirely. When an

administrator bumps into this flag, it helps to serve as a reminder that "the file you're changing is important.

Be sure that you know what you're doing."

 The one place all FreeBSD systems use this flag is on the kernel. It's added mainly as an extra security

measure. It helps keep anyone, even root, from accidentally clobbering the /boot/kernel file. However, rather

than inflict a system immutable file on an unsuspecting populace, the FreeBSD maintainers simply made it

user immutable. It helps keep the novice administrator from doing something careless, but it doesn't prevent

an experienced administrator from getting his job done.

2.1.2.4 Nodump flag (nodump)

Normally all files in a filesystem are backed up when the dump(8) program runs. The nodump flag tells the

backup system not to include the given file in the dumps. Interestingly, it only affects incremental backups

(dump level 1 and above) by default. To tell dump to honor the nodump flag, specify -h on the dump

command line. If you want files to be omitted from backups entirely (i.e., not even included on full dumps),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

then you need to specify -h 0 on the command line.

Unfortunately, the nodump flag is binary, which makes it hard to have any mixture of behaviors. That is, it's

hard to have some files completely omitted from backups while others are omitted only from the

incrementals. If you really wanted to, though, you could make this work with some clever automated scripts.

Note that if you use Amanda (see ports/misc/amanda-server) or a similar

software system to automate your backups, it may be a bit tricky to get the -h

argument onto the command line.

Why would you use such a flag? One set of executives at a major educational institution has their email

mailboxes explicitly omitted from the backup schedule. In their case, they are concerned about legal liability.

Anything that exists on disk or backup tape can be the subject of a subpoena. These executives want email

to be truly deleted if they delete it.

Database files are another example of files that might benefit from the nodump flag. They tend to be very

large and always changing. They are not very useful to back up with dump, however, unless the database

server is in a quiescent state while dump runs. The files are not usually in a consistent state if the database

is actively reading and writing to them. Database files are often among the largest individual files on a

system, and they have always been modified recently, so they always get included in incremental backups.

This increases the time backups take to run, but they will not actually be very useful for restoration. To back

up databases, you have to use a database replication scheme that is aware of the actual needs of backing up

databases. Once that is in place, the nodump flag can be set on the database files to keep the dump

program from doing a lot of needless work.

You can also set the nodump flag on directories that contain temporary data that is not worth preserving. For

example, /tmp probably has nothing of long-term value in it. You probably don't need to back up /var/run,

either. Then again, depending on your system, you might not save much time or tape space by omitting these

directories.

2.1.2.5 System append-only flag (sappnd)

The append-only flag prevents files from being modified, much like the immutable flag, with one exception:

data can be appended at the end of the file. The archetypal use of the append-only flag is for logfiles on

secured servers or perhaps for root's .history file to help catch unwary hackers (see "Candidates for

append-only," later in this chapter).

Note that when a file is marked append-only or immutable, it cannot be

removed either. The only difference between immutable and append-only is

the ability to append to the file. The flags are the same in all other respects.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.1.2.6 User append-only flag (uappnd)

The user append-only flag performs exactly as the system append-only flag described above. The only

difference is that this flag can be unset by both the owner and root at any time, regardless of the kernel

securelevel. The fact that the flag can be unset does not make it useless for security purposes. It helps keep

programs from clobbering logfiles or datafiles even when the Unix file permissions would allow it. It also

allows non-root users to make use of this kernel feature for their own software. If you do not have non-root

interactive users, you may not see a lot of use of this flag on your system.

2.1.2.7 System no unlink flag (sunlnk)

 This flag is a little weaker than the schg flag. It simply prevents the deletion of a file. It is arguably most

useful in its "user" version, uunlnk. It does not prevent truncation of the file or modification of its contents, its

permissions, or any other aspect. It merely prevents the file from being removed.

Like other "system" flags, it can only be set by root, and it cannot be unset when the kernel security level is

greater than 0. This flag exists only in FreeBSD.

2.1.2.8 User no unlink flag (uunlnk)

This flag allows a user to indicate that a file may not be deleted, regardless of the actual Unix permissions

on its parent directory. Normally, if a user has permissions (through user, group, or ACLs) on the parent

directory, she can delete any file in the directory—even files she does not own. That's because, in Unix

filesystems such as UFS, the permission for deleting a file is a function of modifying the directory, not the file

itself. However, with this flag, the permission to unlink a file can be controlled by the file itself. A user can

prevent his file from being deleted, even when the Unix permissions would otherwise permit it.

This flag can be set and unset freely by the file's owner and by root, regardless of the current kernel security

level. This flag exists only in FreeBSD.

2.1.2.9 Opaque flag (opaque)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Opaque flags are used on directories or files that are involved in unionfs mounts (see

mount_unionfs(8) on FreeBSD or mount_union(8) on OpenBSD). Union mounts allow one directory or

filesystem to be mounted over the top of another directory while retaining visibility into the underlying

directory. Thus, when you look in the top-level directory, you see the union of the two directories (hence the

name). A file that exists in one place but not the other (XOR) will be visible. If there are files or directories of

the same name in both places, the "uppermost" one is the one that is accessible.

When a directory is marked opaque with the opaque flag, it only shows files that actually exist in its level.

That is, it makes the union mount act like a regular mount; files in the corresponding directory of a lower layer

will be invisible.

The unionfs filesystem is not complete under FreeBSD. It does not fully work

and it is dangerous to use. Do not use this feature until you check the

documentation and see that it is supported and functional.

2.1.2.10 Archived flag (arch)

This flag has no official or default function. The dump program (you'd think dump would care) and all other

programs ignore it. The fact that standard programs ignore it doesn't prohibit you from making use of it. It's

like another bit that you can set and add your own meaning to.

2.1.3. Common Uses of Flags

 It's probably obvious by the preceding discussion and by the functionality implemented in the flags that they

were designed with specific tasks in mind. There are a few standard uses of flags that are worth mentioning.

2.1.3.1 Candidates for system immutable

 There are many files that are commonly set system immutable. Your SSH configuration files in /etc/ssh

are good candidates. If your SSH key is ever compromised, all your communications (which might include

root passwords or other privileged passwords) can be compromised. Unless you suffer a major compromise

or perform a significant upgrade to SSH itself, the SSH keys should remain the same for the life of the

system. Likewise, root's .ssh/authorized_keys file (if it is used) or administrators' .ssh/authorized_keys files

could be made immutable. This will stop an attacker from inserting her own authorized key or removing your

access to the system by removing your key.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A workstation will probably have fewer files immutable than a core infrastructure server. The exception to this

is if you establish a network filesystem infrastructure where software installations are all on a networked disk.

In that case, the workstations can be locked down more tightly because the changes that users request

probably take place on that networked fileserver, rather than at their desktops. Depending on how tightly you

lock down the workstations, you may or may not choose to apply some of the following suggestions, which

are more appropriate for core servers.

Lock down and make immutable all the directories that contain software binaries and libraries. These

include:

/bin /sbin /usr/bin

/usr/sbin /usr/lib /usr/libexec

/usr/libdata /usr/X11R6/bin /usr/X11R6/lib

/usr/local/bin /usr/local/sbin /usr/local/lib

/usr/local/libexec /usr/local/libdata

You probably will not have all of those directories, unless you are working on a user-oriented workstation. A

system whose sole purpose is a VPN concentrator, for example, would probably not have the X11R6

directories.

There's an important difference between chflags -R schg /bin/* and chflags

-R schg /bin. The former does not set the immutable flag on the directory

itself. This allows an attacker to insert files in the directories. A malicious

program named mroe in /bin is a devious, subtle attack if the administrator is

prone to misspelling.

 It's sometimes also useful to create "blocker" files that are immutable to prevent file-creation exploits

from creating holes. Imagine a file-creation exploit that creates a ~root/.rhosts file containing +. Your

rsh/rlogin daemons (that for some crazy reason you didn't disable yet) will now permit root logins from any

system with no password (see rhosts(5) for more information). If you create the file, make it empty, and then

make it immutable, you protect yourself from an attack like this. There is an equivalent ~root/.shosts file that

is used by ssh; it could also be blocked this way.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Sidestepping Immutability

An aggressive administrator might mark all of the files in /etc immutable, make the /etc

directory itself immutable, and enforce the flags by running in securelevel 2 (see "Kernel

Security Level," later in this chapter). It turns out that, without rebooting, an attacker who

achieves root access can still slip past these protections with a little bit of diligence. The

following attack will allow you to take over an OpenBSD system that has been locked down this

way. FreeBSD 4.x is similarly vulnerable, but FreeBSD 5.x is not.

Make a copy of /etc (or whatever important directory you want to own). Be sure to use

a tool or options that do not duplicate flag settings. Something straightforward like cp

-pr is bad, but tar should work.

1.

Modify the files in your /etc copy to suit your needs.2.

Mount an MFS filesystem over the existing /etc. For example:

sudo mount_mfs -s 8192 /dev/wd0a /etc

3.

Copy your modified files into your clean-slate MFS /etc.4.

Send HUP signals to any daemons whose configurations you replaced.5.

The daemons will reread their configuration files from your new version of the /etc directory,

and they will follow your new configuration. This just goes to show that even options that seem

pretty rigid, like filesystem flags, can sometimes be circumvented.

FreeBSD 5.x is not vulnerable because mount fails in any securelevel greater than 1.

2.1.3.2 Candidates for append-only

Remember that append-only is the same as immutable, except that the file can be appended. Your

immediate intuition would be to set this flag on logfiles. If you did that, though, the files could not be rotated

on an automated schedule. Append-only logfiles cannot be renamed, deleted, or moved—just like immutable

files. Being able to rename, move, or delete a logfile is tantamount to editing it. So, in general, you probably

will not be setting your basic logfiles, like /var/log/maillog, to be append-only.

There are a few places where append-only files make sense. If you have specially designed your logging

infrastructure so that you have a very large logging disk, and you want to be sure that your log is safe, the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

append-only flag can help. You could only rotate the logs at boot time, so that might motivate you to reboot

on a somewhat regular schedule.

2.1.3.3 Finding files with flags

 The find(1) command understands flags if you give it the -flags argument. For instance, this command

finds all files that have the uunlnk flag set in user paco's home directory: find /home/paco -flags +uunlnk

-print. Here's how you might do something interesting with find's flag awareness.

 Remember how we said you could use clever scripting with the nodump flag to get some files included

only in full backups, while others excluded entirely? You could use the arch flag (which has no defined

purpose right now) to indicate the files that should be included in the full backups. Set the nodump flag on

files that should never be dumped at all, and set both the nodump and the arch flag on files that should be

included only in full backups. Always run dump with the -h 0 argument so all files with the nodump flag set

will be excluded. On nights that you run full backups, run a find command like this before you run dump: find

/ -flags +arch -exec chflags dump '{}' \;. That finds all files that have the arch flag set, and turns off their

nodump flag. After dump does its work, you can run a similar command to reverse these effects: find /

-flags +arch -exec chflags nodump '{}' \;. Whenever you want to remove a file from your incrementals,

you merely set the arch flag on it, and this scheme handles the rest.

2.1.4. POSIX Access Control Lists (FreeBSD Only)

 Access control lists (ACLs) extend the well-known Unix file permissions to control, at a fine-grained

level, the kind of access individual users or groups can have on particular files. They are new extensions to

the Unix filesystem (UFS) and UFS Version 2 (UFS2). Both ACLs and UFS2 are only available under

FreeBSD. The permissions governed by ACLs are still the traditional read, write, and execute permissions of

Unix filesystems, but they can now be specified for arbitrary lists of users and groups. You're no longer

constrained to set permissions for three populations: the owner, one group, and everybody else.

ACLs can be a boon for administrators who manage multiuser systems because users can manage the ACLs

on their own files just like the administrator can. With ACLs, a system administrator doesn't have to know

what federations of users are forming from week to week and then create Unix groups for them. Individual

users can give and revoke access to whomever they choose, whenever they choose.

2.1.4.1 Enabling ACLs

 Before anyone can use ACLs on any filesystem, you must make sure your kernel has the UFS_ACL

option enabled. The generic FreeBSD kernel does, so unless you took it out when you built a custom kernel,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

you don't need to do anything special. This one option is sufficient whether you are using ACLs under UFS or

UFS2 filesystems. The only time you have to worry about UFS filesystems, though, is if you are using an

older FreeBSD system. UFS2 has been the standard filesystem since FreeBSD 5.1.

Once you have the kernel support built in, there are two ways to enable ACLs: using the /etc/fstab file or

tagging the superblock directly.

2.1.4.1.1 ACLs in /etc/fstab

There is an acls option to mount that can be specified in /etc/fstab as shown in Example 2-2.

Example 2-2. Example /etc/fstab file with ACLs for /home

Device Mount FStype Options Dump Pass#

/dev/da0s1b none swap sw 0 0

/dev/da0s1a / ufs rw,userquota,groupquota 1 1

/dev/da0s1f /usr ufs rw,userquota,groupquota 2 2

/dev/da0s1e /home ufs rw,userquota,groupquota,acls 3 3

/dev/da1s1e /var ufs rw,userquota,groupquota 2 2

/dev/acd0c /cdrom cd9660 ro,noauto 0 0

As you can see, the /home partition in this case has ACLs enabled.

2.1.4.1.2 ACLs in the superblock

Tagging the superblock is actually the preferred way to enable ACLs on the filesystem. It can only be done,

however, using the tunefs(8) command; and tunefs can only do its job on an unmounted filesystem. If you

want to do this, you will have to take your system down to single-user mode, or umount the idle filesystem, in

order to run it. For example, to enable ACLs on the /home filesystem, you would umount it, and run tunefs

-a /home. The superblock tag is the best way to enable ACLs because it cannot easily be removed from the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

filesystem. A typo in /etc/fstab or filesystem changes could inadvertently cause the acls flag to be omitted at

mount time. However, the ACL flag in the superblock will never be overlooked by mount.

2.1.4.2 Managing ACLs

 The setfacl(1) and getfacl(1) commands allow you to manipulate the ACLs on files. Entries in the ACL

can either be replaced wholesale or can accumulate. Each time setfacl is run, it can append a new access

specifier to the access control list, replace an existing entry on the list, or replace the entire list with a new list

specified on the command line.

As an example, let's assume we have a file book.pdf, and we want three users (paco, yanek, and bruce) to

have read and write access to it. Let us also suppose that the Unix group editors should have read access to

this file, and no one else should have any access. In traditional Unix, we could not actually enforce such

permissions—there is no way to give three users write permission while giving a Unix group read-only

permission. With ACLs enabled, Example 2-3 shows the series of commands that will establish exactly that

permissions structure on book.pdf.

Example 2-3. Setting ACLs with setfacl(1)

% setfacl -b book.pdf # Erase any existing ACLs

% setfacl -m u:paco:rw book.pdf # Add Paco's access

% # Now do Bruce and Yanek in one (contrived) command

% setfacl -m u:bruce:rw -m u:yanek:rw book.pdf

% setfacl -m g:editors:r book.pdf # Give the Unix group editors read access

% setfacl -m o:: book.pdf # Nobody else gets any permission at all

The specifier for the ACL entry is three elements delimited by colons: a letter, a user or group, and then the

access to grant that user or group. The letters u, g, and o are very similar to chmod(1) and indicate what

you'd expect: user, group, and other, respectively. Naturally there is only one "other" entry. There can be an

arbitrary number of user or group permission entries. The specifier in between the colons is either the name

of a user, the name of a group, or nothing. In the case of a user or group entry, omitting the user or group

name implies that the ACL entry applies to the file's current owner or group. For symmetry, the "other" ACL

entry has two colons, but nothing can go between them. After the second colon come the

permissions—specified with r, w, and x, again just like with chmod.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To see the ACL for a file, use the getfacl command as shown in Example 2-4. It shows the access control

list for the book.pdf file we established in Example 2-3.

Example 2-4. Viewing the ACL of book.pdf using getfacl

% ls -l book.pdf

-rw-rw-r--+ 1 www www 0 Nov 23 04:12 book.pdf

% getfacl book.pdf

#file:book.pdf

#owner:1001

#group:100

user::rw-

user:paco:rw-

user:yanek:rw-

user:bruce:rw-

group::r--

mask::rw-

other::---

ACLs are subtle in a few ways. The only hint you have that a file has an associated ACL is a + after its Unix

permissions in the output of ls -l as shown in Example 2-4. They also invisibly supercede the standard Unix

file permissions. The output of ls -l might show a file readable by the editors group, and user gnat might be a

member of editors, but if there is a specific ACL entry that denies user gnat read privileges on the file, he will

be denied. Only the output of the getfacl command will explain why.

Both ACLs and flags can be confusing if they are used on an NFS file server.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The NFS protocol has no means of transmitting ACL information from the

server to the client. So the client will be denied permission because the ACL or

the flags deny the action, but the client will have an incomplete picture of why

it happened. Commands like getfacl and ls -lo will appear to work, but they will

not actually show the true ACLs or flags. Commands like setfacl and chflags

will fail on NFS mounted filesystems.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

2.2. Tweaking a Running Kernel: sysctl

 As the BSD kernels have evolved, many of their internal data structures have become more exposed to

the administrator. Modern BSD kernels can now be tuned while they run, using a program called sysctl(8)

that displays and sometimes alters the value of a variable in the running kernel. Most sysctl variables control

highly specialized and localized functionality in the kernel. Your server's role, and the environment in which it

deployed, largely determine which of these variables—if any—you need to set. A very active database server

might need more open files per process than usual. A very active web server will often need various TCP/IP

variables tuned. An Internet server that is in a hostile network will need options set that are unnecessary for

an intranet server on a friendly network.

 These variables might indicate the default settings in a kernel module or device driver (e.g.,

net.inet.ip.ttl=64). Sometimes they offer low-level tuning on things like buffer sizes (e.g.,

kern.ipc.maxsockbuf=262144). Some of them are read-only and dynamic to provide a snapshot in time of

some kernel state that is constantly in flux (e.g., vm.loadavg=0.04 0.08 0.08). Others merely offer a

convenient way to get information out of the kernel. Changing these values is a fundamental skill that will be

required as part of most significant tasks discussed in this book.

sysctls Change

The names and behaviors of sysctl variables change from time to time. New versions of the

operating system introduce new variables and retire old ones. In this chapter we discuss

FreeBSD 5.3-RELEASE and OpenBSD 3.6. There have been significant changes in FreeBSD,

for example, from the 4.x versions to the 5.x versions.

There are several places to find all the names and values for variables. The definitive source,

of course, is to run sysctl -a. That will list all of the sysctl variables known to the current

kernel, and it will show their current values. It does not, however, indicate which values can be

changed, nor what would happen if they were changed. The sysctl(3) and sysctl(8) manpages

indicate whether particular values are changeable. Some values are not changeable at

runtime, but can be altered from their defaults at boot time by entries in /etc/sysctl.conf(5).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html
mfreeopenbsd-CHP-2-SECT-2.html

2.2.1. Setting sysctl Values

Reading sysctl values is easy: just run sysctl variablename. Any user can read all kernel values. Setting

variables is equally easy. Just add an equals (=) sign and the new value: sysctl kern.securelevel=2. Only

root can set values. Once you have a set of sysctl values that you like and want to make default, you can

add them to sysctl.conf(5) in a simple variable=value format. The only values that can go in /etc/sysctl.conf,

however, are those that can be set once the system is up and running multiuser. FreeBSD allows some

values to be set at boot time, but not later. Those go in /boot/loader.conf. The loader(8) manpage lists which

variables can only be tuned at boot time in this file.

sysctl is a very powerful tool and it has no error checking. Tweaking the wrong

variable the wrong way can send your system spiraling downward quickly.

Fortunately, sysctl values are not permanent, so a simple reboot will fix a

badly set sysctl value. Be sure to test them before codifying them in a file like

/etc/sysctl.conf.

2.2.2. Kernel Security Level

 There are several sysctl variables that are important to overall system security. Probably the single most

important sysctl variable in the entire system is the variable kern.securelevel, simply referred to as its

securelevel. Its value has diverse effects across a wide variety of functions and features.

Table 2-2 summarizes the various ways in which the kernel securelevel affects system operations. They are

explained in detail in the following sections.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 2-2. Kernel security levels

 Securelevel

System property -1 0 1 2 3

System immutable and append-only flags can be changed - - -

Raw disk devices for mounted file systems can be written
* - - -

/dev/mem and /dev/kmem can be written - - -

Kernel modules can be loaded and unloaded - - -

Non-mounted raw disk devices can be written
* - -

Filesystems can be mounted - -

Time can be adjusted more than one second forward or back - -

IP filtering and firewall rules can be changed -

*
 Raw disk devices only exist in OpenBSD.

 Securelevel 2 in OpenBSD is equivalent to 3 in FreeBSD.

 Filesystems can be mounted under OpenBSD, FreeBSD 4.x , but not under FreeBSD 5.x.

Root can raise the securelevel at any time, but it can never be lowered. You must change your configuration

file and reboot to run at a lower level.

2.2.2.1 Level -1: "permanently insecure"

If the system finds itself in securelevel -1 at the end of the boot process, it will not raise the securelevel.

Thus, setting your default level to -1 is how you get the system to stay insecure at boot time. At various times

in later chapters we will recommend that you "reboot to a lower securelevel" in order to accomplish

something that can only be done that way. Setting your default securelevel to -1 is how you'd do that.

In FreeBSD, you may also specify kern_securelevel_enable="NO"

in/etc/rc.conf to boot into securelevel -1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

At kernel securelevels 0 and -1 the operating system behaves as like any traditional Unix: root is supreme

and can do all things. All filesystem flags are enforced but can be both set and unset. All devices can be read

and written to as their permissions indicate. Firewall rules can be set and unset at will, and the system clock

can be set arbitrarily.

Production systems that have any sort of security requirement should normally run with a securelevel higher

than 0. It's worth noting that even if you immediately promote your system to securelevel 1, you'll still be able

to configure everything without difficulty. It's only after flags have been set on something you want to change

that the securelevel may interfere. You can install new packages and set flags on the newly installed files

without worrying about the securelevel.

2.2.2.2 Level 0: transitional security level

There is no operational difference between secure level 0 and securelevel -1. The system only runs in level

0 briefly during boot time and when it is in single-user mode. Generally systems boot at level 0 and then

switch to a higher level after booting, or they boot at -1 and stay there.

Securelevel 0 is unusual in that you can lower the securelevel back to -1 if you want to. If your OpenBSD

system normally runs at securelevel 1 or 2 and you want to boot to a lower level just once, you can do so

without modifying your configuration file. Boot to single-user mode and you will find your system in

securelevel 0. Set the securelevel to -1 by running sysctl kern.securelevel=-1. When the system boots, it

will not increase the securelevel to its default.

2.2.2.3 Level 1: improved operational security

At level 1, the kernel imposes stricter security constraints than a traditional Unix system. Write access to

raw disk devices (which exist on OpenBSD and FreeBSD 4.x) is denied, even to root-equivalent processes, if

the raw device corresponds to a currently mounted filesystem. On FreeBSD, though raw devices don't exist,

similar constraints apply. You cannot write to the disk device of the mounted filesystem.

In traditional Unices there are two styles of devices: "raw" and "cooked." The

raw devices do not use buffering in the kernel, but instead perform their I/O

directly to the device. The kernel mediates access to cooked devices. It might

prefetch more data than a program asks for and store the extra in a buffer, or it

might buffer data that a program writes until it has enough to make a call to the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

real device. Raw devices are used by programs like fsck(8), dump(8),

mount(8), and newfs(8) to read and write data directly off of disks.

 The kernel also enforces the system append-only and system immutable flags (see Section 2.1,

earlier in the chapter). The /dev/mem and /dev/kmem devices cannot be opened for writing, which helps

protect against rogue processes writing into other processes' memory.

Kernel modules cannot be loaded or unloaded in any level greater than zero, and this might occasionally

interfere with your maintenance. The BSD kernels have become increasingly modular in recent years, which

helps reduce the amount of RAM the kernel uses. They don't load device drivers for devices you don't have.

For example, most dedicated servers rarely mount CD-ROMs. The ISO-9660 filesystem driver, therefore, is

not built into the kernel. It is available instead as a kernel module. The first time you try to use a CD-ROM on

a system running at securelevel 1 on higher, the mount(8) command will automatically try to load the kernel

module and fail. If the ISO-9660 driver is something you need often, you will have to either add a command

to the boot process to load the driver at boot time, or compile the driver into the kernel. For dedicated servers,

this is rarely an issue after the server is configured the first time.

Just be aware that you cannot add certain module-based functionality to a server with a non-zero

securelevel. You have to reconfigure the system so it will boot into a lower securelevel, reboot, and then do

the work that requires the kernel module.

2.2.2.4 Level 2: high security

 Each level of security includes all the protections of all the lower levels. At level 2, all of the level 1

protections remain, but several are expanded. For OpenBSD and FreeBSD 4.x, no raw disk device can be

opened for writing at all once you're in level 2. This means, among other things, that the newfs(8) command

cannot be used to create filesystems. Additionally the growfs(8) command will not run at this level. Even

though FreeBSD does not use raw devices anymore, these same restrictions are implemented in FreeBSD

on the so-called "cooked" devices.

It's interesting to note that mounting an MFS filesystem will fail in securelevel 2

in FreeBSD 4x and in FreeBSD 5.x, but for different reasons. In the first case,

it will fail because newfs cannot run. In the latter case, you just can't mount

filesystems in securelevel 2.

 This protection is selective, so devices such as tapes and network devices are still accessible to

processes with root privileges. Additionally, the protections are only for writing to raw disk devices, not

reading. If reading from raw devices were restricted, then dump(8) and fsck(8) would not be able to run.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Programs like FreeBSD's camcontrol(8) and anything else that tries to directly manipulate the SCSI bus

would fail, though. Interestingly mtx(1), a tape library control program available in ports/misc/mtx, will not

work at this securelevel, but the built-in chio(1) library control program will. The reason is that mtx tries to

use /dev/pass0, a device that directly reads and writes on the SCSI bus, whereas chio uses API calls in the

operating system. If direct reads and writes to the SCSI bus were allowed, then disks could be written and

manipulated—bypassing the securelevel.

 Time is also carefully controlled at level 2 and higher. It cannot be adjusted forward or backward by

more than 1 second at a time. This restriction on time has two beneficial effects. It makes log entries more

trustworthy because the time cannot be modified to make events look like they happened in the future or in

the past. Accurate time also affects digital signatures. If any processes on the system use asymmetric

cryptography to apply digital signatures (e.g., PGP or S/MIME email), the accuracy of the clock is critical to

the validity of the signature.

Restricting time adjustments is not normally a problem when you keep your time synchronized using

ntpd(8). At boot time, before the securelevel is set, the system calls ntpdate(8) (or ntpd -q) to adjust the

clock however much it needs to be adjusted. Then the system starts the ntpd daemon, to continuously

synchronize the local clock with the public time servers. Although your typical Intel-based PC system clocks

tend to drift significantly, even the worst can be kept in check by ntpd.

2.2.2.5 Level 3: network security

 This level only exists in FreeBSD. The protections it offers in FreeBSD are duplicated in OpenBSD at

securelevel 2. At kernel securelevel 3, two network features—the firewall rules ipfw(8) and ipfirewall(4) as

well as the dummynet(4) traffic shaping parameters—become immutable. This is most beneficial when the

system is acting as router, performing network address translation, or is some other core network device. It

helps prevent an attacker from opening holes in your firewall to allow malicious network traffic through. These

are the only differences between level 3 and level 2. If you do not have concerns about firewall rules (for

instance, if you do not use the firewalling features), there is no particular value in running in securelevel 3.

2.2.2.6 Setting the securelevel for FreeBSD

The FreeBSD securelevel is controlled by two variables in /etc/rc.conf(5). A typical configuration looks like:

kern_securelevel_enable="YES"

kern_securelevel="2"

By default, kern_securelevel_enable is set to NO in /etc/defaults/rc.conf, which causes the system default

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

of 0 to be demoted to -1 at boot. You may find additional details about securelevels in the manpage for

init(8).

2.2.2.7 Setting the securelevel for OpenBSD

The OpenBSD securelevel is configured to be 1 by default. To change your default securelevel, edit

/etc/rc.securelevel(8) and change the line securelevel=1 to a new value. OpenBSD documents its behavior

in the securelevel(7) manpage.

2.2.2.8 Thoughts on using securelevel

 Making rc.conf or rc.conf.local immutable in a securelevel greater than 1 is the only way to prevent an

attacker who gains control of your system from lowering its security level. The only way to reduce the security

level of your system in such a configuration is to interrupt the boot process at the console and enter

single-user mode.

Before trying to "make your system go to eleven" on the kernel securelevel, however, think about whether

the hassle in maintenance is worth the additional security. We would argue that the additional security is

mostly illusory, but the maintenance hassle is absolutely real. The additional security is minimal because your

attacker's goal is probably not to reboot the system to a lower securelevel. Instead, she really wants to modify

database records, set up back doors into the system, and so forth. If she gets into the system at all, you will

need more than directory permissions and securelevel to protect your assets. Don't look at securelevel as a

silver bullet that cures all security problems. Security levels can make administration more complicated and

time-consuming in addition to making systems safer. Sometimes all the work of raising the securelevel can

be bypassed somewhat, too. See the sidebar "Sidestepping Immutability," for an example of bypassing

securelevel in FreeBSD 4.x or OpenBSD.

 The more volatile your filesystem, the harder it is to run at a high security level all the time. Each time you

install software, you will be installing files in potentially sensitive areas. For instance, if you use something

like Osiris (http://osiris.shmoo.com/) to capture all the attributes of files on the filesystem, that database will

need to be updated after a software install. If that database is stored on the system itself, it will probably be

immutable, and the securelevel settings will make it impossible to update it without rebooting into a lower

securelevel. Clearly software installation in such an environment requires a deeper depth of planning and

staging than a non-securelevel installation. The more sensitive your users are to system reboots, the more

planning and staging you'll need.

The above considerations notwithstanding, no server that needs to be secured should omit the kernel

securelevel setting. It is one of the distinguishing features that sets FreeBSD and OpenBSD apart from

similar free Unix-like operating systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://osiris.shmoo.com/

2.2.3. Other Security-Related Kernel Variables

 Several additional variables are available that each add some small value to securing a server. Not all of

them are appropriate to all environments.

2.2.3.1 Random PIDs

 A number of exploits, such as race conditions, make use of the fact that process IDs (PIDs) have

historically issued sequentially by the operating system. Process ID 1 is assigned to init, and then all the

others are issued incrementally. If the server launches the BIND nameserver at boot time, for example, the

named(8) process probably gets the same PID (plus or minus a few) every time. Unless something unusual

happens and the nameserver is killed, an attacker can count on named having that PID on his target. Of

course, every server will be slightly different, but once you learn PIDs for a particular system, they will only

change a little each time the server boots. Other processes, such as sendmail(8), fork often. If a process runs

with root privileges and it forks, there is a second copy of it (the child process) running with root privileges for

some small instant of time. Typically the child sheds its root privileges as quickly as it can, but sometimes the

child process is vulnerable to some outside influence like creating a temporary file named the same as one it

plans to open. By knowing the PID of the child process and how to influence it, attackers can try to exploit

these kinds of race conditions.

FreeBSD allows you to choose to assign PIDs to processes randomly by setting the kern.randompid

variable to 1. PID 1 still goes to init, but everything else is random. OpenBSD does not offer a choice for this

behavior. It always assigns random PIDs, except to init.

2.2.3.2 Controlling core dumps

When a process crashes, or when it is sent certain unhandled signals, it might "dump core" in an attempt to

aid in debugging what went wrong. More often than not, this core file is large and useless for the system

administrator. It is a snapshot of the memory the program was using at the time the program crashed, along

with various register values like the stack pointer. If you are the program's developer and you have the

source code and motivation, you can use the core file to help track down just what was happening when the

program crashed.

 Most of the time, system administrators and system users have no use for core files. More importantly,

such files can inadvertently leak important information to a malicious user. Imagine, for instance, a situation

where an attacker can cause the web server process to dump core. Perhaps there is a buffer overflow that

causes a segmentation fault, or some kind of unhandled exception. If the web server dumps core while it

has, for example, the server's SSL private key unencrypted in memory, that key will be in the core file. While

the core file probably will not be dumped somewhere visible in the web hierarchy, the attacker may have

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

some other means of getting the httpd.core file from the web server (e.g., perhaps the attacker has a login

account). If he does get the core file, he can rummage through the core file to extract the SSL private key,

and now he can decrypt all that server's traffic! A lot of things have to go wrong for such an attack to actually

succeed, but you can see the potential.

Table 2-3 describes some sysctl variables that control core dump behavior. In general, core dumps should

be turned off unless you have a very specific need for them. Note that two of these are FreeBSD specific,

and the last one performs the same role, but is named differently in FreeBSD and OpenBSD.

Table 2-3. Core dump controlling sysctl variables

Variable name Default Usage

kern.coredump

(FreeBSD only)
1

Enables core dumps by programs. If they are enabled, the core file

will be named according to the kern.corefile template below. This can

virtually always be disabled safely.

kern.corefile

(FreeBSD only)

%N.core
Template for core filenames. %N is the name of the program that

crashed.

kern.sugid_coredump

(FreeBSD)
0

Setuid and setgid programs are especially likely to have sensitive

information in memory, so they do not dump core by default. You

would only enable this if you were actually trying to get a core file from

such a program for debugging or forensic purposes.

kern.nosuidcoredump

(OpenBSD)
1

2.2.3.3 Reducing visibility in the network

 Two related variables tweak behaviors in the TCP/IP stack to make a system less visible to probes. This

helps you keep a low profile in the presence of automated scanners, and it helps reduce the amount of

resources the kernel spends responding to such probes. The variables are net.inet.tcp.blackhole and

net.inet.udp.blackhole. To use them, put the following lines in /etc/sysctl.conf:

net.inet.tcp.blackhole=2

net.inet.udp.blackhole=1

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Network Scans: What Are They?

When your system is available on the Internet, it will definitely be the subject of one or more

probes. If the system is behind a firewall, the firewall can block the majority of the probes.

Otherwise, your system will receive a lot of weird traffic that malicious people send. They are

trying to figure out what operating system and software you are running and whether there are

any known exploits for it. They do this in a variety of ways.

 Someone who is scanning usually just picks IP address ranges and starts sending

packets to ports on those IP addresses. There are a number of tools such as nmap

(http://www.insecure.org/nmap/) that automate this process. Once he knows what ports your

server listens to, he will probe those ports more specifically. For instance, he will connect to

port 22 to determine if the version of OpenSSH you run is vulnerable to any number of

vulnerabilities OpenSSH has had over the years. He may also send packets with the SYN and

FIN bits set. Such packets are not used in normal TCP/IP connections, but malicious scanners

use them regularly. It turns out that most operating systems are idiosyncratic in how they

process such packets, so the system's response can often identify what operating system is

running.

You will never completely defeat such scans, since you have to have some connectivity. Giving

away as little information as possible, though, is a good practice.

 These variables cause the kernel to drop packets when another system attempts to connect to a TCP

or UDP port where no process is listening. The normal kernel behavior would be to compose a TCP reset

packet, or an ICMP port unreachable message, and send it as a response. When the two "blackhole" sysctl

variables are set, the kernel does nothing when it receives connection attempts on non-listening ports. The

probing system gains no information about your system. It cannot distinguish a non-listening port from a

timeout in the network. This will slow an attacker down some because he will wait some amount of time after

each probe packet is sent. His scan will take a lot longer. Turning on these variables also reduces the

amount of resources consumed by the kernel's responding to such probes. Any system that is subject to a lot

of random port scans or probes should have these variables on. Any system that is connected to the Internet

is subject to just such scans and so should have these variables enabled.

2.2.3.4 Dropping "synfins"

 A similar variable net.inet.tcp.drop_synfin will cause the kernel to drop all TCP packets that have the

SYN and FIN bits set.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.insecure.org/nmap/

See the sidebar "Network Scans: What are They?" for more information on

synfin packets and how they are used.

 These so-called "synfin packets" are often used by programs like queso and nmap to "fingerprint" an

operating system. Some believe that dropping such packets (i.e., not responding to them) violates the TCP

specification, but there are vigorous compelling arguments on both sides. Some system and network

administrators are not comfortable with dropping them. It is unlikely, however, that failing to respond will have

any adverse effect on the operation of your server.

Dropping SYN+FIN packets requires that you change your FreeBSD kernel configuration. Unless you add

the option TCP_DROP_SYNFIN statement to your configuration and recompile your kernel, the

net.inet.tcp.drop_synfin variable will not be honored. Consult Chapter 9 of the FreeBSD Handbook

(O'Reilly) for a thorough walkthrough of kernel configuration and compilation.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

2.3. The Basic Sandbox: chroot

As Unix systems evolved over time, more and more defects were found in critical system software. When

software ran with elevated privileges, those defects could often be parlayed into security compromises.

Sometimes a program might divulge the contents of a protected file, and sometimes it would execute a

system call with unauthorized parameters. The change root (chroot(2)) system call was invented as a

defense against this sort of attack. If the privileged software goes awry, this secondary defense tries to limit

the damage that might result.

Be aware that both chroot and jail have two different sets of manpages. There

are chroot(2) and jail(2) system calls as well as chroot(8) and jail(8)

commands.

The principles behind chroot are simple. A process running in a chrooted environment sees a normal

filesystem, but it in fact has a virtual root directory. The goal is to prevent the process from accessing files

outside its sandbox. So, if ntpd runs in a chrooted environment, for example, and an exploit is discovered

that causes it to overwrite a file, files in the real filesystem should be protected. The daemon perceives a /

directory and will write relative to that directory, but on the real filesystem, the directory is something like

/var/ntpd, and the daemon cannot actually reach the real / directory.

The archetypal use of chroot is for the FTP daemon, ftpd(8). It allows anonymous users to traverse part of

the filesystem and download files. For obvious reasons, it should not allow them to traverse the entire real

filesystem anonymously. To run correctly, however, the daemon needs more than just the files it is supposed

to serve. It needs files like /etc/passwd and /etc/group to map numeric UIDs and GIDs to user login names

and groups, /etc/localtime to display times in the correct time zone, and /etc/motd to define a "message of the

day" to users who connect. In order to get the FTP daemon to run correctly in a chroot environment, then, it

takes some configuration and planning.

2.3.1. Creating a chroot Environment

It takes a bit of work, and sometimes some in-depth knowledge of the software you're installing to properly

build a chroot environment for it. Figure 2-1 shows an example of a real filesystem, with a chroot virtual

filesystem beginning at a /jail directory on a real filesystem. Most software that is amenable to chroot will tell

you, in their manpages or other documentation, what they require in order to run correctly. If they don't give

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html
mfreeopenbsd-CHP-2-SECT-3.html

you explicit instructions, expect to spend some time in trial-and-error attempts. We discuss some techniques

for determining software needs in the section "Managing jails."

Figure 2-1. A chroot filesystem

First, you must create a directory hierarchy with all the subdirectories that need to exist. In this case, /jail

with subdirectories bin, etc, lib, usr, and web. We're chrooting a web server, so we're going to put all the web

server's binaries, configuration, and data in the web directory.

Then copy the software and all its data into the chroot area. Depending on how the software will execute, this

usually requires copying shared libraries (e.g., the C run-time library /usr/lib/libc.so.4), configuration files, and

datafiles. If the software normally expects its configuration files to be in /etc/software.conf, then install the file

in /jail/etc/software.conf.

Most software capable of taking advantage of chroot will save you some of this effort. Either by statically

linking at compile time, or by dynamically loading all its shared libraries before calling chroot, it reduces the

number of files that have to be stored in special chroot filesystems. BIND 9, for example, does exactly this,

alleviating the need to copy a bunch of dependent libraries into a virtual filesystem.

2.3.2. An Example: chrooting ntpd

When a program does not have native support for chroot(2), the way BIND and ftpd do, you can use the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

chroot(8) command to impose the restrictions on it. To show how this is done, we will take a program in

FreeBSD, ntpd, that does not support chroot and launch it chrooted. There have been historically very few

bugs with ntpd relative to its ubiquity, and OpenBSD has already imposed privilege separation on its ntpd,

so this is a somewhat contrived example. We start out by creating a /jail/ntpd virtual filesystem. Normally we

would create a separate user associated with ntpd and make all the files in the jail owned by that user

(OpenBSD has an _ntpd user for this purpose). In this case, we can't do that because only root can change

the clock. The ntpd process needs to run as root.

If the process must run as root to set the clock, what is the _ntpd user for?

The OpenBSD team wrote their own NTP daemon that prominently features

privilege separation. It drops its privileges for most mundane operations (like

DNS lookup and parsing network messages). This is an excellent example of

how a simple design and the application of a security principle can obviate the

need for complex, error-prone configurations.

First, let's just take a crack at it. We know a few things have to exist in our chroot environment: the

/usr/sbin/ntpd binary and its configuration file /etc/ntp.conf. We make our virtual root directory with these two

files and run the command with proper syntax just to see what happens, as shown in Example 2-5.

Example 2-5. Make an ntpd chroot environment and see what happens

% sudo mkdir -p /jail/ntpd/usr/sbin /jail/ntpd/etc

% sudo cp /usr/sbin/ntpd /jail/ntpd/usr/sbin

% sudo cp /etc/ntp.conf /jail/etc/ntp.conf

% sudo chroot /jail/ntpd /usr/sbin/ntpd

ELF interpreter /libexec/ld-elf.so.1 not found

This tells us two things: first, the program is dynamically linked; second, we have to track down its library

dependencies. If ntpd were statically linked, all the instructions would be stored in the binary file. The

operating system would essentially load the ntpd file into memory and execute it. Because it is dynamically

linked, it borrows instructions from various other libraries. Normally dynamic linking is a good thing. It makes

the programs smaller on disk and in RAM. This lets your system benefit more from its caches because the

same RAM pages and disk blocks are being used by multiple programs. When dealing with a chroot (or, as

we will see, with a jail), dynamic linking makes it a little harder to isolate the program. We have to identify

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

every library that ntpd loads, and we have to put a copy of the library in the virtual filesystem.

Rather than find all the libraries by trial and error, use ldd(1) to interrogate the binary as shown in Example

2-6.

Example 2-6. Using ldd to determine library dependencies

% ldd /usr/sbin/ntpd

/usr/sbin/ntpd:

 libm.so.3 => /lib/libm.so.3 (0x280ae000)

 libmd.so.2 => /lib/libmd.so.2 (0x280c8000)

 libcrypto.so.3 => /lib/libcrypto.so.3 (0x280d2000)

 libc.so.5 => /lib/libc.so.5 (0x281c7000)

Copy /libexec/ld-elf.so.1 and these other library files into /jail/ntpd and try again. You'll see that it works! Now,

ntpd is a pretty straightforward program, so chrooting it was equally straightforward. For other programs, you

often need more files than just the shared libraries. If ntpd had complained about other missing files, we

would have used some of the techniques described in the next section, "Finding Other Dependencies."

You might wonder if you gained anything by chrooting ntpd. While chroot is potentially escapable, especially

if the process runs as root, you did create an additional hurdle for an attacker who would exploit your ntpd.

He must not only create a successful exploit for the daemon, but he also has to customize his attack to

escape your chroot environment. This is just another layer of defense, in line with our defense-in- depth

principle.

A dedicated hacker who is specifically targeting your system for some reason might spend the extra time and

effort to break out of a chroot. The so-called "script kiddies," on the other hand, who run automated discovery

and exploit tools will probably pass over your system since they'd rather spend their time on low hanging fruit.

Ultimately, you have to consider the level of hostility you face and decide whether the increase in security

was worth the effort of chrooting.

2.3.3. Finding Other Dependencies

 If you try to run programs in a chrooted environment and they fail mysteriously, the ktrace(1) and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

kdump(1) commands come in handy.

To use ktrace, simply put it on the command line first, like you would for sudo(8). A file named ktrace.out

will be produced in the directory in which you run kTRace. You can then use the kdump command to parse

that file. The first things to look for are files that the program you're trying to chroot is attempting to open.

Look for the name-to-inode (NAMI) translation (e.g., run kdump | less and then search interactively for

"NAMI"). This makes a good starting point because you often see files that you know don't exist and you can

work on installing those files into your virtual filesystem.

See Table 2-4 for some red herrings that you don't need to track down.

If the NAMI translations don't give you enough of a clue to figure out what files you need in the virtual

filesystem, look more interactively at the kdump output for more information. Example 2-7 shows some of

the output from trying to open a file named foo that is not readable by the current user:

Example 2-7. kdump output

52240 cat CALL open(0xbfbffc8c,0,0)

52240 cat NAMI "foo"

52240 cat RET open -1 errno 13 Permission denied

 Often the kinds of problems you run into when trying to install software into chroot are configuration

files or shared libraries that do not exist in the right path. By running kdump and ktrace multiple times, you

can zero in on the files you need and where they need to be. If you're working with a daemon process like

Sendmail or Apache that forks child processes, you can run ktrace -di to follow its descendents. Also check

for application-specific options that may prevent the program from running in daemon mode. Many daemons

have options to stay in the foreground and log extra information.

2.3.3.1 Sorting through kdump's output

You don't have to track down each and every file that the program tries to open. Sometimes, for example

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

with libcrypto.so, you'll see the program try opening it in a variety of different directories until it finally finds it.

The library is ultimately found, so it really doesn't matter where it's found. Other files, like /etc/malloc.conf,

don't actually matter most of the time. They should only exist if you really are trying to modify malloc(2)'s

behavior in your chroot or jail environment. Table 2-4 lists files that you'll frequently need in either a jail or

chroot environment. It also lists some files that you might see in the output of kdump that aren't usually

important. If your program dies because it can't open a file, look at the last error in the kdump output and

work backward from there. Don't start with files that aren't found if the program keeps running after failing to

find the file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 2-4. Files related to chroot and jail

Filename Description

/lib/ld-elf.so.1 (FreeBSD)

/usr/libexec/ld.so

(OpenBSD)

The runtime loader for the operating system. If you intend to run any

dynamically linked programs, you will have to provide this file in this location

inside the virtual environment. You will also need one or more dynamic

libraries.

/lib/libc.so.5

/usr/lib/libc_r.so.5

/usr/lib/libstdc++.so.4

/lib/libm.so.3

/lib/libcrypto.so.3

/lib/libcrypt.so.2

/usr/lib/libpthread.so.1

Dynamic libraries that you frequently need on FreeBSD, including the C and

C++ runtime libraries, the standard math library, the cryptography library, and

pthread library.

The libc_r.so.5 library is a reentrant version of the standard C runtime

environment that is used by programs that use FreeBSD's native threads

instead of pthreads.

/usr/lib/libc.so.34.1

/usr/lib/libstdc++.so.33.0

/usr/lib/libm.so.2.0

/usr/lib/libcrypto.so.11.0

/usr/lib/libpthread.so.6.0

Dynamic libraries that you frequently need on OpenBSD, including the C and

C++ runtime libraries, the standard math library, the cryptography library, and

pthread library.

/etc/pwd.db

A hashed version of the traditional /etc/passwd file. Used frequently to map

numeric UIDs to names. Does not actually contain encrypted versions of

passwords.

/etc/spwd.db

A hashed version of the /etc/master.passwd file, just like pwd.db, but has

encrypted versions of passwords. Might be needed if software in your chroot

environment needs to authenticate users (e.g., an IMAP daemon).

/etc/localtime
Specifies the local time zone. Allows log entries to carry a properly localized

timestamp.

/var/run/ld-elf.so.hints
A hints file used by the runtime loader (ld.so). It speeds up the loading of

programs slightly, if it exists, but you don't have to have it.

/etc/libmap.conf

(FreeBSD only)

An optional file that changes how ld.so loads dynamic libraries. Again, you

might use it in unusual circumstances, but most normal installations won't use

it and it will show up as a file not found in the kTRace output.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Filename Description

/etc/resolv.conf

Sometimes you might want DNS resolution to act differently inside your chroot

or jail than for the rest of the operating system, or you might have software

(e.g., Postfix) that requires this file.

/etc/malloc.conf
This file controls options for the malloc(2) system call. See the malloc.conf(5)

manpage for more information.

/dev/null

/dev/random

/dev/urandom

/dev/srandom

/dev/zero

/dev/mem

/dev/kmem

These are device files that you commonly need in a chroot environment. Don't

create them all just in case. Create just the ones you need.

2.3.3.2 Making device nodes

 If you run ls -l on the device you're interested in, you'll see everything you need to know to make a copy of

it. For example, if your software needs /dev/random in /jail/dev, Example 2-8 shows how you look up the

major and minor modes and then run the mknod(8) command with the right parameters.

Example 2-8. Making devices in chroot environments

FreeBSD% ls -l /dev/random

crw-rw-rw- 1 root wheel 249, 0 Nov 25 14:04 /dev/random

FreeBSD% sudo mknod /jail/dev/random c 249 0

OpenBSD% ls -l /dev/random

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

crw-r--r-- 1 root wheel 45, 0 Nov 3 17:15 /dev/random

OpenBSD% sudo mknod /jail/dev/random c 45 0

2.3.4. Limitations of chroot

For almost as long as it has been around, chroot has been the focal point of an arms race between hackers

and programmers in the Unix world. The programmers try to make chroot inescapable (hence their frequent

use of the term "jail" to refer to it), and hackers invent increasingly complex ways of escaping.

For instance, directory and file handling in chrooted processes has traditionally been a source of chroot

escape tricks. Directories and files that were open prior to calling chroot(2) remain open and available to

software after calling chroot. If the software is not fastidious about closing them all before calling chroot, it

may be possible later to use open directories to break out. Another technique for reading files outside the

chroot environment involves calling mknod(8) to create a disk device file (e.g., an rwd0a or da0s1a node)

and then opening it and finding the superblock for the filesystem. The primary superblock is always at a

well-known offset (sector 32) from the start of the disk partition. The process can traverse the full filesystem

of that device by manually decoding inodes and seeking to the right blocks on the disk. The inode number for

the root directory is also always 2. This means that processes can always tell, simply by looking at the inode

number of the root directory, whether or not they are seeing a virtualized filesystem.

 Even though a chrooted process sees a virtualized filesystem, it is otherwise unrestricted. This means

that, if it runs as root, it can do almost anything it wants. For instance, a chrooted process can still send

signals to other processes using kill(2), or create device nodes using mknod(2). Under FreeBSD, you can set

the sysctl variables security.bsd.see_other_uids=0 and security.bsd.see_other_gids=0 to hide

processes that do not have the same UID or GID as the chroot'ed process. But this only helps a little. If the

chroot'ed process knows the PID of another process it wants to signal, it can still use kill() to send the signal.

These sysctl variables make it harder to find processes, but they don't limit the interprocess interactions. By

default, FreeBSD allows all chrooted processes to see all other processes on the system. On OpenBSD this

level of control is not supported.

As a rule, chroot is most effective when the chrooted process closes all its open files and directories and

drops all its privileges as soon as possible after calling chroot(2). It is worth mentioning that shells are

notoriously hard to chroot, even shells that innately try to be restrictive, like rsh, rbash, and rksh. With their

willingness to manipulate files and filehandles, plus their rich built-in commands and scripting capabilities,

shells are hard to limit.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

2.4. Jail: Beyond chroot

 The well-known defects and deficiencies in chroot(2) motivated FreeBSD developers to develop a more

thorough sandbox, which they call jail(2). Whereas chroot works the same on both OpenBSD and FreeBSD,

jail exists only on FreeBSD.

Jail Versus chroot

For many years, the only technology available for putting processes in sandboxes was the

chroot mechanism. Since "chroot" is a somewhat hard to pronounce, the term "jail" is often

used. The terms chroot and jail are interchangeable to most people. You will frequently see

documentation and literature talk about "putting a process in a chroot jail" or "jailing a process

with chroot." It's somewhat unfortunate, then, that the authors of the jail(2) system call in

FreeBSD chose the term they did. In FreeBSD, jail and chroot are totally different

implementations that achieve similar goals. Because this text deals significantly with both

technologies, we are very careful with our usage. When we text say chroot, we refer to the

chroot system call and when we say jail, we mean the jail system call.

2.4.1. New Limitations

 Poul-Henning Kamp and Robert Watson created a whole new system of sandboxing processes. They

actually modified the FreeBSD kernel in a variety of places to specifically close loopholes that had been

historically used to escape chroot environments. The intent of a jail is to create a different environment, and

one that cannot be so easily escaped. While the kernel is minimally aware of chrooted programs, it has

dozens of checks in all sorts of subsystems that are related to keeping programs in a jail.

2.4.1.1 Limited process interaction

 One of the most significant and interesting ways that jail is different is that it creates a whole new

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html
mfreeopenbsd-CHP-2-SECT-4.html

identifier associated with a process and its permissions: the jail ID. All processes have always had an

effective user ID (UID) and group ID (GID). With the advent of jails, all processes now have a jail ID (JID) as

well. Traditionally one process could affect another process if the UIDs of the two processes matched. This is

true even in chroot environments. In a system using jails, however, the JID must also match. Even though a

process with JID 2 has UID 0 (i.e., a root-equivalent process in jail 2), it cannot send signals to, read

information from, or even detect the existence of a process that has a different JID. As you might expect, JID

0 corresponds to the main operating system. A process with UID 0 and JID 0 can kill any process whether

the victim process is jailed or not.

2.4.1.2 Limited access to network resources

 Jail addresses network issues that are completely unaddressed by chroot. Although a privileged

chrooted process sees a virtual filesystem, its access to the network is unmediated. It can send and receive

arbitrary data, listen(2) on a socket(2), create raw sockets, spoof packets, and perform similar nefarious

activity. Every jail, on the other hand, has a single IP address and hostname associated with it. Processes in

that jail will only be able to send packets with the IP address assigned to the jail. Ethernet MAC address

spoofing is not possible within a jail, either. Jailed processes cannot access promiscuous mode on Ethernet

drivers (or the bpf packet filtering device in general). The kernel explicitly checks the process's jail ID before

allowing such things. Raw sockets, MAC spoofing, and such activities are only permitted to non-jailed

processes. These restrictions on networking set jail apart from chroot already, but the improvements do not

stop there.

2.4.1.3 Devices and mknod

 Jail and chroot both create a virtual filesystem, but with jail, the process's ability to perform disk-related

activities is severely restricted. A jailed process cannot call mknod(2) (meaning mknod(8) also fails) to make

device nodes. Because of this restriction on making devices, all the devices must be made in the jail's /dev

directory before launching the jail. Although processes cannot create new device nodes, they can read any

devices that already exist in the jail. Thus, it's very important to create only the device nodes that the

processes will need. Chances are good that no process that needs a jail will also need access to raw SCSI

devices (such as pass(4)), for instance. You might be surprised to find that /dev/mem and /dev/kmem are

needed, since they appear to create a quick path to information disclosure. As it turns out, the kernel device

drivers related to those pseudodevices don't allow jailed processes to read or write the memory areas

associated with processes having a different JID.

In FreeBSD 5.x, the old MAKEDEV way of handling devices is gone in favor of devfs. /etc/devfs.conf

controls the permissions for each device in the /dev directory and can hide device nodes that are undesirable

for one reason or another. When you make your jail, you can create an /etc/devfs.conf file in it that will create

just the right devices that your processes need. You can also expect the normal devices to appear, and

simply hide the ones that you don't want visible in your jail. If you're thinking about making this filesystem

immutable, good for you.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2.4.2. Creating Jail Environments

 There are two different styles of jails: "thin" and "fat." Thin jails are just like chroot, but better. You set them

up the same way you set up a chroot environment, but you get all the additional protections from jail. Fat

jails, on the other hand, are almost like virtual systems. You install a subset of the operating system in them

and then you can use and manage them like a separate host. We talk about both, but it's safe to say that thin

jails and chroot really differ mainly in the syntax of the command you use to launch them. Everything we

described in "Creating a chroot Environment" applies to creating a thin jail. The rest of this section explores

creating fat jails and the motivations for doing so.

The manpage for jail(8) covers creating jails very well. In particular they offer the following sage advice:

It is a lot easier to start with a "fat" jail and remove things until it stops working than it is to

start with a "thin" jail and add things until it works.

 Given that as a starting point, there are a couple of realistic ways to create reasonable fat jails: We can

build the whole OS from scratch or we can use the binaries on a distribution CD.

2.4.2.1 Building jails from source

The manpage for jail(8) recommends the procedure shown in Example 2-9 for building a jail from source.

We build it in /jail/master because, as we discuss in "Make a builder jail," it's often useful to have a fat jail

where you build all the software that will run in your other jails.

Example 2-9. Building a jail from source

% D=

/jail/master

% cd /usr/src

% sudo mkdir -p $D

% sudo make world DESTDIR=$D

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% cd etc

% sudo make distribution DESTDIR=$D

% sudo mount_devfs devfs $D/dev

% cd $D

% sudo ln -sf dev/null kernel

If you take this approach, make sure you use your /etc/make.conf file (see Chapter 4 for more about

/etc/make.conf) to exclude a lot of the optional modules (e.g., sendmail, BIND, ISDN4BSD, etc.) that you

don't need in your jails. This may lead you to create a couple of make.conf files, one for building your system

in general and one for building jails.

2.4.2.2 Installing from a distribution CD

If you have your distribution CD mounted at /cdrom, you'll find the base OS distribution at /cdrom/base.

There is an install.sh shell script that obeys the DESTDIR environment variable. Example 2-10 shows how

to install the base OS into a jail from the CD.

Example 2-10. Creating a jail from a distribution CD

% cd /cdrom/base

% sudo sh install.sh DESTDIR=/jail/master

You can add other distributions located in /cdrom/distribution_name in the same way.

2.4.3. Launching Jails

Launching jail requires a few more command-line arguments than chroot because the jail system call

requires more arguments than does chroot. In addition to the virtual root of the filesystem, you must also

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

supply the one IP address and hostname that the jail will use. Ideally, this hostname appears in DNS

matched to the IP address in use for the jail; but, if you use an /etc/hosts entry, it will work fine. Lastly, you

must provide a command to run in the jail.

2.4.3.1 Fat jails as virtual machines

You may get to the point where you have an /etc directory, sshd, and a variety of other binaries installed in

your jail. In this case, you can run /etc/rc to start up something that looks and feels like another instance of

FreeBSD but isn't really. In this case, after the jail is up and running, you can actually use ssh to log into it

and manage it. Since processes you launch will be children of sshd, which is a child of the jailed /bin/sh, they

all have the same JID. This means they all see the same virtual filesystem, use the same IP address, and

can interact with each other.

 Of course, if there are processes in your jail that listen on the network, attackers can attack the jail in much

the same ways as they can any other host. Still, even if they actually succeed in logging in, the amount of

damage they can do is significantly limited. They probably can't see any part of the filesystem other than

what is in the virtual filesystem, and they can't interact with any processes running outside the jail. Of course,

they might be able to use the jail environment to participate in distributed denial-of-service (DDoS) attacks,

but the complex network address spoofing that some DDoS attacks use won't work.

2.4.3.2 Jail security options

There are special sysctl variables that control certain behaviors of jails. They control whether jailed

process can affect the jail's hostname, use certain network protocols, and whether or not System V

interprocess communication (IPC) is allowed. These options have security ramifications that might need to be

relaxed in order for certain software to work as expected.

Normally, jails only have permissions to work with local sockets, routing sockets, and IPv4 sockets. Only

these sections of the networking part of the kernel are fully jail aware. Thus, it's possible that a jailed program

with access to a different protocol family (e.g., IPX or ATM) could do malicious things with those protocols.

The security.jail.socket_unixiproute_only variable controls whether jails can access all protocols, or just the

jail-safe protocol families. Change the default value to 0 to enable the non-jail-safe protocols.

System V IPC allows processes to communicate through several mechanisms and to use a variety of

synchronization primitives like semaphores. Unfortunately, this is another section of the kernel that is not jail

aware in a sophisticated way. System V IPC is not permitted from within a jail by default, but you can enable

this functionality by setting security.jail.sysvipc_allowed to 1. Unfortunately, it's an all or nothing proposition.

If enabled, a jailed process can see all semaphores, shared memory segments, queues, and other System V

IPC data structures. This means that root-equivalent processes will have access to all System V IPC data

structures, jailed or not. Such broad access allows a jailed process to have effects outside its own jail, which

obviously has security implications and weakens one of the goals of the jail in the first place. In general this

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

option should retain its default disabled status unless you have a specific reason to enable it.

2.4.3.3 Managing jails

A variety of commands make working with jails easier. For instance, the output of ps(1) does not indicate

which jail a particular process is in, but the jls(1) command does. After you know a JID, you can use jexec(1)

to add a new process to an already running jail. If you need to kill a process, you can do so from outside the

jail (if your shell has JID 0, of course). If you want to kill an entire jail, you can combine the kill(1) command

(assuming /bin/kill or /bin/sh exists in the jail) with jexec. For example, you can kill every process in jail 3 by

running sudo jexec 3 kill -1.

2.4.4. Installing Software in Jail

This section of the text discusses the FreeBSD packages and ports system

extensively. If you are unfamiliar with them, see Chapter 4 of the FreeBSD

Handbook. We also talk a lot about them in Chapter 4 of this book.

 When you try to put a program in a jail, especially if you are trying to install only the minimal subset of files

it needs, you may have difficulties getting the right files in the right places, as we described previously.

Instead of hunting down dependencies, consider using the ports system to create packages that can be

installed in the jail. For custom software, you have a couple of options: you can just wing it, or you can

leverage the ports system to make a new port of your custom software, and then all the packaging and

tracking comes along for free.

2.4.4.1 Make a builder jail

 If you make your software from source, using the ports tree, you can still install the software into the jails

using packages. The best option is to create a fat jail that looks just like the jail where you will be installing

the new software, except that it has a compiler and the ports system installed in it. Build software inside that

jail and then run make package. The FreeBSD ports system cannot make a package from your newly built

binaries unless they are first installed in the main operating system, so you definitely want to do this in your

builder jail to avoid interfering with your base OS.

For this example, we assume that the target jail is rooted at /jail/web and there is a special building jail named

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

"master" already configured at /jail/master. The whole session would look something like Example 2-11.

Example 2-11. Using a jail to build software for other jails

main-system% sudo ifconfig lo0 alias 127.0.0.2

main-system% sudo jail 127.0.0.2 master /bin/sh

builder% cd /usr/ports/www/apache2

builder% make

[... make messages omitted ...]

builder% sudo make install

builder% sudo make package

builder% sudo kill -1

main-system% sudo pkg_add -R /jail/web \

 /jail/master/usr/ports/www/apache2/apache-2.55.tgz

Note that we have to create an IP address and associate it with some network interface (the loopback, in this

example) even though we won't be doing any networking.

2.4.4.2 Install from binary package

Copy the package file you've just made (and the pkg_add executable and associated dependencies, if

they're not already in the jail) into the jail's filesystem. If the jail is not currently running, you can install the

software by using the jail command to run pkg_add, as shown in Example 2-12. Notice that the first thing to

do is to copy the package file into some location that will be visible inside the jail.

Example 2-12. Installing into a jail from a package file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% sudo cp ports/packages/All/apache-2.55.tgz /jail/web/tmp

% sudo jail 10.1.0.2 www.example.com /jail/web pkg_add /tmp/apache-2.55.tgz

2.4.4.3 Getting custom software installed in a jail

If you download some source code that is not supported by the ports and packages infrastructure, you have

a few options for getting it in jail. One option is to make a port out of it. It takes a little effort to start with, but

it's effort well spent. Once your software is correctly installed through a port, it is very little work to keep it up

to date. You can use the portupgrade program to maintain it, and you can run make package to make a

binary installable package out if it. All this functionality is free after you create the port infrastructure.

The other option is to figure out its dependencies through trial and error. The section "Finding Other

Dependencies" discusses a lot of good techniques you can use to find and satisfy dependencies. Remember

that you can also RTFM and look at the source code. If you're trying to jail some interesting software, you're

probably not the only person to try it. Check the mailing lists both for your operating system and for the

application itself and see if anyone has had luck or can at least warn you about the problems you'll face.

You'll probably find it most helpful to do this trial-and-error work inside your builder jail, because it

presumably looks the most like the jail in which your software will ultimately run.

2.4.5. NFS-Based Jails

Jails offer the possibility of creating lots of virtual environments for specialized jobs and segregating them

into separate independent sandboxes. However, in order to run correctly, a lot of the operating system might

need to be installed in the jail. This creates a scalability problem for large numbers of jails. Not only do they

require copies of the operating system files, but those copies must all be kept synchronized and updated.

Updating a large number of jails is difficult, as is detecting changes in them. You can use read-only NFS to

solve several of these issues, making dozens or hundreds of jails scalable.

2.4.5.1 Creating a single NFS master jail

Create a master jail filesystem that contains the right set of files for your applications. If you plan to use just

one master for dozens or hundreds of jails, then this may end up including a superset of files that are not

needed in all jails. Share this filesystem as read-only to localhost (127.0.0.1) only. Likewise, make a

temporary area that every jail can write to for its /tmp and /var partitions. Share these as read/write to

localhost also. Have each jail mount the single read-only master jail root filesystem, and writable /var and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

/tmp filesystems from localhost.

If you use this approach, you probably want to create a "package master" jail

of some kind into which you can freely install software and create packages.

The master jail in this example is too important to screw up.

There are many advantages to the read-only NFS master jail. All the upgrades can be done in just one place

and take effect immediately. The filesystem is read-only from the point of view of the jail. Even if the jail is

compromised, a rogue process cannot overwrite the NFS-mounted files. Lastly, disk caching in the operating

system can still help with performance. If you make 10 copies of all your binaries and data, then you will get

lower disk cache performance than if you have 10 jails all requesting the same binary off the disk.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

2.5. Inherent Protections

 FreeBSD and OpenBSD provide excellent foundations for secure servers. They have security

underpinnings that other operating systems don't. Just by choosing FreeBSD or OpenBSD, you automatically

benefit from built-in protections. OpenBSD distinguishes itself especially along these lines. Its "secure by

default" mantra means you frequently don't get choices about security options: you're given the most secure

option by default and you'd have to go out of your way to be less secure. FreeBSD tends to be a little more

flexible about security. It doesn't force your configuration one way or another, but gives you some of the

same options and lets you choose. It also doesn't always activate the most secure settings by default. It's up

to you, with either operating system, to figure out what works best for your environment and set the options

appropriately.

This section discusses several inherent security-related technologies, some are available in both operating

systems and some are available only in one. Some of them are optional, and others are mandatory.

2.5.1. Fighting Buffer Overflows

OpenBSD incorporates two technologies into its kernel that fight the dreaded buffer overflow. They are

utterly transparent to programs running on OpenBSD because they are integrated into the operating system

and the compiler. They significantly limit the damage that's possible from the classic buffer overflow

problems. The first is W^X memory protection and the second is ProPolice stack protection.

2.5.1.1 W^X memory protection

One of the fundamental principles exploited by a buffer overflow attack is the fact that data (on an Intel

i386-based system, anyways) can be executed. That is, an attacker can change the value in the instruction

pointer to the address of any location in memory and the CPU will execute the bytes it finds there as

instructions. Some non-Intel CPU architectures prevent executing code on memory pages that are not

marked executable, but Intel hardware does not support that behavior. Since the hardware can't help us,

OpenBSD incorporated a software technique into its kernel.

The W^X (pronounced "write XOR execute") technique tries to make memory pages either writable or

executable, but never both. That is, if you can write to the memory page (i.e., it contains some data for the

program like its heap or stack), then the page can't be executable. If you can execute the page (that is, if it

contains instructions), then it will not be writable. This functionality is implemented by extensions to the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html
mfreeopenbsd-CHP-2-SECT-5.html

compiler that work in concert with specific features in the runtime loader (ld.so) and the kernel itself. The

kernel itself keeps track of this quality for each memory page.

The goal of W^X is to make a program crash if it attempts to write to an execute-only page or execute code

on a write-only page. The kernel and the loader try to make sure that a program's instructions are always

allocated on pages marked executable, and data (e.g., the program's stack and heap) is always allocated to

pages that are writable but not executable. It's not flawless, but it sets up a significant barrier to misusing

buffer overflows. W^X frequently turns a high-impact problem, like privilege escalation through stack

smashing, into a low-impact problem: badly written programs crash. While you'd rather not have an important

program crashing a lot, it's a lot better than it being exploited.

2.5.1.2 ProPolice stack protection

 The W^X technique is a good one, but keeping "defense in depth" in mind, the OpenBSD team didn't

stop with just that one protection. They also incorporated stack protection called "ProPolice" by Hiroaki Etoh

at IBM. As an extension to the GCC C/C++ compiler, ProPolice rearranges buffers and variables on the stack

in a variety of ways to thwart would-be hackers.

Another principal that hackers use when crafting exploits is the fact that programs are loaded into memory

in exactly the same way every time. Creating an exploit that loads just the right machine instructions into the

right memory location is a time-consuming process and it always involves a little trial and error. Once he has

figured out what inputs to send, though, the hacker knows that, given the same inputs, the program will

perform the same way each time. ProPolice breaks this fundamental assumption. It inserts a random

"canary" value into every function frame. When a program returns, code that has been added by the compiler

checks to make sure the canary value has not changed. If it has, the program will log an error and crash.

It's almost impossible to defeat this system unless the hacker can guess the canary value and insert it into

his attack input. However, there are essentially 2
32

 (about 4 billion) possible canary values, and a different

one is chosen for each and every function call. You might think he can just keep trying his exploit over and

over with the same value in the canary position, and eventually—through luck—his canary value and the

random one used by the program will match. That's true. Mathematically speaking he will have to attempt it

billions of times before he succeeds. In this case we are counting on detecting his attempts through some

means (perhaps the logs) before he makes billions of attempts. Don't forget—there's still W^X to get around.

2.5.2. Cryptography

 Cryptography is a critical component in most security architectures. Performing cryptographic operations

quickly, safely, and correctly is vital to the entire security infrastructure that is built on top of cryptography.

SSL web connections, SSH, IPv6, VPN connections, and many other security tools need cryptography to

work correctly. OpenBSD and FreeBSD excel at supporting not just software cryptography, but

hardware-based cryptography. Rather than having hacked up drivers for a random assortment of cards, they

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

have a cryptographic framework, allowing them to integrate cards from different vendors and provide a

uniform application programming interface (API) to software.

OpenBSD and FreeBSD support essentially the same list of hardware cryptographic coprocessors, which

basically consists of boards using several HiFn chipsets as well as the Broadcom Ubsec chipset. You can

find HiFn cards under the "PowerCrypt" and "XL-Crypt" names from a company called GTGI. The Broadcom

chipset appears in cards that bear the NetCryptX name. Information on how to purchase the cards and how

much they cost is scarce.

Both OpenBSD and FreeBSD integrate these cards directly into the crypto framework (see crypto(4) on

OpenBSD and crypto(9) on FreeBSD), which is a uniform set of kernel APIs for performing cryptographic

operations. Once the card is installed, OpenSSL and the ipsec(4) infrastructure will all use the

hardware-provided algorithms. If the card provides a random number generator (not all do), the kernel will

use it as its source of randomness. Some newer versions of the cards support cryptographic algorithms like

AES that are not yet exported through the crypto API. Taking advantage of a hardware cryptographic

accelerator, however, is about as painless as it possibly could be.

2.5.3. Code Review

Both BSDs have excellent security track records, though it is arguable that OpenBSD has a few more

bragging rights. Both FreeBSD and OpenBSD review code before it is committed to the operating system.

The OpenBSD team, however, takes it a step further. They audit software before it is added to the ports

system, too. You will notice in later chapters that we sometimes have to recommend that you install software

from source on OpenBSD because no port exists. With so much software and only a limited number of

people who volunteer time to review software for security issues, the OpenBSD team cannot review

everything that everyone would like to run. It's actually quite remarkable how much software they have

reviewed.

 The OpenBSD team, during its audits, routinely discovers buffer overflows, format string problems, and a

host of other common programming errors. They share their findings with the software developers and

sometimes create a solution or workaround so that the code can safely be integrated in OpenBSD. Very often

the version of software that you run in OpenBSD is not exactly what the software's original author distributes.

Patches are applied to impose privilege separation, make the software run under a specific user by default,

or to correct unsafe behavior.

As a general principle, you want to run as much software out of the base operating system as you can to take

advantage of the efforts of the teams that audit the software. Although there are plenty of places where we

recommend considering software that is not installed by default, you must be conscious of what you might be

giving up and what you are gaining.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html
mfreeopenbsd-CHP-2-SECT-6.html

2.6. OS Tuning

Both FreeBSD and OpenBSD have a variety of options to help you tune the operating system to support the

specific needs of your application. As with most BSD configurations, a great deal of the pertinent options are

set with sysctl options in /etc/sysctl.conf. Some FreeBSD options available at boot time are set through

/boot/defaults/loader.conf. OpenBSD is less flexible than FreeBSD in this regard. Some options can only be

set or modified by adjusting your kernel configuration and recompiling your kernel from source.

To Tweak or Not to Tweak

There may come a time, whether you are using FreeBSD or OpenBSD, that your current server

and its configuration just do not give you enough performance to meet your needs. You may

want faster response time, higher overall throughput, or a higher maximum concurrent

connection count. There are definitely options that you can tweak to get more performance

from a server. However, they are likely to gain only incremental improvements. Will you double

your throughput or triple your concurrent connections? Possibly, but not very likely unless your

starting configuration is abysmal.

If you're looking for small increments of improvement, consider the tuning options presented in

this section. Some specialized servers (e.g., a busy VPN concentrator) may need some simple

tweaking to increase kernel resources dedicated to networking. However, if you are looking for

substantial leaps in capacity, consider whether your budget for equipment and staff time can

support adding one or more redundant servers. You can spend a lot of time fine-tuning a

server, only to eke out a small incremental gain in the end.

It is worth mentioning, especially in the case of FreeBSD, that most of these options automatically tune

themselves at boot time. The kernel is aware of your RAM, CPU speed, and total virtual memory. It scales

many values based on predefined, carefully worked formulas. All the FreeBSD kernel developers

recommend that you avoid tuning these variables unless you really understand the interdependencies and

implications. The OpenBSD developers even discourage rebuilding your kernel, because you can create

configurations that they have not tested and find yourself using an unstable kernel. If you still really want to

get under the hood and tune, read on.

2.6.1. maxusers: Basic Influence

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In the very old days, the kernel's maxusers variable was one of the only readily accessible variables. By

tuning it, you would set maximum values for a wide variety of filesystem resources, network resources, and

other in-kernel data structures. It was statically compiled in and required rebuilding the kernel to change. In

OpenBSD, it is still done this way.

FreeBSD recently moved to a dynamically set maxusers variable by default. When it is left unchanged (set to

zero), a variety of formulas are used at boot time, based on physical RAM, to determine how large most data

structures should be. Generally speaking these calculations are probably right for you. But you can explicitly

define maxusers to be something nonzero in your kernel configuration if you are not happy with the

automatic calculations.

2.6.2. Increasing Maximum Values

If your server is very busy, you may find that it cannot open enough files to serve all the requests being

made. This is an easy issue to diagnose because the error messages are logged to the kernel facility via

syslog and are quite clear. Set the variable kern.maxfiles to a number that is large enough, but be careful.

Tune it gradually, and only to a value high enough to stay above your high-water mark.

You may also want to tune the maximum number of inbound TCP connections you can handle. In FreeBSD,

the variable that controls this threshold is kern.ipc.somaxconn, whereas in OpenBSD it is

kern.somaxconn. Tuning this value high will increase the memory used by the kernel data structures

associated with network connections. Tuning it too high can reduce performance. Consider carefully before

tuning it. If possible, evaluate your changes in your test environment before putting them into production.

2.6.3. Network Buffering

 You can also tune the amount of memory available to buffer data going in and out of the network

subsystem in the kernel with net.inet.tcp.sendspace. This controls the buffer size available to outbound

network flows; increasing it allows more data to be queued up, decreasing context switches to fetch more

data from disk, allowing more efficient sending of data. If you predominantly send data in small chunks (e.g.,

a dedicated DNS server), increasing the size of this buffer will have no beneficial effect. On the other hand, if

you are running a popular FTP mirror and routinely provide very large downloads to users, you may find this

worthwhile.

If your server receives many large inbound requests, it might make sense to tune net.inet.tcp.recvspace.

Candidates for large inbound network data might be mail servers that handle a lot of mail and deal with a lot

of unusually large messages or web servers that deal mostly with very large file uploads. Again, this variable

is only valuable if your traffic patterns are substantially dominated by specific kinds of well-characterized

traffic. If you see a general mix of big and small, inbound and outbound traffic, then tuning these variables will

have limited effect.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Novices often ask about tuning the number of mbufs available in the kernel because they see messages in

their logfiles about running out of mbufs. In the modern network infrastructure of the kernel, no variable can

be tuned in isolation; each affects another. However, FreeBSD does allow some influence over the mbufs by

tuning the kern.ipc.nmbclusters variable. Before deciding that you need to tune this variable, though, you

should run netstat -m to see if you are anywhere near your limits. Even on busy servers, the kernel

generally picks good values for this variable.

In OpenBSD, the number of mbufs allocated is a function of the maxusers variable. This is a more coarse

method of tuning than you might desire. If you are willing to reconfigure and recompile your kernel, you can

set the NMBCLUSTERS variable in the kernel configuration file directly.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

2.7. Wrapping Up

We've covered a number of security-oriented features that make FreeBSD and OpenBSD unique among

Unices, as well as among operating systems in general. These features give you an edge in securing your

system. By adding a few sysctl variables to your standard configuration, you can tune the behavior to fit the

security posture that you need. You can reduce your visibility in the network, help thwart scans and

denial-of-service attacks, and reduce the amount of resources malicious folks can consume on your network.

By combining the kernel securelevel and UFS filesystem flags you can more strongly protect many critical

pieces of the operating system. If your users need the flexibility of ACLs, you can give them ACLs as well to

specify filesystem permissions with finer granularity.

Your options are not quite as diverse on OpenBSD systems. Still, it's clear that the effort the development

team has gone through to follow the defense in depth, least-privilege, fail-safe, and other principles yield

great rewards. Careful code audits, privilege separation whenever possible, service-based users, W^X, and

ProPolice—it's all good stuff.

As you read through the chapters in this book, look for places where the building blocks in this chapter can

be put to good use. Feel free to play around with them and find a solution that works for you.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html
mfreeopenbsd-CHP-2-SECT-7.html

 < Day Day Up >

2.8. Resources

TrustedBSD (http://www.trustedbsd.org/)

The TrustedBSD project is an effort to add options to FreeBSD that make it compliant with the

Common Criteria for Information Technology Security Evaluation. ACLs were implemented as part

of this effort.

ProPolice Stack Protection (http://www.trl.ibm.com/projects/security/ssp/)

"GCC extension for protecting applications from stack-smashing attacks."

Posix.1e (http://wt.xpilot.org/publications/posix.1e/)

The IEEE 1003.1e standard that was used as a reference when designing FreeBSD's ACLs. The

standard itself has been abandoned by IEEE, but some vendors continue to use it as a reference.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html
mfreeopenbsd-CHP-2-SECT-8.html

 < Day Day Up >

Chapter 3. Secure Installation and Hardening

So the combination is one, two, three, four, five.

That's the stupidest combination

I've ever heard in my life. That's the kinda

thing an idiot would have on his luggage .

—Dark Helmet

Spaceballs

Securing a system doesn't necessarily begin with a running system. Given the option, it's a good idea to start

thinking about system security early on: before and during installation. In this chapter, we step through the

installation process for both OpenBSD and FreeBSD and address some of the security implications of your

early decisions.

If you are not comfortable with the install process for either operating system,

now is the perfect time to read the relevant documentation. For FreeBSD, read

Chapter 2 of the Handbook. For OpenBSD, see section 4 of the FAQ. If you

have not signed up for the FreeBSD and OpenBSD security lists, do so

immediately. Links to these lists are available in Section 3.8 at the end of this

chapter.

 Throughout this chapter we will be following the fundamental security principles laid out in Chapter 1 of

this book. Keep in mind that in the context of system security it's not always true that "more is better." The

consequences of increased security often include greater administrative overhead in maintenance and

installation, more complicated configuration, and a general decrease in flexibility and convenience. Balance

the trade-offs appropriately for your environment to arrive at a solution that meets both your usability and

security requirements.

This chapter is divided into three sections. The first section, "General Concerns," covers some of the

decisions you should make and security issues of which you should be aware before beginning the install. As

the name implies, this section is applicable to both FreeBSD and OpenBSD administrators. The second

section provides a security-minded installation walkthrough: first for FreeBSD and subsequently for

OpenBSD. Feel free to skip the part that doesn't apply to your system and proceed to the last section of the

chapter: platform-independent security concerns in Section 3.6.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html
mfreeopenbsd-CHP-3.html

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html
mfreeopenbsd-CHP-3-SECT-1.html

3.1. General Concerns

Before grabbing a floppy or your BSD distribution on CD, there are a few decisions to be made that apply to

both FreeBSD and OpenBSD installations.

3.1.1. What Are You Building?

The first and most important question you have to ask yourself before starting to build a system is, "What am

I building?" A clear idea of the role this system will play in your environment is vital. The following system

classes help define the role of your system.

3.1.1.1 Workstation

 The BSD workstation is a daily use system usually with a list of installed packages at least two or three

pages long. These systems almost always have the X Window System installed. They might not be upgraded

or maintained other than by the end user and at her whim. At businesses, these systems are almost always

found behind a firewall. These systems are generally out of your control after (or even before) system build,

so user education is your best bet to keeping them secure. You may also want to consider an

organization-wide "image" of FreeBSD or OpenBSD that has been preconfigured (locked down) and tested

by security-minded system administrators.

3.1.1.2 Workgroup server

 By definition, a server provides some kind of service to users. Servers can be shared development

machines, exporters of filesystems, intranet development systems, etc. Workgroup servers generally interact

with a variety of users and are not treated as carefully as infrastructure servers, though they do tend to be

administered and upgraded by a system administrator. These are the familiar multiuser Unix systems. Rolling

these systems into your patching and upgrade process for infrastructure servers is usually a good idea.

These systems could exist on the same protected network as workstations, or better yet, on a separate

network accessible to internal users.

3.1.1.3 Infrastructure server

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 As the title implies, these systems provide some kind of critical infrastructure service: name service

(DNS), network time (NTP), dynamic address assignment (DHCP), email, external web presence, and so on.

Infrastructure servers are often protected from both users on a local area network and users on the Internet

by one or more firewalls. They are critical to the proper functioning of the network and have the bare

minimum software installed. System administrators who are responsible for the specific services provided by

a given server are often the only users granted access, and they perform patching, upgrades, and software

installs.

In some cases, service operators may request access to the system for publishing content (i.e., in the case of

an external web presence), or administering the particular service for which they're responsible. If possible,

provide restricted access via one of the following means:

Automated synchronization

 It may be possible to set up an internal repository for content or configuration and periodically

synchronize this data with the external server. This may be achieved using tools like rsync/rdist, or

by building an internal CVS repository and performing regular checkouts from the infrastructure

server. For more information about secure file distribution techniques, see Chapter 4.

FTP

Running a chrooted FTP daemon on an interface only accessible from the internal network will

provide an acceptable means for file transfer. Of course, FTP is a clear-text protocol and other

options should be pursued first.

SCP only (SSH denied)

The scponly product is available from http://www.sublimation.org/scponly/ and will restrict access

so that operators are only able to transfer files and not gain a shell.

Service-specific remote maintenance

 Some services offer innate remote maintenance capabilities. BIND, a popular DNS server, may

provide the requisite remote administration capability via the rndc utility. You could also create a

stealth master nameserver to which configuration changes are made but that is not directly queried

for data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.sublimation.org/scponly/

System jails

Ensure operators log into a jailed environment on the system that provides access to the files and

directories.

 Bear in mind that one of the main reasons service operators desire access to production infrastructure

systems is to ensure that their changes do not produce any undesirable results. This end may also be

achieved by providing service operators systems on the internal network or on a test network that mimic the

behavior and support the identical configuration as a production counterpart.

3.1.1.4 Multipurpose system

 When you must get the job done, but do not have the money to build 20 specialized servers, you need to

combine functionality. Behold the multipurpose machine! An unfortunate product of budgetary constraints,

this class of system can incorporate any combination of the aforementioned classes of systems. When a

multipurpose machine fails, is subjected to an attack, or merely needs to be rebooted, you lose several

services all at the same time. These machines can be made more secure with careful use of chrooting, jails,

good monitoring, constant auditing, and patching. However the effort and painstaking care involved in

maintaining a multipurpose machine is immense. These days, reasonable workstations capable of providing

key services can be purchased for very little. Plan a migration process away from multipurpose systems by

removing services one by one until the original system can be decommissioned or reassigned to a single

task.

Be aware, however, that there are dangers in segregating all services onto separate machines. There are

several criticisms you may face when presenting this option to your supervisors or peers, and we will address

the most common concerns here.

More systems require more administration

 Unless you can develop a standard system configuration and upgrade process, you may

experience an unnecessarily high total cost of ownership (TCO) as a result of maintaining many

specialized servers. Standardizing and automating will go a long way to making system

maintenance easy and reducing TCO. Combining services onto one system can make sense as

long as you retain the system class concept. Finally, remember to take into account the cost of

failure of several critical services at once. As always, there is a tradeoff between security and

convenience. Pick a solution that meets your security and usability requirements.

Cheap or used systems tend to have faulty hardware

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Although it may sound trite, avoid buying cheap or used systems, or using them over the long term.

The migration away from a multipurpose server may be a time-consuming process for budgetary

reasons. If you feel you can find cheap or used hardware now that will last at least a year

(presumably you will have additional funds at that time), it may be worth the risk. If desirable, build

two machines to serve the same purpose instead of one either as a hot-failover system or a cold

spare. The services you plan on deploying on the server and the state of your current multipurpose

machine will help you decide when to take the plunge.

Names will have to change everywhere

It can be quite problematic to place a particular service (such as email, internal web, DNS, etc.) on

a server with a new name. This is a valid complaint, but is also a problem that needs resolution

anyway. Prepare for migrating services by creating alternate and more general namespaces for your

services. Use canonical names (CNAME records) in DNS instead of hostnames in client and server

configuration files. After the system configurations have been updated across the organization,

service migration may begin.

This is by no means a comprehensive list of attacks against the multi-server model, but hopefully should

provide you enough ammunition to convince management and your peers that the pain is worth the effort.

3.1.2. Media and Network

 Once you have a good idea of the kind of system you are building, it is time to look at your media options

for installation. Both operating systems offer a variety of media options, the most common being bootable

floppy or CD and network installs. With all installs, there are two major security concerns: data integrity and

host vulnerability.

In order to ensure the highest integrity of data, a CD install is safest. If the CD has been acquired from a

reliable source (authorized vendor) you can be reasonably confident that the contents do not pose a security

risk. In most cases you will want to use the latest release of the operating system available. When working

with critical pieces of infrastructure, you would not be overly cautious to fall back a few releases.

With FreeBSD, significant changes occur at the turn of the major version number of the operating system

(i.e., between 4.x and 5.x). In this case you might want to stick with the latest 4.x release until the new

version has sufficiently matured. The tradeoff here is that you will need to plan a major release upgrade

sooner, rather than later.

OpenBSD, on the other hand, releases on a strict calendar schedule that is somewhat independent of

feature changes and technology. Thus, version numbers do not tell you what major changes you face when

upgrading. For example, OpenBSD's i386 architecture switched its binary format from a.out to elf when it

released Version 3.4. Upgrading by building from source was not possible from Version 3.3 to Version 3.4.

Peruse the "What's New" section of the release announcement to see if there have been major introductions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

that you would rather avoid on vital systems.

3.1.2.1 To be networked or not to be networked

If you choose to have your network interface up during the install process, whether for the purposes of

installing the operating system or merely because the interface happens to be plugged in, you may be

exposing yourself to needless risk. If your system uses its network interface during the install process, you're

placing implicit trust in the network to which your system is attached.

 When your system needs to contact another on your network, it issues an arp(8) (address resolution

protocol) request. A response is received with the hardware address of the target system. But what if a

malicious system were to answer instead and provide you the wrong hardware address? Your system may

then send subsequent requests to the malicious system instead. This kind attack is known as arp poisoning

and facilitates a man-in-the-middle attack (MITM).

This may sound implausible, but a careless roaming user who brought in his wireless access point and

attached it to the network may have unwittingly created a back door and facilitated this attack.

A MITM attack may also be possible if someone has compromised a DNS server for an organization you

wish to contact, or your local DNS server. Looking up the IP address of ftpx.freebsd.org may return the wrong

IP and you may start downloading binaries that seem legitimate but are actually riddled with Trojans.

Admittedly, there may be perfectly legitimate cases where a network install is both appropriate and desirable.

If you have the infrastructure in place that provides a reasonably secure copy of the operating system

distribution, you may want to use this local repository as your FTP source. If your network is isolated or you

are well protected behind a firewall, the risks of remote host compromise are minimal. After all, as soon as

your system is built, you're likely to perform an upgrade—you'll need to place trust in your network at that

point anyway.

Having a firewall does not mean you are safe. A firewall controls what traffic is

allowed into and out of your organization. Firewalls can be poorly configured,

or may allow legitimate traffic to a service that can be compromised with

specially crafted (but valid) input. Other means of entry and exit are possible

and a source of great concern to security administrators. Blindly trusting the

security of your network is never sound planning.

 One final thought: if the system you're building will eventually live outside of your innermost firewall,

perhaps on your DMZ, or completely beyond your security perimeter, consider performing the installation and

hardening on a more protected network. When the system has been locked down to your satisfaction, move it

out to the perimeter network. A few tweaks to /etc/resolv.conf, /etc/hosts, and the rc.conf or rc.conf.local

startup configuration file should be all you need to configure the system on the new network.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Dangers of DHCP

If you do choose to build a server on a local network, you are given the option to automatically

configure your network interface using DHCP. Although this may be convenient, it poses

certain security risks and may interfere with subsequent configuration.

DHCP is without authentication or a sanity check. A network may contain any number of DHCP

servers, and nothing says they have to be working in tandem. Even in a trusted networking

environment, a user could bring in a wireless device with DHCP enabled providing a means for

intruders to enter your protected network and for your system to be inadvertently placed on this

insecure network during system build!

If you use DHCP during the install process and you are 100% confident that you have acquired

your network configuration from the correct server, you may still run into problems later when

you rebuild your kernel. We go into more detail when we cover kernel reconfiguration for

FreeBSD later in this chapter.

For these reasons, we recommend you choose a static address when building servers.

Workstations generally remain configured with DHCP and on the network on which they were

built.

3.1.2.2 Media verification

Ensure your media was acquired from a reliable source. Retail, shrink-wrapped software is generally safest,

and moderately stale local copies of FTP repositories are the next best bet. It is not often you hear about an

FTP distribution server being compromised, but it is not unheard of. Consider using tools like md5(1) against

your downloaded CD images to verify that the hashes match those provided as reference on trusted FTP

distribution servers, as shown in Example 3-1.

Example 3-1. Verifying the md5 checksum of a FreeBSD .iso

% fetch http://ftp2.freebsd.org/pub/FreeBSD/ISO-IMAGES-i386/5.3/CHECKSUM.MD5

CHECKSUM.MD5 100% of 278 B 366 kBps

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% fetch http://ftp2.freebsd.org/pub/FreeBSD/ISO-IMAGES-i386/5.3/5.3-RELEASE-i386-disc1.iso

5.3-RELEASE-i386-disc1.iso 100% of 644 MB 315 kBps

% cat CHECKSUM.MD5

MD5 (5.3-RELEASE-i386-bootonly.iso) = e370ae39bb34f0789c638b6ad50038a2

MD5 (5.3-RELEASE-i386-disc1.iso) = fbcbfdff31f27de396f257e0a37a78b8

MD5 (5.3-RELEASE-i386-disc2.iso) = 21874a5663022768336e4cc73d1dd30d

MD5 (5.3-RELEASE-i386-miniinst.iso) = 96124b2608ba481693e04d364d485e3c

% md5 5.3-RELEASE-i386-disc1.iso

MD5 (5.3-RELEASE-i386-disc1.iso) = fbcbfdff31f27de396f257e0a37a78b8

3.1.3. Preexisting Vulnerabilities

 Choosing your installation media is a decision that should never be taken lightly. Even before

installing FreeBSD or OpenBSD on a system, you should check out the appropriate web page to determine

whether you're about to install software with known vulnerabilities. FreeBSD lists security advisories

chronologically on their security page at http://www.freebsd.org/security/, and you'll find analogous

information for OpenBSD on the Errata page at http://www.openbsd.org/errata.html.

FreeBSD and OpenBSD release versions of the operating system on a semiregular basis. Just because you

received a CD of OpenBSD or FreeBSD in the mail a week ago does not mean that you are about to install

the "latest version" of the operating system. Any bugs or security issues discovered shortly after release have

likely been announced on OpenBSD security-announce or FreeBSD security-notifications and been

addressed in the source tree.

If you are installing an even older distribution, you can almost guarantee that upon installation there will be

vulnerabilities (possibly remotely exploitable) in the system. Avoid installing particularly old software if you

can. Be very conscious of your network connectivity and potential exposure if you must install a dated

distribution.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.freebsd.org/security/
http://www.openbsd.org/errata.html

The Whats and Whys of CVSup

 CVS (Concurrent Versions System), is a software source code version control system.

Developers use CVS and other version control systems to track changes as they work with

source code. The entire FreeBSD and OpenBSD source trees are housed in CVS repositories

so that when developers check out a file, modify it, and check it back in, changes to the file are

recorded. This later facilitates looking at change history or performing rollbacks to previous

versions of a given file.

Getting the latest sources for your FreeBSD operating system is most often achieved by using

CVSup. This is a highly optimized network distribution package for CVS repositories. If you

already have an "old checkout" of a CVS repository, running cvsup(1) only transfers data if a

file has changed, and then only the changes to the file, not the entire file.

cvs(1) is used by OpenBSD to check out sources just as a developer would need to in order to

modify code. Direct access to this facility allows changes made locally to be merged in with

changes made to the code base by the OpenBSD development team. Likewise, the command

cvs update -dPA performs a file update similar to cvsup.

After installing a FreeBSD or OpenBSD system, you will need to update it. Both installation

procedures below describe the steps involved in performing a system upgrade. Bear in mind

that the steps involved (cvsup, make, installation) are all fairly time consuming.

 The cvsup or cvs update procedure will download all the source code for your operating

system. If you installed from CD, it's beneficial to install the CD's copy of the sources so that

you only have to download updates. Either way, the sources should end up in /usr/src.

After you have the source, you will need to run some form of make, which prepares new

binaries for your system based on the updated code base. When this is done, you may begin

the install step, which does exactly what you think it does. If you have not been through a

system upgrade before, set aside plenty of time. On a fast (1+ Ghz) system, you may need an

hour or more. On a slower system (300Mhz), the make step can easily consume 6 hours.

For more information about cvsup(1) and cvs(1), read the manpages for each.

One of the first steps you must take after successfully installing your system is to

retrieve/update your operating system's source tree (usually using cvsup(1) or cvs(1)) and

upgrade or patch the operating system until all known issues have been addressed.

Immediately following the installation, you won't know if the running services have known

security issues, unless you've consulted the appropriate resources.

Knowing about the existence (or absence) of security issues will help you decide whether you should bring

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

your network interface up during the install process. You may discover that you need to wait until after the

install and after you have turned off some or all of your listening services before connecting the system to

your network.

 Performing a CVS update procedure may open the door to MITM attacks and Trojaned code. While

software systems have been built to automatically download file signatures or hashes with files with the

intention of guaranteeing data integrity, a good cracker will replace both these server-provided hashes and

corresponding files making these automatic solutions ineffective. The only means to realistically increase

confidence that the file you download is legitimate is to perform out-of-band tests. These might include:

Visiting the vendor's primary web site and comparing the hash there to the hashes on all the mirror

sites, especially the site from which you obtained the file. They should all be the same.

Confirming with other administrators or software providers on mailing lists that the hash is a valid

one.

Downloading a file to a local repository once and waiting a month or so to see if anyone has

identified rogue data within that timeframe before performing an upgrade.

Of course, few administrators have the time necessary to follow any of these steps. In this case, functionality

requirements may outweigh security concerns. Be cautious.

3.1.4. Slicing Up Your Filesystem

 It may seem out of place to be reading about filesystem slicing in a chapter about a secure installation and

hardening. However, availability is inexorably tied to security, and proper filesystem portioning can affect data

and service availability, so we must address this issue.

 Your first step will be determining whether your system will contain anything besides BSD during the

fdisk(8) table setup. Servers from vendors such as Dell and Compaq ship with maintenance or utility

partitions that provide disk management tools and hardware test suites. You will probably want to keep these

handy in the event of a system malfunction. For an infrastructure server, dual-booting with another operating

system should be avoided.

If you are not already familiar with what kinds of data are stored in which

directories, spend a moment reading the hier(7) manpage. You will find a

complete description of the filesystem hierarchy and the kind of files you are

liable to find in any given directory.

 After fdisk, define your partitions. Laying out your filesystems properly from the start will save you grief

down the road. It's almost always a good idea to have separate filesystems for /, /tmp, /var, /usr, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

perhaps /home, as shown in Figure 3-1. You may also want others specific to your situation.

Figure 3-1. A possible disk layout of distinct filesystems

There are four major motivations for not simply creating a large root volume.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Integrity

A system that experiences a power loss runs the risk of losing or corrupting data. This may limit

itself to a few files, a directory, or the entire filesystem. The branches of the file hierarchy store

different kinds of data as described in the manpage for hier(7). The /home, /usr, /tmp, and /var

filesystems, for instance, are fairly dynamic to varying degrees and experience many frequent

changes. The root filesystem (excluding the others) tends to be fairly static. The chance of

corruption in the event of a power or system failure will relate directly to the filesystem's volatility.

Availability

You can't divorce availability from security. Running out of space in the root filesystem will interrupt

service. When done maliciously, it is a form of denial of service attack. The likelihood of

overextending available space on the root filesystem is significantly reduced when frequently

written-to filesystems (such as /tmp and /var) are separated from the root. A rogue application or

user will only be able to fill filesystems on which write access is granted.

Security

 Mount options such as disabling the interpretation of character or block special devices, disabling

set-user-identifier (a.k.a. set-user-id and setuid) or set-group-identifier (a.k.a. set-group-id and

setgid) bits, disallowing execution of any binaries altogether, and setting a filesystem as read-only

are all possible when separate filesystems are defined. With a monolithic filesystem, none of these

options could be applied. On the other hand, slicing out a partition such as /var/log on a centralized

logging host would enable you to apply all these options to the filesystem.

Performance

On a system with a great deal of disk activity, it can be useful to isolate frequently written-to

filesystems near the perimeter of the drive platters to isolate them from more frequently read

filesystems. Incorporating these directories as part of a larger filesystem places no constraints on

the physical location of data stored within—in this case, fragmentation may cause a marked

decrease in performance.

Arguments against filesystem slicing assert that a system will not behave as expected when /tmp and /var

are filled and therefore there is little value in slicing out those filesystems. While this is true, your obligation is

to mitigate these risks. Consider putting subdirectories of these filesystems on different partitions (such as

/var/mail or /var/spool for instance) so that an attack that disrupts a service by filling a filesystem will not

make the server itself nonfunctional. Bear in mind that even if users are able to "fill" these filesystems, the

BSD operating systems reserve space for the root user, thus it is not uncommon to see "full" filesystems over

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

100% capacity. To configure how much space is reserved, look at the -m command-line argument to

tunefs(8). Avoid changing this value unless you really know what you are doing.

Take special care with the /tmp and /var filesystems. These are frequently

written to by non-root processes and are more liable to fill. The multipurpose

/var directory is especially important as it not only stores critical system logs,

name server configuration, and system database files, but also your print spool

and mail queue. These data may constantly vie for space.

FreeBSD 4.4 and OpenBSD 3.4 introduced growfs(8). With this utility and the availability of cheap hard

drives, running out of space on a filesystem is not an issue. It is now common for system administrators to

leave the majority of a disk unallocated so that space is available when a filesystem needs to be grown.

In the event that you have multiple disks at your disposal and wish to use them in a non-RAID configuration,

the install processes of both operating systems allow you to mount your partitions from both drives. In this

case, you may also want to create swap partitions on both drives. The following excerpt from the FreeBSD

Handbook provides the rationale.

On larger systems with multiple SCSI disks (or multiple IDE disks operating on different

controllers), it is recommend that a swap is configured on each drive (up to four drives).

The swap partitions should be approximately the same size. The kernel can handle

arbitrary sizes but internal data structures scale to 4 times the largest swap partition.

Keeping the swap partitions near the same size will allow the kernel to optimally stripe

swap space across disks. Large swap sizes are fine, even if swap is not used much. It

might be easier to recover from a runaway program before being forced to reboot.

When you have finished deciding how to slice up your disk, you may end up with a layout similar to the one in

Figure 3-1. In this case, a utility system existed on the first slice of the disk, which was maintained. The rest

of the disk was devoted to the operating system. Within this second slice separate partitions were made for

each of the filesystems mentioned previously.

3.1.5. XFree86

 The X Window System is rarely found installed on servers that house critical services. X is an extremely

large and complex collection of binaries and libraries that introduces a huge code base from which

vulnerabilities emerge from time to time. XFree86 is an open source implementation of the X Window System

that is distributed with a variety of contemporary open source operating systems including Linux and the

BSDs.

The X Window System is based upon the X protocol that takes the client-server model up to the application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

level. The goal of this protocol is to provide a graphical user interface within and between systems

transparently. While this design improves look and feel, portability, and performance, all the security issues of

the client-server model add to the already long list of application vulnerabilities.

That said, the XFree86 development team has done a phenomenal job over the years improving the security

architecture of their implementation of the X Window System and it is today far safer to run X on servers than

it ever was before. However, the goal of X is and always has been to provide a convenient graphical user

interface.

Infrastructure servers are typically remotely accessed machines and provide only very specific services over

clearly defined protocols. The only "use" of the server is by the administrator, and administration is usually

console based.

 You might think of workgroup servers as systems that need X. Sure enough, they may need to support the

execution of X applications. What is referred to as the "X Server," however, allows locally executed

applications to appear on the server's display. This means local memory allocated to the video card adapter

and the PCI bus needs to be accessed. When direct memory access is being provided to an application, a

vector for attack is introduced. The bottom line: the X Server rarely needs to be installed on workgroup

servers.

Given the security ramifications of installing the entire X distribution, we recommend against doing so for

workgroup and infrastructure servers. As needs arise for users to run X applications, these applications may

be installed as packages or through ports. In the latter case, dependant packages will be automatically

retrieved and installed. This assures you that only the software required to make a given application function

is installed, but no more.

3.1.6. Users and Passwords

 At the end of the installation, you're prompted for a password for the root user. In the case of FreeBSD,

you are also prompted to create an additional user. Do it. This will be your user account, and could be added

to the "wheel" group if you will need to su(1) to root. For OpenBSD, create an additional user account after

installing the OS.

It's very important that you create an account for yourself instead of running around the system as the root

user. Operating as a nonprivileged user protects you from you. Poorly thought out commands or even

typographical errors as root can send you scrambling for backup tapes. Even seasoned administrators can

get a little spacebar happy and turn the command rm -rf /my/dir/prefix* to rm -rf /my/dir/prefix *. If your

current directory happens to be /usr, by the time you press Ctrl-C, all manner of vital system files may be

gone.

 The two typical ways to gain super-user privileges are su and sudo(8). The former is available in the base

installation of both operating systems, and the latter is included in the base install of OpenBSD and as a

port/package in FreeBSD. When a user is a member of the wheel group, that user can use su to become

root. However, doing so introduces an enticement: now that the user is root, why spend extra keystrokes to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

drop privileges again? The sudo command solves this problem by running only a single command at a time

as root and logging the command as it runs it. You are immediately returned to your nonprivileged shell after

the command has executed.

For more information about the differences between su and sudo, and some of

the motivations for and pitfalls of each, see Chapter 4.

 When creating a user account, take the time to develop a strong password both for root and any users you

create as described in Chapter 1.

3.1.7. Summary

At this point you should know what you are building and where it is going in your network. You are armed

with the installation media (and method) you have chosen and have thought about the risks associated with

those decisions. Without further ado, let's dig into the not-so-glorious installation processes for FreeBSD and

OpenBSD.

If you will be installing FreeBSD, keep reading. If you want to follow the weapon laden puffer fish, skip ahead

to the section entitled Section 3.4 just ahead!

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

3.2. Installing FreeBSD

 The FreeBSD install process brings you to the sysinstall(8) main screen (see Figure 3-2). If necessary,

change your keymap or adjust install options. If you are booting from an older FreeBSD CD yet performing

an FTP install, you may need to point the install elsewhere by changing Release Name under Options. That

done, choosing the standard install is probably your best bet.

Figure 3-2. The sysinstall main screen

3.2.1. Preparing the Disk

Your first step will be to put into effect decisions you have already made regarding filesystem slicing. Having

these written down in advance helps ensure you haven't made any mistakes.

Select your drive, decide whether or not to dedicate the entire disk or to leave aside some space for a

maintenance partition, and move on. If you are not dual-booting, a standard boot loader is all you need.

Finally, choose a filesystem layout that is appropriate for your system's task, as shown in Figure 3-3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html
mfreeopenbsd-CHP-3-SECT-2.html

Figure 3-3. The disklabel(8) editor

 FreeBSD 5.0 added support for UFS2 filesystems and, in fact, this is the default. These filesystems

provide improved performance during fsck(8), support for larger filesystems, and extended attributes for

native discretionary (ACLs) and mandatory access control (TrustedBSD MAC Framework). There are no

particularly compelling reasons to fall back to the UFS1 filesystem.

3.2.2. Choosing Distribution Sets

This is the meat of the FreeBSD install process. It is here that you get to pick and choose the key parts of

the base operating system you will need. Figure 3-4 shows the "canned" distribution sets that FreeBSD

provides. While the Minimal option seems like a good bet, it is possible to install more without sacrificing

security.

Keep your finger away from the Enter key! If you're familiar with sysinstall, you

know that hitting the Enter key at the wrong time is usually shortly followed by

hitting the reset button in frustration. Keep your fingers on the arrow keys (for

navigation) and spacebar (for selection).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Minimal distribution set includes both the base FreeBSD operating system and basic encryption services

(ssh and SSL-related binaries and libraries, pam, kerberos, etc.). If you select Minimal, you can further

customize which distributions are installed by subsequently selecting the Custom option.

Figure 3-4. Choosing a distribution set

 Making a system more secure will likely simultaneously make it less convenient to manage, but the

converse is not true: making system administration an arduous task does not imply that your system is more

secure. Install the man, catman, and info distributions. If your environment requires kerberos, then by all

means install the [eBones] krb4 or [Heimdal] krb5 distributions. Alternately, the MIT version may be installed

from ports (ports/security/krb5) after the install.

 If you plan to rebuild your kernel or perform a local upgrade (as opposed to over NFS), install the src

distribution. Installing ports(7) is a matter of preference. Some prefer to install binary packages instead of

compiling ports locally. Others write scripts to pull down only the ports in which they are interested. It is your

call. In either case, if you plan to cvsup to the latest versions of either the entire src or ports distributions, it

makes sense to install them now and pull down only differences. The examples we provide in this book will

always favor ports over packages.

Take note that in FreeBSD 5.x perl is a separate distribution. If you'll have need of a Perl interpreter (and

you probably will, especially if you're going to be installing software from ports), install the perl distribution.

 As was mentioned previously, you will rarely find X installed on servers. For an infrastructure server,

command-line tools are usually adequate for administration. If you are building a multiuser development

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

system or workstation, pieces of the X distribution may be required and may be installed later.

Choose your desired distributions, click OK, and FreeBSD will begin installing.

3.2.3. Post-Installation Configuration

 The following section describes the various choices during the FreeBSD install process. Any prompt that

may affect the security of your system is described below. The post-installation configuration begins by

prompting you to enable your network interface.

3.2.3.1 Basic network configuration

 Using DHCP during the install process can be dangerous, as discussed earlier in this chapter. When

building servers, it is often easier to start with statically configured network information than worry about the

implications of DHCP. You will be prompted to bring up the interface you just configured before continuing

with the install process. It is safe to do so, if you trust your network or are not connected.

3.2.3.2 Network gateway

Upon completion of your network interface configuration, you are prompted: "Do you want this machine to

function as a network gateway?" The answer to this prompt will depend on the role of your system. If your

system will be a routing firewall, provide network address translation (NAT) services, or will for some other

reason route packets, you will want to answer yes. Otherwise, say no.

3.2.3.3 inetd

If you are not providing one of the services inetd spawns, skip configuration of this super server during the

install process. Even if you will be providing a service that runs from inetd (e.g., ftpd(8)), it's easy enough to

configure it later, after you have hardened your system. Say No here for now.

3.2.3.4 sshd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

It is very convenient to enable sshd at this stage. It means you will not need to sit with a console attached to

the system while you configure it. If you have been paying attention to the security mailing lists and are

confident that sshd listening on your newly installed server is safe (it has no known vulnerabilities), leave it

on.

3.2.3.5 Security profile (FreeBSD 4.x only)

FreeBSD 4.x installs provide a set of prepackaged security profiles available only during installation. These

profiles consist of a variety of changes to system defaults (specifically, in /etc/rc.conf) that are outlined in

Table 3-1. These profiles are termed Moderate and Extreme, though the term Medium is used

interchangeably with Moderate.

Table 3-1. FreeBSD security profiles available during sysinstall

 Moderate Extreme

sendmail Enabled localhost:25 only

sshd Enabled Disabled

portmap Enabled if NFS client is enabled Disabled

NFS server Enabled if selected earlier Disabled

securelevel -1 2

Following the defense in depth principle, a security-minded system administrator would opt for the most

secure configuration, enabling only services that are required instead of disabling services that are not: she

would choose the Extreme security profile.

If you choose a Moderate security profile, you will gain the ability to upgrade your system after the install

while still in multiuser mode. If you choose the Extreme security profile, you will have to drop to single user

mode to perform the upgrade; this is the recommended approach anyway.

There may be files on your newly installed filesystem with the system

immutable (schg) flag set. Files with this flag will not be overwritten and in

securelevel 1 or higher, not even the root user will be able to unset these flags.

Therefore you will need to reduce your security level either by going into single

user mode or by choosing the Moderate profile.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When your system has been installed, you can switch to the holographic shell provided for you on vty4 (press

Alt-F4), and disable all unnecessary services by modifying your startup configuration file, /etc/rc.conf.

After the installation is complete and your system is up and running, you can turn any necessary services

back on after you are sure there are no known vulnerabilities in these services.

3.2.3.6 Anonymous FTP

 The same rules apply to Anonymous FTP as to inetd. Even if you plan to be providing unauthenticated

FTP access, deployment of this service should be performed carefully and after the system has been

prepared. Before configuring this service, you should set up a jail(8) as described in Chapter 2.

3.2.3.7 NFS

NFS is a primitive protocol that provides file-sharing capability. Unfortunately it also provides little in the way

of authentication and no encryption by itself. Deployment of NFS in a perimeter network or beyond the

firewall should be avoided. Deployment anywhere else should probably also be avoided. See Chapter 4 for a

more extensive discussion of the pitfalls of NFS and some possible alternative approaches.

3.2.3.8 Time zone

Consistent time is vital in a networked environment. For piecing together an audit trail, debugging mail or

web application logs, or authenticating using Kerberos tickets, you should care about the system time. Resist

the temptation to put your system's clock in Africa (unless, of course, your server resides in Africa).

System time is very important for troubleshooting and forensics. To ensure that

the time across all your systems is consistent, develop a sound Network Time

Protocol (NTP) architecture as described in Chapter 4.

3.2.3.9 Linux compatibility

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You may need Linux compatibility for building workstations and servers that must run proprietary commercial

binaries available only for Linux (such as for audio and video streaming) and other non-BSD operating

systems. If you do not foresee the need, follow a minimalist approach and skip Linux compatibility for

now—you can always add it later.

3.2.3.10 XFree86

A graphical user interface is appropriate on workstations and development servers. Workstations will require

a full complement of X-related binaries, libraries, and user interface applications; development servers often

only need enough libraries to be able to run self-built GUI programs and compiling tools. Infrastructure

servers do not generally run X but sometimes have X libraries installed. For example, an installation of

Apache for a production web server at an ISP may also require a variety of graphics suites that rely on the

existence of X libraries. In this case, the X libraries in question may be installed through dependencies in the

ports installation process.

3.2.3.11 Packages

The packages available during the install process are generally of similar age as the release. If you're

installing an older version of FreeBSD (knowing full well that you will be upgrading in a moment), the

packages you install in this step will be equally antiquated.

However there is one package you should install now: sudo. We mentioned sudo briefly earlier in this

chapter and will cover the tool in far greater detail in Chapter 4. For now, either bear with us here as we ask

you to blindly install this package or become familiar with sudo by reading the relevant sections in Chapter 4

and return here. Either way, scroll down to the security category, find sudo, select it, and install it.

3.2.3.12 Finishing up the install

 Finally you're given the option to create a user account and set a root password. As discussed previously,

it's important to create a user account instead of running around as root, and the passwords you set both for

yourself and the root user should be strong. Many administrators like to add themselves to the wheel group at

this point. However, you don't need to do this to gain root level access since you're using sudo. After these

two steps, you find yourself at the end of the sysinstall process. Congratulations!

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

3.3. FreeBSD Hardening: Your First Steps

As you know by now, you can't just "turn on" security. System security is like a collection of switches and

knobs that you must constantly adjust. Many of these controls were introduced in Chapter 2. Deciding which

switches to flip and which knobs to turn will depend a great deal on your environment: security policies and

procedures imposed upon you, your own security requirements, the nature of the data on the system, and

the administrative overhead you are willing or required to tolerate. This section provides numerous

suggestions to improve the security of your freshly installed FreeBSD system. Some steps are more

important than others, and in a lot of cases, this too varies between environments.

3.3.1. Step 1: Configure sudo

 We'll make this step brief since we cover sudo extensively in the next chapter. For now, all you need to do

is ensure that the user account you created has fairly liberal rights when it comes to running privileged

commands through sudo. In order to configure sudo to allow your account to execute any command as root,

edit the sudoers(5) file by running visudo(8) without arguments while logged in as root. Append the following

line to the file:

username ALL = ALL

Where of course username is the account you created for yourself during the install process. That's it! Save

the file, log out, and log back in under your regular account. In order to run privileged commands from here

on out, just prepend sudo to the command you'd ordinarily run as root. The first time you use sudo, it will tell

you about the power you hold and ask for your (not root's!) password. Thereafter, it will periodically prompt

for your password to make sure you are you.

3.3.2. Step 2: Turn Off Unnecessary Services

 Your server is likely to provide one or two critical services to a local network or to visitors from the Internet.

Other supporting services may also be running like sshd(8) for remote administration. All other services that

listen on a network interface can be disabled. There is where knowing about preexisting vulnerabilities come

in handy. With this in mind, it is a reasonable precautionary step to disable these services also.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html
mfreeopenbsd-CHP-3-SECT-3.html

 If you've just installed FreeBSD 5.x, opted to not configure inetd during the install, and chose to enable

sshd, you're in great shape. The only services you'll have listening on a newly installed 5.x system are

sendmail accessible only on the loopback interface, and sshd. If you did enable inetd, make sure you edit

/etc/inetd.conf and comment out all unneeded components.

If you've just installed FreeBSD 4.x, the state of your system will vary depending on the security profile you

chose. If you selected the extreme security profile, you will not have any remotely accessible services

enabled and your first step is complete.

A FreeBSD 4.x system configured with a medium security profile will have a variety of running processes

listening on several externally accessible ports. If your network card is not plugged in, that's not much of a

problem—but you are going to be online sooner or later. Sooner, really, because your second step in this

process is updating your system to the latest security branch (for more information about tracking branches,

see Chapter 4). So turn off those services by adjusting rc.conf(5) as appropriate, and plug in. If you didn't

configure your network at all during the install, do so after these services are disabled.

FreeBSD has a handy utility called sockstat to assist you in determining what

services are listening on what port. Use the command sockstat -l to list all

listening services. If you want to limit the results to only IPv4 interfaces, run

sockstat -4l. For more information, see the sockstat(1) manpage.

3.3.3. Step 3: Update Your System

A freshly installed system is rarely up to date. Chances are good that development has continued since you

acquired your software, and numerous bugs (both security and otherwise) have been found and fixed. As

we've mentioned before, make sure you're subscribed to the security notifications list, and have checked the

security page on the FreeBSD web site for known vulnerabilities. In any case, it's time for your first system

update.

3.3.3.1 Getting the latest sources

Once you have connectivity and are reasonably assured that your system cannot be compromised by a

remote attacker, it is time to cvsup your system sources, and rebuild. But wait, in a fit of paranoia you did not

install the cvsup package as part of the FreeBSD install! Why did you fail to install something of immediate

use? Well, if you have no plans to install XFree86 on this machine, you need the cvsup-without-gui port,

which is not available during the install. The cvsup that is available depends on X libraries that you would

like to avoid installing if possible. Fortunately the acquisition of cvsup-without-gui is as simple as:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% sudo pkg_add -r cvsup-without-gui

Typically when impatient administrators use cvsup to update the source tree, they do so as root.

Downloading source code shouldn't require root-level privilege. Really, the only reason this level of access is

needed is because of default filesystem permissions. The cvsup program will need to store information in

/var/db/sup, and will write into /usr/src. When you upgrade your system, you'll also need to write into /usr/obj.

The solution here is to adjust the default permissions of these three directories (you may need to create

/var/db/sup first) so that you can write to them without elevated privileges.

How you accomplish this is up to you. If you're the sole administrator in charge of performing system

upgrades, you might just want to make yourself the owner of these directories as shown in Example 3-2.

Otherwise, you may want to use a special administrators-only group and grant group-write access to these

directories.

Example 3-2. Changing ownership of key directories for cvsup

% sudo mkdir /var/db/sup

% sudo chown -R username /var/db/sup /usr/src /usr/obj

Now that you've got permissions straight, it's time to configure cvsup. First, you will need to create an

appropriate supfile. This file sets a variety of defaults and will be read in by the cvsup program when you

update your sources. Begin with one of the example files in /usr/share/examples/cvsup, perhaps

standard-supfile. Look for a line that specifies the release and tag, for example:

*default release=cvs tag=RELENG_5_3

The tag specifies the branch of FreeBSD you want to track. In general, most carefully administered FreeBSD

servers track the security branch which includes only critical bug and security fixes. Thus if you install

FreeBSD 5.3, you will always be running FreeBSD 5.3 with patches, and the appropriate tag for this is in fact

RELENG_5_3.

 If the supfile you're working with indicates something other than a security branch, for example

RELENG_5 (that indicates -STABLE) or just . (a period, that indicates -CURRENT), adjust the tag as

appropriate. After you adjust the supfile, save your working file elsewhere, perhaps

/usr/local/etc/security-supfile. Finally, update your FreeBSD sources by running:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% /usr/local/bin/cvsup -L 1 -h cvsup

x

.freebsd.org \

/path/to/your/chosen/supfile

Be sure to replace the x in cvsupx.freebsd.org above with a number corresponding to a cvsup mirror

close to you.

Do not directly modify any of the example supfiles. If another example cvsup

configuration file better suits your needs, use it instead. If you need to make

drastic changes to any of these files, save a modified copy of the file

elsewhere. You do not want to accidentally lose your changes during a system

upgrade.

While it is possible to track the -STABLE branch, be aware that system upgrades may include more changes

than you bargained for. Some administrators have had success carefully tracking the -STABLE branch by

performing upgrades to noncritical servers and subsequently upgrading other servers (using source from the

exact same time) after a great deal of testing. Other administrators have been badly burned by tracking this

branch. Unless vital features or fixes exist in the -STABLE branch, stick with the security branch. Finally,

forget about tracking -CURRENT on production infrastructure. It is too volatile and unreliable and is better

suited to systems with which you tinker but not on which you rely.

After you have successfully performed an update, you have the opportunity to save your update preferences

for later use. To do this, add a block similar to the following to /etc/make.conf(5):

SUP_UPDATE= yes

SUP= /usr/local/bin/cvsup

SUPFLAGS= -L 1

SUPHOST= cvsupx.freebsd.org

SUPFILE= /path/to/your/chosen/supfile

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

After doing this, you may update your sources by running make update from /usr/src.

 For more information about cvsup including (and especially) using refuse files to tune which files or

directories you retrieve, see the FreeBSD manpage for cvsup(1) and Appendix A.5 of the FreeBSD

Handbook. To learn more about tracking branches of FreeBSD, see the relevant discussion in Chapter 4.

3.3.3.2 Kernel configuration

 Before upgrading your system, you will probably want to fine-tune your kernel, both for security and

performance reasons. Customizing your kernel configuration is typically recommended for FreeBSD systems,

and only needs to be done immediately after the system is built and when you introduce new hardware.

Given an environment where there are few hardware changes and consistent hardware across an

infrastructure, the one time cost of fine-tuning yields rewards over the long term.

Creating a custom kernel configuration is almost never done from scratch. Typically you start from a copy of

the /sys/conf/GENERIC kernel and remove options as necessary. In some cases it may be necessary to add

hardware support from /sys/arch/conf/NOTES (In FreeBSD 4.x this file was LINT). As with installing

distributions and packages, the following adage holds true: if you do not need it, do not install it. In a kernel

context, this means if you do not need the kernel option, delete the configuration line and it will not be

compiled in. The fewer drivers and options compiled into the kernel, the less always-running code there is to

exploit.

Be careful with what you remove. It may not be obvious that some options are

mandatory. For many releases, the COMPAT_43 option had the somewhat

vague comment "Compatible with BSD 4.3" in the GENERIC file. Few

administrators understood why they would want to be compatible with BSD 4.3

and removed this option. Then they discovered that their systems would no

longer boot, and the comment now includes "[KEEP THIS!]."

The process of configuring a custom kernel is exceedingly well documented in Chapter 9 of the FreeBSD

Handbook. While you need not actually compile or install your kernel in this step (we will do that in a moment

as part of the system upgrade), now is a good time to create a configuration file for your custom kernel. The

following list of options includes some of the changes you may want to make to the generic kernel for security

reasons.

BPF

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 The Berkeley Packet Filter option in the kernel allows packet sniffers such as tcpdump(1) to

function. On many servers, the bpf pseudodevice is probably not necessary. Some key exceptions

are DHCP servers/clients and IDS hosts. Access to information provided by this pseudodevice relies

on the user being able to read from /dev/bpf*. If you want to restrict snooping on network interfaces,

remove the bpf device from your kernel configuration.

CD9660

Removing this option from the kernel will relegate the ISO9660 filesystem drivers to a kernel

module. In a securelevel of 1 or greater, this module will not load, and access to a CD will require

that you bring the system to single user mode or reboot. In a hostile physical environment, this may

be desirable. In other cases, the administrative hassle will probably outweigh any security benefit.

DEBUG

This option is disabled by default and should remain that way on production servers. Turning this

option on would cause symbols to not be stripped after linking yielding a larger kernel, larger core

dumps (unless you have disabled core dumps using sysctl as described in Chapter 2), and more

information in those core dumps.

IPv6, gif, faith

 Falling under the category of "if you don't need it, don't install it," if IPv6 is not being used in your

environment, there is no need to compile it into your kernel. Removing this option will shrink your

kernel and allow for the removal of gif and faith devices that provide tunneling and relaying support

for IPv6. Compiling without this option will also ensure that ports you build on your system after

installing your new kernel do not have IPv6 support compiled in by default.

KTRACE

 The KtrACE option in the kernel will provide for kernel tracing using ktrace(1) and kdump(1) as

described in Chapter 2. This option is enabled by default. ktrace assists with debugging and

providing empirical data regarding the types of I/O operations a program is requesting and

arguments to these operations. As a result, ktrace can assist in leaking sensitive information to the

individual running ktrace. Unless you plan on using ktrace for one of the purposes discussed in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 2, it is probably best to leave this option out of the kernel.

MSDOSFS

 The MS-DOS filesystem drivers will, like the ISO 9660 filesystem drivers, be compiled into a

kernel module if this option is disabled. As with CD9660, the kernel module will not load at

securelevel 1 or higher. In addition, even without this kernel option, mtools (in the FreeBSD ports

collection) provides a means to access MS-DOS media without the support of this filesystem.

NFS

NFS between systems is rarely used on production systems with direct exposure to the Internet.

Support for NFS and NFS_ROOT can be safely removed from your kernel configuration unless you

plan to provide a locally accessible and read only master jail as described in Chapter 2, or your

system is on a LAN and the situation calls for it.

UCONSOLE

This option allows non-root users to own the system console device (/dev/console). On an

infrastructure system, there should be no need for users whatsoever. On a workstation or other

server running X however, it is likely users will want to grab the console using programs like

xconsole. Your situation will determine whether you want to leave this in.

USB

USB devices are invaluable on workstations. Some servers these days ship without integrated

removable media bays at all and rely on the availability of USB floppies and CD-ROM drives. Your

hardware will in large part determine whether USB devices should be supported by your kernel. In

an untrusted environment, automatic support of USB media may not be desirable.

Remember that just because the functionality is not compiled into your kernel, you may still have access to it.

Much of the kernel is modular, so even if you do not compile it in, you can load the appropriate module later,

provided your system is running in a securelevel below 1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Once you have decided how to build your custom kernel, save the configuration file with the other files in

/sys/arch/conf. Be sure not to replace the original GENERIC configuration file, but instead, save your

changes into another file, e.g., MYKERNEL.

3.3.3.3 Your first upgrade

With the latest sources sitting in /usr/src and a custom kernel configuration file ready, you're prepared to

upgrade the system. This entire process has been comprehensively covered in Chapter 21 of the FreeBSD

Handbook, so we will not waste time with the entire process here. Instead, a few do's and don'ts of upgrading

your FreeBSD system.

Do read /usr/src/UPDATING. Failure to do so could cause you to miss a step, rendering your system

in a less-than-ideal state.

Do create make.conf(5) for your system. If you plan to run a mail transport agent or nameserver

installed from ports or ask a package, you would be well advised to configure make.conf so these

binaries are not replaced during a system upgrade (this is less important during your first upgrade).

Example 3-3 shows values in /etc/make.conf that might be appropriate for an i386 AMD based

server with DNS software installed through ports instead of in the base system.

Example 3-3. Example /etc/make.conf for FreeBSD

CPUTYPE= k6-2

CFLAGS= -O -pipe

COPTFLAGS= -O -pipe

NO_BIND= true # no BIND

NOGAMES= true # no games (games/ subdir)

NOPROFILE= true # no profiled libraries

KERNCONF= MYCONFIG

BOOTWAIT= 3000

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In addition, your make.conf can assist with updating your source tree via make update by pointing

it to your supfile and cvsup binary as described previously. For a full description of the options

available in make.conf, see the make.conf(5) manpage.

At this stage, don't worry about mergemaster(8) clobbering your configuration files. You haven't

made any configuration changes yet. If you've never run mergemaster before, read the manpage.

Table 3-2 describes options that may be useful to you in running mergemaster.

Table 3-2. Important mergemaster options

Option Description

-i If a file does not exist in /etc (it is being introduced as part of this upgrade), automatically install it.

-p
Pre-buildworld mode. Compare files essential to the success of the buildworld/installworld

process. Run this before buildworld.

-v Increase verbosity, useful the first time you run mergemaster.

-t [arg] Specify an alternate temporary root from which to make comparisons.

3.3.4. Step 4: Wrapping Up

With your FreeBSD system upgraded, it's time to turn your attention to some final system lockdown activities.

Because this process is so similar for both FreeBSD and OpenBSD, it has been placed at the end of this

chapter under Section 3.6. If you decide to complete some of these steps before running mergemaster, you

will have to be careful when selecting to install, delete, or merge configuration files you may have changed.

Best of luck!

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

3.4. Installing OpenBSD

 One of the hallmarks of OpenBSD is the incredibly low number of remotely exploitable vulnerabilities in the

default install. As a method to this madness, the OpenBSD team has built the install process to achieve this

goal: the options provided during the install are few, and security options are enabled where possible by

default. What this all means is that the OpenBSD install is simple, swift, and painless. Following the prompts

will get you from zero to fully functional in very little time. That said, let's move quickly through the steps.

3.4.1. Preparing the Disk

The first step in an OpenBSD installation is to indicate that you are, in fact, installing and not upgrading or in

need of a shell for maintenance or recovery. Enter I for install, pick your terminal and keyboard emulation,

confirm, and it's time to pick a disk and slice it up.

If you have no maintenance partition and do not plan to dual boot, you can use your entire disk for OpenBSD.

Create your partitions according to the decisions you made before starting the install process, quit, and write

the new disk label.

Remember, if at any time you feel lost, provide the installer ? as input. You will

be provided help. You may also get the entire manpage for fdisk(8) and

disklabel(8) by typing in manual or M for each application respectively.

If you have chosen to separate the most common filesystems, the installer will automatically flag your

filesystems as shown in Table 3-3. This saves you a little bit of work later.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html
mfreeopenbsd-CHP-3-SECT-4.html

Table 3-3. Default flags for mount(8) set by the OpenBSD install

 nodev (no devices) nosuid (no set-uid/gid)

/usr

/tmp

/home

/

/var

The nodev option may cause you a little grief later on if you are running a

chrooted process within /var. A DNS server like named(8) for instance,

chrooted in /var/named, will want to use devices like /var/named/dev/null and

/var/named/dev/log. If you plan to chroot daemons in /var, you may want to

remove this flag.

3.4.2. Configuring Your Network

 Network connectivity during the install process is really your call, as described previously in this

chapter. If you are building a server, you are unlikely to be using DHCP to configure your network interface.

Provide values at the prompts and proceed.

During network setup, you will be prompted for a nameserver and whether that

nameserver should be used immediately. Be sure this is a trusted resolver.

The last thing you need is to be a victim of a MITM attack and directed to a

malicious site when you try to download patches via FTP or cvs!

After network configuration, you are prompted to enter a root password. Make it a strong password.

OpenBSD does not prompt for the creation of a new user; we'll do that soon.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.4.3. Choosing Your Distribution Sets

 Here we are at the meat of the OpenBSD install process. At this point, you choose which file sets to

install. Each set is a portion of the OpenBSD distribution and it is named according to its contents and

version. Figure 3-5 shows file sets of the OpenBSD 3.5 distribution. The only required sets are the kernel

(bsd), the base OpenBSD system (base35.tgz), and the files from the /etc filesystem (etc35.tgz). You may

also want to install the compilers (comp35.tgz) and the manpages (man35.tgz).

Figure 3-5. Choosing OpenBSD 3.5 file sets

If you are building an infrastructure server, you will probably want to avoid installing any X file sets. In the

case of a development server, the base install for XFree86 (xbase35.tgz) may be appropriate.

3.4.4. Activating sshd

After installing file sets, you are asked if you want to enable sshd(8). The convenience of enabling sshd at

this stage is high. It means you will not need to sit with a console attached to the system while you configure

it. If you have been paying attention to the security mailing lists and checked the OpenBSD Errata page to

ensure that sshd listening on your newly installed server is safe, leave it on.

3.4.5. An Innocuous Question About X

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You are subsequently asked if you plan to run X on the system. If you're building a workstation or, heaven

forbid, a multipurpose machine that might serve as someone's desktop, the answer to this may be yes. If

you're building a development server so that users can launch X programs from the server but have them

displayed on their system, you do not need to enable this.

Answering this question in the affirmative will modify /etc/sysctl.conf such that mdachdep.allowaperture

is set to either 1 or 2 (depending on your platform). When your OpenBSD system boots after the install, the

system's securelevel(7) is incremented to 1. This restricts, among other things, applications from being able

write to the physical address space and I/O ports corresponding to your VGA adapter and some general PCI

configuration registers. The aperture driver (see the xf86(4) manpage) /dev/xf86 was introduced to OpenBSD

so that the X server can have the access it needs to this address space and these registers even when the

system is running in a securelevel higher than 0.

From a security standpoint, it's important to know that the aperture driver will allow any one process to

bypass the restrictions imposed by the system's security level. Usually this process is the X server, but before

the X server is able to load, a malicious user or application could use this driver to do some damage.

Granted, this is a not very easily exploitable window, but if you want to get rid of it altogether, answer no to

this question, and do not run X.

3.4.6. Finishing Up

Finally, it is time to set your time zone and prepare to reboot your system. Before you do so however, do you

know what services will be running at the end of the reboot? To find out, there are two files you will need to

look at: your startup configuration file, rc.conf, currently in /mnt/etc and your system startup script /mnt/etc/rc.

If you run:

cat /mnt/etc/rc.conf | egrep "(_flags|=YES)" | grep -v =NO

You will get a list of directives that may spawn services. Results from the command above, however, do not

necessarily mean a service will start. A given service may be disabled in the same configuration file by a later

directive set to NO, or the service's start is dependent upon some other factor, such as the existence of a

configuration file or directory in the filesystem. To determine if this is the case, look through /mnt/etc/rc for the

flags directive in question and determine under which conditions the service will start.

Don't bother trying to disable syslogd(8). By default, the system logger will not

accept incoming UDP datagrams unless running with the -u (insecure) flag.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If you decide to disable services, place overrides to the startup configuration file in rc.conf.local. This file is

sourced right after the rc.conf file in the system startup script.

 If the procedure above seems too cumbersome to follow (and it should), you have two options for mitigating

the risks of having listening services when you reboot:

Disconnect your network interface. This is by far the easiest and most reliable choice.

Disable services you know (through some other means) will be running on your OpenBSD system.

If you are comfortable with the set of services running post-install and know they have no known

vulnerabilities, go ahead and reboot your system. Your OpenBSD install is complete!

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html
mfreeopenbsd-CHP-3-SECT-5.html

3.5. OpenBSD Hardening: Your First Steps

OpenBSD's proactive "secure by default" approach to security results in a very secure system immediately

after install. The goal here is to ensure system administrators start from a system that is not open to remote

compromise. Therefore few services will be running after a fresh install, and these services will have

undergone rigorous review. If you have followed the recommendations in this chapter, you will have taken

things one step further. You have ensured that there are no listening services or have verified that any

listening services are not vulnerable to remote exploit.

Nevertheless, system security is an ongoing process, and there is more work to be done. The following two

steps are essential to bringing your system into a more secure state, and continued diligence will keep it

there.

If you are not familiar with the administration of OpenBSD, please spend a little

time immediately after the install reading the afterboot(8) manpage.

3.5.1. Step 1: Create a User

When you first log into an OpenBSD system you are admonished for logging in as root. The default .login

file from which commands are executed under the default c-shell (csh) includes this warning. It's a bad idea

to run around your system as root; a stray typo could send the system into an unrecoverable state. Instead,

create a local user account for yourself and use sudo(8) to execute privileged commands. This will

accomplish three things:

It will keep your system safe from you.

It will ensure that you think about the privileged command you are about to execute before blindly

typing it in and hitting enter.

It will provide a valuable audit trail of privileged commands executed.

 Both adduser(8) and vipw(8) will allow you to create a user, though the former command is a little more

helpful and will allow you to set a user password. Many administrators like to add themselves to the wheel

group at this point. However, you don't need to do this to gain root level access since you're using sudo.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5.2. Step 2: Configure sudo

 We'll make this step brief because we cover sudo extensively in the next chapter. For now, all you need to

do is ensure that the user account you created has fairly liberal rights when it comes to running privileged

commands through sudo. In order to configure sudo to allow your account to execute any command as root,

edit the sudoers(5) file by running visudo(8) without arguments while logged in as root. Append the following

line to the file:

username ALL = ALL

Where of course username is the account you created for yourself in the previous step. That's it! Save the

file, log out, and log back in under your regular account. In order to run privileged commands from here on

out, just prepend sudo to the command you'd ordinarily run as root. The first time you use sudo, it will tell

you about the power you hold and ask for your (not root's!) password. Thereafter, it will periodically prompt

for your password to make sure you are you.

3.5.3. Step 3: Turn Off Unnecessary Services

Looking at the process list after login (by running ps ax) will show you what's running on your system.

Checking the output of netstat -a on a freshly installed OpenBSD 3.5 system will show that sshd, and a few

basic services provided by inetd (identd(8), daytime, time), are remotely accessible. In addition, sendmail

and comsat(8) are listening on the loopback interface. Depending on the kind of system you are building,

some of these services may not be necessary. Let's go through each of them and discuss whether you need

to adjust or disable these running services.

3.5.3.1 sshd

 The secure shell daemon is of fundamental importance. It serves as your primary means of remote shell

access to your system and it is rare you would ever want to disable this service. However, by default, the

sshd daemon will allow logins as root. You have already created a user that has sudo rights, so there's no

reason to continue allowing logins as root. This can be disabled by setting PermitRootLogin in

/etc/ssh/sshd_config to No. For more information about tightening security around sshd, see the Section 3.6

section, later in this chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5.3.2 inetd

 There are several programs running "out of" inetd by default. For the most part these services are trivial

and not prone to attack. However, they are also not particularly necessary and can probably be disabled on

most systems. If you are building a workstation, services running out of inetd such as identd and comsat

may be useful. inetd with a default configuration, however, is best disabled on infrastructure servers by

placing inetd=NO in your /etc/rc.conf.local. You may revisit this decision later.

3.5.3.3 Sendmail

There is little harm in keeping sendmail running in its default configuration on OpenBSD. It listens only on

the loopback interface and as such, is only vulnerable to attack from the local host. If your system provides

many user accounts, however, you need to ensure that your locally listening services are patched. Alternately

you could replace sendmail with another MTA—See Chapter 6 for more information on building a secure

mail server.

3.5.4. Step 4: Update Your System

It's time for another look at the Errata page on the OpenBSD web site. Here you will find a list of security and

reliability issues that have been identified since the latest release and ways to resolve them. The role of your

system will determine how you want to approach the topic of system updates now and in the future.

OpenBSD has three options available for system update: patch manually, track the patch branch (otherwise

known as stable), or track the current source.

 Any of these options are viable for OpenBSD workstations, but servers (especially infrastructure servers)

must be treated with more care. It's a good idea to limit your updates of servers to the patch branch. For

more information about OpenBSD's branches of development, see the relevant discussion in Chapter 4.

So, let's begin by getting a cvs checkout of the appropriate patch branch. First ensure that /usr/src is owned

by you or writable by a group to which you belong. Then retrieve OpenBSD sources as follows:

% setenv CVSROOT anoncvs@

some.server.somewhere.tld

:/cvs

% cd /usr; cvs checkout -P -rOPENBSD_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

X_Y

 src

Where X_Y (e.g., 3_5 for OpenBSD 3.5) is the patch branch you wish to track. For a list of anonymous CVS

servers, see http://www.openbsd.org/anoncvs.html. Once the source has been downloaded, rebuild your

kernel and make world. For a walkthrough of an OpenBSD upgrade procedure, see the OpenBSD patch

branch documentation at http://www.openbsd.org/stable.html. OpenBSD does not encourage that you

develop a custom kernel configuration unless you have specific hardware requirements. The following is an

excerpt from the OpenBSD FAQ:

Under most circumstances you will NOT need to compile your own kernel. The GENERIC

kernel will usually be all that you need. In fact, there are several reasons why you do not

want to create your own kernel. The main reason is that it is very easy to make changes to

the kernel configuration which look logical, but do not work. This is your danger sign. If

something does not appear to work properly, please try the GENERIC kernel before

sending in a bug report. Developers will usually ignore bug reports dealing with custom

kernels, unless the problem can be reproduced in a GENERIC kernel as well. You have

been warned.

As a result we do not cover the process of building a custom kernel configuration. Should the need arise,

there's plenty of information for you in the FAQ.

3.5.5. Step 5: Wrapping Up

Once your system has been updated and is running only those services that you require, you can turn your

attention to some of the more fine-grained security controls. These steps are fairly similar for both OpenBSD

and FreeBSD, so the following section, Section 3.6, covers both operating systems.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.openbsd.org/anoncvs.html
http://www.openbsd.org/stable.html

 < Day Day Up >

3.6. Post-Upgrade Hardening

At this point, you are ready to start locking down your system configuration. As we repeat throughout this

book, disabling features and creating limits does not always increase the security of the system. It generally

makes sense to take a "bang for the buck" approach to hardening. Deal with the most critical yet easily

handled issues first before moving on to more complicated security with diminishing returns. The following

steps provide one approach to system lockdown, but it is not the only way.

3.6.1. Configure Users and Groups

 If your system will be serving multiple users, allowing logins, providing FTP accounts, and so on, spend

some time thinking about how to structure your users and groups. For workstations with many users,

configuration of different sets of users and groups on each machine may be impractical. However, through

the use of a centrally managed authentication and authorization mechanism, users and groups can be

administered in a scalable fashion.

The most important group on a BSD system is, of course, wheel. Members of the wheel group have a

variety of read rights in /dev that normal users do not and are the only users allowed to su(1) to root (with

knowledge of the root password, of course). You may choose to make yourself and other administrators

members of the wheel group, but if you're using sudo, there's little motivation for doing so.

With FreeBSD 5.x and the introduction of ACLs, the reliance on Unix groups has diminished. In some cases

(such as a file server) ACLs may be a more appropriate access control than groups. See Chapter 4 for

additional information about user/group administration and access control for users and administrators. See

Chapter 2 for more information about how ACLs work and how to use them.

3.6.1.1 Toor (FreeBSD only)

 FreeBSD includes a toor (root spelled backward) account, which has been historically used to gain root

access with an alternate root shell. The rationale being, should the system need to boot in single user mode,

root (with statically compiled /bin/csh) would still be able to log in.

This user has since been made somewhat moot given two changes. First, when FreeBSD boots into single

user mode, the administrator is prompted for a shell—even if the default root shell is /usr/local/bin/bash, for

instance, the administrator could enter /bin/sh and log in. Second, FreeBSD has introduced a fully dynamic

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html
mfreeopenbsd-CHP-3-SECT-6.html

system (binaries in /bin and /sbin are not statically linked, but rely on libraries elsewhere on the filesystem). A

collection of static binaries for recovery have been placed into /rescue.

In any case, you shouldn't be logging in as root unless you're performing system recovery, thus the toor

account may be safely deleted.

3.6.2. Adjust Mount Options

The following mount options can affect the security of the system. Turning on all options for every filesystem

will render your system unusable, so do not do that. Look closely at what the options do, and consult the

manpage for mount(8) for more information.

As mentioned previously, OpenBSD administrators may have some of these

options already set depending on the filesystems that were sliced out during

the install process.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

noauto

This option, when specified for a filesystem in /etc/fstab, will ensure that the filesystem is skipped for

mount -a (run during system startup). This can be useful for filesystems you want handy, but not

mounted all the time such as CD-ROMs.

nodev

As the name implies, this option prevents character or block special devices from being interpreted

as such when found on the filesystem. While all but the root filesystem are good candidates for this

option, remember that chrooted or jailed services often require /dev inside their pseudo root

filesystem.

noexec

Binary executables will not be loaded and executed from the filesystem if this option is set. All but

the root and /usr filesystems are candidates for this option. Remember, however, shell scripts will

continue to work just fine. On a system with developers, setting noexec for /home will ensure you

get beat up in the parking lot on your way home.

nosuid

 This option prevents the setuid or setgid bits from taking effect. Programs will run as the

executing user. As the manpage for mount mentions, this option has little use if a setuid or setgid

wrapper is installed and publicly executable on the filesystem.

rdonly

Nobody can write to a filesystem mounted read-only. It may be tempting to consider this option

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

instead of using immutability flags, but root can easily get around the read-only option by running

mount -uo rw filesystem. The system must be rebooted into a securelevel of less than 1 if the

immutable flag is to be circumvented.

suiddir (FreeBSD only)

suiddir allows files in a directory with a setuid bit set to inherit ownership from the directory. Thus if

the directory has the setuid bit set and is owned by root, other files created in that directory will also

be owned by root. The manpage for mount provides good additional information about this option.

Be wary whenever you enable suiddir.

There are a variety of other options available for mount, and you should seek them out. It's fairly obvious,

though, that while these options are useful, they are by themselves not as strong as some of the other

security features of FreeBSD. For a system built according to a defense-in-depth strategy, however, they're

well worth using where appropriate.

3.6.3. Lock Down sshd

 Authentication is the way systems are convinced you are who you say you are. By default, the secure shell

daemon (sshd(8)) accepts a variety of authentication mechanisms including via password, public key, and

through some alternate challenge-response mechanism. This may not be ideal.

3.6.3.1 Password authentication

Users are very familiar with password authentication: you provide your username and your password. If the

password on file for the username you provide matches the one you provide, you have successfully

authenticated. All you need is a valid username and password to get into a system configured to allow

password authentication through SSH.

3.6.3.2 Public key authentication

 To configure public key authentication for ssh between two systems, you must first generate a pair of

keys for yourself: a public and private key. This is accomplished using the ssh-keygen(1) utility and will, by

default, create a ~/.ssh/id_dsa private key and a ~/.ssh/id_dsa.pub public key. When your public key is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

placed on a target host in the .ssh/authorized_keys (or .ssh/authorized_keys2) file in your home directory,

and you have in your possession (on the source host) the private key, you may successfully authenticate

after typing in a passphrase. Note not only do you need something in your possession (the private key), you

also need to know a passphrase. This is known as two-factor authentication and is a significant improvement

over password authentication.

We strongly recommend reading the sshd(8) manpage to better understand how this form of authentication

works. Suffice it to say that it is stronger than mere password authentication and should be required of users

and administrators alike.

3.6.3.3 Challenge response authentication

 By itself, this is not a single form of authentication. FreeBSD and OpenBSD treat challenge response

authentication support in different ways as described below. This allows sshd to point to an alternate

authentication framework. In the case of FreeBSD, this framework is Pluggable Authentication Modules

(PAM). In OpenBSD, login classes determine possible authentication information. For more information about

PAM and login classes.

Workstations on a protected LAN usually benefit from having a variety of authentication options available.

Servers, on the other hand, should have a more restricted set of possible authentication mechanisms, we

recommend limiting authentication to public key only. Below are configuration changes in

/etc/ssh/sshd_config you may want to consider. See the sshd_config(5) manpage for more information.

Allow/deny groups and users

 Specifying AllowUsers tells sshd to only allow logins by the listed users. Likewise, specifying

groups after AllowGroups limits logins to users who are in the listed groups. The inverse options,

DenyGroups and DenyUsers, do what you would expect.

ChallengeResponseAuthentication

This option specifies whether or not PAM should be used for authentication in FreeBSD and whether

to allow the authentication styles described in /etc/login.conf to succeed in OpenBSD. It is enabled

by default, and can be disabled if you are not using any of the authentication mechanisms specified

in FreeBSD's /etc/pam.d/sshd or S/Key on OpenBSD. Setting this to NO alone does not disable

password authentication on FreeBSD.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

PasswordAuthentication

Password authentication for sshd is weaker than the other options and should be disabled on

production servers where possible. At the very least, on infrastructure servers, enforce public key

authentication by setting PasswordAuthentication to NO.

FreeBSD only: setting this to NO will still allow authentication through PAM,

including password authentication. You will want to remove pam_unix(8) from

/etc/pam.d/sshd or set ChallengeResponseAuthentication to NO.

PermitRootLogin

While this option accepts the arguments YES, NO, WITHOUT-PASSWORD, and

FORCED-COMMANDS-ONLY, allowing users to log in as root makes accountability impossible. It

becomes very difficult to tie people to logins, which is vital to successful auditing. Set this option to

NO.

Protocol

If possible, restrict SSH connections to protocol 2 only. The SSHv1 protocol is vulnerable to a

MITM attack for which many easy-to-use kits exist. In an environment where the SSHv1 protocol is

still prevalent, develop a migration strategy to move users over to SSHv2 and change this option to

read Protocol 2.

StrictModes

This is enabled by default, but it is important to know what it does. StrictModes checks file

permissions before accepting login. Not doing this can introduce security problems should users

leave their private keys unprotected.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

UsePrivilegeSeparation

This tells sshd to fork(2) an unprivileged child process to handle the session. This child process

runs as the user making the connection mitigating the risks of privilege escalation. It is enabled by

default and is a good thing.

VerifyReverseMapping

This enforces RFC931 compliance. That is, the IP address making the connection to the server

reverse resolves into a hostname, which in turn resolves to the IP address making the connection to

the server. Turning this option on (it is disabled by default) will make people unhappy if they need to

connect from environments where they have no control over DNS mappings. Use with care.

X11Forwarding and X11UseLocalhost

When both X11Forwarding and X11UseLocalhost are enabled, the server on which sshd is

running provides a proxy display on the wildcard address instead of the loopback address. This

exposes the proxy display to requests originating from outside the ssh tunnel. X11UseLocalhost is

set to YES by default. Allowing X11 forwarding at all may expose the client system's X server to

attack.

If you do not already have an SSHv2 key, generate one now. Resist the temptation to keep using your old

key or password because of the hassle. With widespread support of the SSHv2 protocol in both open source

and commercial software for most platforms, there's little reason to support either the older protocol or

passwords.

3.6.4. Configure Basic Logging

 Logs form the basis of your audit trail. Without them, there is little hope you will be able to track down what

happened on a system after a security breach or malfunction. An incomplete set of logs will yield an

incomplete picture when you are trying to recreate the series of events leading up to a security incident.

Having logs by themselves may not even be enough. You need to be sure that your logs have not been

tampered with and contain all the information you are interested in tracking.

First, decide what you are interested in tracking on the system. On a single-purpose machine such as a mail

server, this is fairly easy: you want to know about important system events and have detailed mail logs. Next,

make the appropriate configuration changes to /etc/syslog.conf (read the manpage for syslog.conf(5) for

more information) as shown in Example 3-4 and HUP syslogd. If you have a syslog loghost server, do not

forget to send your logs to it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 3-4. Sample syslog.conf for a mail server

Facility/Level specification Log Destination

*.err;kern.debug;auth.notice;mail.crit /dev/console

*.notice;kern.debug;mail.crit;news.err /var/log/messages

security.info /var/log/security

mail.info /var/log/maillog

cron.info /var/log/cron

auth.info /var/log/ssh

*.emerg *

*.info @loghost

Bear in mind, you may have to revisit this step after installing ports or packages should you decide to track

logs from that application in a different file or by using one of the reserved local facilities. You also want to

configure log rotation via newsyslog.conf to ensure that your logs do not fill up your filesystem. newsyslog(8)

can be configured to zip up old logs at a certain time or size and reset permissions on new logs it creates. It

will even maintain a certain number of logs so you do not have to spend time cleaning up after old logfiles.

Once you have your key logs identified, you may be tempted to use the append-only file flag (sappnd) so

that your logs cannot be truncated. If you end up using this flag and you are running in a securelevel greater

than 1, however, newsyslog will fail when it tries to delete the old log and create a new one.

For a more comprehensive treatment of logging and building audit trails, see Chapter 10.

3.6.5. Create Login Banners

In U.S. courts, the waters of computer crime and trespassing have only barely been tested. Advising users

of your systems that their activities may be monitored and that only authorized users should log into the

system only strengthens your position if you wish to use your audit trail in a U.S. court of law. Login banners

are fairly easy to create and put into place, so there's no good reason to omit this step from your security

checklist. Login banners should, at the very least, warn all users who attempt to access your system that they

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

have no expectation of privacy, and that they implicitly consent to monitoring by using the system, and so on.

Consult with a lawyer regarding words that are appropriate for your organization.

The message of the day file, motd(5) is an ideal place to enter a login banner. Various services print motd

at login. If login banners are required before authentication (this is a good idea), the problem must be solved

on a case-by-case basis. For services that are connection oriented (TCP) and are compiled with libwrap,

(e.g., inetd) tcpwrappers can be used for login banners. There are three requirements for this:

In the case of inetd, you'll need the -w option.

/etc/hosts.allow must contain the banners directive (see the hosts_options(5) manpage).

A file must exist in the directory specified as an argument to the banners directive above of the

same name as the service for which the banner should be displayed.

A sample hosts.allow configuration may look like this:

ALL: PARANOID : RFC931 20 : deny

ALL: ALL: banners /etc/banners

Files containing login banners would then need to be named in.telnetd, ftpd, and so on, and placed in the

directory /etc/banners.

sshd may be configured directly by using the Banner configuration option. If you choose this option and

provide your motd as an argument, you should also turn off PrintMotd, or users may start complaining of

banner overload.

3.6.6. Configure NTP

 Keeping your system's time accurate is vital. This is why changes in the system clock are limited to 1s per

second at securelevel 2. Without a reliable timestamp, analyzing logs moves from the realm of "art" or even

"science" to sheer futility. There are two parts to configuring ntpd(8): initially (and roughly) setting the system

clock and keeping it accurate. On FreeBSD systems ntpdate(8) is used to initially change the system clock

to the correct time, often at boot. OpenBSD administrators may be more used to rdate(8). In order to keep

the clock accurate, ntpd periodically polls time servers and nudges the system clock back toward the right

time, should it fall out of sync.

ntpdate on FreeBSD systems may be configured either through sysinstall after installation is complete or

manually. rdate on OpenBSD systems may be configured after the install by setting rdate_flags

appropriately in /etc/rc.conf.local. You may need to look up NTP servers in your geographic vicinity. A list of

public NTP servers is available at http://www.eecis.udel.edu/~mills/ntp/servers.html.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.eecis.udel.edu/~mills/ntp/servers.html

Remember that ntpdate and rdate do not take into account network latency,

will only query one server, and drastically adjust the system clock. This is

useful to eliminate any large discrepancies that would preclude ntpd from

running, but will not provide accuracy beyond a tenth of a second. ntpd uses

sophisticated algorithms and multiple servers to keep sub-millisecond

accuracy.

 It's vital that you set the system clock before the system's securelevel is promoted during boot. This is

easily accomplished on FreeBSD by adding the following to your /etc/rc.conf:

ntpdate_enable="YES" # FreeBSD Only

ntpdate_flags="-b

public-ntp-server.domain.tld"

OpenBSD administrators would similarly add the following to /etc/rc.conf.local:

rdate_flags="-n

public-ntp-server.domain.tld"

The ntpdate utility is approaching deprecation, which means it will eventually

be removed from the operating system. To prepare for its impending doom, set

ntpdate_program to /usr/sbin/ntpd and ntpdate_flags to -q. This will have

the same effect as running ntpdate but will use ntpd instead.

ntpd is configured to run by specifying ntpd_enable="YES" in FreeBSD's /etc/rc.conf, or ntpd=YES in

OpenBSD's /etc/rc.conf.local. Do not forget to create a configuration file according to the manpage for

ntp.conf(5). At a minimum, you must specify one or more servers you wish to contact for time. For more

information about configuring and securing ntpd, see the section entitled Section 4.5.5 in Chapter 4.

3.6.7. Tune Your Kernel

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A variety of kernel variables can be adjusted on the fly using sysctl as described in Chapter 2. Now's a good

time to refer to that list of variables and choose a subset that is appropriate for the system you are building. If

you are uncertain about how your change may affect the system or applications you install down the road,

skip this step for now and come back to it after your applications are installed. You may then adjust one

parameter at a time and ensure that things are working as you would expect.

3.6.8. Set File Flags

Beyond the append-only flags available for system logs, there are a variety of file flags that can be set using

the chflags utility. Again, these flags were discussed in depth in Chapter 2. While you might be able to set

many of these flags now, it is probably safest to wait until you have installed additional packages. When the

time comes, write a script to set and unset the flags—this will help you make widespread changes without

trying to remember later what files need to have which flags applied or removed. The mTRee(8) tool may

help you take such snapshots of your filesystem permissions for use later.

3.6.9. Local Security

 Local security is often overlooked by system administrators. Systems are not always located in airtight

vaults, guarded by trained personnel, and behind other whiz-bang authentication devices. Even in

supposedly secure co-location facilities, other organizations may send their administrators into your "cage."

Even if you can afford your own cage, there may be other personnel whom you cannot completely trust with

the keys to your system. And servers aren't the only systems vulnerable to local attack—providing for local

security in a computer lab at an educational institution protects both your campus network and the previous

user of the system.

The bottom line is that, when a system is placed in an untrusted environment, additional steps need to be

taken to prevent snooping. Mind you, you will be able to do little against someone armed with a bucket of

water and some lithium, but you can at least protect your data to some extent. Consider the following steps to

help protect your system from local abuse.

3.6.9.1 On the screen

When you walk away from a system, you leave behind some information about what you were doing. If you

happened to be running privileged commands, there is a risk of information disclosure. There are a number

of ways around this including:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Disabling scrollback buffers

In FreeBSD, the following options can be set to adjust the behavior of your default console driver

syscons(4).

SC_NO_HISTORY #disables back-scrolling in VTYs

SC_DISABLE_DDBKEY #disables the debug key.

SC_DISABLE_REBOOT #disables the ctrl-alt-del key.

Disabling the scrollback buffer cannot be done in OpenBSD, though Ctrl-Alt-Del is disabled by

default.

Screen blanking

It can be useful to ensure that your screen is blank when you walk away and the system is idle. In

FreeBSD, the splash(4) manpage describes the changes required to /boot/loader.conf and

/etc/rc.conf, provided there is support in the kernel. OpenBSD provides wsconsctl(8) that allows you

to adjust key wscons(4) variables. It is also possible to blank the screen at logout by adjusting

/etc/gettytab from:

P|Pc|Pc console:\

 :ht:np:sp#115200:

to:

P|Pc|Pc console:\

 :ht:np:sp#115200:\

 :cl=\E[H\E[2J:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Auto-logout

 Automatic logout may be achieved system-wide in various ways depending on your shell.

Adjusting /etc/profile and adding export TMOUT=seconds will affect bash users, and placing the

command set autologout=minues into /etc/csh.login will affect csh (and csh-derivative shell)

users. You may also enforce that tcsh users authenticate after spending several minutes idle and be

subsequently logged out if they fail to do so by specifying set autologout=(x y) where y is the

number of minutes to wait before prompting for authentication, and x is the number of total minutes

to wait before logging the user out. FreeBSD's csh shell is actually tcsh, and this configuration

would apply to root in this case.

3.6.9.2 Adjust /etc/ttys

Find the line specifying the console. This should be easy, it's near the top. Change the word secure to

insecure. This will require that users enter the root password even when booting into single-user mode. In

the same vein, you may want to consider assigning a BIOS password so the OS cannot be circumvented by

removable media—just don't require a password for internal hard drive boot.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

3.7. Wrapping Up

At this point you are probably gnawing at the bit, ready to dive into software installation. Fair enough. With a

careful installation and subsequent hardening of the system, you are well on your way as a security-minded

system administrator to building an OpenBSD or FreeBSD server that's very resistant to attack. Keep in mind

that security consciousness is not something you can forego after your system has been "locked down."

Staying abreast of vulnerabilities and patching are invaluable.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html
mfreeopenbsd-CHP-3-SECT-7.html

 < Day Day Up >

3.8. Resources

The following is a list of resources pertaining to the topics covered in this chapter.

3.8.1. FreeBSD

FreeBSD mailing lists:

http://www.freebsd.org/doc/handbook/eresources.html#ERESOURCES-MAIL

The FreeBSD Handbook: http://www.freebsd.org/handbook/

FreeBSD web site: http://www.freebsd.org/

The Complete FreeBSD , Fourth Edition, Greg Lehey (O'Reilly), 2003

3.8.2. OpenBSD

OpenBSD mailing lists: http://www.openbsd.org/mail.html

OpenBSD web site: http://www.openbsd.org/

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
mfreeopenbsd-CHP-3-SECT-8.html
http://www.freebsd.org/doc/handbook/eresources.html#ERESOURCES-MAIL
http://www.freebsd.org/handbook/
http://www.freebsd.org/
http://www.openbsd.org/mail.html
http://www.openbsd.org/

 < Day Day Up >

Chapter 4. Secure Administration Techniques

When we slip by their early warning

systems in their own shuttle and

destroy Autobot City, the Autobots

will be vanquished forever!

—Megatron

The Transformers: The Movie

Whether the obligation for maintaining a system has just fallen into your lap, or you've recently completed

building a system, your job as a security-minded system administrator has only just begun. A system built,

configured, and hardened today cannot be called "secure" forever. At best, you can claim it is fully patched

and hardened such that it has no known exploitable vulnerabilities. A few months from now, without your

intervention, that statement will probably no longer hold true. System modifications may result in an even

more vulnerable system given too much administration coupled with too little care. Even if nobody has logged

into the system since deployment, recently discovered programming errors or new tools and techniques will

have given rise to exploitable vulnerabilities.

Given that a server you build is liable to be used for at least a few years, careful and well thought out system

administration will save you and your organization headaches. To some people, maintenance is an ugly

word. Who wants to spend time maintaining a system when building new systems is more fun? This attitude

often leads to lazy or sloppy administration, which will eventually lead to a compromised system. Dealing with

cleaning up a compromised system or network usually involves careful analysis, lots of overtime, and being

at the wrong end of the accusatory finger. This is a lot less fun than regular and careful maintenance.

In this chapter, we look at security administration practices and decisions over the long term. We begin by

looking at access control. Carefully controlling who can do what to your systems helps you maintain a known,

secure, configuration. We then turn our attention to handling maintenance necessities in a secure fashion:

performing software installations, upgrading the system, and mitigating vulnerabilities through patching.

Because FreeBSD and OpenBSD systems are often used as some kind of service provider to the rest of the

network, we examine the associated risks of some common services and, of course, how we can mitigate

those risks. Finally we turn our attention to system health as a means of establishing known behavior and

observing deviations.

Throughout this chapter, we approach standard system administration tasks with a security focus. Doing so

allows us to evaluate our actions from a security standpoint and ensure that our actions will not reduce the

overall security of the system.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html
mfreeopenbsd-CHP-4.html

 < Day Day Up >

4.1. Access Control

 Granting users and administrators rights on the system is a deceptively easy task, and one of the most

basic facing the system administrator. Controlling system access, begins with basic Unix accounts, group

membership, and file permissions. Recent additions such as ACLs and mandatory access controls in

FreeBSD can make managing access quite complicated. Take a little time to think about the design of your

access control systems to ensure you have granted the access needed, without sacrificing security.

4.1.1. Controlling User Access

Users fall into several categories, depending on the system involved. Generally, only administrators have

accounts on infrastructure systems—and in higher security environments, only administrators responsible for

the service that system provides. Add developers to the list of allowed users and you have a workgroup

system.

 Traditionally, local user accounts represent two classes of users: those who have shell accounts on the

system, and service users. Service users don't usually need a valid shell (they do not log in) but do have an

associated group. The user and group named on an OpenBSD system (BIND in FreeBSD), for example,

allows the DNS server to run as someone other than root. In this case there is no human being associated

with the user and it should stay this way. Do not set a password and shell for system users or use the

account as an administrative one. It is permissible, however, to add DNS administrators to the named group

for the purposes of administering nameserver configuration files without needing privileged access.

Be careful in OpenBSD that you do not add ordinary users to the staff group.

This is an administrative group and has fewer restrictions based on the

predefined login classes on OpenBSD systems. See login.conf(5) for more

information.

 Infrastructure systems should provide shell access only to administrators; therefore these systems require

few user accounts and groups beyond the system defaults. Workgroup systems, however, benefit from

careful user and group planning before the creation of the first user account.

 Most Unix users are familiar with the user/group/other permissions model found in most Unix operating

systems. OpenBSD and FreeBSD continue to provide this basic access control functionality by user and

group membership. Granting access by group is fairly flexible in that you are able to control access by

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html
mfreeopenbsd-CHP-4-SECT-1.html

moving users into and out of groups instead of changing the permissions of files and directories. Thus group

permissions are often used more than user permissions for controlling access to data. As such, how you

allocate users to primary groups is a very important decision. There are three typical approaches: using a

catch-all primary group, using project-based primary groups, and using per-user groups. We favor the last

approach, as you'll see.

4.1.1.1 Using a catchall primary group

 One way to organize users into groups involves creating one group for all users (e.g. users) and placing all

users into this group. Create additional groups on a per-project or role basis and assign users to these

secondary groups for finer grain access control. This paradigm suffers one conceptual drawback: the users

group is almost equivalent to world permissions because this group contains all users. In addition, files

created by users will be group-owned by the users group and, depending on the user's umask, may be group

readable by default.

The key difference between world permissions and a catchall users group is that system users like nobody,

sshd, and so on will not be in the users group you create. This is a good thing. User accounts used by

system daemons should be granted minimal access to files and directories on the system.

4.1.1.2 Project-based or role-based primary groups

 Project-based or role-based groups as primary groups also allow for effective access control. This method,

like the method described above, fails to cover one scenario. There is no way to add users without

automatically giving them access to some subset of data already present on the system. In environments

where contractors or guest users are periodically given user accounts, this can pose a problem.

4.1.1.3 Per-user groups

Per-user groups are one way around this drawback, and this solution fits in well with the least-privilege

paradigm. In this scenario, you create a new group every time you create a new user; thus there is a

one-to-one mapping of users to groups. Following this strategy, users do not automatically have access to

any data when they first log in. Only if they are subsequently added to another group will they have any

group-based access. This effectively nullifies group permissions by default for all users, allows for more

granular access control, and may therefore be your ideal choice for managing users and groups. The only

drawback to this approach is the small administrative inconvenience of creating new groups when you create

new users.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.1.1.4 Login classes

With a system to manage users and groups in place, you can turn your attention to putting in place resource

limits, environment variables, and session accounting on a per-user or per-group basis. Login classes

provide an effective means of doing this. As you create groups for the users of your systems, reevaluate the

preexisting limits imposed in /etc/login.conf and see if additional restrictions may be appropriate for the group

you are creating.

4.1.1.5 umasks

 The user file-creation mask (umask) is of fundamental importance in any discussion about access

control. Setting a umask affects the default permissions on all newly created files. Most administrators and

users expect files they create to be readable for everyone (user, group, and other) but only writable for

themselves. Likewise when directories are created, they expect that anyone should be able to change into

the directory and list contents (user, group, and other read/execute), but only the creator should be able to

write files.

FreeBSD and OpenBSD set a default umask of 022 for users. It is this setting that creates the behavior

described above. For users, this may be acceptable. For the root user, a more restrictive umask is

preferable. A more appropriate umask would enforce full user rights but no group or world permission upon

file, a umask of 077. You may adjust the default umask on your system by modifying /etc/login.conf

appropriately. Be advised that users can freely overwrite the default umask by using the shell-builtin

command umask either on the command line or in their shell startup configuration file (.[t]cshrc for [t]csh,

.profile for [ba]sh, etc.).

4.1.1.6 The danger of ACLs (FreeBSD only)

 User and group permissions used to be all there was to worry about on BSD systems. Now, however,

FreeBSD 5.x offers support for filesystem access control lists (ACLs). With these discretionary access

controls, it is now possible to grant much more fine-grained permissions based on arbitrary collections of

users instead of granting permission by preexisting groups. With this increased flexibility comes the need for

more careful administration. Arbitrary and haphazard assignment of permissions can make it extremely

difficult to determine who has access to what and manage permissions in general. In some cases, it may be

preferable to administer your system using standard Unix permissions.

On the other hand, it can be frustrating to see carefully crafted group-based permissions changed by users

to a world-readable or, heaven forbid, a world-writable state. In many cases, users see this as a convenience

and prefer it over tracking down the administrator with a change request. Whichever paradigm you choose,

understand the risks involved in either approach and make a conscious decision instead of "going with the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

flow."

 If you decide discretionary access controls are not appropriate in your environment, perhaps mandatory

access controls are for you. The mandatory access control (MAC) framework was introduced with FreeBSD

5.x and allows the administrator to assign security-relevant labels to data. This type of access control

imposes limits based on data classification and user rights, both of which are controlled by the administrator.

Bear in mind that the MAC framework is considered experimental and careful

consideration must be given to the use of this feature on production systems. It

is also only available on UFS2 filesystems.

 Neither ACLs nor MAC is supported in OpenBSD.

4.1.2. Controlling Administrator Access

 Perhaps even more important than controlling the access users have on your systems is limiting and

auditing administrator access. On systems with multiple administrators or service operators who need certain

administrative rights, don't provide access by passing around the root password during lunch. Infrastructure

systems generally provide one or two major services and you may be able to grant rights by making key files

group-writable. On some systems, the only privilege certain administrative users may need is the ability to

restart key service. Allowing some non-root users to do this is easy using sudo. Even on systems where

multiple administrators operate at the same system-wide level, it is important to carefully audit what

administrators do to enforce accountability. The rest of this section outlines some of the approaches you

should take to grant administrator access while limiting and auditing the use of escalated privileges.

4.1.2.1 Disable and avoid clear-text access

 The first place to look for ways to mitigate the risks administrators pose is in their access method.

telnet(1), rsh(1), rlogin(1), etc. are clear-text protocols. Your username, password, and every bit of data

displayed or typed into a session is easily readable by anyone else on the local network. Administrators

should never use clear-text protocols. This should be a done deal, as the default on both FreeBSD and

OpenBSD systems is to have these clear-text protocols disabled.

4.1.2.2 Connect using SSH

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Both OpenBSD and FreeBSD provide secure shell (ssh(1)) services as part of the base installation.

Leave telnet disabled and use ssh. Configure sshd(8) to accept remote connections based on public/private

key cryptography instead of the weaker password-based authentication. Ensure all administrators accessing

your servers are generating ssh keys using the ssh-keygen(1) utility. The public half of their keys may then

be placed in their ~/.ssh/authorized_keys file on every system to which they require access. See the Section

3.6 section of Chapter 3 or the sshd_config(5) manpage to learn how to disable password authentication

altogether.

Password authentication is a form of single-factor authentication. This means

the user merely needs to know something to gain access. Public key

authentication requires that you not only know a passphrase, but also that you

have the private key. This is known as two-factor authentication and is

stronger than single-factor authentication.

When the number of systems involved reaches hundreds, thousands, or tens of thousands, managing ssh

keys scattered across machines can become a nightmare: both for distribution and removal. In this case, ssh

using public key authentication might not be an option, so consider deploying a Kerberos infrastructure which

provides for secure, centralized authentication and kerberized ssh. Kerberos eliminates the need for

distributing ssh keys while still providing encrypted access. Without additional software, however, Kerberos

reduces the authentication from two-factor back to one.

4.1.2.3 Privileged access using ssh

 Administrators gain root-level access to a system in one of three ways:

They place their public keys in ~root/.ssh/authorized_keys (or list their Kerberos principals in

~root/.k5login) and ssh directly into the root account from remote systems.

 They use a nonprivileged account to ssh into the system and then su to gain a root shell.

They use a nonprivileged account to ssh into the system and then use sudo(8) to execute

privileged commands.

The first option requires that you allow root logins via ssh and no human being can be directly tied to login

events. This is far from ideal. The second option allows you to disable root logins, but after the administrator

gains a root shell, she is unlikely to relinquish it and subsequent commands are not audited. The third option

provides accountability, enables auditing for every action, and is generally considered the most secure way to

gain privileged access.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.1.3. General sudo Configuration

 Once administrators are using an encrypted means of access to the system, and not logging in as root, you

may turn your attention to the execution of privileged commands. This is, after all, what sets the administrator

apart from the user.

sudo is available with the base operating system in OpenBSD and may be installed out of FreeBSD's ports

from ports/security/sudo or during the install process. It allows the users of the system (or other

administrators) to execute commands as other, often more privileged, users. It also allows for the

dissemination of granular administrative rights with comprehensive auditing (by logging every command run

through sudo) instead of "keys to the kingdom" without any accountability. In a nutshell, sudo operates by

accepting entire commands as arguments to itself, consulting the sudoers(5) configuration file to authorize

the user attempting to run the command, and then executing the command in an alternate user context.

Creating a customized sudoers file is one of the first steps the security-minded system administrator takes

on a newly installed system. Like it's counterpart vipw(8) for the passwd files, visudo locks the sudoers file

and provides some syntax checking after editing. Since the sudoers file defines how users can execute

privileged commands, errors in the file can be very dangerous. Always use visudo.

sudo configuration is fairly straightforward. You define aliases for commands, hosts (useful if you distribute a

single sudoers file to multiple hosts), users who should be allowed to run privileged commands, and user

accounts under whose context certain commands should be executed (sudo can run commands as non-root

users with -u). Aliases, found at the bottom of the sudoers file, specify which users are allowed to execute

what commands, where (which host), and potentially, as whom. We do not go into any more detail about

general sudo configuration, as configuration is extremely well documented in the sudoers(5) manpage.

Instead we turn our attention to secure configuration guidelines and pitfalls.

4.1.3.1 Avoid dangerous commands

 Be extraordinarily careful about the binaries to which you grant access. Be aware that many binaries

(like vi(1)) let you spawn a shell. When vi is executed with super-user privileges, any commands it runs (such

as a shell, or grep, or awk) will be too! Likewise, less(1) (which is the opposite of more(1)) on FreeBSD and

OpenBSD can invoke the editor defined by the VISUAL or EDITOR environment variable when you press v

while paging through a file—if this variable is set to vi, a root shell is just a few keystrokes away. To allow

users to view certain sensitive files, allow privileged execution of the cat(1) binary; more can run in the user's

context. In Example 4-1, the first command runs more as root, the second runs more in the user context and

cat as root.

Example 4-1. Viewing files with sudo

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% sudo more /root/private_file

% sudo cat /root/private_file | more

 There are innumerable commands that can gain unrestricted elevated privileges when provided

certain keyboard input, file input, or environment variables. Some examples include find(1), chown(8),

chgrp(1), chmod(1), rm(1), mv(1), cp(1), crontab(1), tar(1), gzip(1), and gunzip(1). As it turns out,

configuring sudo without "giving away the barn" is no easy task!

Remember that liberal sudo rights should only be assigned to administrators who would otherwise have root.

Otherwise, allow only very specific privileged commands by following the guidelines in the rest of this section.

4.1.3.2 Use explicit paths

 Explicitly providing a path ensures that identically named binaries elsewhere in the path are never

executed with elevated privileges. While there are ways to control how the PATH is used in sudo, including

the ignore_dot and env_reset flags, the safest and most foolproof way is to always use explicit paths to

binaries.

The env_reset flag resets the PATH environment variable among others.

Read the sudoers(5) manpage to determine whether this flag would work well

in your environment.

4.1.3.3 Be very specific

As mentioned previously, several system commands can be used to gain elevated privileges when

combined with sudo. To combat this, be very specific about not only allowed commands but also the allowed

arguments, as shown in Example 4-2.

Example 4-2. Commands with arguments

Cmnd_Alias WEB = /usr/local/sbin/apachectl, \

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 /usr/bin/chgrp [-R] www-devel /web/*

In this case, the alias WEB is created as a set of commands for the administrators of the web server. They

have unrestricted use to the Apache control script apachectl(1), and may change group ownership of any

files in /web/ to www-devel, while optionally providing the recursive argument to chgrp.

4.1.3.4 Use NOPASSWD sparingly

 A useful feature of sudo is the ability to allow certain users to run commands without having to provide a

password. If users ask for this functionality, you should feel comfortably within your rights as an administrator

to deny their request. Forcing a password prompt sends a message (both literally and figuratively) to users

that they are about to run a command in root's context and they should be careful and responsible.

In some cases, service accounts need to run privileged commands, and there may not be a human being

around to enter a password at the time. In these cases, it becomes acceptable to use the NOPASSWD

option as shown in Example 4-3.

Example 4-3. Service account using NOPASSWD

nagios localhost = NOPASSWD : /usr/local/etc/rc.d/nagios.sh restart

In this case, the nagios service account under which some daemon or script runs is able to run the

nagios.sh startup script with the restart argument. Since this daemon is running without user intervention,

should the need arise to restart nagios, it will be able to do so without needing to provide a password.

4.1.3.5 Be realistic

Finally, avoid being too draconian. Service operators are likely to get angry and spend time trying to find

ways to gain unrestricted escalated privileges if you provide too few means for them to do their jobs. This

wastes time and, if they succeed, will defeat your auditing strategy.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.1.4. Comparing sudo and su

 The BSD operating systems favor sudo over su. We take a moment here to outline some of the

advantages and disadvantages of both approaches. We have tried to capture the salient differences in Table

4-1.

Table 4-1. Security related characteristics of sudo and su

Characteristics sudo su

Advantages

Single password required for root access

Logging of executed privileged commands

Fine-grained administrator privileges

Simple revocation of privileges

Distributable configuration of access rights

Disadvantages

Can accidentally grant root access

Elevates importance of administrator's password

Encourages laziness

Bear in mind that the satisfaction of the named characteristics may be affected by the number of

administrators on the system in question.

Single password required for root access

One major advantage the default configuration for su has over sudo is that only one authentication

token (root's password) can grant a user root access. On a system with multiple administrators and

sudo configured to grant ALL rights to users in some administrative group, several

username/password combinations can lead to root access.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

On a system with only one administrator, root's account may be locked

and the administrator's password may be the only root-capable

password. Bear in mind this relies on the fact that sudo prompts for a

password, which may be overridden in sudoers. In the event of a

system crash, all filesystems will need to be checked before sudo may

be used. If your system has been configured to prompt for root's

password in single user mode, a BSD bootable CD will be necessary

to gain root access.

This must be mitigated on systems with sudo by a password policy that documents guidelines for

exceptionally strong passwords for all administrators.

Logging of executed privileged commands

All commands passed as arguments to sudo are logged by default to syslog's local2 facility.

Successful authentication and subsequent execution of a privileged command are logged at priority

notice, and authentication failures result in a log entry of priority alert. In addition to what one might

expect in the log for sudo, you will find the full path of the command executed, which can alert you

to potentially unsafe or malicious executables. Once su is run, however, no subsequent commands

are reliably auditable.

For more information about configuring logging, see Chapter 10.

 Accountability is one of the most vital parts of system security. Having a history of all privileged

commands executed on a system is invaluable. This is one of the greatest benefits of sudo.

Many administrators choose to group administrators who should have full root access into the wheel

or other administrative group. They may subsequently configure sudo so that these administrators

have full root access by using a configuration line similar to the following:

%groupname ALL=(ALL) ALL

Remember that this grants administrators the right to run shells as an argument to sudo or through

sudo -s, which invokes the command specified in the SHELL environment variable. In both of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

these cases, auditing will cease.

Fine-grained administrator privileges

Unlike su, sudo enables the administrator to allow only very specific commands. This may be ideal

in environments where users should have administrative rights over key applications under their

respective jurisdictions.

Simple revocation of privileges

Removing a user's ability to execute privileged commands is trivial with sudo: simply remove the

user from the sudoers file. If su is your only means of administrator access control, the departure of

an administrator will require changing the root passwords on all systems for which that administrator

knew the root password.

Distributable configuration of access rights

 The only access right "distributable" with su is full-fledged root access. To grant users the ability

to su, you would need to add them to the wheel group. To centrally control access, you would need

to either have consistent group files everywhere, build a system to push files, or use YP/NIS. The

fine-grain control possible with sudo may, however, be distributed to systems using a variety of

automated mechanisms for simple centralized administration like rsync(1) and rdist(1).

Can accidentally grant root access

It is difficult to accidentally tell someone a complex root password. Simple mistakes in the sudoers

file, however, can lead to less-than-desirable effects. Take extreme care when working within the

sudoers file to ensure you are not granting users the ability to gain escalated privileges.

Elevates importance of administrator's password

Administrators treat root passwords with great sensitivity. Unfortunately, they are not always as

careful with their own. Novice administrators sometimes utilize the same password in administering

systems as they do for local intranet sites. In the former case, the password is being transmitted

over an encrypted tunnel. In the latter case, it may not be.

When restricted to using su, knowing an administrator's password will allow you to log into an

account in the wheel group. This may result in privilege escalation through abuse of group-level

permissions or by cracking the root password by brute force. When using sudo, knowing an

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

administrator's password is equivalent to knowing the root password, if the administrator has the

ability to invoke a root shell in some way.

Encourages laziness

Certain activities become a little cumbersome with sudo:

Redirection of command output into a directory or file not writable by the caller

Chained commands (e.g., sudo timeconsuming_command && sudo

quick_command) may only partially execute due to password timeouts

Repeatedly having to type in sudo

Working with directory hierarchies not executable by you

In these cases and with su in general, the temptation exists to stay in a root shell once you're there,

for the sake of convenience. An errant space-asterisk-space in a quickly typed rm command may

suddenly lead to hours of recovery time. This can be avoided. Stay in a root shell for as short a

period of time as possible.

Even when you have configured sudo to grant fine-grained permissions, the root account, of course, still

exists. This account represents "keys to the kingdom" and is a goal of many attackers. This account must

have a strong password that is known by few, and protected well, or it should be locked.

When administrators are supposed to have full-fledged root access but choose, or are required by policy, to

use sudo, the root account may be safely locked. In this case, administrators invoke a shell through sudo to

gain root-level access. Remember, however, that whenever shell access is provided, every administrator's

password is as important as the root password would be since it effectively grants the same privileges.

4.1.5. Safeguard the Root Password

 Root passwords should be stored in a secure location available to a non-administrator in the event of an

emergency. This is most often accomplished in at least two ways for redundancy.

The most common and straightforward way to be able to securely recover root passwords is very

nontechnical. Write the passwords down on paper and store the sheet offsite with other system configuration

documentation. Be sure to clearly define who has access to these documents.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

m of n Cryptography

Decryption that requires a subset of a known group of people is known as m of n cryptography.

As long as any m people out of a pool of n can get together, they can decrypt the file. You want

to pick the right n people to prevent collusion (e.g., vice presidents, corporate officers,

managers, etc.) and a large enough n, relative to your turnover rate, that m of them will always

be around.

Picking m (i.e., how many people need to be present, since any group of m people will be

sufficient) also requires good planning. You probably do not want m to be 1, since that is the

same as giving the root password out to all n people. Values of 2 or 3 are good for m.

Unfortunately, m of n cryptography is only available in commercial products, such as PGP,

RSA's Keon server, and Sun's iPlanet.

One bank requires any three (m) out of its eight (n) vice presidents to type passphrases to

decrypt the keys that are used by the SSL-enabled web servers. When the servers crash and

have to be restarted at 02:00, the vice presidents actually drive to the operations center to

restart them. This serves as a significant incentive for both business owners and administrators

to run a reliable system.

The root password may also be encrypted by a combined key such that multiple people are required for

decryption. For instance, if none of the administrators to whom the file has been encrypted are able to

perform root functions (e.g., due to vacation, illness, or death), passwords should be recoverable only by the

combined efforts of some collection of relevant supervisors, IT managers, and/or executives.

Protecting the root password in these ways is more important when no other individuals are able to gain

physical access to the system. Where physical access exists, someone should be able to boot the system

from removable media and change root's password from the console. Nevertheless, an alternate means of

root password access should be possible to save time in the event of an emergency.

The root password, however, is not sufficient for a non-administrator to do

something useful in an emergency. Remember to include some

disaster-reaction documentation (such as how to shut down the key servers

before the UPS runs out of power) where non-administrators can refer to it.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

4.2. Security in Everyday Tasks

 Even with the careful assignment of rights to administrators, system security needs to be in the forefront of every

administrator's mind as the system ages. A carefully built system can start off pretty secure—and then you put it online

and start installing software. After that, you might add accounts or configure the system so that it can be accessed

anonymously. The following section in the chapter focuses on software installations and updates that may have an impact

on the security of your system.

4.2.1. Installing Software

 Installing software on your OpenBSD or FreeBSD system is accomplished using packages or the ports system.

Individuals who have taken on the responsibility of being a port or package maintainer try to ensure that the latest or best

version of the software will build correctly on the operating system and will install according to the operating system's

scheme. They don't necessarily audit the software for software vulnerabilities.

Installing a port is often as simple as typing in make with a few command-line arguments based on your functionality

requirements. Package installs are even easier. Dependencies can be automatically installed. Downloading source

tarballs and configuring them yourself is certainly also possible but more cumbersome. You run the risk of not having

applied the latest patches and you will have to install dependencies first, manually.

4.2.1.1 Ports and packages

The ports system is one of the most obvious differentiators between the BSD systems and other free and commercial

Unix platforms. All platforms offer "binary packages," but only the BSDs offer the flexibility of ports. From a security

perspective, there are few strong reasons for choosing one paradigm over the other. Some argue that it is easier to verify

file signatures for one precompiled package than for several .tgz files used by a port.

For more information about file signatures, see Section 3.1.3 in Chapter 3.

Most administrators who are aware and diligent about verifying file integrity will go no father than checking to see that the

signature matches the one provided by the same site from which they obtained the package. As it turns out, this trivial

check is conducted by the ports system every time a file is downloaded. Few administrators take the time to check the

signature of a package at all, much less cross-reference it with the site that originally provided the package. In an ideal

world, administrators would cross-reference signatures with several mirror sites and the main distribution site to verify file

integrity. Few administrators have the inclination or the time.

The greatest advantage of a port is that it offers complete flexibility in configuring your ported applications. Packages can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html
mfreeopenbsd-CHP-4-SECT-2.html

be compiled to support no related software, some related software, or all related software, and you may not always find the

exact combination that you seek. Ports, on the other hand, offer options for linking with specific pieces of software to

provide additional functionality. In FreeBSD, this is often accomplished with a small menu during the configuration of a

port or the definition of some environment variables. OpenBSD allows administrators to set a FLAVOR for a port before

installation. You will see examples of both throughout this book.

If the goal is to have compiled binaries, why not just install precompiled software and be done with it? This is, in fact, the

main argument against using the ports system. Ports require more system resources than packages. Not only must

source code be downloaded and extracted, it must also be compiled and linked to produce binaries, which are finally

installed. In many cases, this proves to be a compelling argument, but when flexibility is needed, ports are often the

answer.

The OpenBSD ports system actually compiles a port and installs it into a fake root form,

which it builds a package using the -B option of pkg_create(1). This has certain advantages

for the administrator including not having to install dependent ports that are only required

during build time.

Most of the examples in this book will describe the ports style of installation, as the package may be either not available or

trivial to install. Nevertheless, there are two things to watch out for when working with the ports system.

4.2.1.2 Ports ownership

 The ports hierarchy usually lives in /usr/ports. Because only root can write to /usr, administrators often install the ports

hierarchy from CD or via cvs as root. Unfortunately, this means that whenever the administrator needs to build a package,

she must do so as root (via sudo, for instance). This is not a safe practice. Small errors in Makefiles can result in very

interesting behavior during a make. Malicious Makefiles have also been known to exist.

This presents a valuable opportunity for the separation of responsibilities. Before updating your ports tree, ensure /usr/ports

is writable by someone other than root. Make this directory group-writable if a group of people install software, or change

the ownership to the user responsible for installing software.

FreeBSD administrators who use cvsup to update their ports tree will also need to create a

/var/db/sup directory that has similar permissions.

 You may now update your ports tree and build software as an ordinary user. When your make or make install needs to do

something as root, you will be prompted for the root password. To adjust this behavior somewhat, set SU_CMD=sudo in

the file /etc/make.conf. Now while installing ports, sudo will be used instead of su.

This mostly works. There are some cases in which the authors have observed problems

using this non-root-owned methodology in building ports. We hope these problems are

ironed out of the ports system soon.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

FreeBSD administrators who use the portupgrade utility to manage ports will want to provide the -s or flag. This makes

portupgrade use sudo when it needs to perform actions as root.

 OpenBSD administrators should set SUDO=sudo in /etc/mk.conf. Makefiles know when certain commands need to be run

by root and will automatically run these commands as arguments to the program specified by $SUDO.

4.2.1.3 Ports and base conflicts

In FreeBSD, some software in the ports system has already been installed with the base system. Prime examples are BIND,

ssh, and various shells. The version in ports is often more recent than the version in the base distribution, and you may

decide that you want to overwrite the base version. Newer is not always better, however. The version included as part of

the base distribution is likely older, but will have all relevant security patches applied to it and will have undergone more

widespread scrutiny longer. The version in ports will include functionality that has probably not yet been extensively

tested. Use the version from ports when you need additional functionality, but stick with the base for reliability and

security.

Ensure that if you install the version from ports, it either completely overwrites the base installation or you manually

eradicate all traces of the base version to avoid confusion. The method to do this will vary based on the package. The

Makefile for BIND9 on FreeBSD systems understands a PORT_REPLACES_BASE_BIND9 flag, which will overwrite the

base install for you (this is described in detail in Chapter 5). The Makefile for the FreeBSD openssh-portable port looks for

an OPENSSH_OVERWRITE_BASE flag, which does about the same thing. Other ports may require that you manually

search for installed binaries, libraries, and documents and remove them.

OpenBSD includes applications such as Apache, BIND, OpenSSH, and sudo in the base distribution and does not

provide a means to track this software through ports. After all, the installed applications have gone through rigorous

security review. If you want, for instance, to use Apache Version 2 or a different version of BIND, you must fetch, compile,

and install the package manually. Otherwise, updates to software within the OpenBSD base distribution may be installed

by tracking the stable branch as described later in this chapter.

4.2.1.4 Multiple versions installed (FreeBSD only)

 If you do choose to manage your installed software using ports instead of with your base, you may run into version

problems. Let's say you installed Version 1.0 of port foo. After installation, you modified some of the files that were

installed with the port in /usr/local/etc and used foo for several months. When you learn of a security vulnerability in foo, you

decide to upgrade to Version 1.1, but instead of uninstalling the old version first, you install v1.1 on top of the old version.

The package database now lists two versions of foo installed, but that is not really the case.

The installation of v1.1 does not clobber your configuration files in /usr/local/etc because they were modified since the

install of v1.0, but it does replace binaries, libraries, shared/default configuration files, and so on, provided they were not

modified since the installation of v1.0. So far, so good. The new version of the port is in fact properly installed and may be

used, though you might have had to update the configuration files.

You may choose at some point to uninstall foo v1.0. All installed files that match the MD5 checksums of the files

distributed with v1.0 will be removed. Any shared/default configuration files that were identical in Version 1.1 will also be

removed, resulting in a broken foo v1.1. You will need to reinstall v1.1 to replace these files.

The same kind of situation may arise if foo v1.0 depended on libbar v2.0 but v1.1 of foo depended on libbar v2.1. While

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

uninstalling foo v1.0 before installing the new version would avoid problems down the road for that port, libbar may be in

trouble. As you can see, the ports system's tracking of dependencies is handy, but it only goes so far.

You can find the recursive list of dependencies of a port by running make

pretty-print-build-depends-list and make pretty-print-run-depends-list from the port's

directory. For more information about working with the ports tree in general, see the

manpage for ports(7).

To avoid these situations, ensure you uninstall installed ports before installing new ones, or, better yet, use the portupgrade

port to manage upgrades of software installed from the ports tree. This handy utility will make these dependency problems

moot and save you time and headache upgrading ports. portupgrade is well documented in its manpage and should be

considered mandatory for any system with more than a few ports installed.

Packages on OpenBSD will refuse to install, by default, if a previous version is already

installed. This means that ports, which are compiled into packages before installation, will

also fail to install. This is good.

4.2.2. Change Control

 Software gets installed. Software gets upgraded. All this administration is important but must be audited in some way so

that other administrators and managers can answer questions like:

What recent change caused this new (or broken) behavior?

Was the system or application patched, or was a workaround put in place to protect against a given vulnerability?

Detailed change control procedures are generally designed around organizational priorities and therefore are beyond the

scope of this book. Nevertheless, change control is an important aspect of system administration. As you build your

FreeBSD or OpenBSD systems, ensure you have a written list of requirements (both security-related and functional) to

which your system must conform. As you build your system, document the steps you've taken to achieve these

requirements. These documents will form the basis of your configuration management doctrine and will help you rebuild

the system in the event of a system failure and transfer ownership of the system to another administrator should the need

arise.

As time goes on, you will find a need to change your system configuration or upgrade installed software. If you have a test

environment in which you can put these changes into effect, so much the better. Carefully document the steps you take to

accomplish these upgrades and configuration changes. When you're done, you will be able to test your system to ensure

it continues to meet the requirements you already have documented. Should problems arise, you will likely be able to

quickly isolate the change that gave rise to these problems.

Although describing complete change control procedures is out of scope, FreeBSD and OpenBSD do provide tools to help

administrators carry out change control policies on system configuration files.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.2.3. Tracking Changes

FreeBSD and OpenBSD are large software projects with developers scattered around the world. Building an operating

system without keeping a close eye on changes is impossible. From a user perspective, we see software version

numbers that continually increase, but in the background, developers are regularly "checking out" files from some

development repository, modifying them, and checking them back in. All of these files also have version numbers, which

continually increment as they are modified. For example, examine the following snippet from /etc/rc.conf on an OpenBSD

system:

$OpenBSD: rc.conf,v 1.95 2004/03/05 23:54:47 henning Exp $

This string indicates that this file's version number is 1.95. It was last modified at late on the fifth of March by user

henning.

 Both FreeBSD and OpenBSD development teams have chosen to use the Concurrent Versions System (CVS) to

manage file versions and ensure changes are closely tracked. CVS uses the basic functionality of the Revision Control

System (RCS) to track changes to individual files and adds functionality to manage collections of files locally or over a

network. This may seem a little far afield for system administration, but tracking changes is as important to developers as

it is to system administrators.

Imagine if every configuration file you touched were managed in this same way—you could know what changes were

made to any given file, by whom, and when. You would also be able to get a log of comments of all changes as entered

by those who made modifications. Best of all, you could trivially roll back to a previous configuration file without having to

pull data off of a tape. In cases where multiple modifications are made in a day, that kind of information will likely not be

found on a tape.

As it turns out, setting up a CVS repository is fairly straightforward.

If you do not already have a firm grasp of the version control concept, consult the manpages

for cvs(1) and rcsintro(1).

Before creating your repository, you should create a CVS administrative user and corresponding primary group, which will

own the files in the repository on some tightly secured central administration host that has very limited shell access. We'll

call both the user and group admincvs. Ensure this account is locked. The home directory can be set to /nonexistent (this is a

service account, not meant for users), and shell can be /sbin/nologin. Once this is done, initialize the repository as shown in

Example 4-4. This example assumes the user under which you are operating can run the commands listed via sudo.

You will note that this user can run mkdir, chmod, and chown. Being able to run these

commands can result easily in privilege escalation, so the only users allowed to run these

commands should be those who have full root access anyway.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 4-4. Initializing a CVS repository

% sudo mkdir

/path/to/repository

% sudo chmod

g+w /path/to/repository

% sudo chown admincvs:admincvs

/path/to/repository

% sudo -u admincvs /usr/bin/cvs -d

/path/to/repository init

% sudo chmod -R o-wrx

/path/to/repository

At this point, you must configure your CVSROOT. This environment variable lets the CVS program know where the

repository is. If you will be working with a CVS repository on the local system, you may set the CVSROOT to be the full

path to that directory. Otherwise set your CVSROOT to username@hostname:/path/to/repository.

 If you choose to access the repository from a remote FreeBSD or OpenBSD system, your cvs client will attempt to

contact the server using ssh. Thus, CVS may cause ssh to ask for your password, passphrase, or just use your Kerberos

ticket, depending on how you have ssh configured.

Whether the repository is local or remote, your access will map to some account on the target system. In order to be able

to check items in and out of CVS, you (and everyone else who needs to use this CVS repository) must be a member of

the admincvs group. If you have not already done so, add yourself to this group. You are then ready to perform your first

checkout of the repository, as shown in Example 4-5.

Example 4-5. First checkout of a CVS repository

% mkdir local_repos_copy && cd local_repos_copy

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% cvs checkout .

cvs server: Updating .

cvs server: Updating CVSROOT

U CVSROOT/checkoutlist

U CVSROOT/commitinfo

U CVSROOT/config

U CVSROOT/cvswrappers

U CVSROOT/editinfo

U CVSROOT/loginfo

U CVSROOT/modules

U CVSROOT/notify

U CVSROOT/rcsinfo

U CVSROOT/taginfo

U CVSROOT/verifymsg

 Finally, you're ready to add projects into the repository. Simply make any directories you would like under your local

copy of the repository (local_repos_copy in our example) and add them using cvs add directory_name. Files may be

created within these directories as needed and added to the repository via the same cvs add mechanism. In order for files

to actually be copied into the repository, and subsequently whenever you make modifications to the file, you will need to

issue a cvs commit filename. If you have made widespread modifications, you may simply run cvs commit from a higher

level directory, and all modified files under that directory will be found and committed en masse.

Once your CVS repository is created, you are left with two problems.

How do you organize the contents of your CVS hierarchy?

How do you take configuration files from within CVS and put them on target hosts?

Unfortunately, both of these topics are beyond the scope of this book. We can provide a few tips, however.

The more sensitive the files in your repository, the more careful you must be in providing remote access and

configuring local filesystem permission.

Everyone who has access to this repository is in the admincvs group, so you shouldn't put any non-administrator

content in this repository.

ssh can be used to copy files to target hosts. If you have disabled PermitRootLogin in the CVS server's sshd

configuration, you will need to copy files as another user into a remote staging area and have another root-owned

process periodically check this location for new files to install.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

We go into more detail about the general problem of secure file distribution in the

Section 4.5 section later in this chapter.

Every file you copy to a target system should include a header describing where the master file is in CVS, when it

was last modified, who copied the file to the system, and when. This will help prevent other administrators (or you,

if you forget) from making modifications to configuration files directly on target systems. You could automatically

prepend such a header instead of storing the headers within the files themselves.

 If security requirements in your organization prevent you from using CVS in this way to track changes to documents or

copy them to target systems, you may also opt to track changes directly on the system. You could create CVS

repositories on every system, perhaps in some consistent location, precluding the need for configuration file transfer. You

may also use RCS—a far less fully featured revision control system, which merely tracks changes to a given file in ./RCS

(RCS creates subdirectories in every directory that contain RCS-controlled files). If you choose this route, you may want

to evaluate tools like rcsedit and rcs.mgr, which turn up quickly in a web search.

After you have solved these problems, you will be in a much better position to handle changes to system configuration

than you were before. You will then be better prepared to turn your attention to more significant system changes like

patching and upgrading.

4.2.4. Data Recovery

Data backup and recovery typically serves several purposes:

Disaster recovery

When a system is completely ruined, perhaps due to a hard drive crash or similar event, it needs to be restored

to service.

Data recovery

Sometimes a user or an administrator makes a mistake and needs to restore an old version of important files or

directories. This might include restoring a few user data files, the firewall configuration, or an older version of a

program.

Forensics

If you are pursuing an intruder who has been on your system for more than a day or two, you may find evidence

of his activities in your backups. Incriminating files that he eventually deleted may have been backed up before he

deleted them.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Legal compliance

If your organization is involved in a legal matter, your boss (or law enforcement personnel) may come to you with

a subpoena requiring the organization to turn over a lot of data. Common examples include email, memoranda, or

perhaps internal documents related to the subject of the case. Very often you will have to resort to your backups

in order to fulfill the demands of the subpoena.

 FreeBSD and OpenBSD administrators typically turn to one of two pieces of open source software for performing data

backups: dump(8) or the Advanced Maryland Network Disk Archiver (Amanda). For the most basic jobs, dump is probably

adequate. It gives you the ability to record a complete snapshot of a filesystem at a given point in time. Amanda is largely

an automation suite built on top of tools like dump and tar(1). If you need a complex tape rotation or want to automate the

use of a multi-tape library, Amanda can save you a lot of work.

 When it comes time to read data off your backup tapes, however, the tools of the trade are restore(8) and tar. Of course tar

is tar's own complement as it supports both creation of tape archives with -c and extraction with -x. The restore program is

the complement to dump, and it reads the data format that dump writes. Amanda uses dump, so restore will be the tool you

use to retrieve data from tapes whether you use dump directly or use Amanda.

4.2.4.1 Data completeness

If you want to be able to restore your complete system from a hard drive crash, it is critical that you use dump to make your

backup. Other techniques like tar(1) and cpio(1) will fail to capture critical filesystem information that you will want when

you restore. Although they both capture symbolic links and can work with device files, their support is problematic in some

corner cases.

 For example, for compatibility across platforms, tar's datafile format uses some fixed-sized fields. FreeBSD uses device

numbers that cannot be accommodated in tar's format. Thus, if you use tar to backup your root partition, the devices in /dev

will not be stored correctly. Although it is easy to fix them during a restoration, it is a detail worth considering. You might

think that FreeBSD's use of devfs (a filesystem that automatically creates devices in /dev based on your system's

hardware) means that you have few, if any, device files to back up. However, if you have followed the guidelines in this

book, you have probably created jails and/or chroot environments for various mission-critical services. You will have

created device files in those environments that are not automatically created by devfs and are not correctly backed up

using tar. Similarly, "hard linked" files, which share a common inode (as opposed to "symbolically linked" files), are stored

twice in a tar or cpio backup, instead of once in a dump backup.

If you have a dedicated server that only runs one critical service, such as DNS, you may find complete system dumps

more work than they are worth. If you have all your service-specific data backed up (e.g., the whole /var/named directory

and configuration files from /etc), you might be able to recover from a disaster simply by installing fresh from the CD. You

reinstall the service, restore your service-specific data, and reboot. If you plan to perform restorations this way, you will

have to write much of the backup and restoration procedures yourself, although they may not be very elaborate.

4.2.4.2 Data confidentiality

Your backup data is a snapshot of all the data that is in your filesystem. It probably contains a variety of critical files that

should not be disclosed to anyone. Most backup files, however, can be read by anyone who has access to the media.

Unless you go out of your way to add encryption to your backup scheme (neither dump nor tar have innate support for

this), your data is easily readable from a medium that has no concept of permissions or privileges. Thus, if you store your

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

backup tapes somewhere without strict physical access control, unauthorized people may be able to walk off with all of

your data.

Barring physical theft of data, however, there are still confidentiality concerns related to how you manage your backups. If

you use Amanda to back up over the network, it will spool the data up on a local hard drive as part of the process.

Although this improves your tape drive's performance by allowing it to stream at its maximum data rate, it means all your

confidential data will temporarily exist on the tape server, until it gets written to tape. If the tape should jam or fail to write,

this file will remain on the hard disk until it is successfully flushed to tape by an administrator. If you assign backups to a

junior administrator because they are tedious (what senior administrator does not do this?), remember that the junior

administrator may effectively gain read access to all the data that the backup server sees. This may not be what you want.

4.2.4.3 Data retention

If your organization does not have a data retention policy that governs the storage of backup tapes, you might want to

consider establishing one before an external event forces the issue. If your organization is not involved in any sensitive

activities, perhaps you do not need to worry as much. Most organizations, however, are surprised to realize how much

they care about old data. If the CEO, chairman, or other leader of the organization deletes a sensitive file, she probably

thinks it is gone for good. However, you know that it lives on your backups for some amount of time, and you can retrieve

it if you are compelled to.

4.2.4.4 Filesystem access

On a typical server (either OpenBSD or FreeBSD), the raw disk devices are owned by root, but the group operator has

access to read them. This allows the operator group to bypass the filesystem and its permissions and read raw data

blocks from the disk. This is how dump is able to take a near image of a disk device. If you rebuild a filesystem with newfs(8)

and then restore your files, the files will be restored almost exactly, down the inode numbers in many cases. The operator

group is especially designed for backups this way. If you look in /dev, you will find that operator has read access to almost

all significant raw data devices: floppy disks, hard drives, CD drives, RAID controller devices, backup tape drive devices,

etc. Furthermore, the operator user's account is locked down in a way that the user cannot log in. If you run backups,

either by custom scripts or by Amanda, you should use the operator user and/or group. The default Amanda configuration

will do just that.

Note that operator's home directory is not created by default. You will have to create it and

set its ownership to the operator user and group. For both dump and Amanda, you will need

operator's home directory.

4.2.4.5 Network access

Generally we assume that you will have a small number of servers that have tape drives installed (possibly just one) and

data will traverse the network from clients to these servers. This transfer happens via either a push or a pull paradigm.

Since the tape host knows how many tape drives it has and whether or not they are busy, most systems favor having the

tape host pull data from data hosts.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Amanda and other methods of remotely collecting data will send the contents of your filesystems in the clear over the

network. Regardless of where your backup server is in relation to the backup clients, your data may be observable while

in transit. This is clearly a problem, and you should establish some means of protecting the data in transit, either through a

VPN, SSH tunnel, or some other form of encryption.

One of the most powerful ways of restricting (and encrypting) backup connections is by using ssh. It is possible to use ssh

keys that have been configured on the client side to only allow connections from the backup server, not provide a pty, and

run only one command (e.g., some form of dump). This is accomplished by creating a specially crafted authorized_keys file

as shown in Example 4-6.

Example 4-6. The operator's ssh key in ~operator/.ssh/authorized_keys

from="backupserver.mexicanfood.net",no-pty,command="/sbin/dump -0uan -f - /" ssh-dss base64-ssh-key OPERATOR

If a backup client is configured in this way, the backup server needs only to ssh to the client and pipe output from the ssh

command as follows:

% ssh operator@backupclient | dd of=/dev/nrst0

Of course, the target command could be a script, which, based on the day, would perform a different level dump.

It is also possible to perform secure backups initiated by the backup client by setting the RSH variable to /usr/bin/ssh and

subsequently running dump as follows:

% /sbin/dump -0uan -f operator@backupserver.mexicanfood.net:/dev/nrst0

 If you choose to use the operator account for ssh-enabled backups, not only will you need to create a home directory for

this user, you will also need to change the login shell from nologin to /usr/bin/false.

Of course, other levels of protection are available to protect access including creating a specific interface used for backup

traffic, configuring a local firewall, or using intervening firewalls.

Some organizations use an administrative secondary network interface exclusively for

backups. If you're in this boat, be very aware of exactly what other devices could be listening

on this interface. Push for encryption regardless.

 It is also possible to use the primitive rdump command to backup data across a network. Unfortunately this tool relies on

the use of ~/.rhosts files and programs like rcmd and ruserok. There are severe security implications to using these tools

and providing reasonable security is more trouble than it is worth. Given the ease with which Amanda and dump can be

used securely, there is little need to use rdump.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html
mfreeopenbsd-CHP-4-SECT-3.html

4.3. Upgrading

 At some point, you will likely want to upgrade your OpenBSD or FreeBSD server. If you followed the

guidelines set forth in Chapter 3 for your operating system installation, you have already performed a trivial

upgrade. As you allow your system to remain in operation from a few months to a year or more, upgrades

become more challenging. Consider putting in place regular upgrade procedures that ensure you are

capturing all security and reliability related updates. In some cases, your regular upgrade schedule may be

accelerated by a released security advisory. This section of the chapter covers the steps you take to keep

your system secure by patching and upgrading.

4.3.1. Patching Only

One school of thought for upgrading systems can be summarized by "if it ain't broke, don't fix it." Many

system administrators adhere to this paradigm and upgrade or configure workarounds only when they run

into a problem. Strictly adhering to this approach may have a variety of negative consequences:

Systems are often in an unknown state, especially if you have been intermittently patching

individual binaries as security advisories have been released without documenting all changes.

It can be tempting to put off the installation of less-critical locally exploitable vulnerabilities when the

affected host only provides shell accounts to administrators. These omissions may linger longer than

desired.

Increased care is required in performing an upgrade on an older system—the more workarounds

that have been configured, the more painstaking it will be to account for them all during a full system

upgrade.

The OpenBSD and FreeBSD security teams release security advisories with source code patches to address

issues on a regular basis. As discussed previously, installing patches to mitigate the risks presented by

security vulnerabilities is a key component to secure systems administration. However, following a patch-only

philosophy, a few months or years down the road you or another administrator may find it difficult to

conclusively determine if your system is free of all known vulnerabilities. While patching is vital for rapid

response and risk mitigation, regular upgrades are necessary, too.

4.3.2. Tracking Branches

Both operating systems provide a patch branch, which includes only security and critical reliability fixes to a

given release of the operating system. This branch offers the highest level of stability by introducing only the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

most critical security and reliability fixes. The administrator can expect that while tracking this branch, the

fewest number of changes have been introduced into her system and only the most significant issues have

been addressed.

Despite how few changes are made to these production-quality branches,

always perform system upgrades in a test environment before upgrading

production systems.

Tracking this branch accommodates the "if it ain't broke, don't fix it" philosophy, while at the same time

updating the system's configuration to reflect a certain patched state. This allows other administrators to

determine whether the system is up to date in an instant.

Release Engineering

 There is one important difference when comparing the way OpenBSD and FreeBSD count

releases and manage branches. OpenBSD releases are denoted x.y where both x and y are

equally significant. This means upgrading from 3.3 release to 3.4 release should (in general) be

considered as significant a step as upgrading from 3.9 to 4.0. OpenBSD systems maintain a

stable branch at every release. These branches are usually maintained for two releases.

FreeBSD releases also have x.y notations, but in this case x is the traditional "major" version

number, and y is the traditional "minor" version number. A change in the major version number

indicates significant and substantial changes are being introduced to the system. Upgrading

from 4.4 to 4.5, 4.8, or even 4.9 is not a major undertaking (though certainly the more

increments are skipped the more careful you must be). An upgrade from 4.9 to 5.0, even

though the two versions appear close, includes extensive changes in the code base.

Be sure to read the mailing lists and learn about what is happening on the major release before

you blithely upgrade. Ideally, you should set up a test system where you can install the new

version and become familiar with it before upgrading critical servers. Note also that some major

versions are more significant than others. The switch from FreeBSD 2 to FreeBSD 3 was a

rocky one, and there were some significant bugs in 3.0. As an exception to the rule, the

transition from 3.0 to 3.1 included a switch from a.out to elf binaries—another troublesome

change. The transition from 3.0 to 4.0 was much smoother. FreeBSD 5.0 was released with an

explicit warning that there were still some instabilities. By Version 5.3, however, the 5.x branch

had reached production quality stability for most purposes.

For more information about OpenBSD releases, see Chapter 5 of the FAQ. For details about

FreeBSD's release engineering, see http://www.freebsd.org/releng/.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.freebsd.org/releng/

Determining when to upgrade your BSD system can be tricky. Several factors will play into your chosen

paradigm for longer term system maintenance. In more structured environments, your organization's security

policy should describe the exact schedule for system patching and upgrades based on your security and

availability requirements. The considerations for upgrading your system will depend on the operating system,

so we must consider each in turn.

4.3.2.1 Tracking OpenBSD branches

OpenBSD calls their production-quality branch the stable branch or the patch branch. This is the appropriate

choice for most, if not all, of your systems infrastructure. These stable branches are created at every

OpenBSD release and are maintained for two releases. Because new versions of OpenBSD are released

approximately every six months, you can avoid upgrading for about a year—but you had better not wait any

longer than that. Note also that the official upgrade path with OpenBSD does not allow skipping versions. Do

not attempt to install 3.6 over 3.4. Upgrade to 3.5 first. Upgrades are most safely accomplished through the

construction of a parallel system and subsequent data and configuration migration.

If you do not have the resources and time to dedicate to this process, a binary upgrade is your best bet. That

is, you are less likely to run into problems while performing a binary upgrade than while performing a source

upgrade. This was especially true between Versions 3.3 and 3.4, which included a change in the format of

system binaries from a.out to elf. Bear in mind you may need to rebuild applications installed from ports (after

updating your ports tree) when you perform a binary upgrade of your system.

On infrastructure systems with very specific purposes like firewalls, nameservers, mail relays, etc., you may

find there are few security advisories that expose exploitable conditions for your system. In these cases,

frequent operating system upgrades may be overkill. In all other cases, updating your system to the latest

stable on a monthly or bi-monthly basis is recommended.

4.3.2.2 Tracking FreeBSD branches

FreeBSD calls their production-quality branch the security or release branch. This is an ideal choice for

most, if not all of your critical production systems. This branch is typically officially maintained for a little over

a year.

New minor releases of FreeBSD are shipped every four months or so. The -STABLE branch will track

through various changes in the source tree, eventually culminating in a code freeze. During this period of

time, release candidates are tested and the only changes made to the -STABLE branch are critical

fixes—much like in the security branch. At the end of the code freeze is the next FreeBSD release. Directly

tracking -STABLE is only recommended for less important systems, and ideally in a test environment first.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To keep up to date, FreeBSD administrators will generally want to track the security branch for one or two

releases. Once a later release has reached maturity (after the release candidates, and perhaps even a

month or two after that), it is appropriate to upgrade to this later release and track this new release's security

branch. This is a fairly straightforward process described as a post-installation hardening task in Chapter 3.

Finally, new major revisions of FreeBSD come around every few years. Migration to these platforms should

never be done for critical systems until the x.2 or x.3 release and the introduction of a -STABLE branch for

that version. If possible, building parallel systems and performing a data and configuration migration is the

way to go.

You need not go through an entire make world process on all of your

FreeBSD systems. Pick an internal host and build binaries there. You may

then burn the contents of /usr/obj to a CD and subsequently mount this CD on

/usr/obj on other systems and perform the install.

Although you may be thinking that the -STABLE branch is production-quality, FreeBSD includes

performance enhancements, noncritical bug fixes, and sometimes even small features into this branch of

code. This is generally more change than you look for on critical systems infrastructure. While these have

been carefully tested and should work in most environments, traffic on the freebsd-stable mailing lists

provides evidence that users do experience problems tracking this branch from time to time. Nevertheless, if

you are able to test upgrades to the latest -STABLE system to ensure compatibility with your hardware and

software, this may be a viable option for all but the most vital of your infrastructure servers.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

4.4. Security Vulnerability Response

 System maintenance periods are typically thought of by users as "the time when IT is working on the

system." What are the administrators working on, exactly? Maintenance may involve the introduction of new

functionality, attempted resolution of a problem, or hardware replacements and additions. Most users tend

not to guess that the administrator is working on patching the system to mitigate the risks of a recently

announced security issue, yet it is with this important aspect of system maintenance that we are concerned in

this section of the chapter.

Although we focus on the mitigation of risks described in security advisories,

remember that the addition of functionality or even hardware can affect the

overall security of your system. The security-minded system administrator

would do well to always ask himself, "How does what I am doing right now

affect the security of my system?"

4.4.1. Keeping Abreast

Without a list of software you care about, how can you possibly know what to patch and when to patch it?

Take inventory and document the systems under your jurisdiction. Note the operating systems and

applications installed across your organization. With this information you're well equipped to start subscribing

to the relevant mailing lists.

FreeBSD lists

FreeBSD offers a variety of lists that are a great asset to system administrators. Of utmost

importance is freebsd-security-notifications to which all security advisories are posted. Typically

these advisories are also cross-posted to the freebsd-announce list, which broadcasts other

important FreeBSD related events. Both of these lists are low volume, and subscription should be

considered mandatory for any FreeBSD administrator. For a description of all the FreeBSD lists

available, see Appendix C of the FreeBSD Handbook.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html
mfreeopenbsd-CHP-4-SECT-4.html

OpenBSD lists

As with the FreeBSD lists, the OpenBSD team offers a security-announce list that should be

considered of paramount importance to all OpenBSD administrators. The OpenBSD announce list

should also be considered for news about the OpenBSD project (items are not necessarily

cross-posted from security-announce). Both of these lists are low volume, and subscription should

be considered mandatory for any OpenBSD administrator. For more information about the available

OpenBSD lists, see the Mailing Lists section of the OpenBSD.org web site at

http://www.openbsd.org/mail.html.

SecurityFocus lists

SecurityFocus offers a variety of security-related mailing lists that are operating system specific

(Linux, BSD, Solaris, etc.), topical (IDS, Firewall, Secure Shell, etc.), and more general in nature

(Security Basics, Bugtraq). In years past, Bugtraq was seen as the authoritative source for security

advisories. In recent times, however, the signal-to-noise ratio has increased, rendering this list more

difficult to use effectively. It may be worthwhile to subscribe to the vuln-dev (Vulnerability

Development) list to get a heads up to potential problems before formal advisories can be released.

New security administrators should strongly consider the security basics list.

Application Specific lists

Most application vendors provide separate mailing lists for users, developers, and those interested

in security advisories. Consult your application vendor's web site for more information about the lists

provided. There should, at the very least, be a low-volume announce-only list, which should be

considered mandatory reading if the application is present in your organization. Throughout this

book you will be pointed to mailing lists for the applications we cover.

FreshPorts (FreeBSD only)

FreshPorts (http://www.freshports.org) is an excellent resource for administrators to find out when

port maintainers have updated the ports tree. Create a FreshPorts account, select the ports you

wish to monitor (or upload the output of pkg_info -qoa), and specify how often you'd like

announcements. FreshPorts will notify you whenever the ports on your "watch list" are updated and

will include the port maintainer's comments.

After subscribing to the necessary mailing lists, you should have a flow of information into your mailbox. The

next challenge is in knowing how to react to advisories you receive.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.openbsd.org/mail.html
http://www.freshports.org

4.4.2. Security Advisory Response

After you determine that a security advisory actually pertains to software installed on your systems, you must

take action. Your response to a security advisory can be broken down into four distinct tasks: categorization,

severity assessment, response planning, and execution.

4.4.2.1 Categorization

Terms like buffer overflow, race condition, and format string vulnerability should quickly become familiar as

you start reading advisories. Understanding what these issues are, how they can be exploited, and what

attacks become possible as a result of the exploit will require a little bit of work on your part. Read the

advisory carefully and consult Google if you don't understand any of the terminology. After you've developed

at least a basic understanding of the vulnerability, you should be able to informally categorize it according to

the kind of security breach it represents and the connectivity required for the exploit.

There are several kinds of security breaches for which advisories are issued: arbitrary code execution,

privilege escalation, denial of service, information disclosure, and so on. Some require local access for a

successful exploit, whereas others may be exploited remotely. The severity of each of these kinds of

breaches will vary according to your environment and the system in question, thus categorizing the advisory

will help in assessing the potential impact.

4.4.2.2 Severity assessment

The most important factor in determining the severity of an advisory is understanding how the security breach

described by the exploit will affect your organization. Not only does this vary by organization, but also by the

type of breach.

Higher visibility companies, financial institutions, and security firms suffer immensely when security breaches

that involve information disclosure occur. Organizations that rely on income from transactions or provide

critical services to other organizations can lose money when faced with a denial of service (DOS) attack.

Smaller organizations often feel that security is less important because they are neither highly visible nor do

they provide critical services. These companies do not suffer immediately when their systems are

compromised, instead they discover later that their systems were used to attack other more highly visible

companies (or a government) and must deal with that situation instead.

Nevertheless, there are cases where immediate service-interrupting response is overkill. If the potential

exploit is only able to provide an alternate means of access to data that is already public, the vulnerability

may be considered less severe. If a denial of service attack becomes possible against your web server, but

your web site availability is not of importance to your organization, patching can wait. Still, do not succumb to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

neverending procrastination. The vulnerability may have more far-reaching consequences than either you or

the writers of the advisory have determined.

Finally, once the exploit has been evaluated to determine its potential effect on the organization, you must

determine the likelihood that the breach will occur. If the exploit requires local access on a system to which

only you have an account—the risk is minimal. If the attack requires local access on a system that provides

anonymous FTP services, there is a greater cause for concern. While you may be tempted to disregard a

remotely exploitable vulnerability because you feel there is little value in attacking the organization, bear in

mind that exploit toolkits do not differentiate between companies, they merely scan IP ranges for vulnerable

systems.

4.4.2.3 Response planning and execution

When it comes time for mitigation, your job as the system administrator is to solve the problem with a

minimum of disruption. How you go about this will vary greatly based on the severity of the vulnerability and

the availability of a fix. In general there are six ways to respond to an advisory:

Do nothing

If the output of your severity assessment is that the vulnerability cannot be exploited in your

organization, lack of response may be appropriate.

Upgrade at next maintenance

Organizations often have structured maintenance windows during which systems personnel may

perform maintenance. Some organizations lack the structure but nevertheless can schedule a

maintenance window for some time in the not-too-distant future so as to minimally impact the

business of the organization.

Upgrade tonight

More potentially damaging exploits may need quicker response. In these cases, waiting for a

maintenance window poses too much risk and a more rapid response is warranted.

Upgrade now

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In rare cases, an advisory is released that describes a vulnerability that is potentially catastrophic if

exploited and trivial to exploit. In these cases, immediate response may be necessary.

Mitigate and upgrade later

In some cases, an upgrade is warranted, but a mitigation exists that can yield an immediate, albeit

temporary, solution. Mitigation is useful to allow for more time in planning an upgrade, in order to

postpone the upgrade until a scheduled maintenance window, or in the event that an upgrade path

has not yet been laid down.

Turn it off

In the event that an advisory is released that has no upgrade path and no mitigation strategy, your

only option might be to disable the affected service.

The most potentially devastating exploits should certainly evoke rapid response. Be careful not to overreact,

however, and cause more damage than the attackers. Plan and test your response before executing. Less

critical services and advisories may evoke a more lazy response. While this response may not be

inappropriate in all cases, be careful to follow through with your plan at your earliest opportunity.

Vulnerabilities left unchecked are quickly forgotten.

Most advisories released by the FreeBSD and OpenBSD security teams are accompanied by instructions for

various mitigation strategies. These often include updating to the latest revision of the software, applying a

patch to the source code and reinstalling, or even changing a configuration option to disable a vulnerable

component. In severe cases where the vulnerability, if exploited, would cripple your organization, reaction to

the advisory must be immediate. This does not necessarily mean you unplug the system from the network. It

may be possible to mitigate the issue by adjusting your firewall rules, rate limiting connections, or adjusting

the configuration of the application. In the worst cases, you will need to disable the service until the problem

can be resolved. This should provide you with enough breathing room to carefully plan and test a response

that eliminates the vulnerability.

Remember that security advisories are often released for third-party software several days before the ports

tree has been updated to reflect the availability of the patched version of that piece of software. It is also not

uncommon for source code patches to become available before the new versions of the files have been

checked in to the CVS repositories. In these cases, you may need to take immediate action by patching the

source code and reinstalling. When the ports tree is updated, you may overwrite your patched binaries by

installing the new version of the software.

In rare cases, such as the potentially exploitable buffer management issues with OpenSSH in September of

2003, you will hear rumors of exploit code already in existence long before patches (or even an advisory!)

become available. In these cases, you may need to disable the service until the situation becomes clear. If

this isn't possible, consider restricting the service in some way to mitigate the risk..

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

4.5. Network Service Security

FreeBSD and OpenBSD systems can provide an extensive list of services. While Chapter 5 through Chapter

9 of this book provide detailed information about some of the most common and complex network services,

you may find a wealth of more basic services are also useful on your network. The second half of this chapter

discusses some of these services, what they provide, how to provide them securely, and in some cases, why

you should do so.

4.5.1. inetd and tcpwrappers

 The Internet daemon (inetd(8)) is a network service super-server. It comes with a bit of a

stigma—and this is no surprise since most texts on securing hosts contain a step where you disable inetd,

yet few describe enabling or even securing it. inetd is not evil, and it can be used safely. The services inetd

is often configured to provide, however, should sound like a list of security nightmares: telnetd, ftpd, rlogind,

fingerd, etc. All of these services pose unnecessary risk to infrastructure systems, especially when much of

the functionality can be provided by ssh.

 Again, inetd is not to blame. As most administrators know, the inetd process reads configuration

information from /etc/inetd.conf and listens on the appropriate TCP and UDP ports for incoming connections.

As connections are made, inetd spawns the appropriate daemon. Unfortunately, there are not a great many

daemons traditionally run through inetd that are safe to use in today's unsafe network environments.

Nevertheless, should you find yourself in a position to provide services through inetd, you should know three

things.

First, on FreeBSD and OpenBSD systems, inetd will limit the number of incoming connections to no more

than 256 per second. Unless you legitimately receive this many requests, you may want to lower this

threshold by using the -R rate command-line argument.

 Second, use tcpwrappers. The manpage for hosts_access(5) describes how tcpwrappers may be

configured using /etc/hosts.allow and /etc/hosts.deny to restrict connections based on originating hostname

and/or address specification. We briefly examine a hosts.allow file in Example 4-7.

Example 4-7. Sample hosts.allow file

ALL : 1.2.3.4 : allow

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html
mfreeopenbsd-CHP-4-SECT-5.html

SHORT CIRCUIT RFC931 ABOVE THIS LINE

ALL : PARANOID : RFC931 20 : deny

ALL : localhost 127.0.0.1 : allow

sshd : mexicanfood.net peruvianfood.net: allow

proftpd : dip.t-dialin.net : deny

proftpd : localhost .com .net .org .edu .us : allow

ALL : ALL \

 : severity auth.info \

 : twist /bin/echo "You are not welcome to use %d from %h."

In this example, all connections are allowed from 1.2.3.4. The PARANOID directive in the next line

performs some basic hostname and address checking to ensure the hostnames and IP addresses match up.

The second part of that stanza utilizes the IDENT protocol to verify that the source host did in fact send the

request, provided the source host is running identd.

The latter lines are fairly straightforward. All connections are allowed from localhost. Connections via sshd

are permitted from both mexicanfood.net and peruvianfood.net. FTP access from dip.t-dailin.net is explicitly

denied access (presumably the administrator noticed a lot of attacks from this network and has no users

there) while access from .com, .net, .org, .edu, and .us networks are allowed.

Finally, if the connection was not explicitly permitted or denied before the last line, the user is informed that

she is not allowed to use a given service from the source host, and the rejection is logged via syslog to the

auth.info facility and level.

FreeBSD systems support tcpwrappers compiled into the inetd binary. This means that by using the -W and

-w flags to inetd (these flags are on by default—see /etc/defaults/rc.conf), your inetd-based services will

automatically be wrapped.

To use tcpwrappers on OpenBSD systems, use tcpd(8). Example 4-8 lists two lines in /etc/inetd.conf that

demonstrate the difference between using tcpwrappers for eklogin and not using it for kshell.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 4-8. Using tcpwrappers in OpenBSD

eklogin stream tcp nowait root /usr/libexec/tcpd rlogind -k -x

kshell stream tcp nowait root /usr/libexec/rshd rshd -k

Enabling tcpwrappers for eklogin but not kshell is done here for demonstrative

purposes only. If possible, use tcpwrappers for all services run through inetd.

The server program field changes to /usr/libexec/tcpd (the tcpwrappers access control facility daemon), which

takes the actual service and its arguments as arguments to itself.

 Finally, inetd spawns other programs using a fork(2) exec(3) paradigm. Programmers are very familiar

with this, as it is the way a process spawns a child process. There is nothing particularly wrong with this

approach, but you must be aware that loading a program in this way is not a lightweight operation. For

instance, sshd could run out of inetd easily enough, but since sshd generates a server key on startup (which

takes some time), the latency would be intolerable for users. Therefore, when supporting a high rate of

connections is a requirement, inetd might not be the best solution.

Remember that a variety of daemons utilize tcpwrappers even when they do

not run out of inetd. To determine if this is the case, read the manpage for the

service. You may also be able to tell by running ldd(1) against the binary. If

you see something called libwrap, then tcpwrapper support is available. If the

binary is statically linked, of course, your test will be inconclusive.

4.5.2. Network File System

 Centralized storage through the use of shared filesystems is a common goal of many administrators.

OpenBSD and FreeBSD systems natively support the Network File System (NFS) Version 3. While this

service is often used and considered vital in many networks, there are inherent security risks in sharing a

filesystem across a network of potentially untrusted systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 NFS should be avoided if at all possible. We present this section not to describe how you might

secure NFS, but instead to illustrate why a secure installation is not possible. If you must have a shared

network filesystem, consider more secure NFS alternatives such as the Andrew File System (AFS), Matt

Blaze's Cryptographic File System (CFS), or the Self-Certifying File System (SFS).

4.5.2.1 Implicit UID and GID trust

The greatest security concern in deploying NFS is the minimal amount of "authentication" required to

access files on a shared filesystem. By default, when exporting an NFS filesystem, user IDs on the server

(except root) map to user IDs on the client. For example, a process on the client running with UID 1000 will

be able to read and write to all files and directories on the server that are owned by UID 1000. Yet UID 1000

on the client may not be the same user as UID 1000 on the server. The administrator of the client system

could trivially su to any user on that system and be able to access all user-readable files on the shared

filesystem. This danger extends to the root user if the -maproot option is specified for the shared filesystem

in /etc/exports.

This danger may be mitigated by forcibly mapping all remote users to a single effective UID for the client.

This essentially provides only guest access to the filesystem. If writing to the filesystem is permitted in this

case, it will become impossible to enforce user-based permissions as all users essentially become the same

user.

 Some administrators have made it possible to tunnel NFS over SSH. This ensures all NFS traffic is

encrypted. However, this has limited value as it does not eliminate the implicit UID and GID trust issue

described here.

4.5.2.2 NFS export control

NFS is configured by exports(5). That is, what filesystem is exported under what conditions to which

systems? This allows for fairly fine-grained control of exports. With the application of the principle of least

privilege, you would export filesystems with as many security options enabled as possible. Consider the

following examples.

/home/users devbox, buildbox, sharedbox

This configuration will export home directories to the three systems specified, all of which are under the

control of an administrator that ensures users are not able to access other users' home directories.

/scratch -mapall=neato: userbox1, userbox2, userbox3

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This scratch area for project neato is shared to all systems, but users from all clients are mapped to user

neato. This allows only the specified NFS clients to work with this temporary storage area.

/archives -ro

These archives are shared for all users to read, but no users may write to the filesystem. For more

information about restricting exports, see the manual page for exports(5). You should now begin to realize

that deploying NFS in anything resembling a secure manner will require that you remove much of the

functionality that you would have liked to retain.

4.5.2.3 NFS network restrictions

If you find yourself reading this section, you may be suffering from a mandate

to run NFS. We again urge you to consider some of the shared filesystem

alternatives mentioned previously.

On the network level, there is an additional set of restrictions about which the administrator should be aware.

By default, mountd(8), which services mount requests for NFS, accepts connections only on reserved ports.

This ensures that only the root user on remote systems may mount shared filesystems. If the -n argument is

specified to mountd, requests from all ports will be honored. This allows any user of any system to mount

network drives. Do not enable this option unless you have a specific need to do so—the manual page for

mountd mentions that servicing Legacy Windows clients may be a motivation.

The ports that NFS needs are managed by the portmapper, now called rpcbind(8) (Sun remote procedure

call [RPC] implementation) in FreeBSD 5.X and portmap(8) in OpenBSD. In OpenBSD, portmap will by

default run as the _portmap user and given the -s flag in FreeBSD, rpcbind will run as the daemon user. In

both cases, these services may be reinforced with the use of tcpwrappers so that only given systems or

networks can communicate with these applications and hence, use NFS. Since RPC negotiates ports

dynamically, NFS is a very difficult service to firewall.

With or without a firewall, it should be clear that NFS, while it may be useful, lacks any real security. Avoid

using it if at all possible.

4.5.3. Network Information Services

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 What was originally Yellow Pages (yp) was renamed to Network Information Services (NIS) as a result of

trademark issues. Thus, many of the programs related to NIS begin with the letters "yp." NIS, like NFS, is

RPC-based but provides centrally managed configuration files for all systems in a NIS domain. Although the

configuration details of NIS are beyond the scope of this book, there are significant security implications in

running NIS on your network, the least of which is the unencrypted dissemination of NIS maps, such as your

password file.

 NIS should be avoided if at all possible. We present this section not to describe how you might secure NIS,

but instead why you cannot. If centralized authentication and authorization is your goal, consider

authenticating using Kerberos and providing authorization via LDAP. Unfortunately this is an extensive topic

and would require a book dedicated to it. A more straightforward approach may be to safely distribute

password files from a trusted administration host. We describe this latter procedure in the next section.

4.5.3.1 Password format compatibility

 If you have NIS clients that only understand weaker DES passwords (pre-Solaris 9, update 2 for example),

your NIS maps will have to contain only DES encrypted passwords. This may be accomplished by ensuring

that users make password changes on systems that understand only DES passwords, or by reconfiguring

your system to generate DES encrypted passwords by default. Neither of these are good solutions.

4.5.3.2 Encrypted password exposure

 The master.passwd file, which contains encrypted passwords for all your users, is easily readable by

others on your network when you use NIS. Although the requests clients make for the

master.passwd.byname and master.passwd.byuid maps must come from a privileged port, this is not a

significant increase in security. If any users on your network have a root account on any Unix system on your

network (or can quickly build a system and plug it in), this restriction becomes irrelevant.

 It gets worse. NIS is frequently used in heterogeneous environments and, as described above,

passwords may need to be stored using the much weaker DES encryption rather than the default md5 or

blowfish encryption of FreeBSD and OpenBSD respectively. As if this weren't bad enough, some older

operating systems will not support the concept of shadow passwords. In this case, NIS must be run in

UNSECURE mode (specified in the appropriate Makefile in /var/yp). With this configuration, encrypted

passwords are exposed in the passwd.byname and passwd.byuid maps. Perhaps not so terrible because the

security involved in the "low-port-only" concept was weak to begin with.

4.5.3.3 Limiting access to NIS maps

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

At the heart of NIS is the ypserv(8), the NIS database server. It is this daemon that accepts RPC and

dutifully provides database contents upon request. Host and network specification in /var/yp/securenets can

be used to limit the exposure of your password maps through RPC. The ypserv daemon will read the

contents of this file and provide maps only to the listed hosts and networks. Given a network of any

meaningful size, you may configure an entire network range in this file for which RPC should be answered.

With securenets configured in this way it is trivial to bypass by merely connecting to the network in question.

Specifying only a handful of hosts in this file, however, could effectively provide NIS maps to a group of

servers while limiting "public" access.

4.5.3.4 On the client side

If you have chosen to lock NIS down to a handful of servers, ypbind(8) can use some attention. This

daemon searches for a NIS server to which it should bind and facilitates subsequent NIS information

requests. All systems running NIS should have statically configured NIS domain names and servers, so that

instead of attempting to find a server by broadcast, ypbind immediately binds to a known NIS server. This

prevents malicious users from setting up alternate NIS servers and perhaps providing password-free passwd

maps.

4.5.3.5 When is NIS right for you?

 If all systems involved in the NIS domain support shadow passwords and can understand md5/blowfish

encrypted passwords, some of the risk associated with NIS is mitigated. If NIS is being provided only to a

handful of closely administered servers via securenets, the risk is further mitigated.

However, NIS still relies on the difficult-to-protect RPC and operates without encryption. Avoid NIS altogether

if you are working with heterogeneous or not completely trusted networks. Instead, develop another, more

secure, way to distribute user, group, or configuration files.

For basic configuration information about YP/NIS see the yp(8) manpage and

Chapter 19.9 of the FreeBSD Handbook.

4.5.4. Secure File Distribution Using scp

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 One alternative to NIS is file distribution over ssh. In fact, this paradigm will work not only for password

and group files but also for other arbitrary configuration files. The secure copy (scp(1)) program is included

as part of the ssh program suite and is included in the base distributions of both OpenBSD and FreeBSD.

Secure copy, as the name implies, copies files between networked systems and guarantees data integrity

and confidentiality during the transfer. Authentication for scp is the same as for ssh.

In order to put in place secure file distribution, you will need a management station to house all files that are

distributed to other hosts as shown in Figure 4-1. This host should be exceptionally well protected and

access should be restricted to only the administrators responsible for managing file distribution, in line with

our principle of least privilege. Transferring configuration files to remote systems is a three-stage process:

Put the files in staging area on the management station.1.

Distribute the files to systems.2.

Move the files from the staging area on target systems into production.3.

Figure 4-1. Secure file distribution architecture

4.5.4.1 Initial setup

Initial setup will vary depending on the environment. The following steps provide one example of preparing

for secure file distribution. Your requirements may dictate changes to the approach presented below.

 Create ssh keys for authentication.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

First, create a pair of ssh keys for copying files over the network on the management station. For

the purposes of this discussion, we will name these keys autobackup and autobackup.pub and

place them in /root/.ssh. These keys should be generated using ssh-keygen(1) and may be with or

without a passphrase. For pros and cons of these two approaches, keep reading.

Create a staging area from which files will be copied.

Next, if servers to which files are being transferred have differing configuration requirements, it

becomes necessary to gather files into a staging area before the transfer. In most cases, workgroup

servers and infrastructure servers to which you are copying files will permit login from different sets

of users. You may need to write simple scripts to extract a subset of accounts from your

master.passwd and group file instead of copying the entire contents.

If you are copying a master.passwd file from the management station

to remote systems, bear in mind the root password on the remote

systems will become the same as that of the management station. In

most cases, this is not desirable, and the root account should be

stripped from master.passwd using a program like sed or grep before

transmission.

Also note that the master.passwd and group files may not be

/etc/master.passwd and /etc/group. You may keep syntactically correct

organization-wide master files anywhere on your system. In fact, this is

preferable since you do not want to grant everyone in the organization

access to your management station.

 This staging area may be anywhere on the management station. Simply declare a directory as a

staging area, and begin writing scripts to collect configuration files.

2.

Write scripts to gather files.

Once the staging area has been assigned, you must write the necessary scripts to gather

configuration files from the system. In the case of master.passwd, you may need to customize the

contents by extracting only a subset of users. A script to create the necessary files might look

something like Example 4-9.

Example 4-9. Script to gather configuration files into a staging area

#!/bin/sh

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This ensures the nested for loop iterates through

lines, not whitespace

OIFS="$IFS"

IFS="

"

This is where we keep the maps, our "staging area"

This variable is just a template for various "level" dirs

level_dir=/home/users/netcopy/level

Make sure our 3 level directories exist and clear them out

before continuing with the script.

for level in 1 2 3; do

 mkdir -p ${level_dir}{$level}

 rm -rf ${level_dir}${level}/*

done

Let's make sure /etc and /usr/local/etc exist

within the staging area

for level in 1 2 3; do

 for dir in /etc /usr/local/etc; do

 mkdir -p ${level_dir}${level}/${dir}

 done

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

done

We're going to be writing the contents of master.passwd

Let's make sure the file's got the right permissions first

for level in 1 2 3; do

 touch ${level_dir}${level}/etc/master.passwd

 chown root:wheel ${level_dir}${level}/etc/master.passwd

 chmod 600 ${level_dir}${level}/etc/master.passwd

done

Here we grab users from the master.passwd and group

for line in `grep -v '^#' /some/master.passwd | sort -t : -k3n`; do

 IFS=$OLDIFS

 set -- $line

 uid=$2

 gid=$3

 # If the uid is betweeen 1000 and 4999, it's a level 1 user

 if ([$uid -ge 1000] && [$uid -lt 5000]); then

 echo $line >> ${level_dir}1/etc/master.passwd

 fi

 # If the uid is betweeen 5000 and 9999, it's a level 2 user

 if ([$uid -ge 5000] && [$uid -lt 10000]); then

 echo $line >> ${level_dir}2/etc/master.passwd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 fi

 # If the group is 101 (dev), it's a level 3 user

 if ([$gid -eq 101]); then

 echo $line >> ${level_dir}3/etc/master.passwd

 fi

 IFS="

"

done

Copy additional configuration files

for level in 1 2 3; do

 tar -cf - \

 /etc/group \

 /etc/resolv.conf \

 /etc/hosts \

 /etc/aliases \

 /usr/local/etc/myprogram.conf \

 | tar -xf - -C ${level_dir}${level}

 # Additional files may be listed above the previous line

 cd ${level_dir}${level} && tar -czpf config.tgz etc usr/local/etc

 rm -rf etc usr

done

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Note that this script copies users based on user ID and group ID. In most cases, a subset of

accounts is more easily garnered when distinguishable by group as opposed to user ID range. For

ease of administration, pick whichever approach works best in your environment and stick with it.

Finally, bear in mind that this script must execute as root and will be working with sensitive files. Be

very sure the staging directories and files are well protected.

Prepare remote systems.

After scripts have been written to gather the necessary files for transmission, prepare the remote

systems to receive files. Create a designated account to receive the transferred files. In this

example, we will call this account netcopy. Create a ~netcopy/.ssh/authorized_keys with the

contents of autobackup.pub from the management station.

You might be thinking that this is a lot of trouble and it would be easier

to merely copy files over as the root user. However, we advise that you

disable root logins via ssh in /etc/ssh/sshd_config and log in under

your user account. Permitting remote root logins makes accountability

much more difficult.

The remote systems will also need scripts to move files from the staging area into the appropriate

place on the system. Given the gathering script in Example 4-9, a trivial tar extraction from the root

of the filesystem on the remote system will place all configuration files in the correct places with the

correct permissions. This script must also execute as root and should be placed in root's crontab.

4.

4.5.4.2 Pushing files with passphrase authentication

 As discussed previously, for increased security, the ssh daemon should be configured to accept only

key-based authentication, as opposed to password authentication. Because scp uses the same

authentication as ssh, however, requiring keys and passphrases can be difficult to automate. However,

automation is not always necessary. Even when using NIS, you must issue a make(1) in the /var/yp directory

to push the maps to remote systems. To provide the same functionality, you can (this should sound familiar)

write a script to accomplish the push while requiring password entry only one time with the help of

ssh-agent(1). Example 4-10 shows how this might be accomplished.

Example 4-10. Script to copy files using an ssh key

#!/bin/sh

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

level1_dir=/home/users/netcopy/level1

level2_dir=/home/users/netcopy/level2

level1_sys=alpha beta gamma delta

level2_sys=mercury venus earth mars

This runs the ssh-agent which keeps track of ssh keys

added using ssh-add. Using eval facilitates placing

values for SSH_AUTH_SOCK and SSH_AGENT_PID in the

environment so that ssh-add can communicate with the agent.

eval `ssh-agent`

This will prompt for a passphrase. Once entered, you

are not prompted again.

ssh-add /root/.ssh/autobackup

Securely transfer the compressed tarballs

foreach system in $level1_sys; do

 scp ${level1_dir}/config.tgz ${system}:

done

foreach system in $level2_sys; do

 scp ${level2_dir}/config.tgz ${system}:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

done

Kill the agent we spawned

kill $SSH_AGENT_PID

This script requires a passphrase every time it is executed, so a person must initiate the transfer. Admittedly

this script could be replaced by one that acts like a daemon, prompting for authentication once and then

copying repeatedly at specified intervals. In this scenario, a passphrase would still be required every time the

script is started—but this would occur perhaps only at boot time.

4.5.4.3 Pushing files without passphrase authentication

It is possible to generate ssh keys without an associated passphrase. These are logically similar to the key to

your house door: if you have it, you can open the door. There is an inherent danger in creating keys that

provide a means to log into a system without any additional checks. It is vital that the private key in this case

is very well protected (readable only by the netcopy user).

 This risk can be mitigated somewhat with a few options in the netcopy user's ~/.ssh/authorized_keys file.

For example, we could configure remote systems to restrict access not only by key, but also by host, as

shown in Example 4-11.

Example 4-11. Restricting access by key and host, disabling pty(4)

from="mgmthost.example.com",no-pty,no-port-forwarding ssh-dss base64_key NETCOPY

Before our base-64 encoded ssh key, we provide three options and the ssh-dss key type. The first option

specifies that not only does the source host have to provide the private key to match this public key, but it

must also come from a host named mgmthost.example.com. Moreover, when connections are made, no

pty will be allocated and port forwarding will be disabled.

 Despite the security concerns with using passphrase-less keys, it becomes possible to automate file

distribution. In this way, modifications can be made to files on the master system with the understanding that,

given enough time, changes will propagate to all systems to which files are regularly copied. The script

required to perform a secure copy is almost identical to that in Example 4-10, but the ssh-agent and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ssh-add commands can be removed.

4.5.4.4 An scp alternative

We discussed earlier in this chapter a way to track changes to configuration files using CVS. If you have a

CVS repository that contains all configuration files for your systems, you already have a staging area from

which you can copy files to target systems. You need only decide which system will push the files, and

perform a cvs checkout of your configuration data onto that system. The rest of the procedure will be very

similar.

Alternately, you may prefer a pull method instead of a push. With little effort, you could write a script to check

the status of configuration files installed on the system via cvs status filename, and check out-of-date files

out of the repository as necessary. Since cvs will use ssh for authentication, you are again in a position to

automate this procedure by placing the script in cron and using an ssh key that does not require a

passphrase. Similarly, organizations with a Kerberos infrastructure might choose to place a service-only

keytab on systems used for checking configuration files out of your repository.

4.5.4.5 Wrapping up

The script to gather files and copy files to the remote system may easily be combined into one script. The

file copy will occur based on the successful authentication of the netcopy user. A regular cron(8) job should

check for the existence of the file on all remote systems, and if it exists, extract the contents into the

appropriate folders.

Also, be aware we have glossed over an important mutual exclusion problem in the sample scripts here. If,

for some reason, either our scripts that collect configuration files or our scripts that un-tar configuration file

blobs run slowly, the next iteration of the script may interfere with this iteration by clobbering or deleting files.

Before building a system like this, make sure to include some kind of lockfile (this can be as simple as

touching a specially named file in /tmp) to ensure that one iteration does not interfere with another.

 Although this approach requires a great deal more initial configuration than NIS (because ypinit performs

the setup for you), the vulnerabilities inherent in NIS are mitigated. This paradigm works well for copying user

account information and system configuration and may be easily adapted to copy configuration files for other

software like djbdns and Postfix.

4.5.5. The Importance of Time (NTP)

The naïve administrator will assume that once he sets the system clock, he need not concern himself with

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

system time. After all, computers are good with numbers, right? Not so. As any experienced administrator

knows system clocks drift. When systems in your network start drifting away from each other, you can run

into a variety of problems including, but not limited to:

Being unable to build a reliable audit trail because it is impossible to reliably determine the ordering

of events on different systems

Checking things into and out of version control repositories

Authenticating Kerberos tickets

Working with shared filesystems

Operating clustered or high availability configurations

Properly servicing DHCP and DDNS requests

Creating correct timestamps on emails within and leaving your organization

Fortunately, NTP on FreeBSD and OpenBSD systems is trivial to set up. The ntp(8) package is included with

the base of both operating systems (as of OpenBSD 3.6), so there is nothing to install. All that remains are

security and architecture considerations.

4.5.5.1 Security

Trivial NTP security can be achieved through the use of restrict directives in the NTP configuration file:

/etc/ntp.conf on FreeBSD systems and /etc/ntpd.conf on OpenBSD systems. These directives determine how

your NTP server will handle incoming requests and are expressed as address, mask, and flag tuples. From a

least privilege perspective, you would configure NTP much as you would a firewall: initially restrict all traffic

and subsequently describe which hosts should have what kind of access. A base configuration ought to look

something Example 4-12.

Example 4-12. Default NTP restrictions

restrict default ignore

driftfile /etc/ntp.drift

From this point, additional servers may be listed. Example 4-13 is a contrived example that permits

unrestricted access from localhost, while hosts on 192.168.0.0/24 may query the nameserver, and the final

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

two NTP servers may be used as time sources.

Example 4-13. Specific ntp restrictions

restrict 127.0.0.1

restrict 192.168.0.0 mask 255.255.255.0 notrust nomodify nopeer

restrict 10.1.30.14 notrust nomodify noserve

restrict 10.1.30.15 notrust nomodify noserve

If you are unfamiliar with the restrict directive, these configuration lines might

look a little odd. Flags to the restrict directive limit access, thus the lack of

flags for the localhost entry specifies no restrictions rather than being fully

restrictive.

This is an adequate solution when providing NTP services to known clients. There are situations where IP

restrictions are not enough. In these cases, you may want to consider NTP authentication. Authentication

provides a more flexible way of controlling access when:

You need to provide time service to a limited number of systems across untrusted networks.

You wish to grant certain entities the ability to query or modify your time server, but cannot rely on a

static remote IP address.

You feel mere IP restrictions that permit runtime configuration are inadequate.

 NTP authentication is supported using both public and private key cryptography (via the Autokey

protocol). After keys have been generated using the ntp-genkeys(8) utility, the server may be configured to

use specific keys with specific hosts, be they symmetric or asymmetric. Bear in mind, sensitive symmetric

keys will have to be exchanged securely through some out-of-band mechanism. Asymmetric keys contain a

public portion that may be exchanged in the clear. Additional details about the configuration of authentication

for ntp are beyond the scope of this book but are addressed in the documentation available through

http://www.ntp.org.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.ntp.org

4.5.5.2 Architecture

As with any other network service, providing time to your organization requires a little planning. NTP is

typically woven into a network in tiers. The first (highest level) tier is authoritative time source for your

organization. All NTP servers in this tier are configured as peers and use publicly accessible time servers as

authoritative time source, or if your requirements dictate, acquire time from local time-keeping devices. The

second tier of NTP servers for your organization will derive time from the first tier and provide time services

for clients or subsequent tiers.

Unique security considerations exist for every tier. Top level organizational tiers that communicate with

external servers are vulnerable to attack. One of the most effective ways to mitigate the risks associated with

this exposure is to limit the external NTP servers that can communicate with your systems through firewall

rules. This places implicit trust in your external time sources, which in most cases is acceptable. More

stringent security requirements will necessitate local time-keeping devices.

Middle-tier systems that communicate with both upper- and lower-tier systems, but no clients should be

configured such that only upper-tier systems may be used as time sources, and lower-tier systems may

query time. All other requests should be denied. More stringent security requirements may dictate that

upper-tier and lower- tier encryption keys must exist to authenticate communications. Smaller environments

generally do not have a need for systems in this tier.

Finally, the lowest tier NTP servers provide time to internal clients. These systems should be configured so

that only the immediate upper tier systems may be used as time sources, but anyone on the local network

should be able to query time on the system.

As with the other tiers, high security requirements may require authentication to guarantee time sources are

in fact the systems they claim to be.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

4.6. Monitoring System Health

 Performance monitoring concerns might seem out of place in a book about system security, but system

availability is a vital part of system security. After all, denial of service attacks are considered security

concerns even though they merely make systems unavailable. Keeping a keen eye on things like disk usage,

load averages, or the existence or absence of specific daemons will ensure that you are immediately aware

of your systems behaving unusually.

Network monitoring can be a bit of a double-edged sword. Keeping track of what your systems are doing

will definitely help you know when they misbehave. Yet to do this, you must invariably allow connections to

your system from your management station; and most monitoring suites offer little in the way of

authentication. Moreover, these suites often have a long history of vulnerabilities. Ironically you could

increase your exposure to risks by installing software that helps monitor for risks. As with any other software

you install, you should remain vigilant.

Moreover, a carefully deployed and administered monitoring suite will be a 24/7 guardian over your network.

It will have a comprehensive view of every server, service, and vital application. It is imperative that any

monitoring solution you deploy is very well protected against prying eyes. Employ the principal of least

privilege here and allow very few shell accounts to the monitoring station. Access to any web interface should

be tightly restricted and require authentication over an encrypted channel from known hosts. There are few

better reconnaissance tools than a monitoring suite carefully configured by a conscientious system

administrator.

 There are several open source monitoring tools that can be deployed on FreeBSD and OpenBSD

systems like Big Brother, which is free under certain conditions, Big Sister, and OpenNMS. There are also a

variety of tools to monitor both hosts and network devices using SNMP. All of these are contenders in the

network monitoring space, but we will be looking closely at one of the most flexible and widely deployed

network monitoring packages, Nagios (formerly NetSaint).

4.6.1. Nagios

Nagios is available in FreeBSD's ports tree or from the Nagios web site, available at: http://www.nagios.org/.

Nagios implements host and service monitoring for systems across a network. The nagios daemon runs on a

single server and uses various plugins to perform periodic checks.

 The plug-ins distributed with Nagios (in the nagios-plugins package) are capable of performing local

checks, which monitor load average, disk space usage, memory and swap utilization, number of logged in

users, and so on. Of course there is more to system monitoring than only examining the monitoring host.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
mfreeopenbsd-CHP-4-SECT-6.html
http://www.nagios.org/

Therefore, plug-ins are also included to monitor the availability of network services on remote systems, as

long as a TCP or UDP port is open for probing. When problems are noticed, Nagios can be figured to send

out notifications in a variety of ways, commonly via email.

 Plug-ins for Nagios are constantly updated, and new plug-ins appear on a regular basis, as needed. Given

a particular need in your environment, writing your own plug-in is very simple using just about any

programming or scripting language you choose. In addition to plug-ins are add-ons. Add-ons extend Nagios'

functionality by providing a breadth of functionality too extensive to mention. One of these add-ons is the

Nagios Remote Plugin Executor (NRPE). This daemon is configured on client systems with a variety of local

checks allowing the monitoring host to check local statistics on remote systems.

4.6.1.1 Installation

Installation on FreeBSD starts and ends with a make install from the net-mgmt/nagios subdirectory of the

ports hierarchy. This installs both Nagios and the nagios-plugins collection automatically. It will also create a

Nagios user and group for the execution of the daemon. OpenBSD administrators will need to fetch the

compressed tarball and install the software in the traditional way per the documentation on the Nagios web

site. The rest of this overview will assume that you have either installed Nagios from ports or have installed it

manually in compliance with hier(7).

4.6.1.2 Configuration

Default configuration files for Nagios are installed to /usr/local/etc/nagios. Many of these configuration files

can be left as they are, after the sample suffix has been removed. There are three main configuration files to

look at when first configuring Nagios. These are the main Nagios configuration file, the CGI configuration file,

and the object configuration files.

nagios.cfg

The main Nagios configuration file, nagios.cfg by default, controls the way Nagios finds its

configuration and subsequently operates. The sample file is well documented, but you should also

consult the documentation on the nagios.org web site as you work through this file. There are sets of

options in this file worth discussing.

The first is the check_external_commands option, which enables the submission of commands

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

through the web interface. If you feel your Nagios web interface is sufficiently protected (for

instance, by using digest, Kerberos, or certificate-based authentication over SSL), you may wish to

change this value to 1 to enable external commands. This will allow you to schedule service/host

downtime, enable and disable various checks and notifications, delay checks, force checks, and

issue other commands through the web interface. These web-submitted commands go into the file

specified by command_file. Only the web server, users should have access to the directory in which

this file is stored.

 The second set of options are those that point to the object configuration files cfg_file and

cfg_dir. Each can be specified multiple times and may point to specific files or specific directories.

When directories are specified, all files ending in .cfg within the directory will be processed.

Directory specification allows for a little more flexibility and easier delegation of responsibility.

You will want to peruse the rest of the settings in this file, but most will have reasonable defaults.

cgi.cfg

The CGI configuration file, cgi.cfg by default, controls the behavior of the Nagios web interface. This

includes how Nagios should build URLs within the interface, and which users have access to

various aspects of the Nagios system. These users must be authenticated by the web server and

gain access by username.

It is possible to both disable authentication and allow commands to be submitted through the web

interface by specifying a default_user_name. If you do this, make sure your Nagios web interface is

protected in some other way so that only trusted administrators can access it.

Object configuration files

The object configuration files are the heart of Nagios's configuration. These files describe the hosts

Nagios will monitor, the services to monitor on these hosts, who will be contacted when problems

are detected, when checks are performed, and so on. In order to get Nagios operational, your best

bet is to look over all the sample configuration files and move them into a configuration subdirectory

after you have modified them to suit your environment. Start with the most basic configuration files

like hosts.cfg-sample, services.cfg-sample, timeperiods.cfg-sample, and contacts.cfg-sample. You

will probably be able to simply rename the checkcommands.cfg-sample and

miscocmmands.cfg-sample configuration files until you have a better idea of additional commands

you need to run. Start by configuring Nagios to monitor local statistics. When you feel comfortable

with the way that works, start monitoring remotely accessible services on other systems. Once this

is done, you will be ready to tackle NRPE.

The information here is a cursory overview of Nagios configuration. For

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

detailed explanations of all the available options, make sure to read the

sample configuration files thoroughly and peruse the documentation available

at http://www.nagios.org/.

4.6.1.3 Installing NRPE

 The Nagios Remote Plugin Executor makes local checks on remote systems possible. NRPE is available

in the FreeBSD ports tree in ports/net-mgmt/nrpe2. OpenBSD administrators must fetch the port from the

addons page at nagios.org. Once retrieved make sure you include support for OpenSSL. This may be done

on FreeBSD systems by running make WITH_SSL=yes from the port directory. OpenBSD administrators

will need to pass the --enable-ssl argument to the configure script.

Ensuring that NRPE is built with OpenSSL support means that all communications between the

check_nrpe program on the monitoring host and nrpe daemon on client systems will be encrypted.

Remember that this is just encryption, not authentication.

Beware of enabling command-line arguments for nrpe. TRaditionally, nrpe is configured on client systems

with a known set of named commands. The paths to these commands and associated arguments are hard

coded on the client systems. Enabling command-line arguments allows the check_nrpe plug-in to not only

tell client systems to run a particular check, but also provides the specific command-line arguments. While

this allows you to manage your configuration of client checks from the Nagios monitoring host, it has a variety

of unpleasant security ramifications. If you have developed a means to securely distribute configuration files

as described earlier in this chapter, managing nrpe configuration centrally should be trivial.

On the Nagios monitoring host, once the NRPE package has been compiled, the check_nrpe binary must be

copied into /usr/local/libexec/nagios with the rest of the Nagios plug-ins. On all client systems, copy the nrpe

binary to /usr/local/sbin instead.

4.6.1.4 Configuring Nagios with NRPE

 On the monitoring host, you will need to tell Nagios to use NRPE to run local checks on remote systems.

To do this, add the following check_nrpe command to your checkcommands.cfg file as follows.

define command {

 command_name check_nrpe

 command_line /usr/local/libexec/nagios/check_nrpe -H $HOSTADDRESS$ -c $ARG1$

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.nagios.org/

}

You will then need to add commands to one of your configuration files or create a new configuration file on

the monitoring host that specifies which NRPE checks should be run on which remote systems. This

procedure is fully documented in the README distributed with NRPE. No other configuration is required on

the monitoring host.

NRPE on client systems may then be configured to run out of inetd(8) (or xinetd) to make use of

tcpwrappers support and rate limiting. Alternately it may be run directly as a service using the startup script

provided in the port. nrpe can be configured with a list of IP addresses from which to accept commands

directly.

On all client systems, you will need to install the nagios-plugins port and configure NRPE by creating an

nrpe.cfg configuration file usually located in /usr/local/etc. This file should contain a list of local commands

whose output the nrpe daemon will send back to the Nagios process on the monitoring host.

4.6.1.5 Fine-tuning

A complete description of configuring Nagios for the variety of environments out there would consume far

more pages than we are able to spare, but rest assured, documentation exists. As a newcomer to Nagios, do

not expect to get the system operational in a day, or even a few days. With the extensive documentation on

the Nagios web site, the FAQ, the forums, and the mailing lists, however, you will not be short on help.

4.6.1.6 Wrapping up

With Nagios and nrpe operational, you have a 24/7 observer of all the systems under your jurisdiction.

Configure your thresholds appropriately and you will become immediately aware when unusual activity is

detected. For instance, on an ftp download-only server, it may be especially important to detect even a small

increase in disk usage. This might indicate that the system is misconfigured and allowing people to add

content. Watching the number of smtpd processes on a mail relay may provide an early warning allowing you

to investigate before the system goes down.

What to watch, and what thresholds to set, are questions you will have to answer for yourself. After you have

Nagios set up, configure it to warn you earlier rather than later when it detects a problem. If you find that your

thresholds are set too low, you can always raise them. Your goal is to know as soon as something unusual is

happening on your system, but you don't want to be badgered by useless alerts.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

4.7. Wrapping Up

Building and maintaining a secure server is a nontrivial and never-ending task for the system administrator.

Starting with a carefully built system, it is important to control who has access and what users and

administrators can do. Keeping up to date with security and reliability fixes to the operating system and

installed software requires that you stay informed and prepared. Finally, keeping tabs on how your systems

are running will give you insight into whether any of them might be misbehaving. Following the guidelines set

forth in this chapter will help you build a more easily maintained and secure systems infrastructure.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html
mfreeopenbsd-CHP-4-SECT-7.html

 < Day Day Up >

4.8. Resources

A list of resources follows.

4.8.1. Operating System

BSD Hacks , Dru Lavigne (O'Reilly), 2004

FreeBSD release engineering: http://www.freebsd.org/releng/

FreeBSD mailing lists: http://www.freebsd.org/support.html#mailing-list

OpenBSD flavors: http://www.openbsd.org/faq/faq5.html#Flavors

OpenBSD mailing lists: http://www.openbsd.org/mail.html

Unix Backup and Recovery, W. Curtis Preston (O'Reilly), 1999

4.8.2. System Monitoring

 Big Brother: http://www.bb4.com/

Big Sister: http://bigsister.graeff.com/

Nagios: http://www.nagios.org/

OpenNMS: http://www.opennms.com/

4.8.3. General Security

Incident Response , Richard Forno and Kenneth R. van Wyk (O'Reilly), 2001

SecurityFocus: http://www.securityfocus.com/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
mfreeopenbsd-CHP-4-SECT-8.html
http://www.freebsd.org/releng/
http://www.freebsd.org/support.html#mailing-list
http://www.openbsd.org/faq/faq5.html#Flavors
http://www.openbsd.org/mail.html
http://www.bb4.com/
http://bigsister.graeff.com/
http://www.nagios.org/
http://www.opennms.com/
http://www.securityfocus.com/
http://www.securityfocus.com/

SSH, The Secure Shell: The Definitive Guide, Daniel J. Barrett and Richard Silverman (O'Reilly),

2001

Topics in Cryptography: http://www.wikipedia.org/wiki/Topics_in_cryptography

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.wikipedia.org/wiki/Topics_in_cryptography

 < Day Day Up >

Part II: Deployment Situations

Every server has a specific purpose in life, and FreeBSD and OpenBSD systems are ideal

candidates for handling critical infrastructure services like DNS servers, firewalls, mail

gateways, and web servers. Part II covers these deployments and how you can leverage

specific BSD features to improve the security posture of the services you provide. We don't

tell you everything about deploying the specific service, however; just the extra options and

special circumstances where you can take advantage of OpenBSD or FreeBSD. The goal

of this section is to offer guidelines for securely deploying the software that will run critical

services in your network.

With each of these critical network services, we take time to explain the kinds of risks you

face, the sorts of attacks you might need to repel, and why you and your organization care

about running the service securely. When we talk about installing and configuring software,

though, we refer back to the general techniques and building blocks that we laid out in Part

I. You'll want to be at least passingly familiar with the techniques, because we combine

them in interesting and sometimes subtle ways.

Chapter 5, Creating a Secure DNS Server

Chapter 6, Building Secure Mail Servers

Chapter 7, Building a Secure Web Server

Chapter 8, Firewalls

Chapter 9, Intrusion Detection

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html
mfreeopenbsd-PART-2.html

 < Day Day Up >

Chapter 5. Creating a Secure DNS Server

A good name is better than fine perfume.

—Ecclesiastes 7:1, Holy Bible,New International Version

 The Domain Name Service (DNS) is a critical service underpinning the entire Internet. Every nontrivial

network has at least one DNS server. In the simplest case, a small organization may simply have a caching

server that helps aggregate queries to the outside and answer queries about internal-only systems. Larger

organizations operate many servers to handle higher demand for name resolution. DNS is at the heart of

email communications, web communications, and SSL/TLS trust. We can't overstate its importance.

Yet, despite its central role in all Internet communications, DNS is surprisingly insecure. As a protocol, it was

designed in the good old days of the Internet when servers trusted each other and malicious packets were

few and far between. There are significant weaknesses in the protocol, and there have been significant

problems with the programs that use the protocol.

In this chapter, we describe the security implications related to operating DNS servers. We outline some of

the risks your organization faces related to DNS, and some of the ways to mitigate those risks. We focus on

the two most common DNS servers for FreeBSD and OpenBSD: the Berkeley Internet Name Daemon (BIND)

and Daniel J. Bernstein's DNS server (djbdns). We will compare and contrast the security postures of the two

servers and how they approach the various risks related to DNS.

Having discussed the risks and mitigations, we will describe specific installation scenarios. We will describe

how to get it isolated in a sandbox and how to lock down the machine tightly to avoid compromise of the DNS

service. Lastly, we will cover routine maintenance procedures and how they can be accomplished securely.

We will also discuss a few of the pros and cons about choosing which server software to run, but ultimately,

the decision is yours. Our goal is to help you get it installed and running securely.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html
mfreeopenbsd-CHP-5.html

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html
mfreeopenbsd-CHP-5-SECT-1.html

5.1. The Criticality of DNS

The correct operation of DNS is vital to any Internet network. We rely on it to translate human-readable

names into IP addresses both to organize our computers and to make them easier to work with. Of course,

DNS is involved in the reverse process, too: mapping IP addresses to names. DNS plays a vital role in a

variety of other Internet services. DNS records enable or help prevent several kinds of man-in-the-middle

attacks. DNS records are often used to help distribute Internet traffic between different geographical sites.

With the increasing use of IPv6, DNS can be invoked to help distribute public keys in an asymmetric

cryptography system.

Your organization probably relies on DNS in a variety of ways. If you have any online presence, then DNS

enables your visitors to resolve DNS names to your servers' IP addresses. More importantly, the mapping of

names and IP addresses in DNS is critical to your customers' trust of the SSL certificate and connection that

you offer them. Your company's email is routed via DNS records. Most modern companies rely heavily on

email, and their successful use of email depends absolutely on the correct functioning of DNS. Thus, reliable

and accurate DNS records are vital for keeping Internet communications open between your organization

and others.

5.1.1. Technical Risks Related to DNS

 There are a few ways in which DNS can be attacked that relate directly to the software you run or the data

in your DNS zones. Sometimes the absence of data, or the presence of a typo, can create a significant

opportunity for mischief.

5.1.1.1 Vulnerabilities in DNS software

Of the two software packages discussed in this chapter, BIND has had the worse track record; numerous

and significant vulnerabilities have been found in it over the years. Some have granted root access to remote

attackers. With certain versions and certain configurations, the named(8) process could inadvertently

execute rogue code on the DNS server. Once any kind of rogue code can be executed, it is often possible to

invoke a shell on the system. Once a shell can be executed, an attacker can usually escape a chroot

environment with only a little more time and effort.

5.1.1.2 Zone misconfigurations

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Zone misconfiguration problems are possible with both BIND and djbdns because they are problems in the

zone data itself, not with the DNS server software.

One reasonably common problem in the DNS world is called a "lame" delegation. In this case, your zone

file lists the IP addresses of DNS servers that supposedly serve your domain. However, one or more of the

listed IP addresses is not serving your domain. Perhaps it is not running any DNS software at all, or the host

is down or unreachable, or perhaps the IP address is mistyped. Most frequently the server is your slave

server, but someone forgot to give it the zone information. In any case, the situation has two different impacts

on your organization: it creates slightly slower performance on domain lookups, and it opens the opportunity

for hijacking of your domain. If you list two domain servers in your zone and one of them is lame, then half

the time people will try the lame IP address first. They wait for a response, often up to 30 seconds depending

on their particular system and its settings. Eventually they give up and try the other nameserver, which

works.

The other problem with lame delegations stems from the fact that every IP address belongs to someone. If

you accidentally mistype an address in the zone file, then the person who controls that IP address can set up

a DNS server that claims to serve your domains. Suddenly your customers might end up browsing a

competitor's site, or your employees might end up connecting to a hacker's machine instead of your VPN

gateway.

5.1.1.3 Missing zone information

 Like bad zone data, missing zone data can create problems. The effects are the same with BIND or djbdns.

There are a small variety of attacks that can be launched because of missing zone data.

 In DNS terminology, "forward" zones are those that map a name to an IP address. The corresponding

"reverse" zones map IP addresses to names. In order to be standards compliant and to resist some kinds of

attacks, every machine that has a DNS entry should have both a forward and a reverse map. That is, if

www.example.com is 12.34.56.78, then there should be an entry in the 56.34.12.in-addr.arpa zone that

maps 78 to www.example.com.

Matching forward and reverse records serves as a confidence indicator on the Internet. They imply that the

IP address and name are under the same administrative control. Internet hosts tend to be suspicious of a

server that does not have matching forward and reverse records in DNS. Some mail servers will refuse to

take mail from a system that has no reverse record. All modern web browsers will warn their user if the

browser makes an SSL/TLS connection to a web server that does not have matching reverse records. If you

want to avoid casting doubts in the minds of your users, you should make sure that any secure web server

has matching A and PTR records. This is true even for an intranet web server.

5.1.2. Risks Related to DNS and Mail

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

MX records in DNS are vital to today's email-dependent businesses. They determine where email for a

given domain name goes. Typically, you have at least one MX record for your domain. Ideally, you have

additional MX records for all the hosts in your externally published domains as well. To be safest, you have

multiple MX records for all your hosts. Multiple MX records allow for fastest recovery when your primary mail

server is unavailable.

When a standards-compliant mail transfer agent (MTA) wants to determine the correct mail server for a

domain, it uses DNS. Consider the fragment of a BIND zone file shown in Example 5-1.

Example 5-1. MX records in a BIND zone file

$ORIGIN example.com.

$TTL 86400

example.com.

 A 12.34.56.78

 MX 10 mail-a.example.com.

 MX 20 mail-b.example.com.

www A 12.34.56.78

 MX 10 mail-a.example.com.

 MX 20 mail-b.example.com.

mail-a A 12.34.56.79

 MX 10 mail-a.example.com.

 MX 20 mail-b.example.com.

mail-b A 12.34.56.80

 MX 10 mail-a.example.com.

 MX 20 mail-b.example.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In this example, an MTA trying deliver mail to an address ending in @example.com will try to connect to the

server named mail-a.example.com, whose IP address is 12.34.56.79. If that server does not respond for

some reason, the sending MTA will try mail-b.example.com. If the first server does respond, but rejects the

email for some reason (e.g., an invalid destination address), the sending MTA does not try the other server.

Notice the additional numbers on the MX lines. They indicate a relative priority between the different possible

mail servers. The lower the number (with zero being the lowest valid number), the higher the priority. That is,

the lowest numbered server is tried first. Servers with equal numbers are tried in random order.

There are two security considerations involving MX records in DNS: all the records must match, and you

should consider where your email might go.

 Make sure that all your MX records, and their corresponding A and PTR records all match up. In an effort

to crack down on unsolicited, bulk email ("spam"), some mail servers will categorically reject email from your

mail server if all its DNS records do not match. Lost or significantly delayed email can be very costly or

disruptive to your organization, or perhaps to another organization that is closely related to you.

As a redundancy measure, some businesses have backup mail servers. Because they are listed in your

DNS zones, they receive your email when your primary server does not respond. Backup mail servers are

most effective if they are on different networks and in different data centers than your primary server. If both

the primary and backup are in the same data center, with the same connectivity to the Internet, then the

Internet connectivity and the data center are single points of failure for email. If the one link to the Internet

goes down or if the data center loses power, for example, both primary and backup mail servers become

unavailable.

Backup mail service can create risks, however. Many small and medium-sized businesses cannot afford to

operate mail servers in geographically distributed data centers. They often arrange for their Internet provider

or another ISP to be their backup mail server. If the ISP that serves as a backup is less well protected than

the organization's primary mail server, an attacker can try to compromise the backup mail server instead.

Given that DNS records of backup mail servers are public, the attacker can spend time analyzing your IP

addresses and the backup mail server's susceptibility without ever probing your primary data center. It is

absolutely critical, therefore, to consider how well protected any backup mail servers are when setting up

your MX records in DNS.

5.1.3. Risks Related to DNS Attacks

 Your DNS can be attacked by attacking the servers directly, by attacking servers you trust, or by attacking

the domain registration, which seeds DNS. Each of these attacks can be mitigated or at least resisted

through the best practices we describe in "Responding to DNS-Based Risks."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.1.3.1 Cache poisoning

Cache poisoning is a DNS attack that was more popular a few years ago than it is today. Attackers

maliciously configured DNS servers to send incorrect, superfluous records when responding to legitimate

queries. This extra data is sent in the "additional" section of the DNS response. The additional section of a

response is often used as a convenience for the server to provide relevant information that was not

specifically requested but is related to the original query. For example, if I ask the authoritative example.com

server for its MX record, it will send me the MX record. It will probably also put the A record (the IP address)

of the mail server in the additional section, if the mail server is in the example.com domain.

The surprising thing is that older versions of BIND would store additional information as if it was authoritative.

It did not matter that the bogus information did not come from the right server. The next time someone would

query that BIND server (again, your organization's caching server), it would use the bogus data as if it were

authoritative.

While this attack is no longer a major threat (it has been solved in BIND for years and was never a problem

for djbdns), it highlights two important concerns. First, it demonstrates the value of running a secure DNS

resolver for your organization. Second, it shows how the utter lack of authentication between DNS servers

creates a variety of trust problems that are hard to solve.

5.1.3.2 DNS spoofing

 Some DNS abuse is possible because DNS uses User Datagram Protocol (UDP) datagrams for most

messages. Simple UDP messages carry no authenticating information other than the IP address of the

sender—which can easily be forged. Despite the fact that both BIND and djbdns guard against cache

poisoning now, spoofing is harder to protect against. DNS needs to use UDP for a variety of reasons,

efficiency being the most obvious. An unavoidable consequence of using UDP, however, is that spoofing is

quite easy unless the DNS protocol itself adds authenticating information.

If any system on the Internet can monitor traffic between your caching server and the Internet, it can attempt

to launch a spoofing attack against your users. It waits for a request for something like www.yahoo.com to be

transmitted from your site to the Internet. Then it injects a response that looks legitimate. If the attacker

knows in advance a certain set of sites (such as Yahoo!) that he will be attacking, he will craft his forged

responses so that they even appear to originate from the correct IP addresses (i.e., yahoo.com's

nameservers). Just like in the cache poisoning attack, the attacker has now inserted records into your

server's cache. Your DNS server now believes his spoofed packet simply because it answered the question

that was asked.

Monitoring a WAN line for such traffic, crafting the correct response on the fly, and injecting that response at

the right time is tricky, but not impossible. There is a proof-of-concept program called the "Denver Project"

(http://www.ilionsecurity.ch) that implements a simple LAN-based DNS spoofing tool.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.ilionsecurity.ch

5.1.3.3 Registration hijacking

There are a variety of ways that you can lose control of your domain altogether by losing control of its

registration. Your domain expires from the Internet registry unless someone pays the renewal fees when they

are due. There are professional scam artists who snap up lapsed domains and register them. They often

demand high ransoms to return ownership. Although U.S. trademark law can help fight them off, the courts

are slow and your organization can completely lose the use of your domain while the hijacking is sorted out in

the courts.

 Some attackers have successfully forged registration transfer agreements that convinced registrars to

change ownership of domains. They forge documents, email messages, or whatever is necessary to

persuade the registrar that they now control the domain. Then, they can control the NS records that appear in

the root top-level domain (TLD) servers (e.g., the .com, .org, or .net nameservers). Suddenly the

nameservers that serve your domain are not your nameservers, but are someone else's. Using an attack like

this, an attacker can route all web traffic through transparent proxies at his site, or route all email through his

own proxy mail server. He can monitor Internet communications by causing DNS lookups to resolve to his IP

addresses instead of yours. Then he sets up proxy services that actually look up (using your nameservers)

and connect to the correct real servers. Carefully done, this attack can proceed for a long time with few

symptoms.

It is critical that you use a trustworthy domain registrar and that you stay up to date on all domain

registration requirements. An occasional check with the registrar's web site is a good idea as well, to make

sure nothing has unexpectedly changed. Be sure to treat the access codes (user ID, password) to the

registrar's web site as confidential, as you would any other administrative password.

5.1.4. Responding to DNS-Based Risks

There are many different "best practices" that address various security concerns. They do not necessarily

improve efficiency, maintainability, or manageability of your nameservers. They are worthwhile if you suspect

your organization is exposed to some of the risks above. It is not usually a good methodology to simply

invoke every possible security feature just because it exists. You should consider the threats that your

organization faces, and which DNS features you use, and then apply the mitigations recommended below

that make sense.

Depending on whether you use BIND or djbdns, you have different options for best practices. With djbdns

you often get fewer choices with respect to security posture. The authors have chosen a specific stance on a

particular risk, and that is the stance all djbdns users are forced to take. The default djbdns configuration will

create a secure system that needs little or no tweaking. BIND, on the other hand, offers myriad security

options. Virtually all BIND installations make use of several options to improve on the default security posture

of a BIND configuration.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.1.4.1 Limit recursion

 A recursive query happens when a server looks up the answer to a client's query on the client's behalf.

A client asks the server for a name that the server does not know and indicates that it would like the server to

search for the answer if necessary. The server performs the various tasks of consulting the root domain

servers, global top-level domain servers, or other servers as necessary to fulfill the client's request. If you run

an externally facing DNS server whose only purpose is to answer authoritatively for your domain, it should

not answer recursive queries. They consume unnecessary resources in CPU and bandwidth. More

importantly, BIND has had several widely publicized bugs in its recursion algorithms, some of which

completely compromised the server. This is a case where it is prudent to turn off a feature of BIND if you are

not making use of it.

As with other BIND bugs, djbdns does not suffer this problem. Its authoritative server (tinydns) and its

recursive server (dnscache) are different processes that usually run in different sandboxes, if not on different

physical servers. It is hard to have unnecessary recursion on an authoritative djbdns server.

5.1.4.2 Limit zone transfers

 There is no legitimate reason for anyone outside your organization to transfer your zones in bulk. A zone

transfer request asks your DNS server to send all the zone information: hostnames, mail server records,

nameserver records, etc. Although all this information is publicly available through your DNS server, there is

no reason to make an attacker's life easier. Restricting zone transfers makes hackers' lives just a little harder

and has absolutely no detrimental impact on legitimate use of DNS.

In BIND's named.conf file, you can create sets of trusted hosts who are allowed to transfer your zones, and

then refer to that set of hosts later in each zone's configuration block. Example 5-2 shows an access control

list (ACL) of two hosts that are allowed to transfer the zones in bulk.

Example 5-2. Restricting zone transfers with IP addresses in BIND

acl trusted-servers {

 12.34.56.78; // our name server

 23.45.67.89; // our ISP

};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

zone example.com {

 type master;

 file "zones/example.com";

 allow-transfer { trusted-servers; };

};

 Note that cryptography is far more difficult to spoof than IP addresses. To be even more careful about

who can transfer zones, you can use transaction signatures (TSIG) to authorize zone transfers. (See

"Transaction Signatures (TSIG)" for more information.)

 Unauthorized zone transfers are primarily a BIND concern. If you use djbdns, you have to go to a lot of

effort to enable even authorized zone transfers. The recommended way to synchronize zones in djbdns is to

use rsync(8) and ssh(1) to copy the zone data from the master to the slaves. Clearly you will only enable

such access between systems that you trust. It is highly unlikely that a host will be able to inadvertently

download your zone information through rsync and ssh.

5.1.4.3 Maintain your own zones

 One of the reasons that forward and reverse records often fail to match is because they are owned and

distributed by different entities. You own your domain name (the forward mapping), but someone else owns

the reverse map. Often that someone else is your upstream connectivity provider, but it may be ARIN, RIPE,

or a carrier upstream from your immediate ISP. If your organization changes names frequently, or if you have

many different public IP addresses to manage, you may find your upstream provider unwilling to make

changes in the reverse maps as often as you would like. There is an elegant solution to this, but it may be too

subtle for your upstream provider. They can delegate the name service responsibility for your chunk of

addresses to your server. Consider Example 5-1, in BIND syntax, showing a chunk of our fictitious

12.34.56.X zone. Let's assume that our company example.com has been granted the IP addresses

12.34.56.72 through 12.34.56.80. The zone file in Example 5-3 shows how our upstream DNS provider can

delegate the reverse PTR records to us for our IP addresses while maintaining direct control of the reverse

records for other IP addresses.

Example 5-3. in-addr.arpa zone with delegations

$ORIGIN 56.34.12.in-addr.arpa.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

$TTL 86400 ; 1 day.

...

70 PTR mail.othercustomer.com.

71 PTR www.othercustomer.com.

72 CNAME 72.example-com.56.34.12.in-addr.arpa.

73 CNAME 73.example-com.56.34.12.in-addr.arpa.

...

81 PTR mail.somebody.com.

...

example-com NS ns1.example.com.

 NS ns2.example.com.

In this situation, a client looking for the PTR record for 72.56.34.12.in-addr.arpa, will not find it here.

Instead, it finds CNAME records that point to a subdomain of 56.34.12.in-addr.arpa. This subdomain,

named example-com to help an administrator remember who it serves, is then delegated to the

example.com nameservers. The client then queries the nameservers, either ns1.example.com or

ns2.example.com, and finds the correct information from them. This technique is recommended and

explained more fully in Chapter 6.5 of the DNS and Bind Cookbook, which is listed in the Section 1.7 section

at the end of the chapter.

 If you can get your upstream ISP to delegate the reverse records, then you gain a valuable measure of

autonomy. You can update the reverse records as you need to without the intervention of your ISP. There are

many advantages to such a situation. If a sudden problem causes you to switch to a backup data center

where the IP addresses were different, you would want to be able to update the reverse records on your

SSL-enabled web servers. Otherwise, visitors to your backup web servers would receive warnings about your

SSL certificates. Likewise, when you bring new systems online with public IP addresses, or decommission

old systems, you can trivially set the reverse records to be correct without having to interact with your

upstream ISP.

ISPs may be reluctant to delegate the reverse records to you, however. You could use the reverse record to

advertise your IP address as www.yahoo.com or some other domain that you don't own.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.1.4.4 Run secure, organization-wide recursion servers

 For resolution of domains other than your own, you should run all queries through one or more servers

that perform recursive queries on behalf of internal workstations. They will live in your DMZ, and will need to

talk to both internal and external hosts. This arrangement offers two kinds of security: it protects individual

client systems inside your organization, and it limits the potential damage from malicious DNS attacks. This

arrangement is depicted in Figure 5-1.

Centralized recursive queries allow the IT staff to direct all DNS traffic through just the authorized recursive,

caching servers. This means that the firewall can prevent all DNS traffic flowing into or out of the

organization, except for that going to the caching servers. Some Trojan programs use bogus DNS requests

as a covert channel back to a controlling server. They install and lay dormant until the control system gives

them a command. They send malformed DNS queries to their command server and receive responses that

indicate what to do (such as participate in a DDoS attack). If DNS must pass through a central query server,

then such covert back-channels are prevented or hindered.

Centralizing recursion usually means that queries will be faster because records will frequently be cached.

Additionally, if there are recursion or cache-poisoning bugs in the resolvers of your internal workstations,

those bugs will not be exploitable by an outside attacker. You have more time to get an effective patch tested

and deployed because the buggy DNS functionality is not directly exposed.

5.1.4.5 Separate caches from authoritative servers

Even if you use BIND, which can run both caches and authoritative servers in the same process, you should

separate them. It is not necessary to separate them onto different physical machines, however.

If you are using FreeBSD and want to keep both processes on the same system, you can run them in

separate jails, each with its own IP address. Likewise, on OpenBSD, two processes can be run in different

chroot environments, and each can be assigned a different IP address.

This separation of duties is a fundamental security principle. In this case, you are protecting your authoritative

server from cache-oriented attacks. If an attacker sends a flood of queries or a series of poisoned responses

to your cache server, you do not want them to affect your authoritative server.

5.1.5. Summary

You may have noticed a trend among the various security vulnerabilities and problems we cited above. Many

problems exist with BIND that simply do not exist with djbdns. This is not surprising, however, since djbdns

was written to solve them. Though djbdns explicitly addresses many of BIND's problems, it does not offer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

many of the usability features that BIND offers. Usability and security often find themselves at opposite ends

of a functionality axis. BIND has chosen one point on the axis, and djbdns has chosen another. Deciding

which one addresses the needs of your environment will be up to you.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

5.2. DNS Software

 BIND and djbdns are not the only two software packages that perform DNS services. In the context of

FreeBSD and OpenBSD, however, they are the only realistic choices for production-quality, stable DNS

services. They are independently developed systems that operate very differently, but ultimately achieve the

same goal.

5.2.1. BIND 9

 The first versions of BIND were originally written at the University of California at Berkeley many years

ago. The Internet Software Consortium (http://www.isc.org/) maintains it now. In recent years, the ISC set

aside the entire Version 8 code base and rewrote the software from scratch. The Version 9 rewrite is cleaner,

more consistent, and is the reference implementation for the official DNS standards published by the IETF.

Some early adopters of BIND 9 were left with an unpleasant taste in their mouths because the early versions

were lacking many key features that were commonly used in BIND 8. You may find mailing list messages and

web pages disparaging BIND 9 for various reasons. Be sure to consider the age of the documents before

believing them completely. Features are now complete that were gradually phased in, and many issues have

been corrected.

BIND is all things DNS rolled into one large, complex program. Everything mentioned in every official DNS

standard is implemented—completely or incompletely—somewhere in BIND. It acts as master, slave, server,

and client all at various times. Depending on what you want your nameserver to do, this can be a

convenience, or a needless amalgamation of features.

BIND implements a number of security standards including TSIG and DNSSEC. It adds a remote

management API with rndc. It also adds a few automation features such as dynamic DNS, NOTIFY

messages, and incremental zone transfers. Several of these features will factor into our discussion of secure

DNS operations.

5.2.2. djbdns

 Daniel J. Bernstein wrote djbdns in reaction to BIND's overwhelming complexity, size, and history of

problems. BIND's complexity can be daunting and error-prone and its security track record is spotty.

Additionally, BIND uses a lot of memory in normal operations. The extant versions of BIND when Bernstein

was first writing djbdns had a variety of well-known and significant vulnerabilities. Even since djbdns was

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
mfreeopenbsd-CHP-5-SECT-2.html
http://www.isc.org/

written, significant vulnerabilities have been discovered in BIND—including in BIND 9.

Instead of being a monolithic super-server, djbdns is actually a series of small, specialized programs—in the

best Unix tradition. Each program handles a very specific set of responsibilities according to a small,

well-defined set of rules. Furthermore, each program can be used as a logical unit for encapsulation. Each

one can be chrooted or jailed. Each can run as a different user or run on a different server.

Security is the first and foremost priority of djbdns. The code's simplicity, separation of duties, and small size

are intentional efforts to keep the system focused and secure. Bernstein even offers a $500 bounty to the first

person who identifies a verifiable security flaw in djbdns. This is an interesting gesture; however, being the

first to document a hole in djbdns after so many years of operation is probably far more compelling than $500

in 2005. The fact remains that there are no documented djbdns-specific flaws. There has never been a bug

so egregious as a root-level compromise through a buffer overflow.

 Documentation and usability are low on the priority list for djbdns. The documentation is spotty and very

task oriented. That is, if you want to know how to do a specific task, there will be one suggestion on a web

page somewhere that merely lists the command to run. The meaning behind the command and the internal

workings are left undescribed. There are practically no comments in the source code, either.

5.2.3. Typical Architecture

In order to discuss DNS we need to establish a vocabulary of the systems and services that are involved.

Figure 5-1 shows a typical DNS installation for a small to mid-sized organization.

Figure 5-1. An example DNS configuration

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 The caching DNS server (E) in the DMZ performs recursive queries, but only for queries that

originate from the internal network.

Inside the organization, all workstations (A) are set to query a single internal DNS server or set of

servers (B). Those servers are the only hosts whose DNS queries are allowed to leave the internal

network. They forward all queries to the caching DNS server (E) to have them serviced.

There is an authoritative internal server (C) that is authoritative for internal host names and IP

addresses. Depending on the software configuration, it might be the same system as (B).

The internal DHCP server (D) might send updates to the authoritative internal server (C) every time

a new lease is given out. For simplicity's sake, this DHCP server sometimes runs on the same

system as C, though it does not have to.

In the DMZ there is an authoritative server (F) that serves domain information for the organization.

Typically, for robustness, there is some other server (G) at a different geographical location that acts

as a slave to F and answers authoritatively for your zones. These servers are the means by which

the rest of the world queries your zone information. Some organizations configure BIND so that E

and F are the same server.

In an organization running djbdns, (B) and (C) must be different IP addresses. They might be two different

jails on the same system, two different chroot environments, or two whole physically different machines.

Likewise (E) and (F) must be on separate IP addresses. Regardless of how many physical systems there

are, there are four distinct configurations to manage.

5.2.4. BIND Versus djbdns

 There are many comparisons of the two programs on the Internet and in print. Be forewarned, however,

that the opinions on both sides are strong and forcefully presented. We try to present only comparisons that

are relevant in a security context, and we try to present them in an impartial way. Table 5-1 compares

important functionality and how it is accomplished in djbdns and BIND.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5-1. Functionality in BIND and djbdns

 BIND djbdns

Authoritative server for zones Built-in to named tinydns

Caching nameserver Built-in to named dnscache

 Zone transfers Built-in to named
Manually configured rsync and ssh

scripts

Remote management rndc Not possible

Dynamic update nsupdate Not possible

 BIND djbdns

Adding new data to zones
Manually edit zone files or

nsupdate

add-* scripts or manually edit data

file

Sanity checking of zone data named-checkzone add-* scripts

Memory usage
Usually high

limited ability to tune it

Usually low

easily tuned

Cryptographically signed

records
TSIG built-in to named Not possible

Integration with Microsoft

Windows
Dynamic updates Not possible

5.2.4.1 One process or many?

No matter what role your nameserver will play, BIND will always use the same configuration file. You will

have to add configuration directives to enable or disable certain functionality to suit your particular

application. BIND will always cache and it will always try to load zone information into RAM. This can cause

resource constraints, especially if you are using a small system. On the other hand, hardware is cheap and

FreeBSD and OpenBSD are also free. A few hundred dollars can obviate any RAM issues.

Compare this monolithic BIND process with the one or two processes that you run with djbdns. The simpler

your needs, the fewer processes you will run, and the smaller they will be. If you need a complex system,

however, you will find that you need multiple IP addresses and/or multiple systems to accomplish all the

different tasks. If you plan to run all your DNS services (zone transfers, authoritative query responder,

caching server) on a single system, djbdns will add some non-DNS complexity to your server. To help offset

the additional complexity, Bernstein provides a set of tools, separate from djbdns, that manage the chroot

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

requirements automatically.

5.2.4.2 Zone maintenance

 With djbdns, you get a set of utility programs that do basic maintenance for you. They even check for some

common errors. There are some uncommon configurations that are not easily supported by these scripts.

There are also a few record types (e.g., DNAME) that djbdns does not support at all, even though they are

defined in RFCs. Most sites either do not use these records, or can probably live without them.

In BIND, the zones are updated by hand by editing text files. In the past, the file format was not very robust

and BIND was not helpful in diagnosing accidental mistakes. It was very easy, for example, to accidentally

set your MX record to be mail.example.com.example.com by leaving out an important period on the MX line.

Such errors are still easy to make in BIND zone files, but BIND 9 made the syntax far more strict and regular

than BIND 8. This allows it to flag more errors than BIND 8 did. It also includes tools to check configuration

files (named-checkconf) and to check zone files (named-checkzone).

5.2.4.3 Dynamic updates

 BIND offers dynamic updates, a feature that djbdns does not implement. They allow you to send DNS

records over the network that modify a zone as it runs. These updates are received by the named process

and cause it to add, delete, or modify records. Once the update is processed, BIND updates the serial

number automatically.

 One common and very useful application of dynamic updates is the integration between the ISC's DHCP

server and BIND. When the DHCP software issues a lease for an IP address, it can update the forward and

reverse DNS maps in BIND automatically using dynamic DNS. When a lease is granted, the DNS zones get

the new forward and reverse records. If a lease expires and is not renewed, the zones are updated with

deletions of the corresponding records.

There is a dark side to dynamic updates. As Yoda said in The Empire Strikes Back: "Once you start down

that path, forever will it dominate your destiny." To use dynamic updates, you essentially relinquish all

manual control over the zone files. BIND takes over. You will no longer be able, for instance, to follow the

convention of using the date for the zone serial number (e.g., 2004081600 for the first update on August 16,

2004). Each new update will increment the serial number by one. You cannot edit the zone file manually

anymore. The next time BIND makes an automatic change, it will clobber any manual changes you might

have made and it will completely rewrite the zone file. Lastly, BIND keeps a journal file for every dynamically

updated zone. These journal files are binary and essentially unreadable. They record the changes from one

serial number to the next, so that BIND can send the proper differences from any prior serial number to the

current data. These files can be problematic, especially in active zones like those that are regularly updated

by a DHCP server. The journal files grow without bound and are never truncated by normal BIND operations.

To truncate them safely, you must stop the server gracefully, remove the journal files (not the zone files!),

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

and restart the server.

If you want to integrate with a Microsoft Windows Active Directory environment, you can, using dynamic

updates in the way that BIND implements them. It is possible to service all your DNS through BIND, even the

dynamic updates that recent versions of Windows want to issue. Even though Windows Advanced Server

2003 and similar server products offer DNS services, there is no need to run multiple DNS servers on

different platforms and architectures.

5.2.4.4 Incremental zone transfers and notify

 When a zone has been changed, either manually or through a dynamic update, BIND can send NOTIFY

messages to all the necessary name servers for that zone. If the other servers are also BIND servers, they

can respond by sending zone transfer requests. This allows servers to receive updates as soon as they

happen, without waiting for a TTL to expire and without any manual intervention by the administrator (other

than making the change to the zone).

 Incremental zone transfer (IXFR) requests, as opposed to zone transfer (AXFR) requests, are also unique

to BIND. They allow a slave server to send the serial number of the zone information it currently has so that

the master server will send only the changes to the zone that have happened since that serial number. If the

difference is too large to fit in a single UDP datagram, the two servers negotiate a TCP connection to transfer

the data.

5.2.4.5 Remote control

 BIND additionally has the ability to perform various operations in response to commands received over the

network. It can drop zones, reload zones, and create zones, among other things. There are definitely security

implications to enabling this feature. It allows, however, for a separation of privileges whereby a junior

administrator could be charged with managing routine zone data on a server where she does not normally

have any sort of login access.

In order to manage djbdns, she would have to have permissions to log in on the DNS server, and run some

commands as root, perhaps through a mechanism such as sudo. This is not to imply that it is impossible to

arrange the same zone management structure in a djbdns system. The difference that we are pointing out is

that, as with many things in djbdns, you are given some good tools, some sparse documentation, and then

you are left to roll your own updating mechanism. With BIND, you get integrated support for this kind of

remote maintenance—whether you want it or not.

5.2.4.6 Summary

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Perhaps the most relevant way to summarize the differences between BIND and djbdns is to look at how

they most affect your workload as the system administrator. BIND gives you many features, whether you

need them or not. In order to use many of the features safely, you must configure cryptography support in

BIND and understand how to create security keys. It is relatively easy—with nothing more than BIND and its

accompanying tools—to set up a server, enable secure, automatic updating with another server, and

remotely manage it. You must remain vigilant with BIND, however, given its history of vulnerabilities. There

are many more resources, books, and web sites that give documentation and hints about how to run BIND

than there are giving hints about djbdns.

With djbdns, you are likely to be able to sleep more easily in terms of security. There are no known

vulnerabilities. Despite the fact that it implements less DNS functionality than BIND, you will probably only

use a small subset of its features. The biggest drawback is that maintenance is all manual and must be

automated by you, the administrator. Documentation is scarce, too. BIND is so large that it can hardly help

but to contain vulnerabilities. On the other hand, djbdns is so small that it shifts a significant amount of the

security burden to you. Djbdns leaves it up to you to implement secure replication, secure remote

management, and to set up all the different servers on different systems or IP addresses. There are

documents and example configurations to start from, but they must be customized to fit your environment,

and you have to know what to customize. There is plenty of room for you to make mistakes in these ancillary

tasks; you must be careful not to create non-DNS vulnerabilities on your servers.

 Proponents of djbdns argue that the dynamic updates, NOTIFY, and IXFR features are either buggy,

unnecessary, or less efficient than existing alternatives. There definitely were bugs in early versions of

dynamic updates. They have improved to production quality now. Many companies rely on them. The djbdns

alternative to NOTIFY and IXFR is to use a program like rsync (http://rsync.samba.org/) over a secure

channel established through ssh. The cryptography is certainly strong, and it handles very large files

efficiently. Of course, there have been errors in both rsync and OpenSSH over the years, too. Nothing is

bulletproof.

We think that hardening BIND 9 is probably the best first step if you are making the transition from

experienced administrator to experienced, security-minded administrator. If you look at the documentation for

djbdns and you think "I can handle that," then you will probably be more secure for choosing djbdns.

Remember, however, that security is measured relative to the hostility that you face; and no increased

security posture comes for free.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://rsync.samba.org/

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html
mfreeopenbsd-CHP-5-SECT-3.html

5.3. Installing BIND

 If you use OpenBSD 3.5, BIND 9.2.3 is included in the standard base35.tgz file, which is the best way to

manage it. If you keep your system up to date with patches (as described in Chapter 4), then you can

probably keep BIND 9 up to date with the rest of the operating system. The OpenBSD project staff are

scrupulous about screening the software they bundle and are aggressive about updating software like BIND

when vulnerabilities are announced. If you stay up to date, you will be in good shape. A reasonable version of

BIND 9 is included with the base OpenBSD operating system, and it is configured well, so we will not discuss

how to install a separate version from scratch on OpenBSD. There are few, if any good reasons to do that,

and many good reasons to stay with the version that is provided by the installation.

Both FreeBSD 4.x-RELEASE and FreeBSD 5.x-RELEASE ship with BIND 8.3.4 by default. Though it is the

opinion of the authors, rather than an objective fact, we believe BIND 9 is the better foundation for building

your DNS infrastructure than BIND 8. The probability of new vulnerabilities being found in BIND 8 is

considerably higher than in BIND 9. The discussion in this chapter, therefore, focuses on how to install,

configure, and maintain BIND 9.

5.3.1. FreeBSD

With FreeBSD, you want to overwrite the default version of BIND by installing ports/dns/bind9 from the ports

tree. If you do not overwrite the original version, you will have duplicate copies of critical BIND components.

You could inadvertently invoke the wrong one, or a script whose PATH was incorrectly set could invoke the

wrong one. The command-line syntax of both named and nsupdate have changed significantly between

Versions 8 and 9.

The FreeBSD ports system makes it easy to overwrite the installed version of BIND. There are two steps:

Insert NO_BIND=TRUE in /etc/make.conf. This ensures that BIND 8 is not built and installed

when you are upgrading your system using the buildworld/installworld paradigm as described in the

FreeBSD Handbook and in Chapter 4 of this book.

If you choose to use the PORT_REPLACES_BASE_BIND9 option (described next), you will

clobber your BIND 9 installation by running make installworld unless you use NO_BIND=TRUE.

1.

Insert PORT_REPLACES_BASE_BIND9=TRUE in /etc/make.conf. This causes the port version

to overwrite /usr/sbin/named and /etc/named and other files in the base installation. This means that

when you put named_enable="YES" in /etc/rc.conf, it will launch BIND 9 that you compiled in

ports.

2.

If you accidentally overwrite a BIND 9 installation with BIND 8, you may have

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

difficulty diagnosing it. BIND 8 will often accept much of the same syntax in the

named.conf and zone files. It will gripe about what it does not understand, but

it will probably run. In terms of serving zone information, it will probably run

correctly. Your biggest clues will be functionality (like cryptography and

dynamic updates) that suddenly stops working.

Note that the version tracked in ports/dns/bind9 is not always the absolutely latest version. It is occasionally

behind by a few minor revisions, unless there is a major security concern. Most sites can usually get along

safely without being on the bleeding edge. DNS is such a critical function that the FreeBSD port maintainers

are a little conservative about updating it.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

5.4. Installing djbdns

 Whether you are using FreeBSD or OpenBSD, djbdns is not included with the operating system. In

FreeBSD, it is available as a port. Under OpenBSD, you must build from source following Bernstein's

installation instructions. Documentation is not included by default with djbdns. It is available as a separate

download online. You should probably download the documentation and familiarize yourself with it before

installing.

5.4.1. Preliminaries

There is a little planning to do before installing djbdns. You will need more than just the djbdns software itself

in order to run any of the djbdns programs. Two utility packages are required that provide functionality other

than DNS service. Despite the fact that it is probably possible to run djbdns service in some other way, it is

better to obey the convention and use these assistant programs.

5.4.1.1 Locating zone data

The installation instructions for djbdns suggest creating directories in /etc for DNS-related services. In

general, this is a fine idea. Both OpenBSD and FreeBSD are careful about how they handle /etc when

upgrading the operating system. There is one case, however, in which it might be undesirable to put your

tinydns configuration in /etc. All of your zone data will be stored wherever you create the tinydns directory. If

you have a lot of zone data, you may not want all that zone data in your root partition. It might fill your root

partition; it makes fsck take longer to run on your root partition in an emergency; or it might simply violate

your conventions of separating data and configuration information. Some administrators use immutable

filesystem flags or read-only mount points for configuration data (such as the /etc directory or the / partition).

In such a case, you might want to put your DNS zone data elsewhere. The easy solution is to use

/usr/local/etc/tinydns or some other location that puts the data on a different, larger partition. Since the

directory will be symbolically linked to /service (or /var/service on FreeBSD), it's true location is not very

important.

5.4.1.2 Daemontools

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html
mfreeopenbsd-CHP-5-SECT-4.html

Bernstein has written a series of tools, called "daemontools," that coordinate Unix services. Some of the

tools orchestrate the starting, stopping, and signaling daemon processes. Other tools help run setuid and

setgid programs safely and set environment variables for services. There is also a tool for managing logfiles.

These are general-purpose tools for running all sorts of service processes in a Unix environment. You may

find them useful for more than just djbdns.

Assuming that you follow the standard instructions for installing these programs, your root directory will have

a directory called /service in it. The subdirectories within it correspond to services that will be maintained by

the daemontools supervisor process. Every five seconds or so, supervisor checks to be sure all the

services are still running. Any that are not running are restarted using a standard launch script.

Unless you override the SERVICEDIR environment variable when you build them, the FreeBSD port of

daemontools will use /var/service instead of /service for the services. Bear that in mind when you read

documentation online. Also the FreeBSD ports will automatically fetch manpages and install them. No

documentation is part of Bernstein's distribution. While his site offers HTML documentation, the manpages

are separate and are maintained by someone else. They are not normally part of an installation. If, for some

reason, you do not want the manpages installed, you can set the WITHOUT_MAN environment variable

when you build the port.

5.4.1.3 ucspi-tcp

 The ucspi-tcp tools implement the Unix Client-Server Program Interface (UCSPI) over TCP. UCSPI is an

interface standard Bernstein wrote to specify the interactions between programs and communications

channels. They also provide a library of networking functions that are used by the djbdns programs.

Like the daemontools, the FreeBSD port of these tools will fetch the manpages unless you set the

WITHOUT_MAN environment variable before you build.

5.4.1.4 FreeBSD

The DNS service itself can be installed from ports/dns/djbdns. Note that the daemontools and ucspi-tcp

packages are also ports. The only dependencies are ports/sysutils/daemontools, and ports/sysutils/ucspi-tcp,

so they will automatically be installed.

5.4.1.5 Installing on OpenBSD via source

 The ucspi-tcp library and daemontools do not depend on each other or on any other software, so they can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

be installed in any order. Follow the straightforward instructions at http://cr.yp.to/djbdns.html.

Note that the installation process for daemontools will edit your /etc/rc.local file,

adding a command to your boot process.

Once you have installed the ucspi-tcp and daemontools, you can install djbdns from source following its

instructions.

The instructions boil down to the same procedure for each package. For each package (daemontools,

ucspi-tcp, and djbdns), do the following:

Download the source from http://cr.yp.to/.1.

Unzip and untar it (e.g., tar -zxf packagename.tgz).2.

cd into the directory (e.g., cd ucspi-tcp-0.88).3.

Run make.4.

Assuming everything went well, run sudo make setup check to install the software.

 For tinydns or dnscache, there are more steps. These programs act as services, so they must

be registered with the daemontools' supervisor process.

5.

Run the configuration script for the program (tinydns-conf and dnscache-conf, respectively).

The configuration script creates the directory structure necessary for the supervisor.

6.

Create a symbolic link in /service so that the supervisor will find the program and launch it.7.

5.4.1.6 Installing on OpenBSD via unofficial ports

 Although the OpenBSD group does not distribute ports for djbdns in their official ports tree, Giacomo

Cariello created a set of experimental ports at http://experimental.bug.it/. Ports for daemontools, ucspi-tcp,

and djbdns are available there. These ports would make djbdns straightforward to install if they worked.

Unfortunately, the latest version of these ports is for OpenBSD Version 3.2, which is several years old. These

ports do not build with the OpenBSD ports system that shipped with OpenBSD 3.6. Before building from

source, though, you may want to look at Cariello's site and search on Google a little to see if a new, working

set of ports is available.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://cr.yp.to/djbdns.html
http://cr.yp.to/
http://experimental.bug.it/

 < Day Day Up >

5.5. Operating BIND

 Having read about the various attacks and risks associated with BIND, you may worry about the stability,

security, or suitability of running BIND for a major enterprise. You should not. BIND is enterprise-class,

production-quality software. Like all such software, whether open source or not, you must be aware of its

weaknesses and guard against them. Consider that at least one of the .com nameservers runs BIND 9: if it

can handle the load and stress of the .com zone, it can handle your zones.

5.5.1. Running BIND in chroot

BIND comes with the built-in ability to run in a chroot environment. You do not need to do much to configure

a chroot environment properly for it. To make BIND run in a chroot environment, run it with the -u and -t

options. The -u option indicates which user ID to assume while running. After doing the things that it must do

as root (such as binding to port 53), BIND will then call setuid() to run as the given user ID. The -t option

identifies the root of the chroot environment.

The instructions below work for the versions of FreeBSD and OpenBSD that

we tested while writing. Be sure to check the BIND Administrator's Reference

Manual (ARM) for the latest information when installing. It is distributed as part

of the BIND 9 distribution.

FreeBSD stores its DNS zone data in /etc/namedb but does not include a chroot environment there.

OpenBSD comes preconfigured to run BIND in a chroot sandbox, and it uses /var/named as its root.

Because FreeBSD needs more configuration than OpenBSD to run its BIND in chroot, we will use

/etc/namedb as the root of our chroot environment in our examples. The same concerns about locating zone

data in /etc apply to BIND as to djbdns. See the discussion on "Locating zone data" to help decide if you

ultimately want your zone data in /etc.

5.5.1.1 Make a filesystem

The chroot filesystem typically needs three directories: /dev, /etc, and /var. In this example, using

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html
mfreeopenbsd-CHP-5-SECT-5.html

/etc/namedb, you need to create /etc/namedb/dev, /etc/namedb/etc, and /etc/namedb/var directories. The

named.conf file will tell named where to look for data and where to write its logfiles.

Three devices are needed in the /dev directory: /dev/null, /dev/zero, and /dev/random. You have to use the

mknod command to do this. To create the devices properly, you must first use ls -l, as shown in Example

5-4, to determine the correct major and minor numbers for the devices.

Example 5-4. Using ls to determine major/minor numbers for device nodes

OpenBSD% ls -l /dev/null /dev/zero /dev/random

crw-rw-rw- 1 root wheel 2, 2 Jan 15 01:30 /dev/null

crw-r--r-- 1 root wheel 45, 0 Aug 19 16:24 /dev/random

crw-rw-rw- 1 root wheel 2, 12 Aug 19 16:24 /dev/zero

FreeBSD% ls -l /dev/null /dev/zero /dev/random

crw-rw-rw- 1 root wheel 2, 2 Jan 12 13:33 /dev/null

crw-rw-rw- 1 root wheel 250, 0 Jan 9 11:13 /dev/random

crw-rw-rw- 1 root wheel 2, 12 Jan 9 10:22 /dev/zero

Notice that the numbers are different for /dev/random between FreeBSD and OpenBSD. FreeBSD 4.x uses

still different numbers. Using sudo, create the device nodes as shown in Example 5-5.

Example 5-5. Making device nodes

FreeBSD$ sudo mknod /etc/namedb/dev/null c 2 2

FreeBSD$ sudo mknod /etc/namedb/dev/random c 250 0

FreeBSD$ sudo mknod /etc/namedb/dev/zero c 2 12

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The virtual /etc directory needs to contain a named.conf file. Note that if you are running FreeBSD, you will

use /etc/namedb/named.conf. That means you will create /etc/namedb/etc/namedb in addition to

/etc/namedb/etc.

When running in chroot, using the -t option, all the filesystem paths are

translated. That is, if named is compiled to use /etc/namedb/named.conf

(which is how FreeBSD compiles BIND by default), then it is really expecting

/etc/namedb/etc/namedb/named.conf. It is a good idea to remove or rename

the /etc/namedb/named.conf file that lives in the real /etc directory. It might

mislead you or another administrator who forgets that named runs in a chroot

environment.

Alternatively, you can add -c /etc/namedb/named.conf to the named_flags

option in /etc/rc.conf. This will cause that file to be used as the configuration

file instead of /etc/namedb/etc/namedb/named.conf.

5.5.1.2 Launch BIND from /etc/rc.conf

 To launch at named boot time, set the named_enable variable in /etc/rc.conf. Set the named_flags

variable to include the correct command-line options for your installation. For OpenBSD, there is a single line

to add:

named_flags="-u named -t /var/named"

OpenBSD comes with a user called named already in the password file and a chroot environment already

built in /var/named. By virtue of the fact that named_flags is not the string NO, named is invoked at boot

time. Note that the named command in /etc/rc is run from the default PATH. That is, rather than invoking

/usr/sbin/named explicitly, the script just invokes named. The binary to execute is resolved using the PATH

environment variable set at the beginning of the /etc/rc script. If you want to override the named binary that

is executed, you will have to manually edit the /etc/rc script itself.

To enable named at boot time on FreeBSD, a very similar named_flags line needs to be added to

/etc/rc.conf. Notice that FreeBSD calls its DNS user bind instead of named. The named_enable variable

must be set to YES. If you are running BIND 9, but chose not to overwrite the base installation, you have to

define an additional variable, named_program, to specify which named binary to execute. A typical FreeBSD

configuration looks like:

named_enable="YES"

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

named_flags="-u bind -t /etc/namedb"

FreeBSD, beginning with the 5.X versions, now uses a more advanced /etc/rc

system for booting. The tasks for starting up BIND are in /etc/rc.d/named. They

include a special function that will automatically keep a chroot area up to date.

If you set named_chroot_autoupdate=yes in /etc/rc.conf, a series of

commands will execute at boot time to make sure that some files are copied

into the right place. Do not use this variable and functionality if you run BIND 9.

It does not make all the devices that you will need (e.g., /dev/random) and it

tries to copy an obsolete program (named-xfer). The automatic chroot feature

only works for BIND Version 8.

5.5.2. Configuration Ideas

There are a few standard techniques that DNS administrators use to make their servers more secure, more

auditable, or both. They include the restricting access to certain features, restricting access to functionality,

and obscuring the version number.

5.5.2.1 Security restrictions

All of the following options are applicable in both FreeBSD and OpenBSD contexts. They are useful for

either defending against attacks or for preventing extraneous use of your server. All of these options are

demonstrated in Example 5-6.

allow-recursion

This also should be set to none if your server is authoritative. If your server is a caching server that

is supposed to allow recursion, omit this directive from your default options section, and instead add

it to the view that you define for recursion.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

allow-transfer

Set this to none to prevent anyone from performing zone transfers by default. For each zone that

should have zone transfers enabled, specifically identify the proper servers through an access

control list (ACL).

controls

This line should always be present in the named.conf file, whether you intend to use rndc's ability to

control named or not. If you do not want to use rndc in any way at all, this line must still be present.

It should read controls {};.

query-source

Sometimes it is useful to have BIND use a specific source address and port. Perhaps the server is

"multi-homed" (i.e., having more than one IP address assigned to it). Perhaps, in order to make the

firewall rules maximally restrictive, the DNS responses must have both source and destination ports

set to 53. The query-source line can accomplish these tasks.

version

Set it to something other than the obvious. An attacker can try to probe your BIND version by

querying for the TXT record "version.bind" in the Chaos class. Chaos is a vestigial class that is not

used anymore. To try to query your own version, run dig @servername version.bind. chaos

txt. Replace servername with the name of your BIND server. Realize that this is of very limited

value. Only script kiddies will blindly trust the version that your server reports and base their attacks

on it.

The configuration options in Example 5-6 are a recommended starting point. You will need to customize them

for your own use.

Example 5-6. Several security-related BIND options

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

options {

 directory "/etc/namedb"; // inside our virtual root

 allow-recursion { none; }; // we are authoritative only

 allow-transfer { none; }; // default deny; override in zones.

 query-source address * port 53; // for firewalls

 version "Undisclosed"; // obscure our version.bind

};

controls {

 inet 127.0.0.1 allow { localhost; } keys { rndc_key; };

};

key rndc_key {

 algorithm "hmac-md5";

 // This is just some randomness that I got by doing

 // dd if=/dev/random bs=32 count=1 | openssl base64

 secret "sQMUKll0IV1gUz6oUkIaxU1B5uQBioXFgAORoa+/OZA=";

};

include "example.com.zone"; // See Example 5-8

5.5.2.2 Logging

 BIND 9 provides reasonably fine-grained logging options to allow you to sort through all the different events

it might log and guide them to the right places. Example 5-7 shows one potential configuration for logging.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 5-7. Organizing BIND's logs

logging {

 channel my_default { syslog local7; severity info; };

 channel my_security { syslog local6; severity notice; };

 category security { my_security; };

 category default { my_default; };

 category config { my_default; };

 category xfer-in { my_default; };

 category xfer-out { my_default; };

 category update { null; };

 category lame-servers { null; };

 category queries { null; };

};

In the example, we have created just three categories of messages. The usual messages that one might

expect to accumulate in /var/log/messages are directed to syslog using the LOCAL7 service at severity info.

Security-oriented messages (as defined by BIND's notion of "security") are sent to a different syslog service.

This allows us to configure syslog to treat them differently. Perhaps we will log security messages off-system

in addition to a special security logfile. Lastly, a few types of logged messages that are rarely useful are

discarded. These tend to be useless messages that bloat logfiles, except in specific circumstances when you

need forensic information. See the ARM for the full list of categories of events that can be logged.

There are a few good reasons, however, why you might temporarily watch the update or xfer-out categories

more closely. If you suspect that someone is trying to misuse your DNS server, you may want to send these

two categories to a special logfile for a little while. Sometimes performance for DNS can slow down because

Windows systems are attempting many dynamic updates (a fundamental technique used in Active Directory).

Turning on update logging will quickly show you if that is the case. Alternatively, you may find attempted

updates from nonlocal networks. These may be symptomatic of an attack probe of some kind, or they may be

the result of a simple misconfiguration somewhere at the foreign site. The xfer-out category will show you

who is trying to transfer zones (using either AXFR or IXFR queries) from your server. A quick grep for

"denied" will find the systems that are attempting and failing to transfer your zones. This might be useful

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

information to correlate with firewall or intrusion detection logs to see if the failed transfers coincide with other

unusual network activity.

5.5.2.3 Using includes to separate permissions

Some parts of the named configuration are more sensitive than others and should be protected differently.

Logging options, for instance, are much less critical than the keys that allow updates or authenticate zone

transfers. By using BIND's include directive, you can put sensitive material in separate files, and then protect

those files more carefully. The fragment of named.conf shown in Example 5-6 demonstrates this by including

a file named example.com.zone, which contains the zone configuration information shown in Example 5-8.

Keys used for rndc or TSIG, for example, are good candidates to be included this way.

5.5.3. Managing BIND

BIND includes a program called rndc for managing the named daemon. In previous versions, this program

was called ndc and was substantially limited in what it could really do. The rndc program, by contrast, can

do many things that administrators have wanted for a long time. Zones can be added and deleted, updates

can be sent to slave servers, and the server can be stopped and started.

In order to use rndc, it is important to configure it properly. If it is configured poorly, then a variety of

vulnerabilities are introduced. Remote users could stop the server or even drop whole zones.

 Example 5-6 included the two statements (controls and key rndc_key) that enable the control by

rndc. BIND 9 includes a script called rndc-confgen that will create the key file and the corresponding

rndc.conf file. By giving rndc-confgen the -a option to perform automatic configuration and the correct -t and

-u options, like you would give named, it will create the files in the right locations. For example:

rndc-confgen -a -t /etc/namedb -u named.

5.5.4. Transaction Signatures (TSIG)

 One of the long-standing problems with DNS is the lack of authenticity for records in zones and the

ability to establish trust relationships between servers. Some solutions could exist, using TCP connections

that used application-level authentication. However, with DNS being as pervasive as it is, it has always

benefited from being UDP-based. Individual packets, often no larger than 512 bytes, travel quickly across the

net and create minimum burden on the network. To continue in this low-bandwidth tradition, DNS needs

authentication that can still fit in UDP packets. Several different security mechanisms have been defined in

DNS. These mechanisms are covered in more detail in DNS and BIND by Liu and Albitz. Of the various DNS

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

security measures (typically considered together under the label DNSSEC), only TSIG has real practical

value today.

 Defined in RFC 2845, TSIG provides a mechanism for attaching a digital signature to a DNS request.

Currently the signature is a message authentication code (MAC) using the MD5 hashing algorithm, thus the

algorithm is called hmac-md5. Any request can be signed. It can be a simple request for an MX record, or it

can be a dynamic update request. Responses can also be signed in the same way. Using TSIG, two DNS

servers can authenticate their conversations.

5.5.4.1 Cautions about using TSIG

One of the significant drawbacks to TSIG is that it is based on a symmetric cryptography system. It requires

both DNS servers to have the same shared secret established in advance. TSIG, therefore, is only used

between systems that explicitly trust each other (for example, two servers operated by the same

organization). It is only practical on a small scale. It might be scalable to perhaps a handful of organizations,

or across a few dozen systems within a large organization. It also suffers another risk of symmetric

cryptography: if the shared secret is compromised, then authentic messages can be forged without being

detected.

TSIG is useful, so long as you maintain its key as carefully as you maintain other critical cryptographic keys.

Most SSL-enabled web servers, for example, store a private key in a file that must be readable by the web

server but must also be protected from prying eyes. The TSIG key for named, then, is very similar and must

be handled appropriately. As an alternative to what is shown in Example 5-6, BIND 9 will also look in the file

/etc/rndc.key for the rndc key (or /etc/namedb/rndc.key under FreeBSD). While this was primarily added to

BIND as a migration aid for migrating from BIND 8 to BIND 9, it serves the additional purpose of allowing us

to protect our key material differently than the named.conf file itself.

 If you are using FreeBSD, the rndc.key and rndc.conf files are probably good candidates for ACLs (see

Chapter 2). Using ACLs, the file access permissions can be set to permit only the bind user to access the

file.

5.5.4.2 Practical uses for TSIG

 There are two common, practical uses of TSIG: authenticating dynamic updates and authenticating

zone transfers (either full or incremental). Example 5-8 shows a domain with both of these options enabled.

The server will only respond to zone transfer requests if they are signed by a specific key. It will also accept

dynamic updates to the zone, but only if they are signed. All of these directives could be put in a separate file

called example.com.inc and then that file could be included using BIND's include syntax.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 5-8. Restricting access via TSIG

key "example.com.key." {

 algorithm hmac-md5;

 secret "WW91IGFjdHVhbGx5IGRlY29kZWQgdGhpcz8=";

};

acl "tsig_example.com" {

 key example.com.key.;

};

zone "example.com" {

 type master;

 file "example.com";

 allow-update { "tsig_example.com"; };

 allow-query { any; };

 allow-transfer { "tsig_example.com"; };

};

server 12.34.56.78 {

 keys { "example.com.key."; };

};

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The syntax demonstrated in Example 5-8 suggests ways that access can be controlled. There is no limit to

the number of different access control list (ACL) statements that can be included in the configuration file.

Furthermore, an ACL can combine TSIG-based authentication with IP-based authentication. That is, requests

from certain IP addresses could be trusted without signatures, while the presence of a correct signature

would cause requests to be honored regardless of the originating IP address.

The server line in Example 5-8 shows how to indicate which cryptographic keys your server shares with

another server. There are several limitations to this scheme. You can only specify servers by IP address. If

the server's IP changes, you must alter your named.conf file and restart named. All conversations with that

server will be signed with TSIG signatures—even basic queries. This can increase the computational load on

your server as it computes signatures and verifies the signatures on the responses. You cannot limit TSIG

usage, for example, to just zone transfer requests. Lastly, though the syntax implies using multiple keys with

a given server, it is actually not possible. BIND only supports exactly one key per server.

Keep in mind, when writing access control lists, that each ACL is an "or" list. Access is granted if any one of

the characteristics in the ACL is satisfied. Likewise, the allow-transfer and allow-update lists work the same

way. As long as the request satisfies one of the listed authorizers, the request is honored. More complex

behavior is possible, but it makes the named.conf file dangerously complex.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

5.6. Operating djbdns

 There are two different functions you will most likely use in the djbdns suite. On a given machine, you will

either run dnscache to act as a caching server, or you will run tinydns to be an authoritative server. If you

use jails, you may run them both on the same system, but with different IP addresses. The operation of both

services is largely the same. Most of this section discusses running tinydns, because it requires the most

careful configuration and the most frequent updates to its configuration.

Generally speaking, once dnscache is configured correctly, it runs without much maintenance or change.

This is one of the key advantages of djbdns' separation of duties. It mandates that the DNS cache for the

organization must be independent of the authoritative server. The caching server, then, can be set up once

and largely left alone while it does its job.

5.6.1. Running tinydns

The tinydns installation sets up its own chroot environment by default. It runs in that environment and setuid

to a nonprivileged user by default. Assuming your tinydns configuration is located in /etc/tinydns as the

instructions suggest, then you will have a directory called /etc/tinydns/root where all the DNS zone

information lives. There is a file there named data that contains, in text form, all the zone information. There is

also a Makefile that contains rules for turning the data file into the data.cdb file. The data.cdb file is an

optimized binary file that is actually used by tinydns to serve the zone data.

5.6.2. Routine Maintenance

 There are a number of common maintenance tasks with tinydns whose execution varies based on your

individual environment. You often will have to manually manipulate the data file, which contains the source

data for all your zones.

5.6.2.1 The tinydns data file

While it is true that some tasks are automated by the various add-* scripts, many tasks are not. It is highly

likely that you will need to edit the data file from time to time to do all the things in your zone that you need to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html
mfreeopenbsd-CHP-5-SECT-6.html

do. This file is primarily intended to be produced and parsed by programs, but it is straightforward enough

that a human can read and manipulate it.

The data file represents zone records by listing them one per line. The first character indicates what kind of

record is being created, and the remainder of the line is a series of colon-separated fields describing the

record. Note well that, unlike a BIND zone file, a single line of a tinydns data file often expands into many

DNS records, sometimes in multiple zones. The lines that create A records, for instance, can automatically

create the corresponding reverse PTR records in the appropriate in-addr.arpa zone.

The following summary describes the lines that you might put in a tinydns data file.

.

(period)

 This record sets a nameserver for the given domain. The domain is considered to be this domain,

as opposed to a domain that we are delegating. The tinydns server will automatically generate a

start of authority (SOA) record for this entry. In this example, the domain is example.com and the

server that serves it is ns.exampleisp.com:

.example.com:12.34.56.78:ns.exampleisp.com

Note that all the fields that are part of an SOA record (such as the TTL, expiration time, refresh time

and hostmaster email address), and all the nameserver entries are automatically filled in with default

values. If you want to have control over the fields in the SOA record, you will have to look up the Z

record in the djbdns documentation.

& (ampersand)

This record is a delegation to another name server. It creates an NS record and corresponding A

records (if they fall within the tinydns server's ken), but does not create an SOA record. For

example:

&lab.example.com:12.34.60.4:ns.lab.example.com

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

= (equals)

This entry creates a normal A record and corresponding reverse PTR record. The PTR record is of

no use unless the reverse zone is delegated to your server. If it is, however, you do not need to do

anything extra. The reverse records are always created automatically. For example:

=www.example.com:12.34.56.79

+ (plus)

Exactly like the equals record, except that the reverse PTR record is not created. For example:

+mail.example.com:12.34.56.80

@ (at)

As suggested by the @ symbol, these records establish MX records. This example duplicates, in

tinydns syntax, the same MX structure shown earlier in Example 5-1. For example:

@example.com:12.34.56.79:mail-a.example.com:10

@example.com:12.34.56.80:mail-b.example.com:20

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

C

 CNAME records begin with the letter C as the first letter on the line. In this example,

oldname.example.com is an alias for the true name server.example.com. The server.example.com

name must have at least an A record associated with it. The name oldname.example.com cannot

have any other records defined for it. For example:

Cserver.example.com:oldname.example.com

Putting several of these examples together, we create a data file that creates much of the same structure that

is shown in Example 5-1, as shown in Example 5-9.

Example 5-9. tinydns configuration replicating Example 5-1

.example.com:12.34.56.81:ns.example.com

=example.com:12.34.56.78

@example.com:12.34.56.79:mail-a.example.com:10

@example.com:12.34.56.80:mail-b.example.com:20

=www.example.com:12.34.56.78

@www.example.com:12.34.56.79:mail-a.example.com:10

@www.example.com:12.34.56.80:mail-b.example.com:20

=mail-a.example.com:12.34.56.79

@mail-a.example.com:12.34.56.79:mail-a.example.com:10

@mail-a.example.com:12.34.56.80:mail-b.example.com:20

=mail-b.example.com:12.34.56.80

@mail-b.example.com:12.34.56.79:mail-a.example.com:10

@mail-b.example.com:12.34.56.80:mail-b.example.com:20

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 It is a little unusual to see so many MX records in a DNS zone. If it is your intention that all email goes to

exactly one mail server (or one set of organizational servers), then this is necessary. The rules for delivering

email include vestigial accommodations for systems that have only an A record and no MX record. Mail

transfer agents (MTAs) will try to deliver email directly to a host if it has only an A record and no MX record.

So, if something (a misconfigured daemon, for example) sends mail to webmaster@www.example.com

(instead of webmaster@example.com) these MX records will route the mail to the correct mail server .

5.6.2.2 Load balancing

 The standard documentation suggests that you should always use the various add-* scripts when

adding hosts and records to your zones. This will break down when you need to do anything beyond using

mundane records (A, MX, NS, CNAME) in mundane ways. If, for example, you want to balance load across

multiple web servers, DNS can assist with that. The standard method for doing this is to return multiple A

records (IP addresses) for a given name. Example 5-10 shows the result of querying for www.google.com

using dnsqr, the recursive querying tool that comes as part of djbdns.

Example 5-10. Multiple A records for load balancing

$ dnsqr a www.google.com

1 www.google.com:

433 bytes, 1+4+9+9 records, response, noerror

query: 1 www.google.com

answer: www.google.com 2663 CNAME www.google.akadns.net

answer: www.google.akadns.net 269 A 216.239.39.99

answer: www.google.akadns.net 269 A 216.239.39.104

answer: www.google.akadns.net 269 A 216.239.39.147

In this case, the akadns.net nameserver returned three IP addresses. It turns out that each time you issue

the same query, you will receive a set of three IP addresses, drawn randomly from the set of all valid IP

addresses for www.google.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mailto:webmaster@www.example.com
mailto:webmaster@example.com

You can use tinydns to do this kind of load balancing, but it is not as simple as running the add-host script

multiple times. The add-host script considers it an error if you try to define more than one IP address for a

host, or if you try to define more than one host for an IP address. You must manually edit the data file to

create multiple A records for a host name. There you can insert any valid combination of DNS records.

Example 5-11 shows how to add three lines that assign three IP addresses to the name www.example.com.

Example 5-11. tinydns configuration file for load balancing

+www.example.com:12.34.56.78

+www.example.com:12.34.56.81

+www.example.com:12.34.56.82

If you have many IP addresses for a single machine, tinydns will return a randomly chosen set of eight IP

addresses each time the name is queried. The number eight is not configurable, but is probably suitable for

most applications.

5.6.2.3 Naming nameservers

 Keep in mind that the add-* scripts with tinydns impose their own notion of machine naming on your

zones. The add-ns script only takes a zone and an IP address as arguments. It will automatically name your

nameservers without prompting you. If your zone is example.com, and your nameserver's IP address is

12.34.56.79, then the documentation recommends running add-ns example.com 12.34.56.79 to create

your nameserver record in your zone. This will create a nameserver named a.ns.example.com. If you want a

different naming scheme for your nameservers, you will have to edit the data file by hand. You sidestep the

error checking features associated with djbdns when you create all the NS and SOA records by hand. Be

sure you know what you are doing, if you take that course.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

5.7. Wrapping Up

DNS is a critical piece of any networking infrastructure. Unfortunately, its design makes it ripe for attack.

FreeBSD and OpenBSD systems make excellent choices for DNS servers because of their inherent stability

and additional security features, like ACLs, that can be used to secure the server. Depending on your

security posture, you can choose from BIND 9 or djbdns to serve your domains. If you choose BIND, you will

have a lot of management tasks automated for you. You may also need to turn off features that you are not

using to improve its security. If you choose djbdns, you will not have so many features to turn off as you will

have features to implement yourself. You will have to create a secure replication scheme, secure updating

mechanism, and delegation procedures. You will worry less, however, about the DNS server software itself

being a major source of risk for you.

Ultimately you need to consider the environment where you are using DNS. You need to consider the risks

that are presented in this chapter and how your organzation might be affected by them. Then you can pick

the right software and the right set of configuration options to make your DNS system fit your needs.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html
mfreeopenbsd-CHP-5-SECT-7.html

 < Day Day Up >

5.8. Resources

These are pointers to various DNS-oriented resources, grouped by DNS server software.

5.8.1. BIND Resources

 BIND (Berkeley Internet Name Daemon)

The main web site is http://www.isc.org/. It includes full documentation on installing, configuring,

and operating BIND.

BIND Administrator's Reference Manual (ARM)

This can be found at /usr/share/doc/bind9/arm/Bv9ARM.html on an OpenBSD system or a FreeBSD

system that has the BIND 9 software installed overwriting the base installation. It is also available

online at http://www.nominum.com/content/documents/bind9arm.pdf.

DNS and BIND, Fourth Edition, Paul Albitz and Cricket Liu (O'Reilly), 2001

This book includes some good overview material about how DNS works generally. But it is focused

on BIND. If you are interested in djbdns, there is nothing in here about it.

DNS and BIND Cookbook, Cricket Liu (O'Reilly), 2002

This is a more tactical book that covers a lot of common usage scenarios and installation issues.

DNS on Windows Server 2003, Robbie Allen, Matt Larson, and Cricket Liu (O'Reilly), 2004

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
mfreeopenbsd-CHP-5-SECT-8.html
http://www.isc.org/
http://www.nominum.com/content/documents/bind9arm.pdf

If you want to integrate BIND with a Windows environment and run it on a Windows server, this is a

good reference for how to do that.

5.8.2. djbdns Resources

 Daniel J. Bernstein's web site (http://cr.yp.to/)

All of Daniel J. Bernstein's software can be found at this web site. The daemon tools are at

http://cr.yp.to/daemontools.html, the ucspi-tcp tools are available at http://cr.yp.to/ucspi-tcp.html, and

djbdns itself is at http://cr.yp.to/djbdns.html. The documentation, such as it is, is also there.

Bernstein has written a number of other programs that strive to be secure replacements for

notoriously insecure programs. His qmail replacement for sendmail, tcpwrappers replacement for

inetd, and various other utilities are all here, also.

Building Secure Servers with Linux, Michael D. Bauer (O'Reilly), 2002

While not specific to either BSD, this book includes a decent chapter on djbdns. It is one of the few

substantive chapters in print on how to configure djbdns.

Manpages for djbdns (http://smarden.org/pape/djb/manpages/)

If you like to keep documentation around in manpage format, Gerrit Pape has created manpages

that can be installed for most of Bernstein's software.

5.8.3. Selected DNS-Related Requests for Comments (RFCs)

RFC 1034: Domain Names—Concepts and Facilities

RFC 1035: Domain Names—Implementation and Specification

RFC 1183: New DNS RR Definitions

RFC 1591: Domain Name System Structure and Delegation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://cr.yp.to/)
http://cr.yp.to/daemontools.html
http://cr.yp.to/ucspi-tcp.html
http://cr.yp.to/djbdns.html
http://smarden.org/pape/djb/manpages/)

RFC 1886: DNS Extensions to support IP Version 6

RFC 1995: Incremental Zone Transfer in DNS

RFC 2065: Domain Name System Security Extensions

RFC 2136: Dynamic Updates in the Domain Name System

RFC 2137: Secure Domain Name System Dynamic Update

RFC 2168: Resolution of Uniform Resource Identifiers using the Domain Name System

RFC 2308: Negative Caching of DNS Queries

RFC 2317: Classless IN-ADDR.ARPA Delegation

RFC 2845: Secret Key Transaction Authentication for DNS (TSIG)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Chapter 6. Building Secure Mail Servers

Laugh-a while you can, monkey-boy.

—Lord John Whorfin

The Adventures of Buckaroo

Banzai Across the 8
th

 Dimension

Providing mail service can mean several things. When a user clicks Send, the message must be

transported from their system through intervening mail servers to the destination machine. Mail Transport

Agents, or MTAs, are responsible for getting mail from point A to point B. Mail transport is the backbone of

mail service.

 Of course, mail transport is not the whole story. Once on the destination system, the Mail Delivery Agent,

or MDA, is responsible for placing the mail message into a user's inbox. No discussion of providing mail

service can be complete without covering mail delivery.

 Mail delivery is often taken for granted by users. From their perspective, mail consists of messages

sitting in their inbox accessed through webmail or a mail client. We refer to such programs as Mail User

Agents, or MUAs. These programs utilize mail access protocols like the Post Office Protocol (POP), the

Internet Message Access Protocol (IMAP), and the Messaging Application Programming Interface (MAPI).

Mail access is the third key component of mail service.

The single function of providing mail service is complex, but can be done in a secure fashion with a little

planning and diligence. We begin by looking at risks associated with providing mail services. This motivates

our discussion of mail architecture and subsequent software configuration as mitigation techniques. As mail

service is an expansive topic, we focus on securing the MTA.

Email has become central to our online lives. For most people, it's the primary means of electronic

communication. While those clever little email forwards used to make [some of] us chuckle, they're now just

meaningless messages in a pile of ever-increasing virus-laden junk mail.

 Despite this increase in unsolicited commercial email (UCE or spam) and inherent problems in the

design of the Simple Mail Transfer Protocol (SMTP), few people relish the thought of giving up email

altogether. Delays, corruptions, or interruptions can have major detrimental effects. The fact that people have

come to rely on it so much makes them very sensitive to failures in email delivery. It's this dependence on the

service in the face of adversity that makes email critical.

As security-minded system administrators, we must guarantee both the security and availability of the

services required for mail access, transport, and delivery while at the same time mitigating the risks. By

looking at the kinds of attacks levied against mail servers in general, we can begin to think about how to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html
mfreeopenbsd-CHP-6.html

ensure that these attacks against our servers fail.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.1. Mail Server Attacks

 Mail servers are juicy targets just like DNS and web servers, and for similar reasons. These servers all

provide important functionality for individuals outside of the organization. They are widely publicized, which

makes them easy to find and attack.

Mail servers may be attacked to establish a foothold in an organization's network or merely to acquire a

staging ground for other, unrelated attacks. Such attacks aren't specific to mail servers alone, and attackers

in this case are generally seeking an exploitable condition that will provide access to the operating system.

These attacks are typically the first thing system administrators worry about when deploying any service. A

compromised operating system means a system rebuild and subsequent analysis. If the system was a

staging ground for other attacks, other systems may need rebuilding as well.

 Mail servers are also subject to attacks by individuals who wish to exploit the mail service itself. The most

obvious example is the use of an organization's mail server to deliver unsolicited commercial email. This kind

of attack can succeed when a mail server accepts all incoming messages and sends them to any

destination—an "open relay" configuration. In this case, the operating system is not under direct threat, but

being an open relay may lead to a denial of service (DoS) attack due to the volume of incoming mail or being

blacklisted by other organizations. The side effects of being blacklisted may include angry customers, lost

productivity, lost sales, and negative publicity.

 Finally mail servers sometimes play the role of oblivious accomplice. Despite operating properly, mail

servers assist in the delivery of computer viruses and worms that can wreak havoc on an organization's

network, infrastructure, and client systems. "Experts" often quote dollar figures in the billions when referring

to damages caused by viruses. This may or may not be accurate, but viruses have certainly brought massive

organizations to a standstill for days. The Melissa virus in 1999 infected several Fortune 500 companies

causing major damage. Hundreds of other companies disconnected from the Internet in fear. Building a

virus-resistant mail infrastructure that allows for rapid response, even before antivirus vendors publish

updates, should be a requirement for any security-minded system administrator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html
mfreeopenbsd-CHP-6-SECT-1.html

Viruses and Worms

The terms virus and worm are often used interchangeably. While they both refer to malicious

code, or malware, there is one key difference. Worms do not require any user action in order to

propagate, whereas viruses often require that a user execute some program. RFC 1135, The

Helminthiasis of the Internet, discusses the propagation of the Internet Worm of 1988 (The

Morris Internet Worm). It defines the terms virus and worm as follows:

"A `worm' is a program that can run independently, will consume the resources of its host from

within in order to maintain itself, and can propagate a complete working version of itself on to

other machines."

"A `virus' is a piece of code that inserts itself into a host, including operating systems, to

propagate. It cannot run independently. It requires that its host program be run to activate it."

6.1.1. Operating System Level Attacks

 One of the most notorious operating system level exploits in networked computing came as a result

of an SMTP-initiated debug mode built into an early version of sendmail. The Morris Internet worm was

released on November 2, 1988 and proceeded to exploit sendmail and fingerd to gain access to systems.

Sendmail has been the target of several other OS-level attacks for one key reason: it runs as root. Exploiting

a vulnerability in the sendmail daemon listening on port 25 of any mail server may eventually lead to a root

shell on a system.

While the debug code was stripped from sendmail, vulnerabilities continued to be published for years. A

quick survey of the Bugtraq SecurityFocus mailing list turns up a variety of local privilege escalation, remote

compromise, and denial of service attacks possible against Sendmail over the years. The techniques used fill

the entire spectrum: buffer overflows, removing or hard linking to key files, exploiting poor configuration,

passing in illegal arguments, and so on.

 Of course Sendmail is not the only piece of mail software with vulnerabilities. A search on

http://www.securityfocus.com/ will quickly turn up a few Postfix and qmail advisories. Fortunately these are

remote denial of service vulnerabilities and less severe than remote root compromises.

 The good news is that the vulnerabilities in mail software that give rise to operating system level attacks

can often be mitigated by small configuration changes, software patches, and/or upgrades.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.securityfocus.com/

6.1.2. Illegitimate Mail Relaying

Mail administrators appear to be particularly prone to deploying open relays, judging from the sheer volume

of servers that match this description in blacklists. This is often due to uninformed, lazy, or sloppy

configuration, but even conscientious administrators can accidentally create an open relay configuration.

In a multiple-server site in which one external mail server is responsible for communicating with the outside

world and additional internal servers house mailboxes, the external server often implicitly trusts all internal

hosts. The internal hosts for their part pay little attention to mail routing and merely pass all mail to the

external server. If the internal servers also allow connections from external sources, anonymous external

users may pass messages to an internal server that forwards the message to the external server, and the

mail will be delivered. Despite diligence during server configuration, sloppy architecture can lead to open

relays.

 In 1995, Matt Wright wrote a small Perl script to be used as a backend for "contact us" pages on the Web.

The script received certain variables from a web page in the form of an HTTP POST or GET request as

shown in Example 6-1, and would create an email message to be delivered to a recipient configured in the

HTML page.

Example 6-1. HTML "contact us" sample snippet using formmail.pl

<html><head><title>Contact Us</title></head><body>

Please fill out this form and we will get back to you shortly.

<form name="contact" method="post" action="/cgi-bin/formmail.pl" />

 <input type="hidden" name="recipient" value="user@domain.com" />

 <input type="text" name="realname" />

 <input type="text" name="e-mail" />

 <textarea name="comments" rows="5" cols="4" wrap="virtual">

 Please enter your comments here...

 </textarea>

</body>

</html>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 In 2001, web sites around the world were using Version 1.6 of this script, yet it contained little in the way of

security checks. In fact by typing in the URL in Example 6-2 and providing known parameters in the URI,

users could anonymously send mail anywhere.

Example 6-2. Exploiting formmail.pl Version 1.6

http://your.server.com/cgi-bin/formmail.pl?recipient=dest-addr@anywhere.

net&message=This%20is%20SPAM.&realname=Anyone&e-mail=

bogus@sender.com

Early versions of formmail.pl did not attempt to verify that the request came from the local server and would

quietly generate and send email. Subsequent fixes to the formmail.pl script to add REFERER checks were

marginally effective but still exploitable.

The point here is that if you attempt to deploy your mail servers in a vacuum without considering the

surrounding architecture, you may one day be surprised to find you're part of the problem.

6.1.3. Unwanted Mail

There are two categories of unwanted mail: common unsolicited commercial mail, and malware. Finding

these kinds of messages doesn't indicate that your server is being attacked, they just utilize mail transport as

a means of efficient delivery. However, unwanted mail consumes resources, reducing the amount of

legitimate mail your servers are able to process and reducing the effectiveness of your organization's users.

Don't pass by "consumes resources" without giving it serious consideration. Many organizations, after putting

in place spam and virus blocking software, suddenly discover that they are rejecting three to ten times as

much email as they are accepting. That's anything but a drop in the bucket.

 Malware can be viruses, worms, or spyware hidden in email messages that exploits bugs in code

(generally on client workstations) and is often propagated by users. While unwanted mail may lead users to

point their fingers at poorly configured mail servers, the servers themselves are not particularly to blame for

the propagation of unwanted mail. Nevertheless, when you need to stem the flow of spam and malware into

your network and you know that mail is one of the key vectors that viruses and worms use to attack that

software—improving your mail system's ability to stop unwanted mail becomes an appealing goal.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.2. Mail Architecture

So far, we've discussed three classes of attacks against mail servers: those that exploit the application to

gain access to the operating system, those that leverage poor configuration in the mail system to provide for

arbitrary mail delivery, and those that use the mail delivery systems as a carrier for malware. In order to

defend against these attacks, we must again abide by the defense-in-depth rule for systems security. What

better place to start than with the architecture of the systems involved?

6.2.1. Protect the Operating System

 Attacks seeking access to the operating system may use any piece of mail software that accepts input

from users, either directly or indirectly. Architecturally, this is difficult to defend against. Your best bet is to

tightly restrict who has access to the interfaces that expect direct user input. These include protecting the

services that provide mail transport (Sendmail, Postfix, or qmail listening on port 25) and mail access

(software that provides IMAP/POP).

Another avenue for direct user interaction is through a local or NFS mounted filesystem. Note that a mail

server that allows user logins falls into the "Workgroup" class of system described in Chapter 3 and will be

difficult to secure. If users demand mail delivery to local systems, consider using .forward files, aliases, or

making them use fetchmail to redirect mail to workstations. This leaves critical mail servers with

administrator-only access while providing users access to mail on their local workstations.

Let's start with a mail system consisting of one machine that listens for incoming connections on port 25 and

also allows IMAP and POP mail access on ports 110 and 143 to mail content on local disks. What software is

installed on this system is fairly important. Some organizations have little choice and must run Microsoft

Exchange, Novell Groupwise, or some other groupware platform to satisfy external requirements. Other

organizations are tightly bound to Sendmail or may have other legacy internal mail systems in place.

The easiest way to mitigate some of the risks associated with allowing users on the Internet open access to

your mail system is to control mail flow and access, as shown in Figure 6-1.

Figure 6-1. Simple mail architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html
mfreeopenbsd-CHP-6-SECT-2.html

This example outlines an internal mail server (or servers) and an external "relay" server, which does nothing

more than accept inbound mail and pass it to the internal system. The relay provides a single point of

interaction with outside users that can be tightly controlled and diligently maintained, thwarting attacks

coming in from the Internet.

Of course, most successful attacks against systems in general do not come in

from the Internet but from internal users. Keeping external interfaces up to date

and patched is vital as the number of externally originating attacks will

probably be higher. Forgetting the risk posed by internal users, however, will

likely get you into trouble with the first attack.

Both the mail relay and the internal mail server now provide mail transport: they both listen on port 25 for

incoming connections and do something with received messages. If you ensure both systems are running

patched versions of mail transport software, attacks aimed at exploiting the service to gain access to the

operating system are likely to fail.

6.2.2. Avoid Being an Open Relay

Any competent mail administrator would swear that he would never be caught administering an open relay.

While he might not intentionally deploy such a system, accidents do happen. A simple mistake, or a series of

configuration changes, may result in an open relay if you don't verify the effects of each change. With any

combination of networked systems, it's nearly impossible to look at a single mail server and say, "I am not an

open relay." You must look at the mail flow in your organization and periodically audit configuration to ensure

mail can't flow from external senders to external recipients.

Three strategies can help you avoid an open relay configuration. A controlled and documented mail flow, as

shown in Figure 6-2, is a good start. Strict change control procedures with regression testing reduce the

likelihood of erroneous configuration. Regular auditing ensures compliance with the desired configuration.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 6-2. Strict enforcement of mail flow through key systems

When the time comes to audit, the following steps help reduce the risk of being an open relay:

Ensure all systems on your network send mail directly to a designated mail server. This means

internal systems should send mail to the internal mail server, and systems on your DMZ should

send mail to the mail relay.

1.

Ensure firewall restrictions prevent any systems outside the organization or on the DMZ from

reaching the internal workgroup mail server. Likewise, ensure the mail relay accepts inbound

connections on port 25 from the Internet, and bi-directional communication on port 25 with internal

mail server and nothing else!

2.

 Ensure your mail servers do not implicitly trust any messages that originate on other systems.

Most mail transport software will accept a list of IP addresses or address/mask combination

describing systems for which the server should automatically accept and relay mail. List no other

addresses than those local to the mail server in question.

3.

Ensure your mail servers are aware of which domain(s) are considered "internal," and mandate that

either the recipient or the sender must be a part of this domain.

4.

These steps work for the simple mail architecture shown in Figure 6-2. More complex configurations will of

course require a different procedure, but the mail flow guidelines should apply universally. Still, open relays

aren't the only possible problem. Any scripts on web sites that accept POST or GET data containing a

recipient should be subjected to great scrutiny.

6.2.3. Stop Unwanted Mail

 Spam, viruses, and worms are a bane to administrators and users alike. At best, these messages

consume bandwidth and resources and at worst, they cause network outages and system failures. Most

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

administrators who provide user support have to explain to users that no, in fact, their user account has not

been hijacked to send spam—that there is no greater security in an email header than there is on the return

address of a snail-mail envelope (more on this topic later).

Protecting your infrastructure from unwanted mail is tricky. You must configure carefully and set thresholds to

block the greatest amount of illegitimate mail, while allowing legitimate mail to pass. The extent to which you

can be authoritarian will depend on your organization's tolerance for lost (or bounced) legitimate mail from

false positives. In general, there are three approaches you can take with unwanted mail:

Quarantine

You may quarantine messages you feel are illegitimate or harmful into a malware repository. This

repository needs periodic audits to delete existing messages or allow legitimate mail through.

Alternately, you could set up a time-limited quarantine that automatically purges messages after a

fixed period of time. This allows for more flexibility and requires less administration.

Reject

One of the most popular ways of dealing with suspect mail is to reject it. This notifies the sender that

the message did not look legitimate and therefore was returned. While this is easier on the

administrator, the number of messages traveling back to nonexistent/fraudulent senders may start to

clog your mail queue. What's worse, most mail users pay no attention to messages from

MAILER-DAEMON saying 550 Content rejected. Contact postmaster@iblockyourmail.net for

assistance. Instead, they call the intended recipient and accuse them of having broken mail servers.

Tag

 Often used in combination with a rejection strategy, some organizations use software that marks

or tags suspect messages letting users' MUAs filter based on the tags in the message header or

body. This approach uses thresholds set by the administrator, the user, or both. In some cases,

users are not willing to concern themselves with tuning their spam filter, thus combination

approaches with "opt-in" user-configured filtering work well.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.2.3.1 Content filtering with SpamAssassin

 SpamAssassin uses a system of weighted rules to compute the likelihood that a particular message is

spam. This provides a far more effective means of filtering mail content than by specifying "bad strings" or

"suspicious headers" and so on in a flat text file. The key advantage is that the SpamAssassin rules are

updated on a regular basis. Unless your full-time job is to observe new spam and update your personal rules

file, SpamAssassin will probably provide more timely rule updates.

SpamAssassin is a fairly substantial and configurable mail filtering application.

We don't cover the intricacies of installing and configuring SpamAssassin here.

Visit the project home page at http://spamassassin.apache.org/ to learn more.

SpamAssassin is easy to install on both FreeBSD and OpenBSD systems through the port in

mail/p5-Mail-SpamAssassin. There are two main ways to make SpamAssassin parse incoming mail in

conjunction with Sendmail: use procmail or use a SpamAssassin milter. Both are available in the ports tree

on OpenBSD and FreeBSD systems. Postfix may be coupled with SpamAssassin in three main ways: using

procmail, defining SpamAssassin as a content filter, or using amavisd-new (a high performance MTA and

content checker interface).

6.2.3.2 Arbitrary content filtering

 Arbitrary content filtering gives the administrator the ability to reject or drop mail by matching some string

in the header or body of a message. While SpamAssassin does a decent job of tagging incoming spam,

certain situations may arise where arbitrary filtering may be appropriate:

Having set your SpamAssassin threshold to 5.0, you notice after a few months or a year that you

have not seen any false positives above a 12.0 threshold. You need a way to block all messages

SpamAssassin marks with a value greater than 12.

A new piece of malware is announced on a mailing list to which you are subscribed. It's particularly

insidious and spreads quickly but always has one of three subject lines. You need to make sure this

virus does not get past your mail relay, and you need to do it yesterday.

You want to block messages with certain attachments outright.

For these "quick and dirty" situations, content filtering based on administrator-configured pattern-matching is

a good choice.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://spamassassin.apache.org/

6.2.3.3 DNS real-time blacklists (RBLs)

 In addition to rejecting based on headers or content, mail can be rejected based on the host from which

the connection is being made. We have thrown around the word "blacklist" a few times in this chapter but

have not yet described what it means. Blacklists, DNS blacklists, or real-time blacklists (RBLs), are

essentially lists of systems known to be open relays or known to have sent spam in the past. These blacklists

can be retrieved or accessed over the Internet through DNS. Mail servers are often configured to verify every

incoming connection to ensure it is not from a blacklisted server—if it is, message transmission is denied.

The original RBL site, http://www.mail-abuse.com/, offers a subscription-based service (it costs money) but is

one of the more reputable blacklist services available. Other trustworthy RBL providers include: Spam Cop,

the Open Relay Database, and RFC-ignorant.org. See the Section 6.11 at the end of this chapter for links to

these public service RBL providers.

Do some research before you start using any RBL; they list sites for different

reasons. RFC-ignorant, for instance, will list any site that fails to obey the rules

defined by the mail-related RFCs. This may block more than you bargained for.

The facilities available to us on FreeBSD and OpenBSD systems to accomplish these tasks are diverse.

We'll go through them in the final stages of mail software configuration. One important thing to remember is

that you shouldn't rely on only one way of stopping unsolicited mail. These approaches complement each

other, they aren't mutually exclusive.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.3. Mail and DNS

 Mail servers rely heavily on DNS. An improperly configured nameserver is sure to result in general mail

flow problems including lengthy delays, mail loops, and mail rejections. It's imperative that you understand

DNS records as they pertain to mail before deploying your mail server. If others are responsible for

administering the DNS servers for your organization, you'll at least need to let them know what you need.

 First and foremost, your mail server must have an address (A) record. This makes it possible to

resolve the fully qualified domain name of your name server into an IP address. Second, and frequently

omitted by lazy or uninformed mail and DNS administrators, your server should have a pointer (PTR) record.

This allows you to resolve the IP address back into the hostname. Third, there must be a mail exchanger

(MX) record configured for every domain for which your mail servers accept mail.

Each MX record in DNS has two important variables: a priority and the fully qualified domain name of your

mail server. A snippet from a BIND zone configuration file might look something like Example 6-3:

Example 6-3. MX records

$ORIGIN mexicanfood.net.

 MX 10 refried.mexicanfood.net.

 MX 20 garbanzo.mexicanfood.net.

 MX 30 bruchetta.italianfood.net.

The three MX records all reference servers that should be configured to accept mail for mexicanfood.net.

Other mail servers will attempt to reach them in order of priority from lowest to highest. If any server is

unreachable, the next server will be tried.

 The server with the lowest priority is called the "preferred" MX, while the others are referred to as "backup"

MXes. Backup MX servers are often configured to store-and-forward. When the preferred mail server

becomes unreachable, the backup MX will accept the messages and hold them in a queue until the preferred

server becomes available. In Example 6-3, both refried and garbanzo would have to be inaccessible for

external systems to send mail to bruchetta.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html
mfreeopenbsd-CHP-6-SECT-3.html

 One last thing to keep in mind is direct delivery. In a network of Unix systems, all running some mail

daemon, you might end up sending mail from host to host, without needing MX records at all. If user paco on

system taco.mexicanfood.net tries to send mail to user bruce on system guacamole.mexicanfood.net, how

does it get there without an MX record for guacamole.mexicanfood.net? When there is no MX record for the

latter half of the email address, mail servers will look for an A record. As long as guacamole resolves, taco

will be able to connect directly to port 25 on guacamole and deliver the message.

6.3.1. Security Implications

 The dependence SMTP has on name resolution should reemphasize the importance of deploying a secure

DNS architecture. If name resolution for your domain is hijacked in one of the ways mentioned in the Chapter

5, rerouting your mail traffic (and web traffic, FTP traffic, etc.) becomes trivial. It is imperative that all systems

involved in providing name services for your domain are tightly secured so they can be trusted.

 This issue of trust exists with DNS servers and is also important with SMTP servers. Just as DNS slaves

outside of your organization have to be systems you can trust, you also need to trust servers acting as

backup mail exchangers. Admittedly, the risks are not quite as great:

A compromised backup MX server may expose private or confidential queued mail, and an attacker

might delete the messages altogether.

A poorly configured backup MX may be more susceptible to a DoS attack. If timed correctly, it may

be unavailable when you need it most.

If the backup MX is not configured with the same spam-blocking mechanisms as your primary

servers, the volume of spam that hits the backup when your primary servers go down may

inadvertently create a DoS itself.

Ten years ago, backup MX servers were an imperative: systems were commonly intermittently connected. If

you did not have one, momentary connectivity outages would likely result in the loss of mail. These days,

most legitimate mail senders will patiently wait several days before giving up on your primary server

altogether. Systems generally come back up quickly, and hard disks are a good deal larger.

Instead of seeking an extra-organizational backup MX, consider having a second on-site server or a server in

an offsite co-location facility. The former provides decent protection against the loss of one system, the latter

mitigates the risks associated with system failures and losses of connectivity at one location.

So far we've been looking at how mail servers are supposed to work using DNS and MX records. Bad guys

don't always play by the rules, of course. Most spammers will download a list of MX records for the

organization and either find the least protected one, or throw mail at all of them in some haphazard way. If

you've configured one of your backup mail exchangers to simply pass mail to your internal mail server, you're

going to be in trouble. They'll discover sooner or later that mail sent to your backup MX won't bounce spam

and they'll start using it exclusively. Make sure all servers listed in your list of MXes are equally well

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

protected.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.4. SMTP

The Simple Mail Transfer Protocol, which governs mail flow, was not designed with security in mind. By

default, SMTP servers will accept connections from anywhere and allow anyone to interact with the daemons

providing service. What's worse, the daemons believe everything you tell them, as shown in Example 6-4.

This conversation can be easily carried out by connecting to port 25 on a mail server via telnet. Lines starting

with a number are mail server responses, highlighted lines are commands sent to the mail server.

Example 6-4. SMTP conversation

220 woot.home.korff.org ESMTP Sendmail 8.12.9/8.12.9; Sat, 11 Sep 2004 11:52:26

-0400 (EDT)

HELO im.your.father.luke

250 woot.home.korff.org Hello [172.16.0.2], pleased to meet you

MAIL FROM: <darth@vader.net>

250 2.1.0 <darth@vader.net>... Sender ok

RCPT TO: <yanek>

250 2.1.5 <yanek>... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

From: "Darth Vader" <darth@vader>

To: Nobody!

Date: Yesterday

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html
mfreeopenbsd-CHP-6-SECT-4.html

Subject: Tomorrow

I'd give my right hand for an open relay.

.

250 2.0.0 i8BFqQwu008586 Message accepted for delivery

QUIT

221 2.0.0 woot.home.korff.org closing connection

Connection closed by foreign host.

It's important to know what's happening during this SMTP transaction, so let's take these lines one by one.

HELO

The HELO request allows the client to identify itself to the server. The server will attempt to do a

reverse lookup on the IP address of the incoming connection. In this example, the reverse lookup

failed, so the IP address of the client appears in the response. After the HELO, there is a new

"envelope" ready for the coming mail message. These days, most mail clients use the extended

hello command, EHLO, which is a way of simultaneously identifying yourself and asking the server,

"What are your capabilities?"

HELO requires a client to claim an identity. It's then possible for the server to reject the claim under

certain situations:

When the IP address does not reverse resolve into the hostname provided as an argument

to the HELO (DNS PTR record incorrect or missing)

When the hostname provided as an argument to HELO does not resolve at all. (DNS A

record missing)

When the server has been configured to block the host, the domain in which the host

resides, or the netblock in which the host resides

Unfortunately if you choose to configure your mail server in this way, you'll have throngs of unhappy

users beating down your door because you're blocking a lot of legitimate mail. Too many

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

administrators of mail servers know too little about DNS.

Envelope information

 The subsequent MAIL FROM: and RCPT TO: commands are very much like writing your target

and return address on the outside of a regular envelope. This SMTP envelope information governs

where the mail is routed. Note that recipients do not always have access to this information after the

message is delivered.

DATA

The DATA command tells the mail server that all subsequent input is going to be the mail

message. The server will expect a series of lines to be considered the mail "header" followed by a

blank line, followed by the message body. A period (.) on a line by itself marks the end of the

message.

QUIT

As the name implies, this is used after the message has been sent to the mail server and the client

wishes to terminate the connection.

6.4.1. Envelope Versus Header

 Most ordinary users don't really understand that SMTP is very much like regular mail. There is an

envelope that contains address information and determines how the message contained "within" is to be

routed. One important difference is that with SMTP, the raw envelope information is often discarded after

message delivery. You may look at a message and see that it was addressed to myaccount@home.com, but

in fact you received it at myaccount@work.com.

The key here is that when you look at a message in your MUA, you are examining the partial contents of the

message header and the message body, not the envelope. Worse, the partial header information typically

shown by most MUAs is never verified and thus cannot be trusted. In order to fully understand where the

message came from and how it was sent, you must look at the contents of the entire message (all headers

and body), as seen in Example 6-5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mailto:myaccount@home.com
mailto:myaccount@work.com

Example 6-5. Message from Darth Vader

From darth@vader.net Sat Sep 11 11:56:11 2004

Received: from im.your.father.luke ([172.16.0.2])

 by woot.home.korff.org (8.12.9/8.12.9) with SMTP id i8BFqQwu008586

 for <yanek>; Sat, 11 Sep 2004 11:54:00 -0400 (EDT)

Message-Id: <200409111554.i8BFqQwu008586@woot.home.korff.org>

From: "Darth Vader" <darth@vader>

To: Nobody!

Date: Yesterday

Subject: Tomorrow

Status: RO

I'd give my right hand for an open relay.

 You'll notice three headers have been added: a From line, Received lines, and Message-Id. Carefully

examining the Received message headers will help you trace how messages reached the target systems

and what systems (not people!) were responsible for sending the message.

6.4.2. Security Implications

 There is no native security here. As the acronym indicates, SMTP is simple. It provides a means for

messages to get from point A to point B, and that's it. Senders are not verified in any way. There are no

provisions to ensure that only the recipient is able to read the message. Messages are transported from the

sender to the recipient across any number of mail servers in clear text. Fortunately, as security has become a

greater concern in recent years, several add-on systems provide some of this functionality.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.4.2.1 SMTP AUTH via SASL

The Simple Authentication and Security Layer (SASL) provides "authentication support to

connection-based protocols" like SMTP. It's been built in accordance with RFC 2554 that defines how clients

can authenticate themselves to an SMTP server. You'll often see the term "SMTP AUTH" used almost

interchangeably with SASL. The former is the service extension to SMTP defined in the RFC to allow for

authentication. The latter is the library that actually does the authentication.

SMTP AUTH lets administrators deploy mail servers that allow anyone to send mail, as long as they can

authenticate. It doesn't help a recipient verify that a message sent from a particular address actually came

from the person listed on the To: line. Nor does it guarantee that the message has not been modified in

transit. Its most common use is to allow legitimate senders to use the organization's mail server even when

they are coming from unknown and untrusted networks, like WiFi hotspots and hotels.

You might be thinking that you could configure your mail server to only send

messages if the sender is from your domain, regardless of the IP from which

the connection was made thus alleviating the need for SMTP AUTH. Think

again. SMTP headers are trivially faked as we will discuss later, and this style

of configuration makes your mail server an open relay.

6.4.2.2 TLS

 Transport Layer Security (TLS), which supercedes Secure Sockets Layer (SSL), is a communications

protocol that provides private and reliable communications by cryptographic means. TLS is often coupled

with SASL to provide authentication over an encrypted connection so that usernames and passwords are not

transmitted in clear text.

 While SASL combined with TLS does provide a flexible and secure way for roaming users to send mail

through your mail server, it is not the only option. Other approaches include "POP before SMTP," which uses

the authentication in a POP session to create a window of time during which an SMTP session originating

from the same client IP address will be permitted to relay through the system. Another alternative is

client-based certificates that allow users who have certificates installed on their computer (wherever they are)

to authenticate. While these options are both viable and used by various organizations, SASL combined with

TLS is easy to implement, secure, and flexible. Thus it is this option that we cover in this chapter.

6.4.2.3 SPF

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 The neverending war against SPAM has given rise to the Sender Policy Framework (SPF). While SASL

and TLS together allow responsible administrators to restrict who uses their servers to send mail, a plethora

of uninformed administrators are still running open relays. SPF provides a mechanism for MTAs to verify that

the server sending a message from a given domain is authorized to do so. In Example 6-4, if SPF guidelines

were followed, the mail server woot.home.korff.org that received mail from 172.16.0.2 would look for a

specially formulated TXT record for vader.net in order to determine whether 172.16.0.2 is allowed to send

mail from that domain. If everyone created these specially formulated TXT records for their domains, mail

servers could verify senders and reject mail if the server was not authorized to send mail from that domain.

Of course if everyone ensured their servers weren't open relays, that would help, too. The trouble is, it's

difficult to make everyone do anything in particular.

 SPF continues to be a controversial "solution" to SPAM for a variety of reasons. For more information

about this framework, see the SPF resources at the end of this chapter. One final piece of good news: SPF

support, for those who want it, is available as a plug-in to SpamAssassin Version 3.0.0.

6.4.2.4 Message integrity, privacy, and non-repudiation

Another category of problems associated with sending and receiving email might be summarized as

"message validation." First of all, without additional software, there's no way to guarantee that the message a

recipient receives is the same message that the sender sent. In other words, there is no guaranteed

message integrity. Second, because messages are not encrypted during transmission, a rogue intervening

mail server could easily redirect unencrypted messages to another host. Thus there's no expected privacy.

Finally, the recipient has no way to know for sure who sent the message; she can only see who's listed on

the From: line. In other words, there is no ability to provide non-repudiation.

 These problems are grouped together because they can be solved through cryptographic means.

Products like Pretty Good Privacy (PGP), the GNU Privacy Guard (GPG), and the Secure MIME (S/MIME)

standard are all capable of providing message integrity, privacy, and non-repudiation. Unfortunately, an

appropriate treatment of these methodologies and the underlying concepts in cryptography are well beyond

the scope of this chapter. It's important to be aware that these problems exist so that if you need to address

them at some point, you'll know you have reading to do.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.5. Mail Server Configurations

 So far we've discussed some of the attacks possible against mail servers and brought up a number of

additional security-related issues. We've also introduced several methodologies to protect servers from

attack and stem the flow of unwanted mail. That is, we've discussed what the problems are, and to some

extent, what solutions exist. We now turn our attention to where you can put some of these solutions into

effect.

In order to examine specific "cases" of mail servers, we have to look at our infrastructure purely in the context

of mail flow. We no longer care what a server is, only how it handles mail. Figure 6-3 shows four kinds of mail

servers: the mail relay, the internal/external mail servers, and the null-client.

Figure 6-3. Four classes of servers

This is by no means the only possible mail architecture, merely one of the most commonly seen in small to

medium sized companies with typical electronic messaging requirements. In particular, the flow of mail into

and out of an organization may be handled by completely different sets of servers. There may be cases

where flows need to be split so that inbound mail is processed by a different set of rules and restrictions than

outbound mail. In most situations, however, single servers are capable of handling bidirectional flows.

6.5.1. Null Client

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html
mfreeopenbsd-CHP-6-SECT-5.html

 The null client is a workstation or server that performs no local delivery and accepts no mail from outside

the system. Any mail generated from the system is immediately sent to one preconfigured server. Most

servers that do not handle mail for a living fall into the null client category. Workstations that do not perform

local delivery may also be null clients. Virtually all desktop systems, whether they run Windows, Mac OS, or

some kind of Unix, should be configured as null clients.

Fortunately configuring null clients is simple:

Disable any daemons listening for SMTP traffic, or restrict the daemon to the loopback interface.

Configure the MTA to accept mail originating on the system and to send it to an upstream mail

server.

No other mail "intelligence" is required for a null client. Generally, the configuration never changes throughout

the life of the machine, even though the mail software will be periodically upgraded.

6.5.2. Internal Mail Server

The internal mail server is a particularly complex system. It not only houses an MTA, which accepts mail

from the mail relay and local null clients, it also performs local delivery and provides mail access. Finally, it's

responsible for taking any mail not destined for the organization and passing it on to the mail relay.

When configuring your internal mail server, keep in mind the following:

Only administrators should be able to log in.

The operating system should be locked down as much as possible. See Chapter 3 and Chapter 4

for more information on system hardening.

All changes to configuration files (in general, but especially those pertaining to your mail software)

should be tracked. Consider using sudo to control which administrators are allowed to make

configuration changes. This will also help your audit trail.

 Any mail leaving this server should appear to come from your domain, not the hostname of your

mail server. You should take pains to ensure all outgoing email addresses are valid. Some local

accounts may be exceptions to this rule, for example root and cron.

 The administrator should know every program to which mail may be redirected through an alias,

a .forward file, or an :include: mailing list. Configure your MTA software to restrict the programs

which may be used as destinations in these files. You may even restrict it so that no programs may

be used as destinations in these files.

Disable any MTA functionality you don't need.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Any message size limit you specify in an internal mail server will affect mail between organizational

users. You should set a threshold, but it may be higher than similar limits on the mail relay.

Virus protection may be useful. The virus protection on your relay helps keep viruses from entering

or leaving your organization. Internal virus protection is also mandatory to keep viruses from

spreading within your organization after having been brought in on a floppy or some other

out-of-band mechanism. Use a different vendor than you do on your mail relay as the union of virus

signatures from different vendors will be greater than if you only choose one vendor.

Configure SpamAssassin with per-user controls, if possible.

Provide secure access. This will include requiring authentication for both sending and receiving

mail and protecting the communications channel using some form of encryption.

While this is not an exhaustive list of configuration possibilities on an internal mail server, you should give

careful thought to each one.

6.5.3. Mail Relay

A mail relay can provide an excellent strategic opportunity to the mail administrator. Figure 6-3 shows a mail

architecture where every message entering and leaving the organization passes through this system. This is

the ideal system to make early accept/reject decisions for incoming and outgoing mail.

Some argue that mail originating from internal users is generally legitimate and

should not be checked. However, internal users may repeatedly send large

attachments outside the organization that bounce. Setting a message size limit

ensures you aren't wasting resources. In addition, in a virus outbreak, you

wouldn't want infected mail leaving your network and infecting others.

When configuring your mail relay, refer to the first six bullets in the checklist for your internal mail server.

They apply here also. In addition, consider the following:

Message size limits should be configured here and should be more stringent than on the internal

server. Values under 10 megabytes are appropriate.

 Use content filtering effectively whether by blocking certain networks, hosts, addresses, domains,

or blocking by substrings in message headers or the message body.

Configure DNS blacklists.

Virus protection may be useful. Use a different vendor than you do on your internal mail server.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You may want to configure SpamAssassin on the mail relay with reasonable default settings that

apply globally. This will help you, in combination with content filtering, to block all UCE rated above

a certain threshold at the relay level.

While these options are not exhaustive, you should carefully evaluate each for your mail relay.

6.5.4. External Mail Server

Not all organizations have an "external mail server." This is the server that lets remote users send and

receive mail directly—without the use of a webmail gateway or VPN. Sometimes these servers are placed

along side a mail relay in the perimeter network. Other organizations choose to place them outside of any

firewalls.

The external mail server should be configured just like an internal mail server. However, since these

servers often need to relay mail for users from unknown networks, authenticated SMTP and encrypted

sessions are mandatory.

In addition, external mail servers sometimes perform all mail duties for an organization, especially for

organizations whose business it is to provide mail access to customers. In these cases, they may be

strategically important just like the mail relay. You should evaluate all the configuration guidelines

recommended for a mail relay on these systems also.

Now that we have covered problems and solutions in a general sense, it's time to get down to specifics. We

now examine how to configure our mail servers to ensure they do what we need. To be able to answer these

questions, let us first look at the relevant software.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html
mfreeopenbsd-CHP-6-SECT-6.html

6.6. Sendmail

Several pieces of software boast MTA capabilities, but Sendmail is probably the most well known. In its first

incarnation, it was developed by Eric Allman in 1979, called Delivermail, and shipped with 4.0 and 4.1 BSD. In

the early 1980s, it became known as Sendmail and is now the default mailer on most open and commercial Unix

systems today.

As Sendmail was being developed, the "Internet" as we know it today was just beginning to form. TCP/IP had

just been developed and communication standards were furiously being formulated to govern the ways

computers should interact. It was in this wild-west environment that Sendmail was written. It was developed to

implement a "general purpose internetwork mail routing facility," according to Allman's "Sendmail Installation and

Operation Guide" (October 25, 1997, http://www.sendmail.org/~ca/e-mail/doc8.8/op.html) and to not rely on any

one transport protocol. At the time of its development, the flexibility Sendmail offered was its greatest strength

and translated directly into its rapid and widespread adoption.

 In these days of ubiquitous TCP/IP networking and the universal reliance on the SMTP protocol, its flexibility

(more specifically, the wealth of compiled code implementing this flexibility) is its greatest drawback.

While this bit of historical aside may seem unnecessary in a book about building OpenBSD and FreeBSD

servers, bear in mind that Sendmail continues to be the default mailer on both operating systems. Cotemporary

critics insist that Sendmail's long history has given rise to a massively complex mail transport system

implementing a wealth of features rarely used. A system this complex is rarely fully understood by those who

administer it and this lack of understanding during deployment can lead to a host of security problems. As

evidence, critics offer Sendmail's long list of discovered vulnerabilities during the years.

Many administrators who eschew Sendmail in favor of alternate mailers do so without really assessing

Sendmail's security posture today. In recent years, Sendmail has shown comparatively few vulnerabilities. The

availability of commercial support for the product has made it a more attractive option for companies who have

this as a requirement. These administrators often have little recent experience with Sendmail and choose to

administer a different platform as a result of preconceived notions. As with any system, however, you should

administer software you are comfortable with—if you know Sendmail, feel free to use it.

6.6.1. Installation and Configuration

 Sendmail is installed as the default MTA on both OpenBSD and FreeBSD systems, thus there is little to do

for installation. You may recall from Chapter 3 that Sendmail will be listening on 127.0.0.1:25 by default. In

order for Sendmail to work properly, you must not use the nosuid option (in /etc/fstab) when mounting the

filesystems that contain your mail queue and the sendmail binary.

FreeBSD users may also choose to install Sendmail through ports instead of tracking updates to the daemon

with the operating system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.sendmail.org/~ca/e-mail/doc8.8/op.html

If you try to install Sendmail through ports and override the PREFIX environment

variable to convince the port to overwrite the base version, the installation will fail

and you will be chastised. Instead, accept the default /usr/local prefix and run

make mailer.conf from the mail/sendmail directory in your ports hierarchy to

update /etc/mail/mailer.conf to point to the version of Sendmail installed through

ports.

Whether or not your system has been recently built, your first priority in running any server should be to bring

your system up to date. Because Sendmail is part of the base operating system, it will be upgraded with the rest

of the system.

FreeBSD users who are tracking Sendmail through ports must not forget to

upgrade that port in addition to performing a system upgrade. Be careful during

the mergemaster step of the system upgrade not to overwrite the changes your

port has made to /etc/mail/mailer.conf. If you choose to set NO_SENDMAIL=true

in /etc/make.conf to speed up your system build, make sure you delete all existing

Sendmail binaries. If you leave them behind, they will not be updated to account

for vulnerabilities.

 Follow the appropriate procedures to bring your system up to date; see Chapter 3 and Chapter 4 for more

information. Ensuring that you are running an up-to-date version of Sendmail will go a long way toward protecting

your operating system from compromise.

6.6.2. Root Background

The sendmail binary used to be a setuid root program. This means that regardless of which user was invoking

the command, it would run as root. Allowing arbitrary users to run programs as root is, of course, fairly dangerous

and the default was changed to a setgid binary as of Version 8.12. This allows sendmail to run as the user

invoking the program, yet continue to transfer mail via SMTP or write to the client mail queue

/var/spool/clientmqueue.

Another important aspect of sendmail to remember is that when root access is not needed, the binary drops

privileges. Certain aspects of handling mail, of course require root privileges, for instance:

Listening on privileged port 25 for SMTP

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Reading ~/.forward files restricted to user-only read/write access

Writing out files owned by arbitrary users

 For this kind of flexibility, sendmail must from time to time do things as root. When root privileges are not

needed, sendmail will fork, drop privileges using setreuid(3), seteuid(3), or setuid(3) as available. When the

child process has completed its non-root task, it exits, leaving behind the parent still running as root.

6.6.3. The Configuration Files

For administrators without years of experience configuring and tuning Sendmail, one of the keys to successful

and sane configuration is to treat .cf files as binaries: don't modify them—to change the configuration, modify the

corresponding .mc file. OpenBSD places the source .mc files in /usr/share/sendmail/cf. Most importantly the

openbsd-localhost.mc is the source of /etc/mail/localhost.cf: the default configuration file used by sendmail on

OpenBSD. FreeBSD users should instead use the .mc and .cf files in /etc/mail. Additional example .mc files are

located in /usr/share/sendmail/cf/cf. Details on how to modify .mc files, a background on the m4 macro language

processor, etc., are beyond the scope of this book. However, these details are fully covered by the README

found under /usr/share/sendmail on your FreeBSD or OpenBSD system.

6.6.4. Overall Sendmail Security

At the beginning of this chapter, we talked about three types of situations you should look out for when

deploying a mail server: attacks that threaten the operating system, illegitimate mail relaying, and blocking

unwanted mail. While architecture and software updates mitigate the risks, there is more work to be done in the

configuration of your mail software. This section delves into some of the configuration options available to you

with Sendmail. As we point out how each option mitigates risks, you can decide whether it's worth using on your

servers.

6.6.4.1 File and directory permissions

 It is imperative that Sendmail's binaries and configuration files have appropriate permissions. Weak

permissions on files and directories can easily result in system compromise. For instance:

Everyone who has write access to your sendmail.cf can use the program form of the F command

combined with setting the DefaultUser to 0:0 to cause sendmail to execute an arbitrary script as root.

If that script happens to make one of your installed shells (or a copy of a shell in /tmp, for instance) a

setuid binary, anyone with local access can get root access.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Attackers may also exploit group-writable .forward and :include: files to gain system access as the

file owner.

Protecting the aliases file alone is not sufficient as that is merely a source file to generate the alias

database, a db3(3) format file called aliases.db in /etc/mail.

Improper directory ownership can result in root-owned files being overwritten or directory owners being

replaced.

To help prevent these situations, sendmail will check the permissions of all sendmail-related binaries,

configuration files, and directories on the system. You can force an audit with the following command:

% sudo sendmail -v -d44.4 -bv postmaster

Observe the output closely and ensure your system does not fall prey to weak permissions. Once you have

solidified the desired permissions on your system, you may want to employ some combination of file immutability

and permissions auditing software like Tripwire, Osiris, or mtree(8).

6.6.4.2 Beware recipient programs

 Most sendmail configuration files, including .forward files, :include: mailing lists, aliases, and the sendmail.cf

configuration file itself, support the execution of arbitrary programs. We mentioned earlier that .forward and

:include: mailing list files are parsed and acted upon in the user context. If you've been diligent, these files will be

writable only by the owner, ensuring that the execution of programs is intentional. If you've not been careful,

users could easily start running programs as other users.

Still, just the fact that these files point to arbitrary programs means you've got another problem to deal with. All of

these programs have suddenly become a part of your mail system, and you'll have to audit them, too. Be

especially wary of the aliases file: sendmail will take actions on this file in the daemon user context.

You might want to consider restricting users from passing incoming mail to programs by ensuring their shell as

specified in the passwd files is not in /etc/shells. You may still allow login by specifying a valid shell that is not in

/etc/shells: you could, perhaps, create a /bin/allow-login shell, which is a copy of /bin/tcsh, and ensure

/bin/allow-login is not listed in /etc/shells.

Beware of letting users log into your mail server. Keeping an administrator-only

machine secure is certainly easier than securing a system with a variety of local

accounts. Consider enforcing the use of mail retrieval protocols instead of direct

mail access as described previously.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

There are, of course, a variety of other Sendmail-specific configuration options to consider also. One of these

can help restrict what programs sendmail will execute on behalf of users.

6.6.5. Security-Related Configuration Options

6.6.5.1 Arbitrary program restriction

 Sendmail comes with a variety of helper programs including smrsh(8). This "sendmail restricted shell" is

meant to replace /bin/sh as the shell used by sendmail to execute programs specified in configuration files in the

|/path/to/program syntax. In fact, smrsh will only execute programs located in /usr/libexec/sm.bin (by default)

in addition to the shell built-in commands echo, exec, and exit.

To configure sendmail to use smrsh, thus tightly restricting users' ability to execute arbitrary programs (a good

thing!), use a stanza similar to the following in your .mc file before your MAILER(`local') stanza:

FEATURE(`smrsh',`/usr/libexec/smrsh')

You will then need to link to programs that should be allowed to run. For example, to grant users the ability to

pass mail into vacation(1) and procmail(1), issue these commands:

% sudo ln -s /usr/bin/vacation /usr/libexec/sm.bin/vacation

% sudo ln -s /usr/bin/procmail /usr/libexec/sm.bin/procmail

6.6.5.2 Don't blame Sendmail

 As of Version 8.9 of Sendmail, the daemon is more careful about overall file and directory permissions

making it more difficult for the careless administrator to deploy Sendmail with weak file and directory permissions.

If you're adamant about supporting permissions that sendmail does not want to tolerate, you can use the

appropriately named DontBlameSendmail option. So, if your configuration changes result in an insecure

installation, and your host is compromised, blame yourself instead.

If you find you have a legitimate need to loosen the restrictions sendmail imposes on file ad directory

permissions, review the documentation on this option at http://www.sendmail.org/tips/DontBlameSendmail.html.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.sendmail.org/tips/DontBlameSendmail.html

Remember, instead of making configuration files group writable, use sudo(8) to tightly control and audit who

makes changes to what files. This will keep you from making configuration mistakes with DontBlameSendmail,

and the strong audit trail will help deter or detect would-be saboteurs.

If you must use this option, it may be compiled into your configuration file with a statement similar to the following

in your .mc file:

define(`confDONT_BLAME_SENDMAIL',`GroupWritableAliasFile, IncludeFileInGroupWritableDirPath

6.6.5.3 Masquerade your domain

 Many organizations send mail internally and retain full hostnames for host-to-host mail. When the mail leaves

the organization, however, these internal hostnames are no longer resolvable. In order to ensure that mail

reaches the destination (because the sender's domain must resolve), it's usually a good idea to masquerade all

hosts and subdomains within a domain to the top level domain.

 That is, mail sent from two internal hosts taco.mexicanfood.net and salsa.condiments.mexicanfood.net should

reach their destination and appear to have come from @mexicanfood.net. This configuration option is a

appropriate for a mail relay and may be configured using a stanza similar to the following in your .mc file:

MASQUERDADE_AS(`mexicanfood.net')

MASQUERDADE_DOMAIN(`mexicanfood.net')

FEATURE(`masquerade_envelope')

These three lines ensure (in order) that mail sent from the local host is masqueraded, mail relayed through this

machine from other hosts is masqueraded, and envelope information (in addition to header information) is

masqueraded.

 Note that usernames will be preserved and you may run into mail routing problems by collapsing your internal

namespace. Thus, many organizations enforce organization-wide usernames and masquerade on the internal

mail server also. If you choose to masquerade on your internal server, you will likely want to retain host

information for system and service users like root and cron. To do this, use one of the following methods in your

.mc file:

EXPOSED_USER(`root cron')

EXPOSED_USER_FILE(`/etc/mail/masquerade-user-exceptions')

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mailto:@mexicanfood.net

6.6.5.4 Obfuscate greeting

It is of marginal value to obfuscate the greeting (for example, the first line of Example 6-4) sendmail displays

when client programs or attackers connect to port 25 on your host. Most attacks you face come from scripts,

iterating through open ports looking for daemons to exploit. These scripts rarely care about what mail server you

happen to be running, they will attempt the exploit regardless.

Still, some administrators prefer to give away as little information as possible. A laudable goal and if you have

secured your system and Sendmail in every other conceivable way and have time left over, by all means

configure an obfuscated greeting by adding a stanza similar to the following in your .mc file:

define(`confSMTP_LOGIN_MSG',`$j MexiMail Server')

6.6.5.5 Permissions of transient files

 As a consequence of normal operations, sendmail will create and delete a variety of files. These files fall

into two categories: temporary files and queue files. The permissions of these transient files are controlled by the

TempFileMode and QueueFileMode options. Ensure that if you compile new values into the .cf files provided

with the base operating system, you do so with great care.

The values of these options may be changed from the .mc file using stanzas similar to the following:

define(`confTEMP_FILE_MODE',`0600')

define(`confQUEUE_FILE_MODE',`0600')

6.6.5.6 Privacy options

sendmail can be configured to be a little less helpful and a little more paranoid with the PrivacyOptions option

in the sendmail configuration file. This is a particularly useful configuration item and we examine its possible

values below.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

authwarnings

When specified, authwarnings tells sendmail to include X-Authentication-Warning headers into mail

messages when certain situations arise that are cause for suspicion. Some examples of this include:

when someone used the -C switch to use an alternate configuration file, use of the -f switch to replace

the sender, hostname mismatches like the one in Example 6-4, not specifying HELO/EHLO, etc. These

headers are fairly unobtrusive and you may find value in looking for them with your content filters as

described later in this chapter.

goaway

Shorthand specification for the following values: authwarnings, noexpn, novrfy, noverb,

needmailhelo, needexpnhelo, needvrfyhelo, and nobodyreturn.

nobodyreturn

This is "no body return," not "nobody return." That is, do not return the body of the message as part of a

bounce. This can be especially useful if you have to deal with a lot of spam and returning the volume of

illegitimate mail is chewing up your bandwidth.

noetrn

 Don't allow the SMTP EtrN command. If you are MX for an organization that has intermittent network

capability and will only be able to receive mail at certain times, they may need a way to tell you to

process your queue for them. These organizations could contact your mail server and issue, for

instance, EtrN smtp.onlinesometimes.net. This will tell your server to process all messages in the

queue that could not be delivered to smtp.onlinesomtimes.net due to network problems at last attempt.

If this does not describe a situation you face, enable noetrn.

needexpnhelo

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The EXPN command is a handy, but often unnecessary information disclosure, as described later in

this section. The needexpnhelo option causes sendmail to reject EXPN commands unless preceded

by a HELO/EHLO. There is little real security value in this option alone, and EXPN should be disabled

anyway.

needmailhelo

 Like the needexpnhelo option, needmailhelo requires a HELO/EHLO before the MAIL FROM

command. From a security standpoint, HELO is weak and requiring it adds a little network traffic, no

more.

needvrfyhelo

At this point you can surely guess what this means. Make sendmail require a HELO before honoring a

VRFY. Like EXPN, VRFY is nothing but unnecessary information disclosure and should be disabled

anyway.

noexpn

The EXPN command will expand local addresses. This will cause any relevant entries from a user's

~/.forward file to be printed out, or list the addresses to which the message will be delivered if the

argument is an alias. The noexpn option also implies the noverb option. Use noexpn.

noreceipts

 The noreceipts option primarily turns off sendmail's ability to send return receipts. In fact, this option

disables delivery status notifications (DSNs) altogether. DSN is what allows sendmail to notify senders

when there are problems with mail delivery and be discriminating by tailoring status notifications based

on specific errors. Many users rely heavily on return receipts and administrators rely on DSNs (users

seem never to read DSNs), we recommend that you do not specify this option.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

noverb

This option turns on verbose processing of mail and should only be used when debugging.

novrfy

The VRFY command is another source of unnecessary information disclosure. When used, sendmail

will determine whether or not the argument specified to the VRFY command represents a valid account

on the system. Frankly, there are other ways of getting this information, if a little slower. Still, VRFY is

not a particularly useful feature and may be safely disabled.

public

This turns off all PrivacyOptions.

restrictexpand

Think of restrictexpand as noexpn in the command-line context. This option causes sendmail to run in

nonprivileged mode when run with the -bv command- line argument so that attempts to expand

contents of other users' ~/.forward and :include: files fail. The restrictexpand option also disables the

verbose -v command-line argument. Using this option is a good idea.

restrictmailq

When specified, this restricts the use of the mailq command so that users who wish to view the mail

queue must be in the same group as the group ownership of the queue directory. This can be valuable if

non-administrators have access to the server.

restrictqrun

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Ensures that only root (specifically, the owner of /var/spool/mqueue, which is root unless you changed it)

is able to process the mail queue with the -q command-line argument to sendmail. While this alone

does not provide much greater security, forcing administrators/users to use sudo to process the mail

queue will provide better auditing.

Define privacy options in your .mc file with a statement similar to the following:

define(`confPRIVACY_FLAGS', `authwarnings,noexpn,novrfy')

6.6.5.7 Running sendmail as nonprivileged users

In certain situations, sendmail should run as another user for security reasons, but there is no obvious user to

choose, for example, when sendmail is executing programs or writing files specified through aliases. In this

case, sendmail drops privileges and changes to the user specified in the configuration file as the DefaultUser.

On FreeBSD and OpenBSD systems, this user is mailnull. This user should not be a member of any groups

(other than the mailnull group) on the system, should not have a valid home directory or shell, and should be

used for nothing but this purpose.

In addition, sendmail can run in a variety of different modes including a listening server on *:25, 127.0.0.1:25

or purely to de-queue messages in either the outbound queue /var/spool/mqueue or the locally submitted

outbound queue /var/spool/clientmqueue. In this last case, sendmail is run with the -Ac command-line

argument, which causes it to start up and use the available submit.cf as its configuration file. By default, this file

specifies the option RunAsUser=smmsp. The reason for this is that the daemon only needs to process files in

/var/spool/clientmqueue and send them outbound (and the clientmqueue is owned by smmsp:smmsp), so there

is no reason to run as root.

Note that DefaultUser tells sendmail to use a specified non-root account when it needs to drop privilege but

cannot decide which user to change to. RunAsUser, on the other hand, tells sendmail to run as the alternate

user instead of root altogether. These two options may be configured from corresponding .mc files with

statements similar to the following:

define(`confDEF_USER_ID', `user:group')

define(`confRUN_AS_USER', `user:group')

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.6.5.8 Safe file environment

As we have discussed, sendmail is able to deliver mail to both files and programs. In fact, it can deliver mail to

anything that you can specify as a path: this includes items in /dev, sockets, etc., provided it's running with the

appropriate permissions. Using the SafeFileEnvironment option, you're able to simultaneously restrict sendmail

from being able to write to anything other than regular files and specify a path under which all writing must be

done. Obviously specifying a path of / will not restrict where on the filesystem sendmail may write, but will keep

it from writing to non-regular files.

The safe file environment may be specified in your .mc file using the following stanza:

define(`confSAFE_FILE_ENV',`/home')

6.6.5.9 Trusted user

Sendmail's notion of a trusted user, specified as an argument to the TRustedUser option, allows a non-root user

to manage Sendmail. This includes managing the various maps Sendmail uses and stopping (not starting!) and

restarting sendmail. While this may be convenient in certain situations, the same behavior would be better

achieved through the careful configuration and use of sudo to manage access rights. By default on FreeBSD and

OpenBSD platforms, smmsp is the trustedUser when sendmail is processing the clientmqueue (specified in

submit.cf) and root is the trustedUser otherwise.

Trusted users may be configured in an .mc file with using a stanza similar to the following:

define(`confTRUSTED_USER',`username')

6.6.5.10 Trusted users

Believe it or not, Sendmail has both trusted user and trusted users settings and they mean completely different

things. Be careful when making configuration changes to either of these options. Whereas the TRustedUser is

able to perform some Sendmail administration, the trusted users are only able to change the sender of a

message by using the -f command-line argument. This can be useful when local mailing lists need to specify

alternate sender addresses. Since SMTP has no particular restrictions on declaring From addresses, there is

little real value in restricting trusted users. Still, the restrictive default is probably fine in most situations. The root,

daemon, and uucp users are always listed as trusted users.

Trusted users, specified in the T class may be configured in one of the two following ways:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

define(`confTRUSTED_USERS',`user1 user2 user3')

define(`confCT_FILE', /̀path/to/trusted-user-file')

6.6.6. Limiting Denial of Service Attacks

 By default, Sendmail is not very resistant to denial of service attacks. To help mitigate the risks of these kinds

of attacks, several rate-limiting options exist.

confCONNECTION_RATE_THROTTLE

Although it is difficult to devise a "reasonable" value for the number of connections sendmail should

accept per second, this threshold nevertheless exists and is tunable. Fairly idle servers may make

effective use of this by limiting connections to one every second. Mail administrators of servers that

handle large volumes of mail will want to avoid defining this option.

confMAX_DAEMON_CHILDREN

This configuration item limits the number of children the parent sendmail process can have running at

any given time. This is a more useful configuration parameter, but its value will depend on the resources

available on your system. Once this limit is reached, other pending connections will be delayed.

confMIN_FREE_BLOCKS

When this threshold is reached, sendmail will cease accepting messages. The default is 100 free

blocks, though you may want to increase this value to leave room for other data on the filesystem (if

there is any). Remember to always monitor system disk space closely.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

confMAXRCPTSPERMESSAGE

This configuration option defines the maximum number of recipients to which a message may be

addressed. You may want to tune this value to a reasonable number to mitigate the risks of attacks that

attempt to brute-force hundreds or thousands of usernames in one given message. Bear in mind, this is

not common from spammers: UCE is usually sent with only a few recipients at most.

confMAX_MESSAGE_SIZE

The maximum size of any given message that sendmail will handle. Keep this value under 10

megabytes if you can (even as little as two or three), and provide alternatives for transporting large files

to your users.

Define these options in your sendmail.mc file, rebuild your sendmail configuration files and restart sendmail.

6.6.7. Blocking Unwanted Mail

 As of Version 8.9, Sendmail refuses to relay mail by default. In order for messages to pass through your mail

server, they must either be destined for a domain you handle, or the sending host must be a member of one of

the domains listed in /etc/mail/relay-domains. This can be further restricted by using

FEATURE(`relay_hosts_only') in your .mc file requiring that the sending host itself be listed in the

relay-domains file. Avoid other FEATUREs that open up relaying, as they are generally more permissive than

you really want.

6.6.7.1 Access database

 Sendmail supports an access database (usually /etc/mail/access) that describes actions to take with mail

based on hosts, domain, email addresses, network specification, or tagged connection and envelope information.

Values of these keys must be REJECT, DISCARD, OK, RELAY, or an arbitrary error message. This can be

useful to ensure mail from local networks and hosts is not blocked. Some also use access databases to list

domains or addresses from which a lot of spam originates. Unfortunately this is an uphill battle: as soon as you

list a sending location, the same message can appear from other sources.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.6.7.2 DNS blacklists

 Sendmail can easily be configured to reject mail from sites listed in real-time blacklists (RBLs) using the

FEATURE(`dnsbl'). Alone, this FEATURE will use the original RBL at http://www.mail-abuse.com/. The other

services mentioned previously may also be used when supplied as arguments to this FEATURE. Instructions for

setting up blacklists for Sendmail may be found at each RBL provider site.

6.6.7.3 Milters

 The Mail Filter API (milter) provides a way to hook third-party content filtering tools into Sendmail. A huge

variety of plug-ins that use this milter functionality already exist and more appear regularly. We refer to these

plug-ins colloquially as "milters" themselves, and describe a few key milters next.

Milter capability is built into Sendmail on FreeBSD by default. In order to get milter support with your Sendmail

installation on OpenBSD, perform the following steps:

echo WANT_LIBMILTER=YES >> /etc/mk.conf

% cd /usr/src/gnu/usr.sbin/sendmail

% make clean obj depend && make && sudo make install

% sudo mkdir /usr/include/libmilter

% sudo cp include/libmilter/*.h /usr/include/libmilter

One important thing to remember about milters is that they execute inline and are not post-processing options.

Thus, they have the capability to reject messages during the SMTP conversation, obviating the need to store

messages on disk. Traditionally, mail post-processing had been done after delivery to a delivery agent like

procmail(1).

6.6.7.4 Arbitrary content filtering

 The milter-regex port in the mail directory of your ports hierarchy is your solution for "quick and dirty" content

filtering. Installing this milter is as simple as a make install for both FreeBSD and OpenBSD systems. To

activate this milter, add the following line to your .mc file and regenerate your .cf.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.mail-abuse.com/

INPUT_MAIL_FILTER(`milter-regex',`S=unix:/var/spool/milters/regex.sock,

T=S:30s;R:2m')

In order for this milter to work, of course, the milter-regex daemon must be running so that

/var/spool/milter-regex/sock will exist when sendmail TRies to send messages there. Create a startup script

milter.sh and place it in /usr/local/etc/rc.d to start milter-regex on boot with the -c argument specifying the

configuration file (perhaps in /usr/local/etc/milter-regex). Place expressions in this configuration file describing the

kinds of messages you'd like to block. For instance, to block all messages SpamAssassin marks with a score of

12.0 or higher, use the following expression in your milter-regex file:

reject "This really, really looks like spam to me."

header /^X-Spam-Level: ************/

See the milter-regex(8) manual page for more configuration details and examples.

6.6.7.5 Virus protection

 Virus protection is essential to stop the flow of malware through your servers to more vulnerable client

workstations and servers running Windows. Viruses and worms that exploit vulnerabilities in Unix software are

uncommon, but not unheard of. A variety of commercial and noncommercial options exist including McAffee

Virus Scan, Kaspersky Anti-Virus, and Clam Anti-virus (ClamAV). Perhaps the most popular choice, and the one

chosen by SourceForge, is ClamAV.

Installation of ClamAV as a milter on FreeBSD is as simple as running make WITH_MILTER=YES install

from the security/clamav directory in the ports tree. OpenBSD users do not have an available clamav port on the

system, but an unofficial clamav port is available at http://www.fatbsd.com/openbsd/clamav/. Once installed, the

clamav-milter can be started using a command similar to the following:

% sudo clamav-milter -lo

/var/spool/milters/clamav.sock

Of course, you may want to adjust where you put the socket. As with the regex milter, edit your .mc file and add a

line similar to the following, and then regenerate your .cf.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.fatbsd.com/openbsd/clamav/

INPUT_MAIL_FILTER(`clmilter',`S=local:/var/spool/milters/clamav.sock, F=,

T=S:4m;R:4m')

FreeBSD users can take advantage of the installed startup scripts in /usr/local/etc/rc.d by configuring the

following options in /etc/rc.conf:

clamav_clamd_enable="YES"

clamav_milter_enable="YES"

clamav_milter_flags="--local --outgoing --max-children=50 --quarantine-dir=/var/

quarantine --dont-log-clean --headers --postmaster-only"

freshclam_flags="--daemon --checks=12"

freshclam_enable="YES"

OpenBSD users may want to ensure that clamd and clamav_milter start automatically when the system boots,

that the added _clamd user is aliased to a human being's mail address in the aliases file, and that the freshclam

virus database update program is run periodically through cron.

Before restarting sendmail to enable ClamAV support, be sure to edit the clamav configuration file. That's

/usr/local/etc/clamav.conf on FreeBSD. OpenBSD users may want to copy

/usr/local/share/examples/clamav.conf to /etc/clamav.conf and edit that.

6.6.8. Authentication and Encryption

 We discussed earlier that SMTP is an authentication-free protocol. By design, anyone can connect to an

SMTP server and send mail that travels in clear text to the server. Certain organizations, however, who must

accept and relay mail from known users on unknown and untrusted networks, need some means to verify that a

user is who he says he is. One solution is the Simple Authentication and Security Layer (SASL).

Of course, authentication without encryption should send a shiver up the spine of any security-minded system

administrator. Providing an encrypted channel over which authentication can occur for the SMTP exchange is

handled by Transport Layer Security (TLS) .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.6.8.1 Installing Sendmail+SASL+TLS on FreeBSD

 FreeBSD provides a sendmail-sasl port in mail/sendmail-sasl. A simple make install in the port directory will

install the binaries in /usr/local/sbin. You will also need to make mailer.conf to activate the version of sendmail

from ports.

All that is left is a little configuration.

6.6.8.2 Installing Sendmail+SASL+TLS on OpenBSD

OpenBSD administrators should first install the Cyrus-SASL port from security/cyrus-sasl2, or if you prefer,

retrieve the binary package and install it using pkg_add(1). Once installed, adjust the name of the shared object

in /usr/local/lib as follows:

% cd /usr/local/lib

% sudo ln -s

libsasl2.so.2.11

 libsasl2.so

The exact name of the library to which you must create a libsasl2.so symlink will vary based on the exact version

of SASL you install on your system.

Once this is done, rebuild sendmail with SASL support as follows:

echo WANT_SMTPAUTH=YES >> /etc/mk.conf

% cd /usr/src/gnu/usr.sbin/sendmail

% make clean obj depend && make && sudo make install

This will replace the Sendmail-related binaries on your system with those with SASL support, but you must still

configure sendmail to use SASL and TLS.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.6.8.3 Configuring Sendmail with SASL+TLS

 To configure Sendmail to use SASL and to activate TLS support, edit the .mc source configuration file and add

the following options:

define(`confCACERT_PATH',`/etc/mail/certs')

define(`confCACERT',`/etc/mail/certs/CA.cert.pem')

define(`confSERVER_CERT',`/etc/mail/certs/cert.pem')

define(`confSERVER_KEY',`/etc/mail/certs/key.pem')

define(`confAUTH_MECHANISMS',`PLAIN LOGIN CRAM-MD5 DIGEST-MD5')dnl

TRUST_AUTH_MECH(`PLAIN LOGIN CRAM-MD5 DIGEST-MD5')dnl

define(`confAUTH_OPTIONS',`p,y')dnl

 Note that this allows "plain" logins where the users' passwords are transmitted in clear text over the network;

with TLS, these clear-text passwords will be sent over an encrypted channel. Some MUAs do not properly handle

any form of authentication other than plain text. If you find yourself in this position, use the PLAIN parameters,

otherwise omit it. The exact location of your certificates may vary, but having at least these four certificate

options defined in your .mc file will enable TLS support.

 After you have modified your .mc file, rebuild your .cf file and install it. Once this is done, you must configure

SASL to authenticate users in some way. Users may be authenticated against the local password file, an

OpenLDAP server, a MySQL or PostgreSQL database, and so on. The details of configuring SASL are beyond

the scope of this document, but a number of online HOWTOs for these topics exist.

To test SASL functionality, it may be worthwhile to use saslpasswd2(8) to create a separate authentication

database and configure saslauthd(8) accordingly.

echo "pwcheck_method: saslauthd" > /usr/local/lib/sasl2/Sendmail.conf

% sudo /usr/local/sbin/saslpasswd2

testuser

(follow prompts)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% sudo /usr/local/sbin/saslauthd -a getpwent

You will then need to restart sendmail for SASL authentication over TLS. Note that in order for saslauthd to

start at boot, OpenBSD administrators need to add appropriate lines to their /etc/rc.local script.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.7. Postfix

 Given the dissatisfaction with Sendmail's complexity, code bloat, and track record, it was only a matter of

time before people started developing alternatives. One of these is a drop-in replacement for Sendmail and is

called Postfix. Weitse Venema wrote a program called VMailer in 1997, and in early 2001, this software was

released as Postfix Version 1.0. Postfix was designed from the ground up to be safe and robust, modular, to

perform well, and to be compatible with Sendmail to make it easy for those familiar but unhappy with

Sendmail to switch.

 One significant difference between Postfix and Sendmail is its carefully crafted architecture. Postfix

consists of a small suite of service binaries that each performs a simple task. The master binary,

appropriately named master(8), runs as root and listens for incoming connections. When a connection is

made, master spawns smtpd(8), which can run chrooted and handles SMTP transactions. When a message

has been completely received by smtpd, it is passed on to the cleanup(8) daemon and eventually ends up in

the incoming queue directory on the filesystem. This is just the beginning of how Postfix handles mail but

should give you an idea of how Postfix was designed. Small programs handle simple tasks and handle them

well in the best Unix tradition.

While understanding what all of the Postfix programs do is no easy task, configuring Postfix generally is. As

mentioned earlier, Postfix was designed as a drop-in replacement for Sendmail. Most administrators familiar

with Sendmail will be able to understand the terminology and architecture of Postfix without a great deal of

effort. This makes configuring Postfix simple. Assisting with this endeavor are the comprehensive manpages

and easy-to-read documentation and tutorials available at http://www.postfix.org/. For more information,

consider the O'Reilly book Postfix by Kyle D. Dent.

6.7.1. Installation and Configuration: FreeBSD

 To replace the base Sendmail installation on your FreeBSD system, change into ports/mail/postfix and

run make install. You are provided a configuration menu similar to the one in Figure 6-4. You probably

recognize some of these items as we briefly touched on them earlier in this chapter.

Figure 6-4. Postfix install options

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
mfreeopenbsd-CHP-6-SECT-7.html
http://www.postfix.org/

Most of these options are self-explanatory, but as a reminder, we present this brief summary.

SASL2

 Install SASL2 if you need to provide SMTP authentication, that is, you require that users

authenticate before they are allowed to send mail through your servers. This is useful when your

users will connect to your mail server from untrusted networks in order to send mail. If you select

SASL2, you will have another set of options to choose from that determines how SASL

authenticates users. In many cases, the SASLAUTHD option will be appropriate; see the SASL

resources at the end of this chapter for links to more information about this topic.

SPF

 Install SPF support if you plan to implement the Sender Policy Framework as described earlier in

this chapter. To jog your memory, SPF provides a means to verify that a given message was sent

from an approved mail server by querying the responsible nameserver from the message

originator's domain.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

TLS

 This installs Transport Layer Security and provides for encrypted SMTP sessions. This is vital if

you plan to use SASL. Otherwise, you probably don't need it.

 DBx/MySQL/PgSQL/OpenLDAP

Postfix is capable of querying several kinds of databases for map files such as aliases, virtuals,

transport maps, and so on. If you have a need for this in your environment, select the appropriate

option. We do not cover database-backed map lookups in this chapter.

Once you have selected the options appropriate for you environment, Postfix will install itself. At the end of

the install process, you will be prompted to create one user (postfix) and two groups (postfix and maildrop).

Do so. As mentioned earlier, the Postfix suite is composed of several daemons and many of them run as

nonprivileged users. It is these users that are created at the end of the install process.

 You are then prompted to activate Postfix in /etc/mail/mailer.conf. Doing so will effectively replace

Sendmail on your system. Although, binaries will not be overwritten, the mailwrapper(8) program, which acts

as an intermediary between MUA software on the system, and the installed MTA will be told which binaries to

execute for key MTA functionality.

Finally, additional steps may be required to complete your Postfix installation. These steps will be clearly

stated in the output caused by your make install command. At the time of this writing, the port prompts you

to modify /etc/rc.conf and /etc/periodic.conf to complete the Sendmail replacement. We will not go over these

details as they are known to change from time to time and are clearly stated during the install process.

6.7.2. Installation and Configuration: OpenBSD

 Installing Postfix on your OpenBSD system is fairly straightforward. However, before diving in, you

have to make a few decisions in order to set the install flavor properly. Specifically, if you need to

authenticate users before sending mail, you need SASL. If you're accepting usernames and passwords

during the SMTP session, it makes sense to encrypt. For this, you need TLS. In other cases, it will not be

necessary to set a flavor. Example 6-6 outlines the basic steps for installing Postfix and replacing Sendmail

on your OpenBSD system.

Example 6-6. Installing Postfix on OpenBSD with SASL/TLS

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% setenv FLAVOR "sasl2 tls pcre"

% make && sudo make install

% unsetenv FLAVOR

% sudo /usr/local/sbin/postfix-enable

If you don't need SASL or TLS support, merely remove them from your flavor. The pcre entry provides Perl

compatible regular expressions support, which is helpful should you need to perform arbitrary content filtering

later.

Running /usr/local/sbin/postfix-enable activates Postfix in /etc/mailer.conf. This causes MUA software on the

system to use Postfix binaries instead of Sendmail ones without deleting or overwriting any Sendmail

software. You may switch back to Sendmail at any time by running /usr/local/sbin/postfix-disable. The enable

script will also inform you of a few additional steps required to wrap up your Postfix installation. We will not

cover these steps here as they have been known to change and are clearly stated during the execution of

this script.

Postfix is now installed, and configuration files are stored in /etc/postfix. Postfix is configured to run most of

its processes from a chroot, including smtpd(8): the master daemon process that listens on port 25 for

incoming connections and accepts mail. Thus, as with any chrooted daemon, you need to create a logging

socket within the chroot so that the process can send messages to syslogd. To do this, add the following line

to /etc/rc.conf.local:

syslogd_flags="-a /var/spool/postfix/dev/log"

If you already have a syslogd_flags configuration entry, merely append this argument pair to it.

6.7.3. Postfix Security Foundation

 We have casually mentioned several times in this chapter that Postfix gains much if its security by design.

Let's take a look at why and how this is so.

6.7.3.1 Do one thing, do it well

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Doug McIlroy, the inventor of Unix pipes, had a vision for building Unix software. He believed programs

should be built to do one thing, and to do it well. Programs should be written to accomplish discrete tasks and

with interoperability in mind. Postfix is built with this philosophy in mind. The Postfix suite of programs "do

mail." Postfix can act as a daemon, accept mail, check the content of mail, rewrite messages, deliver

messages to other hosts, to the local filesystem, and so on.

As you might have guessed, "doing mail" is far more than one discrete task. Instead of trying to do everything

in one program, Postfix employs several binaries, which handle each of these responsibilities.

Communication is either handled directly through pipes, or by merely leaving files on the filesystem for

another program to deal with. This has several consequences:

Each program is easier to write, less complicated, and the program writer is less likely to overlook

problems in the code.

Most programs may run in a nonprivileged context but the smtpd daemon that listens on privileged

port 25 must run as root.

Programs not needed in a given environment may be easily disabled making exploitation of that

program impossible.

Moreover, each program is able to perform operations on mail messages and leave the resultant message

behind for another program to deal with. This lack of direct inter-process communication helps alleviate some

security risks.

6.7.3.2 Understanding logging

As is often the case, increased security can bring with it a decrease in convenience. The programs that

make up Postfix are unable to pass data directly to others, so as messages move through a series of these

programs, logging is handled independently.

If you have data showing up in your Postfix logs, but some logs you expected

to see are conspicuously missing, ensure you are getting logs from all Postfix

programs. Chrooted programs need special provisions if syslogd is to be

expected to capture relevant messages.

In a simple case, you might see a series of logs as follows:

Oct 5 00:04:50 woot postfix/smtpd[3199]:

 connect from dreadnaught.home.korff.org[172.16.0.2]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Oct 5 00:04:56 woot postfix/smtpd[3199]:

 AA22369: client=dreadnaught.home.korff.org[172.16.0.2]

Oct 5 00:05:02 woot postfix/cleanup[14647]:

 AA22369: message-id=<20041005040456.AA22369@woot.home.korff.org>

Oct 5 00:05:02 woot postfix/qmgr[11900]:

 AA22369: from=<root@dreadnaught.home.korff.org>, size=431, nrcpt=1

 (queue active)

Oct 5 00:05:02 woot postfix/local[29887]:

 AA22369: to=<root@woot.home.korff.org>, relay=local, delay=6,

 status=sent (mailbox)

Oct 5 00:05:03 woot postfix/smtpd[3199]:

 disconnect from dreadnaught.home.korff.org[172.16.0.2]

 Six log entries for local delivery, and this is a simple case! On a busy mail server, it is not uncommon for

log entries to be interspersed with one another: connections mixed with mail delays and errant spam

rejections in the mix. Mail forwarding through virtual maps or aliases are even more complicated as the

incoming and outgoing message are assigned separate queue IDs (AA22369 is the queue ID above). It gets

worse. With content filtering programs like SpamAssassin and amavisd-new, messages leave the Postfix

system and are subsequently re-injected and assigned a new queue ID.

Deciphering Postfix logs can be challenging, but if you follow these guidelines, you should be able to avoid

getting lost:

The queue ID assigned by Postfix will describe any given message entering and leaving the Postfix

system.

In some cases, a message that leaves returns as a result of a forwarding map or an external content

filter. In this case, qmgr will see the message twice and assign a new queue ID the second time.

You can determine the newly assigned queue ID by looking at the second qmgr log entry containing

the message ID (i.e., New queue ID, same message ID).

This should get you through the intricacies of Postfix logging.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.7.3.3 Chroot

Postfix is able to chroot easily. OpenBSD administrators gain an advantage as the installation of Postfix

through ports results in a chrooted configuration by default.

 FreeBSD users should adjust the chroot column in the master.cf Postfix configuration file and change

the n to a y for every process that should run chrooted. All Postfix processes may be chrooted with the

exception of the pipe, virtual, local, and proxymap services. In almost all cases, it will be necessary to copy

/etc/localtime, /etc/resolv.conf, and /etc/services into /var/spool/postfix/etc. Finally, create a log socket in

Postfix's queue directory per the following:

syslogd_flags="-l /var/spool/postfix/var/run/log"

Of course, you must create /var/spool/postfix/var/run before this will work.

If you are using SASL authentication, your dependence on configuration files,

password databases, and libraries increases exponentially. Running a

chrooted smtpd daemon with SASL is likely more trouble than it's worth.

6.7.3.4 Configuration files

Postfix requires only two main configuration files: main.cf and master.cf. Both are located in the Postfix

configuration directory: /usr/local/etc/postfix on FreeBSD and /etc/postfix on OpenBSD.

The master.cf file controls the behavior of the various Postfix programs. You will likely make small

modifications to this file (perhaps to chroot certain services) and then forget it exists, except in some border

cases.

The main.cf file controls the behavior of Postfix and you will likely spend a fair bit of time working with this file.

Fortunately, the main.cf file is easy to read and understand following a simple parameter = value syntax.

This makes configuration easy, and mistakes less likely.

Whenever you make a change to either of these files, you must restart Postfix by running postfix reload.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.7.4. Security-Related Configuration Options

 As you configure your Postfix installation, remember that the fewer configuration changes you make, the

more likely you are to have a reliable and secure installation. One of the most common mistakes made by

administrators used to administering Sendmail is overconfiguration. Nevertheless, there are a few things to

keep in mind.

6.7.4.1 Arbitrary program restriction

 One of the dangers inherent in mail delivery is the power to pass mail to arbitrary programs. This can be

done through aliases, .forward files, and :include: mailing lists. It may be worth your while to restrict exactly

which programs may be executed through these facilities. One of the helper programs installed by default on

your system was designed to do exactly this. It's called smrsh(8) and it only allows programs to execute if

they are listed in /usr/libexec/sm.bin (by default).

To configure Postfix to use smrsh to intercept mail sent to local commands, use the following configuration in

your main.cf file:

local_command_shell = /usr/libexec/smrsh

Then link to programs that should be allowed to run. For example, to grant users the ability to pass mail into

vacation(1) and procmail(1), issue these commands:

% sudo ln -s /usr/bin/vacation /usr/libexec/sm.bin/vacation

% sudo ln -s /usr/bin/procmail /usr/libexec/sm.bin/procmail

6.7.4.2 Masquerade your domain

 Many organizations send mail internally and retain full hostnames for host-to-host mail. When the mail

leaves the organization, however, these internal hostnames are no longer resolvable. In order to ensure that

mail reaches the destination (because the sender's domain must resolve), it's usually a good idea to

masquerade all hosts and subdomains within a domain to the top level domain.

That is, mail sent from two internal hosts taco.mexicanfood.net and salsa.condiments.mexicanfood.net,

should reach its destination and appear to have come from @mexicanfood.net. This configuration option is a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mailto:@mexicanfood.net

appropriate for a mail relay and may be configured using a pair of stanzas similar to the following in your

main.cf file:

myorigin = $mydomain

masquerade_domains = $mydomain

This assumes you want your mail to come from $mydomain. If your mail server's hostname is

fajita.dmz.mexicanfood.net, $mydomain will be dmz.mexicanfood.net. To change this behavior, explicitly set

$mydomain to something else:

mydomain = mexicanfood.net

You may run into mail routing problems by collapsing your entire user-namespace. Thus, many organizations

enforce organization-wide usernames and masquerade on the internal mail server also. Finally, as you will

invariably receive mail from the root account (and perhaps several other accounts) of this machine, you

probably want to retain host information for system and service users so you can avoid looking at message

headers to find out where the message came from. To do this, use:

masquerade_exceptions = root cron

6.7.4.3 Obfuscate smtpd banner

It is of marginal value to obfuscate the smtpd banner (for example, see the first line of Example 6-4) smtpd

displays when client programs or attackers connect to port 25 on your host. Most attacks you will face come

from scripts, iterating through open ports looking for daemons to exploit. These scripts rarely care about what

mail server you happen to be running, they attempt the exploit regardless.

Still, some administrators prefer to give away as little information as possible. A laudable goal and if you have

secured your system and Postfix in every other conceivable way and have time left over, by all means

configure an alternative smtpd banner by adding a stanza similar to the following in your main.cf file:

smtpd_banner = $myhostname MexiMail Server

6.7.4.4 Disable unneeded commands

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Restricting certain SMTP commands is of moderate value. Postfix's implementation of these commands is

well tested and not known to cause significant problems, but you may want to consider turning them off.

etrn

If you are MX for an organization that has intermittent network capability and will only be able to

receive mail at certain times, they may need a way to tell you to process your queue for them.

These organizations could contact your mail server and issue, for instance, ETRN

smtp.onlinesometimes.net. This will tell your server to process all messages in the queue that

could not be delivered to smtp.onlinesomtimes.net due to network problems at last attempt. By

default Postfix will only allow ETRN for domains to which the server is configured to relay mail. If

the situation described above does not apply to you, you may disable etrn altogether by setting

smtpd_etrn_restrictions to reject in your main.cf.

vrfy

By default Postfix will allow VRFY command which is supposed to let clients determine whether or

not a user exists without sending mail. Postfix, however, will always return a 252 code informing the

client to "go send mail and find out." VRFY may be disabled altogether by setting

disable_vrfy_command to yes; there's little justification for or against.

6.7.5. Limiting Denial of Service Attacks

 Postfix ships with a good default configuration for limiting the risk of being affected by a denial of service

attack. This includes reasonable concurrency limits for daemons, maximum SMTP syntax errors before

disconnection, minimum free disk space, and so on. Most of these variables will not need tuning unless you

observe problems in the behavior of your Postfix installation.

bounce_size_limit

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This limits the size of mail bounces. Messages are truncated to this size, allowing you to see the

bounce, without having to deal with the entire content of the message. This may be worth lowering

from the default of 50,000 to keep spam bounces from clogging your mailbox.

default_process_limit

Postfix limits the number of any given subprocesses that may be concurrently running. The default

of 100 may be excessive in your environment and you might want to choose a lower number. This

will affect every Postfix subprocess. To use different thresholds for different subprocesses, you may

specify limits on a per-process basis in the maxproc column in your master.cf.

mailbox_size_limit

This configuration parameter controls the maximum size of a given user's mailbox. Of course this

only makes sense on a system where Postfix is performing local delivery.

message_size_limit

As you might guess, this limits the size of messages. The default of 10 MB is not unreasonable, but

if you can lower it, do so. Make sure you provide alternatives for transporting large files to your

users.

smtpd_error_sleep_time and error_limits

Postfix has two error thresholds that control when the smtpd daemon starts delaying responses.

The daemon accepts the number of errors specified in smtpd_soft_error_limit before instituting

delays (of 1 second, by default) to all subsequent responses. When the error count reaches the

number specified by smtpd_soft_error_limit, the connection is terminated. While this provides an

effective means of slowing down spammers, setting this value too high could allow a determined

attacker to initiate connections with jibberish data resulting in more and more daemon processes.

Eventually the daemon limit will be reached and legitimate connections will have to wait, or be

denied altogether. It is important to be aware of these configuration options so that you avoid

inadvertently changing them without fully understanding the ramifications.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

smtpd_recipient_limit

This parameter controls the maximum number of recipients a mail message can have. The

generous default of 1000 is in place as a sanity check. You may wish to reduce this value in your

environment.

Although these configuration parameters are by no means a comprehensive list of tunable limits within the

Postfix system, they are some of the most important. Consider reading the TUNING_README (distributed

with the Postfix source) and the manual page for postconf(5) for information about additional limits, when to

use them, and when to avoid changing them.

6.7.6. Blocking Unwanted Mail

 There are myriad ways of blocking unwanted mail through Postfix. We cover a few of these options and

point out when they are appropriate for use.

6.7.6.1 Access table

The access(5) table allows you to configure your server to accept or reject mail based on hostnames,

domain names, networks, or mail addresses. An access table will generally have entries similar to Example

6-7.

Example 6-7. A basic access file

1.2.3 REJECT I don't like your network

peruvianfood.net REDIRECT intrigue@mexicanfood.net

joe@ DISCARD # silently throw away, dangerous!

Many other options are possible, see the access manpage for more possibilities. The access database can

be use in conjunction with a variety of checks including:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

check_client_access

check_helo_access

check_recipient_access

check_sender_access

In turn, these checks are tied to specific restriction parameters. For instance, to control which clients are

allowed to use your mail server, you would specify:

smtpd_client_restrictions =

 check_client_access hash:.../postfix/client-access

Then, in your client-access table, you could specify networks or hostnames that should be denied access.

Likewise check_helo_access may be listed as a value to smtpd_helo_restrictions. We point out these

two configuration possibilities not because they are of tremendous use, but because you could waste a lot of

valuable time trying to figure out how to set them properly. Spammers use ever-changing source networks

and specify different values for HELO all the time. There is little use in trying to block UCE with manual

updates to these maps.

The latter two configuration options may be listed in smtpd_recipient_restrictions as they are both relevant

during the same stage of an SMTP transaction. So, you might want to configure the following:

smtpd_recipient_restrictions = permit_mynetworks ...

 check_sender_access hash:.../postfix/sender-access

 check_recipient_access hash:.../postfix/recipient-access

 ... reject_unauth_destination

Sender and recipient access maps can be more useful for configuring mail addresses to which and from

whence messages should be rejected. For instance, you may want to block mail sent from offers@ or

sales@ globally, depending on your organizational mail policy. Likewise, you might want to block mail being

sent from the outside world to any of your internal mailing lists at the mail-relay level.

Finally, in general, access maps do not provide the kind of flexibility required to deal with spam, but they can

be useful in globally rejecting or discarding certain kinds of messages or when problem accounts, networks,

or domains arise.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.7.6.2 Arbitrary content filtering

 Postfix is capable of performing arbitrary content filtering through header and body checks by defining the

following in your main.cf:

header_checks = pcre:.../postfix/header-checks

body_checks = pcre:.../postfix/body-checks

These let you define substrings that, when found in the header or body of messages, should result in

message rejection or the message being silently discarded. Header and body checks are useful in blocking

mail with certain attachments, sent from certain parts of the world with which your organization traditionally

has no contact, containing key phrases containing marketing buzzwords or indicating pornographic content,

etc.

For example, you may want to block all mail tagged greater than 12 by SpamAssassin. For this, you would

need the following entry in your header checks.

/^X-Spam-Level:\s************/ REJECT

Elaborating on the diverse opportunities available in content filtering is not worthwhile here. Instead, visit the

resources listed at the end of this chapter for more information on this topic.

6.7.6.3 DNS blacklists

 Postfix can be easily configured to reject mail from sites listed in real-time blacklists (RBLs) using the

reject_rbl_clcient directives under your smtpd_recipient_restrictions in main.cf. To configure RBLs in your

Postfix installation, add stanzas similar to the following under your recipient restrictions:

reject_rbl_client relays.ordb.org

See the specific RBL provider's site to determine exactly which host to list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.7.6.4 Virus protection

Virus protection is essential to stop the flow of malware through your servers to more vulnerable client

workstations and servers running Windows. Viruses and worms that exploit vulnerabilities in Unix software

are uncommon but not unheard of. A variety of commercial and noncommercial options exist including

McAffee Virus Scan, Kaspersky Anti-Virus, and Clam AntiVirus (ClamAV). Perhaps the most popular choice,

and the one chosen by SourceForge, is ClamAV.

Postfix and ClamAV are generally connected through an intermediary piece of software called amavisd-new.

Postfix is configured to use amavisd-new as a content filter, and amavisd-new in turn passes mail to the

ClamAV (you may also want to use SpamAssassin through amavisd-new if you are using virus protection).

ClamAV and amavisd-new are available as FreeBSD ports, but OpenBSD users must download the source,

compile, and install it in the traditional GNU fashion (though an unofficial ClamAV port may be retrieved from

http://www.fatbsd.com/openbsd/clamav/).

After amavisd-new and ClamAV are configured, Postfix should be configured to accept mail as usual, pass it

to the amavisd-new content filter listening on another port (specified in amavisd.conf), which will in turn pass

mail back to Postfix on yet another port (also specified in amavisd.conf) for re-injection into the mail queue.

First, Postfix should be configured to send mail to amavisd-new by adding the following to your main.cf:

content_filter = smtp-amavis:[127.0.0.1]:amavisd_port

Then adjust your master.cf so that amavisd-new can send mail back to Postfix:

smtp-amavis unix - - n - 3 smtp

 -o smtp_data_done_timeout=1200

 -o disable_dns_lookups=yes

127.0.0.1:reinjection_port inet n - n - - smtpd

 -o content_filter=

 -o smtpd_recipient_restrictions=permit_mynetworks,reject

 -o mynetworks=127.0.0.0/8

 -o strict_rfc821_envelopes=yes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.fatbsd.com/openbsd/clamav/

This allows any content filters attached to amavsid-new to parse messages before they are returned to the

Postfix system for delivery.

6.7.7. Authentication and Encryption

 We discussed earlier that SMTP is an authentication-free protocol. By design, anyone can connect to an

SMTP server and send mail, and this mail will travel over clear text to the server. Certain organizations,

however, who must accept and relay mail from known users on unknown and untrusted networks need some

means to verify that a user is who she says she is. One solution is the Simple Authentication and Security

Layer (SASL).

Of course, authentication without encryption should send a shiver up the spine of any security-minded

system administrator. Providing an encrypted channel over which authentication can occur for the SMTP

exchange is handled by Transport Layer security (TLS).

6.7.7.1 Verifying Postfix+SASL+TLS installation

 If you followed the directions earlier in this chapter and installed Postfix with SASL and TLS support as

described, you should be ready for configuration. It's a still a good idea to verify that your Postfix installation

was in fact built with the requisite support. This is easily achieved by using ldd(1):

% ldd `which postfix`

/usr/local/sbin/postfix:

 Start End Type Ref Name

 00000000 00000000 exe 1 /usr/local/sbin/postfix

 05444000 25449000 rlib 1 /usr/local/lib/libpcre.so.0.1

 00755000 2075b000 rlib 1 /usr/local/lib/libsasl2.so.2.13

 08965000 28971000 rlib 1 /usr/lib/libssl.so.8.0

 08b9c000 28bcd000 rlib 1 /usr/lib/libcrypto.so.10.3

 050d0000 25109000 rlib 1 /usr/lib/libc.so.30.3

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 04867000 04867000 rtld 1 /usr/libexec/ld.so

This transcript is from an OpenBSD 3.5 system and your output may differ slightly. Nevertheless, if your

Postfix installation supports SASL, TLS, and PCRE, you should see corresponding libraries listed in this

output as libsasl2, libssl, and libpcre.

6.7.7.2 Configuring Postfix with SASL+TLS

After you have verified that your postfix binary supports the requisite functionality, you may turn your

attention to configuration. Enabling SASL in Postfix is easy, merely add relevant lines from the options below

to your main.cf:

smtpd_sasl_auth_enable = yes

broken_sasl_auth_clients = yes

smtpd_sasl_security_options = noanonymous

 The first option enables SASL. The second allows some older Microsoft clients to authenticate. You may

be able to omit this option depending on the MUAs you need to support. The third option looks innocuous but

in fact is a deviation from the default of noplaintext, noanonymous. What this option does is to enable plain

text authentication where the users' password is transmitted in clear text over the network; with TLS, these

clear-text passwords will be sent over an encrypted channel. Some MUAs do not properly handle any form of

authentication other than plain text. If you find yourself in this position, omit the noplaintext this configuration

entry, otherwise specify it.

While the smtpd_sasl_auth_enable option tells Postfix use to use SASL, it does not specify how.

Specifically, you will want your mail server to relay mail for those users who can authenticate. To do this,

adjust your existing smtpd_recipient_restrictions as follows:

smtpd_recipient_restrictions = permit_mynetworks

 permit_sasl_authenticated

 ... reject_unauth_destination

Order is important, and the permit_sasl_authenticated directive should be listed early to ensure mail from

your authenticated users is not excessively tested. Once this is done, it is time to configure TLS. This is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

achieved by adding lines similar to the following to your main.cf:

smtpd_use_tls = yes

smtp_use_tls = yes

smtp_tls_note_starttls_offer = yes

smtpd_tls_key_file = .../postfix/ssl/smtpd.pem

smtpd_tls_cert_file = .../postfix/ssl/smtpd.pem

smtpd_tls_CAfile = .../postfix/ssl/smtpd.pem

smtpd_tls_loglevel = 1

smtpd_tls_received_header = yes

tls_random_source = dev:/dev/urandom

 Of course, you need to have created the relevant PEM files. After these configuration changes have been

made, we must configure SASL to authenticate users in some way. Users may be authenticated against the

local password file, an OpenLDAP server, a MySQL or PostgreSQL database, and so on. The details of

configuring SASL are beyond the scope of this document, but a number of online HOWTOs for these topics

exist.

To test SASL functionality, it may be worthwhile to use saslpasswd2(8) to create a separate authentication

database and configure saslauthd(8) accordingly.

echo "pwcheck_method: saslauthd" > /usr/local/lib/sasl2/smtpd.conf

% sudo /usr/local/sbin/saslpasswd2

testuser

(follow prompts)

% sudo /usr/local/sbin/saslauthd -a getpwent

You will then need to restart Postfix for SASL authentication over TLS. Note that in order for saslauthd to

start at boot, OpenBSD administrators need to add appropriate lines to their /etc/rc.local script.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.8. qmail

Yet another drop-in Sendmail replacement is qmail. Like Postfix, qmail was designed to be secure, to

perform well, to be reliable, and simple. Designed by Dan Bernstein (author of djbdns), and first released in

1997, it also follows the Unix tradition of using small, simple programs to accomplish small tasks and linking

these programs together to perform more complex tasks. However, much like the http://cr.yp.to/qmail.html

and http://www.qmail.org/ web sites, the software is "not designed to be easy to use," writes Russell Nelson

on the (unofficial) qmail home page (August 13, 2004, http://www.qmail.org/). Qmail implements

exceptionally fast and secure MTA functionality, but was designed to be different from most other mailers. If

you are primarily familiar with Sendmail or Postfix but do not yet have experience with qmail, you will be at a

disadvantage when trying to effectively deploy and administer a server running qmail.

In this chapter, we focus on Sendmail and Postfix because their similarities allow us to address security

concerns instead of the mail software itself. If you are deploying a mail server running qmail on OpenBSD or

FreeBSD, you are likely to find the information in this chapter generally useful but not specific to your

situation. Also consider resources such as the qmail web sites mentioned above,

http://www.lifewithqmail.org/, and the O'Reilly book qmail by John Levine.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
mfreeopenbsd-CHP-6-SECT-8.html
http://cr.yp.to/qmail.html
http://www.qmail.org/
http://www.qmail.org/
http://www.lifewithqmail.org/

 < Day Day Up >

6.9. Mail Access

 After you have built a mail architecture to send and receive mail, you need to provide a way for users to

access it. Securing mail access has already been partially addressed by architecture: if you place your mail

storage within a protected internal network, external attackers are unable to access it directly. Nevertheless,

because most successful attacks originate from within, you must take steps to secure the software that

provides this service.

6.9.1. Guidelines for Securing Mail Access—Internally

 The key protocols involved in mail access are POP and IMAP. The former allows users to download

and (by default) remove mail from the mail server, and the latter allows users to view and manipulate

messages on the server. The most popular software suites that provide this functionality include Courier,

WU-IMAP, Qpopper, Cyrus-IMAP, and Binc IMAP. While we cannot explore in detail the installation,

configuration and security options of each of these pieces of software, there are some general configuration

guidelines which apply.

Authentication and logging

 Ensure that all mail access sessions with your mail server are authenticated and that

connections, and subsequent authentication attempts (successes and failures), are logged. Try to

avoid using plain-text authentication if you do not need to support MUAs that require it. Enforce

strong password policies so that users have good passwords that rotate frequently enough to keep

from having stale passwords but infrequently enough to keep users from writing their passwords

down on a Post-It note attached to their keyboards.

Encryption

Most mail access software supports encryption and you should enable it wherever possible. This

helps ensure that passwords are not exposed and potentially sensitive information in mail messages

is not being transmitted in the clear over the local network.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html
mfreeopenbsd-CHP-6-SECT-9.html

Software security

Like all server software, mail access suites are prone to attack and vulnerabilities are disclosed with

some regularity. Before choosing a software suite, examine its track record and determine whether

you have the time required to keep your software up to date and patched.

Following these three guidelines will accomplish most of what is required in securing access to your message

store. Additional security may be possible but will vary on the mail access software suite you have chosen to

deploy.

6.9.2. Guidelines for Securing Mail Access—Externally

 So far, we have assumed that mail access originates on the internal network. Invariably organizations need

to provide mail access to users outside the network, whether they are at home, at alternate work sites, or

roaming. This problem is typically solved in one of two ways: VPNs and webmail. These two options are not

mutually exclusive, and both are shown deployed in Figure 6-5.

Figure 6-5. VPN and webmail access

6.9.2.1 Virtual private networks (VPN)

 Providing VPN access (as depicted in Figure 6-5) to your internal network for roaming users not only

provides for secure mail access, but may generally provide secure access to whatever resources you wish to

make available. VPN installations can be nontrivial to set up, but many support two-factor authentication,

making them viable as a secure external access method. Once a user has connected to the local network

over the VPN, he may check mail as he normally would. One major drawback is that VPNs often require the

installation of client software, which makes their use from nonorganizationally owned systems more

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

challenging.

6.9.2.2 Webmail

Many organizations provide some form of access to the internal mail storage using a webmail frontend. As

shown in Figure 6-5, systems that provide webmail access often reside on a perimeter network and allow

only HTTPS traffic to the server. The webmail server itself communicates with the internal mail server using

traditional POP and IMAP protocols for mail retrieval. Mail is also submitted over HTTPS and sent to the

internal mail server via SMTP. The options for providing webmail access are as diverse as for providing direct

mail access: SquirrelMail, Imp, Open Webmail, and so on. Of course, general security guidelines apply.

Remember that attacks against a webmail server can attempt to either exploit the webmail software and gain

access to the webmail system, or use the webmail server as a means to attack the internal mail server.

Protect the server

Ensure the server on which your webmail application is running is locked down as much as

possible. Traffic to the machine should be restricted to HTTPS and authentication should be

mandatory and logged.

Encryption

 Enforce the use of HTTPS, not HTTP, for access to the webmail application. All authentication

should also happen over HTTPS. Of course, you may want to enable HTTP access to the server for

the sole purpose of redirecting traffic to the HTTPS URL to make things easier for your users.

Software security

Remember that your webmail application is going to be some collection of scripts and/or binaries.

Ensure that all software on which your webmail application relies is up to date. SquirrelMail for

instance relies heavily on PHP, thus you should ensure that you have secured your PHP installation

and that your PHP libraries are patched against all disclosed vulnerabilities.

Following these guidelines, and making effective use of webmail and VPN will go a long way to securing

external access to internal mail.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

6.10. Wrapping Up

If there is one thing that you take away from this chapter, let it be an appreciation for the complexity of

building a mail infrastructure. There are a myriad of software choices at every level: from message transfer

agents to message delivery agents, from mail access software to mail user agents. Each of these pieces of

software in turn generally relies on other software to provide key functionality. This makes providing truly

secure mail access a very difficult goal to achieve, but as long as you take things step by step while

maintaining an understanding of the risks involved and how your architecture is designed to mitigate those

risks, you will be in a much better position.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html
mfreeopenbsd-CHP-6-SECT-10.html

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html
mfreeopenbsd-CHP-6-SECT-11.html

6.11. Resources

A list of resources follows.

6.11.1. MTA Software

Sendmail.org: http://www.sendmail.org/

Sendmail Installation and Operations Guide (distributed with Sendmail source)

sendmail, Third Edition, Bryan Costales (O'Reilly), 2002

sendmail Cookbook, Craig Hunt (O'Reilly), 2003

sendmail 8.13 Companion, Bryan Costales et al. (O'Reilly), 2004

Postfix.org: http://www.postfix.org/

Postfix: The Definitive Guide, Kyle D. Dent (O'Reilly), 2003

6.11.2. Spam Defense and Antivirus

Clam AntiVirus: http://www.clamav.net/

MAPS (RBL): http://www.mail-abuse.com/

Open Relay Database (RBL): http://www.ordb.org/

RFC-Ignorant.org (RBL): http://www.rfc-ignorant.org/

SpamAssassin: http://spamassassin.apache.org/

SpamCop (RBL): http://www.spamcop.net/

SPF: http://spf.pobox.com/

SPF Wikipedia entry: http://en.wikipedia.org/wiki/Sender_Policy_Framework

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.sendmail.org/
http://www.postfix.org/
http://www.clamav.net/
http://www.mail-abuse.com/
http://www.ordb.org/
http://www.rfc-ignorant.org/
http://spamassassin.apache.org/
http://www.spamcop.net/
http://spf.pobox.com/
http://en.wikipedia.org/wiki/Sender_Policy_Framework

6.11.3. SMTP Security

OpenSSL: http://www.openssl.org/

SASL at Carnegie Mellon: http://asg.web.cmu.edu/sasl/

6.11.4. Mail Access Software

Courier IMAP: http://www.courier-mta.org/imap/

Cyrus IMAP Server: http://asg.web.cmu.edu/cyrus/imapd/

Fetchmail: http://catb.org/~esr/fetchmail/

IMP (Webmail): http://www.horde.org/imp/

Qpopper: http://qpopper.sourceforge.net/

SquirrelMail (Webmail): http://www.squirrelmail.org/

UW IMAP information center: http://www.washington.edu/imap/

6.11.5. Selected Mail-Related Request for Comments (RFCs)

RFC 753: Internet Message Protocol

RFC 974: Mail Routing and the Domain System

RFC 1225: Post Office Protocol—Version 3

RFC 1869: SMTP Service Extensions

RFC 1893: Enhanced Mail System Status Codes

RFC 1991: PGP Message Exchange Formats

RFC 2033: Local Mail Transfer Protocol

RFC 2060: Internet Message Access Protocol—Version 4, rev 1

RFC 2246: The TLS Protocol Version 1.0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.openssl.org/
http://asg.web.cmu.edu/sasl/
http://www.courier-mta.org/imap/
http://asg.web.cmu.edu/cyrus/imapd/
http://catb.org/~esr/fetchmail/
http://www.horde.org/imp/
http://qpopper.sourceforge.net/
http://www.squirrelmail.org/
http://www.washington.edu/imap/

RFC 2076: Common Internet Message Headers

RFC 2476: Message Submission

RFC 2487: SMTP Service Extension for Secure SMTP over TLS

RFC 2821: Simple Mail Transfer Protocol (Supercedes RFC 821)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Chapter 7. Building a Secure Web Server

What he trusts in is fragile;

what he relies on is a spider's web.

—Job 8:14, Holy Bible,New International Version

The World Wide Web: to many people, it is the Internet. Few machines in your network are so blatantly

visible if they are compromised. Your router might be weak, your mail server might be compromised, but it is

hard for the average person to see that. If your web server is compromised, however, all manner of things go

very wrong very fast. Your organization might be publically humiliated, it might lose money or sales, or your

server might be commandeered to attack another site. Additionally, it is a core server in your network that

probably has many non-administrators working on it. You know that if your mail server suddenly breaks or if

the firewall starts denying everything, it was either an administrator or a hacker who did it. With web servers,

you have any number of sources of code and configurations that are managed by a wide variety of people

with varying skill sets. The potential for inadvertent problems is high. The system is critical and there are a lot

of sources for problems, both inside and outside your organization. Fortunately, with FreeBSD and

OpenBSD, you have an outstanding tool chest full of diverse tools for securing your web servers.

 In this chapter, we focus on Internet-facing web servers, because FreeBSD and OpenBSD systems thrive

there, despite the hostile environment. First, we cover a variety of topics related to running a secure web

server, starting with the importance of web server security and the kinds of attacks web servers face. Next,

we describe a general web architecture that puts the operating system and the web server software in

context. Having established why you care about security and which defenses the operating systems can

offer, we describe how to install and configure two popular web server packages: Apache and the Tiny HTTP

daemon (thttpd). Apache is the best known and most commonly used web server on the Internet and it can

do just about everything. Because of its Swiss-army-knife capabilities and the potential to misconfigure it, we

focus on a variety of pitfalls and best practices for configuring it. The thttpd server is less well known but is

often used by people with very demanding web sites. It has a variety of very specific, performance-oriented

features, but fewer settings to configure, so its configuration is necessarily simpler.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html
mfreeopenbsd-CHP-7.html

 < Day Day Up >

7.1. Web Server Attacks

 Sometimes your web server is the specific target of an attack because of who your organization is or what

it represents. Sometimes people hack your web server for the same reason they climb a mountain: because

it's there. Web server attackers often want:

To embarrass or discredit an organization

To earn respect among hackers by indiscriminately vandalizing a site

To gain a foothold in the organization's network for deeper penetration at a later time

To leverage the server in malicious activity against another network

To try to obtain sensitive or confidential data

To simply deny your server the ability to serve its pages

Web site defacement has obvious repercussions. It is easy to imagine the embarrassment of a high-profile

company when their web site is defaced. Sometimes hackers hack a web site to express an opposing

viewpoint right from the site they oppose. Such vandalism is only likely on your site if your organization is

associated with one side of a controversial issue. Of course, there are innumerable electronic vandals who

vandalize for the sake of vandalizing.

 Some hackers will attack your web server with a goal of using it illicitly in some other activity. They may

want to put their cracked, illegal copies of software there for people to download. They may want to set your

web server up as a node in a distributed denial of service (DDoS) attack. They might even be so lucky (and

you might be so unlucky) that they get interactive access (i.e., shell access) on your web server. Then they

may merely pass through, using you as one more hop in a long chain of logins that help obscure their origins.

Web servers are often located in the network's DMZ, making them natural first steps for breaking into an

organization's network. Broken routers or firewalls would be even better entry points, but they tend to be

more tightly controlled than the web server. An attacker knows he will always have access to port 80 on the

target system.

7.1.1. Why You Care

The direct effects of hacking a web server may seem benign. In actuality, they can have a surprisingly abrupt

and negative impact. Hackers who put illegal software on your web site and then share the location among

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html
mfreeopenbsd-CHP-7-SECT-1.html

their friends may suddenly and completely consume available resources on both your system and your

network. Your server may fail under the load, or your organization may receive a surprisingly large bill for

excess bandwidth usage. If your Internet service provider (ISP) is notified that your server is a participant in a

DDoS attack, they may choose to "shoot first, ask questions later" and remove your server's connectivity to

the Internet. If your web server shares your organization's primary (or only) link to the Internet, you may find

your whole company unceremoniously disconnected while you and the ISP sort out what is wrong. Lastly,

some sites that are the targets of DDoS attacks respond with "counterattacks." Your web server or network

could be targeted by some form of electronic retribution.

 Many web servers perform one or more e-commerce functions. Perhaps they handle the storefront; maybe

they're the shopping cart server; or they might allow customers to get shipping information on orders they've

already placed. Even if all the web site's transaction processing is ultimately handled in a secure data center,

the web server stores the data momentarily. A hacker who can break in and monitor communications or data

flow has an opportunity to capture personal information, user IDs and passwords, or perhaps even credit card

information. If you are running a commercial web server, these risks are probably foremost in your mind. The

only thing more fearsome than a CIO asking about an enormous bandwidth bill is a CEO who must notify

customers that their credit card information is now in the hands of Eastern European hackers.

The recently passed Notice of Security Breach sections of the California Civil Code (California Civil Code

Sections 1798.29 and 1798.82-1798.84, http://www.privacy.ca.gov/code/cc1798.291798.82.htm) have broad

effects for organizations handling personal information in the United States. If "unencrypted personal

information was, or is reasonably believed to have been, acquired by an unauthorized person," then the

person must be notified. This law is very new and has not yet been vigorously tested in the courts. It probably

applies to organizations incorporated in California. It may apply to organizations that merely do business in

California. While there remains a lot of uncertainty about how broadly it applies, it certainly creates legal fear

and uncertainty for web sites that deal with personal information. Even though your web site only deals in

name and addresses, you could find yourself being compelled by law to notify users that their names and

addresses were possibly compromised. No organization wants to be compelled to broadcast the fact that

they have successfully been hacked.

7.1.2. Specific Threats to Web Servers

The kinds of general risks we've described typically materialize through specific technical mechanisms.

These include file or data disclosure, file uploads or storage, program execution, operating system

vulnerability exploitation (e.g., privilege escalation), and web server vulnerability exploitation (e.g., buffer

overflow).

7.1.2.1 File and data disclosure

 File and data disclosure were among the earliest kinds of attacks on web servers. Both Apache and

Microsoft's Internet Information Server (IIS) were subject to a variety of directory traversal attacks. Two

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.privacy.ca.gov/code/cc1798.291798.82.htm

standard encodings, HTML entity encoding and HTTP URL encoding, are often combined in unexpected

ways to cause the web server to do unusual things. You've probably seen ampersands (&) encoded in HTML

as &. That's HTML entity encoding, and it represents characters with an ampersand, their decimal (or

hexadecimal) ASCII value, and then a semicolon. It can represent the whole character set, though, including

2-byte UNICODE characters. For example, the letter "A" can be represented A. Similarly, you've

probably seen spaces encoded in URLs as %20. That's an example of a totally different encoding: HTTP

URL encoding. It allows web pages to encode non-alphanumeric characters in URLs using a percent sign

and the character's 2-digit ASCII hexadecimal value. Again, you can represent more than just punctuation.

The letter "A" can be encoded as %41. These encodings were intended to handle non-alphanumeric

characters such as those with accents or whitespace such as spaces and tabs. Hackers exploit these

encodings in a variety of ways to construct obscured paths that bypass security checks. For instance, they

can encode /etc/passwd as %2F%65%74%63%2F%70%61%73%73%77%64. The earliest versions of

many web servers would fail to notice, after decoding the string, that the file requested lived outside the web

server's document root. Even today complex variations on this theme crop up from time to time as part of

attacks on modern web applications.

File downloads are not the only problem you will face. Uploads can be a problem when they allow hackers to

store data on your server that they, or someone else, will come retrieve later. Hackers probably won't fill your

hard disk with junk. They might, however, upload a few gigabytes of MP3s, a few hundred megabytes of

software whose licensing protections have been disabled, or perhaps some illegal pornography. You might

find your web server suddenly attracting a lot of unwanted attention, both from hackers and from law

enforcement.

File uploads can also destroy useful data. If a hacker can upload and overwrite important files, such as web

orders that have not been transmitted to the fulfillment system yet, it may also cause your organization to lose

money or information.

Lastly, uploads can be a critical step in compromising the server's security. If a hacker can upload a program

to your web server and somehow trick the web server into executing it, she can go a long way toward

defeating security measures.

7.1.2.2 Arbitrary program execution

 Arbitrary program execution is the ultimate vulnerability in any server software. If a hacker can find a way

to execute a program of his choosing on your web server and control some of the arguments to that program,

then he can usually escalate into a variety of other attacks. He might use a CGI script or some PHP code, for

example, to upload a program onto your server that is subsequently executed. He might merely abuse a

program that already lives on your server but has vulnerabilities. Suddenly, a locally exploitable vulnerability

in the line printer spooler daemon (lpd(8)) that seemed inconsequential is suddenly a very important threat. It

can allow an intruder to escalate privileges and gain access to your web server without having direct local

access.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.1.2.3 Application abuse

 There are a variety of other attacks against web servers that cannot be mitigated at the operating

system level. Attacks such as SQL code injection, HTML injection, and cross-site scripting (XSS) are critical

attacks to prevent. This is an important point that we cannot stress enough: the network and the operating

system cannot fully compensate for bad applications. They can help, but they cannot obviate the need for

careful, security-conscious programming. Despite being important, these attacks are outside the scope of this

book because they exploit neither the web server software nor the host operating system. An example will

help illustrate this point, and then we will move on.

Web sites often offer a form where a person can type a message, enter his email address, and click a

button to send a message to someone associated with the web site. These "contact us" pages are usually for

submitting feedback on the web site, contacting the sales department, or reporting a problem with a product.

There are a variety of freeware and shareware CGI programs available for downloading that will do the

necessary web-to-email processing. One notorious example, formmail.pl, has been repeatedly abused to

send email from arbitrary senders to arbitrary recipients with arbitrary message content. If you aren't using

this script but still see errors in your web server's log where someone has requested /cgi-bin/formmail.pl,

you're probably looking at an exploit attempt. Spammers love to find vulnerable applications like this one.

For a more detailed example of these formmail.pl vulnerabilities and exploits,

see the Section 6.1.2 in Chapter 6.

As an administrator there are only so many things you can harden and configure to prevent abuse of your

server. The firewalls, routers, web server software, and operating system are all very important. All is for

naught, however, if badly written applications are blindly allowed to run on the web server.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

7.2. Web Architecture

A web server that does any significant work usually consists of many pieces. Figure 7-1 depicts a simplified

architecture showing the multiple layers that make up a modern web server.

Figure 7-1. Simplified web server architecture

 The most important relationship implied in Figure 7-1 is the transitivity of security. Users on the Internet

make requests that invoke one or more other programs that ultimately access resources in the operating

system. Depending on your configuration, you may be able to eliminate many of the alternate paths from the

Internet to your operating system.

It may be surprising that no firewall or router is depicted in this diagram. Surely your firewall helps protect

your web server, right? Only to a point. Many significant attacks that have severe impacts on your

organization pass unmodified through proxies, firewalls, routers, and network-based "intrusion prevention

systems." They use requests that are well-formed from a protocol point of view but that tickle bugs in the

underlying application software. Exploitation of these bugs can yield access to the operating system, all

passing happily beneath the radar of the network-based security controls. Third-generation firewalls are only

aware of source and target ports—incoming traffic to HTTP ports 80 and 443 are usually not restricted. Even

fourth-generation firewalls, which can analyze and understand HTTP requests, are not 100% effective in

stopping well-formed attacks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html
mfreeopenbsd-CHP-7-SECT-2.html

Figure 7-2. Layers of security relevant to a web server

One of the goals of securing a web server is to prevent Internet-based users from having unintended

interactions with the operating system. Figure 7-2 shows many layers where some sort of protection can be

built. The operating system is at the bottom, and the network-based protections are at the top. This chapter

focuses on configuring the operating system to protect itself, and making the web server safer than its default

configuration.

7.2.1. Server Software Choices

 Figure 7-3 shows the Netcraft web server survey from June 2004 ("Nearly 2.5 Million Active Sites Running

FreeBSD," Netcraft, Inc.,

http://news.netcraft.com/archives/2004/06/07/nearly_25_million_active_sites_running_freebsd.html. Similar

data for OpenBSD was not available.) At that time, there were 2.5 million active sites running FreeBSD.

FreeBSD has consistently been increasing in usage since January 2002. OpenBSD, while not represented in

the graph, is equally strong as a reliable and efficient host operating system for a web server.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://news.netcraft.com/archives/2004/06/07/nearly_25_million_active_sites_running_freebsd.html

Figure 7-3. Hostnames and active sites running FreeBSD, January 2002 to June 2004

 There are really only a handful of production-quality web servers that see a lot of use on the Internet.

Apache dominates, accounting for approximately two thirds of all web servers, according to Netcraft LTD

(http://www.netcraft.com/). The other products that rank behind Apache do not run on FreeBSD or OpenBSD:

SunONE and Microsoft's IIS.

Apache is an excellent choice for almost any web application. It is the most flexible, well-documented, and

best supported web server available. If you have a need with a web server, chances are that a good solution

already exists using Apache (and perhaps one or more modules).

We also discuss thttpd, a compact, no-frills web server that's easy to configure and manage. It doesn't offer

all the complex APIs and integrated middleware that Apache does, but it can serve static pages very quickly

and perform a remarkable job of throttling and bandwidth smoothing functions over its traffic.

 The Zeus web server is a commercial product that does not run natively on either operating system we

consider here. Although it ranks fourth in popularity on the Internet, according to Netcraft LTD, that's with only

a 1.5% representation among web servers.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.netcraft.com/

 < Day Day Up >

7.3. Apache

Apache is the workhorse of the Internet. More sites run Apache than all other web server software

packages combined—by a margin of two to one. Its popularity stems from its maturity (it was one of the first

production quality web servers ever), its price (it is released under a free license similar to the GNU General

Public License), and its flexibility. Apache's near-infinite configurability, like BIND and Sendmail, however,

cuts both ways. It creates a variety of opportunities for security issues. The standard Apache configuration

probably releases more information about your system than you would like. It also makes it easy to

inadvertently make files available that you did not intend to expose. It is the most commonly used web server,

so hackers are well versed in the default configuration, know its weak spots, and know how to leverage them

to learn about your system.

There are two versions of Apache available, Version 1 and Version 2. Version 1 is mature and stable, and

has been under development for almost as long as the World Wide Web has existed. Version 2 began

development in 1998 and saw its first beta release in 2000. Despite the years of opportunity to migrate to

Version 2, most web servers that run Apache still run version 1.3. If you have an existing infrastructure based

on Version 1.3, there is no urgent reason to upgrade to Version 2.

If you are starting from scratch, version 2 is a good place to start. You may find, though that you want the

functionality that you can only get from modules written to the 1.3 API. You should strongly consider whether

you want to use such modules, though, since their authors are not keeping up with the Apache product.

Eventually Version 1 will be deprecated and its support will diminish.

 The threading and performance aspects of Apache have been reworked significantly in Version 2. In

particular, the multiprocessing modules (MPMs) allow you to take advantage of your operating system and

your particular kind of traffic patterns. If your traffic is steady and heavy, then the multithreading features of

the threaded MPM will help you. Additionally, several modules (such as the all-important SSL module) are

included by default.

 Configuring Version 2 is also easier than configuring Version 1. Enabling and disabling modules is done by

simply commenting or uncommenting a single line. Modules do not have to be listed in a specific order or

more than once in a Version 2 configuration file. The syntax of some popular directives associated with

server aliasing and multi-homing have been made simpler as well.

7.3.1. Installing Apache

 As with most FreeBSD installations, you will want to install Apache on FreeBSD using the ports collection

so that you have maximum control at build time. There are way too many build options to cover them all, so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html
mfreeopenbsd-CHP-7-SECT-3.html

we discuss the most security-relevant ones.

Apache 2 is not included in the OpenBSD ports collection, nor is it bundled with OpenBSD. You must

retrieve the sources, configure, compile, and install by hand. Even so, consider reading the section on

FreeBSD installation—you'll be faced with many of the same choices and set many of the same options.

You'll just use the configure script to make your choices.

7.3.1.1 FreeBSD

 Apache 2 may be installed from ports/www/apache2. Before diving into the familiar make and make

install, there are a number of options to consider. Note that, if you plan to use Apache in a jail(2) or

chroot(2) environment (as described later in "Using Jail or Chroot"), you can choose between using the ports

system to build or building from source.

7.3.1.1.1 Makefile options

The Makefile in ports/www/apache2 contains many options you can set at build time. If you run make

show-options, you may peruse them. A subset of these options, mainly those that have security

ramifications, are shown in Table 7-1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 7-1. Apache 2 port options

Option Meaning Default

WITHOUT_SSL
Disables SSL support. Only enable this if, for some

reason, you do not want SSL support.
Not set

WITH_SUEXEC
Enables suexec(1) support. See Section 7.3.4.5.2

later in this chapter for more details.
Not set

SUEXEC_DOCROOT The DocumentRoot for suexec. /usr/local/www/data

SUEXEC_USERDIR
The directory where users put their personal,

per-user HTML files and CGI files.
public_html

SUEXEC_SAFEPATH
The initial value for the PATH environment for CGIs

executed through suexec.
/usr/local/bin:/usr/bin:/bin

SUEXEC_LOGFILE
By default, suexec will log here directly (not via

syslogd).
/var/log/httpd-suexec.log

SUEXEC_UIDMIN
Minimal allowed UID. Users whose numeric UID is

less than this can never use CGIs via suexec.

Examples are root and operator.

1000

SUEXEC_GIDMIN
 CGIs whose group ID is lower than this will never

execute via suexec. Examples include wheel and

operator.

1000

SUEXEC_CALLER
The user allowed to call suexec. This should be the

user ID under which the web server runs.
www

SUEXEC_UMASK Defines a umask(2) for CGIs launched by suexec. Not Set

You will control which modules you run and how they are configured by setting these options to make.

Even if you're not going to use SSL (or you think you're not going to use it), there is no harm in building it.

Simply comment it out in the httpd.conf file and you'll be safe. Even if a vulnerability is reported in mod_ssl

and you built a vulnerable version of it, you won't be vulnerable if that module isn't loaded.

 Example 7-1 shows how to build Apache with a few more restrictive options. Often user IDs and group IDs

for privileged users are below 500. Neither FreeBSD nor OpenBSD ship with a standard user ID higher than

100, except nobody on OpenBSD, who is 32767 for historical reasons.

Example 7-1. Making Apache with non-default options

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% cd ports/www/apache2

% make SUEXEC_UIDMIN=500 SUEXEC_GIDMIN=500 \

 SUEXEC_CALLER=www SUEXEC_UMASK=0027

7.3.1.1.2 Recording your use of Apache 2

Having installed Apache version 2, take a moment to tell your ports system, that you use Apache Version 2

instead of Version 1. Most web-related ports will assume Apache 1 unless they find WITH_APACHE2=YES

in your /etc/make.conf(5) file. When you build web-related ports, they will recognize that you use Apache 2

and configure themselves accordingly. At the time this was written, there were about 40 ports that recognized

the WITH_APACHE2 flag.

7.3.1.2 OpenBSD

It's worth mentioning that OpenBSD 3.6 distributes Apache 1.3.29 already integrated into the base

operating system and there are some compelling reasons to use it. As with all software integrated into the

OpenBSD platform, it has been audited by project team members looking for security issues. They've not

only audited it but they've also created a chroot environment for Apache! You'll see when we get to Section

7.5 that this is no small effort. In short, they have dotted a lot of i's and crossed a lot of t's for you, and they

have a very good track record of doing things securely. Since OpenBSD's ports system does not have the

portupgrade facility, tracking the version that is in the operating system is also one of the most reliable ways

to stay up to date and take advantage of the team's efforts at securing the software.

The bulk of the work for Apache 1 has been taken care of by the OpenBSD team, so we will cover installing,

configuring, and securing Apache 2. Download the latest stable version of Apache from

http://httpd.apache.org/, extract it using tar, and run the included configure script. This process should be

familiar and routine to most system administrators.

7.3.1.2.1 Configure parameters

You will specify to the configure program the same sorts of parameters for your build process that the

FreeBSD ports Makefile uses—just in a different format. Table 7-2 shows the FreeBSD port option and

shows how to set the equivalent configure option to the same default value.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://httpd.apache.org/

configure accepts other options, we're just focusing on a consistent set across

operating systems. For a list of other options, run configure with the --help

argument.

Table 7-2. Apache 2 configure options

FreeBSD ports option Option for configure

WITHOUT_SSL
SSL is disabled already in the default Apache configuration. You need to add

—enable-ssl to the configure line.

WITH_SUEXEC --enable-suexec

SUEXEC_DOCROOT --with-suexec-docroot=/usr/local/www/data

SUEXEC_USERDIR --with-suexec-userdir=public_html

SUEXEC_SAFEPATH --with-suexec-safepath=/usr/local/bin:/usr/bin:/bin

SUEXEC_LOGFILE --with-suexec-logfile=/var/log/httpd-suexec.log

SUEXEC_UIDMIN --with-suexec-uidmin=500

SUEXEC_GIDMIN --with-suexec-gidmin=500

SUEXEC_CALLER --with-suexec-caller=_httpd

SUEXEC_UMASK --with-suexec-umask=0022 (Note that this is normally not set)

At this point you can make and install Apache 2. Once installed, the security concerns for FreeBSD and

OpenBSD are largely the same.

7.3.2. Configuring Apache

 A few options and configuration issues apply generally. By default, your end users can influence an awful

lot of Apache's behavior. Following the principle of least privilege, you should curtail their capabilities to just

the minimum needed to achieve their goals.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.3.2.1 User overrides

Many configuration parameters for Apache can be overridden by your users if you aren't careful. To keep

most of the behavior controlled by httpd.conf, you should disable functionality globally and re-enable it at the

VirtualHost level and disable users' abilities to override httpd.conf settings with .htaccess files. As a rule you

should be aware of which virtual servers or locations use specific features, and you should only enable the

features each virtual server needs.

The snippet of httpd.conf in Example 7-2 shows how you can generally disable PHP, enable it for a given

VirtualHost, and then prevent users from overriding your settings.

Example 7-2. Example httpd.conf fragment selectively enabling PHP

disable PHP generally

php_flag engine off

<VirtualHost www.example.com>

 DocumentRoot /usr/local/www/data/example

 # Enable PHP in this virtual server

 php_flag engine on

 Options IncludesNOEXEC

 AllowOverride None

</VirtualHost>

An important side effect of this configuration is that it disables the users' ability to override all options,

PHP-related or otherwise. This is usually not a problem, because only a handful of options are ever

overridden, and you can probably work those out on a case-by-case basis. Giving users the liberty to

override arbitrary options in their .htaccess files will let them override decisions you have made in the

httpd.conf file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.3.2.2 Protecting critical files

There are several files that are worth protecting on most web servers. If you have interactive users logging

into the server, it's obvious that you need to keep them away from these files. However, you should protect

the files anyways as an application of "defense in depth."

 If you're using SSL (and most secure web servers do, these days), then you have a pair of very

important files: your private key and your public key certificate. The process for generating a private key and

a public key certificate, and then having it signed by a certificate authority (CA), is somewhat involved and

beyond the scope of this chapter. If you need guidance on how to generate these keys, look at Chapter 17 of

Web Security, Privacy, and Commerce by Garfinkel. It has more step-by-step instructions and some

explanations. From this point on, we will assume you have a private key in a file named server.key and a

public key certificate in server.crt.

As you might guess, your private key needs very strict permissions all around. Your certificate may be more

loosely protected since it is a public key, but placing it under the same protections isn't a bad idea. Since

Apache is run as root and changes identity to some other user after loading these files, only root needs to

read these files at all. If an attacker or malicious user is able to compromise these files, then she can defeat

the primary protections of SSL. By knowing your private key she can decrypt the transmissions sent to your

web server. If she finds a way to intercept traffic, he wins.

The public key certificate and private key files are good candidates both for ACLs and/or filesystem flags, as

described in Chapter 2. The default path to your public key certificate file is

/usr/local/etc/apache2/ssl.crt/server.crt and the default path to your private key file is

/usr/local/etc/apache2/ssl.key/server.key. Example 7-3 shows a series of commands that significantly restrict

the permissions on these two files.

Example 7-3. Restricting access to SSL certificate and key files

% CERTDIR=/usr/local/etc/apache2/ssl.crt # create some variables

% PKEYDIR=/usr/local/etc/apache2/ssl.key # to make the other commands

% CERT=${CERTDIR}/server.crt # shorter

% PKEY=${PKEYDIR}/server.key

% setfacl -b ${CERT} ${PKEY} ${CERTDIR} ${PKEYDIR} # erase any existing ACLs

% setfacl -m u:root:r ${CERT} ${PKEY} # root can only read the files

% setfacl -m g:: ${CERT} ${PKEY} # group gets no permissions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% setfacl -m o:: ${CERT} ${PKEY} # no one else gets permissions

% setfacl -d u:root:r ${CERTDIR} ${PKEYDIR} # Make these ACLs the

% setfacl -d g:: ${CERTDIR} ${PKEYDIR} # defaults in these directories

% setfacl -d o:: ${CERTDIR} ${PKEYDIR}

% chflags schg -R ${CERTDIR} ${PKEYDIR} # system immutable flag, too

 Example 7-3 is a good example of using ACLs and filesystem flags in harmony. The ACLs set the

overriding permissions on the files, and then the chflags(1) command keeps those permissions from

changing as long as the system remains at a securelevel greater than 0.

Remember that you will periodically renew your certificate. Most Certificate

Authorities (CAs) issue web server certificates that expire every year or two.

You will have to undo all of these protections on the server.crt file in order to

update it. If it's immutable, that means a reboot! You should never have to alter

the server.key file, though, as long as you continue to have the same public

key certificate reissued each year.

 If your Apache server configuration is rarely updated, you can gain additional security by setting the

system immutable flag on the httpd.conf file. This will help prevent an attacker from being able to overwrite

your configuration. If you add a lot of VirtualHosts or make changes to your configuration file regularly,

consider breaking the volatile configuration elements out of the main httpd.conf file using the Include

directive. You might then be able to use the user immutable flag on these files. This will probably thwart a

variety of attacks, but it will not require you to reboot in order to make a change to your configuration.

7.3.2.3 Resisting denial of service

 Apache's default configuration tries to keep serving web pages as long as it possibly can. Unlike Sendmail,

which has various ways of degrading its service if it detects the load creeping up, Apache blithely keeps

accepting requests up to the point that some critical resource is exhausted and imposes a hard limit. To help

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

resist denial of service attacks related to resource exhaustion, you can tune your MaxClients in your

httpd.conf file.

MaxClients is the maximum number of child processes the master httpd will allow to run at a given time. It

is not dynamic and it has no knowledge of what your server's capabilities are. You have to size it statically

based on your best knowledge of your server's capabilities and its usage patterns. To tune MaxClients, you

should start by looking at the size of a typical httpd process and consider how much RAM you have installed

in your server. Using the tool top(8), you can see the size (both virtual and resident) of a process. Example

7-4 shows an httpd process in top's output.

Example 7-4. Viewing process information with top(8)

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND

25682 nobody 2 0 23212K 11512K poll 0:04 4.00% 4.00% httpd

 The httpd process in our example is 23 megabytes in virtual size, and is using 11.5 megabytes of actual

RAM. It's normal for the virtual size to be much larger than the resident size, because the virtual size takes

into account shared libraries and other areas of memory (e.g., memory mapped regions of device driver

memory) that a process has available. Assuming the server in question has 512 megabytes of RAM, and we

need to leave some available for processes other than Apache, we might choose 450 megabytes as our

maximum memory allotment for Apache. Dividing 450 by 11.5 suggests that we should set MaxClients to be

39 or 40. After that, we are likely to start thrashing.

This calculated number could still be high or low, depending on the complexity of the web pages that are

being served. If every web page access requires a CGI program to run a query on a database, we might find

that 40 concurrent accesses are not sustainable. If we have a single dynamic page that can cause the server

to consume up to 100 megabytes of memory, we'll want to take that into consideration also. If after your

calculations your MaxClients value results in serious performance problems, perhaps a memory or CPU

upgrade is in order.

7.3.3. Module Overview

There are a variety of modules that come with Apache. Each provides specific functionality; however, many

of them also have specific security concerns. As a general principle, you should only enable modules for

which you can identify a specific functional requirement. You should also periodically audit, or at least

informally review, your use of Apache to see if modules are enabled that are not being used. In the following

sections, we consider eight of the approximately 35 common modules. These eight either have the most

significant security risks, are the most commonly used, or both.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 The CGI, PHP, and Perl modules are the biggest, most complicated, and most dangerous modules that

most people run. We discuss how to build, install, configure, and run them safely. The other modules we

discuss, while not trivial, are easier to configure properly and have fewer options to worry about.

7.3.3.1 mod_cgi

The CGI module is a critical part of Apache that allows programs to be executed and have their output

served as the response to a web query. It is installed and enabled by default. Example 7-5 shows the default

settings in httpd.conf for the CGI module, which are pretty reasonable.

Example 7-5. Default CGI permissions in httpd.conf

ScriptAlias /cgi-bin/ "/usr/local/www/cgi-bin/"

<Directory "/usr/local/www/cgi-bin">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

</Directory>

 The most important features here are AllowOveride None and Options None. They make it impossible to

list the contents of the CGI directory or to do anything other than execute the scripts that live in

/usr/local/www/cgi-bin/.

 Ideally, there should be very few CGI programs that actually live in the ScriptAlias directory. Instead, use

a method of running CGI programs as specific users. The mod_suexec and cgiwrap mechanisms are both

good ways to contain the potential damage from a poorly written CGI program. The section Section 7.3.4.5

describes how to install, configure, and run them.

7.3.3.2 mod_php

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 PHP is one of the most maligned web technologies available to run in Apache. It is an interpreted

programming language, with a syntax similar somewhat to C++ or Perl. It can either execute as a standalone

language, or embedded in web pages through mod_php. Most the dangers of PHP can be chalked up to its

Perl-like tolerance of sloppy programming constructs, and the readily available mass of poorly written free

PHP programs. You need to carefully consider what scripts you run, what privileges you give them, and how

much you can contain potential damage.

7.3.3.2.1 PHP and permissions

PHP scripts execute as the web server's user ID (e.g., www) and group (again often www). This is

problematic for a variety of reasons. If the script can be controlled through a code injection attack, it could

conceivably kill the web server process (thus acting as a denial of service). Alternatively it could invoke shell

scripts, and do virtually anything the www user could do on the system.

The unprivileged web user, www, is not usually allowed to write in any part of the filesystem. This means

that PHP-based programs will store data in a database, a specific directory that is writable to the www user,

or a world-writable directory such as /tmp. A database is the preferable option, but it's not always an option if

PHP is built without database support or the PHP applications themselves do not offer that option. This will

tempt non-root users to create world-writable directories in the parts of the filesystem they control, so that

their scripts can read and write data to permanent storage. World-writable directories are generally a bad

idea, but even more so when accessed through PHP scripts of dubious quality. Try to stay aware of the ways

your web developers use PHP, and make sure they have appropriate, permissions-regulated places to store

their data. A database server like MySQL is probably ideal.

Although we are focusing on mod_php, it is possible to build a PHP interpreter as a standalone executable

and then invoke it as a CGI. This is not desirable from a performance point of view, but it can be useful on

low-bandwidth sites where security is more important than performance. By making the PHP interpreter its

own binary, you can use techniques like suexec or cgiwrap to have it execute in its own user context. Users

could then run their own PHP code as their own user ID, reducing the potential damage from poorly written

code.

7.3.3.2.2 mod_php Apache configuration

To secure the PHP runtime environment, configure it well and make sure that your users cannot circumvent

your efforts. The PHP runtime environment is controlled in three places: the php.ini file, the httpd.conf file,

and .htaccess files in individual directories. These files control the same set of options, but settings in the

httpd.conf file override those in the php.ini file. Any .htaccess files in web content directories can override the

httpd.conf options. This order of precedence is shown in Figure 7-4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 7-4. Order of precedence of PHP configuration files

What is important to note is that end users have the ability to create .htaccess files anywhere they can create

web content. Thus, they can override your server-wide security choices if PHP options in .htaccess files are

honored. If AllowOverride includes either Options or All, then users can override the httpd.conf file.

Unfortunately, this is a binary option: users have full access to override all PHP settings, or no PHP settings.

7.3.3.2.3 PHP configuration

While you can configure PHP in a variety of places, it makes the most sense to configure it in the php.ini file.

Then, as long as you prevent users from creating their own configurations, you can rest assured that your

PHP configuration is in a protected location associated with PHP, rather than commingled with your Apache

configuration or distributed across user directories.

 PHP installs two example files: php.ini-dist and php.ini-recommended. Both of these will be found in

/usr/local/etc on a default FreeBSD or OpenBSD ports installation of mod_php. The php.ini-dist file is not

intended for use, but instead shows you what the default values are for all the options. It is heavily

commented and a good source of information. The php.ini-recommended file lists settings that the PHP team

thinks make for an efficient, secure configuration. The following settings help improve the security posture of

PHP.

register_globals = Off

In early versions of PHP, if someone invoked a PHP script through a URL like

http://www.example.com/info.php?test=true, then the PHP script named info.php would set the

variable $test to the value true in its global namespace. This is the effect when register_globals is

On. Beginning with PHP 4.3.0, register_globals is Off by default. This is always a good practice,

however you may find particular PHP scripts that require register_globals set to On. Be careful

about enabling it. Such scripts are probably susceptible to various input-validation attacks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/info.php?test=true

display_errors = Off

It is a good idea to minimize the amount of error information an attacker might glean from your PHP

scripts, misconfigurations, or other system problems. If display_errors is enabled, then PHP

generates pretty, informative messages that help you track down the problem. They may, however,

leak information about the names of script files, hosts that your script is trying to contact, or

permissions on resources that should be hidden from an attacker. Error output is only sent to the

web server's error log and not sent with the HTTP response when display_errors is Off.

variables_order = "GPCS"

The letters in this setting stand for GET, POST, cookie, and server. An additional letter is allowed

here: E for environment. variables_order determines whether variables defined in one of these five

places will be predefined in the PHP namespace, and, if so, the order of precedence. The order of

precedence is lowest to highest. For example, there is an environment variable PATH that is

initialized to /usr/local/bin:/usr/bin:/bin when Apache launches. If a web browser requests

http://www.example.com/?PATH=/tmp and sends a cookie PATH=/var, then the variables_order

setting determines what the ultimate value of PATH will be when a PHP script tries to read it. In this

case, the environment is not considered because E does not appear in variables_order. Because

C comes after G in GPCS, the value passed in the cookie (/var) takes precedence over the value

passed in the URL (/tmp).

If your web site uses PHP, and it does not expect parameters from GET requests at all, a better

value for this would be PCS. Generally speaking, the variables inherited from outside your script

should come from as few places as possible.

7.3.3.3 mod_perl

Perl is a well-known scripting language that is extremely well-suited for writing CGI programs. Its built-in

support for parsing strings and matching patterns makes it a powerful tool for web development tasks. Like

PHP, Perl is modular, allowing developers to draw on the work of others.

Perl's problems in a web context are similar to PHP's. Perl allows many dangerous syntactic structures like

the backtick ()̀. Like PHP, many modules are written partially or totally in C or C++. This means that, even

though Perl is a garbage collected language with automatic memory allocation, there may be commands and

modules that can be invoked with bad arguments to exploit buffer overflows and the other vulnerabilities

caused by poor programming in the underlying C or C++.

If you operate a web server of any significance, you probably will be using one or more Perl scripts. It is one

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/?PATH=/tmp

of the most popular languages for CGI programming. Like other standalone programs and scripts, Perl scripts

can be executed as CGI programs without any special configuration just by placing the scripts in

ScriptAliased directories. There is a distinct disadvantage to running Perl as a CGI if you are looking for

performance. Each time a script executes, the entire Perl interpreter must be loaded into memory, perform

significant runtime initialization, and then run your script. If your script is small and optimized, the time spent

in this initialization probably dwarfs the time spent actually doing anything useful. If your web site is not

popular, or the script is rarely run, this probably does not matter.

The answer to running the interpreter as a CGI is mod_perl. The mod_perl module was created to load one

instance of the Perl runtime environment into memory when the server starts. Then, all scripts can execute in

this prepared environment. This provides major performance improvements.

 As an additional measure of security, add the line PerlTaintCheck On to your httpd.conf file. This

requires Perl code that is executing under mod_perl to obey Perl's taint rules. This is the same as invoking

perl -t to run the script. These rules effectively force developers to perform (at least trivial) input filtering.

They must perform some transformation on any data that comes from outside the program (e.g., an

environment variable, a web form input, and so on) before they can subsequently use that data in certain

contexts. For example, a value that was provided to the script by a form element on a web page cannot

subsequently be passed unmodified as an argument to an eval statement; some string replacement must be

performed first. See the perlsec manpage for documentation on Perl's taint mode.

While PerlTaintCheck is not bulletproof, it causes all mod_perl programmers to at least perform a few input

checks on their code. In particular, because it is systematic and automatic, it helps programmers find places

where they need input filtering. Good programmers will welcome the assistance and use it to help them

harden their programs.

7.3.3.4 mod_include

 The mod_include module provides server-side-include (SSI) functionality. It's most often used to provide

very simple and straightforward inclusion of one file within another. It can also execute commands on the

server and insert the results of the command's execution into the file, before the file is sent to the web

browser. It also provides a variety of convenience routines such as the ability to determine and print file

modification times, file sizes, and the server's current time.

HTML files are only parsed for SSI directives if mod_include and parsing are both enabled in the

httpd.conf configuration file. Typically this means establishing the server-parsed handler for files ending in

.shtml and enabling the Includes option on a web-visible directory. Some administrators also like to use the

XBitHack directive so that any HTML files marked executable on the filesystem will also be server parsed.

This is especially useful when taking existing sites and adding SSI functionality. You won't have to rename

pages, so you don't have to update cross-references.

The HTML fragment in Example 7-6 demonstrates several different mod_include directives. We discuss

several security implications using it as a reference. The scenarios are ordered from least risky to most risky,

with the final scenario effectively offering an attacker a variety of ways to totally compromise the web server.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 7-6. HTML file using mod_include directives

<h1>Server Information Page</h1>

<p>This is our standard disclaimer:</p>

<p><!--#include file="disclaimer.html" --></p>

<p>Here is a dubious way to retrieve the date:</p>

<p><!--#exec cgi="/cgi-bin/my-date" --></p>

<p>Show the user what query string they used:</p>

<p>You typed

<!--#exec cmd="/bin/echo $QUERY_STRING" --></p>

The first #include directive in Example 7-6 is the classic example of how SSI can be used simply and safely.

Apache merely opens the file disclaimer.html (which, by the syntax in the example, must exist in the same

directory as our example file) and inserts its contents directly into that part of the file before it is sent. The file

disclaimer.html does not need, therefore, to be a complete HTML file. In fact, it need not contain any HTML

tags at all in our example. It can, however, include SSI directives; and if it does, they will be parsed. The

mod_include module can be used recursively and will continue to parse directives that it finds in each

included file. Unless a dangerous use of SSI directives exists in disclaimer.html, this is a simple and safe use

of SSI.

For security reasons, the file specified in the #include directive may not be absolute: it may not begin with /

nor may it contain ../ or any encoding of that string. Untrusted users are often allowed to create web pages on

web servers, so this prevents directives such as <!--#include file="/etc/passwd" --> from divulging the

contents of sensitive files.

The next lines in Example 7-6 execute a CGI program called my-date from the server-wide /cgi-bin

directory. This looks like CGI, but it is actually different. The output of the CGI command will be inserted

unmodified into the middle of the body of the web page. Thus, if the output of the CGI program's output is not

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

plain text or HTML, it is likely to look very bad when rendered in the web browser. Outside the context of

mod_include, CGI programs can return any kind of data. They can send images, spreadsheets, movies, or

any other MIME
[1]

 content type. When executed by a server-side include, however, their data will be

embedded inside a document, so it only makes sense to send text or HTML.

[1]
 MIME is "Multipurpose Internet Media Encoding" and is described in RFC 1341 and many other follow-on

RFCs. It defines special "content-type" designators that allow web browsers, email programs, and other

Internet-enabled software to invoke appropriate other software to handle certain kinds of documents.

When invoking a CGI through mod_include, an attacker can influence the environment in which the CGI

executes through the query string and the user agent identifier. When a user requests a web page, he can

specify a query string, even though the page does not process queries. For example, he can access the

page via a URL like http://www.example.com/index.html?ATTACK=true. Despite the fact that index.html is a

plain HTML file, this is legal syntax. If index.html invokes a CGI program through the #exec directive, the

QUERY_STRING environment variable for that CGI program will be set to ATTACK=true. If the CGI

program parses the QUERY_STRING variable, then an attacker can try to insert, for example, shellcode to

make the CGI misbehave. Thus, a file that appears to be pretty safe at first glance can actually incorporate

CGI code that is vulnerable.

Lastly, Example 7-6 demonstrates how to execute a shell command directly from inside an HTML file. This a

very bad practice, especially in our example, because we pass QUERY_STRING as an argument to a shell

command. This gives an attacker the opportunity to craft query strings that can be passed directly to

programs executing on the host system. A specially crafted URL such as

http://www.example.com/?foo;/bin/date will show foo, followed by the output of running /bin/date. Imagine

the consequences if /bin/date were replaced with rm -rf /*! It wouldn't remove the whole filesystem, but it

would remove everything the www user could remove.

The availability of mod_include functionality can be limited on a system-wide, per-VirtualHost, or

per-directory basis. Additionally, given how dangerous the #exec option can be, it can be restricted

separately as shown in Example 7-7.

Example 7-7. Permitting SSI while denying #exec

<VirtualHost www.example.com>

 DocumentRoot /data/www/www.example.com

 Options None

 AllowOverride IncludesNOEXEC

</VirtualHost>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/index.html?ATTACK=true

Unless you have a specific use for SSI, disable it. If you do have a specific need for it, enable it without

enabling #exec.

7.3.3.5 mod_dav

 The DAV module was created to offer compatibility with the Distributed Authoring and Versioning (DAV)

protocol, defined by the Internet Engineering Task Force (IETF) in RFC 2518. Microsoft created the DAV

standard, which defines a variety of methods within HTTP. In addition to the usual GET, POST (and other

less well-known methods) defined in RFCs 1945 and 2068, DAV defines methods like SEARCH and

PROPFIND. In this way, products like Microsoft Outlook Web Access can use the same shared calendar and

other shared resources that the proprietary clients like Outlook use.

Unfortunately, Apache's mod_dav implements a free-for-all security model. Though you can restrict access

to it in a robust manner, once a user is authenticated she is authorized to do anything. There is currently no

way to map the authentication at the HTTP level to Unix authorization on the filesystem.

 If you cannot use digest authentication, at least protect the DAV traffic by using SSL. All the DAV

directives work within SSL-enabled sessions. This will protect your user IDs, passwords, and the actual web

content as it passes from the user's client application to your server. You may find performance suffers in

such a situation, however. DAV sessions use many very small HTTP requests—more than a normal web

browsing session. Add the overhead of cryptography, and it may not be acceptable under heavy load.

Enable mod_dav at your own risk. The primitive authentication/authorization capabilities create a situation

where all users who have any access have full access to the data stored there. Such a permissions structure

does not work for many organizations. Furthermore, if you accidentally fail to apply any restrictions to the

DAV-enabled filesystem, then anyone who notices that DAV is enabled will be able to store arbitrary data

there. You will quickly become a hot spot for trading illegal software.

7.3.3.6 mod_autoindex

Apache includes an automatic file and directory indexing module called mod_autoindex. It is helpful for

people who just want to make files available through the Web with minimal effort. The module can be

configured to understand a variety of file types, decorate the file listings with appropriate icons, and to display

any README files that happen to be in the directory. mod_autoindex is also the module that determines

what names of files will be displayed (and an order of precedence) when a URL is requested that does not

correspond to a file. For example, the main web page for most web sites is usually named either index.htm or

index.html. The contents of index.html are sent when the URL http://www.example.com/ is requested. When

no index page is available, mod_autoindex sends a directory listing.

It is often the case that novice web developers, or their web-authoring software, will choose a default

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

filename for a web page that is something other than the traditional index.html. For example, if the directory is

marketing, then the software or the developer will sometimes name the main file marketing.html. This would

be accessible via a URL such as http://www.example.com/marketing/marketing.html. The novice developer

might not realize he could have a prettier URL such as http://www.example.com/marketing/ by naming the file

index.html. Imagine that the rest of that directory contains marketing materials that should not be downloaded

directly; instead, they should only be available to someone after he fills out the form in marketing.html. If a

visitor strips marketing.html off the end of the URL, however, he will see the directory listing, and can bypass

the form altogether.

Administrators should make an effort to educate their users in the minimal

value provided by security-through-obscurity. In this case, placing documents

in a directly accessible directory with a web page frontend is of little security

value. Instead, the documents should have been placed outside the

DocumentRoot and delivered via download to the requestor.

The worst impact of mod_autoindex, then, is that it sometimes makes it easy to bypass

security-through-obscurity mechanisms on the server. It is not exploitable to gain unauthorized access to the

system or cause any other major problem. Like other modules, it should be disabled unless you have a

specific use for it. Also like other modules, it can be disabled by default and only enabled on specific areas.

7.3.3.7 mod_info and mod_status

Two modules, mod_info and mod_status, provide information to an administrator about the running

configuration. They can help you troubleshoot problems or just give you a current snapshot of the runtime

status of your server. However, without any constraints, they are the next best thing to posting your

httpd.conf file on your web site, which is probably something you do not want to do. Your security cannot

realistically depend on obscurity, but there is no need to casually divulge configuration information.

In the interest of keeping your server's configuration hidden from prying eyes, you should carefully consider

whether you need to use mod_info and mod_status at all. If you do need to use them, you should consider

how tightly you can control access to them. They are marvelous diagnostic tools for understanding how your

server is configured. If an attacker can reach them, however, she can learn a great deal of information.

It is tempting to simply restrict access to these modules to the local loopback address (e.g., 127.0.0.1 or

localhost). After all, you are the administrator and only you can generate requests to the web server that

originate on the web server, right? Consider the case where a user can put the following string in a web page

and use server side include processing: <!--#include virtual="/server-info/" -->. The request for the

server-info web page embedded in their HTML will originate from the local system. Remarkably, this request

will succeed and the user will be able to embed your server's information in his own web page, which he can

peruse.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/marketing/marketing.html
http://www.example.com/marketing/

In general, you should disable these two modules except during times when you are specifically

troubleshooting a problem. When they are enabled, only enable them in a VirtualHost that you control for

system administration purposes. You should use some sort of username and password-based security, on

top of IP address-based security. Instead of restricting access to localhost, allow connections only from your

workstation, or an administrative host or subnet.

7.3.3.8 mod_userdir

 On large, multiuser systems the average non-root user needs a mechanism for making web pages and

displaying them. Apache offers this functionality through mod_userdir. A user can have a directory and files in

a well-known location (a directory named public_html in her home directory by default), and Apache

associates that directory with a URL based on her login name. For example, user jsmith might have a home

directory /home/jsmith. The file /home/jsmith/public_html/index.html, then, would correspond to the URL

http://www.example.com/~jsmith/.

 By itself, this module does not create any noteworthy security concerns. However, it can be combined

with server-side includes, PHP, CGI, or suexec, for example, to create security risks. The primary risk is that

it gives every user a place where he can install his own .htaccess file and bypass (inadvertently or

intentionally) restrictions you placed in the system-wide httpd.conf file. This is where users can create their

own PHP configuration options, for example, that may differ from your site-wide defaults and create more

risks.

You probably don't want to enable UserDir at a global level. Instead, enable it

only on VirtualHosts that need it, and even then, specify which users are

enabled if that's practical. Careless configuration can lead to some

embarassing results. For instance, if you're an ISP hosting a local church and

a pornography site on the same system, you don't want /~pastor/ to be

evaluated for both the church web site and the porn site.

If you have users who need this style of web page access, be careful what other options you provide and

what you allow them to override in their .htaccess files.

7.3.4. Apache Best Practices

There are a few specific recommendations for running an Apache server that can help you run it more

securely. Some of them are operating system tuning parameters, while others are configurations of Apache

itself. If you consider applying these practices, be sure to consider your specific situation. It is not necessarily

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/~jsmith/

true that you should turn on every security option and every optimization possible. In general you should

enable only the modules you need, and the optimizations that address specific problems you face.

7.3.4.1 Enable only modules you need

As mentioned previously, instead of disabling modules you do not think you need, disable all modules. Then

enable only those you know you will need. If you run into problems, you should be able to figure out which

additional modules you need to enable.

Apache provides a small set of example configuration files. One of them, typically named

highperformance.conf has a minimum number of modules enabled. Although it also has a variety of other

options tuned for performance, the LoadModule commands are the most relevant to consider in terms of

minimizing modules.

Modules are enabled and disabled in the httpd.conf file by commenting out the corresponding

LoadModule directive in the httpd.conf file. In Apache 1.3, there is an additional AddModule directive that

must also be commented out. Failure to disable both lines in an Apache 1.3 will result in a syntax error.

Furthermore, for Apache 1.3, the AddModule and LoadModule directives must list the modules in the same

order. Apache must be restarted for these changes to take effect.

7.3.4.2 Minimize information leaks

 Unless Apache is configured otherwise, the web server will provide its version (e.g., Apache/2.0.52),

which modules it has (e.g., mod_perl, mod_php), and even the module version numbers (e.g., PHP/4.3.2).

It sends this information not only in the environment available to CGI programs and SSI pages, but also in the

headers of every HTTP response. For example, a fully loaded web server with no special configuration might

send the following in every HTTP response:

Server: Apache/2.0.52 (UNIX) PHP/4.3.2 mod_perl/1.26 mod_ssl/2.8.16 OpenSSL/0.9.7b

That is a wealth of information for an attacker. OpenSSL has had known exploits in the past, including a

timing attack that could divulge the server's private key. By offering up version information so willingly, you

only help potential attackers. You certainly do not benefit in any way from including this information.

Remember that most web server attacks are scripted. Scripts may not care

about what versions of software you are running and may attempt exploits

regardless. Obfuscating your header information so that you can "safely" run

vulnerable software is folly.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

By default, Apache will also append a tag line to the bottom of any pages it generates for you (such as those

created by mod_autoindex and error documents). That tag line indicates that the web server is Apache and it

often includes the version number. Again, this is information that you, as an administrator, have no need for;

however, it may prove useful for attackers.

Unlike BIND and Sendmail, there is no trivial way to cause Apache to report a fake version identifier. A little

obfuscation to confuse the script kiddies never hurts. The most you can do, without modifying source code, is

to make Apache simply report itself as "Apache." This is easy to configure, as shown in Example 7-8.

Example 7-8. Disabling extraneous version information in httpd.conf

ServerTokens ProductOnly

ServerSignature Off

7.3.4.3 Always separate HTML and CGI locations

 Apache tries to protect the CGI directory from being browsed to prevent the programs from being

downloaded instead of executed. However, if the CGI directory (almost always called /cgi-bin/) is within the

DocumentRoot of a virtual server (or within a user's ~/public_html directory), then there is a chance that the

programs can be downloaded. All too often programs such as Perl scripts will embed sensitive information

like database usernames and passwords in the source code of the script. If the script is downloaded, an

attacker learns something valuable (and perhaps directly exploitable) about your systems.

On a related note, watch out for lingering artifacts from development and test. Developers and administrators

frequently create scripts like test.sh or phpinfo.php within the DocumentRoot in the course of developing or

debugging a web application. It is critical that these sorts of scripts be removed or made nonexecutable when

they are not actively being used. Better yet, restrict these kinds of activities to a development or test

environment that is not directly exposed to external visitors. Tools exist that crawl through web sites and

check for long lists of commonly named debugging scripts. Use them, before they're used against you.

7.3.4.4 Protect sensitive configuration files

 Another way attackers probe system security is by trying to download .htaccess files. In order to have their

desired effect, these files must live in web-accessible directories. However, they also give clues to the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

security of the system. For instance, they may identify resources that are protected, thereby giving an

attacker a roadmap for future attacks. Rules such as the one in Example 7-9 are typical in the outermost

scope of an httpd.conf file.

Example 7-9. Protecting .htaccess files in httpd.conf

<Files ~ "^\.ht">

 Order allow,deny

 Deny from all

 Satisfy All

</Files>

This rule is provided in most example httpd.conf files. It protects any file beginning with .ht like

password-based access files, commonly named .htpasswd and .htgroup. There is no reason that the files

need to be named .htaccess, .htpasswd, or .htgroup. In fact, as a security precaution, you should probably

choose other names for these files and don't store password and group files within the DocumentRoot. But

just in case your system users fail to heed this advice, protect them from being downloaded by implementing

a configuration similar to Example 7-9.

7.3.4.5 Run CGI programs as normal users

Web server administrators often find themselves performing a variety of security gymnastics to make all the

UIDs of all the processes match their requirements. The httpd process must run as root, initially, in order to

listen for connections on ports less than 1024. Once a connection is made, the server process immediately

switches to the unprivileged www user to minimize the risk of doing bad things as root. In addition to root and

www, you have users who generally do not login to the web server either as root or as the www user: they

must also be accommodated by the web server configuration.

Since the script running as the www user cannot normally write files into directories owned by a normal user,

novice users often create world-writable directories and files for their CGI program ouput and scratch space.

Clearly this is not very desirable from a security point of view.

Both suexec and cgiwrap allow users' CGI scripts to run under their individual UIDs. Their scripts can read

and write files anywhere in their home directories, and damage from any poorly programmed scripts they

might write will be contained. While undesirable, it is better to put one user's data at risk than many users'

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

data.

7.3.4.5.1 cgiwrap

On FreeBSD, cgiwrap can be installed from ports/www/cgiwrap. It is not available in the OpenBSD ports

tree, but it is not complicated and it has no dependencies. Retrieving the source, configuring, and installing it

manually under OpenBSD is not difficult. In either case, the net result is a pair of setuid root binary files

named cgiwrap and cgiwrapd, which may be placed in your CGI directory (e.g., /usr/local/www/cgi-bin).

They should be executable, but not readable, by all users. There are no changes necessary to Apache's

configuration.

cgiwrap examines its PATH and execution environment, determines dynamically which user's permissions

to adopt, and then invokes CGI programs with that user's permissions. Its purpose is to perform critical safety

checks, and then switch users in a way that is safe and does not create new exploit possibilities. One

advantage to cgiwrap is that it supports lots of different users, all using their own sets of CGI programs. You

can install cgiwrap once, in one location, and then all users' web sites can take advantage of it.

cgiwrap also includes a very useful debugging binary called cgiwrapd that can be installed in the CGI

directory. When it is invoked, instead of cgiwrap, the output of the CGI program is turned into plain text and

sent along with a report of the execution environment. Normally, when a CGI program exits prematurely and

produces bad output or no output, the Apache server simply sends a generic Error 500: Internal Server

Error web page to the browser. This makes debugging problems very difficult without access to error logs.

With cgiwrapd, developers can point to a debugging URL like

http://www.example.com/cgi-bin/cgiwrapd/user/myscript and get more useful output.

Be careful with cgiwrapd. It exposes a wealth of information about the internal

execution environment of your web server. If possible, enable it only when a

user needs it. Since it is setuid root, however, only an administrator can enable

or disable it.

One of the primary disadvantages to cgiwrap is its complexity. Users put their scripts in an obvious

filesystem location, such as /home/user/cgi-bin/myscript, but the URL for the script will be something

unintuitive like http://www.example.com/cgi-bin/cgiwrap/user/myscript. If you download CGI programs that

someone else wrote, you may find it difficult to configure them to run in a cgiwrap environment.

7.3.4.5.2 mod_suexec

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/cgi-bin/cgiwrapd/user/myscript
http://www.example.com/cgi-bin/cgiwrap/
file:///myscript

The suexec module comes with Apache and uses a slightly different approach to running CGI programs

under users' own IDs. The Apache httpd documentation describes 20 checks that suexec performs before

actually executing code as a user other than the unprivileged www user. Although we can't cover all 20

checks, two of the most useful include making sure that the file to be executed is owned by the target user

and is not writable by anyone else or setuid. Ultimately, however, these checks merely determine whether the

program is allowed to run and if it may be run with the privileges of the designated user.

The primary advantage of mod_suexec is its tight integration with the Apache web server. It can operate in

ways cgiwrap cannot, because it can intercept requests for CGI programs before they are dispatched. With

mod_suexec installed, two new directives, User and Group, can be used in VirtualHost definitions. These

directives, as you may suspect, define the user and group under which CGIs must run. Additionally,

mod_suexec can be used with mod_userdir style directories (e.g., http://www.example.com/~jsmith/),

executing CGIs with the appropriate user's permissions. Example 7-10 is analogous to Example 7-7 where

the CGI programs in this example server all execute as user jsmith.

Example 7-10. Enabling mod_suexec in httpd.conf

This expands the configuration from Example 7-7

<VirtualHost www.example.com>

 DocumentRoot /data/www/www.example.com

 Options None

 AllowOverride IncludesNOEXEC

 User jsmith

 Group webusers

</VirtualHost>

There is one small disadvantage with mod_suexec. It is not as simple to enable or disable as cgiwrap.

Enabling it, disabling it, or reconfiguring it, requires changing the Apache configuration file and restarting the

server. It also does not offer the debugging aid that cgiwrapd offers.

On the other hand, a mod_suexec-based server is slightly easier to delegate to a junior administrator than

one that uses cgiwrap. While restarting the server is an unfortunate requirement, it is a task that can be

easily done using apachectl(8) via sudo(8). Likewise, editing the httpd.conf file can also easily be delegated

to junior administrators. cgiwrap, on the other hand, requires the authority to manipulate files that are setuid

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.example.com/~jsmith/

root.

7.3.4.6 Summary

 Remember that no runtime environment can ensure that CGI programs have no errors or vulnerabilities.

These two programs are simply privilege containment systems. They enable users' CGI programs to read

and write into the filesystem safely, and they help control damage from poorly written programs. It is still

vitally important that your CGI programs be well written.

7.3.5. Encrypting Web Traffic

 By default, web traffic is sent in plain text, so if someone can eavesdrop anywhere in the network between

a client and a server, she can see everything that goes by. Encryption helps to protect sensitive data when it

is transmitted over the Internet.

RFC 2246 defines a protocol called Transport Layer Security (TLS). This is the standardized version of a

protocol originally developed by Netscape called the Secure Sockets Layer (SSL). Despite the fact that

virtually all encrypted web traffic uses the modern TLS protocol, the vast majority of people still refer to

encrypted web traffic as SSL. We follow this convention as well.

SSL is a transport layer protocol, just above the HTTP level, encrypting what would normally be clear-text

HTTP traffic. Figure 7-5 shows most of the OSI reference model network layers, with the ones relevant to our

discussion in black. The web browser in this example transmits the password "mozart" to the transport layer.

At the transport layer, the password is encrypted using a session key that has been pre-established between

the web browser and web server.

Figure 7-5. Network protocol stack showing SSL encryption

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SSL generally gives you two assurances: (1) the data is encrypted as it is transmitted over the Internet; (2)

your browser really is communicating with the site you think it is. There are a variety of ways to undermine

the fundamental assumptions that make these two assurances strong. Your operating system, however, can

only do a little to prevent SSL from being subverted. We will mention what you can do, but some of the

concepts required to fully discuss the risks (certificates, authority and trust, and DNS integrity) are too big to

cover here.

7.3.5.1 SSL and certificates

 Before you can SSL-enable your web server, you must generate a private key and get a signed

certificate as described previously. For detailed instructions and to purchase a certificate, visit either a

low-end retailer like InstantSSL (http://www.instantssl.com/) or a high-end retailer like Verisign

(http://www.verisign.com/). They have complete instructions on what you must do and can walk you through

the process.

You can also create your own certificate independent of any certificate authority. The problem with

self-signed and issued certificates, however, is that your users will see many ugly warnings from their web

browsers. You have to tell your users to dismiss these warnings about untrusted certificates. If they ever are

the victim of a man-in-the-middle attack, though, they will blithely dismiss the warning that is their only clue

that their session has been hijacked. For the sake of your users' trust, you should purchase a commercial

certificate.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.instantssl.com/
http://www.verisign.com/

You may also choose to distribute your own CA certificate—the one you use to

sign your certificates—to your users in some out of band fashion. This may

work in some cases, but you have to educate users about installing custom

certificates and field additional help-desk requests stemming from difficulties or

misconfigurations.

7.3.5.2 Enabling SSL

 Assuming you have gone through some process, commercial or otherwise, to obtain a signed certificate,

you have two files: a public key certificate and a private key. We will call the public key certificate server.crt

and the private key server.key. This naming largely follows the examples Apache has laid out. Example 7-11

shows a minimally configured SSL-enabled Apache VirtualHost.

Example 7-11. Apache SSL configuration

<VirtualHost *:443>

 DocumentRoot /usr/local/www/data/secure

 SSLEngine On

 SSLCertificateFile /usr/local/etc/apache2/ssl.crt/server.crt

 SSLCertificateKeyFile /usr/local/etc/apache2/ssl.key/server.key

</VirtualHost>

 At this point, your web server will listen on port 443 (the officially designated port for HTTPS) and will

communicate over SSL.

7.3.5.3 SSL, TLS, and cipher choice

 As an HTTPS connection is established, the two sides—browser and server—each send a list of their

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

cryptographic capabilities. Each identifies which ciphers it understands and what parameters it supports with

those ciphers. For example, a browser with export-grade cryptography might identify itself as supporting

DES, but only with 56-bit keys. During this handshake, the strongest algorithm that both browser and server

support will be chosen. If a web browser connects and only offers the weak encryption, your Apache server

has two choices: continue the connection with weak protection over the data, or close the connection telling

the browser that they have no satisfactory algorithms in common. There are a number of ciphers that are

common and well-known, but are also cryptographically weak. RC2, RC4, and export-grade DES should be

avoided if possible, especially by e-commerce and financial sites.

7.3.5.4 Restricting ciphers at the server

 You can restrict which ciphers your server is willing to use to ensure that only clients capable of high-grade

cryptography can connect with the SSLCipherSuite directive. If you restrict which ciphers you are willing to

use, realize that you will restrict which web browsers can connect. Older versions of Microsoft Internet

Explorer and Netscape, especially those that shipped with export-grade cryptography, will have a limited set

of ciphers available.

The SSLCipherSuite directive in your httpd.conf file is a very complicated directive with a dense syntax. It

controls which algorithms are accepted by your server and your server's order of preference. By default,

Apache is configured with a pretty generous set of algorithms. The default SSLCipherSuite directive is:

ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP

The Apache mod_ssl documentation describes what this cipher suite includes quite clearly:

[F]irst, remove from consideration any ciphers that do not authenticate, i.e., for SSL only

the Anonymous Diffie-Hellman ciphers. Next, use ciphers using RC4 and RSA. Next

include the high, medium and then the low security ciphers. Finally pull all SSLv2 and

export ciphers to the end of the list.

If you want to create a more secure configuration, consider the following cipher specification:

TLSv1:!ADH:!EXP:!NULL:!MD5:!LOW:+HIGH:+MEDIUM

 This favors TLS ciphers, without any anonymous Diffie-Hellman, no export-grade ciphers, no NULL

ciphers (i.e., those that don't actually encrypt), no algorithms that use MD5 for their hash, and none of the

weak algorithms (such as RC2) that have been classified as "low" grade. It favors the "high" grade algorithms

(such as AES with 256-bit keys) over the "medium" algorithms (such as RC4). You can find out what the

aliases "high," "medium," and "low" refer to by looking at the manpage for ciphers(1) on FreeBSD or

openssl(1) on OpenBSD.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 If you are too draconian in your selection of ciphers, you should be aware that some users will utterly fail to

connect to your server, and you will have no opportunity to send a nice error message when that happens.

The web browser will issue an error message that is probably opaque and incomprehensible to the user.

Internet Explorer gives its general-purpose (and wrong) Cannot find server or DNS Error message. Mozilla

Firefox says, Firefox and www.example.com cannot communicate securely because they have no

common encryption algorithms. To make matters worse, since the browser and server never properly

communicated, there will be no trace of this failed attempt in your server logs. An IDS system might be able

to detect and log such failures, but Apache cannot. A good solution is to support one or two low-grade

ciphers and, using some JavaScript, PHP, or SSI, redirect users to a page that handles their request. The

page could recommend that they upgrade their browser, or warn them that they are using low-grade

cryptography, or redirect them to a server where low-grade cryptography is acceptable.

7.3.5.5 CPU usage

When enabling SSL, you will find that the computational load on your server increases. The cryptography

involved in SSL is nontrivial. Busy sites will quickly discover that the CPU cannot keep up with nearly the

same number of connections over SSL as it can over vanilla HTTP. There are two solutions to this problem:

add more redundant servers or install hardware cryptographic accelerators. You might be tempted to add

redundant servers to meet demand, but there is probably a more cost-effective method that more fully

exploits the power of OpenBSD and FreeBSD.

A hardware cryptographic accelerator can offload the computation involved in performing cryptography.

They also often provide hardware random number generators, which are better than any software-based

pseudorandom number generators, making your transactions more secure. This is an area where OpenBSD

excels, and FreeBSD does almost as well. You only have to purchase and install a compatible hardware

cryptographic accelerator card and OpenBSD will detect it and use it by default. The list of compatible cards

is constantly growing, and can be found in the release notes for whichever version of OpenBSD or FreeBSD

you install. What makes it so easy to use is the fact that the hooks for using acceleration are already built into

the kernel and all devices that are supported register themselves at boot time. Simply by plugging a card into

a PCI slot, the system will detect the card at boot and begin to perform hardware-accelerated cryptography.

See Chapter 2 for more information on hardware-accelerated cryptography in the BSDs.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html
mfreeopenbsd-CHP-7-SECT-4.html

7.4. thttpd

 The thttpd server, from Jef Poskanzer (http://www.acme.com/software/thttpd/), is a throttling, simple

web server with a small footprint. The first "t" in thttpd stands for "tiny," "turbo," or "throttling," depending on

whom you ask. It is a very simple, carefully programmed HTTP server that provides basic services and can

execute CGI programs. It does not have a plug-in API like Apache. There is a commercial version (Premium

thttpd) that incorporates FastCGI support. To the extent that most programming of dynamic content can be

done through CGI, most dynamic content can be done with thttpd. However, PHP and some Perl programs

running as CGI programs may perform poorly. In high security situations, its limited feature set and its built-in

ability to do complex throttling on web traffic are invaluable. Some sites even use a combination of Apache

and thttpd to distribute their dynamic and static content, respectively. For example, the interactive web pages

that require executing complex Perl or PHP or Java will be served by the Apache server, but the images and

other static content is served via thttpd. This has the advantage of speeding up the access to images and

other static content, but also gives the ability to throttle bandwidth usage in the event of a sudden burst of

heavy traffic.

 The thttpd server is often the right answer if your needs are characterized by serving static web pages

and running straightforward CGI programs. It can also be the right answer if you want to limit your bandwidth

using well-formulated throttling rules. Finally, it is very useful for its small footprint, both on disk and in RAM. If

you're resource-constrained (e.g., an embedded environment), then thttpd is probably a better fit than

Apache. If, however, you need SSL, thttpd is probably the wrong choice. While there are ways to make it

work, they are poorly documented and not directly supported by the web server software itself.

7.4.1. Installing thttpd

thttpd is easily built and installed from ports on both OpenBSD and FreeBSD from ports/www/thttpd.

On FreeBSD the port will install a /usr/local/etc/rc.d/thttpd.sh startup script that is responsible for starting

thttpd. This script actually launches a wrapper named thttpd_wrapper, which restarts the thttpd daemon

should it die for some reason, and sends a mail message to root. Note that this could be a mail bomb waiting

to happen. If you should accidentally misconfigure your thttpd.conf file, you could find the wrapper program

sending mail to root every 10 seconds until you have it fixed.

 The OpenBSD version of the port installs nothing more than a /usr/local/sbin/thttpd binary. You have to

create your own process for launching thttpd at boot time. Fortunately, the thttpd.sh script and the

thttpd_wrapper script can be found in the source tree where you built the port

(ports/www/thttpd/w-thttpd-2.25b/thttpd-2.25b/scripts/ at the time of this writing). You can easily install them

manually.

Note that if you already have Apache installed and active, thttpd will probably fail to run. Apache comes

before thttpd alphabetically, so apache2.sh will execute before thttpd.sh at boot time. It will bind to port 80

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.acme.com/software/thttpd/

and thttpd will quit because it cannot acquire the already bound port. Either configure Apache so it does not

listen on port 80, or disable it if you are not using it.

7.4.2. Configuring thttpd

 Unlike Apache, thttpd does not come with a default configuration file, and the ports maintainer has not

chosen to offer one. Example 7-12 shows a basic thttpd.conf file that tries to emulate a similar layout to that

provided by a default Apache installation.

Example 7-12. Sample thttpd.conf file

dir=/usr/local/www/data

cgipat=/cgi-bin/*

logfile=/var/log/httpd-access.log

pidfile=/var/run/httpd.pid

index_names=index.html index.htm

No fully fleshed-out examples of thttpd.conf files ship with thttpd, but you can find a few on the Internet.

However, there really are very few options to specify. The normal options that you need are so few in

number, in fact, that you can often specify a working configuration right from the command line.

Just because you can specify a configuration on the command line does not

mean you should. We are merely trying to illustrate the simplicity of thttpd

configuration. After all, configuration files can be version controlled. The

command-line interface exists, however, to be used for quick-and-dirty testing.

The configuration in Example 7-12 is really the minimum set of options that you need to set to make a

functional web site. CGI programs necessarily must live under dir. Because of thttpd's design, however,

there is no danger that the source of a script will be sent instead of the script.

There is also a convenient program called makeweb that is distributed with thttpd. When invoked, it will

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

create a directory named /usr/local/www/user and create a symbolic link from /home/user/public_html to

/usr/local/www/user. This allows the Apache style per-user URLs (provided by mod_userdir) to work, and it

provides the familiar public_html directory for users.

7.4.3. Resisting Denial of Service

 The throttling parameters in thttpd are completely different from those in Apache. With thttpd, each

bandwidth allocation is given a minimum (implied as zero if not specified) and a maximum. The server tracks

moving averages for all URLs that it processes, and it matches them against the throttling parameters. If the

given URL is exceeding its bandwidth allocation, thttpd imposes a delay between transmitting blocks of data

for the connections that are requesting that URL. It also guarantees a minimum bandwidth allocation to make

sure that requests actually complete.

The thttpd server does not implement a means of limiting the total number of concurrent connections to the

server like Apache's MaxClients directive. However, this kind of limit can be enforced by the operating

system. To impose a limit on it, limit the total available file handles for the process. Each network connection

requires a file handle, so limiting the total number of open file handles an easy way to limit the number of

concurrent connections. Add a line to the thttpd.sh script like ulimit -n 80, to limit the thttpd daemon to 80

open file handles. Each daemon probably has at least two file handles open at any given instant: the web

page it's reading off the disk and the network port it is connected to. It may open other files briefly as a

side-effect of normal execution (e.g., /dev/null or /etc/malloc.conf). If you're going to limit httpd this way, you

should probably start with a number about twice as large as the total number of daemons you want, and then

tune according to your observations.

OpenBSD limits the number of available file handles to 128 by default for root

and daemon processes through a setting in /etc/login.conf. FreeBSD has the

same capability of limiting file descriptors in /etc/login.conf, but does not

impose any limits by default.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

7.5. Advanced Web Servers with Jails

 Administrators rarely get to have the final say in what technologies their web servers must support. The

web team will come to you with a demand for the latest, greatest PHPNuke-MySQL-ImageMagick-XML

technology, and management will decree that it must be supported. Running Apache in a jail or chroot

environment will help limit your server's exposure to vulnerabilities in the web applications. There have been

vulnerabilities in Apache's httpd itself, too, and this will help protect you if you fall prey to an exploited

vulnerability.

7.5.1. Using Jail or Chroot

 Unfortunately, Apache does not support jail or chroot easily the way BIND does. It takes work. So, before

we launch into configuring Apache in a jail, we have some planning to do.

Remember the difference between jail and chroot from Chapter 2. For

convenience in this chapter we often say "jail" to refer equally to both

environments. It means "jail" for FreeBSD administrators and "chroot" for

OpenBSD administrators since only FreeBSD has jail. The instructions here

only differ in the syntax of the command that launches the environment.

7.5.1.1 How many instances?

If you are hosting a single web server for an organization, you may only be concerned about one user group

and one set of requirements. In that case you only need to jail your single instance of Apache. If you work for

an ISP, or if you work in the IT department of a large organization, you may have many user populations to

support. You might have to protect your server from the users and the user populations from each other. You

might even have conflicting requirements; for example one user set might require PHP Version 4 while

another requires PHP Version 5. In these kinds of situations you can create multiple instances in different

jails. Just use different IP addresses for each server instance and they can stay separated.

It's decidedly simpler to chroot or jail a single instance of Apache, but if we do it well enough once, we should

be able to repeat it. Many variables affect your decision about whether or not to chroot or jail and, if so, how

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html
mfreeopenbsd-CHP-7-SECT-5.html

many instances to run; so we will focus on how to chroot or jail a single instance. When there are problems

that you will have to overcome in order to run multiple instances, we'll point them out and describe some

potential solutions.

7.5.1.2 Building and installing into a jail

There are two ways to build: using the ports system and directly from the source. In Chapter 2, we discuss

how to make a feature-rich jail that we build packages in, so that we can then install those packages in a

minimal jail for execution. If your configuration is easily supported by the configuration options in the ports

system and you're using FreeBSD, this is probably the best way to go. Building from source is also viable,

and is necessary on OpenBSD. Chapter 2 contains an example of building Apache in a jail, so we will

describe how to build Apache from source here.

There are dozens of ways that you can choose to configure Apache to run in a

jail. We have picked one way that is effective and clear. Vary it according to

your needs and preferences.

We will use /jail as our jail directory for our examples in this section. Recall from Chapter 2 that if Apache is

looking for a file /etc/pwd.db, for example, then we will need to create /jail/etc/pwd.db.

 We will give Apache's configure script a different base directory instead of /usr/local. Since we have to run

make install during this process, we don't want our jail-friendly Apache to be installed on top of our real

Apache that runs out of /usr/local. We will run Apache out of a /web directory. You will need to create a real

/web—at least temporarily—in order to let the binaries install. If you want to create a symbolic link from /web

to some other location in the filesystem, that will work. To configure Apache, then, we run a command like:

./configure --prefix=/web --enable-ssl

Your actual command will probably vary, based on what modules you need.

Now that it's configured, you can run make to perform the build, and make install to install into our /web

staging environment. After the installation is complete, pare down the directory to eliminate detritus that

comes from a general-purpose Apache installation. In /web you will find a man directory with manual pages,

as well as a manual HTML documentation directory. You can probably delete these. You may also find the

standard icons directory unnecessary unless you are using mod_autoindex as described later in this chapter.

After you have removed all the files and directories you don't want from /web, copy what's left to /jail/web

using a command like cp -pr /web/* /jail/web.

You will also see build, lib, and include directories in /web. At first glance, you might think they are

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

superfluous, since you will only be running a server here. While you're right in thinking that they're not used at

runtime, they are necessary if you plan on building Apache modules (e.g., mod_php, mod_perl, etc.). Though

you may not need them in your /jail/web runtime environment, you will want them in your /web staging

environment so you can use them later to build compatible modules.

7.5.1.3 Finding and adding support files

Apache needs additional files, present in your operating system, but not yet in your jail. Table 7-3 lists the

files that you will need and indicates whether they are needed in FreeBSD, OpenBSD, or both. Note that the

only part of the entire process that needs to be done as root is the making of the /dev/null device in

/jail/dev/null. You can (and should) configure, build, and install Apache as an unprivileged normal user. For

example, if you are creating multiple jails, you can have each jail's files owned by a different user.

Table 7-3. Files used in Apache jails

File Location

Null device dev/null

Maps UIDs to user IDs etc/pwd.db

C runtime library
usr/lib/libc.so.34.1 (OpenBSD)

lib/libc.so.5 (FreeBSD)

Math library
usr/lib/libm.so.2.0 (OpenBSD)

usr/lib/libm.so.2 (FreeBSD)

Threading library usr/lib/libpthread.so.6.0 (OpenBSD)

The runtime dynamic loader
usr/libexec/ld.so (OpenBSD)

libexec/ld-elf.so.1 (FreeBSD)

Cryptography library

usr/lib/libcrypto.so.11.0 (OpenBSD)

usr/lib/libssl.so.9.0 (OpenBSD)

lib/libcrypt.so.2 (FreeBSD)

By the time you try this, it is possible that something will have changed in either FreeBSD or OpenBSD or

Apache to make these instructions incomplete. If, after installing these files, the server will not launch, it will

probably tell you what library it needs. For example, you may see /libexec/ld-elf.so.1: Shared object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

"libdb4.so.0" not found. In that case, run ldd /web/bin/httpd and look for the library in the output. You will

see output like: libdb4.so.0 => /usr/local/lib/libdb4.so.0 (0x280fc000). This means that you need to copy

/usr/local/lib/libdb4.so.0 to a location in the jail, such as /jail/lib.

You may also want some files such as /etc/localtime, /etc/resolv.conf, and /etc/hosts. The /etc/localtime file

will let Apache log entries in the correct time zone. The /etc/resolv.conf and /etc/hosts files influence how the

processes in the jail resolve hostnames. However, if /etc/resolv.conf and /etc/hosts are omitted, they will

resolve names using the default resolution in the regular (non-jailed) operating system. Refer to Table 2-4 for

other files that you might want or need in your jail.

7.5.1.4 Launching httpd in chroot(8) on OpenBSD or FreeBSD

Before launching your chrooted httpd, ensure the IP address on which your Apache server will be listening

is correct. With a single chrooted installation like this, the specification of IP address is unimportant. On

systems with multiple instances of chrooted Apache servers, however, running them on separate IP

addresses is imperative. You may even need to configure multiple IP addresses per chroot. This is certainly

possible—just make sure not to allow one chrooted instance to use another's IP.

IP specification boils down to adding a line such as Listen 12.34.56.78:80 to your httpd.conf file. See the

Apache documentation for more information about the Listen directive. Once this has been done, you can

launch the chrooted Apache process by running chroot /jail /web/bin/httpd -DSSL as root (either

interactively, or in a script that is run by root at boot time).

While it's always easiest to have SSL-enabled Apache servers start

automatically, you pay a small price in security to enable it. Ideally, the server's

private key should be stored encrypted on the filesystem and should require a

passphrase to decrypt it. Apache cannot start (even the non-SSL functions will

not start) until it is decrypted. Your alternative, to enable automatic startup, is

to leave your private key unencrypted in the filesystem. No one will need to be

around to start the service, but your key can be compromised more easily.

7.5.1.5 Launching httpd in jail(8) on FreeBSD

 If you are using Apache on FreeBSD, use jail instead of chroot whenever you can. Jails take the same

amount of work to set up, but their security is more robust and thorough than chroot. As we mentioned in

Chapter 2, jail requires quite a few arguments.

jail -u root /jail www.example.com 12.34.56.78 /web/bin/httpd -DSSL

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 In this case we have explicitly said the jail will have to run as root. Apache needs to bind to port 80, and it

can only do that if it starts off running as root. The next argument is the root of the jail filesystem, /jail. The

next two arguments, the hostname and IP address, distinguish jail from chroot.

 No process, not Apache, a CGI program, a PHP web page, or a malicious hacker's program that

accidentally gets installed in the jail, can perform any network activity with any IP address other than the one

assigned to this jail. Normally, if an attacker injected the right code into a vulnerable chroot or non-chrooted

system, he could use raw sockets to spoof the source address of malicious packets. Or, he could try to sniff

packets by opening the network device in promiscuous mode. None of these things are possible in a jail. We

know that any mischievous activity will have the jail's IP address on it, so our network detection systems will

have an accurate picture of the traffic (malicious or otherwise) going in and out of the jailed process. We also

know that someone who compromises the jail thoroughly will still be significantly limited in what he can do,

especially since we didn't install /bin/sh or any other shell in our jail filesystem. That step by itself

dramatically limits an attacker's capabilities.

7.5.2. A Two-Tiered Architecture

 For a powerful way to enforce separation of privileges and web site isolation, we propose a combination

of Apache's mod_proxy with FreeBSD's jails or either operating system's chroot. If you run many web sites

on a single host and you have many different users managing those sites (a situation that begs for FreeBSD

and Apache), you can achieve a level of separation that will allow your users to have unprecedented control

over their web configuration, yet will keep their mistakes from affecting other users.

Pictures are worth a thousand words, so let's start off our architectural discussion with Figure 7-6. It shows a

general overview of the architecture, and will serve as a reference for sections to come.

Figure 7-6. General architecture of a multiple jail system

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 This architecture uses a frontend jailed Apache instance that exposes a single IP address to the

Internet. This external jail uses mod_proxy behind the scenes to redirect traffic to internal jailed web server

instances. Each of these internal jails is assigned a distinct RFC 1918 private IP address and is accessible

only through Apache. Finally, in our example, each internal jail handles the web needs for a given

organization. This makes our proxy rules easier to differentiate, but bear in mind that more complex

configurations are certainly possible.

The rest of this section is devoted to a structured walkthrough of setting up exactly this configuration. Once

you can handle this specific example, you should be able to carry the lessons you've learned onto more

interesting scenarios.

7.5.2.1 Configure the internal jails

First off, create a jail for each organization as described in "Using Jail or Chroot." These jails should be

configured with whatever modules and options they need—but remember, enable only the modules you

need. For example we set the ServerName in the two jails to jail.example.org and jail.company.com. Aside

from setting this directive to something other than the one you really want to publish, configure everything

else normally.

In order for Apache to access each jailed site, you'll want to assign names to them. Jailed web sites are

configured with local, unroutable IP addresses (e.g., 10.0.0.2 or 192.168.0.5). You can either give each jail a

name in DNS that maps to the associated IP address, or add an appropriate entry to /etc/hosts. In this

example, we assign the name jail.example.org to IP address, 10.0.0.2 and jail.company.com to 10.0.0.3.

If you've been reading carefully, you'll note that we have not mentioned what web server is running within the

jail. In fact, there is no reason why the jailed web site cannot run thttpd or some other web server software.

Since the jailed web server does not know that it is jailed, any web server software should work just fine.

Now, in order for Apache to access the jail, you need to add aliases to your network interface. On FreeBSD,

we insert two lines like this in /etc/rc.conf:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ifconfig_xl0_alias0="inet 10.0.0.2 netmask 255.255.255.255

ifconfig_xl0_alias0="inet 10.0.0.3 netmask 255.255.255.255

On OpenBSD, append the following two lines to /etc/hostname.xl0:

inet alias 10.0.0.2 255.255.255.255

inet alias 10.0.0.3 255.255.255.255

Of course, you will need to replace x10 above with the name of your network interface.

Your host is now accessible not only on the primary public IP address, but also on the two aliases 10.0.0.2

and 10.0.0.3. This may not be what you want. If your host is in a DMZ, you can use your local or

network-based firewall to restrict access to these IP addresses so that no one in the outside world can

connect directly to them. You might be wondering why you didn't just use the loopback (lo0) interface. By

assigning routable IP addresses to your jails, you have created a convenient mechanism for expansion. You

can move a jail from one host to another by migrating the jail's private IP to a new host. See "Modularity" for

a little more information about moving internal jails.

7.5.2.2 Configuring the external jail

The external jail contains an instance of Apache that is essentially just a big dumb proxy. It blindly accepts

and proxies traffic to the internal jailed web sites. For this external jail, you need Apache with mod_proxy, and

probably very few other modules. The externally facing web server can run out of a jail or chroot as well. It's

like creating a firewall/DMZ architecture in the middle of your host. For every web site you want to proxy, add

a configuration block as shown in Example 7-13 to your httpd.conf. This tells Apache to proxy the requests to

the internal jails.

Example 7-13. Proxying for two jails

<VirtualHost www.example.org>

 ProxyPass / http://jail. example.org/

 ProxyPassReverse / http://jail. example.org/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 ProxyVia On

</VirtualHost>

<VirtualHost www.company.com>

 ProxyPass / http://jail.company.com/

 ProxyPassReverse / http://jail.company.com/

 ProxyVia On

</VirtualHost>

7.5.2.3 Jail versus chroot

We've used the term jail throughout this section, even though you might only have chroot available to you. If

you have FreeBSD and can use jails, do. They are safer and harder to escape. Aside from the syntax of the

command that launches the internal web server, however, the concepts are the same. The jail will need the

same support files as a chroot environment will.

7.5.3. Advantages and Disadvantages

There are a lot of great advantages to this system, but it does create some management and maintenance

concerns, too.

7.5.3.1 Ultimate separation

This scheme creates a great separation between different user bases. Now, if one set of users completely

corrupts their web configuration or their pages, they will not affect the other users or the external proxy that

handles routing requests.

 WebDAV might be secure enough to use if each site's users are segregated into their own jails. Each jail

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

will have its own filesystem, permissions, and configuration for authorization. Although all the users in a given

jail have equal permissions on that jail's files, they do not have any access to the files in other jails. The users

are partitioned from each other, and they get to use a protocol that integrates nicely with their development

tools.

The separation is so complete that you might consider allowing advanced power users to control the

httpd.conf file for their jailed server. After all, if they corrupt the file, only their site will fail.

7.5.3.2 Performance

It is clear that there might be a performance penalty to this architecture. Two servers, the external proxy and

the jailed internal server, might handle every request. You can mitigate this problem somewhat by turning on

caching at the external proxy. Then, static content such as stylesheets, images, and JavaScript files will be

handled by the external proxy most of the time. Dynamic content can still be generated by the internal server,

and it will suffer the small penalty of being handled by two servers.

7.5.3.3 Modularity

 Each individual site is easy to migrate to new host hardware, when needed because it is completely

self-contained in a jail. If a site gets too much traffic and needs to be migrated to a beefier host system, its jail

can be copied wholesale to the new host, and that new host can be given the IP address associated with the

jail. If you're using DNS for name resolution of this private address space, you're done!

It's easy to run different versions of web server software this way, too. Perhaps you want to try out Apache

2. Maybe your customers want significantly different module sets. Completely segregating configurations can

turn very complex single Apache installations into several very simple ones. Since simplicity is easier to

administer, you might prefer this route.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

7.6. Wrapping Up

Almost every system administrator has responsibility for at least one web server, and web servers are some

of the most visible machines on the Internet. Taking precautions with you web server is both prudent and

necessary. If you need complex functionality, Apache is probably the best server to choose. If you need low

overhead, a small footprint, or bandwidth limitations, thttpd is a good choice.

 Regardless of which operating system you choose (both FreeBSD and OpenBSD make

excellent web servers), the single most important lesson in running a web server securely is to enable only

the functionality you need. Not only can a feature unexpectedly create a security risk by itself, it might create

a security risk when it unexpectedly combines with another feature (as mod_include can trick mod_access by

issuing requests from localhost). Consider how you segregate the permissions of your web services. You can

run perl and PHP scripts as CGIs so that you can use suexec or cgiwrap to map their privileges onto a

specific userid. You can instead run them in mod_perl and mod_php and use various OS techniques like

ulimit to limit the web server's ability to access operating system resources. Likewise, you should limit your

users' abilities to override configuration settings. Understand their needs and grant just the permissions they

need to achieve their goals.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html
mfreeopenbsd-CHP-7-SECT-6.html

 < Day Day Up >

7.7. Resources

These are pointers to various web-based resources, grouped by web server platform.

7.7.1. Apache Resources

The Apache Web Server

The main web site is http://httpd.apache.org/, which includes full documentation on installing,

configuring, and operating.

Apache: The Definitive Guide, Third Edition, by Ben and Peter Laurie (O'Reilly), 2002.

mod_perl

This module is also managed by The Apache Group. http://perl.apache.org/.

7.7.2. thttpd Resources

The thttpd Web Server

This is the original free version of thttpd. http://www.acme.com/software/thttpd/.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
mfreeopenbsd-CHP-7-SECT-7.html
http://httpd.apache.org/
http://perl.apache.org/
http://www.acme.com/software/thttpd/

The Premium thttpd Web Server

This version of thttpd is maintained and sold by Sascha Schumann. It claims to include a variety of

performance enhancements, and to support the FastCGI API. http://schumann.cx/premium-thttpd/.

7.7.3. General Resources

cgiwrap

The software that runs setuid to allow CGI programs to run as normal users.

http://cgiwrap.sourceforge.net/.

FastCGI

This software creates an API that is language independent and allows faster execution of CGI

programs. It can work with either Apache or Premium thttpd. http://www.fastcgi.com/.

PHP

The main web site is http://www.php.net/. Also, see Programming PHP, Rasmus Lerdorf and Kevin

Tatroe (O'Reilly), 2002.

SSL

Network Security with OpenSSL , John Viega, Matt Messier, and Pravir Chandra (O'Reilly), 2002.

SSL and TLS: Designing and Building Secure Systems, Eric Rescorla (Addison Wesley), 2000.

Apache: The Definitive Guide, Third Edition, Ben Laurie and Peter Laurie (O'Reilly), 2002. The

Apache guide focuses more on the web server than SSL, but it has several chapters of good

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://schumann.cx/premium-thttpd/
http://cgiwrap.sourceforge.net/
http://www.fastcgi.com/
http://www.php.net/

information that is especially relevant for web service.

7.7.4. Selected Web-Related RFCs

RFC 1341: MIME (Multipurpose Internet Mail Extensions): Mechanisms for Specifying and

Describing the Format of Internet Message Bodies

RFC 1945: Hypertext Transfer Protocol, HTTP/1.0

RFC 2616: Hypertext Transfer Protocol, HTTP/1.1

RFC 2518: HTTP Extensions for Distributed Authoring, WEBDAV

RFC 2246: The TLS Protocol Version 1.0

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Chapter 8. Firewalls

Firewalls are a network response to

a software engineering problem.

—Steve Bellovin

 Firewalls are a key part of any security infrastructure. Once viewed as a choke point at the very front end

of a network, they are now liberally sprinkled around enterprises allowing for security administrators to

enforce fine-grained access control to any asset. They are viewed as an enabling technology assisting

businesses and individuals in performing activities in a secure and reliable fashion.

FreeBSD and OpenBSD make great platforms for firewall deployments. Through their stable development

process, the BSDs can be configured in a very secure fashion. This is key, as a firewall is the nexus for many

network-borne attacks and an insecure firewall makes for an insecure network. Further, the BSDs provide

high performance networking that is fundamental to the scalability of a firewall. Firewalls can control access

to many different networks at once, so it is critically important for a firewall to maintain low latency even under

heavy load.

This chapter discusses configuration, deployment, and administration of FreeBSD and OpenBSD-based

firewalls. It compares and contrasts the features available under each operating system as well as provides

example configurations for common firewall scenarios. Finally, this chapter provides a solution for high

availability architectures with these open source solutions.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html
mfreeopenbsd-CHP-8.html

 < Day Day Up >

8.1. Firewall Architectures

Firewalls are not a "one size fits all" device. The policy they enforce on a network varies from organization

to organization. Also, the manner in which they are used, maintained, and integrated into a network can vary

wildly.

The first step in successfully deploying and using firewalls is proper placement of the firewalling devices. This

requires understanding the existing network, the services running over the network, and the user

requirements of the network. A good firewall administrator is also a good systems and network administrator.

Multiple talents must be brought to bear to ensure that a firewall serves to enable secure data transactions

while not hindering the operations of the users and systems.

 Improper firewall architecture can cause a security problem even if the ruleset on the firewall is technically

"correct." Attackers may be able to bypass the firewall due to improper placement. Or you may not be able to

enforce the desired security policy due to the firewall's location. For example, if you're attempting to control

access between the accounting network and administrative network in Figure 8-1, the existing firewall will be

of no use.

Figure 8-1. Typical firewall setup

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html
mfreeopenbsd-CHP-8-SECT-1.html

Further, if a firewall is overly intrusive in a network, there will be a tendency to place relaxed rules on the

firewall to compensate. This is a difficult, yet common, situation for many security services; security is

compromised for the sake of functionality. In order to ensure that your network is as secure as it can be, you

must understand the options you have with respect to firewall architectures and deploy your systems

accordingly.

8.1.1. Bump in the Wire

The simplest firewall architecture, termed bump in the wire, is shown in Figure 8-2. In this setup, the firewall

is a choke point for all traffic coming into and leaving a network. This is a common configuration, as it

provides a single point of administration and policy enforcement. It also requires only one firewalling device

making this architecture relatively inexpensive to deploy.

Figure 8-2. Bump in the wire firewall architecture

However, in larger networks, such as that in Figure 8-1, there may not be fine-grained enough control over

traffic on the network. Traffic between the accounting and administrative networks cannot be controlled. For

this reason, the bump in the wire architecture is commonly used in small networks such as those found in

home offices and small server farms. Commodity firewalls, such as those found embedded in DSL routers

and wireless access points, are typically this kind of "one network in, one network out" device.

Still, a bump in the wire firewall may be useful at the very front of a large enterprise. While unable to enforce

fine-grained access control, a perimeter firewall can filter out overtly malicious traffic from external sources.

For instance, you may want to filter out all Windows NetBIOS traffic from entering your network. A bump in

the wire firewall at the ingress point to your enterprise can ensure that NetBIOS traffic is completely stopped

at your network edge. This setup allows the frontend firewall to handle the "low hanging fruit" while pushing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

finer-grained decisions to internal firewalls. This flies in the face of the security principle of denying all traffic

except that traffic that is explicitly allowed. However, this principle can be difficult to enforce at busy border

networks where what is and is not allowed is difficult to determine.

8.1.2. DMZ

 Many networks, especially those in smaller organizations, are composed of two basic types of systems:

workstations and servers. Workstations are used by staff to access internal resources, surf the Net, send

instant messages, and so on. Workstations are generally clients and almost never require connections

initiated from outside networks.

 Servers are machines accessed by clients. In the case of a small office, a web and mail server may

need to be accessed from both internal workstations and other clients on the Internet. Servers require

different security policies: their services must be made available through a firewall rather than blocked.

However, with this access comes risk. Opening up Internet connectivity for servers makes it possible for

attackers outside the office network to break in. If a machine is compromised, ideally it can be quarantined

from the rest of the network to prevent further damage.

The requirement for different server and workstation security policies leads us to a firewall architecture

called a demilitarized zone, or DMZ. A DMZ is a line of demarcation; a region between an area controlled by

one organization and an area controlled by another. A network DMZ, as shown in Figure 8-3, has a network

segment that contains the external facing servers that exists between the "wild" external network (such as the

Internet) and the protected internal network. Sometimes this is referred to as a three-legged firewall. This

architecture allows for different policies to be applied to each network. It also enables the firewall to contain

the servers in the event of a break-in. In general, the servers should never initiate a connection to the internal

workstations. Adhering to the concept of default deny, the firewall policies can be configured to deny all

connections from the server network to the workstation network. While an attacker may still be able to jump

from one server to another (there is no firewall control between the servers on the server network in Figure

8-3), it's unlikely she will be able to directly compromise a host on the workstation network.

Figure 8-3. DMZ firewall architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.1.3. Spider

The DMZ architecture is driven by the need to enforce different policies and quarantine one network from

another. This idea can be extended to encompass multiple networks connected to one firewall. A spider

architecture allows one firewall to control traffic between many directly connected networks. In Figure 8-4, the

firewall can control traffic between the accounting, administration, server, and wireless networks. Note the

difference between this setup and the one in Figure 8-1. In a bump in the wire network, these internal

systems would form a soft chewy center; all traffic between internal hosts would be allowed due to the lack of

a firewall. In a spider architecture, access control decisions can be made on a much more local basis.

Figure 8-4. Spider firewall architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Conceptually, a spider architecture is not really different from a DMZ network with one physical firewall. It

allows multiple network connections to be terminated into a single host. This allows an economy of scale

where only one firewall is needed for multiple networks. The spider network in Figure 8-4 can be broken

down and implemented in several firewalls as shown in Figure 8-5. This architecture obviously involves many

more firewalls, to keep track of that can cause administrative overhead and very complicated routing tables

and rulesets. However, be aware that a spider architecture may put all of your security and availability eggs

in one basket. A single breach in security or a single hardware failure can cause dramatic problems. Also, on

networks with large amounts of traffic, a firewall in a spider architecture will have to inspect a great deal of

traffic. This could cause performance problems for the network.

Figure 8-5. Broken apart spider network

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.1.4. Transparent

There are times when, for various reasons, a firewall cannot be inserted in a standard way. Up until this

point, the firewalls in each architecture have been on a layer 3 (i.e., subnet) boundary. That is, each interface

on the firewall is on a different IP subnet. A firewall can actually be deployed so that it bridges between two

interfaces and does not act as a gateway for the hosts on the network. This is known as a transparent firewall

and is shown in Figure 8-6.

Figure 8-6. Transparent Firewall Architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Transparent firewalls are not often used; however, there are circumstances that arise where this architecture

is a silver bullet. Transparent firewalls are common when it is necessary to maintain the existing network

architecture (so as not to break a routing protocol or addressing scheme). They are also useful when a

network has a very limited number of addresses but needs to perform firewalling between two types of hosts.

In general, you'll know if you are in a situation that requires transparent firewalling.

8.1.5. Host

Firewalls have historically been a standalone network device. However, as attackers have become more

sophisticated and users have become more mobile, standalone firewalls no longer fulfill users' security

needs. A laptop may be protected from attacks when it is plugged directly into a corporate network and

resides behind the corporate firewall. However, when the user goes to lunch with the laptop and uses a

public WiFi hotspot, the corporate firewall is of no use whatsoever. In order to be protected, the laptop should

run a host-based firewall.

 Host-based firewalls run directly on an endpoint machine and come in many flavors. Windows XP has

native firewalling capabilities. There are many third-party firewalls available such as ZoneAlarm and

Checkpoint's personal firewall solutions. Of course, FreeBSD and OpenBSD's firewalls can be configured at

both the network and the host level.

Host-based firewalls are great because they protect the host even when a network firewall is not available.

They allow for extraordinarily fine-grained access control. However, running firewalls on every host can be

administratively difficult. All the machines would have to have firewall policies pushed to them, and

troubleshooting a problem would always involve checking the firewall configuration. Because of the

operational expense of using host-based firewalls, many organizations limit their use to road-warriors, critical

datacenter servers, and other machines with explicit need.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.1.6. High Availability

 So far, discussion has been limited to a single firewall at a given location within a network. While this is

great for the purposes of outlining concepts, in reality, a single firewall creates a single point of failure for the

connected networks. Firewalls can (and do) stop working due to hardware or software problems. Also, due to

the nature of a firewall, a misconfiguration can cause a firewall to become unreachable. It's common to hear

a firewall administrator blurt out an expletive after making a firewall rule change because she inadvertently

locked herself out due to a ruleset problem.

Maintenance needs to be periodically performed on firewalls just like any other IT asset. Hardware needs to

be upgraded, operating systems need to be patched, etc. Sometimes maintenance outages are overlooked

and treated as a cost of doing business. However, these outages and general system failures don't need to

result in a service disruption for networks attached to the firewall.

High availability (HA) is a concept in which critical systems are designed, configured, and managed in a way

to attempt to minimize downtime. In the scope of firewalls, this means having multiple firewalls, usually two,

in a firewall deployment. For instance, Figure 8-7 is Figure 8-2 implemented with a highly available

architecture.

Figure 8-7. HA firewall architecture

There are several modes of operation for highly available firewalls:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Hot-Cold

An HA firewall pair in Hot-Cold mode is the simplest HA setup. The hot machine acts as the primary

firewall, actively passing and filtering packets. The cold machine has an initial configuration similar

to the hot machine, but it has no ability to detect failure in the hot machine or even the configuration

of the hot machine before it fails. An administrator must interact with a cold host to configure it and

then place it in service. Hot-Cold can be thought of as "keeping a spare machine in the closet in

case something breaks." From the author's experience, the time to return to normal operations in a

Hot-Cold architecture can vary 15 minutes to 24 hours depending on how prepared an organization

is to bring the cold host online.

Hot-Warm

Slightly more complex, a Hot-Warm architecture reduces the amount of time needed to bring the

second machine online. The hot host is actively passing and filtering traffic. The warm host has a

synchronized configuration with the hot host. This allows for an administrator to switch the warm

host to primary firewall duties in 5 to 30 minutes. Still, a Hot-Warm setup does not automatically

detect and handle failure.

Hot-Standby

In a Hot-Standby implementation, the second firewall is able to automatically take over in the event

of a system failure. Configuration information is synchronized between the hot and standby hosts.

Further, information regarding the health of each system is transmitted between them to allow the

standby host to automatically bring itself online. Also, in more advanced setups, the firewalls

exchange information regarding traffic going through the hot host. That way, if the standby host

needs to take over, existing connections are maintained transparently.

Hot-Hot

Hot-Hot is the most advanced HA firewall architecture. In this mode, both firewalls are actively

passing and filtering traffic utilizing synchronized configurations and traffic data. An external load

balancer must be used to route a particular connection through one host or another. In the event of

failure, all traffic is automatically rerouted to the other hot firewall.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The concept of high availability firewalling has been around for a number of years. However, until recently

(OpenBSD 3.5 and FreeBSD 5.2.1), the open source BSD-based operating systems were not useable in a

Hot-Standby or Hot-Hot firewall setups. Companies such as Nokia use BSDs for their core operating system

and wrote their own high-availability code for use in their commercially available firewall appliances. Now,

using publicly available software, administrators can deploy HA firewalls on both OpenBSD and FreeBSD.

Firewalls and Routing Protocols

 A firewall is a network device. Historically, network devices have taken the form of

routers and switches. These layer 3 (router) and layer 2 (Ethernet switch) devices often

exchange information that is vital for a robust and available network. Routers will use routing

protocols such as OSPF, RIP, and ISIS to pass routing information and handle link failure.

Switches used protocols such as spanning trees to stop loops from forming.

A firewall is generally a layer 3 device. It takes the place a router would normally occupy. As

such, firewalls tend to cause problems for network engineers. Where a router would normally

participate in an OSPF network, for instance, a firewall is likely to not understand OSPF

natively. This creates network boundaries that may result in large routing tables on the firewall

and static routes having to be placed in routers pointing traffic through the firewalls.

Organizations constantly struggle with whether or not to allow firewalls to run routing protocols.

It is possible to run routed or zebra to handle RIP, OSPF, and other routing protocols. The

question becomes whether you should.

On one hand, it makes the network much easier to maintain if every layer 3 gateway is running

a routing protocol. It minimizes outages due to link failure and does not require static routes to

constantly be updated manually. On the other hand, a firewall as a security device should be

relatively static and run as few services as possible. A routing protocol is one more thing to go

wrong and one more service for an attacker to compromise.

At the end of the day, it's a decision that only you and your organization can make. Be realistic

about the impact that not running a routing protocol will have on your day-to-day operations.

Also, understand the risks your firewalls face and determine if you are willing to amplify your

risk by running a routing daemon.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

8.2. Host Lockdown

 This may be obvious, but it needs stating. A firewall is a security device, and as such, needs to be

configured as securely as possible. This book is filled with information regarding securing FreeBSD and

OpenBSD hosts, so we will not bore you with repetition here.

 However, we will offer some advice. If at all possible, make sure that the host performing firewall duties is

not supplying other services such as those of a web or DNS server. A firewall is a target on the network, and

by minimizing the services running on it, you will have a much better chance of standing up to attack.

As a challenge, one of the authors competed with friends to see who could

configure a functional firewall with the fewest running services. At one point in

a FreeBSD 4 release, he was able to have a functioning and remotely

administrable firewall using only eight processes. While this idea may seem

extreme, it serves as an example of how stripped down a BSD-based firewall

can be.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html
mfreeopenbsd-CHP-8-SECT-2.html

 < Day Day Up >

8.3. The Options: IPFW Versus PF

The BSD-based operating systems make great platforms for firewalls. However as we have seen already,

there are usually important differences between FreeBSD and OpenBSD that will affect your decision

regarding which one to choose. Firewalls are no different.

8.3.1. IPFW

 FreeBSD's primary firewall is called IPFW (Internet Protocol Firewall). IPFW is composed of two parts: a

kernel-level packet filter engine and a userland utility for controlling firewall functionality. IPFW has been part

of FreeBSD since FreeBSD 2.0. During the summer of 2002, however, IPFW went through a major overhaul

as part of FreeBSD 5 development. This "new" IPFW became known as IPFW2. However, for the sake of

sanity, we will refer to IPFW2 simply as IPFW.

8.3.2. PF

OpenBSD utilizes a firewall mechanism called PF (packet filter). Like FreeBSD's IPFW, PF is made up of a

kernel-level packet filter and a userland utility for control of the firewall functionality. Unlike FreeBSD, PF is

exposed via a device node, /dev/pf.

PF is a newcomer to the OpenBSD world. For a number of years, OpenBSD utilized a firewall called IPFilter.

In 2001, however, the author of IPFilter had a licensing dispute with the maintainers of OpenBSD. The end

result was that IPFilter was removed from OpenBSD, and a new packet filter had to be developed. PF was

created to fill the void left by IPFilter. PF has been designed from day one to integrate cleanly into OpenBSD,

and as such, is very usable and flexible.

There is also a port of PF to FreeBSD for those that prefer PF functionality to that offered in IPFW. However,

like OpenSSH, PF is an OpenBSD project primarily and ports to other operating systems are a secondary

concern. Therefore some PF functionality available in the latest release of OpenBSD may not exist yet in the

FreeBSD PF. Prior to FreeBSD 5.2.1, PF was available in the ports tree. With the release of FreeBSD 5.3,

PF is included in the core operating system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html
mfreeopenbsd-CHP-8-SECT-3.html

8.3.3. Differences

 There are major differences between IPFW and PF. From an administration perspective, the first thing

you'll notice is that IPFW is list-based while PF is much more object-oriented. A PF configuration is broken

into many different parts, while IPFW configurations are generally shell scripts with rules processed in order.

Both firewalls support stateful and stateless processing of connections.

In IPFW, the first rule in a ruleset that matches a packet "wins." That means, if a ruleset has a rule to allow

traffic to port 80 before a rule that denies all traffic, the packet destined to port 80 will be allowed. In PF, the

exact opposite is true; the last rule that matches "wins." In the same example, the packet to port 80 would be

denied by the firewall. While counterintuitive at first, this functionality actually lends itself to very complex yet

readable configurations. If you really need to have a packet match a rule and then be processed in PF, you

can use the quick keyword to force the issue.

 In IPFW, denied packets are logged through the syslog facility. In PF, denied packets are logged to a

special interface called pflog0. This interface is actually a BPF (Berkeley Packet Filter) interface that allows

utilities like tcpdump(8) to sniff logged packets directly. This feature can be used by IDS engines and

monitoring tools to analyze the firewall's activity without having to directly interact or affect the firewall

processing.

 PF implements Network Address Translation (NAT) and Quality of Service (QoS) directly into the firewall.

In IPFW, these features are provided by userland programs. There are pros and cons to each approach, but

in general, there is no functional difference. The integration in PF makes administration a bit easier as all

configuration is done in one file.

Network Address Translation

 Network Address Translation is a mechanism for many IP addresses behind a network

device to share a smaller number of addresses (usually one) on the other side. NAT was

originally created as a mechanism for IP address conservation. For instance, your ISP would

give you only one IP address, but using NAT you can have many hosts online behind your

router going to the ISP. All the internal IP addresses get translated to the one IP address on

the other side, and the router or firewall keeps track of whose traffic belongs to whom.

Over the years, NAT has also taken on a security slant. NAT allows security engineers to

"hide" a network behind one IP address, nearly completely limiting an external attacker's ability

to connect to internal hosts. While some would argue the security advantages versus a normal,

non-NATing firewall, the utility of NAT has proven itself over the years.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Under the hood, PF performs more aggressive optimization than IPFW. In PF, large lists of rules are

compressed into a table. So while the configuration file for PF may still have list-like properties, the core

processing engine of PF treats the rules in a more efficient manner. This ultimately results in a tree

data-structure for the rules making even huge rulesets rapidly searchable.

 Finally, PF has the capability to force reassembly and normalization of fragmented packets before

sending them through the firewall. This prevents fragmentation attacks behind the firewall. This is a very

convenient feature, as it prevents other applications on the firewall (such as an IDS sensor) from having to

deal with fragments.

It may seem that PF is the weapon of choice when building a firewall. If you need the flexibility and scalability

that PF offers, it is definitely a worthy firewall. However, for smaller-scale deployments, such as a small or

home office, IFPW's simple interface and straightforward administration may be a better bet.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

8.4. Basic IPFW Configuration

 So, assuming you have chosen to build a FreeBSD-based firewall, where do you start? Well, first you need

a machine to run the firewall on. The horsepower you require will depend on how much data you send

through the firewall, what you do to the data, and any other activities you have the host perform. You could

easily run a FreeBSD firewall with a DSL connection, and internal connection, and a wireless network

connection on a 200MHZ Pentium with 64 megabytes of RAM. This is definitely not a state of the art

machine, but for a simple home firewall, it doesn't break a sweat.

Obviously, you need enough network interfaces to suit your needs. Your setup will vary depending on the

architecture you have chosen. For the basic IPFW setup here in this chapter, we will be using a bump in the

wire architecture, unless otherwise specified.

8.4.1. Kernel Configuration

The first step in creating an IPFW firewall is to compile IPFW support into the kernel. The following kernel

configurations control the functionality of IPFW.

options IPFIREWALL

This kernel option enables the firewalling capability. It is the only kernel option required by IPFW.

The other firewall kernel options are optional.

options IPFIREWALL_VERBOSE

This kernel option enables IPFW to log packets to the syslog utility.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html
mfreeopenbsd-CHP-8-SECT-4.html

options IPFIREWALL_VERBOSE_LIMIT= N

This kernel option controls how many packets are logged per entry in the ruleset. For example, if

you are logging all denied SMB traffic, the firewall will stop sending messages to syslog after N

packets. This option prevents a rule from logging so much as to fill up the logging filesystem.

options IPFIREWALL_DEFAULT_TO_ACCEPT

This kernel option changes the default behavior of the firewall. Normally traffic is denied if it does

not match any firewall rules. This inverts that logic and allows packets through that do not match

any firewall rules.

The only option absolutely required for IPFW to function is IPFIREWALL. The others can be enabled if you

need them. If you enable logging, we recommend that you compile in the logging limit because you never

know when a rule will run away from you.

8.4.2. Startup Configuration

Since IPFW is not a process, it does not need to be started as a daemon would. However, it does need to

be activated when the machine boots. Add firewall_enable="YES" to your /etc/rc.conf, to enable firewall

capabilities at boot. However, if you need to turn the firewall off and on by hand (for instance, when you're

testing) you can set the sysctl variable net.inet.ip.fw.enable to 1 or 0 depending on if you are turning the

firewall on or off. If you are in secure level 3, once the firewall is enabled, it cannot be disabled.

By default, IPFW will use the /etc/rc.firewall shell script for its firewall configuration file. This stock firewall

configuration file ships with FreeBSD and contains several different firewall behaviors. You can specify one of

the following firewall_types in your rc.conf to use these canned rulesets:

open

Allows all traffic in and out of the firewall.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

client

Basic ruleset for a host-based firewall architecture. Outbound connections are allowed, only a few

select connections are allowed in.

simple

A bump in the wire firewall configuration for firewalls with one internal and one external network

interface. It allows a few services through to the internal network and permits all outbound traffic.

closed

All traffic is denied.

/path/to/file

Use this alternate file or script as the firewall ruleset.

 You will need to modify rc.firewall to for the right IP addresses and netmasks for your network.

8.4.3. Firewall Configuration

The default firewall configuration in rc.firewall will likely not be exactly what you want. You can choose to

modify the existing rc.firewall, create your own, or configure the runtime firewall by hand. However if you

choose to configure the runtime firewall by hand, you must understand the ipfw utility and the things you can

make the firewall do.

The basic syntax for any ipfw command is the following:

ipfw [-N] command [index] action [log] protocol addresses [options]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.4.3.1 Optional arguments

First, let's look at the optional parts of the ipfw command. The -N flag instructs ipfw to resolve IP addresses

and services to names when displaying them to the user. This has no effect on the way the firewall works,

however it may slow display down as the host needs to look up hostnames through DNS.

The index option specifies where in the firewall rules this action will be inserted. The index values range

from 1 to 65534. Rules are processed in order of their index (starting at 1). Using an index lets you insert a

rule into the middle of an already existing and running ruleset. The last rule, 65535, is the default rule for the

firewall, generally denying all traffic.

The log option indicates that ipfw should send a message to syslog whenever this rule is matched. Be

careful to use this only for rules that match infrequently or in conjunction with the firewall kernel logging limit.

Without the limit, a rule with a lot of matches can easily fill up the logging filesystem.

ipfw has the capability to track the state of TCP and UDP streams. For TCP, it is a relatively

straightforward process. The firewall, upon detecting a new TCP session via a SYN packet, will set up a

dynamic rule that allows all other packets within that TCP session to be allowed. UDP does not have the

same session construct as TCP, so the firewall must guess what packets are part of a UDP flow. For most

installations, this guess works just fine.

Finally, the options control extra abilities to some ipfw commands. The following are some of the more

important options.

in

Matches inbound packets.

out

Matches outbound packets.

via interface

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Matches packets passing through a specified interface.

keep-state

If a packet matches this rule, the firewall creates a state entry for this session. Any time a packet

from this session (inbound or outbound) arrives at the firewall, the state entry will allow the packet

through the firewall without having to run the packet through the ruleset again.

setup

 This will match a TCP packet that only has the SYN bit set, for instance, the first TCP packet of a

TCP connection.

There are many other options that are documented in the ipfw(8) manpage.

8.4.3.2 Required arguments

ipfw accepts the following commands:

add

Adds a rule to the existing ruleset. If an index is specified, the rule is inserted appropriately;

otherwise, it is appended to the list.

delete

Deletes a rule from the existing ruleset.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

There are many actions ipfw can take on a packet. Chances are, if there's something you want to do based

on matching a specific packet, there is an existing ipfw action that will do it. Here are some of the common

actions.

allow /accept/pass/permit

The packet is permitted to pass through the firewall.

deny /drop

The packet is blocked by the firewall.

reset

This action is only valid on TCP packets. The packet is blocked by the firewall. Further, the firewall

sends a RST packet to the originating host in an attempt to stop further packets.

skipto number

When a packet matches a skipto rule, ipfw jumps to the rule at index number.

divert port

This action causes the packet to be diverted to the specified local port. This is often used for NAT

support.

For the sake of simplicity, we will examine a simple small office firewall as shown in Figure 8-8. This is a

DMZ architecture with a web and mail server running on the server network. The clients on the internal

network are standard office workstations. The rules presented in this section could be used as a replacement

for the rc.firewall in the default install.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 8-8. Example DMZ network

There are many philosophies on how a firewall should be configured. Some

believe the absolute minimum traffic that can be allowed should be allowed.

Others feel that this idea makes administration difficult and there is no reason

to be that restrictive. The rules in this chapter are designed with the default

deny principle in mind and are meant to be illustrative. Your firewall rules

should be constructed in a way that makes sense for your environment.

First, to make the rules readable, define each network, network mask, interface, and firewall IP address as a

variable in rc.firewall. Servers and other machines that will have specific rules should have variables

assigned to them as well. For instance, the DMZ interface can be defined as follows:

dmz_if="xl0"

dmz_net="10.0.0.0"

dmz_mask="255.255.255.0"

dmz_ip="10.0.0.1"

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To further simplify maintenance, a variable should be defined for the ipfw command itself. This allows you to

manipulate the command used on all rules by only making one change (for instance, to use the -q flag for

quiet output).

fwcmd="/sbin/ipfw"

For the first rule, make sure that traffic across the loopback interface is allowed. Further, make sure that

traffic destined for localhost does not arrive on any external interface. Traffic to 127.0.0.0/8 should always go

through the loopback interface. By definition, this is what the loopback interface is for. Anything addressed to

the localhost subnet received on a physical interface is completely bogus.

${fwcmd} add pass all from any to any via lo0

${fwcmd} add deny all from any to 127.0.0.0/8

If a rule indicates that state should be tracked, then a dynamic rule is created for each session. Normally,

these dynamic rules aren't checked until a packet reaches the first keep-state rule. However, if you'd like the

firewall to check the dynamic rules first (that is, if you are going to have many state-aware sessions), then

specify the check-state action early in the ruleset. In this case, we will be using state checking for the

servers on the DMZ. Since we assume a fair bit of traffic to these servers, we utilize check-state.

${fwcmd} add check-state

 Next, we need to prevent spoofing attacks and packets that should never be seen on the Internet. Traffic

from the netblocks specified in RFC 1918: Address Allocation of Private Internets should never be received

on the public Internet interface:

anti-spoofing

${fwcmd} add deny all from ${int_net}:${int_mask} to any via ${dmz_if}

${fwcmd} add deny all from ${ext_net}:${ext_mask} to any via ${dmz_if}

${fwcmd} add deny all from ${dmz_net}:${dmz_mask} to any via ${int_if}

${fwcmd} add deny all from ${ext_net}:${ext_mask} to any via ${int_if}

RFC 1918 address

${fwcmd} add deny all from any to 10.0.0.0/8 via ${ext_if}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

${fwcmd} add deny all from any to 172.16.0.0/12via ${ext_if}

${fwcmd} add deny all from any to 192.168.0.0/16via ${ext_if}

These anti-spoofing rules are not perfect. Ideally, the rule would state "allow traffic through an interface if

and only if its source IP address belongs to a network that exists on that interface." However, with ipfw, this

logic can be difficult to enforce. Using the skipto command, rules can be created that enforce proper

anti-spoofing logic. This, unfortunately, can make the rules difficult to understand and maintain, so generally

the above construct is used .

There are many more networks that can be blocked from entering the public

interface. For instance, there are many netblocks that are not currently

allocated for use in the global routing table. These networks can be added to

your ipfw ruleset and logged. Hits against the rules are interesting because

these packets should never occur on the Internet in normal situations. They

are almost always signs of an attack. A good starting point to build a list of

networks to deny traffic from is RFC 3330, Special Use IPv4 Addresses, and

IANA's list of allocated address space at

http://www.iana.org/assignments/ipv4-address-space.

 Traffic to the servers on the DMZ should be allowed from anywhere. Regardless of whether the client is on

the internal network or on the Internet, the web server should be reachable. Also, the SMTP port of the mail

server should be reachable from everywhere while the IMAP port should only be accessible from the internal

network. In this case, we will use state tracking to make the firewall more efficient.

Server rules

${fwcmd} add pass tcp from any to ${websrv} http keep-state

${fwcmd} add pass tcp from any to ${mailsrv} smtp keep-state

${fwcmd} add pass tcp from ${int_net}:${int_mask} to ${mailsrv} imap keep-state

We use protocol names for readability here. You could also specify ports 80,

25, and 143, respectively. As long as the service is listed in the file

/etc/services, however, the name and the port number are interchangeable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.iana.org/assignments/ipv4-address-space

 Now for the internal clients, we allow all outbound TCP and UDP connections from our internal network.

Whether or not this is an acceptable ruleset is a matter of your local policy. However, for the sake of

maintainability and minimizing user impact in our relatively low security environment, these rules are

reasonable.

${fwcmd} add pass ip from ${int_net}:${int_mask} to any

 Next, the firewall itself should be protected. There's generally no reason for anyone except for

administrators to communicate directly with the firewall. The exception is traffic used for network

troubleshooting such as ping and traceroute. Allowing ping and TRaceroute packets in your firewall ruleset

is another one of those religious wars that firewall administrators and security experts like to wage. Some say

that allowing this traffic provides attackers with critical information that can be leveraged for an attack. Others

feel that ping and tracerouting is a key part of maintaining a network. The authors, who have been

responsible for running networks in the past, feel that concise troubleshooting ability outweighs the security

consideration.

${fwcmd} add pass tcp from ${admin_host} to ${int_if} ssh keep-state

${fwcmd} add pass icmp from any to any

Finally, we explicitly deny all other traffic and log it.

${fwcmd} add deny ip from any to any log

The idea of logging all denied traffic may sound good, but in reality, this is really unworkable. Depending on

your network, you may find you have certain types of traffic constantly being dropped by your firewall. For

instance, the router to which you are attached may be constantly probing the firewall. By examining your

logs, you're able to determine the types of benign traffic that will do nothing but fill your logs. You can then

create specific rules before your deny all rule that silently drops this annoying traffic.

This basic set of rules should be enough to get you up and running with a few site-specific modifications. As

with any active open source project, the features and operation of IPFW will change periodically. Further,

IPFW is very feature rich, and much of it's functionality is out of the scope of this book. For the latest news

and complete configuration options, see the FreeBSD web site and the ipfw(8) manpage.

8.4.4. Using the Firewall

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Now that the firewall has rules, there is still the pesky aspect of actually running the firewall. Turing the

firewall on and off, viewing and modifying the active ruleset, and resetting the log counters are all key

administrative activities for any firewall. IPFW makes these processes intuitive and easy.

 First, as was stated before, the firewall can be turned on and off by setting the sysctl variable

net.inet.ip.fw.enable to 1 or 0 respectively. Depending on your setup, especially if you have NAT running,

turning the firewall off can completely isolate the internal network. If NAT isn't running and forwarding is

enabled (net.inet.ip.forwarding is set to 1), then your firewall just became a router and the internal network is

completely exposed. Be aware of what you're doing if you turn your firewall off.

 To see the currently running firewall rules, issue the show command to ipfw. For example:

% sudo ipfw show

00100 36 1986 allow ip from any to any via lo0

00200 0 0 deny ip from any to 127.0.0.0/8

...

This list has been cut short for the sake of example, but all your firewall rules will be listed. The first column is

the rule number of a particular rule. By default, ipfw will increment the rule number by 100 from the previous

rule. So, a basic ruleset will iterate as follows: 100, 200, 300, 400, etc.

The next column indicates how many packets have matched the rule and the following column shows the

number of bytes. For instance, the first rule has been matched 36 times for a total of 1986 bytes. The final

column is the rule itself.

If you're using keep-state to track connections, ipfw is creating dynamic rules in the background to handle

state-based traffic. To see what dynamic rules have been created through stateful sessions, use the -d flag:

% sudo ipfw -d show

...

Dynamic rules (3):

00400 172 24784 (296s) STATE tcp 192.168.0.78 49783 <-> 192.168.0.10 22

00400 16 1456 (1s) STATE tcp 192.168.0.78 49761 <-> 192.168.0.10 22

The first column is the rule number to which this dynamic rule is associated. The number in parenthesis

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

specifies how long that dynamic rule has until it is aged out of the state table. The rest is similar to standard

show output.

Rules can also be added to the ruleset on the fly. For instance, if you wanted to put a rule allowing all UDP

port 53 traffic immediately following the loopback rules, you could do the following:

% sudo ipfw add 250 pass udp from any to any 53

We've chosen 250 arbitrarily; the important thing is that the number you specify must fall in between the two

adjacent rule numbers.

Rules can also be deleted on the fly as well. If we realized that inserting a rule to allow all UDP port 53 traffic

before our anti-spoofing rules was a really bad idea, we could do the following.

% sudo ipfw delete 250

Voìla, the rule is gone.

The ability to add and delete rules on the fly is a great administrative feature. However, it's critical to update

the static ruleset with the rule as well. That way, if the firewall were to reboot for some reason, the new rule

would be read out of your firewall configuration file automatically at boot time. Rebuilding the "correct" ruleset

can be a time consuming process.

Also, be careful when modifying rulesets remotely. One typo, and you can lock yourself out of the host

completely. Direct console access is now the only way to change the firewall configuration. There are various

tricks to prevent a typo from causing this problem. One solution is to have the first rule in your firewall ruleset

explicitly allowing traffic from your workstation to the firewall. Another trick is to schedule a reboot at some

point in the future using the at(1) command (echo reboot | at now + 10 minutes) and then modify the

firewall. If things go badly, the firewall will reboot automatically. If things go well, you can use atrm(1) to

cancel the reboot.

 Finally, you may find that you've reached your logging (verbose) limit on a rule. Either through inspection

of ipfw show output (hey, I see my rule has more hits than my limit) or through syslog output (messages

about the log limit being exceeded showing up in syslog), you discover that the rule is no longer logging. The

counter on a rule can be reset by using the zero command and the rule number.

% sudo ipfw zero 100

Entry 100 cleared

Now all of rule 100's accounting as been cleared:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% sudo ipfw show 100

00100 0 0 allow ip from any to any via lo0

If you would rather get a clean slate for the entire ruleset, you can zero out all statistics by leaving off the rule

number.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

8.5. Basic PF Configuration

 While IFPW and PF provide the same basic firewall services, they are dramatically different to configure

and maintain. Some users find the list-based mechanism that IPFW uses easy to understand and use.

Others find that the PF provides more flexibility and agility. PF's configuration may be non-intuitive at first, but

once you get the hang of it, it can be immensely powerful; especially as rulesets grow.

From a hardware perspective, PF has about the same performance ramifications as IPFW. A simple home

PF firewall can run on a Pentium-class machine. More sophisticated setups will require more hardware;

however, there is generally no performance-related reason to buy the latest and greatest server for a PF

firewall. Considering the criticality of the job, though, you probably want a machine under warranty or to

consider an HA architecture.

8.5.1. Kernel and Startup Configuration

As with most OpenBSD features, there is no need to compile in any special kernel options. The default

kernel has firewall support built in natively, so all you need to do is enable it. PF can be enabled by adding

pf=YES to /etc/rc.conf.local.

By default, PF reads firewall rules and information out of /etc/pf.conf. Unfortunately the default ruleset will not

be of much use. You will have to modify pf.conf(5) prior to using the firewall.

The structure of the rules in PF are dramatically different than those in IPFW. IPFW uses a simple list for

firewall control. PF, on the other hand, breaks the configuration into sections that allow for greater flexibility.

pf.conf has the following sections:

Macros

Variables that can be used elsewhere in the configuration. For instance, the term ext_interface
can be assigned the IP address of the external interface on the firewall.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html
mfreeopenbsd-CHP-8-SECT-5.html

Tables

Variables that represent one or more IP addresses or networks. This allows multiple networks to be

grouped together for the sake of simplicity.

Options

Tunable firewall parameters such as TCP timeout values and logging information.

Scrub

Controls the process of defragmenting and normalizing packets.

Queuing

 Controls the rate limiting and QoS features of the firewall.

Translation

Rules that control address and port translation go here.

Filters

Core logic of your firewall ruleset.

8.5.2. PF in FreeBSD

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Even though PF is maintained as part of OpenBSD, it is available as a port in FreeBSD in the security ports

directory for 5.2.1 and before, and its part of the core operating system starting with 5.3.

 The port of PF is well maintained and installation should be seamless. You will need to have device

bpf, options INET, options PFIL_HOOKS, and options RANDOM_IP_ID enabled in your kernel to get PF

to working. And, by default, the configuration information of the ports tree version is stored in

/usr/local/etc/pf.conf rather than /etc/pf.conf.

For PF in 5.3 and beyond, using PF instead of IPFW is a bit different. Your kernel must be configured

with device pf. For logging capability, your kernel must have device pflog and for high availability

synchronization your kernel must have device pfsync. Futher, you need to enable PF in your rc.conf. To

stop using IPFW and start using PF, change firewall_enable="NO" and set pf_enable="YES". The

pf_rules configuration option allows you to set where the configuration file is stored and pflog_enable turns

on logging for PF.

If you are using PF under FreeBSD, this section will still apply; you just need to be careful of where your

configuration files are.

8.5.3. Firewall Configuration

Configuring PF can be a complex task. However, a basic firewall ruleset can be created in little time by

focusing on the important parts of the ruleset. The rules presented in this section are meant as an example of

a common setup. The default pf.conf has many commented out features that you should examine beyond

what is in this text. Further, PF examples found in /usr/share/pf can be very useful in understanding the

detailed capability of PF.

First, start off by defining the networks and interfaces on the firewall as well as any important hosts on the

connected networks. By setting these up as macros in the beginning, the resulting ruleset is more readable

and maintainable. For instance, the DMZ network in Figure 8-8 can be defined as follows:

dmz_if="xl0"

dmz_net="10.0.0.0/24"

dmz_ip="10.0.0.1"

For groups of networks or hosts, tables are a more efficient way for PF to do ruleset matching. Any site

specific network groups, such as all internal networks, should go in a table. Also the bogus and RFC 1918

networks that should never be routed across the public Internet should be defined as one table.

table <bogus> {10/8, 172.16/12, 192.168/16}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The options section of pf.conf will vary depending on your site needs. In a standard small office situation, the

default options should be fine. However, for firewalls passing much more data such as those in a datacenter,

the options section can be used to tune the memory used by the firewall and various timeout values.

Tuning memory and protocol options can be more art than science. For

instance, on a firewall with many connections, you may want to force the

firewall to expire connections more rapidly than normal to conserve resources.

Unfortunately this can have dire consequences on long-term connections such

as those with backend servers like databases or legacy systems.

Let's say database replication breaks due to the tuning done for the shorter

connections. You have to fix it so you allow longer-lived connections but end

up installing more memory to compensate. As you can see, firewall tuning can

be like a game of Whack-A-Mole; hit one problem on the head and another

pops up. When tuning memory and protocol options, be aware of other

changes in your environment that may result.

 PF can automatically reassemble and normalize packets before allowing them through the firewall. This

feature can stop fragmentation-based attacks dead and prevent attacks against end hosts based on low level

packet trickery. However, reassembling packets can use a great deal of memory, especially if you are under

attack. In general, all traffic arriving on the external interface of a firewall should be reassembled. If you face

a memory problem, it's preferable to buy more memory rather than turn this feature off.

scrub in on $ext_if all fragment reassemble

 Finally, it's time to actually enter the rules for the firewall. The logic of the rules is the complete opposite of

IPFW. As you recall, in IPFW, the first matching rule "wins" and the packet is handled by that rule. In PF, the

last matching rule "wins." So, for the first rule, all traffic should be denied and logged. That way, traffic that

does not match any other rule in the ruleset will be blocked.

block in log all

 Packets that transit the localhost interface are rarely (if ever) illegitimate. There are many processes on an

BSD machine that expect to be able to communicate through the localhost interface. Traffic should be

allowed through localhost using the quick keyword. Using the quick keyword, a rule can force a "win" and

act immediately on the packet. There is no reason to continue processing localhost traffic.

pass quick on lo0 all

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Next, spoofed packets should be denied. Spoofed packets are bad regardless of the targeted service. PF

has the ability to automatically create anti-spoofing rules given the network that is configured on an interface.

For instance:

antispoof quick for $int_if inet

anitspoof quick for $dmz_if inet

 Further, the bogus networks should be dropped early in the ruleset as well. Packets sourced from bogus

networks are interesting because they should never occur for non-malicious traffic. Using the log keyword,

PF will log these packets to the logging interface, pflog0.

block in log quick on $ext_if from <bogus> to any

Finally, rules can be added for the DMZ and internal hosts. For the DMZ, traffic should be allowed from

anywhere to the public services. As in the IPFW example, state-tracking should be used to increase the

efficiency of the firewall.

pass in on $ext_if proto tcp from any to $websrv http keep-state

pass in on $ext_if proto tcp from any to $mailsrv smtp keep-state

pass in on $ext_if proto tcp from $int_net to $mailsrv imap keep-state

We use protocol names for readability here. You could also specify ports 80,

25, and 143 respectively. As long as the service is listed in the file

/etc/services, however, the name and the port number are interchangeable.

Obviously these rules need to be customized for your network. When initially setting up the firewall, you may

want to have your first network allow and log all traffic. That way you have less opportunity of locking yourself

out of the host and you can view the logs to determine what other rules need to be created.

8.5.4. Using the Firewall

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Like IPFW, PF provides functionality for managing a running firewall. From stopping and starting the firewall

functionality to flushing rules to viewing statistics from the firewall, the pfctl(8) utility is the administrative

interface to PF.

 The firewall can be enabled and disabled by passing pfctl the -e and -d flags, respectively. This can be

useful for troubleshooting a firewall problem, especially when you are unsure as to whether the problem is

really the firewall or not.

There are a series of statistics and information pfctl can present via the -s flag. The following common

keywords can be used with pfctl -s.

rules

Shows the currently loaded firewall ruleset. Can be used with - v for more detailed information.

state

Shows all currently active states. This is very useful if your rules extensively use the keep-state

pragma.

info

Shows statistics and counters relevant to the entire firewall.

all

Displays all available information pfctl has. This is a useful debugging tool that can be croned once

a night to output to a file or email for review.

For instance, to see verbose output on the currently loaded ruleset, you would do the following:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% sudo pfctl -s rules -v

scrub in on sis0 all fragment reassemble

 [Evaluations: 283 Packets: 111 Bytes: 0 States: 0]

block drop in log all

 [Evaluations: 6 Packets: 1 Bytes: 229 States: 0]

pass in quick on lo0 all

 [Evaluations: 3 Packets: 0 Bytes: 0 States: 0]

block drop in on ! sis0 inet from 192.168.0.0/24 to any

...

This output goes on for all your rules. After a while, the statistics associated with your rules may become so

large as to become useless. You can zero out the statistics by issuing pfctl -z.

If you make a change to your pf.conf, you can validate the ruleset before you install it by using pfctl -n.

% sudo pfctl -ng -f /etc/pf.conf

/etc/pf.conf:68: syntax error

While this is not the most verbose parsing information you could hope for, it's much better than making a

mistake and locking yourself out of your firewall.

Once you've cleaned up the ruleset and validated it, pfctl allows you to flush all existing rules and load rules

from a file.

% sudo pfctl -Fa -f /etc/pf.conf

rules cleared

nat cleared

altq cleared

states cleared

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

pf: statistics cleared

0 tables deleted.

The -F flag flushes information from the firewall. The a modifier, used here, flushes all the rules. The s flag

will flush just the active states in the firewall, a useful debugging tool. Be careful when flushing and reloading

rules over the network as you can lock yourself out of the firewall.

8.5.4.1 Logging

 The logging capability of PF is quite different than IPFW. PF logs denied packets to a pseudo network

interface called pflog0. Data sent to pflog0 is in a pcap data structure. In a nutshell, this means that utilities

like tcpdump can sniff pflog0 and interpret the traffic just as they would a normal interface.

However, running tcpdump all the time and watching the output is not exactly a scalable way to run your

firewalls. The pflogd(8) daemon solves this problem by writing packets from pflog0 to a logfile (/var/log/pflog

by default). Again, the data is written to disk in pcap format so any pcap-aware application can read the

logfiles.

pflogd can be passed flags through rc.conf.local (or rc.conf for FreeBSD) at boot time. The most interesting

flag is -s, which dictates how much of each packet is captured. By default, only the first 96 bytes are logged.

This is generally enough data to capture all the headers. However, if you're interested in the entire payload,

set the capture length much higher. For Ethernet networks, the maximum packet size is 1500, so a capture

length of 1600 is guaranteed to capture all data in every logged packet.

 The logs can be viewed using tcpdump. The tcpdump utility that ships with OpenBSD can understand

and display the extra information PF puts into each packet regarding the rule that denied the packet. This

information is contained in the link layer information of each packet and can be displayed with the -e flag.

% sudo tcpdump -e -r /var/log/pflog

16:49:28.195569 rule 0/0(match): block in on sis0: 192.168.0.67.50394 > 192.

168.0.11.80: S 3529314353:3529314353(0) win 65535 <mss 1460,nop,wscale 0,nop,

nop,timestamp 3683841540 0> (DF) [tos 0x10]

16:49:30.819388 rule 0/0(match): block in on sis0: 192.168.0.67.50394 > 192.

168.0.11.80: S 3529314353:3529314353(0) win 65535 <mss 1460,nop,wscale 0,nop,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

nop,timestamp 3683841545 0> (DF) [tos 0x10]

Here, for instance, two SYN packets to port 80 were dropped by the 0
th

 (first) rule. tcpdump is a very

powerful utility, and a complete description of how to use it to analyze packets is outside the scope of this

text. Read the tcpdump(8) man page for a good introduction to packet analysis.

The pfctl(8) and pf.conf(5) manpages are also good sources of information.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

8.6. Handling Failure

Firewalls, like any other computer application, can fail. The cost of failure can vary depending on the role the

firewall is serving. The failure of a firewall used in a SOHO environment can mean lost productivity for a

handful of users. The failure of a firewall that protects an e-commerce web site can mean thousands of

dollars in lost revenue.

For a number of years, commercial routers and firewalls have had the capability to provide high availability in

the face of device failure. Various vendors support various architectures as described earlier in the Section

8.1.6 section. For those who chose to use open source firewalls, however, the options have been extremely

limited. Most of the solutions we authors have seen were based on homemade scripts and cron jobs.

Thankfully options are emerging in the FreeBSD and OpenBSD arenas that begin to give network engineers

high availability options using the firewalls they know and love.

 In order to have a highly available firewall cluster, two services must be provided. First, the firewalls need

to have the ability to share an IP and MAC address between multiple hosts. This link and network layer

redundancy ensures that the failure of a firewall is handled transparently on the local network. The other

service required is to synchronize state information between firewalls to keep active sessions alive even

when one of the firewalls fails. This makes firewall failures transparent to the hosts that are communicating

end-to-end through the firewalls. Without synchronization, all active sessions through the firewall would need

to be reestablished.

8.6.1. CARP

 Sharing IP and MAC addresses is key to providing seamless access to hosts directly connected to the

firewall. Sharing the IP address is relatively easy. However, sharing the MAC address is the hard part. If each

firewall in the cluster used its own MAC address for a shared IP address, failure of the primary firewall would

cause problems for directly connected hosts. These hosts would have to expire their ARP entry for the old

IP/MAC address pair and acquire the new pair via a new ARP request. This expiration and renewal process

can take an extended period of time (on the order of minutes), which is generally not acceptable in a highly

available architecture.

 The solution is to create a virtual MAC address that is shared between multiple firewalls. Cisco

originally developed and patented the Hot Standby Router Protocol (HSRP) to accomplish this feat on their

routers. After some time, the IETF worked on creating the Virtual Routing Redundancy Protocol (VRRP) to do

basically the same thing. In fact, VRRP was so similar that Cisco and the IETF became embroiled in a patent

dispute that eventually led to developers having to pay a license fee to Cisco if they wished to use VRRP. For

the open source development community, this meant that the current standard for sharing an IP/MAC

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html
mfreeopenbsd-CHP-8-SECT-6.html

address pair was unusable.

The Common Address Redundancy Protocol (CARP) is a patent-free mechanism for sharing an IP/MAC

address pair and handling failure between devices in a cluster. It originally was released in OpenBSD 3.5

and has since been ported to FreeBSD. CARP is substantially different from VRRP and should prevent it

from being the target of patent disputes. CARP allows the open source community to finally begin to create

real clustering capabilities, not just for firewalls but any clustered service such as web or mail servers.

8.6.2. CARP Configuration

 CARP is included in the default OpenBSD distribution. However, as of this writing, there is only a

placeholder in the FreeBSD source tree for CARP. To obtain CARP functionality in FreeBSD, you must apply

the patch at http://people.freebsd.org/~mlaier/CARP/ and follow the directions in the patch for installation.

The configuration of CARP is basically the same for OpenBSD and FreeBSD. In this example, we will provide

configuration guidance for a hot-standby architecture on OpenBSD. However, these commands and

configurations are similar in intent in FreeBSD. This example is based on the example network topology in

Figure 8-9.

Figure 8-9. Example CARP network

First ensure CARP is enabled. By default, net.inet.carp.allow should be enabled, however it doesn't hurt to

check to prevent troubleshooting problems later. Also, you will need to enable net.inet.carp.preempt. This

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://people.freebsd.org/~mlaier/CARP/

variable allows you to force one host, if it is online, to always be primary in the Hot-Standby architecture.

Without preemption, the first CARP host that is put on the network is the master. From an administration

standpoint, this is not ideal as you are never sure why one host is master and not the other. With preemption,

if the secondary host is the CARP master, than you know the primary firewall has failed.

CARP interfaces are treated similarly to any other network interface, meaning they can be controlled via

hostname files or ifconfig(8). The IP address that is shared between two hosts must be in the same IP

subnet as the IP address on that interface. For instance, the 192.168.0.1 address is shared on the

192.168.0.0/24 network in this example. Two CARP interfaces need to be created; one for the front and one

for the back of the cluster. /etc/hostname.carp0 on the primary firewall should have the following:

inet 192.168.0.1 255.255.255.0 192.168.0.255 vhid 1 pass password

While /etc/hostname.carp1 should have:

inet 10.1.1.1 255.255.255.0 10.1.1.255 vhid 2 pass password

 The vhid variable is the virtual host ID. It must be the same on both CARP hosts for a given shared IP

address. The pass variable is a password used to validate the CARP traffic between the hosts. Unlike HSRP

where passwords are sent in the clear, CARP uses SHA-1 to hash the update with the password to ensure

the integrity of the updates.

On the secondary firewall, /etc/hostname.carp0 should look like this:

inet 192.168.0.1 255.255.255.0 192.168.0.255 vhid 1 advskew 100 pass password

The advskew variable modifies the CARP announcements from the secondary host to ensure that if the

primary host is online, it preempts the secondary. /ect/hostname.carp1 should also have an advskew value

of 100.

The firewalls on both hosts must be configured to allow CARP traffic between them. CARP uses a unique IP

protocol identifier, 112, which pf knows by the carp keyword. CARP is also state based so you can configure

the firewall to keep state for greater efficiency.

pass on { interface1 interface 2 } proto carp keep state

Upon rebooting, the systems will share 192.168.0.1 and 10.1.1.1. At this point a host will only take over when

the primary host stops sending CARP traffic on all interfaces. Hopefully in the future, CARP will allow failover

to occur if any interfaces go down.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.6.3. pfsync

Once a firewall cluster is sharing IP addresses, there is still the issue of transferring state information

between the two machines. If one firewall fails over to the other without sharing state information, any

existing sessions transiting the firewall cluster will be dropped. This is not ideal.

OpenBSD has the capability through pfsync to exchange state information between firewalls. While there is

no native pfsync-like capability in IPFW, pfsync is available if you use the FreeBSD PF port rather than

IPFW.

pfsync passes state information between multiple firewalls. When a state is created, updated, or removed on

one firewall, pfsync will notify the other firewall. If one firewall fails, the other will be able to seamlessly

handle traffic that was in state on the primary firewall.

pfsync traffic sent between firewalls is not authenticated. Therefore, it is

advisable to create a private network, such as a cross-over cable, between the

two hosts to prevent attackers from injecting pfsync traffic into the firewalls.

This has the added advantage of not burdening an existing network interface

with the extra load of pfsync traffic, which can be quite large on busy firewalls.

On both hosts, create an /etc/hostname.pfsync0 file with the following:

up syncif interface

The interface should be whatever interface you want the pfsync data to go across. pfsync uses its own IP

identifier (240) for traffic between the firewalls. pf knows this IP ID as the keyword pfsync. Add the following

to your firewall rules.

pass quick on { interface } proto pfsync

Reboot the machine to get all the changes to take effect. Now, with CARP and pfsync, your firewall cluster

is running in a Hot-Standby architecture. You should test the firewall cluster by shutting down the primary

host and verifying that the secondary host takes over.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

8.7. Wrapping Up

Firewalls are a key part of any network security architecture. OpenBSD and FreeBSD have long been known

for their effectiveness as a network device and basic firewall. Now, with even more robust networking stacks

and advanced capabilities like state synchronization and packet normalization, the BSDs are becoming

enterprise-capable firewall platforms. With some forethought with respect to firewall placement and security

policies, your BSD-based firewall will help keep intruders at the doorstep and away from your internal

resources.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html
mfreeopenbsd-CHP-8-SECT-7.html

 < Day Day Up >

8.8. Resources

FreeBSD Handbook, Chapter 24, Firewalls

The FreeBSD Handbook has a summary of the firewalling options available under FreeBSD. It

includes examples as well as configuration guidance and can be accessed at

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls.html.

PF: The OpenBSD Packet Filter

This handbook is a great resource for detailed, up to date information on the PF firewall. There are

several mirrors on the Net, including http://openbsd.mirrors.pair.com/doc/pf-faq.pdf.

FreeBSD Packet Filter (pf)

This site, http://pf4freebsd.love2party.net, is maintained by the team that has ported PF to FreeBSD.

There are mailing lists, a TODO file, and the source code for the port.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
mfreeopenbsd-CHP-8-SECT-8.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls.html
http://openbsd.mirrors.pair.com/doc/pf-faq.pdf
http://pf4freebsd.love2party.net

 < Day Day Up >

Chapter 9. Intrusion Detection

This is the greatest case of false advertising I've seen since

I sued the movie The Never Ending Story.

—Lionel Hutz

The Simpsons

Your network is firewalled, your servers are locked down, and you feel good about the defensive posture of

your environment. However, you do not yet have any idea about the actual attacks being launched against

your systems. Are evil hackers using automated tools to scan your network and inventory all your services?

Are malicious internal users attempting to break into your severs using known vulnerabilities to commit

insider fraud? If they are, are they succeeding?

In order to find out the answers to these questions, you may turn to an Intrusion Detection System (IDS). An

IDS is, at its most basic level, a program or host that looks for signs that a resource is being attacked.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html
mfreeopenbsd-CHP-9.html

 < Day Day Up >

9.1. No Magic Bullets

While deploying an IDS may seem like a good idea, there are some pitfalls that you should be aware of. It's

common to set up an IDS within an environment only to find out that its not as useful or efficient as you

imagined it would be.

9.1.1. Monitoring an IDS

 An IDS is no good in a vacuum. It's a passive system that monitors traffic and can alert a user when an

attack is detected. Unlike a firewall that actively drops or rejects traffic, an IDS only analyzes the traffic it

receives. At some point, a human needs to be involved in the monitoring activities of an IDS to make it useful.

It's a bit like the old adage "if a tree falls in the woods and no one is around to hear it, does it make a noise?"

If an IDS detects an attack and no one is monitoring it, does it do any good?

An IDS can generate an amazing number of alerts. From portscans to odd packets to actual attacks, an IDS

requires sufficient horsepower and storage to operate. It is common for administrators to deploy old or

second-hand equipment to run an IDS infrastructure. Unfortunately this may cause more harm than good as

the admin will have to constantly fight with overloaded IDS sensors and central management hosts short on

disk space. Keeping an IDS infrastructure up and running is a full-time job.

9.1.2. Responding to IDS Events

 Once an event is detected by the IDS and an administrator is alerted, there should be some sort of

reaction. The reaction could vary depending on what was detected by the IDS and the concerns of the IDS

administrator. Some administrators ignore portscans, while others try to find the attack source and attempt to

get the perpetrator taken off the network. For more serious and sustained attacks, such as a prolonged and

invasive assault against a web server farm, the response may need to be more severe. Hosts may need to

be taken off the network to be patched or rebuilt. Further, you may need to coordinate with other ISPs and

law enforcement officials to pursue the attackers after the attack has stopped.

 Ideally successful attacks against your systems will be relatively few and far between. If you have

reasonable firewall rules, and you properly patch and configure your COTS and open source software,

adhere to secure administration techniques, and your internally developed software is reasonably well built,

most attacks from the public Internet will simply bounce off your hull. Whether or not you choose to respond

to unsuccessful attacks is entirely up to you. While tracking down attackers may make the Internet as a whole

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html
mfreeopenbsd-CHP-9-SECT-1.html

a safer place, it may not make your own network demonstrably more secure. As you read the rest of this

chapter and learn how to deploy a BSD-based IDS, you should consider where your threshold for reaction to

IDS events will be. Maybe portscans are okay but vulnerability scans are too much. Make this a conscious

decision before you go any further.

At the end of the day, your IDS should help make your network a safer place. A general way to think about

this is a pyramid of needs similar to Maslow's pyramid of human needs. Maslow's pyramid postulates that

humans must have basic needs met before they can perform more advanced social functions. For instance, if

you do not have food and shelter, you will not be able to love and be a selfless part of society. With respect to

security, maintaining and responding to an IDS event is toward the top of an IT security needs pyramid. At

the base of the pyramid is secure configuration and patching practices. A bit further up the IT security

pyramid is maintaining a firewall and secure system administration procedures. The next step on the pyramid

is IDS and similar technologies. While useful for maintaining a secure environment, an IDS may not be

necessary. And if the IDS is taking you away from fulfilling your more basic IT security needs, you may want

to reconsider your decision to deploy an IDS. In fact, for many small to mid-size organizations, IDS may not

make economic sense. Figure 9-1 shows a notional IT security pyramid. While the exact details of what is at

each level of the pyramid may vary from enterprise to enterprise, the concept of having a solid security

foundation before pondering IDS deployment is imperative.

Figure 9-1. Notional IT security needs pyramid

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

9.2. IDS Architectures

Just as there are many types of networks and environments, there are many types of IDS. Understanding

your IDS options is key to ensuring that your IDS infrastructure is a valuable addition to your security

architecture and not simply wasted processing power.

9.2.1. Host-Based IDS

Host-based IDS (HIDS) monitors activities on a single host looking for signs of attack. HIDS may look for

changes in important files such as password files and network configuration. Some HIDS actively monitor

syscall activity to determine when a process is attempting to access a resource to which it normally would not

have access. Further, some HIDS are geared towards protecting databases by observing queries and other

transactions. Figure 9-2 shows HIDS processes running on multiple hosts. Notice that each host needs to

have its own HIDS capability.

Figure 9-2. HIDS processes monitoring attacks on multiple hosts

 HIDS have the advantage of being able to detect a wide variety of attacks across diverse interfaces.

HIDS can watch activity not only from the network, but also from the console or other interfaces. HIDS can

also be highly customized to a particular host. For instance, syscall auditing can be highly accurate on hosts

like mail and DNS servers that do the same thing day in and day out.

 Unfortunately, HIDS can have a large management overhead. The HIDS software must be installed on

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html
mfreeopenbsd-CHP-9-SECT-2.html

every host that is to be monitored. For free software, this is merely administrative overhead. However, when

HIDS software is licensed per installation, costs can skyrocket. This, of course, needs to be balanced with the

potential Total Cost of Ownership (TCO) of a HIDS. While the open source solution may be license free, it

may be ultimately more difficult to administer and use, costing you more money in the long run. Commonly

HIDS are installed on servers that are higher value targets and may be worth the administrative and cost

overhead.

Further, the audit logs from each HIDS installation have to be aggregated and examined. For networks with

thousands of hosts, this can be quite difficult and may outweigh the advantages HIDS offer.

9.2.2. Network-Based IDS

Network-based IDS (NIDS) are intrusion detection systems that monitor network traffic for many hosts at a

time. NIDS promiscuously sniff network traffic and look for signs of attack. Figure 9-3 shows a NIDS on the

same LAN seeing an attack launched against the web server.

Figure 9-3. NIDS detecting an attack

NIDS tend to be made up of sensors located throughout a network and a centralized management server.

The sensors are responsible for actively sniffing traffic and detecting attacks. Once an attack is sensed, these

sensors send their data to the central management server. The central management host is also usually

responsible for configuring and updating attack signatures on the sensors. This server may have a database

to store the sensor events for rapid correlation and analysis by a security administrator.

NIDS excel at finding attacks across a wide collection of hosts. There is an economy of scale with NIDS that

allow many hosts to be monitored by one special purpose sensor. However, there is also a sacrifice. NIDS

don't have the view into each host that a HIDS does. NIDS alerts are a bit more of a "guessing game" in the

sense that a NIDS will likely not be able to tell if an attack was successful. For some, this is an important

distinction as they only want to be notified when a compromise or service disruption has actually occurred.

For others, the knowledge of attacks, even if compromise was not achieved, is critically important. This is a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

debate that you will have to weigh in your own enterprise.

False Positives and False Negatives

 There are many metrics that people try to use to quantify NIDS. Packets per second, total

number of signatures, and number of concurrent sessions are all tangible quantities that NIDS

vendors can measure in a lab. However, the rate of false positives and false negatives is not

so measurable. Basically, false positives are events that a NIDS will identify as an intrusion but

are actually not successful compromises of a system. This gets to a core issue with

modern-day NIDS systems. Many of them are signature based, and when they alarm, they are

really providing you notification that some traffic matched a known malicious signature. They

do not actually detect intrusions, rather they detect signs of intrusions. Unfortunately that fine

point is often lost on security administrators, making false positives a real problem.

False positives cause security administrators to waste their time tracking down intrusions that

never actually happened. Or worse, false positives can desensitize administrators to alerts

generated by a NIDS and cause them to ignore future alerts.

False negatives are successful intrusions that were not caught by the NIDS. False negatives

are what people typically think of as an "IDS failure" because an administrator viewing IDS

alerts thinks everything is fine, when in reality an attacker is inside the system.

Reducing the numbers of false positives and false negatives is an ongoing activity of not just

the IDS vendor but also by the organizations running the NIDS. NIDS need to be tuned to their

environment to minimize both values. Tuning is performed by manipulating settings for when a

NIDS issues alerts and changing the traffic that can generate an alert. Tuning a NIDS can be a

laborious process, but it's critical if you want to have a realistic view of ongoing attacks on your

network.

One of the challenges of NIDS is placement of sensors. Sensors must be able to sniff traffic destined to

hosts you want to monitor. In theory, you could place a sensor in front of each host. Figure 9-4 shows this

extreme NIDS implementation. However, this would likely be prohibitively expensive to deploy and maintain.

This architecture has all the management problems of HIDS architectures with none of the advantages of

HIDS.

Figure 9-4. A NIDS sensor per host

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

So, sensor placement can be pushed farther away from the host in a network to be able to intercept traffic at

subnet boundaries. However, this may still be expensive to deploy and difficult to implement on complex

network infrastructures. Ultimately, sensors may be pushed to the core of a network. However, at the core,

target traffic may bypass the sensor completely. Figure 9-5 shows attacks at the edge of a network being

missed by a central core sensor.

Further, the amount of data being passed through the core of a network may exceed the capacity of the

sensor. Ultimately, sensor placement in your network must be a balance between the economy of running

fewer sensors and the advantages of having deeper sensor penetration.

Figure 9-5. A NIDS sensor at a network core

There are a variety of ways to get traffic to a sensor. One option is a tap. A tap is a specialized device that

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

splits traffic off of a physical wire into two streams. Think of it in the same way a phone line is tapped. One

stream goes to the endpoint just as it was original destined. The other stream of exactly the same data goes

to the IDS sensor. Figure 9-6 shows a network tap in front of a server. All traffic going to the web server is

duplicated by the tap and sent to the NIDS sensor.

Figure 9-6. Network tap

However, a tap may be infeasible due to network architecture. There may not be a single wire that can be

tapped that provides the proper view of your network. Another option is to utilize the potential capability that

your Ethernet switches may have. Some switches can flood traffic from multiple ports or VLANs to a single

port. For instance, on a Cisco switch, this is called a span port. On other devices, it may be called a mirror

port. Span ports serve as virtual network taps and may be more flexible than a network tap. In Figure 9-7,

traffic from all ports on the switch is forwarded to the span port connected to the NIDS sensor. Typically, a

span port is a transmit-only port on the switch. That means any data sent from the NIDS sensor will be

dropped by the switch, effectively making a one-way cable attached to the sensor.

Figure 9-7. Span port on a switch

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Another issue with respect to placement is whether your IDS sensor should be in front of or behind your

firewall. Firewalls should be stopping the majority of random scans and attacks that target your network. If an

attack doesn't make it past the firewall, then there is no chance of it successfully compromising a host. By

placing your IDS sensors behind the firewall, you only watch traffic destined for internal hosts.

Internal placement can be good or bad, depending on how you look at it. Since many attacks are blocked by

the firewall, you should receive fewer alerts from the IDS. However, the firewall may block precursor events,

such as port scans, that may signal a broader attack at a later date. To overcome this, you can always put a

sensor on the inside and a sensor on the outside of your firewall. Conversely, you can rely on your firewall

logs to provide the detailed information about dropped packets. Again, the placement will be based on your

particular environment.

9.2.3. Log Analysis Versus IDS

The term Intrusion Detection System tends to imply a specialized piece of software or hardware designed to

detect attacks against a system. Some IDS products are highly sophisticated, enterprise-level systems. Other

intrusion detection techniques may have security value, but ultimately may not be considered mainstream

intrusion detection. Analysis of logfiles is such a technique.

 By analyzing logfiles, an administrator may be able to find traces of an attack. However, logfiles are used

for many other purposes besides intrusion detection. Although as it may not be necessary to draw a dark line

around what is and what is not IDS, the term "IDS" tends to be associated with a specialized security product.

Log analysis, while potentially part of determining if an intrusion has occurred, is more of a general purpose

system administration technique. Some tools, like swatch, can be configured to monitor logfiles for security

specific events such as password failures. These tools, however, are best incorporated into a holistic

monitoring view rather than pigeonholed as an IDS solution.

9.2.4. Honeypots Versus IDS

As the old saying goes, "you attract more bees with honey than with vinegar." Similarly, you attract more

hackers with an extremely vulnerable system than you do with a well secured system. That's the basic idea

behind a honeypot. A honeypot is a host that entices an attacker. It may have active services with perceived

vulnerabilities within these services (e.g., a version of OpenSSH that looks vulnerable).

However, the trick with a honeypot is that this "exploitable" host is not what it seems. A honeypot is really a

collection of tools designed to fool an attacker into believing he has compromised a live host. However, no

compromise has really occurred. Rather, the honeypot is logging the activities of the attacker, attempting to

gain insight into his tools, methods, and potentially uncovering his motives for exploiting a host. For instance,

a honeypot that is compromised by an automated script may indicate that an attacker was simply looking for

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

a target of opportunity. However, a honeypot where an attacker interactively works with the host and attempts

to learn about the services and how to exploit trust relationships may indicate a targeted attack upon your

organization.

Honeypots are not IDS hosts. Their purpose in life is to be intruded upon, not detect intrusions. While you can

infer activities on the rest of your network from the activities on a honeypot, it is not really a tool that gets

integrated into your operations. Honeypots require a great deal of care to ensure they are not used in a

manner you do not intend. Further, decomposing what has happened on a honeypot after an intrusion can be

very time consuming. Honeypots make great research tools, however for an active enterprise with limited

resources, they can be a tremendous waste of time.

More information on honeypots and lessons learned from them can be found at the Honeynet Project's

homepage, http://www.honeynet.org/. The Honeynet Project is an organization dedicated to the study of how

hackers operate and to assisting the community in understanding the ever-changing blackhat landscape.

9.2.5. Intrusion Prevention Systems

 An IDS is a passive system. While the information an IDS generates may be useful for detection and

responding to intrusions, responses are usually out of band and often involve a human. A recent trend has

been for IDS vendors to create Intrusion Prevention Systems (IPS) that place IDS technology in the critical

path to an application.

 An IPS is an active version of an IDS. Rather than simply reporting an attack, an IPS will actively block the

malicious traffic. The core logic is the same as an IDS, however the IPS sits in the network like a firewall and

can control access to internal hosts. Figure 9-8 shows an IPS blocking an attack. Compare this to Figure 9-6

where the NIDS sensor is just a leg on the network and cannot do anything to prevent the attack from

occurring.

Figure 9-8. Intrusion Prevention System

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.honeynet.org/

The danger of an IPS is that legitimate traffic may be blocked by the device. IDSes have a history of

excessive false positives. In the case of an IDS, a false positive only results in an alert being generated.

Although we're passing off false positive alerts from an IDS as innocuous, this

is done purely for illustrative purposes. Remember the boy who cried "Wolf!"

Never underestimate the desensitization that comes with gratuitous alerting.

 In an IPS, the false positive can result in valid traffic being denied. In fact, an attacker may exploit this

capability by spoofing traffic from a victim host to deny service through the IPS. For some networks, this is

completely unacceptable. In the case of an e-commerce web site, denied traffic may be directly tied to loss of

revenue. The risk of blocking valid traffic may outweigh the need to protect the network.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

9.3. NIDS on BSD

 If you finally decide to deploy NIDS, the next natural set of questions involve choosing the right IDS

software or hardware capable of handing the traffic, and the core operating system to run. If you are reading

this book, you may be considering an OpenBSD or FreeBSD-based IDS. Some commercial NIDS are based

on a BSD operating system but are not available directly for FreeBSD or OpenBSD. For instance, Real

Secure's Network Sensor runs under Windows, RedHat, Solaris, or Nokia's IPSO operating system. Nokia's

IPSO is really a BSD-based operating system that looks a great deal like FreeBSD under the hood. However,

Network Sensor is not available directly for FreeBSD.

 A NIDS sensor is a security device. As such, it needs to be configured with security in mind and to

withstand potential attacks. If an attacker discovers an IDS sensor on a network she is attempting to exploit,

she will likely attempt to either subvert or disable the sensor. Therefore, the overall security of the sensor

itself is crucial. A natural choice when security is a key motivator is OpenBSD. OpenBSD is commonly

deployed as an IDS sensor and there is a large amount of community support.

FreeBSD is also a good choice for a NIDS sensor. While FreeBSD does not have the serious security

overtones that OpenBSD does, FreeBSD's focus on performance and stability make it attractive for NIDS

use. A NIDS may become a mission critical part of your security infrastructure. As such, the network

performance, advanced hardware support, and maintainability make FreeBSD a solid choice for more

advanced enterprises with more diverse NIDS needs.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html
mfreeopenbsd-CHP-9-SECT-3.html

 < Day Day Up >

9.4. Snort

 The most popular open source NIDS is Snort. Snort has been around as an open source project for

years. In 2002 Marty Roesch, the primary maintainer for Snort, started a for-profit company called Sourcefire.

Sourcefire is a commercial IDS vendor that sells sensors and services based on Snort. Several Sourcefire

employees still directly contribute to the Snort code base, and the public at large can still contribute to the

Snort code as well. Sourcefire has value-added, proprietary software that goes beyond the "stock" Snort.

Snort has grown in popularity over the years. And as it has become more popular, it has also changed to fit

the current NIDS needs. Originally a monolithic piece of software, Snort is now modular and adapts to suit

different environments. Snort now makes use of preprocessors to speed up packet decoding and make the

NIDS harder to evade. Snort also has different output options including flat files, various databases, and

custom backends that allow high-speed sensors to operate more efficiently.

9.4.1. Sensor Hardware

The first step in setting up an NIDS sensor is choosing the right hardware. You will need to use a machine

with enough horsepower to handle the amount of traffic you believe the sensor will handle, the size of the

IDS signature set, the number of attacks you expect to see, as well as your tolerance for risk when it comes

to potentially overdriving the host. As you can guess, there is no magic formula that says "use X processor

with Y RAM and Z disk space" for an IDS sensor. In general, the more processor, memory, and disk, the

better you will be. However, on a lightly loaded DSL-based network a Pentium-II class machine with 256MB

of memory and a 10GB drive should be more than enough to run a NIDS sensor.

Your sensor will need at least two NIC cards. One card will connect to the network to be monitored and

another to connect to for administrative connections. The network card used on the monitoring interface

should be a high quality NIC capable of handling the amount of traffic on the sensor. For instance, the Intel

NICs that use the fxp drivers are a good choice because the drivers are stable and the cards use hardware

for much of the packet handling.

9.4.2. Host Lockdown

The next step in setting up an IDS sensor is to start with a secure initial build as described in Chapter 3. We

emphasize, however, that an IDS host is a frontline security device. If it is compromised or made ineffective

through a DoS attack, it's useless. An IDS needs to be secured just as a firewall or any other security-critical

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html
mfreeopenbsd-CHP-9-SECT-4.html

device would be.

Ideally, the only processes running on a Snort sensor are the core operating system components (such as

init(8) and cron(8)), Snort, and some remote management capability like sshd (8). Further, the host should

be firewalled to prevent any inbound traffic except ssh-based management traffic. To someone portscanning

an IDS from an untrusted host, the sensor should look like a black hole. For extra security, you should

consider not assigning an IP address to the interface on the monitored network. Without an IP address, an

attacker has nothing to direct an attack against and serves as further security for the sensor.

9.4.3. Installing and Configuring Snort

 Snort can be installed directly from the ports tree on both FreeBSD and OpenBSD. If you would rather

install Snort by hand, the latest version can be downloaded from http://www.snort.org/. The Snort installation

documents are largely self-explanatory and the port installs painlessly. One of the more important switches at

compile time involves how you want to store alerts. By default, Snort stores attack information in flat files. It

also has the ability to log to a database such as MySQL or MS-SQL. So, if you want to store alert information

in a MySQL database, then use the --with-mysql flag at compile time.

Intrusion detection systems can generate huge logfiles. In fact, a common trick

an attacker may play is to send a huge amount of traffic designed to trigger

IDS events in an effort to obscure what is really going on. However, even on a

good day, IDS logs can build rapidly. Ideally, you should dedicate a separate

filesystem, /var/snort for example, to store Snort logfiles. This will isolate

problems caused by runaway Snort logfiles.

 There are several important configuration files for Snort. First, the snort.conf file controls all the core

functionality of Snort including input and output mechanisms, information on local networks, and location of

other configuration files. Within snort.conf you can indicate what networks are local (HOME_NET) and which

ones are not (EXTERNAL_NET). This allows Snort to determine when traffic is originating from within your

networks and when traffic originates from outside. By default, the local and external networks are set to any

as shown below to indicate Snort really should not care what networks are where.

var HOME_NET any

var EXTERNAL_NET any

You should set the HOME_NET variable to point to your internal networks. You can specify multiple

(comma-separated) networks, but be sure you do not have any space in the variable. If your internal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.snort.org/

networks are 192.168.0.0/24 and 172.16.0.0/14, for instance, your HOME_NET variable would look like the

following:

var HOME_NET [192.168.0.0/24,172.16.0.0/24]

The snort.conf file is well commented and contains more information on all the configuration options

available to you. Similarly, the threshold.conf file allows for tuning the IDS to make it a bit quieter in the face

of excessive alerts. Thresholds can be set to either limit the number of alerts, or completely suppress certain

alerts or IP addresses. The threshold.conf file has a number of comments that will assist you in setting

thresholds. However, for your first attempt, it's best to leave this file untouched.

Snort is a signature-based IDS system, meaning that it compares each packet against a set of rules to

determine if that packet matches known malicious patterns. As is the nature of the security world, the

definition of a "bad packet" changes from day to day. New attacks are discovered and new mechanisms for

detecting attacks are created. Just as it is important to keep your anti-virus definitions up to date, you should

keep your Snort rules current too. New Snort rules can be downloaded from http://www.snort.org/dl/rules/. Be

sure to check the MD5 sum on the web site against the ruleset you've downloaded. You can then place the

new rules files in your rules directory and restart Snort.

9.4.4. Containing Snort

 As a front line security device, a NIDS sensor can be a target of attack. The obvious lockdown activities

may not be sufficient to protect a Snort host from malicious code. There have been several vulnerabilities in

Snort where a host could be compromised by traffic not even destined for it. Notably the CERT CA-2003-13

advisory discusses two vulnerabilities in Snort; one in the stream4 preprocessor and one in the RPC

preprocessor. From the advisory:

[The vulnerabilities] allow remote attackers to execute arbitrary code with the privileges of

the user running Snort, typically root. Please note that it is not necessary for the attacker to

know the IP address of the Snort device they wish to attack; merely sending malicious

traffic where it can be observed by an affected Snort sensor is sufficient to exploit these

vulnerabilities.

While this vulnerability has been fixed in current versions of Snort, the prospect of this type of attack is

troubling. So, what can be done to protect Snort?

First and foremost, Snort can drop privileges to an unprivileged user once it has started. To utilize this

capability, create a snort user with attributes similar to the following:

Username : snort

Password : <locked>

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.snort.org/dl/rules/

Full Name : Snort User

Uid : <next>

Class :

Groups : snort

Home : /home/snort

Shell : /sbin/nologin

Locked : yes

Note that the password should be a * in the password file, just like the other system accounts on the host.

This ensures that the account is completely locked out. When starting snort, use the -u user flag to force it

to drop privileges. Be sure that the directory in which you are storing your alerts (such as /var/log/snort) is

writable by the snort user and group.

For even more security, Snort can be chrooted to prevent a successful attack from compromising the entire

system. snort makes this easy by simply providing the -t flag at start time and specifying the root of the

chroot(2). This kind of chroot is a bit of a poor man's chroot. Rather than running Snort explicitly through the

chroot(8) utility, Snort chroots itself once it has started. Because of this, the easiest place to chroot it to is

the log directory, by default /var/log/snort. If you attempt to chroot somewhere else, Snort has a hard time

dealing with it. So, to chroot Snort in /var/log/snort and run as user snort, you would start Snort in the

following manner:

% sudo snort -u snort -t /var/log/snort

With FreeBSD, Snort can be contained in a jail instead. FreeBSD jails were discussed thoroughly in Chapter

2.

9.4.5. Storing Events in Flat Files

By default, Snort stores alerts in flat files on a local filesystem, usually in /var/log/snort. This makes alerts

easy to view and helps the administrator understand what is occurring on a host. In this mode, there is no

real central host in the NIDS environment. The Snort sensor is really a standalone device that requires direct

interaction to monitor. In small environments, this may be okay, but for larger installations, other capabilities

are needed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Snort makes a single alerts file that contains information on all traffic that tripped a rule in the Snort ruleset.

To view the alerts in real time, you can use tail -f to watch the file as it grows. Here is a sample alert from an

attack against an IIS server.

[**] [119:2:1] (http_inspect) DOUBLE DECODING ATTACK [**]

[Classification: Web Application Attack] [Priority: 1]

11/01-20:29:19.163907 192.168.0.99:52571 -> 192.168.0.10:80

TCP TTL:64 TOS:0x0 ID:5115 IpLen:20 DgmLen:212 DF

AP Seq: 0x71850B78 Ack: 0xCBB1AFB1 Win: 0xFFFF TcpLen: 32

TCP Options (3) => NOP NOP TS: 549495890 43275571

The first line indicates the type of attack this alert was for. In this case, the attack was a double decoding

attack that attempts to exploit a weakness in IIS's Unicode decoder. The second line indicates that this is a

web application attack and it is of the highest priority. Priority 1 means that the attack, if successful, would

likely result in compromise of the host. The third line indicates the time the attack occurred and the source

and destination IP addresses. The final group of lines provides low level information about the packet. This

can be useful if you are doing low-level analysis of an attack. But in the case of a web attack such as this

one, the extra packet information is not all that helpful.

Beyond the monolithic alerts file, Snort also creates a directory for each source host that generates an alert.

Within that directory, Snort will create a file for each flow between the source and destination host. Here we

see that three different hosts have been sending attacks through our network.

% ls -al /var/log/snort

total 76

drwxr-xr-x 3 snort snort 512 Nov 1 02:16 .

drwxr-xr-x 3 root snort 1536 Nov 1 03:02 ..

drwx------ 2 snort snort 512 Nov 1 20:54 10.0.0.1

drwx------ 2 snort snort 512 Nov 1 20:54 192.168.0.56

drwx------ 2 snort snort 512 Nov 1 20:54 192.168.0.99

-rw------- 1 snort snort 70646 Nov 1 20:55 alert

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Within the 192.168.0.99 directory we see the files corresponding to each flow.

% sudo ls -al /var/log/snort/192.168.0.99/

total 16

drwx------ 2 snort snort 512 Nov 1 20:54 .

drwxr-xr-x 3 snort snort 512 Nov 1 02:16 ..

-rw------- 1 snort snort 1044 Nov 1 02:16 TCP:49455-80

-rw------- 1 snort snort 1044 Nov 1 02:16 TCP:49536-80

-rw------- 1 snort snort 1041 Nov 1 20:54 TCP:52571-80

-rw------- 1 snort snort 1041 Nov 1 20:54 TCP:52600-80

-rw------- 1 snort snort 1038 Nov 1 20:54 TCP:52601-80

-rw------- 1 snort snort 1041 Nov 1 20:54 TCP:52610-80

In this case, we can see there have been six different attacks the Snort sensor has detected. The filenames

indicate the protocol (in this case TCP), the source port, and the destination port. All of these attacks target

the web server on port 80.

9.4.6. Storing Events in MySQL

 If you are looking to deploy more than one sensor, you should look beyond the default flat file capability of

Snort. By using a database server connected to an internal network, multiple IDS can log alert information to

a single source giving you a one-stop shop to examine alerts and monitor your network. Using a database

server also has a security benefit. By running the server on a host inside your network (i.e., not running it on

a sensor itself) and protecting it from the outside world, you no longer have to interact directly with the IDS

sensors to analyze events. This allows for the sensors to be locked down to a greater extent and further

limits your external exposure.

The first step is to install a database like MySQL. MySQL is an open source and mature database used for a

variety of applications. It is widely supported and has a number of different options in the ports tree. You can

install the appropriate MySQL port or build MySQL by hand. Installation instructions are plentiful online.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Properly installing MySQL and securely configuring it is a complex topic and

beyond the scope of this chapter. However it is important that your database

server, like any other host and application in your network, be configured and

deployed securely. For more information on MySQL database security see

http://dev.mysql.com/doc/mysql/en/Security.html.

After MySQL is installed, configured, and running on your system, you must create a database to hold the

Snort alerts.

% echo "CREATE DATABASE snort;" | mysql -u root -p

The database needs to be have tables created to match the schema Snort is expecting. The Snort

distribution contains SQL statements that will automatically create all the proper tables. If you installed Snort

from ports, the MySQL-specific SQL statements will be in a file called create_mysql within the ports directory

tree.

% mysql -D snort -u root -p < /usr/ports/security/snort/work/snort- XX /contrib/create_mysql

 Next, we will want to access the MySQL database as a user other than root. Note that a database user is

not the same as an operating system user. However, it is convenient to have the usernames for the

operating system be the same as the database to make things more consistent. When you grant a user

access to a table in MySQL, a database user with the same name is automatically created. So first we will

configure MySQL to allow a Snort user to INSERT and SELECT on the entire Snort database and UPDATE

on the sensor table. UPDATE is required so sensors can be brought online automatically.

% mysql

> grant INSERT,SELECT on snort.* to snort@localhost;

> grant INSERT,SELECT,UPDATE on snort.sensor to snort@localhost;

> exit;

% mysqladmin -u snort password password

Finally, the remote Snort sensor needs to be configured to export the alerts to the MySQL database host. In

the snort.conf file, look for a series of commented-out output database directives. Add the following line in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://dev.mysql.com/doc/mysql/en/Security.html

that area of the configuration file.

output database: log, mysql, user=snort password=snort dbname=snort host=remotehost

 Restart the Snort sensor process and you should be all set. If there is a firewall between your Snort

sensor and your database, you will need to open up the MySQL port (TCP 3306) between the sensor and the

database server. Snort is now logging to the remote database. The README.database has much more

information about using snort with database backends. Further, there are a whole series of README files in

the Snort distribution that provide valuable insight on a variety of topics including optimization, alternate

operating systems, and HTTP inspection.

There are downsides to logging your IDS events to a central database server.

Now, rather than having events logged locally, they are going over the

network. With busy IDS sensors, this may result in excessive amounts of

network traffic. Or, it may result in overtaxing the database server. You will

have to appropriately plan for the amount of IDS traffic you expect to receive

on your worst days. The database server needs to be able to receive the

number of events and allow you to make queries. This means the server needs

to have enough processing power, RAM, disk space, and network capacity.

Also the network must have enough capacity, including any intermediary

firewalls. In some cases, a completely separate network used to collect IDS

data may be the solution.

9.4.7. Snort with PF

 The firewall PF has the ability to forward packets to a specialized log interface, pflog0. Packets sent to

pflog0 are basically pcap(3) formatted and can be viewed or sniffed by pcap aware applications. Snort can

be listen on the pflog0 interface just like any other interface on the system. This capability opens up a variety

of interesting possibilities.

If you are logging all denied traffic on your firewall, Snort will be able to identitfy attacks that are in this

denied traffic. To log denied traffic, you can use the following in your pf.conf file:

block in log all

This sounds useful but may actually prevent you from seeing certain attacks. Snort will alarm on attacks and

scans that only require one packet per session to be detected. For instance, a portscan or a packet that has

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

strange header values will cause Snort to send an alert. However, most TCP-based attacks will not trigger a

Snort event. The reason is simple: TCP-based attacks need to complete the TCP three-way handshake in

order to send the malicious data. However, if the firewall blocks the initial connection request, thereby

preventing the TCP session from being established, Snort will never see any malicious data.

 As an example, consider a Unicode attack against a Microsoft IIS web server. The attack host needs to

create a valid TCP session and then send a malformed HTTP request to the vulnerable server. If your firewall

blocks the initial SYN packet and logs it to pflog0, the attack host will never get a chance to send the

malformed HTTP request.

Conversely, your PF firewall could permit and log traffic to a host you are attempting to monitor. Snort could

monitor this traffic and watch for attacks targeting that host. Since the traffic is allowed, you no longer have

the problem with not detecting TCP-based attacks. In your pf.conf file you could add the following to capture

all allowed traffic:

pass in log all from any to any keep state

Using Snort to monitor packets on pflog0 is an interesting capability. Normally, you will not need to use

Snort in this manner. However, there are times when this trick may come in very handy.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

9.5. ACID

 Digging through Snort alerts, regardless of how they are stored, can be a real headache. Beyond

merely being difficult to manage, it can be even harder to recognize patterns, perform queries, and gather

statistics. There are a number of tools that help with NIDS log analysis. One of the most popular tools is the

Analysis Console for Intrusion Databases (ACID), a PHP-based system for querying and analyzing NIDS

alerts.

ACID is designed to be a general-purpose intrusion detection analysis system. It is not focused simply on

Snort; ACID can pull in firewall logs and raw TCP dumps as well. Although there are more input methods

planned, development of ACID seems to have stalled. The last release as of the time of this writing was

January 2003. Nevertheless, even with a slightly antiquated code base, ACID is still a valuable tool.

9.5.1. Installing ACID

FreeBSD administrators may install ACID from ports/acid or download ACID from the main ACID site,

available at: http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html. OpenBSD administrators must

fetch the compressed tarball and install by hand.

 ACID has many dependencies including Apache, PHP, and MysSl. Given that normally you try to run your

IDS sensors in a secure and locked-down configuration, it is advisable to run ACID on asystem other than

your sensor host. ACID should be run on a backend host that has access to all your Snort logs. Ideally,

you're using MySQL or some other database on a central server to store all the Snort alerts, and ACID can

be pointed directly at this server, or even run on the same host.

9.5.2. Configuring ACID

Once ACID is installed, there are only a few small configuration changes left to make. The acid_conf.php

file controls the behavior of ACID. In it, you can set the type of database ACID is running against and the

specifics about how to access the database. In Example 9-1, ACID is running on the same host as the

MySQL database server. Adjust the values in the acid_conf.php to match your environment.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
mfreeopenbsd-CHP-9-SECT-5.html
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html

Example 9-1. acid_conf.php

$dbtype = "mysql";

$alert_dbname = "snort";

$alert_host = "localhost";

$alert_port = "";

$alert_user = "root";

$alert_password = "MySQLrootpass";

$archive_dbname = "snort_archive";

$archive_host = "localhost";

$archive_port = "";

$archive_user = "root";

$archive_password = "MySQLrootpass";

There may be other configuration options that need to change based on your local environment. Be sure to

check the entire configuration file to see if anything needs to be modified.

ACID does not provide any native security. If users have IP level access to your web server and you have

no security protecting ACID, they will be able to view your IDS logs. This is an advantage you don't want to

give an attacker. At the time this book was witten, querying Google for "Analysis Console for Intrusion

Databases" and "queried on" (two strings on the main ACID page) resulted in over 70 publicly accessible

ACID installations.

 Put your ACID installation behind your external firewall and make sure users on the Internet at large

cannot reach it. Also, consider using HTTP authentication available under Apache to provide a

user/password based protection mechanism. You will also want to use SSL to protect the authentication

credentials and subsequent data in transit. Configuring Apache to provide SSL encrypted content and

authentication is covered in Chapter 6 .

9.5.3. Running ACID

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The screenshot of ACID in Figure 9-9 speaks volumes about its ability to display information about alerts

Snort has generated. Prior to running ACID, we had flat files and database tables to dig through. While all the

information was there, it was hard to determine what was really going on. ACID provides one-click views into

the types of attacks occuring, the most frequent source and destination IPs and ports, and overall traffic

makeup. It also has a search page that allows you to dig down into the data to find exactly what you want.

ACID is largely GUI driven, so it is relatively self-explanatory. The best way to learn how to use ACID is to get

a sensor up and running and watch as the attacks roll in.

Figure 9-9. The main ACID screen

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

9.6. HIDS on BSD

 While not as glamorous as NIDS, HIDS can be extremely valuable in detecting an attack that has actually

been successfully carried out. One of the big failings with most NIDS systems is their inability to recognize if

an attack launched against a host was successful in compromising the host. From the perspective of

watching network traffic and assembling signatures for successful exploitation, NIDS have a long way to go.

However, once an attacker has broken in, he will likely leave footprints all over the system. Files will be

created or modified. Processes will be terminated. Kernel parameters may be changed. A HIDS should be

able to detect at least some of these footprints and alert youto the fact that something has gone very wrong.

 HIDS come in many shapes and sizes on FreeBSD and OpenBSD. One of the most important features

of HIDS in even the smallest networks is the ability to remotely manage and monitor the HIDS process.

Tripwire is one of the oldest and best-known HIDS. Tripwire, initially released by Purdue University in 1992,

works by looking for changes to files on a system. The assumption is that if an attacker breaks into a host,

she will modify core system files in an effort to leverage the host for more attacks. For instance, an attacker

may install Trojan horses in place of system utilities like ls(1) and netstat(1).

 In Tripwire, files are initially checksummed using a hash like MD5. These hash values are used as the

known good starting point for the system. At some periodic rate (nightly, weekly, and so on), the files are

rehashed and the hash values are compared against the original values. If a hash has changed, Tripwire will

generate an alert. The problem is that the open source version of Tripwire does not natively provide

functionality for remote management or monitoring of alerts. In 1998 the Tripwire utility was acquired by a

company now known as Tripwire, Inc. Their publicly available source still provides basically the same

functionality as the original Purdue release. However their commercial product has been modified to suit the

needs of large-scale enterprises. In order to centrally manage the open source release of Tripwire, you will

need to roll your own form of centralized management.

Fear not! There are open source HIDS that provide Tripwire-like functionality and are manageable and

monitorable on an enterprise scale.

9.6.1. Osiris

Osiris is a distributed host integrity verification program designed to detect changes to a host that may be the

result of an intrusion. Unlike antivirus programs, which examine files on a host to look for specific traces of a

virus, Osiris simply looks for any change. This allows a system administrator to decide if the change is due to

a security problem or was expected.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html
mfreeopenbsd-CHP-9-SECT-6.html

Osiris utilizes a client/server model that allows it to scale. It has a central management daemon (osirismd)

that stores configuration information and logs changes to client systems. By using a central management

daemon, configuration changes can be made at a single location and pushed to remote clients automatically.

Also, because the logs of what has changed on the client hosts are stored and compared locally on the

central management server, patterns in changes are easy to recognize. For instance, if a new system

administrator is hired and his user account is added to all your servers at once, the Osiris report will present

this change in an easy to understand fashion. The management server is controlled by the management

utility (osiris) that allows real-time updates to the configuration of the management daemon.

Whatever host integrity tool you are running, it is of little use if you do not have

a known good starting point. Your initial scan of a host should be performed

when it is in a secure state and you are sure none of the files you want to

monitor have been maliciously altered. This may be easier said than done,

however, especially if you have a large, preexisting server base. So,

sometimes you just have to take a leap of faith on your initial scan. The author

of Osiris maintains an online database of known good checksums for many

versions of various operating systems. If you have a checksum of a binary that

you don't know if it has been modified, check out http://www.knowngoods.org/.

On the client side, Osiris has a scan agent (osirisd) that retrieves its configuration from the management

server, scans the local host, and returns results. Figure 9-10 shows the relationship between the components

of Osiris.

Figure 9-10. Structure of Osiris

9.6.2. Installing and Configuring Osiris

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.knowngoods.org/

 Like many other popular utilities, Osiris is in the FreeBSD ports tree. OpenBSD administrators must obtain

the source directly from http://osiris.shmoo.com/. Not only can you install Osiris, you can also make a tarball

of the Osiris management console software or agent software. In the Osiris source directory, use make

console to create the management console package and make agent to make the agent package. The

agent package is particularly useful as it allows you to have a complete package that can be deployed to

multiple hosts rapidly.

Once Osiris is installed, start osirismd and point it towards the directory where it will store information. By

default, this is /usr/local/osiris.

% sudo osirismd -r /usr/local/osiris

The first time the management console starts, it automatically creates certificates to use for secure

communication with the scan agents. Once this is done, you are prompted as to whether or not you want to

trust the newly created certificate. Select yes and you find yourself at a username prompt. Enter a username

of admin and an empty password to access Osiris. At the osiris prompt, run edit-mhost to set up variables

on the management console. Edit the values in the configuration to suit your needs as shown in Example

9-2.

Example 9-2. Using edit-mhost to set up Osiris

osiris-4.0.5-release: edit-mhost

[edit management host (localhost)]

 > syslog facility [DAEMON]:

 > control port [2266]:

 > http host name (uses system name by default) []:

 > http control port [2267]:

 > notify email (default for hosts) []: sysadmin@test.com

 > admin email (gets all mail)[]: uberadmin@test.com

 > notification smtp host [127.0.0.1]: mail.test.com

 > notification smtp port [25]:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://osiris.shmoo.com/

 > authorized hosts:

 127.0.0.1

 Modify authorization list (y/n)? [n]

[management config (localhost)]

syslog_facility = DAEMON

control_port = 2266

http_port = 2267

http_host =

notify_email = sysadmin@test.com

admin_email = uberadmin@test.com

notify_smtp_host = mail.test.com

notify_smtp_port = 25

hosts_directory =

allow = 127.0.0.1

Once these changes are made, they take effect with osirismd automatically.

Now you need to bring up the scan agents on the hosts you wish to monitor. A good starting point is the host

that osirismd is running on. Untar the tarball you made in the install process and execute the install.sh

script within the created directory. Once the scan agent is installed and started, go back to the management

console prompt and run the new-host command, as shown in Example 9-3. new-host needs to be run for

each scan agent that is brought online. The options in the new-host script are relatively straightforward and

are easily tailored to your environment. At the end the configuration, Osiris pushes a default configuration to

the scan agent based on the OS of the host and then starts the baseline scan.

Example 9-3. Running new-host for every host you want to mointor

Is this correct (y/n)? y

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 >>> new host (management) has been created.

Initialize this host? (yes/no): yes

Initializing a host will push over a configuration, start

a scan, and set the created database to be the

trusted database.

Are you sure you want to initialize this host (yes/no): yes

OS Name: FreeBSD

OS Version: 5.2.1-RELEASE

use the default configuration for this OS? (yes/no): yes

 >>> configuration (default.freebsd) has been pushed.

 >>> scanning process was started on host: management

At this point, the scan kicks off and Osiris returns to its prompt. Repeat this process for all the hosts you wish

to scan and you'll have a functioning Osiris environment.

There are a variety of configuration (and reconfiguration) commands available at the Osiris prompt. A simple

question mark (?) at the prompt brings up the listing including commands to list databases, modify agent

configurations, and manually kick off scans.

9.6.3. Running Osiris

Osiris will automatically scan hosts based on the scheduling information you supplied during the agent

configuration. If a change is detected, an email will be sent to the notification email address. It is then up to

the person notified to determine if the change was a valid one. For instance, Example 9-4 shows an email

from Osiris alerting that the netstat utility has changed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 9-4. Sample Osiris alert about netstat

If these changes are approved, visit the URL below to set the

latest scan database to be the trusted database. Or, login to the

management console and set the trusted database to 60.If these

notifications persist, you may need to modify the scan config for

this host.

 <https://management.test.com:2267/?host=management&base_db=60>

Change Statistics:

 checksums: 1

 SUID files: 0

 root-owned files: 0

 file permissions: 0

 new files: 0

 missing files: 0

total differences: 4

 compare time: Fri Sep 19 23:27:37 2003

 host: management

 log file: no log file generated, see system log.

 base db: 59

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 compare db: 60

[management][cmp][/usr/sbin/osirismd][checksum][db717c99abad90ab290f40b157cca2c9,

22f6408a505991a8a7a69d9bffe93611]

[management][cmp][/usr/sbin/osirismd][mtime][Mon Feb 23 16:34:04 2004,Mon Nov 1

13:12:52 2004]

[management][cmp][/usr/sbin/osirismd][ctime][Mon Feb 23 16:34:04 2004, Mon Nov

1 13:12:52 2004]

[management][cmp][/usr/sbin/osirismd][bytes][106344,6073419]

On the face of it, this change seems pretty suspect. The netstat binary should only change with a system

upgrade or if it's patched for some reason. Further, it has been replaced by a binary that is 6 megabytes in

size, versus the 106 kilobytes it originally was. This incident is definitely worth exploring.

 A quick word on system updating. When performing a large-scale upgrade, such as upgrading FreeBSD

from source, tools such as Osiris can really become unwieldy. Many system libraries and utilities will be

modified creating a massive number of deltas that need to be examined. It is usually impossible to validate all

the changes made by the system during an upgrade. This is one of those times when you may need to take a

leap of faith and create a new database assuming the new host is still trusted to be safe.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

9.7. Wrapping Up

This chapter has only scratched the surface of IDS. It is a complicated topic with many tools and techniques

available to help detect intrusions and manage your IDS system at a large scale. However, be wary that IDS

is not for everyone. Deploying, administering, and monitoring an IDS system can be time consuming and

may take you away from other, more important, security-related tasks. If you decide IDS is for you, then the

BSD-based operating systems provide an excellent foundation. With their speed and maintainability,

FreeBSD and OpenBSD are solid operating systems on which you can support a robust IDS infrastructure.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html
mfreeopenbsd-CHP-9-SECT-7.html

 < Day Day Up >

9.8. Resources

Snort Users' Guide

The Snort Users' Guide is available online at http://www.snort.org/docs/snort_manual/. It is a

valuable resource, especially as you become more familiar with Snort and how it functions on your

network.

Osiris Users' Handbook (http://osiris.shmoo.com/docs/handbook.html)

The Osiris Users' Handbook describes the ins and outs of how to deploy and maintain Osiris.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
mfreeopenbsd-CHP-9-SECT-8.html
http://www.snort.org/docs/snort_manual/
http://osiris.shmoo.com/docs/handbook.html)

 < Day Day Up >

Part III: Auditing and Incident Response

Auditing and incident response are topics in system administration theory that are critical

but often overlooked. They are not specific services that you run as much as concerns you

keep in the back of your mind all the time.

Chapter 10, Managing the Audit Trails

Chapter 11, Incident Response and Forensics

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html
mfreeopenbsd-PART-3.html

 < Day Day Up >

Chapter 10. Managing the Audit Trails

Raspberry. There's only one man who

would dare give me the raspberry: Lone Star!

—Dark Helmet

Spaceballs

The word audit usually makes people a little nervous; even when they have nothing to hide. An audit, in the

world of accountants, is to examine an individual or organization's financial records formally. The goal of an

audit is either to validate that people or organizations have followed the letter of the law, or uncover their

horrible misdeeds. The success of an audit must be based upon records of transactions. Without these

records, performing an audit requires far more detective work or is rendered impossible.

In the computing world, audits can be formal or informal interrupt-driven processes performed by system

administrators to answer questions. A question like "Why haven't we received the mail our client sent?"

sends administrators scurrying through mail logs. A more difficult question to answer might be, "Why didn't

that dynamic web page load right?" because web server access logs, error logs, and database query logs

may need to be consulted to build a complete picture of what transpired. In a security context, an incident

response team conducts an audit to try to uncover any transgressions and perform root cause analysis. All

these questions and mysteries can be solved . . . as long as you have a record of the transactions, or logs.

A part of our job as system administrators is to keep an eye on the systems we have built and that we

administer. We explored the topic of system health monitoring as one of the ways to do this in Chapter 4. An

aspect of a system's overall health in some cases is useful as an indicator of security breaches. Likewise, a

system's logs often contain events pertaining to the security of the system: unauthorized login attempts or

connections, frequent application crashes, mail relay attempts, and attempts to write to read-only FTP folders

are examples of events that might spur an investigation. Automated monitoring of logs helps us guarantee

that these events will be noticed and an investigation, or audit, can then ensue.

This chapter is about monitoring our systems through log analysis and ensuring that we're able to answer

questions that might arise. To accomplish this task we must first ensure that our systems are generating the

logs in which we're interested. The logfiles themselves are of moderate use already, but consolidating them

on a single host helps ensure their integrity and perform audits more effectively. Finally, with a single storage

location for logfiles, we can deploy a log monitoring system to alert us when unusual events occur. We cover

each of these topics in turn.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html
mfreeopenbsd-CHP-10.html

 < Day Day Up >

10.1. System Logging

 Logging is the process of recording events as they transpire. All operating systems generate events

based on a system administrator's (or a default) configuration. Fortunately, both FreeBSD and OpenBSD

give us a good starting point, with pretty reasonable default configurations. Applications installed on the

operating system often also generate events and log them using the operating system's logging mechanism

or in their own logfiles.

Logs help administrators diagnose problems with applications, provide instant warning and alert capability

(which can be hooked into something that sends an email or page), and serve as fodder for forensic analysis.

They help answer both trivial questions such as, "What errors did my application produce?" and help solve

far more complex mysteries. It might take several logfiles, for example, to follow a user who logged into one

system and, through some sequence of events, managed to gain escalated privileges on another.

The process of analyzing (often) disparate logfiles to determine how one event A eventually leads to

another event Z is called auditing. The set of interrelated events that you identify between A and Z in the

analysis is the audit trail. These audit trails don't really exist without a question you are trying to answer: it is

the person or piece of data whose progress through systems you are trying to trace that defines these audit

trails. Building these requires that you have set up logging appropriately on your system.

 Logging, despite being a fairly well-understood concept, is frequently overlooked by administrators. Most

administrators of Unix-based operating systems either minimally configure the logging functionality or they

leave the default configuration intact. FreeBSD and OpenBSD administrators expect to find their maillog,

messages log, and other logfiles in /var/log, and some choose not to adjust the logging configuration.

Unfortunately, without carefully examining the way your system and installed applications are set up to create

logs, you probably will not have the information you need to build an audit trail when you need one.

As promised in Chapter 3, we revisit the topic of configuring syslogd(8) in this chapter. We explore some of

the places we can send logfiles, and look at the factors that affect our decision-making process. Of course,

no discussion about logging is complete without covering log rotation and retention. Finally, we examine

some of the popular automated log-checking and system-monitoring tools available for the BSD operating

systems.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html
mfreeopenbsd-CHP-10-SECT-1.html

 < Day Day Up >

10.2. Logging via syslogd

 The syslog daemon, syslogd, is installed with the base distributions of FreeBSD and OpenBSD.

syslogd accepts logs from the kernel (from /dev/klog) and from applications running on the system via the

logging socket it creates (/var/run/log on FreeBSD and /dev/log on OpenBSD by default). It can also accept

log messages from other systems over UDP port 514 (by default) when configured to do so. A machine

running syslogd that accepts remote logs in this way is typically called a loghost. The configuration file for

syslogd, /etc/syslog.conf, controls what happens to log entries once they are received by the daemon.

10.2.1. syslog.conf Configuration

 Several configuration parameters control how incoming logs are handled. The most basic elements are

facility and level, which make up the selector field in the syslog.conf file. These facilities describe the part of

the system generating the message, and the level describes the message severity. Syslog can then perform

a variety of actions on the selected log messages. When an asterisk (*) is used in the place of either facility

and/or level, it's understood to mean all facilities and/or levels.

The asterisk doesn't always mean all levels in other operating systems. In

some operating systems, for example, an asterisk not only matches the levels

from debug to emerg, it also matches the keyword none. As a result,

syslog.conf files with an asterisk in the level field on this platform will cause the

daemon to ignore all logs for the associated facility. If you have a secure file

distribution scheme in a heterogeneous environment, take note.

Facilities and levels may also be specified for a subset of incoming logs through program and hostname

specifications. We describe this in some detail later in this chapter. The action, the last important

configuration element, is covered at the end of the section.

10.2.2. Syslog Facilities

 OpenBSD includes the facilities auth, authpriv, cron, daemon, ftp, kern, lpr, mail,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html
mfreeopenbsd-CHP-10-SECT-2.html

mark, news, syslog, user, uucp, and local0 tHRough local7. FreeBSD adds the facilities console and

security. Other operating systems have a slightly different set of facilities. The specific variations between

operating systems are not important. What is important is to remember that these differences exist and result

in two issues: building software and remote logging.

When building software on BSD systems, bear in mind that although you may expect the software to use a

given facility, the OS on which the software was designed may not have had that facility. Therefore the

application programmer may log, by default, to another arbitrary facility. Software built out of ports generally

"does the right thing." When building a loghost as described later in this chapter, you may find yourself

accepting log messages from various operating systems. As a result, facility specification cannot be used as

a means of capturing remote logs when the source operating system does not support a given facility.

Caveats aside, most applications allow for a user-configurable facility so you can choose something that

makes sense in your environment. Let's look closely at the facilities present in the OpenBSD and FreeBSD

operating systems.

auth

For messages pertaining to authentication like those produced by login(1), su(1), getty(8), and

sshd(8).

authpriv

For messages like auth that should only be read by privileged individuals. For example, failed logins

are logged to both auth and authpriv, but the attempted username is only logged to authpriv, as

shown:

authpriv: Mar 28 18:31:56 dreadnaught login: 1 LOGIN FAILURE ON ttyp0, nobody

 auth: Mar 28 18:31:56 dreadnaught login: 1 LOGIN FAILURE ON ttyp0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

console (FreeBSD only)

This facility allows syslogd to capture log messages written to /dev/console by the kernel console

output driver.

cron

For messages generated by the cron(8) daemon, and for when users run crontab(1). If you write

administrative scripts that are meant to run out of cron, you might want to send messages to this

facility.

daemon

For messages generated by system daemons like routed(8) that are not sent to other facilities.

ftp

As the name implies, this facility is for the file transfer protocol daemon, ftpd(8). You can expect

the FTP daemon included in the base operating system to log to this facility. While most FTP

daemons you use automatically configure themselves to log to this facility (especially when they are

installed through the ports tree), make sure you check the application's logging behavior and ensure

FTP logs don't show up under the daemon facility.

kern

Kernel messages read from /dev/klog are sent to this facility. User processes are not permitted to

log kernel messages—any attempts to do so are quietly redirected to the user facility. Likewise,

kernel messages from remote systems will end up in the user facility. FreeBSD administrators may

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

force the daemon to accept events submitted to the kern facility by users by using the -k argument

to syslogd.

local0 through local7

 The manual page for syslog.conf(5) specifies that these facilities are for local use. This means

that they may be defined locally by the organization in which they are used, not that they are

somehow not usable by logs received from remote systems in a loghost context. You, the

administrator, may define these seven facilities to provide consistent facilities per local policies. For

instance, you might choose to use these levels in conjunction with EventReporter (formerly

EventSLog), which sends Windows NT event logs to Unix systems' syslogd.

lpr

For messages generated by lpr(1), lpc(8), lpd(8). In other words, this facility is for messages

relating to the line printing and spooling daemon.

mail

 As intuitively named as many of the other facilities, this facility is for messages pertaining to

mail. Expect messages to show up here from Sendmail, Postfix, and other mail-related programs

like the popular Courier IMAP and POP mail server software.

mark

The mark facility is a pseudofacility and used only by syslogd. When specified, mark messages are

generated. The frequency at which this occurs depends on the parameter given to the -m argument

of syslogd. For logfiles that grow very slowly, it can be useful to add mark messages so that you

have confidence that syslogd is still writing to logfiles. Mark messages follow the following form:

date/timestamp hostname -- MARK --

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

news

Messages generated by the programs responsible for providing the network news system (nntp, for

example) be assigned to this facility.

security (FreeBSD only)

Security related subsystems like FreeBSD's ipfw(4) firewall will log to this facility.

syslog

Syslog-related messages are sent to this facility. Generally this includes messages pertaining to

syslogd's startup and problems with its configuration.

user

When no facility is specified, messages received by syslogd are sent to this facility. As mentioned

earlier, messages from user processes with the kernel facility and messages from the kernel on

remote systems are automatically assigned the user facility, though FreeBSD administrators may

use the -k argument to syslogd to alter this behavior.

uucp

For messages pertaining to the uucp system generated by uucp-related binaries.

Understanding Syslog facilities will get you well on the way to managing your logfiles. Before really

understanding how logging works using Syslog, however, we need to examine logging levels and actions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.2.3. Syslog Levels

Syslog levels are a great deal simpler than facilities and consistent across operating systems. For one, there

are only eight of them: debug, info, notice, warning, err, crit, alert, and emerg. There is little to contribute

to the definition of these levels, so a slightly modified excerpt from the syslog(3) manpage is reproduced

here:

emerg

A panic condition. This is normally broadcast to all users.

alert

A condition that should be corrected immediately, such as a corrupted system database.

crit

Critical conditions, e.g., hard device errors.

err

Errors.

warning

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Warning messages.

notice

Conditions that are not error conditions, but should possibly be handled specially.

info

Informational messages.

debug

Messages that contain information normally of use only when debugging a program.

none

The none pseudo-priority causes messages of the attached level to not be logged.

Syslog levels form the only other component required for complete specification of the selector field used in

the syslog.conf file. This selector by default will apply to all messages handled by syslogd, but this behavior

may be modified by using a program or hostname specification.

10.2.4. Program and Hostname Matching

The syslog.conf file may be broken into configuration blocks that apply to specific programs or hostnames.

As discussed earlier, when dealing with Syslog messages arriving from other hosts on the network, a local

facility may not be available on all remote systems. In this case, using a program specification, you can

capture logs from this host even when the message originated from a remote system with a different facility.

Example 10-1 shows a typical configuration for the capture of FTP logs on a system running syslogd.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Example 10-1. Basic syslog.conf to capture FTP logs

ftp.info action1

This will work fine as long as the FTP program on this host and any other hosts that use this host as a

loghost are configured to use the ftp facility. Some non-BSD operating systems, however, lack the ftp facility

and instead log FTP messages to the daemon facility. If your BSD system is accepting logs from other

systems, it may be useful to consolidate FTP logs into one file—although if they are not distinguishable by

facility, the problem is a little trickier.

To capture the FTP logs sent to the daemon facility along with your other FTP logs, specify the program

ftpd after an exclamation mark (!) on a blank line as shown in Example 10-2. This matches all log entries

with the ftpd[pid]: string.

Example 10-2. Capture FTP logs when facility may not be FTP

!ftpd

*.info action1

I n FreeBSD, hostnames may be specified by using a plus sign (+). This specification is not supported in

OpenBSD. Example 10-3 demonstrates how it's possible to segregate log entries on a host-by-host or

host-group basis.

Example 10-3. Split logfiles based on hostname

+mailhost

mail.* action-A

auth.* action-B

+webserv1,webserv2

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

cron.notice action-C

10.2.5. Syslog Actions

Now that we know a bit about log specification, it's time to examine how to configure syslogd to do

something with log messages. On both FreeBSD and OpenBSD platforms, syslogd supports five log actions.

Four of them are the same and likely to be familiar to even the novice administrator. They are as follows:

Log to a file/path

When a pathname is specified as the log action, messages are appended to the file specified.

When syslogd starts, these logfiles must already exist; syslogd does not create logfiles.

Log to the loghost

To configure syslogd to send messages to another system, specify a hostname preceded by an

at (@) sign. Typically all systems other than the loghost will log to @loghost. A canonical name

(CNAME) entry is added to the local name servers to point requests for the hostname loghost to the

appropriate system.

Logging to another host significantly improves your ability to build a

successful audit trail for a variety of reasons. We go into more detail in

the Section 10.3 section, later in this chapter.

Log to specific users

By specifying user accounts, separated by commas, log messages can be sent to specific users

when they are logged in. This is useful for important administrative alerts.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Log to all logged-in users

Specify an asterisk (*) and all logged-in users will receive the log message on their

pseudo-terminal. This can be useful for critical system failures, disk space usage alerts, and so on.

Although the aforementioned four actions are familiar, there are a variety of non-file locations to which log

messages may be sent using the pathname specification. These are as follows:

Log to the console

It's possible to cause specific messages to be directed straight to the console by specifying the

pathname as /dev/console.

Log to the printer

In high-security environments, it may be necessary to maintain physical paper logs. Adept

intruders are often able to clean up any traces that they were on your system by modifying the

system logs and other key files. Logging to the printer ensures that a log entry, once captured, is not

lost. To capture log entries line by line, it might be useful to use a dot-matrix printer instead of a

laser or inkjet printer. Bear in mind that printers can run out of paper and ink, ensure you also record

your logs elsewhere. Logging to the printer may be accomplished by either specifying the pathname

of the printer device or piping log output to lp(1) when lpd(8) is running.

Log to virtual tty

 FreeBSD and OpenBSD systems support virtual ttys accessible from the console by pressing

Alt-Fn (where n corresponds to the device /dev/ttyv(n-1)). It's possible to send syslog messages to

these virtual ttys by merely specifying the specific device. It may also be useful to turn the tty "off" so

that nobody can log in as described in the manpage for ttys(5).

OpenBSD offers a fifth action that writes log messages to an in-memory buffer. This will provide logged-in

users access to logs even on systems with no local storage. This configuration must be used in conjunction

with the syslogc(8) program that reads messages from the created buffer. For more information about this,

consult the manpages for syslogd and syslogc.

 FreeBSD's fifth option is to pipe selected messages to an external program. By specifying a vertical bar or

pipe (|) symbol, the log message from syslogd is piped to the specified external program, much like the pipe

symbol works on the command line. For more information about syslog actions, consult the manpage for

syslog.conf(5).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.2.5.1 Debugging syslogd

 Remember that Syslog facilities vary by operating system. This makes it tricky to reuse syslog.conf files

between operating systems, and you will need to be extra diligent about testing your configuration to make

sure it does what you want. As you are building your Syslog configuration, you may notice that by default,

syslogd offers little in the way of debugging information, even when you have horribly misconfigured

syslog.conf.

Fortunately there are ways to get useful debugging information from syslogd. FreeBSD administrators may

run the daemon with the -v option, which will cause syslogd to log the numeric facility and priority of every

locally generated message. Specify the -v flag twice to also log the name of the facility and level. OpenBSD

administrators may run syslogd with the -d option to run syslogd in the foreground and send debugging

output to the attached terminal. Of course, when debugging, you may also want to capture the output of

syslog.debug on either platform. Finally, to inject messages into Syslog with arbitrary levels and facilities, use

the logger(1) tool.

10.2.6. Running syslogd

The syslogd binaries on FreeBSD and OpenBSD behave differently. While the functionality they provide is

equivalent, they have different command-line arguments and defaults. We will briefly examine the most

important command-line arguments for syslogd.

10.2.6.1 Additional sockets

 Don't forget to configure syslogd to receive messages from jailed and chrooted programs. To accomplish

this, you will first need to configure syslogd to create additional log sockets. In FreeBSD, the path to this

socket is specified as the parameter to the -l argument, and in OpenBSD, as the parameter to -a. For

example, BIND chrooted in /var/named will write system logs to /dev/log within the chroot. Therefore,

syslogd must be run with /var/named/dev/log as the parameter to -l or -a. Unlike files specified in the action

column in syslog.conf, these log sockets are created automatically when syslogd is run.

10.2.6.2 syslogd on FreeBSD

 By default, syslogd on a FreeBSD system will run with the - s option. This tells it to operate in "secure

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mode," which causes the daemon to not listen for incoming UDP datagrams on port 514. This argument can

be specified twice in the form -ss, which causes syslogd to not open a network socket at all. Doing this also

disables syslogd's ability to log to other systems.

 These defaults are specified in /etc/defauts/rc.conf. To override these defaults, use the syslogd_flags

variable in /etc/rc.conf. Client syslogd systems should always have the -s argument specified. Loghost

systems must not have the -s argument specified.

 Finally, syslogd may also be configured to accept log messages from only certain systems specified

either by IP address and mask or domain name. To activate this "allowed peer" functionality, use the -a

option as described in the manpage for syslogd. This will prevent syslogd from performing actions on

messages received from non-peers; -a does not act as a replacement for a local firewall, which will block the

datagram at the host level preventing it from being received by the daemon.

10.2.6.3 syslogd on OpenBSD

syslogd on OpenBSD starts on boot. There is no good way to disable syslogd besides specifying

invalid options in /etc/rc.conf.local, like syslogd_flags="NO". The default OpenBSD configuration allows

logging to remote systems but does not accept input from the UDP port. To enable loghost functionality, the

-u (unsecure) argument must be specified as an argument to syslogd.

In OpenBSD 3.4, privilege separation was added to syslogd. This creates two instances of syslogd: the

child runs as user _syslogd and listens for log requests from log sockets while the parent process gives the

child access to write to logfiles and so on. Privilege separation ensures that when running as a loghost, a

root-owned process is not exposed to network traffic.

 Finally, the section in /etc/rc that starts syslogd on OpenBSD systems will open up to two additional

logging sockets. The first, /var/named/dev/log, will be opened if named has been configured to run in

/etc/rc.conf. Since named can run chrooted, an additional logging socket is necessary. The second,

/var/empty/dev/log, is created if /var/empty exists. This directory is used by a variety of system daemons that,

like syslogd, fork a child process that listens on a network port and chroots itself in /var/empty.

10.2.7. syslogd Drawbacks

syslogd has a long history as the system logger for Unix systems. Despite its prevalence, there are a

number of inherent security concerns, which are as follows.

10.2.7.1 Lack of access control

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Without the ability to limit at a granular level which users or applications may use syslogd, everyone has

access to the local Syslog daemon (which may forward messages onto a loghost, in certain circumstances).

In addition, unless protected by a firewall or network topology, anyone can send logs directly to the loghost.

This may lead to denial of service attacks that consume disk space or throughput (CPU or network).

 There are unfortunately no easy ways to prevent users from logging to a local system logger using the

logger command or the syslog system call. In general, loghost systems should be protected by a local

firewall. FreeBSD loghost servers may instead use the -a (allowed peer) argument to syslogd.

Denial of service attacks should be mitigated wherever possible by using a separate filesystem for logs and

by monitoring CPU and network activity closely. See the Section 4.6 in Chapter 4 for options to monitor

activity on FreeBSD and OpenBSD systems.

10.2.7.2 Lack of reliability

 The use of UDP for message transport minimizes network overhead due to logging but makes a variety of

problems possible. Messages are easily spoofed, injected, silently dropped, or significantly delayed. The

UDP protocol has no provisions for ensuring datagrams reach the destination; this is the responsibility of the

application, if the application cares. In this case, syslogd does not. Without a guarantee that messages that

were sent are delivered, logs on a loghost system may be incomplete or incorrect without anyone's

knowledge.

As with mitigating the risks associated with a lack of access control, it's important to monitor systems closely

to ensure adequate CPU cycles and network bandwidth are available for the transmission of these

messages.

10.2.7.3 Lack of integrity or confidentiality

 Without cryptographically verifiable signatures, there is no way to guarantee that messages have not been

modified before being received by syslogd. Without encryption, messages are easily observable while in

transit to a loghost system.

 One mitigation strategy is to use netcat in conjunction with cryptcat to send UDP log messages over an

encrypted TCP stream. netcat is installed by default on OpenBSD and may be installed via ports on

FreeBSD. cryptcat is available in the FreeBSD ports tree and may be installed on OpenBSD by hand. After

installation, non-loghost servers can be configured to log via UDP to localhost with the following line in the file

/etc/syslog.conf:

*.info @localhost

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

netcat must then collect UDP datagrams from local port 514 and send these over an encrypted tunnel

created by cryptcat as follows:

% sudo nc -l -u -p 514 | sudo cryptcat

loghost 12345

On the loghost server, cryptcat receives encrypted data from remote systems, converts it back into UDP

traffic and sends this content to the local 514 port on the loghost. This is accomplished on the loghost side by

a command similar to the following:

% sudo cryptcat -l -p

12345

 | sudo nc -u localhost 514

While this approach works, it requires that all systems (not just the loghost) be configured to receive UDP

datagrams. On FreeBSD systems, use the -b argument to syslogd to specify a bind address of 127.0.0.1, or

localhost, thus preventing receipt of datagrams over the network. OpenBSD systems will need to be

configured to use a local firewall. Since cryptcat uses twofish encryption, which relies on a symmetric key

(both parties encrypt using the same key), you will have to modify the source code of cryptcat and replace

the default key of "metallica" with something of your choosing.

FreeBSD administrators should make a point to adjust the Makefile and

remove the flag GAPING_SECURITY_HOLE. This will disable unneeded

inetd-like functionality in netcat.

 After this configuration is complete for each client, the loghost server accepts log messages over an

encrypted connection. Because messages are only received over encrypted tunnels with a symmetric key,

there is higher message integrity. There is still no guarantee that all messages that were sent were actually

received. There is also no guarantee of in-order delivery or timeliness. Users who can log in on the clients

can still send arbitrary log entries to the loghost.

As you can see, this mitigation strategy requires a great deal of upfront administration and does not scale

well. Every change to the symmetric key (and this should change regularly) will require recompilation and/or

automated distribution of a recompiled binary of cryptcat. It demonstrates, however, the extent to which

some individuals will go to mitigate the risks associated with the lack of confidentiality in message transport.

Unfortunately other options are limited to transmitting log messages over a secure network (perhaps only for

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

administrative data like log messages), or replacing syslogd with another daemon altogether. We consider

replacing syslogd in next section of this chapter.

10.2.7.4 Monolithic

The syslogd binary is monolithic. It accepts messages over the network and locally, filters based on facility

and level, and also can perform a variety of actions all from within a single binary. From a

separation-of-duties perspective, this is not great design. Compare this with a program like Postfix, which has

separate binaries to handle distinct tasks—some of these components need to run as root, others don't.

 OpenBSD's support of privilege separation and chrooted behavior for syslogd mitigates most of the risk

associated with this issue. Although still a single binary, the instance that communicates with external

programs through sockets does not run as the root user and is carefully restricted from the rest of the

filesystem.

There is little more that can be done about this security concern other than keeping an eye open for

better-designed syslogd replacements.

10.2.8. syslogd Replacements

syslogd 's known security issues relating to lack of authentication, encryption, reliable delivery and

message integrity have spawned several parallel efforts that attempt to solve this problem. For instance, an

Internet Engineering Task Force (IETF) working group was formed to "document and address the security

and integrity problems of the existing Syslog mechanism."
[1]

 While this group has made some progress like

the creation of RFC 3195, which describes reliable syslog transmission, it will be a little while until the

standards they create can be implemented. In the meantime, other attempts have been made to solve the

problems associated with syslogd.

[1]
 Chris Lonvick in May 2004. Available on the IETF Syslog Working Group home page (available at:

http://www.employees.org/~lonvick/index.shtml).

10.2.8.1 syslog-ng

BalaBit, a Hungarian company, developed a "new generation" syslogd replacement in 1998, which was

adopted by the Debian Linux distribution in 1999. syslog-ng boasts a variety of improvements over syslogd:

Additional, more flexible, filtering options

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.employees.org/~lonvick/index.shtml

Communications over the more reliable, but less efficient, TCP protocol

Support for TCP wrappers

Logging of the complete chain of loghost relays to reach the destination loghost

Although this represents useful functionality, most of the security issues associated with syslogd as noted

previously have not been addressed. Denial of service attacks are still possible without local access

restrictions. syslog-ng's integration with TCP wrappers helps restrict hosts that can send logs to the loghost.

However, the form of access control this provides can be accomplished, to a lesser extent, natively by

syslogd on FreeBSD using the -a argument or by a firewall in either FreeBSD or OpenBSD. Finally,

syslog-ng is an even larger daemon, which runs as root and relies on even more complex libraries to provide

this additional functionality.

The major advantage provided by syslog-ng is its ability to use TCP instead of UDP. TCP support in itself

increases reliability of log transport and unfortunately also decreases its ability to deal with large volumes of

log messages. More importantly, TCP support means you can use syslog-ng in conjunction with a program

like stunnel, which allows non-SSL aware TCP-based daemons to use SSL-based encrypted tunnels. This

combination provides an effective solution to the confidentiality problem associated with sending logs in the

clear over a potentially insecure network. It's not without tradeoffs, however, as throughput is further

decreased with the overhead of encryption.

For more information about setting up syslog-ng, see the documentation at

balabit.com. For detailed information about integrating syslog-ng and stunnel,

see the examples page on http://www.stunnel.org.

10.2.8.2 minirsyslogd

The minirsyslogd project was driven by paranoia over the bloat associated with syslogd and the even larger

syslog-ng. The daemon is small, advertised as "minimalistic," and low in flexibility and functionality; but it

provides one key service that it does well.

minirsyslogd is a loghost daemon. It receives inbound log messages over a UDP port (by default 514)

and performs as little processing as necessary to store messages in logfiles structured around the messages'

source IP addresses. Because minirsyslogd refuses to create new directories, the existence of an

IP-address named directory forms a rudimentary form of access control. This protects against arbitrary

systems filling up disk space, but the daemon is still vulnerable to attack. This approach is less effective than

using TCP wrappers, the -a argument to syslogd in FreeBSD, or a local firewall.

Nevertheless, the size and simplicity of the daemon makes a compelling case for a loghost or redundant

high-security loghost system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/leetg/LOCALS~1/Temp/Mastering_FreeBSD_and_OpenBSD_Security__OReilly-1ed__2005.chm/0596006268/balabit.com
http://www.stunnel.org

10.2.8.3 msyslog

 The modular Syslog daemon (sometimes called ssyslog or Secure Syslog) is based on OpenBSD's Syslog

daemon and is available in the FreeBSD ports tree (ports/sysutils/msyslog) but must be compiled by hand on

OpenBSD. This daemon replaces the existing Syslog daemon and is designed as the name implies: separate

modules are written to handle input, output, and file protection through encryption and hashing.

Installation of msyslog will result in the replacement of the syslogd binary, installation of the peochk utility

to generate keys for file encryption and check the integrity of encrypted logfiles, and the installation of support

for modular input/output specification (contained within /usr/local/lib/alat/libmsyslog.so.1). Input modules

provide support for reading messages from the BSD kernel, files and named pipes, UDP, and TCP. Likewise

output modular support is available for typical syslogd functionality, a more flexible regular-expression based

output specification, and the ability to send logs elsewhere via UDP or TCP.

 Modular Syslog has even more flexibility and enhanced functionality than syslog-ng provides. One of the

most important differentiators is the ability to encrypt logfiles and maintain a hash record of logfiles, which

can be used to verify their integrity. While the modular design is good, the daemon and modular code will

nevertheless always run as root.

There are, of course, more alternatives to syslogd available with new options

appearing regularly. Visit the library at http://www.loganalysis.org for a current

list of syslogd alternatives and additional information and resources.

10.2.9. Capturing Logs

 What is captured varies from system to system, but in general there should be a log of all interactions with

other systems. This certainly includes connection attempts (successes and failures), mail flow, FTP

connections, and so on depending on the role of the system. Remember that syslogd discards any

messages that do not match a known facility/level specification. A good rule of thumb is to ensure all

messages in all facilities of higher importance than debug are logged (*.info in Syslog terms). This helps

ensure that when the time comes to answer difficult questions, you have the information you need to

reconstruct events and build an audit trail.

How precisely you capture all the logs in which you are interested will depend on the system in question.

You may be very interested in ftpd logs access on an externally accessible FTP server or you may want to

know whenever someone tries to transfer zones from your primary DNS server. In order to capture logs to

build a successful audit trail, you need to carefully configure logging in every application. Look closely at the

relevant documentation for more information on getting this done. If your applications are not producing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

appropriate logs, your job of building an audit trail will be much more difficult. Once this is done, make sure

your applications are logging to an appropriate Syslog facility or level, if they use Syslog at all.

After having determined which facilities and levels interest you, it's straightforward to configure Syslog to

capture these log messages and write them into appropriate logfiles. In most cases, it makes sense to write

logs locally. This allows you to grant various administrators on different systems access to logs in which they

are interested. Although this helps you answer questions about a given system, following a trail of logs

across multiple systems can be very time consuming without also sending log messages to a central loghost.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

10.3. Securing a Loghost

We have discussed syslogd's ability to both send and receive messages across a network connection using

UDP. While we have covered what a loghost is, what logs it should capture, and how it's configured, we still

have not examined why they are useful, how to secure them, or where they fit into your network. We answer

each of these questions next.

10.3.1. Benefits of a Loghost

First and foremost, a loghost consolidates logs for applications, network devices, firewalls, and other

security appliances across potentially disparate networks. There is an obvious benefit here in terms of

convenience: from a shell on one system you have access to logs for all systems from which the loghost

accepts messages.

 In addition to mere convenience, consolidating your logs also improves your security posture. Centralized

logging makes it more difficult for intruders to tamper with or remove evidence of their actions. Having logs

stored both locally and on one or more remote machines makes logfile tampering much more difficult.

Consolidation also facilitates the work of an incident response team. It's easier for members of this team to

correlate events and therefore build an audit trail. Increased log integrity brings with it a higher confidence in

the results of an audit that this team conducts. Finally, consolidation of high-integrity logs in one location

provides a good starting point for automated log monitoring. We talk more about this later in the chapter.

10.3.2. Loghost System Security

A loghost is a critical piece of your network. It contains a record of events across several systems and is the

only authoritative source for event information. Capturing syslog messages is neither a CPU intensive nor a

memory demanding task, so the temptation exists to couple this functionality with other system services.

Keep in mind that the integrity of your logs is at stake. Build a server with redundant storage that does

nothing more than collect, manage, and monitor syslogd messages.

In some circumstances a dedicated logging system is for some reason

infeasible. Ensure at the very least that you maintain the "infrastructure server"

concept as described in Chapter 3: any services provided should not require

user accounts for non systems personnel. Bear in mind that every additional

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html
mfreeopenbsd-CHP-10-SECT-3.html

service provides another avenue for potential system compromise.

In environments with several systems personnel groups, it may be necessary to build a separate loghost for

every group. If possible, avoid creating situations in which an audit trail you are likely to want will be split

across multiple loghosts. If users or data can move between a given set of systems, all these systems should

ideally use the same loghost.

Keeping in line with the idea that the loghost is a vital piece of systems infrastructure, it's important to

protect this system in a variety of ways. The exact steps you take to do this at the network level are beyond

the scope of this book. However, consider restricting access via a local firewall, disabling all services other

than ssh, and tightening the configuration of sshd. If the machine is only available to select administrators via

public/private key authentication, you have significantly increased the integrity of your logfiles.

10.3.3. Syslog Relay

 When deploying a system to act as a loghost, it should be well protected from other systems, as

described in the previous section. However, a loghost can only be protected so far—after all, UDP traffic

must be able to get to the system. When dealing with disparate networks, it may seem necessary to permit

UDP traffic from all local networks to the loghost on port 514. If you are the firewall administrator, this may

make you uncomfortable. Otherwise, if you take this request to the firewall administrator at your organization,

you may suddenly discover that she is unwilling to support your logging architecture.

Fortunately, you have options. Just because syslogd accepts UDP packets containing syslog messages,

does not mean it must write them to disk. A server can both receive and send messages. In this context, it

becomes a Syslog relay. In this case, only one system for each separate network needs to send traffic to the

central loghost server. Figure 10-1 depicts a simple network with two distinct network segments.

Figure 10-1. A simple network layout

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 The demilitarized zone (DMZ) houses systems to which people can connect over the Internet for vital

services with one exception: the backup server. This server is not accessible via the Internet, and provides

only backup services to the other systems on the DMZ. It's an ideal server to handle the task of being a

syslog relay. All systems on the DMZ can send logs to the backup server, which in turn relays the logs to the

loghost on the local area "intranet" network. The only firewall rule required to allow for completely centralized

logging in this environment is one that permits UDP traffic from port 514 on the backup server to port 514 on

the loghost.

10.3.3.1 Syslog relay configuration

Configuring a system to act as a Syslog relay is remarkably straightforward. In short, you must configure it

to be a loghost, and also configure it to send logs to another loghost. On FreeBSD systems, be sure that the

-s argument is not passed to syslogd in /etc/rc.conf, allowing the daemon to listen for incoming UDP traffic

on port 514. On OpenBSD, the relevant flag is -u, specified in /etc/rc.conf.local. This achieves the "configure

as loghost" part of the equation.

Second, adjust syslog.conf to send all logs to the loghost by adding a line as shown in Example 10-4. (We

assume that your loghost is accessible via the hostname loghost.)

Example 10-4. Sending logs to a loghost

. @loghost

If your syslog.conf file contains no other entries, all logs will be transmitted to the loghost, whether they

originate locally or on a remote system. In general, however, it's useful to keep a copy of your system's logs

on the system itself. To do this, add lines similar to the following to your syslog.conf after the line specified in

Example 10-4.

+myhostname.mydomain.tld

*.notice;auth,authpriv,cron,ftp,kern,lpr,mail,user.none /var/log/messages

auth.info /var/log/authlog

mail.info /var/log/maillog

and so on...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.3.4. Conclusion

Whether or not a Syslog relay is needed in your environment, building a loghost to consolidate logs is vital. Of

course, after you have configured your systems to log locally and send logs to a central server, you can find

yourself with a lot of logs sitting around with limited value. Moreover, dealing with the volume of logs on the

loghost server can also be a challenge. Fortunately, there are solutions to the log management problem.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

10.4. logfile Management

logfiles tend to grow quickly, accumulate steadily, and eventually become full of less immediately useful

information. Log management practices need to come into play. Fortunately, FreeBSD and OpenBSD

provide a tool to help manage logfiles: newsyslog(8). The newsyslog utility provides periodic, automated,

logfile rotation and compression.

10.4.1. newsyslog Overview

In a nutshell, newsyslog provides the capability to take existing logfiles, rename and compress them, and

create a new file to which syslogd can now write. This logfile rotation can happen based on the passage of

time, or the size of the file in question. The behavior of newsyslog is controlled by its configuration file

newsyslog.conf.

One important thing to keep in mind when looking over a newsyslog.conf file is that newsyslog is not a

daemon. It's typically executed periodically through cron(8). If you set up newsyslog to run once a week, you

will never have a log containing less than a week's worth of information regardless of any size or date values

in the configuration file. Make sure you configure newsyslog to run frequently enough to deal with the logs

you need rotated most frequently. On most systems, running newsyslog every day is not considered out of

the ordinary. The newsyslog.conf file in Example 10-5 provides a reasonable configuration for log rotation on

a BSD system.

Example 10-5. A sample newsyslog.conf

logfilename [owner:group] mode count size when [ZJB]

/var/log/cron 600 3 100 * J

/var/log/*.log 600 7 100 * JG

/var/log/lpd-errs 644 7 100 * J

/var/log/maillog root:mailadmin 640 7 * @T00 J

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html
mfreeopenbsd-CHP-10-SECT-4.html

/var/log/sendmail.st root:mailadmin 640 10 * 168 B

/var/log/messages 640 5 100 * J

/var/log/security 600 10 100 * J

/var/log/wtmp 600 3 * @01T05 B

It's important to understand what entries in this file mean to properly configure the servers under your

jurisdiction, whether they are loghost systems or merely application servers. newsyslog has unique

configuration options in FreeBSD 4.x, 5.x, and in OpenBSD, the details of which are beyond the scope of this

book. For complete information about which options are supported, see the manpage for newsyslog on the

platform of your choice. However, the basics are the same across platforms and we will endeavor to point out

relevant differences.

logfilename

This field holds the name of a file to be rotated. It may also contain a shell wildcard when the G

option is specified (FreeBSD only).

owner:group

The optional owner and group specification controls the file ownership of both rotated files and new

files created after file rotation. In Example 10-5, both logs relating to mail will have their group set to

mailadmin.

mode

This field contains the octal representation of the mode bits of both rotated files and new files

created after file rotation. In Example 10-5, both logs relating to mail will be readable by users in the

mailadmin group based on the previous field. All files marked 600 will be readable only by root. Files

with mode bits set to 640 but without specific owner and group specifications will be readable by

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

root and any other users in the wheel group.

count

The count field specifies the number of rotated logs to retain before replacing the oldest logs.

Determining the number of files to retain depends on the conditions under which you are rotating

logfiles and any security policies that exist in your organization pertaining to the preservation of logs.

size

When the size field contains a value other than asterisk (*), it will be rotated if it is larger than the

specified size in kilobytes when newsyslog runs. Note that logs nevertheless are rotated whenever

newsyslog runs through cron and finds the file larger than the specified size. Since newsyslog is

not a daemon that constantly runs monitoring files, it cannot rotate them the instant they reach a

certain size.

when

The when field specifies exactly what you think it does. The format is fully documented in the

manpage for newsyslog, so we will not go into detail here. The same is true of the when field as

with the size field: regardless of the date/time or interval specification, the log will only rotate when

newsyslog runs and it's due.

flags

 The flags field varies among the various BSD platforms, and even varies among versions. The

most commonly used flags are Z to compress the log via gzip(1), J to compress the log using

bzip2(1), B to inform newsyslog that the file is a binary file (and therefore newsyslog should not

add a logfile turned over message), and G to inform newsyslog that the value in the logfilename

field is a shell pattern and should be expanded using glob(3) (FreeBSD only). Before using these

flags or to learn about additional flags that may be available on your chosen platform, read the

newsyslog manpage.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

With a solid understanding of the options available in newsyslog, you are well prepared to start managing

the collections of logs on your systems.

10.4.2. Configuring Log Rotation

If you have configured Syslog to log both locally and remotely, you now have several collections of logfiles to

manage. When making decisions about configuring newsyslog, keep the following general guidelines in

mind:

Make it easy on yourself

Log management should be an issue you think about when you develop your logging configuration.

Once you have instituted a management system, logfiles should be taken care of

automatically—barring periodic checks to ensure the system is functioning as intended. Try to avoid

making decisions that require manual intervention. You have better things to do than manage

logfiles.

Develop a log retention policy

A system administrator cannot develop policy on his own. Work with interested parties in the

organization, the information security officer, and representatives of the corporate team to develop a

log retention policy if you don't already have one. You should keep a log for at least a month so that

you can isolate any reconnaissance activity that may have happened before a security incident was

identified. For legal reasons, your organization may also need to ensure logs are not maintained

beyond a certain point.

Rotate logs by date

When you choose to rotate logfiles based on a size, it's often hard to track down log entries. When

logfiles consist of entries during a known date span, tracking down specific events is much easier.

Keep smaller logs

This sounds easy, but it can be a challenge on systems that generate a lot of messages. A wealth

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

of log entries leads to large logfiles and increases the temptation to rotate based on size. Instead,

either use the program specification in syslog.conf to split the logfiles into application specific files or

rotate the logs more frequently. When logging both locally and to a centralized loghost, the local

logs can be kept small by rotating them often while the logs on the loghost can be much larger if you

don't plan to use them frequently.

Delete nonessential logs

When a loghost exists on your network, logs on other systems can be considered nonessential.

Configure these non-loghost systems to rotate appropriately and retain only as many compressed

logfiles as is necessary to provide for local 30-day review.

Maintain redundant logs

Consider creating two identical loghost servers and maintaining independent replicas of logs on both

systems. Access to one of these systems can be restricted even more than to the other.

Following these guidelines will help ensure that you have access to the information you need when tracking

down problems and will also facilitate handling security incidents. Although most log rotation functionality can

be handled by newsyslog, one minor problem remains: when logs are rotated and new files are created,

archived files either remain in the directory with the original logs, or in another directory as specified as the

argument to the -a parameter for newsyslog. Example 10-6 shows a script created to organize and manage

these rotated logfiles.

Example 10-6. Example script to organize rotated logfiles

Change these to suit your environment

base_syslog_dir="/var/log/syslogs"

rotated_dir="rotated"

all_msg_dir="logcheck"

Date processing

if [`date +%m` = "01"] ; then # If this is January, then

 thisyear=`date +%Y` # this is the current year,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 year=`expr $thisyear - 1`; # but we want last year.

else # Otherwise,

 year=`date +%Y` # we want this year

fi

month=`date -v-1m +%m` # Last month

First, create a directory for rotated logfiles if it doesn't

already exist

dest_dir="$base_syslog_dir/$rotated_dir/$year/$month"

if [! -d $dest_dir] ; then

 mkdir -p $dest_dir;

 chmod 700 $dest_dir;

fi

Now move logfiles into the just-created directory

mv $base_syslog_dir/*.gz $dest_dir

This script, when run from cron immediately after newsyslog completes at the start of every month, will copy

the compressed logfiles newsyslog created and move them into a rotated subdirectory structure. In this

example, if $base_syslog_dir is /var/logs/syslogs and $rotated_dir is rotated, then logs for any given month

are located in /var/logs/syslogs/rotated/yyyy/mm, where mm represents the month and yyyy represents

the year.

10.4.3. Securing logfiles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Although we have already explored some of the aspects of logfile security during newsyslog configuration,

we revisit the topic here—just as you should revisit the topic after configuring logfile rotation in your

environment. With system logs, the need-to-know rule applies: only those who need access to system logs

should be granted access. Whether this is granted through standard filesystem permissions or using ACLs

will depend on your specific requirements and chosen operating system. The following guidelines should be

applied:

Although tempting, remember that the sappnd flag cannot be used on logfiles

that will eventually be rotated. See Chapter 2 for more details.

Remove world permissions

In almost all cases, logfiles should not be world readable or writable. If possible, remove the

world-execute bit so that nonprivileged users are kept out of the directory altogether. Any logfiles

that require that they be world readable may be stored elsewhere.

Protect nonessential logfiles

Whether or not logfiles are essential (stored on a loghost), they contain sensitive information. Limit

access as much as possible. Certain groups of users may require access to certain logfiles, but the

need-to-know rule should apply.

Lock down on rotate

 When logfiles are rotated, newsyslog creates new files with permissions you specify and

enforces the same permissions on the rotated logfiles. Consider locking down permissions further

so that only root is able to look at rotated logfiles. If your log rotation script is creating new

directories for rotated logs and your system is in a kernel securelevel greater than 0, these new

directories may be made immutable (via the schg filesystem flag) after the directory is created. Any

parent directories (other than the log directory itself) may also have the sappnd flag set so that files

and directories, once created, cannot be removed.

Although logfiles cannot easily be secured using filesystem flags,

file-monitoring programs like Tripwire can ensure logfiles never shrink

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

except at specific times when they are rotated.

Restrict access to the loghost

 Limit the number of administrators with access to the loghost(s). The logfiles administrators need

should be made available on individual systems. Grant loghost access to incident response teams

on a per-request basis. In the case of redundant loghost systems, one may be chosen as the

"high-security" loghost with very limited access and draconian filesystem flags.

At this point, you know how to capture, consolidate logs, manage, and secure logfiles. Hopefully, with the

steps you've taken, incident response teams will have an easier time correlating events and determining how

a security incident occurred. Of course, something must prompt their investigation. It would certainly be

preferable that an unusual event trigger this investigation rather than the head of your organization calling

your department and asking why the external web site now reads "Hax0red 4 U."

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

10.5. Automated Log Monitoring

 Monitoring the logs you collect is vital. A variety of programs exist that will monitor log messages as they

come in and notify administrators when suspicious or unusual activity is detected. We will examine two such

programs available for both FreeBSD and OpenBSD: logcheck and swatch.

 Both these programs look for certain patterns in logfiles and then perform one or more given actions. To

know what to look for, you will have to spend considerable time looking at system logs and determining what

log entries you need to be notified about. It might be helpful to conduct some attacks against your systems to

generate key events. Using tools like nessus and nmap and picking up a few exploits from the Security

Focus web site (http://www.securityfocus.com/) will help you generate some of the logs you will want to

capture. As new vulnerabilities are discovered, run them against your systems. Did they cause your log

monitoring scripts to alert you in the way you desired? If not, adjust your configuration.

Regardless of the log monitoring solution you choose, configure the program to

not need root access. In general, this requires little more than ensuring your

logfiles are readable by some group to which the system user running your log

monitoring application is a member.

10.5.1. Automated Auditing Using logcheck

logcheck is based upon a component of the Gauntlet firewall system by Trusted Information Systems,

Inc. but later completely written by Craig Rowland of Psionic—at the time it was called logsentry. This is all

ancient history. logcheck has not seen much development in more than seven years. Nevertheless, it

requires very little effort to set up and its functionality continues to be useful. The way logcheck works is best

described by its README:

1) By reporting everything you tell it to specifically look for via keywords.

2) By reporting everything you didn't tell it to ignore via keywords.

With this design, logcheck notifies administrators by email when key warning events occur, and when new,

unexpected, log entries turn up. logcheck runs periodically through cron and reviews all messages since last

execution. If there is anything to report, logcheck sends an email.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
mfreeopenbsd-CHP-10-SECT-5.html
http://www.securityfocus.com/

10.5.1.1 Installation

logcheck can be installed from ports/security; the name of the port is logcheck on FreeBSD and

logsentry on OpenBSD. Both of these ports download the same compressed source tarball. As with other

ports, logcheck is installed by running make install from the logcheck or logsentry ports directory. This will

install the logtail binary and several sample configuration files and documents. Run pkg_info -L on the

logcheck or logsentry package to determine exactly where the files have been installed on your system.

Although the logcheck program has not been modified in years, the installation defaults do change from time

to time.

10.5.1.2 Configuration

The heart of logcheck is logcheck.sh. This file contains key configuration elements like the address to which

notifications should be sent, the location of additional configuration files, and the location of the logfiles to

monitor. Each of these topics deserves some discussion as follows:

Email address

The logcheck.sh script extracts "interesting" log entries and sends them to an email address.

Given the sensitivity of log information, be sure you have protected the path this mail message will

take in some way. How you accomplish this might involve encrypted tunnels, unencrypted traffic

over an administrative network, or local delivery.

Location of keyword specification files

There are four files that control how logcheck parses logs and determines what qualifies as

interesting. These files are named logcheck.hacking, logcheck.violations,

logcheck.violations.ignore, and logcheck.ignore. The former two enumerate keywords that, when

found, identify log messages as interesting. The latter two contain longer phrases that more fully

describe specific log messages which should be ignored.

Location of logfile(s)

The easiest way to run logcheck is to point it at one single logfile. It's trivial on a loghost system to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

take all incoming logs and put them in a file for logcheck alone. This file will grow quickly and should

therefore be truncated frequently. There is no need to keep compressed archives of this file.

For the sake of convenience and for a little added security, you may want to move the logcheck.sh script

and configuration files into a directory under /usr/local/etc accessible only as root. Whether you choose to

take this approach or not, the next step is to tailor the additional configuration files for your environment—or

at the very least review them.

logcheck.hacking

When entries from the logcheck.hacking file are found in log messages, the subject line of the email

logcheck sends will say "HOSTNAME DATE ACTIVE SYSTEM ATTACK!" Be careful about what

keywords are found in this file.

logcheck.violations

The logcheck.violations file is the second file containing keywords for interesting messages. Again,

if you are too general, you will get too many false positives.

logcheck*.ignore

Finally the logcheck.[violations.]ignore and logcheck.ignore files tell logcheck which log entries to

ignore. Try to avoid merely using keywords in this file as you might be ignoring more than you

bargained for.

Notice that being too general in either the hacking or violations configuration files will result in too many false

positives whereas being too general in the ignore files will result in interesting log messages being missed.

While logcheck is easy to configure, it's even easier to configure poorly. This phase of logcheck

configuration is usually iterative, involving the following five steps.

Set up a single logfile that logcheck will parse. This file should be well protected from all users.

Allow this file to accumulate several hours (or even a day's) worth of data.

1.

Edit the hacking, violations, and two ignore files and remove both keywords and ignore lines you

feel do not show up in your logfiles.

2.

After you are comfortable with your changes, run logcheck and examine the output.3.

If you miss log entries you wanted to see or if you have too many log entries mailed to you, revise

the hacking, violations, and two ignore files to compensate.

4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Repeat steps 3 and 4 until the four configuration files are producing output to your satisfaction.5.

Substrings in all the hacking and violations files are matched using

case-insensitive egrep(1). The ignore files specify patterns used by

case-sensitive egrep. Bear this in mind when working with these configuration

files. The manpage for grep(1) is a worthwhile read if you are not familiar with

regular expressions.

Your goal in configuring logcheck this way is to be able to run logcheck very frequently but receive very little

email. The more false positives you receive, the less likely you are to pay attention to the results produced by

logcheck. Configure carefully, and configure well. As systems and applications are deployed in your network,

revisit and revise your logging and logcheck configuration.

10.5.1.3 Drawbacks

logcheck is not perfect. It suffers from lack of active development, which means that you will need to move

on to another piece of log monitoring software if you need additional functionality. While logcheck does a

very good job monitoring logfiles, it can be inconvenient to deal with an additional logfile containing all

messages. Moreover, if you choose to monitor logfiles from applications that cannot log via Syslog, you will

need to make duplicates of these logs or inject them into Syslog using the -f flag of the logger command.

This can quickly become an administrative headache. Fortunately, the log monitoring world is full of options.

Next, we explore another popular log monitoring utility, swatch.

10.5.2. Automated Auditing Using swatch

swatch , the simple watcher, was originally designed to monitor logfiles written by syslogd but can now

monitor arbitrary logfiles and is quite flexible. swatch expects a single configuration file that contains actions

to perform when specified patterns have been found. swatch is almost as easy to install and configure as

logcheck, but is more flexible and can perform a variety of actions besides sending email.

10.5.2.1 Installation

In OpenBSD and FreeBSD, the installation procedure for swatch on a loghost system is identical:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

% cd /usr/ports/security/swatch

% make && sudo make install

On both platforms, this will install two binaries (swatch and swatch_oldrc2newrc) and the manpages for

both. While example configuration files are included in the compressed swatch tarball, they are not installed

during the install process. In OpenBSD the two example files are located in the

w-swatch-version/swatch-version/examples/ subdirectory of the swatch ports directory; in FreeBSD, check in

the work/swatch-version/examples/ subdirectory. Additional sample configuration files for swatch may be

found at http://www.loganalysis.org.

10.5.2.2 Configuration

You can start using swatch with very little configuration, and getting things operational is trivial. As with

logcheck however, fine-tuning swatch to work well in your environment will take some time. Before we get

carried away, let's explore swatch's basic functionality.

swatch reads configuration from ${HOME}/.swatchrc by default. You can, and usually should, change this

behavior, by providing the -c argument and pointing to a configuration file you create, perhaps in

/usr/local/etc/. A contrived configuration file is provided in Example 10-7. As mentioned previously, swatch

expects a series of patterns and actions in its configuration file. Patterns are provided as arguments to the

watchfor and ignore statements, which do exactly what you think they do.

Example 10-7. Simple swatch configuration

ignore /refused connection from 10.1/

ignore /BAD SU john to root/

watchfor /inetd.* refused connection/

 echo normal

 throttle 01:00:00

 mail addresses=root,subject=Refused\ Connection,when=2-6,9-5

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.loganalysis.org

watchfor /file system full/

 echo bold

 throttle 00:05:00

 mail addresses=root,subject=FILE\ SYSTEM\ FULL,when=1-7,1-24

watchfor /BAD SU.*to root/

 echo bold

 throttle 00:01:00

ignore statements are best placed early in the configuration file to weed out logs that don't need to be

parsed. This statement is followed by a regular expression, enclosed in slashes, which will cause log

messages to be ignored if the pattern expressed matches the log message.

watchfor statements are also followed by a regular expression. When the expression matches a message,

various actions are performed.

If you are unfamiliar with regular expressions, do not fear. A simple series of

words is often enough for ignore and watchfor statements. If you would like

more flexilibility, see the manpage for grep(1).

As the actions are fully documented in the manpage for swatch(1), we will not go into great detail here.

However, the actions shown in Example 10-7 are the most popular and deserve some treatment as follows:

echo modes

The echo action will result in the matched line being sent to standard output. A mode may be

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

specified to change the color of the output, make it bold, and so on.

bell N

When bell is specified as an action, a bell character will be sent to standard output.

throttle

throttle tells swatch to limit notifications. When a throttle period of one hour is specified (as in the

first watchfor statement in Example 10-7), a specific log message matched by this pattern will not

be displayed until the hour is up. By default, throttle is done on a per-message basis so that other

messages that also match the pattern, have their own throttle period. To make the throttle period

apply to all messages that match the pattern, append ,use=regex at the end of your throttle period

specification. At the end of the throttle period, a summary is displayed listing the number of times

the specific message was seen.

mail

The mail action will, of course, send an email to the specified recipient(s) when messages are

matched.

when

The when option can be applied to any of swatch's regular actions. This option restricts the action

to a specific time period governed by days and hours. The first day of the week is Sunday and is

expressed as the number 1. Hours must be specified in a 24-hour format.

At this point, you should have enough information to configure swatch. All that remains is that you know what

to look for. For that, you'll need to study your logs, not this chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.5.2.3 Running swatch

After you have created a configuration file for swatch, you need to start it. swatch may be run on the

command line or as a daemon by using the --daemon command-line argument. It might also be helpful to

write a startup script that starts swatch as a daemon and redirects standard output to the console or a

separate logfile. Be aware that swatch will need to be restarted whenever the logfile it reads is rotated. To do

this, specify a restart time using the --restart-time command-line argument, which ensures the daemon

restarts as soon after the log is rotated as possible.

10.5.2.4 Catching new messages

swatch is not designed to alert you when new messages show up in your logs. Whereas logcheck sends

you alerts unless you tell it not to, swatch will only send you alerts when you tell it to. Fortunately, due to

swatch's flexibility, it's possible to configure it very much like logcheck using a series of ignore lines and

watchfor /.*/. This expression will match all entries that have not been already ignored or caught by other

watchfor statements.

10.5.3. Ongoing Monitoring

Once you have configured logcheck or swatch for your environment, you might be tempted to never

evaluate your log monitoring capability again. If you used logcheck or have configured swatch to alert you of

new messages, you will still have to return to log monitoring to cut down on unimportant messages that did

not exist when you initially configured the log monitoring system.

Despite the fact that your logs are automatically monitored and you have little motivation to return to manually

scanning them, you should nevertheless make a point to do so. A periodic manual scan or tail of logs in the

background can help you catch activity that log scanners will not. You may notice certain entries appear that

you would actually like to know about, yet somehow you have managed to configure your log scanner to

ignore them. Watching logs scroll by periodically may also alert you to changes in the frequency with which

certain log entries appear—a minor warning may not be a problem now and again, but several thousand

warnings an hour might be worth examining. The point is, don't underestimate the value of periodic human

scans of your logfiles.

Finally, make yourself revisit your log monitoring configuration. Continue running vulnerability test kits or

sample exploits to help validate the configuration of your log monitoring solution.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

10.6. Automated Auditing Scripts

Both FreeBSD and OpenBSD ship with auditing scripts that run daily through cron. Unlike the automated log

monitoring tools discussed previously, these scripts examine various aspects of the filesystem. They notify

administrators about the state of the system, notice changes in certain files, back up critical configuration

files, and so on. The specific mechanisms behind these automated auditing scripts are vastly different in the

two operating systems, however, and we must treat them independently.

10.6.1. OpenBSD's Security Script

 OpenBSD runs the /etc/security script from the /etc/daily script, which runs every day, of course. The

security(8) script performs numerous checks of files throughout the system including seeking out syntax

errors in password and group files, checking various dotfiles in users' home directories, checking permissions

throughout the filesystem, and even auditing changes to files. Most of this behavior is preconfigured and can

only be adjusted by changing /etc/security directly. This is typically not recommended.

Still, there are two ways in which you can affect what the security script will do for you. First, whenever you

install applications that have important configuration files you should consider adding these files to

/etc/changelist. The security script detects and reports content changes for every file listed in changelist(5).

This helps keep you aware of configuration changes transpiring on your system.

Second, permission changes to files are closely audited against /etc/mtree/special and any other files in

/etc/mtree with a .secure extension. These additional files may be created by using mtree(8) as follows:

sudo mtree -cx -pdir -kcksum,gid,mode,nlink,size,link,time,uid \

 > /etc/mtree/dir.secure

% sudo chown root:wheel dir.secure

% sudo chmod 600 dir.secure

Creating .secure mtree files for file hierarchies containing chrooted services and important configuration

files is a good idea. When you are done creating these mtree files and adjusting /etc/changelist, you may

want to make them all immutable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html
mfreeopenbsd-CHP-10-SECT-6.html

Please remember, however, that the security script, changelist file, and mTRee files are not the definitive

answer for filesystem auditing, nor do they keep your system secure. The security script and associated files

merely provide a small sanity check on a daily basis so that you, the administrator, can have an idea of what

is changing on your system. There are innumerable ways in which your system could be compromised

without the security script ever raising a red flag.

10.6.2. FreeBSD's Periodic Scripts

 The periodic(8) utility runs scripts located in a specific directory. By default, /etc/crontab on FreeBSD

systems run periodic with three arguments: daily, weekly, and monthly. Each of these arguments

corresponds to a directory within /etc/periodic that contains scripts to run when periodic is run.

The behavior of the periodic system of scripts is controlled from periodic.conf(5). It's in this file, that you may

place directives that will affect which script will and will not run, and under what circumstances they will

provide output. This flexibility is very important: most administrators who don't configure periodic.conf to

provide only important output ignore all mail from root on a regular basis. Who can blame them? With default

values, the signal-to-noise ratio from the periodic scripts is very high.

Take a moment to examine the default configuration for periodic in /etc/defaults/periodic.conf. In most cases,

you want to copy blocks of text into /etc/periodic.conf and set success, info, and other verbose notifications to

NO, while retaining notifications for errors and bad configuration. Example 10-8 provides a reasonable (and

fairly quiet) default configuration for periodic.

Example 10-8. Sample /etc/periodic.conf

daily_show_success="NO" # scripts returning 0

daily_show_info="NO" # scripts returning 1

daily_show_badconfig="YES" # scripts returning 2

weekly_show_success="NO" # scripts returning 0

weekly_show_info="NO" # scripts returning 1

weekly_show_badconfig="YES" # scripts returning 2

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

monthly_show_success="NO" # scripts returning 0

monthly_show_info="NO" # scripts returning 1

monthly_show_badconfig="YES" # scripts returning 2

daily_status_security_inline="YES" # reduces number of messages

daily_clean_disks_verbose="NO" # Mention files deleted

daily_clean_tmps_verbose="NO" # Mention files deleted

daily_clean_preserve_verbose="NO" # Mention files deleted

Of course, additional options may be relevant in your environment. The settings in the periodic.conf provided

in Example 10-8 should at the very least reduce the informational mail you receive. Once you have periodic

configured to only notify you for important events, you will find it far more useful.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

10.7. Wrapping Up

Your system logs are like status reports. Without keeping a close eye on them, you are likely to miss

something important and live to regret it. Fortunately, automated auditing tools make your job as a system

administrator easier and help you be the instigator for incident response. When the incident response team

conducts an audit, the care you take to configure logging across the systems you administer can make your

life and their lives easier and facilitate getting answers, and getting back to the daily routine.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html
mfreeopenbsd-CHP-10-SECT-7.html

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html
mfreeopenbsd-CHP-10-SECT-8.html

10.8. Resources

A list of resources follows.

10.8.1. Logging Tools

minirsyslogd : http://www.clueby4.org/minirsyslogd/

syslog-ng : http://www.balabit.com/products/syslog_ng/

msyslog : http://sourceforge.net/projects/msyslog/

10.8.2. Secure Transport Providers for Logging

stunnel : http://www.stunnel.org/

cryptcat : http://farm9.org/Cryptcat/

10.8.3. Log Monitoring

Swatch: http://swatch.sourceforge.net/

Logcheck: http://sourceforge.net/projects/logcheck/

10.8.4. Selected Logging-Related Request for Comments (RFCs)

RFC 3164: The BSD Syslog Protocol

RFC 3195: Reliable Delivery for syslog

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.clueby4.org/minirsyslogd/
http://www.balabit.com/products/syslog_ng/
http://sourceforge.net/projects/msyslog/
http://www.stunnel.org/
http://farm9.org/Cryptcat/
http://swatch.sourceforge.net/
http://sourceforge.net/projects/logcheck/

 < Day Day Up >

Chapter 11. Incident Response and Forensics

Go to a bookstore and take a look at the information security section. There will likely be shelves of books on

how to hack, hacking techniques, tips on thinking like a hacker, and the glory of hacking into a system you

own. Our industry has dedicated enormous resources on training security administrators and engineers to

think like an attacker in an effort to make networks more secure. Although these types of books may indeed

assist us in configuring and deploying more secure systems, they tend not to help us with the actual

operation of these systems.

In the same bookstore, you're likely to only find a few books on incident response and forensics. Responding

to incidents and performing forensic analysis are activities that are performed in the face of a compromised

system or active attack. As much as we'd like to think we deploy unbreakable and totally secure hosts, this is

simply not the case. Even after our best attempts, a security incident is inevitable. As a security professional,

you need to be prepared for the worst and deal with incidents as they happen.

This dichotomy between building and deploying secure systems versus operating and maintaining secure

systems is also evident in the BSD ports tree. In the ports/security directory, most of the tools are either

vulnerability assessment tools or cryptographic libraries. There are a few HIDS tools designed assist in

determining whether a compromise has occurred and there are a few tools designed for forensic analysis,

but they are certainly not a majority.

So, the question becomes "why should I care about incident response and forensic analysis?" In short, one

day you will be staring at a compromised system and unless you have prepared, you'll likely be at a loss for

what to do.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html
mfreeopenbsd-CHP-11.html

 < Day Day Up >

11.1. Incident Response

A security incident can be reported in a number of ways. An IDS system may detect a compromised system.

A user may report that she has had files deleted or modified. And sometimes systems administrators will

simply have a "bad feeling" about a host and ultimately realize it was victim of an attack. Regardless of how

an incident is detected, the key to dealing with an incident is to be prepared and understand what your next

steps are. Before an incident occurs, you need to prepare your tools, your process, and your coworkers for

what needs to occur.

Incident response and forensics can be a detailed and difficult operation. For

many, the activities and details discussed in this chapter will be sufficient.

However, for those in more sensitive industries such as healthcare or finance,

this chapter should serve only as a primer. Those who want a more rigorous

treatment of incident response should consult the books and articles listed in

the Section 11.5 at the end of this chapter.

A good starting point is identifying your incident response process. This process, like the security-minded

administration process, can be thought of in a lifecycle model. There are a variety of incident response

lifecycles that different organizations have created over the years. Some are waterfalls while some are

circles, some have seven states while others have four. The lifecycle presented in this chapter and shown in

Figure 11-1 is a notional lifecycle. Think of it as a summary of other models; we use it for illustrative

purposes. If, through your own research, you discover other lifecycle models that resonate better with you, by

all means use them instead.

Figure 11-1. Incident response lifecycle

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html
mfreeopenbsd-CHP-11-SECT-1.html

11.1.1. Preparation

Hopefully, you don't find yourself in the throes of responding to security incidents on a continuous basis. If

you do, you should probably revisit your core security mechanisms. Most of the time, you should be in the

preparation phase. Here, you update your forensics tools and training staff, and identify internal and external

resources that play a part in the incident response process. The Boy Scout motto of "Be Prepared" is a good

mantra for incident response.

11.1.1.1 Identifying resources

You must identify resources that will play a role in incident response. Potentially one of the most daunting

resources to identify is simply the assets on your network. Keeping a current list of all your hosts, the

operating system version each one is running, and physical location can be a full-time job depending on the

size of your network. Having an up-to-date list of all your servers is vital because you never know when an

incident will occur. For instance, if the physical location of a host has changed but has not been updated in

your asset inventory, it can cause problems with your response. Running into a data center and unplugging

the wrong host is at the very least embarrassing and probably makes a bad situation even worse for your

organization. To prevent this problem, you should also consider labeling the front and back of each server

and router to prevent confusion in the heat of an incident even if your inventory is up to date.

Other important resources are the people in your organization. You should maintain a current contact list so

that you have easy access to important individuals when they are needed. Further, you should create an

escalation procedure to be used during an incident. Most IT resources in a company have two managers that

need to be dealt with, the business manager who wants the service to be online and the technical managers

who actually manage the IT resources. Both these trees need to be identified and included in the escalation

procedures. Also, you may wish to set time thresholds for upper management notification; for example, if an

incident keeps a host offline for 10 hours, then higher ups in the company are notified. This is basically a

recognition that an incident that results in an extended service outage will cause more damage to the

business the longer it goes on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.1.1.2 Training staff

Incident response is not a one-person operation. Your technical staff should be trained in how to respond to

an incident and their roles in the lifecycle should be clear. While the training does not need to be formal, it

should be enough to educate the technical staff in the first steps they should take when they think they have

found a compromised host. Also, any business owners who have been identified in the escalation procedure

should be briefed as to expectations and actions they should take during an incident.

11.1.1.3 Creation of document templates

 There may be documents you need to fill out during an incident. The most likely document you deal with is

a chain of custody. The chain of custody document is used to reconstruct what has occurred to an asset

during an incident. This can be particularly useful if law enforcement gets involved and you need to prove

that a host was under constant control and evidence was not tampered with.

It's rare to have to create documents that will stand up in court. Most incidents

end without going to court; many are only concerned with containing a

compromise and not actually pursuing the attacker. However, if you find

yourself in a situation where you need to create documents that will be used in

a lawsuit or criminal investigation, you should examine the Section 11.5 at the

end of this chapter for more detailed direction.

 A chain of custody document is filled out when acting on or transferring an asset during an incident. For

instance, if you pull a drive from a compromised host and store it in a safe, you should document that activity

on the chain of custody. A chain of custody template should include spaces for time, date, type of activity,

name of asset acted upon, and spaces for two signatures. Capturing two signatures is important as a

mechanism to prevent fraud. It's easy to get one person to lie about what has happened to an asset, it's

much harder to get two.

11.1.1.4 Building your bag of tricks

To this point, our discussion of incident response has been a paper exercise. However, the technical

preparation is just as important as the process and procedures we have talked about to this point. You should

prepare your proverbial "bag of tricks" that you can reach into during an incident. This bag of tricks should

include basic systems tools, forensic analysis aids, and some networking support. All of these tools should be

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

placed on a bootable CD-ROM so they can be used independently of the host operating system.

There are a number of bootable CD images available that can provide a good starting point for you. Since

this is a BSD book, and you will be dealing with BSD-based systems, we address the BSD-based bootable

CD images. However, BSD is not your only option. For those with a Linux flair, the knoppix bootable CD

image available from http://www.knoppix.net is a great live-CD image to start with.

FreeSBIE is based on FreeBSD. FreeSBIE provides tools for easily modifying the ISO image and creating

customized CDs. While it's not explicitly a security-based distribution, it's actively developed and well

supported. FreeSBIE is available from http://www.freesbie.org/.

Frenzy, another live CD based on FreeBSD, has the distinction of fitting on a mini-CD-ROM. Using a

compressed filesystem, Frenzy actually has over 600MB of data that ends up getting shoved onto a 200MB

CD. The mini-CD form factor is nice as it fits easily in a pocket and can be taken anywhere with you.

However, Frenzy does not have the robust customization tools that FreeBSIE has. Frenzy is available from

http://frenzy.org.ua/eng/.

11.1.2. Incident Detection

 The next step of the incident response lifecycle is the actual detection of the incident. The detection may

come from a variety of sources including an IDS sensor, log file analysis, user report, or simply odd host

behavior. Whether it's an automated alert or a manual process, be prepared for incidents to be reported in a

variety of ways. Don't expect something to jump up and say "This is a security incident." Some things may

start as a simple host malfunction like excessive CPU usage or low memory situations. However, upon

further inspection, you may discover the CPU utilization is due to a Trojan horse running on the host. At that

point, the activity has moved from normal system administration to a security incident. Follow your gut feeling

and be prepared to deal with incidents in a variety of forms. However, with that said, do not be overanxious to

declare everything a security problem. Sometimes complicated situations can feel like a security

compromise, but ultimately are system-level problems. A good question to ask your coworkers at this point is

a simple "Did anyone change anything recently?" The answer to this simple question may be very

enlightening.

11.1.3. Incident Assessment

 Once you think you have a security issue, you need to determine the scope of the problem. Generally, time

will be of the essence and the sooner you can make the proper assessment of what's happening, the better

off you will be. Before you get started however, make a note of the time you started investigating so you have

a trail to look back on.

Assessing the incident can be tricky. While you want to rapidly determine the scope of the problem, you do

not want to cause further service interruption or disturb potential forensic data. At this stage, you want to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.knoppix.net
http://www.freesbie.org/
http://frenzy.org.ua/eng/

examine log files, network traffic graphs, and IDS logs to help figure out the "blast radius." However, the

whole time you are doing this, attempt to minimize change on the systems if possible. Avoid deleting files or

writing to files if you can. This will make the after-the-fact forensic analysis easier.

In the course of your investigation, feel free to bring in the help of others that may be able to provide

assistance. In particular, when doing your incident response preparation, you identified technical and

business owners for each system in your network. If they can help troubleshoot or provide background

information, give them a call and see if they can help assess the incident.

False Alarms

One of the authors was a security manager for a large e-commerce company. During one

Christmas vacation, he received a frantic phone call from his Network Operations Center

indicating that the main web site was under attack and had been down for two hours. As part of

the escalation procedure, the manager was notified after the on-call staff could not resolve the

problem in the first two hours.

Upon joining the teleconference that was set up to deal with the "attack," the author asked what

type of attack it was and where it was coming from. No one knew or seemed to be able to

describe what was going on besides high server load and potentially large amounts of traffic.

After some troubleshooting and log analysis, the author determined that the referrers in the

incoming web requests seemed to indicate that pop-up ads were accounting for a large portion

of the web traffic.

A quick phone call to a marketing manager verified that the marketing department had kicked

off a new advertising initiative right before the Christmas vacation. The extra traffic caused by

the advertising campaign had exceeded the capacity of the web servers. The marketing

manager tuned down the number of pop-up ads being served, and the "security incident"

ended.

11.1.4. Response

Now things get sticky. You're sure you have a security problem, now you have to figure out what to do about

it. In general, you have two goals: contain the compromise, and restore service as fast as possible.

Containing the compromise may be as simple as pulling the network cable from the compromised host. If you

want to analyze the live system, leave the power on to the machine so you can run utilities from the CD drive

and interact with the console. It should be noted that some attackers may install code that attempts to delete

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the attacker's tracks if the network interface goes down. While this makes for great Hollywood scripts and

paranoid security administrators, it is not a common occurrence. Isolating a compromised host is usually

better for the business than potentially losing data on the host.

Be sure you check hosts that are similar to the compromised host. For instance if you are examining a

compromise on one web server in a cluster of web servers, it is entirely possible that the attacker used an

automatic exploitation mechanism that could easily subvert all the web servers at once.

Restoring service can be tricky. If you have extra hardware and known good backups, you can usually

restore the backup to extra hardware and place the machine in service. Be aware, however, that if you

deploy a host with the same vulnerability that allowed the attacker to get in the first time, he will likely be able

to compromise the new host. You may wish to wait to restore service until you know how the attacker got in.

Moreover, if it's taken you a while to identify the security incident, recent backups may contain traces of

malicious activity. In this case, it doesn't make sense to restore until you can identify exactly when the

attacker got in.

If you don't have extra hardware and want to reuse the existing host, make a backup of the disk before you

do anything. For information on copying disks, see "Forensics on BSD," later in this chapter. Then, reinstall

the operating system from scratch. It is generally unwise to just reinstall applications on top of a

compromised operating system. Unless you are 100% sure that the attacker did not leave any tools or

processes in unknown places, you should just nuke the drive.

11.1.5. Postmortem Analysis

Even with the best attempts, you will have a security compromise periodically. It's important to learn from

each and every one. Allowing a particular compromise to happen once is excusable; allowing it twice is not.

After the events of the incident have finished and the parties have had some time to rest (approximately 24

hours is a reasonable amount of time) you should schedule a post mortem review of the incident.

If you wait too long, the people involved will likely have forgotten important

details about the identification or response to the security incident. If you don't

wait long enough, people will probably be too tired and want to "just get it over

with" as soon as possible.

Through your review you should focus on two things: what went wrong and how to prevent it from happening

again. The actions people take away from the meeting should be specific and have owners responsible for

their execution.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

11.2. Forensics on BSD

Once you have determined a host has been compromised, you may want to perform an analysis of the host

to figure out what the attacker really did. This process, known as forensic analysis, can be a highly involved

activity. Keeping track of evidence, performing highly technical tests against a host, and staying current on

the latest attack trends can be a difficult job. However, the roots of forensic analysis are really simple

common sense and investigation. Your detective work, ultimately, needs to be educational to you and help

your enterprise learn from the compromise. Keep that goal in mind as you actually examine exploited hosts.

11.2.1. How Serious Are You?

The first thing you need to ask yourself is: what are you planning on doing with the data you gather from your

analysis? If the break-in was severe and legal action may be taken against the attacker, you must perform a

dramatically more detail-oriented analysis than if you are pursuing a minor-script driven attack that you are

unlikely to follow up on. In some cases, you may find during the course of your incident response procedure

that the vector of attack is obvious and your time is better spent bringing the host back online than actually

performing forensics work. Just because a host was broken into does not mean you have to perform analysis

on it, but if you are going to simply bring the host back into operation without determining how the attacker

got in and how to stop him from doing it again, be prepared to rebuild the host every time it is compromised.

Quick Forensics

Sometimes, the avenue an attacker uses to gain access to a host is made obvious through a

very cursory incident response procedure. In these cases, lengthy paperwork-driven

procedures are more trouble than they are worth.

One of the authors was once involved in an incident where a Solaris FTP server appeared to

have been compromised and was being used to distribute French pornography. Upon initial

inspection of the FTP process that was running, it was clear that the compromise came as a

result of flags that allowed anonymous write access to the public FTP directories. This

excessive access was what the attackers were using to store and retrieve their pornography.

The system administrator who was responsible for the server was asked why he was allowing

anonymous write access to the FTP server. As it turns out, the admin was a BSD administrator

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html
mfreeopenbsd-CHP-11-SECT-2.html

and used the flags appropriate for the BSD-based FTP server. Unfortunately, the same flags

on the FTP server on the Solaris host allowed for world writable access. No further forensic

analysis was performed.

11.2.2. Online and Offline Analysis

Depending on the state of the machine you're dealing with and the urgency with which you need to analyze

the compromise, there are different types of analysis you may choose to do. At a high level, there are two

types of forensic analysis;:online and offline.

 Online analysis is performed against a running system. Using some manner of trusted media with forensic

tools such as a CD-ROM, online analysis allows for the examination of the system as is operates. The

advantage of online analysis is that you can examine what processes are running on a box and the

characteristics of the running system. This type of analysis may result in a deep knowledge of how the box

was compromised and what types of hacker tools are running on the host. Poking around after a reboot, or

simply examining the static data on disk, may not provide a complete picture of what is going on.

The disadvantage of online analysis is that you may be disturbing and changing the host. Some attack tools

detect when they are being "prodded" and may start deleting data or performing other malicious activities.

Further, if you are investigating a host to which the attacker still has access (you have not unplugged the

network cable) the attacker may begin changing things as you look at them.

Offline analysis is the act of performing forensics activities against a "dead" system. Rather than acting on a

running host and examining processes and memory, an offline analysis deals with disk images and static

files. The advantage of an offline analysis is that the data on the disk is relatively safe. Disks can be copied

and write protected and all binaries can be made nonexecutable. This prevents some manner of logic bomb

left by the attacker from changing the data on the compromised host. Also, multiple copies can be created

allowing multiple individuals to analyze the data concurrently. If you want to do offline analysis but also want

to examine what processes were running on the host, you can shut the host down using halt -d. This will

force a crash dump and provide access to process tables and other kernel-level information.

11.2.3. Things to Look For

Forensic analysis is not a magic wand. There is no single tool that you can run that immediately returns "Host

owned through OpenSSH exploit by Billy Bob with Social Security Number 123-45-6789."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.2.3.1 Changed files

One of the first thing you should look for are changed files. An attacker may modify configuration files such

as /etc/inetd.conf to start new services or install a completely different binary specifically designed to hide her

tracks. netstat(1) is a binary utility that is commonly modified by an attacker to hide new network

connections. The Trojaned netstat will only show non-attacker connections to give the illusion that the

network status is normal.

 You may find changes in a variety of ways. Visual inspection of inetd.conf may help you find footprints

of an attack. However, manual comparison of a binary is basically impossible. Ideally, you will have a HIDS

like Osiris or Tripwire (covered in Chapter 9) running that will allow you to compare checksums of existing

files and the original files on the host.

When performing an online analysis of a potentially compromised host,

assume that all utilities on the machine are not trustworthy. Every utility you

run should be launched from a trusted read-only media such as a CD-ROM.

When viewing inetd.conf, for instance, use an editor or viewer from the

CD-ROM, not the native less utility on the host.

11.2.3.2 Added users

Another popular maneuver by an attacker is to add new users to the system to allow remote logins and

processes to be executed. Again, if you don't have a known good copy of the passwd file, you're at a

disadvantage, especially if you have a large number of users on the system. Hopefully there are

uncompromised hosts that have a similar user set that you can compare against.

 When creating users, attackers like to create accounts with high privileges. A root-level account will allow

an attacker to perform superuser activities on a host without having to do any other trickery. The dead

giveaway is a user with UID of zero, the superuser UID. Any user with UID of zero that is not root or toor is

likely not an authorized account.

Also, an attacker may attempt to create an account that looks like a system account but is really his gateway

account into a box. For example, a typical FreeBSD installation has a number of system accounts

preinstalled that are used for a variety of system functions. In Example 11-1, there's a user that shouldn't be

there.

Example 11-1. /etc/passwd on a FreeBSD host

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

root:*:0:0:Charlie &:/root:/bin/csh

toor:*:0:0:Bourne-again Superuser:/root:

daemon:*:1:1:Owner of many system processes:/root:/sbin/nologin

operator:*:2:5:System &:/:/sbin/nologin

bin:*:3:7:Binaries Commands and Source:/:/sbin/nologin

tty:*:4:65533:Tty Sandbox:/:/sbin/nologin

kmem:*:5:65533:KMem Sandbox:/:/sbin/nologin

games:*:7:13:Games pseudo-user:/usr/games:/sbin/nologin

news:*:8:8:News Subsystem:/:/sbin/nologin

man:*:9:9:Mister Man Pages:/usr/share/man:/sbin/nologin

cron:*:10:10:Cron Admin User:/:/bin/csh

sshd:*:22:22:Secure Shell Daemon:/var/empty:/sbin/nologin

smmsp:*:25:25:Sendmail Submission User:/var/spool/clientmqueue:/sbin/nologin

Without looking carefully, you could easily overlook the illegitimate cron user with a shell of /bin/csh.

11.2.3.3 Strange directories

Other tidbits to look for are oddly named directories. Attackers may try and hide data and tools in directories

that are difficult to find or cd into. A directory named ... may blend in with the typical ls -al listing, but may

contain traces of an attack.

% ls -al

total 636

drwxr-xr-x 6 root wheel 512 May 16 2004 .

drwxr-xr-x 21 root wheel 512 Jun 24 16:11 ..

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

-rwx------ 1 root wheel 6750 Oct 23 13:49 ...

-r--r--r-- 1 root wheel 8192 Feb 23 2004 boot

Also, directories with control characters or other nonprintable characters may be difficult to see or access. If

you have problems accessing a file or directory (i.e., you try and change into a directory and get an error that

there is no directory by that name) use ls -q to print the contents of the directory. The -q flag turns all

nonprintable characters into question marks allowing you do determine that something really is amiss. In this

example, ls -al returns a normal looking output, but ls -lq paints a different story.

% ls -al

total 2942

drwxr-xr-x 5 root wheel 512 Nov 18 19:52 .

drwxr-xr-x 21 root wheel 512 Jun 24 16:11 ..

drwx------ 1 root wheel 1024 Nov 17 17:21 testdirectory

drwxr-xr-x 3 501 501 512 Nov 4 12:04 osiris-4.0.6

-rw-r--r-- 1 root wheel 1882069 Nov 4 12:05 osiris-4.0.6.tar.gz

% ls -lq

total 2942

drwxr-xr-x 5 root wheel 512 Nov 18 19:52 .

drwxr-xr-x 21 root wheel 512 Jun 24 16:11 ..

drwx------ 1 root wheel 1024 Nov 17 17:21 test??directory

drwxr-xr-x 3 501 501 512 Nov 4 12:04 osiris-4.0.6

-rw-r--r-- 1 root wheel 1882069 Nov 4 12:05 osiris-4.0.6.tar.gz

11.2.3.4 Unknown processes and LKMs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Attackers may start new processes on a host or inject kernel modules to cause the host to perform unwanted

activities such as network scanning, password cracking, and file sharing. A standard ps -auxww that is

common in BSD administration can reveal if strange new processes are afoot. On a busy system, there may

be quite a long process list and it may be difficult to determine what is legitimate and what is not. Take your

time and do not jump to conclusions.

You may recall from Chapter 2 that running in a securelevel of 1 or greater will

help ensure that kernel modules cannot be loaded.

Kernel modules can be checked with kldstat(8). Again, if you don't know what your baseline kernel modules

are, it may be difficult to determine what is legitimate and what is the result of an attack. Osiris, discussed in

Chapter 9, has the ability to monitor kernel modules and track when new modules are brought online.

In Example 11-2, kldstat shows a suspicious kernel module at ID 4. This is worth investigating.

Example 11-2. Running kldstat to see loaded modules

% kldstat

Id Refs Address Size Name

 1 7 0xc0400000 5e74fc kernel

 2 1 0xc09e8000 51ac8 acpi.ko

 3 1 0xc27ac000 19000 linux.ko

 4 1 0xc4200000 27e12 rootkit.ko

11.2.3.5 Known rootkits and hacker tools

 The tools installed by an attacker who has broken into your system are generally not something specifically

written by the attacker. There are a common set of tools used by attackers, and many times they are bundled

into rootkits. The Wikipedia definition from http://www.wikipedia.org/wiki/Rootkit is as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.wikipedia.org/wiki/Rootkit

A rootkit is a set of tools used after cracking a computer system that hide logins,

processes, and logs as well as usually sniff terminals, connections, and the keyboard.

Called "root" kit after the fact that originally it referred to a set of recompiled Unix tools such

as "ps" "netstat" "w" "passwd" that would carefully hide any trace of the cracker that those

commands would normally display, thus the cracker could maintain "root" on the system

without the system administrator even seeing them.

That sounds daunting. Rootkits are specifically designed to evade detection and hide an attackers tracks.

Thankfully, rootkits leave fingerprints on a system much like viruses do. Like viruses, there are tools designed

to track down rootkits and help users identify what the rootkit does.

 One of the better tools is called Rootkit Hunter and is available from

http://www.rootkit.nl/projects/rootkit_hunter.html. Rootkit Hunter examines the md5 checksums of files on the

system to see if they match known rootkits, looks for odd binary permissions, searches for hidden files, and

tries to determine malicious kernel modules. Sounds convenient, huh?

Rootkit Hunter is straightforward to download and install. When you run Rootkit Hunter, you probably want

to scan the entire host. It's hard to say where an attacker may or may not have left tools on the host. But

using the -checkall flag, all Rootkit Hunter tests are run. Further, with - skip-keypress Rootkit Hunter will run

non-interactively allowing you to run the tool and not have to babysit it.

When it's done, Rootkit Hunter will summarize the results. In Example 11-3, two vulnerable applications were

found that should be patched. However, no rootkits were found. This does not necessarily mean there are no

rootkits on the host, but simply that this tool didn't find any.

Example 11-3. Rootkit Hunter sample results

---------------------------- Scan results ----------------------------

MD5

MD5 compared: 33

Incorrect MD5 checksums: 0

File scan

Scanned files: 328

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.rootkit.nl/projects/rootkit_hunter.html

Possible infected files: 0

Application scan

Vulnerable applications: 2

Scanning took 97 seconds

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

11.3. Digging Deeper with the Sleuth Kit

You may reach a point where using basic system tools leads nowhere. There are several important open

source forensics tools that are in common use today that provide low-level system information that can be

useful to reconstruct what has occurred on a host. Many of them share common code or have changed

names over time. It is important to understand the relationship between various toolkits, especially as you

look for knowledge outside of this book.

11.3.1. History of the Sleuth Kit

 In 1999, Wietse Venema (author of TCPWrappers and Postfix) and a small team created a set of tools

called The Coroner's Toolkit (TCT) to aid in forensic analysis of a compromised Unix system. TCT was a

great leap forward for open source forensics tools and put detailed, low-level analysis in the hands of the

masses.

 As good as TCT was, there were several weaknesses. The tools provided in TCT were very raw and

low-level, necessitating the creation of supporting tools. Also, TCT was platform dependent and difficult to

port. In response to this, @stake, a security service company, created the @stake Sleuth Kit (TASK). TASK

unified third-party tools with TCT into one software package to provide a "one-stop shop" for UNIX forensic

analysts. TASK also reworked internal code to make it more portable. TASK also broke tools apart according

the layer at which they were operating on; filesystem, content, metadata, or human interface. This distinction

between tools simplified use and helped analysts chose the right tool at the right time.

 Finally, TASK was taken over by a group independent of industry or academic pressure. TASK became

simply the Sleuth Kit (TSK) and is continually being developed to provide more utility and adapt to changes in

supported operating systems. TSK source code and documentation is available from

http://www.sleuthkit.org/.

11.3.2. Installing and Understanding TSK

TSK is in the ports tree and can be installed with relative ease. If you prefer, the Sleuth Kit can be compiled

and installed from source after being downloaded from the sleuthkit.org web site. As mentioned previously,

the tools in TSK are broken into four different layers; filesystem, content, metadata, and human interface.

The content (or data) layer is for the actual data of files and directories. Tools that operate on this layer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
mfreeopenbsd-CHP-11-SECT-3.html
http://www.sleuthkit.org/
file:///C:/DOCUME~1/leetg/LOCALS~1/Temp/Mastering_FreeBSD_and_OpenBSD_Security__OReilly-1ed__2005.chm/0596006268/sleuthkit.org

directly interact with the data in files and directories. These tools start with the letter d.

The metadata layer contains information that describes the files and directory themselves. This includes

inode information, FAT directory structures, access and modification times of files, and privilege information.

These tools start with the letter i.

The human interface layer provides a more convenient way to interact with files. Rather than have to

understand and track the metadata information, the human interface layer abstracts some of that information

to make it easier on the analyst. Human interface tools start with the letter f.

Finally, the filesystem layer deals with (as you may have guessed) information about the filesystem such as

volume name and when a volume was last mounted. These tools start with the letters fs.

11.3.3. Using TSK

When using the tools in TSK, the first thing you should do is make a copy of the disk with which you are

interacting. Never interact directly with the compromised filesystem. Performing forensic analysis against the

compromised filesystem may change the data in an unexpected and untraceable way. If you make changes

to the original data, you will never really be sure of what an attacker has done as opposed to what you did.

Copying filesystems is relatively easy. On your forensics workstation you need to have at least twice as

much free space as the filesystem you intend to copy from the compromised drive. Not only will you be

making a copy of the compromised filesystem, you are also copying of all the free space on the filesystem as

well.

Take the drive from the compromised host and attach it to the drive controller on your forensic workstation.

Use the dd(1) utility to copy the compromised filesystem to an image file. So, assuming you wanted to

examine the root filesystem of the compromised drive currently available as ad1 to your home directory, you

would execute the following.

% sudo dd if=/dev/ad1s1a of=/home/user/comp-root.dd

Depending on the size of the filesystem, this may take a while. dd is designed to be precise, not quick. You

will probably see transfer speeds of 10-30MB a minute, so for a multi-gigabyte filesystem, you may consider

getting some food or watching something on your TiVo.

If you are lucky enough not to have a compromised filesystem to deal with, you can still practice your

forensics skills with your existing host. Hopefully you have enough space on one filesystem to hold the

contents of another. Take the following host for example:

% df -k

Filesystem 1K-blocks Used Avail Capacity Mounted on

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

/dev/ad0s1a 495726 85304 370764 19% /

devfs 1 1 0 100% /dev

/dev/ad0s1d 15231278 3099220 10913556 22% /usr

/dev/ad0s1e 2697326 26902 2454638 1% /var

The root filesystem is only 500MB and there is nearly 11GB of free space on the /usr filesystem. In this setup,

you can copy the root filesystem via dd to someplace in /usr and perform your "analysis."

Once dd is complete, you have a bit-for-bit copy of the original filesystem that you can start doing your

analysis against. You may, for the sake of safety, copy all the filesystems on the compromised disk, shut

down your workstation, and remove the drive. This will ensure that you are not going to inadvertently modify

the compromised disk.

Depending on the information you're looking for, you may want to use various tools in TSK. Normally, you

want to build a timeline of when files were modified on the compromised host. Start this process by using the

fls tool to gather data about allocated and unallocated files in the filesystem. Use fls with the -m flag to

specify the mount point and -r to ensure the entire filesystem is examined. The -f flag specifies the filesystem

type you are dealing with. This flag is used in nearly all TSK tools.

% fls -f freebsd -m / -r comp-root.dd > body

Next, use the ils tool to find information about unallocated inodes. With this information you can determine

what files have been changed and deleted. Note that you are adding the output of the ils command to the

body file, not overwriting it.

% ils -f freebsd -m comp-root.dd >> body

Finally, use the mactime command to create the timeline from the body file. mactime takes the input body

file via the -b flag and requires a start date. mactime will only log changes that occurred after that date. In

this example, we examine all changes on a host since January 1, 2000.

% mactime -b body 1/01/2000 > timeline

The timeline file now contains information on every file that has changed or been deleted since the start of

the twenty-first century. You can examine the file using a pager like less or grep through it for strings you're

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

interested in. In this case, we are interested in changes in inetd.conf. Using grep, we find the following entry

Thu Jul 24 2003 17:10:08 4939 m.c -/-rw-r--r-- 0 0 60159 /etc/inetd.conf

4939 is the size of the file. The m.c indicates that the file was modified and created at that time.

The timeline file can be very valuable when piecing together the events in an attack. File access, creation,

and modification around the time of the attack may be pointers to indicate how an attacker broke in and what

her motivations were.

11.3.4. Autopsy

Digging through the data generated by TSK by hand can be tedious and confusing. If you are performing

analysis on a large number of hosts or are working as a team, the flat files and ad-hoc storage of TSK data

can be cumbersome. Thankfully, there's Autopsy, a perl script that provides a web interface for interacting

with data from the Sleuth Kit.

Autopsy can be installed from sysutils in the ports tree. Alternately, the code can be downloaded directly from

http://www.sleuthkit.org/ and configured manually. Note that the ports installation does not actually install

Autopsy anywhere. You have to manually copy the script and supporting files to a directory of your choice,

usually your home directory.

Once configured, Autopsy can be started simply with /path/to/autopsy. Once started, Autopsy will direct you

to a URL where you can access its functionality as shown in Example 11-4.

Example 11-4. Starting Autopsy

% sudo ./autopsy

==

 Autopsy Forensic Browser

 ver 1.73

==

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.sleuthkit.org/

Evidence Locker: /usr/home/gdead/evidence/

Start Time: Mon Dec 13 23:42:47 2004

Paste this as your browser URL on localhost:

 http://localhost:9999/37461905692459298670/autopsy

By default, Autopsy restricts connections to localhost only. If you want to change the port Autopsy runs on or

allow remote access, you can start multiple instances of the program using the syntax autopsy port

remote-host.

Autopsy does more than simply allow web access to TSK data. It aims to be a complete incident analysis tool

that can be used from the beginning of the analysis process all the way through potential legal proceedings.

Autopsy provides the ability for multiple analysts to work on one incident, multiple hosts to be associated with

one incident, and even accounts for time drifts between hosts automatically. Further, notes can be entered

for any piece of data within Autopsy allowing your analysis data to be stored with the raw information.

Autopsy also automates the task of creating a timeline so you don't have to remember the awkward TSK

commands. Figure 11-2 shows a timeline as viewed in Autopsy. Arguably, this is much nicer than viewing a

flat text file from TSK.

Figure 11-2. A sample timeline from Autopsy

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

TSK and Autopsy are complicated tools and we have only scratched the surface. With the test image you

have, you should examine the other tools included with TSK to become familiar with their utility now . . .

before you really need them.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

11.4. Wrapping Up

Incident response and forensic analysis are (unfortunately) a fact of life. Even through your best efforts,

eventually an attacker will cause you some real harm. There are many different ways to treat incident

response and your needs will vary depending on your situation. However, having a clear understanding of

how to respond and being prepared for it regardless of when it happens is the best way to ensure that your

incident is handled as gracefully as possible.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html
mfreeopenbsd-CHP-11-SECT-4.html

 < Day Day Up >

11.5. Resources

Forensics List at SecurityFocus (http://www.securityfocus.com/incidents)

A general purpose forensics discussion list. Subscription information available at the link.

Incident Response, Ken van Wyk and Richard Forno (O'Reilly), 2001

A concise guide to all the ins and outs of incident response. Information available from

http://www.oreilly.com/catalog/incidentres/index.html.

Investigating Computer-Related Crime, Peter Stephenson (CRC Press), 1999

A resource tailored to the corporate security specialist who needs detailed information on

investigating attacks. This book provides a thorough coverage of the technical and legal aspects of

computer crime.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
mfreeopenbsd-CHP-11-SECT-5.html
http://www.securityfocus.com/incidents
http://www.oreilly.com/catalog/incidentres/index.html

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution

channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality

and life into potentially dry subjects.

The image on the cover of Mastering FreeBSD and OpenBSD Security depicts fencers. Whether used for

sport or for war, the art of fencing can be traced back to some of the earliest known civilizations. For

example, fencers entertained Pharaohs in ancient Engypt. The Greeks and Romans, meanwhile, had

systems of martial arts that included swordsmanship. The modern sport of fencing originated in the first

Olympic Games, in 1896, and consists of three different weapons: foil, \351p\351e, and sabre. The lightest of

these weapons is the foil. A foil fencer can only score hits by landing thrusts to the trunk of the body. A

modern electrical scoring apparatus, worn by the fencer, will record a hit for any blow landed with a force of

at least 4.90 newtons. Less flexible and heavier than the foil, the \351p\351e usually has a large hand guard.

This bell-shaped guard is important because the \351p\351e fencer is not as limited in her targets-the entire

body, including the hand, is considered a valid target to score hits. An \351p\351e fencer registers a hit with

7.35 newtons of force. The sabre differs from these first two swords in that it is an edge, rather than a point,

weapon. A sabre fencer may land points to any part of the upper body (head, torso, and arms). A touch with

the point, flat, or edge of the sword will register a hit.

Adam Witwer was the production editor, and Nancy Reinhardt was the copyeditor for Mastering FreeBSD and

OpenBSD Security. Linley Dolby proofread the text. Sarah Sherman and Claire Cloutier provided quality

control. Lucie Haskins wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image

is a 19th-century engraving from the Dover Pictorial Archive. Karen Montgomery produced the cover layout

with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Judy Hoer to FrameMaker 5.5.6 with a

format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and

XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the

code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced

by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe

Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This colophon was written by

Adam Witwer.

The online edition of this book was created by the Digital Books production group (John Chodacki, Ken

Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and

maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html
mfreeopenbsd-COLOPHON.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html
index.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-v flag

 syslogd

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A (address) record

 cache poisoning and

 creating multiple

 direct delivery and

 mail servers and

 MTAs and

 MX record and

 tinydns and

-a option

 newsyslog

 syslogd 2nd 3rd

accept action (ipfw)

access control

 administration and

 loghosts and

 minirsyslogd and

 syslogd and

 users and

access control lists [See ACLs]

access table (Postfix)

accountability, security and

accounts

 CVS repository and

 default denial mindset

 FreeBSD and

 locked out

 logging to

 operator

 security considerations 2nd 3rd

 shell

 toor

ACID (Analysis Console for Intrusion Databases)

acid_conf.php file

ACLs (access control lists)

 dangers of 2nd

 filesystem flags and 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 FreeBSD and

 log files and

 POSIX 2nd

 TSIGs and 2nd 3rd

 zone transfers and

Active Directory (Microsoft Windows)

add command (ipfw)

AddModule directive

address record [See A record]

address resolution protocol (arp) request 2nd

adduser command

admincvs group 2nd

administration

 access control

 additional resources 2nd

 everyday security

 of firewalls 2nd

 HIDS software

 monitoring system health

 multiple systems and

 remote 2nd 3rd

 security and

 security vulnerability response

 upgrading

administrators

 controlling access 2nd

 false positives and

 logging and

 mailing lists

 privileged access

 root passwords and 2nd

 su and sudo comparison

advskew variable (CARP)

AES algorithm 2nd

AFS (Andrew File System)

alert level (syslog)

alerts

 ACID and 2nd

 false positives and

 IDS and 2nd

 logcheck and

 Snort and 2nd

 swatch and

 Tripwire and

alerts file (Snort)

aliases

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 arbitrary program restriction

 defining

 jail and

 mail delivery and 2nd

 mail forwarding via

 protecting

 sendmail and

all keyword (pfctl)

Allman, Eric

allow action (ipfw)

allow-recursion option (BIND)

allow-transfer option (BIND)

AllowGroups option (sshd_config)

AllowOveride None (mod_cgi)

AllowUsers option (sshd_config)

Amanda (Advanced Maryland Network Disk Archiver) 2nd 3rd

amavisd-new command 2nd 3rd

amavisd.conf file

ampersand (&) 2nd

Analysis Console for Intrusion Databases (ACID)

Andrew File System (AFS)

Anonymous Diffie-Hellman ciphers

Anonymous FTP

Apache web servers

 ACID and

 additional resources

 best practices

 chroot and

 configuring 2nd 3rd

 encryption and

 FreeBSD and

 HTTP authentication

 installing

 jail and

 ktrace command

 modules

 overview

 popularity of

 support files

 support for

 thttpd and 2nd

 two-tiered architecture

 vulnerabilities

apachectl command

applications [See also software] [See also software]

 events and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 logging to

 loghosts and

 mailing lists

 security and 2nd 3rd

 worms and

 writing restrictions

arbitrary content filtering 2nd 3rd

arbitrary program execution

arch flag 2nd 3rd 4th

arp (address resolution protocol) request 2nd

arp poisoning

ASCII characters

assessment, incident response and

asterisk (*) 2nd 3rd

asymmetric cryptography

at command

at sign (@) 2nd

@stake

atrm command

attacks

 ACID and 2nd

 buffer overflow and 2nd

 chroot and

 core dumps and

 creating users with

 DNS 2nd

 DoS 2nd 3rd

 false negatives and

 firewalls and 2nd 3rd 4th 5th

 fragmentation 2nd

 HIDS and 2nd

 .htaccess files and

 internal

 Internet connectivity and

 IPS and

 log analysis

 log files and

 mail servers

 minirsyslogd and

 MITM 2nd 3rd

 multipurpose systems and

 network versus local

 NIDS and 2nd

 operating system level

 PIDs and

 problems in software

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 ProPolice stack protection and

 registration hijacking

 responding to

 scripted 2nd

 Sendmail and

 Snort and

 spoofing

 system availability and

 uchg flag and

 understanding impact of

 Unicode

 vulnerability discovery and

 web servers and

 webmail servers and

auditing

 administrator access

 automated scripts

 controlling open relays

 defined 2nd

 HIDS and

 log files and 2nd

 logcheck and

 loghosts and

 OpenBSD and

 security and 2nd 3rd 4th

 swatch and

 syscall activity

auth facility 2nd

auth.info file

authentication

 auto-logout and

 centralized

 DHCP and

 digest

 DNS and

 dynamic updates

 HTTP

 logging commands

 mail access and

 mail servers and 2nd

 MUAs and

 NFS and

 NTP

 passphrase

 pfsync and

 plaintext 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 POP and

 Postfix and

 SASL and 2nd 3rd

 security considerations

 Sendmail and

 SMTP and 2nd

 ssh keys

 sshd and

 syslogd and

 two-factor 2nd 3rd

 UDP and

 vulnerabilities with

 webmail and

authoritative servers 2nd

authorized_keys file

 creating

 public key and 2nd

 risk mitigation

 system immutable flag and

authpriv facility 2nd

authwarnings value (PrivacyOptions)

automatic logout

Autopsy

availability

 of firewalls

 root volume and

 security and 2nd

AXFR (zone transfer)

 authenticating

 BIND versus djbdns

 DNS-based risks

 logging

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B flag (newsyslog)

-b option (syslogd)

back-tick (Ô)

backup MX server 2nd

backups 2nd

BalaBit

bandwidth, thttpd and 2nd

Banner configuration option

banners directive

base35.tgz file 2nd

bash shell

bell action (swatch)

Bellovin, Steve

Berkeley Internet Name Daemon [See BIND]

Berkeley Packet Filter (BPF) interface

Berkeley Packet Filter (BPF) option

Bernstein, Daniel J. 2nd 3rd

Big Brother monitoring tool 2nd

Big Sister monitoring tool 2nd

Binc IMAP

BIND (Berkeley Internet Name Daemon)

 additional resources

 BIND 8 2nd

 BIND 9 2nd 3rd 4th 5th 6th

 cache poisoning and

 chroot and

 djbdns comparison

 installing

 missing zone data and

 operating

 overview

 recursive queries

 remote administration

 security options and

 syslogd and

 unauthorized zone transfers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

blacklists

 mail relay and

 open relays and

 RBLs 2nd 3rd

 side effects of

Blaze, Matt

blocker files

blowfish encryption (OpenBSD) 2nd

bounce_size_limit variable (Postfix)

BPF interface

BPF option (FreeBSD)

bpf packet filtering

branches, tracking

Broadcom Ubsec chipset

bsd distribution set (OpenBSD)

BSD systems

 filesystem 2nd

 inherent protections 2nd

 kernel 2nd 3rd

 optimization

 user process controls

 XFree86

buffer overflows

 audits and

 fighting

 identifying risk with 2nd 3rd

 Perl and

 ProPolice stack protection

 W^X memory protection

buffers 2nd 3rd

Bugtraq forum 2nd 3rd

bulk email

bump in the wire firewall

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

CA (certificate authority) 2nd

cache poisoning 2nd

California Civil Code

camcontrol command (FreeBSD)

canary value

canonical name record [See CNAME record]

Cariello, Giacomo

CARP (Common Address Redundancy Protocol)

carp keyword

case sensitivity

cat binary

categorization (security advisory)

catman distribution (FreeBSD)

CD-ROMs

CD9660 option (FreeBSD)

CERT CA-2003-13 advisory

certificate authority (CA) 2nd

certificates

 client-based

 Osiris and

 SSL and 2nd 3rd

.cf files

cfg_dir option (nagios.cfg)

cfg_file option (nagios.cfg)

CFS (Cryptographic File System)

CGI directory

CGI module (Apache) 2nd

CGI programs

 Apache port options

 application abuse and

 arbitrary execution

 cgiwrapd and

 DoS attacks and

 mod_include and 2nd

 mod_suexec and

 mod_userdir and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Perl and 2nd

 PHP and 2nd

 running as normal users

 ScriptAlias directory and

 thttpd and 2nd

 vulnerabilities

cgi.cfg file

cgiwrap

 additional resources

 containing damage with

 mapping privileges

 overview

chain of custody 2nd

challenge response authentication

change control

Chaos class

check-state action (ipfw)

check_client_access check (Postfix)

check_external_commands option (nagios.cfg)

check_helo_access check (Postfix)

check_nrpe command 2nd

check_recipient_access check (Postfix)

check_sender_access check (Postfix)

-checkall flag (Rootkit Hunter)

checkcommands.cfg file

Checkpoint firewall

checksums

 Osiris

 Osiris and

 Rootkit Hunter

 Tripwire

 Tripwire and

chflags command

 finding files

 immutable flag and

 manipulating flags 2nd

 NFS mounted filesystems and

 permissions and

 setting flags with 2nd

chgrp command

chio command

chmod command 2nd 3rd

chown command 2nd

chroot environment

 Apache and 2nd 3rd 4th

 controls and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 OpenBSD and

 Postfix and

 running BIND in

 separating caches

 Snort and

 syslogd and 2nd 3rd

 two-tiered architecture

chroot system call

CIA Triad of security

ciphers

Clam Anti-virus (ClamAV) 2nd

cleanup daemon (Postfix)

client firewall_type (IPFW)

client-server model 2nd

closed firewall_type (IPFW)

CNAME (canonical name) record

 DNS and

 example

 logging to

 zones and

Code Red worm

code review

comma (,)

command_file option (nagios.cfg)

commands

 avoiding dangerous

 elevated privileges and

 NOPASSWD option

 restricting unneeded

 su and sudo comparison

Common Address Redundancy Protocol (CARP)

Common Criteria for Information Technology Security Evaluation

comp35.tgz distribution set (OpenBSD)

Compaq

COMPAT_43 option (FreeBSD)

comsat service

Concurrent Versions System [See CVS]

confCONNECTION_RATE_THROTTLE option (sendmail)

confidentiality

 backups and

 domain registration and

 security and 2nd

 syslogd and

configuration

 ACID 2nd

 Apache 2nd 3rd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 basic logging

 BIND

 CARP

 default denial mindset

 external jail

 FreeBSD

 HA firewalls 2nd

 identifying risks

 internal jails

 IPFW

 kernel

 log file rotation

 logcheck

 mail servers

 Nagios

 networks for OpenBSD

 NRPE

 NTP

 open relay

 Osiris

 PF

 PHP

 Postfix 2nd 3rd

 rndc command

 security considerations 2nd

 Sendmail 2nd 3rd 4th

 Snort

 sudo package 2nd 3rd

 swatch

 Syslog relay

 syslog.conf file

 thttpd web server

 vulnerabilities with 2nd

 zone misconfiguration 2nd

confMAX_DAEMON_CHILDREN option (sendmail)

confMAX_MESSAGE_SIZE option (sendmail)

confMAXRCPTSPERMESSAGE option (sendmail)

confMIN_FREE_BLOCKS option (sendmail)

console facility (FreeBSD) 2nd

console, logging to

content filtering

 arbitrary 2nd 3rd

 mail relay and

 SpamAssassin and

content layer (TSK)

controls option (BIND)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

controls statement (rndc)

cooked devices 2nd 3rd

core dumps 2nd

count field (newsyslog)

Courier IMAP 2nd 3rd

cp command

cpio command

crit level (syslog)

cron facility

 checking files

 functionality

 newsyslog and

 OpenBSD and

 Snort and

crontab command 2nd

cross-site scripting (XSS) 2nd

cryptcat command 2nd

cryptographic accelerators 2nd

Cryptographic File System (CFS)

cryptography

 additional resources

 asymmetric

 CPU usage

 critical nature of 2nd

 djbdns and

 message validation and

 NTP authentication and

 public/private key

 spoofing

 TSIG and

csh shell

-CURRENT branch (FreeBSD)

CVS (Concurrent Versions System)

 change control and

 data integrity and

 features

 list of anonymous servers

 MITM attacks and

cvs add command

cvs checkout command

cvs commit command

cvs status command

cvs update command

CVSROOT environment variable

cvsup procedure

 availability of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 downloading

 MITM attacks and

 supfile and

cvsup-without-gui port

Cyrus-IMAP 2nd

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-d flag (pfctl)

--daemon command-line argument

daemon facility 2nd 3rd

daemontools

DATA command (SMTP)

data integrity [See integrity]

data link layer

data recovery, security and

DAV module (Apache)

DBx option (Postfix)

dd command 2nd

DDoS (distributed denial-of-service) attacks 2nd 3rd

debug level (syslog)

DEBUG option (FreeBSD)

debugging 2nd 3rd

default deny concept

default_process_limit variable (Postfix)

default_user_name option (cgi.cfg)

DefaultUser option (sendmail) 2nd

defense in depth principle 2nd 3rd

delete command (ipfw)

Delivermail

delivery status notifications (DSNs)

Dell

demilitarized zone [See DMZ]

Denver Project

deny action (ipfw)

DenyGroups option (sshd_config)

DenyUsers option (sshd_config)

DES encryption 2nd

DESTDIR environment variable

devfs filesystem

devfs.conf file

device bpf PF)

device nodes 2nd 3rd

device pf (PF)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

device pflog (PF)

device pfsync (PF)

DHCP

 BIND and

 dangers of 2nd

 OpenBSD and

 security and

digest authentication

digital signatures 2nd 3rd

directories

 chroot and 2nd

 expectations for

 immutable

 looking for strange

 minirsyslogd

 mod_userdir and

 Sendmail permissions 2nd

 Snort and

 union mounts and

 world-writable 2nd

disaster recovery

DISCARD value (Sendmail)

disclosure, file and data

display_errors setting (PHP)

Distributed Authoring and Versioning (DAV) protocol

distributed denial-of-service (DDoS) attacks 2nd 3rd

distribution sets 2nd

divert action (ipfw)

djbdns

 additional resources

 BIND comparison

 cache poisoning and

 installing

 missing zone data and

 operating

 overview 2nd

 secure file distribution

 security and options and

DMZ (demilitarized zone)

 backup server and

 considerations

 firewalls and 2nd 3rd

 PF and 2nd

 recursion servers and

 security policies on

 web servers and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

DNS (Domain Name Service)

 architecture 2nd

 BIND 2nd 3rd 4th

 criticality of

 djbdns 2nd 3rd 4th 5th

 IP addresses and

 mail servers and

 real-time blacklists

 risks related to

DNS attacks 2nd

DNS servers

 chroot and

 firewalls and

 MITM attacks

 network buffering and

 security and 2nd 3rd

 syscall auditing

 trust and

 user access and

DNS spoofing

dnscache server (djbdns) 2nd 3rd

dnscache-conf script

dnsqr tool

DNSSEC

document templates 2nd

documentation

 change control and

 djbdns and 2nd

Domain Name Service [See DNS]

domains

 identifying internal

 internal mail servers and

 masquerading 2nd 3rd

 MX records and 2nd

 registration hijacking

 syslogd and

DontBlameSendmail option (sendmail)

DoS (denial of service) attacks

 Apache and

 backup MX servers and

 identifying risks

 logs to loghosts and

 mail servers and

 Postfix and

 Sendmail and 2nd

 severity assessment and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 syslog-ng and

 thttpd and

drop action (ipfw)

DSNs (delivery status notifications)

dummynet command

dump command

 arch flag and

 backups and 2nd 3rd

 nodump flag and 2nd 3rd 4th

 raw devices and

dump flag

dumpcommand

 raw devices and

dynamic updates 2nd 3rd

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-e flag (pfctl)

e-commerce 2nd 3rd

echo action (swatch)

echo command (smrsh)

edit-mhost (Osiris)

EDITOR environment variable

EHLO command

802.11 wireless networks

email

 blocking unwanted 2nd

 digital signatures and

 direct delivery

 DNS and

 legal compliance

 logcheck and 2nd

 message validation

 Nagios notifications

 nodump flag and

 Osiris notification

 reliance on

 rerouting

 risks related to

 security and 2nd

 stopping unwanted

 vulnerabilities of

emerg level (syslog)

encryption

 Apache web servers

 backups and

 ciphers and

 DES

 external mail servers and

 loghosts and

 mail access and

 messages and

 msyslog and 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 networks and

 password exposure

 Postfix and

 private key and

 Sendmail and

 SMTP and

 SSL and

 syslog-ng and

 syslogd and 2nd

 tunneling and

 webmail and

env_reset flag

envelope (SMTP) 2nd 3rd

equals sign (=) 2nd

err level (syslog)

error_limits variable (Postfix)

etc35.tgz distribution set (OpenBSD)

Etoh, Hiroaki

ETRN command (SMTP) 2nd

EventReporter

events

 applications and

 responding to 2nd

 storing in flat files 2nd

 storing in MySQL

 Windows NT and

EventSLog

exclamation mark (!)

exec command (smrsh)

#exec directive 2nd

execute permission 2nd

exit command (smrsh)

EXPN command 2nd

external mail servers

EXTERNAL_NET variable (snort.conf)

Extreme security profile (FreeBSD)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F command

-f flag (logger)

-F flag (pfctl)

facility configuration parameter (syslog.conf) 2nd

false negatives

false positives 2nd 3rd 4th

FastCGI 2nd

fat jails 2nd 3rd 4th

Fetchmail 2nd

files

 ACLs and

 Apache

 append-only

 blocker

 change control

 chroot and

 logging to

 looking for changed

 mod_userdir and

 msyslog and

 parsing

 protecting critical

 schg flag and 2nd

 secure distribution of

 Sendmail permissions 2nd

 storing events in 2nd

 Tripwire and

 umask and 2nd

filesystem flags

 ACLs and 2nd

 BSD systems

 common usage of

 manipulating 2nd

 securing log files

 UFS

filesystem layer (TSK)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

filesystems

 ACLs and

 backups and

 BIND and

 BSD systems and

 centralized storage

 chroot 2nd

 defining partitions

 export control

 FTP daemon and

 jail and 2nd 3rd

 mount options

 mounting and securelevel 2

 Osiris and

 slicing up

 TSK

 UFS

 UFS2 2nd 3rd 4th 5th

 unionfs

 volatility and securelevels

filtering

 arbitrary content 2nd 3rd

 content

 Mail Filter API and

 MUAs and

 NetBIOS traffic

 packets

 Perl taint rules and

 SpamAssassin and

filters section (pf.conf)

FIN bit 2nd

find command 2nd

fingerd command 2nd 3rd

firewall_enable option (IPFW) 2nd

firewall_type (IPFW)

firewalls [See also IPFW PF] [See also IPFW PF]

 ACID and

 architecture

 attacks and 2nd

 default denial mindset

 DoS attacks and

 handling failure

 high availability

 host lockdown

 immutability of

 infrastructure servers and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 IPS and

 limitations of

 loghosts and 2nd

 NAT and

 network scans and

 NFS and

 NTP and 2nd

 open relays and

 PF and

 physical security and

 recursion servers and

 security and 2nd 3rd

 sensors and

 Snort and

 syslogd and 2nd

 workstations and

flags [See filesystem flags]

flags field (newsyslog)

fls tool

forensic analysis

 after attacks

 of compromised hosts 2nd

 data recovery and

 overview

forking processes 2nd 3rd 4th 5th

format string errors 2nd

formmail.pl script 2nd

.forward file

 arbitrary program restriction

 attacks and

 mail delivery and

 mailing list

 redirecting mail

forward slash (Ú)

forward zones 2nd

fragmentation attacks 2nd

FreeBSD

 ACLs and 2nd 3rd

 additional resources 2nd 3rd

 Apache and

 BIND and

 camcontrol command

 chroot and

 configuration

 djbdns and

 hostnames and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 httpd and

 installing

 IPFW

 jail and

 kern.randompid variable

 mount_unionfs

 multiple versions of 2nd

 NIDS sensor and

 PAM

 periodic command

 PF and 2nd

 POSIX access control lists 2nd

 Postfix and

 release engineering

 reliability and

 securelevel 2nd

 Sendmail and

 sendmail-sasl port

 syslogd on

 toor account

 tracking branches

 uchg flag and

 UFS2 and

 unionfs filesystem

 uunlnk flag

 version numbers and

freebsd-announce list (FreeBSD)

freebsd-security-notifications list (FreeBSD)

freebsd-stable mailing lists

FreeSBIE

Frenzy

FreshPorts mailing list

From (SMTP header)

fsck command 2nd 3rd

FTP 2nd 3rd

ftp facility 2nd 3rd

ftpd (file transfer protocol daemon)

 chroot and

 functionality

 inetd and

 infrastructure servers

 logs and 2nd

Full Disclosure forum

functionality, security versus

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

G flag (newsyslog)

GAPING_SECURITY_HOLE flag (Makefile)

Gauntlet firewall system

GCC C/C++ compiler

GENERIC configuration file 2nd 3rd

GET request (HTTP) 2nd

getfacl command 2nd 3rd

gets function

GID (group ID) 2nd 3rd 4th 5th

GNU General Public License

GNU Privacy Guard (GPG)

goaway value (PrivacyOptions)

GPG (GNU Privacy Guard)

grep command 2nd 3rd

group ID (GID) 2nd 3rd 4th 5th

groups

 catchall primary

 configuring

 controlling user access

 per-user

 project-based

 role-based

 security considerations and

growfs command 2nd

GTGI

gunzip command

gzip command

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

HA (high availability)

hackers

 Apache web server and

 honeypots and

 rootkits

 web server attacks and

halt -d command

hashing

 MD5 algorithm

 msyslog and 2nd

 security considerations

 SHA-1 algorithm

 TLS ciphers

 TSIGs and

headers

 envelope versus 2nd

 information leaks

 pflogd and

 trivially faking

HELO request (SMTP) 2nd 3rd

HIDS (host-based IDS)

 checksums

 installing

 overview 2nd

HiFn chipsets

high availability (HA)

hmac-md5 hashing algorithm

HOME_NET variable (snort.conf)

Honeynet Project

honeypots 2nd

host-based firewalls 2nd

hostname

 CARP interfaces and

 CNAME instead of

 HELO request

 httpd and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 internal mail servers

 launching jail 2nd

 matching

 plus sign and

hosts.allow file 2nd

hosts.deny file

Hot Standby Router Protocol (HSRP) 2nd

Hot-Cold firewall architecture

Hot-Hot firewall architecture

Hot-Standby firewall architecture 2nd 3rd

Hot-Warm firewall architecture 2nd

HSRP (Hot Standby Router Protocol) 2nd

.htaccess files 2nd

HTML

 Apache and

 entity encoding 2nd

 injection

 mod_include and 2nd

 separating locations

HTTP

 ACID and

 DAV standard and

 information leaks

 Snort and

 SSL and

 URL encoding 2nd

httpd

 chroot environment and

 MaxClients

 process size

 root access and

 two-tiered architecture

httpd.conf file

 CGI module (Apache)

 jails and

 launching

 MaxClients directive

 mod_include and

 modules and

 PHP and

 protecting

 SSL and

 SSLCipherSuite directive

 system immutable flag

 user overrides

httpd.core file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

HTTPS 2nd 3rd

human interface layer (TSK)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IANA

id_dsa private key

id_dsa.pub public key

IDE disks

IDENT protocol

identd service

IDS (Intrusion Detection System)

 ACID

 architectures

 BPF and

 DoS attacks and

 HIDS

 monitoring 2nd

 NIDS

 PF and

 responding to events 2nd

 Snort

IEEE 1003.1e standard

IETF (Internet Engineering Task Force)

 DAV protocol

 DNS standards

 syslog and

 VRRP and

ignore statement (swatch) 2nd

ignore_dot flag

IIS (Internet Information Server)

 Apache and

 buffer overflow and

 traversal attacks

 Unicode attacks

 vulnerability

ils tool

IMAP (Internet Message Access Protocol)

 IPFW and

 mail access and

 mail delivery and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 webmail and

IMP (Webmail) 2nd

in option (ipfw)

incident detection

incident response

 additional resources

 incident assessment

 incident detection

 postmortem analysis

 preparation

 response

 security considerations 2nd

include directive 2nd 3rd

:include: mailing list 2nd 3rd

\:include: mailing list

Includes option (mod_include)

incremental zone transfers (IXFR) 2nd 3rd

index option (ipfw)

index.html file

inetd (internet daemon) super server

 FreeBSD and

 NRPE and

 OpenBSD and

 security and

 skipping configuration

 tcpwrappers and

inetd.conf file 2nd

info distribution (FreeBSD)

info keyword (pfctl)

info level (syslog)

infrastructure servers

 controlling access 2nd

 dual-booting

 OpenBSD and 2nd

 remote access and

 risks to

 security and 2nd

 X distribution and

inherent protections 2nd

inodes 2nd

INSERT statement (MySQL)

insider attacks

install.sh shell script

installation

 ACID

 Apache web servers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 BIND

 DHCP use during

 djbdns

 FreeBSD

 jail and 2nd

 logcheck

 media options

 msyslog

 Nagios

 NRPE

 OpenBSD 2nd 3rd

 Osiris

 Postfix 2nd

 securelevels and

 security and 2nd

 Sendmail

 Snort

 software

 sudo package

 swatch

 thttpd web server 2nd

 TSK

InstantSSL

integrity

 auditing and

 CARP and

 file signatures and

 log files and

 maintenance and

 message validation

 msyslog

 root volume and

 security and

 signatures and

 syslogd and 2nd

 system availability and

internal mail servers

 guidelines

 masquerading domains 2nd

 overview

Internet

 backup server and

 confidence indicators on

 DNS and

 network scans

 paths to operating systems

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 RFC 1918

 risks in connectivity

Internet Engineering Task Force [See IETF]

Internet Information Server [See IIS]

Internet Message Access Protocol [See IMAP]

Internet Protocol FireWall [See IPFW]

Internet service providers [See ISPs]

Internet Software Consortium (ISC) 2nd

Intrusion Detection System [See IDS]

Intrusion Prevention Systems (IPS) 2nd

IP addresses

 A records and

 CARP interfaces and

 data integrity and

 djbdns and 2nd

 DNS and

 forward zones

 httpd and 2nd

 instances and

 IPFW and 2nd

 jail and

 lame delegation 2nd

 launching jail

 MAC addresses and 2nd

 mail transport and

 minirsyslogd and

 multi-homed

 name resolution and

 NAT and

 network scans and

 pfsync and

 POP before SMTP and

 private 2nd

 restricting access

 reverse lookups

 RFC 1918

 Snort and

 spoofing 2nd

 syslogd and

IP ID

IPFilter (OpenBSD)

ipfirewall command

IPFW (Internet Protocol FireWall)

 basic configuration

 functionality

 overview

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 PF and

 rules and

ipfw command 2nd

ipfw show command 2nd

IPS (Intrusion Prevention Systems) 2nd

IPSO operating system

IPv6 option (FreeBSD)

ISC (Internet Software Consortium) 2nd

ISIS routing protocol

ISO 9660 filesystem

ISPs (Internet service providers)

 backup mail servers

 DDoS attacks and

 DNS-based risks and

 DoS attacks and 2nd

 responding to attacks

IXFR (incremental zone transfers) 2nd 3rd

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

J flag (newsyslog)

jail environment

 Apache and

 controls and

 infrastructure servers and

 overview

 separating caches

 syslogd and

 web servers with

JID (jail ID) 2nd 3rd

jls command

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kamp, Poul-Henning

Kaspersky Anti-Virus 2nd

kdump command 2nd 3rd 4th

keep-state option (ipfw) 2nd

Kerberos authentication 2nd 3rd

kern facility 2nd

kern.coredump variable (FreeBSD)

kern.corefile variable (FreeBSD)

kern.ipc.nmbclusters variable

kern.ipc.somaxconn variable

kern.maxfiles variable

kern.nosuidcoredump variable

kern.randompid variable

kern.securelevel [See secure level]

kern.somaxconn variable

kern.sugid_coredump variable

kernel

 BSD systems and 2nd

 checking

 configuration

 cooked devices and

 cryptographic accelerators

 DHCP and

 dropping packets

 IPFW configuration

 jail and

 modularity of

 msyslog and

 PF configuration

 security levels

 security-related variables 2nd

 swap partitions

 syslogd and

 tuning

 tweaking with sysctl

 uchg flag and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 W^X memory protection and

key rndc_key statement (rndc)

keys to the kingdom 2nd

keywords, logcheck and 2nd 3rd

kill command 2nd

krb4 distribution (FreeBSD)

krb5 distribution (FreeBSD)

ktrace command 2nd 3rd

KTRACE option (FreeBSD)

ktrace.out file

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

lame delegation

latency, network

layer 3 devices

layered approach

ld.so (runtime loader)

ldd command 2nd 3rd

least privilege 2nd

legal compliance

less binary

level configuration parameter (syslog.conf) 2nd 3rd

Linux operating system 2nd

Listen directive (httpd)

load balancing 2nd

loader.conf file

LoadModule directive

local attacks 2nd

local facility 2nd

local security

local service (Postfix)

localhost

 Autopsy and

 connections from

 mod_include and

 NFS master jail and

 NTP and

 packets and

 restricting access to

log analysis 2nd 3rd

log files

 administrators and

 automated monitoring

 capturing

 logcheck and

 managing

log keyword

log option (ipfw)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

logcheck 2nd 3rd

logfilename field (newsyslog)

logger command 2nd

logging

 BIND 9

 configuring basic

 denied traffic 2nd

 executed privileged commands

 IPFW option 2nd

 mail access and

 PF and 2nd

 Postfix and

 reaching limits

 remote

 Snort and

 sockets 2nd

 syslogd actions

 system

loghosts

 cryptcat and

 defined

 encryption and

 logging to

 protecting

 restricting access

 securing

 Syslog relay and

 syslog-ng and

 syslogd and

login banners 2nd

login classes 2nd 3rd

login.conf file 2nd

logout, automatic

logsentry

logtail binary

lpd (line printer spooler daemon) 2nd 3rd

lpr facility 2nd

ls command

 ACLs and

 creating devices 2nd

 -q option

 Trojan horses and

 viewing flags

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAC (mandatory access control)

MAC (message authentication code)

MAC addresses 2nd 3rd

MacOS X

macros section (pf.conf)

mail access

 additional resources

 external mail servers and

 mail service and

 protecting

 securing

mail action (swatch)

mail delivery agents (MDAs)

mail exchanger record [See MX record]

mail facility 2nd

Mail Filter API (milter)

MAIL FROM: command 2nd

mail relay 2nd

mail servers

 architecture

 backup 2nd

 configurations

 DNS and

 firewalls and

 security and

 SMTP and

 syscall auditing

 targets for attacks

mail transfer agents [See MTAs]

mail transport 2nd 3rd 4th

mail user agents [See MUAs]

mailadmin group

mailbox_size_limit variable (Postfix)

maildrop group account

mailing lists

maillog file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailq command

mailwrapper command

main.cf file (Postfix) 2nd

maintenance

 firewalls and

 security and 2nd 3rd

 simplicity in

 tinydns

 zone 2nd

make package (FreeBSD) 2nd

make pretty-print-build-depends-list command

make pretty-print-run-depends-list command

make.conf file 2nd 3rd

makeweb command (thttpd)

malware 2nd

man distribution (FreeBSD)

man-in-the-middle attacks [See MITM attacks]

man35.tgz distribution set (OpenBSD)

mandatory access control (MAC)

MAPI (Messaging Application Programming Interface)

mark facility 2nd

Maslow's pyramid of human needs

masquerading domains 2nd 3rd

master binary (Postfix)

master.cf file 2nd 3rd

master.passwd file

 copying

 encryption

 extracting accounts

 hashes and

 password cracking programs and

MaxClients directive (Apache) 2nd 3rd

maxusers variable 2nd

McAffee Virus Scan 2nd

McGraw, Gary

McIlroy, Doug

MD5 algorithm

md5 encryption (FreeBSD) 2nd

MD5 hashing algorithm

 checking against rulesets

 Rootkit Hunter and

 TLS ciphers and

 Tripwire and

 TSIGs and

mdachdep.allowaperture variable

MDAs (mail delivery agents)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Medium security profile (FreeBSD)

Melissa worm

memory

 BIND and 2nd

 buffer overflows and 2nd

 database server and

 MaxClients and 2nd

 Perl and

 sensors and

 tuning options

mergemaster (FreeBSD)

message authentication code (MAC)

Message-Id (SMTP header)

message_size_limit variable (Postfix)

messages log file

Messaging Application Programming Interface (MAPI)

metadata layer (TSK)

MFS filesystem

Microsoft Internet Explorer 2nd

Microsoft Oullook Web Access

migration from multipurpose systems

milter (Mail Filter API) 2nd

milter-regex daemon

minirsyslogd 2nd

mirror ports

MITM (man-in-the-middle) attacks

 CVS updates and

 defined

 DNS and

 OpenBSD and

 untrusted certificates and

mk.conf file

mkdir command

mknod command 2nd 3rd

mod_access (Apache)

mod_autoindex (Apache) 2nd

mod_cgi (Apache)

mod_dav (Apache)

mod_include (Apache) 2nd

mod_info (Apache)

mod_perl (Apache) 2nd 3rd

mod_php (Apache) 2nd 3rd

mod_proxy (Apache) 2nd 3rd

mod_ssl (Apache) 2nd

mod_status (Apache)

mod_suexec (Apache) 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mod_userdir (Apache) 2nd

mode field (newsyslog)

Moderate security profile (FreeBSD)

modularity

monitoring

 automated

 system health 2nd

more binary

Morris Internet worm 2nd 3rd

motd (message of the day) file

mount command 2nd 3rd

mount_union (OpenBSD)

mount_unionfs (FreeBSD)

Mozilla Firefox

MPMs (multiprocessing modules)

MS-SQL database

MSDOSFS option (FreeBSD)

msyslog (Modular Syslog) 2nd 3rd

MTAs (mail transfer agents)

 A records and

 additional resources

 DNS and

 internal mail servers and 2nd

 mailwrapper command

 purpose

 qmail and

 Sendmail as

 SPF and

mtools command

mtree tool 2nd 3rd

mtx command

MUAs (mail user agents)

 authentication and

 defined

 filtering and

 header information and

 mailwrapper command and

 plaintext authentication and

 Postfix and

multiprocessing modules (MPMs)

mv command

MX (mail exchanger) record

 at sign and

 direct delivery and

 DNS and mail risks

 domains and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 MTAs and

MySQL database

 ACID and 2nd

 authentication and

 permissions storage

 storing alert information

 storing events

MySQL option (Postfix)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-N flag (ipfw)

Nagios 2nd

Nagios Remote Plugin Executor (NRPE) 2nd 3rd

nagios-plugins package 2nd 3rd

nagios.cfg file

name resolution

 DNS and

 mail servers and

 registration hijacking and

 SMTP and

name servers

 attacks and

 BIND and

 caching

 DNS-based risks

 naming

 registration hijacking and

 tinydns and

 zone misconfigurations and

 zone transfers and 2nd

named daemon 2nd

named.conf file

 BIND 9 and

 controls option and

 filesystems and

 include directive

 trusted hosts

 TSIGs and

named_chroot_autoupdate variable (BIND)

named_enable variable

named_flags variable

NAMI (name-to-inode) translation

NAT (Network Address Translation)

 firewalls and

 ipfw command and

 PF and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 routers and 2nd

ndc command

needexpnhelo value (PrivacyOptions)

needmailhelo value (PrivacyOptions)

needvrfyhelo value (PrivacyOptions)

Nelson, Russell

nessus tool

net.inet.carp.allow variable

net.inet.carp.preempt variable

net.inet.ip.forwarding variable

net.inet.ip.fw.enable variable

net.inet.tcp.blackhole variable

net.inet.tcp.drop_synfin variable

net.inet.tcp.recvspace variable

net.inet.tcp.sendspace variable

net.inet.udp.blackhole variable

NetBSD

netcat command 2nd

Netcraft web server survey

NetCryptX

Netscape

netstat command

 attacks and

 mbufs and

 Osiris and

 suspect changes

 Trojan horses and

Network Address Translation [See NAT]

network attacks 2nd 3rd

network buffering

Network File System [See NFS protocol]

Network Information Services (NIS)

network latency

network layer

Network Sensor (Real Secure)

Network Time Protocol [See NTP]

networks

 backups and

 configuring for OpenBSD

 DoS attacks

 encryption and

 firewall architectures

 installation considerations

 isolating

 monitoring

 reducing visibility on

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 scanning

 security and

 troubleshooting

new-host script (Osiris)

newfs command 2nd

news facility 2nd

newsyslog command 2nd 3rd

newsyslog.conf file 2nd

NFS (Network File System) protocol

 ACLs and

 FreeBSD and

 jail and

 security and

NFS option (FreeBSD)

NFS server security profile (FreeBSD)

NIC cards

NIDS (network-based IDS)

 ACID and

 overview 2nd

 Snort

NIS (Network Information Services)

nmap command 2nd 3rd

NMBCLUSTERS variable

NO_BIND option (FreeBSD)

NO_SENDMAIL option (make.conf)

noauto option (mount)

nobodyreturn value (PrivacyOptions)

nodev option

 mount

 OpenBSD

nodump flag 2nd 3rd

noetrn value (PrivacyOptions)

noexec option (mount)

noexpn value (PrivacyOptions)

Nokia

none level (syslog)

NOPASSWD option

noreceipts value (PrivacyOptions)

noschg flag

nosuid option

 fstab

 mount

 OpenBSD

notice level (syslog)

Notice of Security Breach (California Civil Code)

NOTIFY messages 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

noverb value (PrivacyOptions)

novrfy value (PrivacyOptions)

NRPE (Nagios Remote Plugin Executor) 2nd 3rd

NS record 2nd

NTP (Network Time Protocol)

 configuring

 developing

 security and 2nd

ntp-genkeys command

ntpd command 2nd 3rd

ntpd.conf file (OpenBSD)

null client

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

offline analysis

online analysis

opaque flag

open firewall_type (IPFW)

Open NMS monitoring tool

Open Relay Database

open relays

 avoiding

 mail servers and 2nd

Open Webmail

OpenBSD

 ACLs and

 additional resources

 Apache and 2nd

 calendar schedule and

 CARP and

 code review

 as IDS sensor

 installing 2nd 3rd

 login classes

 MAC and

 mount_union

 NTP daemon

 pervasiveness of

 PF

 Postfix and

 ProPolice stack protection

 release engineering

 security script

 setting securelevel

 syslogd on

 tcpdump command

 tracking branches 2nd

 W^X memory protection

openbsd-localhost.mc file

OpenLDAP option (Postfix)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

OpenLDAP servers

OpenNMS monitoring tool

OpenSSH 2nd

OPENSSH_OVERWRITE_BASE flag

OpenSSL

 additional resources

 cryptography and

 information leaks

 NRPE and

operating systems

 additional resources

 attacks and 2nd

 compatible backups across platforms

 dual-booting

 fingerprinting

 Internet paths to

 protecting

 tuning

 viruses and

operator account

optimization

 BSD systems

 PF and

 Snort and

option TCP_DROP_SYNFIN statement

options INET (PF)

options IPFIREWALL (IPFW)

options IPFIREWALL_DEFAULT_TO_ACCEPT (IPFW)

options IPFIREWALL_VERBOSE (IPFW)

options IPFIREWALL_VERBOSE_LIMIT (IPFW)

Options None (mod_cgi)

options PFIL_HOOKS (PF)

options RANDOM_IP_ID (PF)

options section (pf.conf) 2nd

OSI reference model

Osiris

 additional resources

 overview

 security and 2nd

OSPF routing protocol

out option (ipfw)

output database directives

outsider attacks

owner:group field (newsyslog)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packages, installing software

Packet Filter [See PF]

packets

 dropping 2nd

 filtering

 fragmentation

 IPFW kernel options

 localhost and

 PF and

 pflog interface and

 RFC 1918

 Snort and

 spoofed

 synfin 2nd

PAM (Pluggable Authentication Modules)

PARANOID directive

partitions 2nd

pass action (ipfw)

passphrases

 authentication and

 CVS and

 private key and

 two-factor authentication and

password authentication 2nd 3rd 4th

PasswordAuthentication option (sshd_config)

passwords

 CARP and

 clear-text protocols and

 CVS repository and

 DAV and

 encryption and

 format compatibility

 master.passwd file

 root 2nd

 secure installation and

 security considerations 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 shadow 2nd

 strong 2nd 3rd 4th

 su and sudo comparison

patches

 disruptive nature of

 FreeBSD and

 importance of applying

 keeping abreast

 mitigating vulnerabilities

 OpenBSD and

 security and 2nd

PATH environment variable

 Apache and

 BIND and

 cgiwrap and

 FreeBSD and

 PHP and

 sudo and

pcap data structure

peochk command

performance

 Apache

 firewalls and

 root volume and

 tweaking

 two-tiered architecture and

period (.) 2nd

periodic command (FreeBSD)

perl distribution (FreeBSD)

Perl language 2nd 3rd

Perl module (Apache) 2nd

PerlTaintCheck option

permissions

 accounts and

 ACLs and

 data integrity and

 DAV and

 deleting files and

 downloading source code and

 fine-grained control

 flag usage

 jails and

 locking down

 overview 2nd

 PHP and

 ports system and 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 private key and

 security and

 security considerations

 segregating

 Sendmail and 2nd

 UFS filesystem flags

 user/group/other model

 world 2nd 3rd

permit action (ipfw)

permit_sasl_authenticated directive

PermitRootLogin option (sshd_config) 2nd

PF (Packet Filter)

 additional resources

 basic configuration

 IPFW and

 overview

 Snort and 2nd

pf_enable option (IPFW)

pf_rules configuration option

pflog interface

 BPF and

 logging

 packets and 2nd

 Snort and

pflog_enable option (PF)

pfsync keyword

PGP (Pretty Good Privacy) 2nd

PgSQL option (Postfix)

PHP

 ACID and

 additional resources

 configuring

 disabling

 mod_userdir and

 SquirrelMail

 thttpd and

PHP module (Apache) 2nd 3rd

php.ini file

php.ini-dist file

php.ini-recommended file

physical layer

physical security 2nd

PIDs (process IDs)

ping command

pipe (|)

pipe service (Postfix)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

pkg_add executable

plaintext authentication 2nd

Pluggable Authentication Modules (PAM)

plus sign (+) 2nd

pointer record [See PTR record]

POP (Post Office Protocol)

 authentication and

 mail access and

 mail delivery and

 syslogd and

 webmail and

PORT_REPLACES_BASE_BIND9 flag 2nd

portmap command

portmap security profile (FreeBSD)

ports

 Apache and 2nd

 HTTPS

 logcheck and

 mirror

 monitoring

 network scans

 OpenBSD and

 Sendmail and 2nd

 SMTP and

 span

 TCP

 UDP 2nd 3rd 4th 5th

ports distribution (FreeBSD)

ports system

 FreeBSD

 installing software

 OpenBSD

portupgrade command 2nd 3rd

POSIX access control lists (FreeBSD) 2nd

Poskanzer, Jef

Post Office Protocol [See POP]

POST request (HTTP) 2nd

Postfix

 additional resources

 authentication

 author of

 blocking unwanted email

 configuring

 installing 2nd

 limiting DoS attacks

 overview

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 restarting

 secure file distribution

 security and 2nd

 syslogd and 2nd

PostgreSQL database

preferred MX server

PREFIX environment variable

Premium thttpd 2nd

Pretty Good Privacy (PGP)

printers, logging to

printf function

PrintMotd option

PrivacyOptions option (sendmail)

private IP address 2nd

private keys

 Apache and

 cryptography and 2nd

 id_dsa

 OpenSSL and

 SSL and 2nd 3rd

privilege separation 2nd

process IDs (PIDs)

processes

 BIND versus djbdns

 forking 2nd 3rd 4th 5th

 jail and

 looking for

programs [See applications]

PROPFIND method (DAV)

ProPolice stack protection 2nd

Protocol option (sshd_config)

proxymap service (Postfix)

Psionic

PTR (pointer) record

 mail servers and

 MX record and

 reverse 2nd 3rd

public key authentication

public key certificates 2nd

public keys

 cryptography and 2nd

 id_dsa.pub

 ssh and

public value (PrivacyOptions)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

qmail mailer 2nd 3rd

QoS (Quality of Service) 2nd

Qpopper 2nd

Quality of Service (QoS) 2nd

quarantine

queries

 ACID and

 HIDS and

 recursive 2nd 3rd 4th

query-source option (BIND)

QUERY_STRING environment variable

queso command

question mark (?)

queue files

QueueFileMode option (sendmail)

queuing section (pf.conf)

quick keyword

QUIT command (SMTP)

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

race conditions 2nd

random number generators

raw devices 2nd 3rd

Raymond, Eric

RBLs (real-time blacklists) 2nd 3rd

rc.conf file

 BIND 9 and

 immutability of

 IPFW firewall_type

 launching BIND from

 OpenBSD and

 screen blanking

 syslogd_flags variable

 turning off services

 tweaking

rc.conf.local file

 disabling services

 immutability of

 PF and

 pflogd and

 rdate and

 rdate_flags

 syslogd_flags variable

 tweaking

rc.firewall file 2nd 3rd

RC2 algorithm 2nd

RC4 algorithm 2nd

rcmd command

RCPT TO: command (SMTP)

RCS (Revision Control System) 2nd

rdate command (OpenBSD) 2nd

rdate_flags option

rdist command

rdonly option (mount)

rdump command

read permission

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 ACLs and

 expectations for

 securelevel and

 Unix standard

 wheel group and

Real Secure

real-time blacklists (RBLs) 2nd

Received (SMTP header)

recursion, limiting 2nd

recursive queries 2nd 3rd 4th 5th

RedHat operating system

REFERER checks

refuse files

register_globals setting (PHP)

registration hijacking 2nd

regression testing

regular expressions

reject suspect mail

REJECT value (Sendmail)

reject_rbl_clcient directive

RELAY value (Sendmail)

relay-domains file

reliability

 FreeBSD and

 syslog-ng and

 syslogd and

 UDP and

remote administration 2nd 3rd

repository, CVS 2nd

Request for Comments [See RFCs]

reset action (ipfw)

resolv.conf file 2nd 3rd

--restart-time command-line argument

restore command

restrictexpand value (PrivacyOptions)

restrictmailq value (PrivacyOptions)

restrictqrun value (PrivacyOptions)

reverse zones 2nd

Revision Control System (RCS) 2nd

RFC 931

RFC 1135

RFC 1918 2nd 3rd

RFC 1945

RFC 2068

RFC 2196

RFC 2246

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

RFC 2518

RFC 2554

RFC 2845

RFC 3195

RFC 3330

RFC-ignorant.org

RFCs (Request for Comments)

 DNS-related

 logging-related

 mail-related 2nd

 security-related

 web-related

RIP routing protocol

risk mitigation

 authorized_keys file and

 considerations

 controlling mail flow

 DNS attacks and

 DoS attacks and

 listening services

 malware and

 NTP servers

 overview

 recommendations

 response planning and execution

 syslogd and 2nd

risks [See also vulnerabilities] [See also vulnerabilities]

 and consequences

 accepting

 DNS and

 DoS attacks

 identifying

 identifying attacks

 improper configuration and use

 infrastructure servers and

 Internet connectivity and

 network installations and

 network versus local attacks

 physical security 2nd

 problems in software

 security and 2nd 3rd

 transferring

rlogin protocol

rlogind command

rm command

rndc command 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

rndc-confgen script (BIND 9)

rndc.conf file 2nd

rndc.key file

Roesch, Marty

root access

 log monitoring and

 NIS and

 ports system and

 safeguarding 2nd

 sendmail and

 setuid binary and

 su command and

 syslogd and

Rootkit Hunter

rootkits

routers

 denied traffic

 NAT and 2nd

 protocols and

Rowland, Craig

RPC 2nd 3rd

RSA algorithm

rsh protocol

RSH variable

rsync command 2nd 3rd

rules keyword (pfctl)

rulesets

 IPFW and 2nd 3rd

 PF and 2nd

 updating

 validating

 verbose output

RunAsUser option (sendmail)

ruserok command

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-s flag

 pfctl

 pflogd

-s option (syslogd) 2nd

S/MIME (Secure MIME) standard 2nd

SafeFileEnvironment option (sendmail)

SANS Security Policy Project

sappnd flag

 behavior 2nd

 kernel and

 locking down files

 log files and

 newsyslog and

SASL (Simple Authentication and Security Layer)

 additional resources

 authentication and 2nd 3rd 4th

 overview

 Postfix and 2nd

 TLS and

SASL2 option (Postfix)

saslauthd daemon 2nd

SASLAUTHD option (Postfix)

saslpasswd command

saslpasswd2 command

schg flag

 behavior

 directories and

 files and 2nd

 FreeBSD and

 httpd.conf and

 kernel and

 setting on

scp (secure copy) command

scponly product

scrollback buffers

scrub section (pf.conf)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SCSI bus 2nd 3rd

SEARCH method (DAV)

secure by default approach

secure level

 locking down permissions

 securelevel -1

 securelevel 0

 securelevel 1 2nd

 securelevel 2

 securelevel 3

 securelevel variable 2nd

Secure MIME (S/MIME) standard

Secure Sockets Layer [See SSL]

securelevel 0

securenets file 2nd

security [See also hardening] [See also hardening]

 accountability and

 ACID and

 additional resources 2nd

 administration and

 Apache and

 applications and

 audits and

 availability and 2nd

 BIND and

 CIA Triad of

 confidentiality and 2nd

 data integrity and

 DHCP and

 djbdns and

 DNS and

 firewalls and 2nd 3rd

 HTTP URL encoding and

 IDS events and

 infrastructure servers 2nd

 inherent protections

 jail options

 as a journey

 kernel and

 kernel variables 2nd

 local

 log consolidation and

 logcheck.sh script

 loghosts and 2nd

 mail access and

 mailing lists

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 mod_dav and

 mod_perl module and

 mod_userdir and

 multipurpose systems

 MX records and

 NAT and

 network service and

 NTP and

 obscurity and 2nd

 overhead in

 physical 2nd

 Postfix

 process and principles

 responding to risk

 response to vulnerabilities

 risk and 2nd 3rd

 root volume and

 securelevel and

 Sendmail and 2nd

 sensors and

 SMTP and

 spider architecture and

 thttpd and

 web servers and

 webmail and

 workgroup servers

 workstations

 XFree86 and

security facility (FreeBSD) 2nd

Security Focus web site 2nd

security script (OpenBSD)

security-announce list (OpenBSD)

security-through-obscurity

security.bsd.see_other_gids variable

security.bsd.see_other_uids variable

security.jail.socket_unixiproute_only variable

security.jail.sysvipc_allowed variable

SecurityFocus mailing lists 2nd

sed command

SELECT statement (MySQL)

Self-Certifying File System (SFS)

Sender Policy Framework [See SPF]

Sendmail mailer

 additional resources

 attacks and

 authentication

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 blocking unwanted mail

 configuring 2nd

 encryption

 limiting DoS attacks

 overview

 syslogd and

sendmail security profile (FreeBSD)

sendmail service

 forking processes and

 FreeBSD and

 ktrace command and

 OpenBSD and

 security and

sendmail-sasl port (FreeBSD)

sendmail.cf file 2nd

sendmail.mc file

sensors

 ACID and

 attacks and

 firewalls and

 hardware

 NIDS and 2nd

 security and

 Snort and 2nd 3rd

server-parsed handler

server-side-include (SSI) 2nd

server.crt file 2nd

server.key file 2nd 3rd

SERVICEDIR environment variable

services

 availability of

 determining conditions for starting

 infrastructure servers and

 listening

 multipurpose systems and

 restarting key

 segregating 2nd

 turning off unnecessary 2nd

seteuid command

setfacl command 2nd

setgid command

 changing group owner

 nosuid option (mount)

 security and

 sendmail binary and

 sysctl variables and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

setreuid command

setuid command

 BIND and

 cgiwrap and

 danger of

 mod_suexec and

 nosuid option (mount)

 removing

 root access and

 security and

 sendmail binary and

 sysctl variables and

setup option (ipfw)

SFS (Self-Certifying File System)

sgid command

SHA-1 hashing algorithm

shadow passwords 2nd

shell accounts

SHELL environment variable

show command (ipfw) 2nd

Simple Authentication and Security Layer [See SASL]

simple firewall_type (IPFW)

Simple Mail Transfer Protocol [See SMTP]

size field (newsyslog)

-skip-keypress flag (Rootkit Hunter)

skipto action (ipfw)

smrsh command

SMTP (Simple Mail Transfer Protocol)

 additional resources

 authentication and 2nd

 commands

 design problems

 encryption and

 envelope and header

 ETRN command

 external mail servers and

 milters and

 name resolution and

 port accessibility

 restricting unneeded commands

 security and

 Sendmail and

 webmail and

SMTP AUTH 2nd

smtpd banner

smtpd daemon (Postfix)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 chroot and 2nd

 error thresholds

 root access and

 spawning

smtpd_error_sleep_time variable (Postfix)

smtpd_helo_restrictions variable (Postfix)

smtpd_recipient_limit variable (Postfix)

smtpd_recipient_restrictions variable (Postfix) 2nd 3rd

smtpd_sasl_auth_enable option (Postfix)

smtpd_soft_error_limit variable (Postfix)

Snort 2nd

SOA (start of authority) record 2nd

sockets

 jails and

 logging 2nd

 syslogd and 2nd

sockstat command (FreeBSD)

software [See also applications] [See also applications]

 buffer overflows 2nd

 change control

 chroot and

 format string error

 identifying problems in 2nd

 installing

 installing in jail

 protecting

 race conditions

 SQL injection and 2nd

 web server choices

 web-based attacks

Solaris operating system

Sourcefire

spam

 additional resources

 backup MX servers and

 DNS and

 HELO request and

 increase in

 open relay and

 SPF and 2nd

 stopping

 as unwanted mail

Spam Cop

SpamAssassin

 additional resources

 content filtering with

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 internal mail servers and

 mail relays and

 milter-regex file and

 Postfix and

 SPF and

SpamCop

spanning tree protocol

SPF (Sender Policy Framework)

 additional resources

 functionality

 overview 2nd

SPF option (Postfix)

spider architecture

spoofed packets

spoofing

 DNS

 false positives and

 IP addresses

 jail and

 zone transfers and

spoofing attacks

spyware

SQL injection 2nd 3rd 4th

SquirrelMail 2nd

src distribution (FreeBSD)

SSH

 cryptography and

 NFS over

 Protocol option (sshd_config)

 schg flag and

ssh (secure shell) service

 backups and 2nd

 connecting using 2nd 3rd

 CVS repository and

 file distribution over 2nd

 zone transfers and

ssh-add command

ssh-agent command 2nd

ssh-keygen command 2nd

sshd (secure shell daemon)

 access control and

 activating

 Banner configuration option

 enabling

 FreeBSD and

 inewtd and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 locking down

 OpenBSD and

 security and

 Snort and

sshd security profile (FreeBSD)

sshd_config file 2nd 3rd 4th

SSI (server-side-include) 2nd

SSL (Secure Sockets Layer)

 additional resources

 Apache and

 authentication and

 certificates and 2nd 3rd

 CPU usage

 cryptography and

 DAV and

 enabling

 private keys and

 SSL/TLS connection 2nd

 starting servers and

 thttpd and

 TLS and 2nd

 web servers and

SSLCipherSuite directive

-STABLE branch (FreeBSD) 2nd 3rd

stack protection

staff group

start of authority (SOA) record 2nd

state keyword (pfctl)

stream4 preprocessor

StrictModes option (sshd_config)

strong passwords

 creating

 FreeBSD and

 mail access and

 OpenBSD and

 recommendations

stunnel command 2nd

su command

 privileged access

 sudo package and

 super-user privileges

 wheel group and 2nd 3rd

SU_CMD option (make.conf)

submit.cf file

SUDO option (mk.conf)

sudo package

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 apachectl

 configuring 2nd 3rd

 creating devices

 installing

 privileged access

 privileged commands

 restarting key service

 Sendmail and

 su command and

 super-user privileges

 wheel group and

sudoers configuration file

 creating customized

 editing 2nd

 revoking privileges

 root access and

suexec module (Apache) 2nd 3rd

SUEXEC_CALLER option (Apache) 2nd

SUEXEC_DOCROOT option (Apache) 2nd

SUEXEC_GIDMIN option (Apache) 2nd

SUEXEC_LOGFILE option (Apache) 2nd

SUEXEC_SAFEPATH option (Apache) 2nd

SUEXEC_UIDMIN option (Apache) 2nd

SUEXEC_UMASK option (Apache) 2nd

SUEXEC_USERDIR option (Apache) 2nd

suiddir option (mount)

sunlnk flag 2nd

SunONE

swatch 2nd 3rd 4th

swatch_oldrc2newrc binary

switches 2nd

symmetric keys 2nd

SYN packets

 dropping

 firewalls and

 ipfw and 2nd

 network scans

synchronization 2nd

sysctl command 2nd 3rd

sysctl variables 2nd 3rd

sysctl.conf file 2nd

sysinstall command 2nd 3rd

syslog facility

 actions

 functionality

 IPFW and 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 OpenBSD and

Syslog relay

syslog system call

syslog-ng 2nd 3rd

syslog.conf file

 configuring

 debugging and

 keeping smaller logs

 logs and

 program/hostname matching

 syslog facilities

 syslog levels

syslogd (syslog daemon)

 actions

 configuring

 debugging

 drawbacks of

 FreeBSD and

 as monolithic

 OpenBSD and

 replacements for

 running

 UDP datagrams and

syslogd_flags configuration entry

syslogd_flags variable (rc.conf)

syslogd_flags variable (rc.conf.local)

system administrators [See administrators]

system logging [See logging]

system no unlink flag (sunlnk) 2nd

system time

 FreeBSD and

 NTP and

 restriction on

 securelevel and

System V IPC 2nd

systems

 administration considerations

 monitoring health 2nd

 patching and

 security and

 as Syslog relay

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-t flag (snort)

tables section (pf.conf)

tag suspect mail

taint rules (Perl)

tap 2nd

tar command 2nd 3rd

TASK (The @stake Sleuth Kit)

TCO (total cost of ownership) 2nd

TCP

 DNS and

 inetd and

 IPFW and

 ipfw command and 2nd

 monitoring port

 msyslog and

 net.inet.tcp.drop_synfin variable

 network scans

 PF configuration and

 port

 SYN packet 2nd

 syslog-ng and 2nd

 UCSPI

 zone transfers and

TCP/IP

tcpd (tcpwrappers daemon)

tcpdump command 2nd 3rd

tcpwrappers

 inetd and

 login banners and

 NFS and

 NRPE and

tcsh shell

TCT (The Coroner's Toolkit)

telnet protocol

telnetd command

TempFileMode option (sendmail)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

temporary files

testing, regression

The @stake Sleuth Kit (TASK)

The Coroner's Toolkit (TCT)

The Sleuth Kit (TSK)

thin jails 2nd

three-legged firewall

threshold.conf file (Snort)

throttle action (swatch)

throttling rules 2nd

thttpd web server

 additional resources

 configuring

 installing 2nd

 overview

 popularity of

 static pages and

time [See system time]

time-of-check-to-time-of-use (TOCTTOU) vulnerability

Tiny HTTP daemon [See thttpd web server]

tinydns server (djbdns)

 daemontools and

 maintenance

 recursion and

 running

 zone data and

TLD (top-level domain) servers 2nd

TLS (Transport Layer Security)

 encryption and

 overview

 Postfix and

 RFC 2246

 SMTP and 2nd

TLS option (Postfix)

/tmp filesystem

To (SMTP header)

TOCTTOU vulnerability

toor account (FreeBSD)

top-level domain (TLD) servers 2nd

total cost of ownership (TCO) 2nd

traceroute command 2nd

transient files

translation section (pf.conf)

transparent firewalls 2nd

Transport Layer Security [See TLS]

Tripwire

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 checksums and

 as HIDS

 monitoring and

 permissions and

Trojan horses 2nd

trust

 certificates and 2nd

 data integrity and

 DHCP and

 DNS servers and

 external messages and

 implicit

 internal hosts

 servers and

 SSL/TLS

 zone transfers and

Trusted Information Systems, Inc.

TrustedBSD project

TrustedUser option (sendmail) 2nd

TSIG (transaction signatures)

 BIND and

 overview

 permissions and

 zone transfers and

TSK (The Sleuth Kit)

tty, logging to

tunefs command

tunneling 2nd 3rd 4th

two-factor authentication 2nd 3rd

twofish encryption

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-u flag (snort)

-u option (syslogd)

uappnd flag 2nd

UCE [See spam]

uchg flag 2nd 3rd

UCONSOLE option (FreeBSD)

UCSPI (Unixi Client-Server Program Interface)

ucspi-tcp tools

UDP (User Datagram Protocol)

 DNS and

 inetd and

 IPFW and 2nd 3rd

 loghosts and

 minirsyslogd and

 monitoring port

 msyslog and

 netcat and

 network scans

 port used

 reliability and

 spoofing

 syslogd and 2nd

 system logger and

 zone transfers and

UFS (Unix filesystem)

 ACLs and

 filesystem flags

 support for

UFS2 filesystem

 ACLs and

 FreeBSD and 2nd 3rd

UFS_ACL option

UID (user ID)

 CGIs and

 implicit trust

 PHP and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 processes and

 scripts using

 of zero

umask (user file-creation mask) 2nd

UNICODE characters

Unicode decoder (IIS)

unionfs filesystem

Unix Client-Server Program Interface (UCSPI)

Unix filesystem (UFS)

 ACLs and

 filesystem flags

 support for

Unix operating system

 accounts and permissions

 BSD systems and

 chroot and

 defects in software

 device styles

 direct delivery and

 kernel securelevels and 2nd

 Sendmail and

 syslogd

 system security and

 TCT

 user/group/other permissions

 viruses and worms

 wheel groups and

 workgroup servers and

UNSECURE mode

unsolicited commercial email [See spam]

UPDATE statement (MySQL)

updating

 dynamic 2nd 3rd

 FreeBSD

 OpenBSD 2nd

 Osiris and

upgrading

 administration and

 FreeBSD

 mitigating vulnerabilities

 Osiris and

 response planning and execution

 security considerations 2nd

URIs

URLs 2nd

USB option (FreeBSD)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

UsePrivilegeSeparation option (sshd_config)

user accounts [See accounts]

User Datagram Protocol [See UDP]

user facility 2nd

user ID [See UID]

users

 configuring

 controlling access

 creating in OpenBSD

 looking for added 2nd

 secure installation and

 security considerations and

 tracking

uucp facility 2nd

uunlnk flag 2nd 3rd

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

-v flag

 pfctl

/var filesystem

variables_order setting (PHP)

Venema, Wietse 2nd

VerifyReverseMapping option (sshd_config)

Verisign

version option (BIND)

version.bind TXT record

versions

 Apache web server

 conflicts with 2nd

 multiple 2nd

 release engineering

 reporting fake numbers

 tracking branches

 two-tiered architecture and

vertical bar (|)

vhid (virtual host ID) variable

vi binary

via option (ipfw)

Viega, John

vipw command 2nd

virtual host ID (vhid) variable

virtual private networks (VPNs)

Virtual Routing Redundancy Protocol (VRRP)

virtual service (Postfix)

virtual tty, logging to

virus protection

 internal mail servers

 mail relay and 2nd

 malware and

 Postfix

 resource savings and

viruses

 defined

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 mail relay and

 mail servers and

 malware and

 stopping

 Unix and

VISUAL environment variable

visudo command

VMailer

VPNs (virtual private networks)

VRFY command

vrfy command (Postfix)

VRRP (Virtual Routing Redundancy Protocol)

vuln-dev (Vulnerability Development) list

vulnerabilities [See also risks] [See also risks]

 Apache and

 arbitrary program execution

 buffer overflow

 CGI programs

 DNS software

 DoS attacks and

 honeypots and

 hosts and

 mail access and

 mail software

 monitoring suites and

 OpenBSD install and

 patching 2nd

 Perl and

 preexisting 2nd

 scanning for

 security response

 Sendmail and 2nd

 Snort and

 TOCTTOU

 X Window System and

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W^X memory protection

warning level (syslog)

watchfor statement (swatch) 2nd

Watson, Robert

weakest link principle

web browsers

web servers [See also Apache web servers thttpd web server] [See also Apache web servers thttpd web server]

 architecture

 attacks on

 ciphers and

 core dumps and

 effects of hacking

 firewalls and 2nd

 information leaks

 jails and

 problems and

 security and

 software choices

 Zeus

web spiders

WebDAV

webmail 2nd

wheel group

 OpenBSD and 2nd

 su command and 2nd 3rd 4th

when field (newsyslog)

when option (swatch)

WiFi hotspots 2nd

Windows Advanced Server 2003

Windows NT

Windows XP

--with-mysql flag (Snort)

WITH_APACHE2 flag (Apache)

WITH_SUEXEC option (Apache) 2nd

WITHOUT_MAN environment variable 2nd

WITHOUT_SSL option (Apache) 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

workgroup servers

 controlling access

 mail servers as 2nd

 security and

 X applications and

workstations

 authentication and

 defined

 DHCP and

 null client

 OpenBSD and 2nd

 redirecting mail to

 reduced costs for

 security and

worms

 defined

 mail servers and

 malware and

 stopping

 Unix and

Wright, Matt

write permission

 ACLs and

 expectations for

 securelevel and

 Unix standard

wsconsctl (OpenBSD)

WU-IMAP

www user

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X distribution (FreeBSD)

X server 2nd 3rd

X Window System 2nd

X-Authentication-Warning headers

X11Forwarding option (sshd_config)

X11UseLocalhost option (sshd_config)

xbase35.tgz distribution set (OpenBSD)

XBitHack directive

xconsole command

XFree86 2nd

XSS (cross-site scripting) 2nd

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yellow Pages (yp)

yp (Yellow Pages)

ypbind daemon

ypinit daemon

ypserv daemon

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Z flag (newsyslog)

Z record

Zeus web server

zone maintenance 2nd

zone transfer (AXFR)

 authenticating

 BIND versus djbdns

 DNS-based risks

 logging

ZoneAlarm firewall

 < Day Day Up >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

	Mastering FreeBSD and OpenBSD Security
	Table of Contents
	Copyright
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari Enabled
	Acknowledgments

	Part I: Security Foundation
	Chapter 1. The Big Picture
	1.1. What Is System Security?
	1.2. Identifying Risks
	1.3. Responding to Risk
	1.4. Security Process and Principles
	1.5. System Security Principles
	1.6. Wrapping Up
	1.7. Resources

	Chapter 2. BSD Security Building Blocks
	2.1. Filesystem Protections
	2.2. Tweaking a Running Kernel: sysctl
	2.3. The Basic Sandbox: chroot
	2.4. Jail: Beyond chroot
	2.5. Inherent Protections
	2.6. OS Tuning
	2.7. Wrapping Up
	2.8. Resources

	Chapter 3. Secure Installation and Hardening
	3.1. General Concerns
	3.2. Installing FreeBSD
	3.3. FreeBSD Hardening: Your First Steps
	3.4. Installing OpenBSD
	3.5. OpenBSD Hardening: Your First Steps
	3.6. Post-Upgrade Hardening
	3.7. Wrapping Up
	3.8. Resources

	Chapter 4. Secure Administration Techniques
	4.1. Access Control
	4.2. Security in Everyday Tasks
	4.3. Upgrading
	4.4. Security Vulnerability Response
	4.5. Network Service Security
	4.6. Monitoring System Health
	4.7. Wrapping Up
	4.8. Resources

	Part II: Deployment Situations
	Chapter 5. Creating a Secure DNS Server
	5.1. The Criticality of DNS
	5.2. DNS Software
	5.3. Installing BIND
	5.4. Installing djbdns
	5.5. Operating BIND
	5.6. Operating djbdns
	5.7. Wrapping Up
	5.8. Resources

	Chapter 6. Building Secure Mail Servers
	6.1. Mail Server Attacks
	6.2. Mail Architecture
	6.3. Mail and DNS
	6.4. SMTP
	6.5. Mail Server Configurations
	6.6. Sendmail
	6.7. Postfix
	6.8. qmail
	6.9. Mail Access
	6.10. Wrapping Up
	6.11. Resources

	Chapter 7. Building a Secure Web Server
	7.1. Web Server Attacks
	7.2. Web Architecture
	7.3. Apache
	7.4. thttpd
	7.5. Advanced Web Servers with Jails
	7.6. Wrapping Up
	7.7. Resources

	Chapter 8. Firewalls
	8.1. Firewall Architectures
	8.2. Host Lockdown
	8.3. The Options: IPFW Versus PF
	8.4. Basic IPFW Configuration
	8.5. Basic PF Configuration
	8.6. Handling Failure
	8.7. Wrapping Up
	8.8. Resources

	Chapter 9. Intrusion Detection
	9.1. No Magic Bullets
	9.2. IDS Architectures
	9.3. NIDS on BSD
	9.4. Snort
	9.5. ACID
	9.6. HIDS on BSD
	9.7. Wrapping Up
	9.8. Resources

	Part III: Auditing and Incident Response
	Chapter 10. Managing the Audit Trails
	10.1. System Logging
	10.2. Logging via syslogd
	10.3. Securing a Loghost
	10.4. logfile Management
	10.5. Automated Log Monitoring
	10.6. Automated Auditing Scripts
	10.7. Wrapping Up
	10.8. Resources

	Chapter 11. Incident Response and Forensics
	11.1. Incident Response
	11.2. Forensics on BSD
	11.3. Digging Deeper with the Sleuth Kit
	11.4. Wrapping Up
	11.5. Resources

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

