Companion Web site

Richard Blum

Linux
Command Line and

Shell Scrlptmg -

The book you need to succeed!

_ Lmux

' _Command Line and
Shell Scripting
Blble

A
3

\\\'. y
3

L

A

| - Richélrd Blum

$I |
WILEY) SIS

\ 3 : Y '
P 3 A “\Wiley Publishing, II.’lC‘\ WA - . _ \L,\ i
\ WA NN \

Linuxe
Command Line and
Shell Scripting
Bible

_ Lmux

' _Command Line and
Shell Scripting
Blble

A
3

\\\'. y
3

L

A

| - Richélrd Blum

$I |
WILEY) SIS

\ 3 : Y '
P 3 A “\Wiley Publishing, II.’lC‘\ WA - . _ \L,\ i
\ WA NN \

Linux®Command Line and Shell Scripting Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-25128-7

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copy-
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The advice and strategies contained herein may
not be suitable for every situation. This work is sold with the understanding that the publisher is not en-
gaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. Linux is a registered trademark of Linus Torvald. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

www.wiley.com

To all the people who’ve helped form my education. Parents,
relatives, teachers, coworkers, and even anonymous posters on the
Internet. Always be prepared to accept education from wherever
you find it. Always continue to learn new things. “For the LORD
gives wisdom, and from his mouth come knowledge and
understanding.” Proverbs 2:6 (NIV)

—— e -

About the Author

Richard Blum has worked in the IT industry for over 19 years as both a systems and network
administrator. During this time he has administered Unix, Linux, Novell, and Microsoft servers,
as well as helped design and maintain a 3500-user network utilizing Cisco switches and routers.
He has used Linux servers and shell scripts to perform automated network monitoring, and has
written shell scripts in just about every Unix shell environment.

Rich has a bachelor of science degree in Electrical Engineering, and a master of science degree
in Management, specializing in management information systems, from Purdue University. He
is the author of several Linux books, including sendmail for Linux, Running qmail, Postfix, Open
Source E-mail Security, Network Performance Open Source Toolkit, and Professional Assembly Language
Programming. He’s also a coauthor of Professional Linux Programming and Linux For Dummies, Sth
Edition. When he’s not being a computer nerd, Rich plays bass guitar for his church worship band
and enjoys spending time with his wife, Barbara, and their two daughters, Katie Jane and Jessica.

Credits

Acquisitions Editor
Jenny Watson

Senior Development Editor
Tom Dinse

Technical Editor
John Kennedy

Production Editor
Angela Smith

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Word One New York

Indexer
Melanie Belkin

Acknowledgments o0 oo XXV
Introduction L L L o oo xxvii

Part | The Linux Command Line

Chapter 1: Starting with Linux SHells ... 3
Chapter 2: Getting to the Shell ... 25
Chapter 3: Basic bash Shell Commandscooiiiiiiiii 59
Chapter 4: More bash Shell Commandscccooiiiiiiiiii e, 91
Chapter 5: Using Linux Environment Variablesccccocooiiiiiiiiiiii 123
Chapter 6: Understanding Linux File Permissionsccocooioiiiiiiiiiiiiceece 147
Chapter 7: Working with EdItOTSccooiiiiiiiii e 171

Part 1l Shell Scripting Basics

Chapter 8: Basic Script BUIIINGooooiiiiiiiiiiii i 201
Chapter 9: Using Structured COMMANGSovociiiiiiiiieiiiieieie e 229
Chapter 10: More Structured COmMMANSooiiiiiiiiiiie e 255
Chapter 11: Handling User INPULococooiiiiiiiiiiiiiiiiiiicc e 285
Chapter 12: Presenting DALAoooiiiiiiiiiii oot 313
Chapter 13: SCTIPt CONMIIOLooiiiiiiiii e 335

Part 11l Advanced Shell Scripting

Chapter 14: Creating FUNCUHONScooiiiiiiiiiiiii e 363
Chapter 15: Adding ColoT L0 SCTIPLSviviiiiiiiiit it 385
Chapter 16: Introducing sed and gawk ..o 419
Chapter 17: Regular EXPIeSSIONSccccoiiiiiiiiiiiiiiiiiiiiici e 447
Chapter 18: Advanced Sedcoiiiiiiiiiiiiiiiiiii e 473
Chapter 19: Advanced GawWKcooiiiiiiiii e 501

Part IV Alternative Linux Shells

Chapter 20: The ash Shell ... 533
Chapter 21: The tesh Shell .o 557
Chapter 22: The Korn Shell ... 587
Chapter 23: The zsh Shell ... 611

ix

Contents at a Glance

Part V Advanced Topics

Chapter 24: Using @ Databaseccooiiiiiiiiiiii e 639
Chapter 25: Using the WeD ..ot 673
Chapter 26: Using E-Mail ... 701
Chapter 27: Shell Scripts for AAMINISITALOTSvvoiiviiiciieit e 725
Appendix A: Quick Guide to bash Commandsccocoooiiiiiiii 749
Appendix B: Quick Guide to sed and gawk ..o 759
Appendix C: Comparing Shells ... 771

Acknowledgments 0 0 oo 0oL XXV
Introduction e e e e e e e e XXVii

Part | The Linux Command Line

Chapter 1: Starting with LinuxShells3

WHAL IS LINUX? ..ttt 3
Looking into the Linux kernel ...
The GNU UtHHESoviiiiiiic e
The Linux desktop environment
LINUX DISITIDUIONIS ...ttt
Core Linux distribUONS ..ot
Specialized Linux diStribUtionsococooioiiiiiiii i
The LInUx LIVECD ..ot

Chapter 2: Getting to the Shell

Terminal EmMulation ...
Graphics capabilitiescooiiiiiiiiiiii
The Keyboardooooiiiiiiiiiiiiiii e
The terminfo Databasec.ocoiiiiiiiio oo
The LINUX CONSOLEoiiii oo
The xterm Terminal ... e
Command line parameters
The Xterm main MENUoooiiiii oo
The VT options menu
The VT fONtS MENU ..o.oiiii oo
The Konsole Terminal ...
Command line parameters
SESSIOMIS ...t
The Menu bar ...
The GNOME Terminalocooiiiiiiii oo
The command line Parameterscccoiiiiiiiiiiiiiiieeee e 52
TADS oo 53

Contents

Chapter 3: Basic bash Shell Commands 59
Starting the Shell ... 59
The Shell PIOMIPL ..o.oouiiiiiiii e 60
The bash Manual ... 63
Filesystem NaviZationccocooiiiiiiiiiiiiiiiiiiiicc e 64

The Linux ALESYSTEIMiiiiiiiiiiii e 64
Traversing diT@CLOTIESoiviiiiiiiiieiii e 66
File and DiIrectory LISHILZcociiiiiiiiiiie it 69
BaSIC TISHILE ...t 69
Modifying the information presentedccocoiiiiiiiiiiiiiiii 71
The complete parameter LIStoocooiiiiiiiiiiii i 72
Filtering HStINEZ OULPUL ..o.oiiiiiiiii e 74
File HandlIng ... 75
Creating flles ... 75
COPYING fU1ES ..ot 76
LinKing fIles ..o 79
Renaming fles ... 80
Deleting fIles ... 81
Directory Handlingooooiiiiii i 82
Creating diTECIOTIESiiiiiiiieti ettt 82
Deleting dir€ClOTIescouiiiiiiiiiiiit i 82
Viewing File COMLENLSoooiiiiiiiiiiiii e 83
VIiewing file SLATSIICSovoiiiiiiiiiei e 84
Viewing the flle TyPe ..o 84
Viewing the whole file ... 85
Viewing parts of a file ..., 89
SUIITIATY .ttt ettt ettt ettt ettt aneen 90

Chapter 4: More bash Shell Commands 91

Monitoring Programs ... 91
Peeking at the PrOCESSES ..ottt 91
Real-time process MONILOTINGc.oioiiiiiiiiiiiieit e 98
SLOPPING PIOCESSES ..ttt 101

Monitoring DISK SPACEc.ciiiiiiiiiiiiiiiiii e 104
MOUNHNG MEAIA ... 104
Using the df command ..o 108
Using the du commandocociiiiiiiii e 109

Working with Data Files ..o 110
SOTHNG AALA ... 110
Searching for data ..o 114
COMPTESSING AALA ...t 116
ATChiving data ... 120

SUIMITIATY ..o 121

Contents

Chapter 5: Using Linux Environment Variables 123

What Are Environment Variables? ... 123
Global environment variables ...
Local environment variablesc.ocoiiiiiiiiiii
Setting Environment Variables ..o
Setting local environment variables ..o
Setting global environment variables
Removing Environment Variablescoooiiiiiiiiie
Default Shell Environment Variables ...
Setting the PATH Environment Variable ...
Locating System Environment Variables ...
LOgIn SHell L.
Interactive Shell ...
Non-interactive shell ...
Variable ATTAYSoiiiiiiii e
Using Command Aliases

Chapter 6: Understanding Linux File Permissions 147

LINUX SECUTILY ..ottt
The /etc/passwd file
The /etc/shadow file

AddING @ NEW USETuiuiiiiiiitii e

REMOVINEZ @ USET ..ottt

MOAIEYINEZ @ WSET ..iiiiiitiiiiei e
Using Linux Groups

The /etc/group file

Creating new groups

MOAIEYINE GrOUPS ..viiiviiiieic e
Decoding File Permissions

Using file permission SYmbOISccoiiiiiiii 160

Default file PermiSSIONScoiiiiiiiiii i 161
Changing SECUTILY SELUILESo.iiiiiiit ettt 163

Changing PermiSSIONScooueiiiiiiiiiiiiiiii ettt 163

Changing ownership ... 165
ShaTING FILES ..ot 166
SUIMNIMIATY .ttt ettt ettt ettt 168

Chapter 7: Working with Editors 171

The VM EdItOTooiiiiiii e 171

The DaSICS Of VITIL ...oiviiiiiiiii e 172

EdItING data ...ovoeiieiii e 174

COPY AN PASLE ..ot 174

Search and SUDSHLULEciiiiiiiiiiie e 175

Contents

The emacs EAILOToviiiiii i 176
Using emacs on the CONSOle ... 176
Using emacs in X WINAOWSovoiiiiiiiiiiiei et 181

The KDE Family of Editors
The KWTite @ditOroviiiiii i
The Kate editOTooioiiiiiiii e

The GNOME EdItOT ..ot
SEATHNG GEAIL ..ot
Basic gedit features ..o
SELtNg PIEfETENICES .. .viiiiiiiiiii i

SUIMIMATY ..ttt ettt ettt

Part Il Shell Scripting Basics

Chapter 8: Basic Script Building 201

Using Multiple COMMANGSoooioiiiiiiii e
Creating a Script File ...
DISPlaying MESSAZESviueeiiiiiieiiti et
USING VATIADIES ...t
Environment variables
User variables ...
The backtick ...
Redirecting Input and Output
OULPUL TEAITECTIOML ...ttt
INPUL TEAITECHOTL ...t
PP
Performing Math ..o
The eXPr COMMATIAiiiiiiii e
Using bracketscocoiiiiiiiiiiiiieiie e
A floating-point solution
EXIUNG the SCIIPL ...viviioiiie e
Checking the exit status
The exit COMMANAcooiiiiii e

Chapter 9: Using Structured Commands 229

Working with the if-then Statement ... 229
The if-then-else STAETNENILccoiiiii s 232
INESUIIZ TS .o 232
The test ComMMAaNd ...t 233
NUMETIC COMPATISONS ...ttt 234
SUINE COMPATISONIS ...t 236
File COMPATISONIS ...t 241
Compound Condition TESHIEc.ooviiiiiiiiiiei e 249

Xiv

Contents

Advanced if-then FEatures ..ot 250
Using double parentheses ..o 250
Using double Bracketsccooiiiiiiiiiii e 251

The case COMMANGooiiiiiiiiie e 252

Chapter 10: More Structured Commands 255

The for COMMANdoiiiiii e 255
Reading values i @ TISEooiioiiiiii e 256
Reading complex values in @ LSt ... 257
Reading a list from a variable ... 259
Reading values from a commandccocooiiiiiiiiiii 260
Changing the field SEPATALOTcocooiiiiiiiiiiiei e 261
Reading a directory using wildcardsccocooiiiiiiiiiiii 202

The C-Style for Commandccooiiiiiiiiii e 264
The C language for commandcooiiiiiiiii 264
Using multiple variables ... 266

The while Command ... 266
Basic while fOrmat ... 267
Using multiple test commMandsocoociiiiiiiiiiiiiii e 268

The until Command

Nesting Loopsccceoviviiinnn.

Looping 0N File DAAc.ooiiiiiiiiiice e 273

Controlling the LOOPvoiiiiiiiiiii e 274
The break command ..o 275
The continue ComMMAaNd ... 278

Processing the OUtpUt 0f @ LOOPooiiiiiiiiiiioieii e 281

SUIIMIATY .ttt ettt ettt 282

Chapter 11: Handling User Input 285

Command Line PArameterscocooiiiiiiiiiieiii et 285
Reading PATAMNELETSo.viiiiiiiiei ittt 285
Reading the program NAMEeccooioiiiiiiiiiii e 288
Testing parameters

Special Parameter Variablesccocooiiiiiiiiiiii e 290
COUNUNE PATAINCLETS ...ttt 290
Grabbing all the data ... 292

BeiNg SHILY oo 293

WOTKING With OPHOIISiviiiiiiiiiiie e 295
FINAING YOUT OPLOTS ...oiviiiiiii ittt 295
Using the getopt COMMANAccooiiiiiiiiiiiii e 299
The more advanced GELOPLSooooviiiioiiieit e 302

Standardizing OPUOTISiviiiiii et 304

Getting User INPUL ... e 305
BaSIC TEAINIE ..t 306

)%

Contents

THIMINE QUL .o 307
SHETIE TEAINE .. 308
Reading from a file ..o 309
SUIMIMATY ... 310
Chapter 12: PresentingData 313
Understanding Input and OULPULoiiiiiiiiii e 313
Standard file desCIiplors ..o 314
REITECHINE @TTOTS ... 316
Redirecting OULPUL N SCTIPLS ...vveviiiiiieiiii e 318
Temporary TediTeCtiONSi.iouiiieieiieiit et 318
Permanent TedireCtionNSocooiiiiiiiiiiiiiii e 319
Redirecting INPUL i SCTIPLSiviviieiiiieii et 320
Creating Your Own RediTeCtiONo.oiiiiiiiiiiiiie i 321
Creating output file desCriptorscooiiiiiiiiiiiiic e 321
Redirecting file deSCTiPLOTSocooiiiiiiiiiiiiiiiiicic e, 322
Creating input file desCriptorscccoiiiiiiiiiiiiiiiiiiicc e 323
Creating a read/write file desCriptorc.ocooiiiiiiiiiiii e 323
Closing file deSCTIPLOTSviiiiiiiiiiii e 324
Listing Open File DeSCIIPLOTSoviuiiiiiiiieiiiiiet ittt 326
Suppressing Command OULPULoiiiiiiiiiiii oo 328
Using Temporary Files ..o 328
Creating a local temporary file ... 329
Creating a temporary file in /tMPccocoiiiiiiiii e 330
Creating a temporary dif€CLOTYcccuouiiiiiiiieiiiiiiic ettt 331
LOZEINE MESSAZES ...ttt 332
SUIMIMIATY ..ot 333
Chapter 13: ScriptControl 335
Handling SIGNalsccooiiiiii i 335
Linux signals 1eviSitedcoiiiiiiiiii 335
Generating SIGNALSociiiiiiiii e 336
Trapping SIGNALSc.oiviiiiii e 338
Trapping @ SCIIPL EXIL ...oiiiiiiiiii i 339
REMOVINIEZ @ LTAD ..ttt 340
Running Scripts in Background Mode ... 341
Running in the background ..ot 341
Running multiple background jobs ... 342
Exiting the terminal ... 343
Running Scripts without @ Console ... 343
JOD CONITOL .o e 344
VAEWIILE JODS .o 345
Restarting stopped JODSccoiiiiiiiiiiiiiii 347

Being INICE ..o 348
The nice comMMANA ... 348

Xvi

Contents

The renice command ..o 349
Running Like CloCKWOTK ... 349
Scheduling a job using the at commandc..ococooiiiiiiiini 350
Using the batch command ... 352
Scheduling regular SCIiPLsooiiiiiiiiiiii e 353
Start At the BeZINMINGccoooiiiiiiiiiiiiiiiiiiie s 355
Starting your SCTIPS At DOOUo.oviiiiiiiiiiiei et 355
Starting with a new shell ... 357
SUIMIMIATY .ttt ettt 358

Part 11l Advanced Shell Scripting

Chapter 14: Creating Functions 363
Basic SCTPt FUNCHOTS ...ttt 363
Creating a fUNCHOMiiii e 364
USING FUNCHOTIS ..o 364
Returning @ VAUocooiiiiiiiiiiiiiiiiiiic e 366
The default exXit STATUSoiiiiiiiii e 367
Using the 1eturn commandocoociiiiiiiiii e 368
USINgG TUNCHON OULPUL ... 369
Using Variables in FUNCHONSooiiiiiiiiiiii i 369
Passing parameters to a fUunCtionccooiiiiiiiiiii 370
Handling variables in a function ... 372
Array Variables and FUNCHOMSooiiiiiiiiiii e 375
Passing arrays to fUNCHOMNS ..o, 375
Returning arrays from fUnCtions ... 376
FUnCtion RECUTSION ..ot 377
Creating @ LIDTATY ... 379
Using Functions on the Command Linecoociiiiiiiiiiiii e 381
Creating functions on the command line ... 381
Defining functions in the .bashrc file ... 382
SUIMIMATY ..o 384
Chapter 15: Adding Colorto Scripts 385
Creating Text MENUS ... e 385
Create the Menu JayOUL ..o 386
Create the menu fUNCHONS ... 387

Add the MenU L0ZIC ...ooiiiiiii 388
Putting it all together ... 389
Using the select commandcooooiiiiiiiiiii e 390
AAING COLOT .ot 391
The ANSI €SCAPE COULSouiuiiiiiiiiiiiiiiiciie e 392
Displaying ANSI escape COAEScooiiiiiiiiiiiiiiiiiiiioc i 393
USING COLOTS 1 SCTIPLS ...viviiiiiiit et 395

Xvii

Contents

Doing Windows

The dialog Packageccooviiiiiii e
The dialog OPHONS ..o

Using the dialog
Getting Graphic

command in a SCriptccoovvivieiirronn,

The KDE enVITONIMENEooiii e
The GNOME €NVITONIMENTooiiiiii e

Summaryc.coeeee.

Chapter 16: Introducingsedandgawk

Text Manipulation

The sed editor ...

The gawk progra
The sed Editor Basics .

0

More SUDSHIULION OPLIOTISc.viviiiiiiiietii it

Using addresses
Deleting lines ...

Inserting and appending teXEcoovoiiiiiiiiiii e

Changing lines ..

The transform command

Printing revisited

Using files with sed

Summary ..o

Chapter 17: Regular Expressions

What Are Regular EXpressions?ccocoooeioiiiiiiineee.

A definition
Types of regular
Defining BRE Patterns
Plain text

EXPIESSIOTIS ...ttt

Special ChaTaCtersccoiiiiiiiiiiiiiic e
ANChOT ChATACLETS ...
The dot Character

Character classes

Negating character Classes ..ot

Using ranges
Special character

ClASSES ..o

The ASteTISK .o

Extended Regular Expr

ESSIOTIS ..o

The question MATKcciiiiiii e

The plus sign ...

USITLE DIACES .t

The pipe symbol

Grouping eXPreSSIOTIS ..ottt

Regular Expressions in

ACHOTL o

Contents

Counting directory fIlescoiiiiiii i 466
Validating a phone NUMDBETocooiiiiiiii e 467
Parsing an e-mail addressoocoiiiiiiiii e 469
SUIMIMATY .ottt ettt 471
Chapter 18: Advancedsed 473
Multiline CommAands ... 473
The next CoMMANAS ..ot 474
The multiline delete commandcccocoiiiiiiiiiiiic e 477
The multiline print commandoooiiiiiii e, 479
The HOIA SPACEcuiiiiiiiiii i 479
Negating @ COMIMANAo.ooviiiiiiiiiiec ettt 481
Changing the FLOWioiiii e 484
BIanChingoooiii i 484
TRSUITLE . e 486
Pattern REPIACEIIIOTITo.viiiiiiii e 487
The ampersand ... 488
Replacing individual wordsoooiiiiii e, 488
USING SEA T SCTIPES .ttt
USITZ WIAPPETS ...ttt ettt
Redirecting sed output
Creating sed UHLHEESoiiiiiiiii e
Double Spacing HNeSociiiiiiiiii e
Double spacing files that may have blanks ... 492
Numbering lines in a file ... 493
Printing 1ast HNes ..ot 494
Deleting lNES ..ot 495
Removing HTML LAZSvioviiiiiiiiii e 497
SUIIMATY ..ttt ettt ettt 499
Chapter 19: Advancedgawk 501
USING VATIADIES ...ttt 501
Built-in variables ... 502
User-defined variablesccocoiiiiiiiii 508
WOTKING WIth ATTAYS ..ottt 510
Defining array variables ... 510
Iterating through array variables ..., 511
Deleting array variablesccocooiiiiiiiii i 511
USINE PATLETTIS ... 512
RegUIAT @XPTESSIONS ...ttt 512
The Matching OPETALOTooviiiiiiiiiiei e 513
Mathematical eXPIeSSIONScooiiiiiiiiiiiei e 514
Structured COMMANIASoviiiiiieiie e 514
The If SLALETNENT L..o.iiiiiiiii e 514
The while Statement ... 516

Xix

XX

Contents

The do-while StAtEMENTccooiiiiiiii e 518
The fOr SLATETNENT ..ottt 518
Formatted PTIMUIEoovoiiii e 519
BUilt-in FUNCHOMS ..o 522
Mathematical fUNCHOMSooviiiiiiii i 522
SHANE TUNCHOMS ..iiiiiiiii e 524
TIME FUNCHOMS .ot 526
User-Defined FUNCHOMS ..ottt 527
Defining @ fUnCHOM ..o 527
USING YOUT FUNCHOIIS ...t 528
Creating a function HDTarycocooiiiiiii e 528
SUIIMATY ..ttt et 529

Part IV Alternative Linux Shells

Chapter 20: Theash Shell 533
What Is the ash Shell? ... 533
The Original ash Shell ... 534

The Original ash command line parameterscccocoovioiiiiioiioiiiiiecee 534
The original ash built-in commandscocooiiiiii 536
The ash shell files ... 539
The dash Shell ... 540
The dash command line parametersccocociivioiiiiiiiiee e 540
The dash environment variablesccooiiiiiiii 540
The dash built-in commandscocoiiiiiii 544
Seripting i dash ... 549
Creating ash and dash SCTIPLScoioiiiiiiii e 549
Things that WON't WOTKoviiiiiiiiii e 549
SUINIMIATY .ttt ettt ettt ettt 555

Chapter 21: The tcshShell 557
What Is the tesh Shell? .. 557
The tesh Shell COMPONIENIES ... 558

The tcsh command line Parametersccooooviiioieiiiieiieieee 558
The tesh files .o 560
The tesh 1ogin files ... 560
Shell Startup flESoooiiiii e 561
The 10goUt fIles ...t 562
The tesh environment variables ... 563
Shell variables ... 563
Environment variables ... 569
Setting variables in teSh ..o, 572
Using the set commandcocoiiiiiiiiiiiiiiiiicc e 572
Using the setenv commandcooooiiiiii i 573

Contents

The tesh built-in commands ... 574
SCTIPUIE TN EESHL 1.t 577
Working with variables ... 578
ATTAY VATIADLES ..ot 578
Handling mathematical 0perationscccccocooiioioiiiiiiiiiiiiiiicccc e 578
Structured COMIMANGSoviiiiiiiii e 578
The 1f SLALETNEIILS ...t 579
The foreach SLATETNENToiiiiiiii it 582
The while StAtETMENTocooiiiiiii e 582
The switch cOmMMANdccooiiiiiiii e 583
SUIMIMATY ... 584
Chapter 22: The Korn Shell 587
The Korn Shell HISEOTY ..ot 587
The Parts of the kshO3 Shellcocooiiiiiiiii e 588
Command line PArammetersc.oooiiiiiiii ittt 588
Default fIles ..o 590
Environment variablesocooiiiiiiiiiiii 590
Built-In cOMMANAS ..o 597
Scripting in the ksh93 Shell ... 602
Mathematical OPETALIONISoviiiiiiiiiiiii e 602
Structured COMIMANGSiiiiiiiiiiiei e 605
Command TeAITECTION.o.iiiiiiiiiiiit e 607
Discipline fUNCUHOMSo.iiiiiiiiii e 608
SUIMIMATY .ottt 609
Chapter 23: ThezshShell 611
History of the zsh Shell ..., 611
Parts of the zsh Shell ... 612
SHEll OPLIOTIS ... 612
The zsh shell fllesoiiiiiiii e 615
Environment variablesocoooiiiiiiii 619
BUilt-In COMMANGS ... 625
Scripting With ZSI ..o 631
Mathematical OPETatioNSc.ociiiiiiiiiiii e 631
Structured COMMANGS ...ttt 633
FUTICLIOTIS .t 634
SUIMIMATY ..ttt ettt 636
Part V Advanced Topics
Chapter 24: UsingaDatabase 639
The MYSQL DataDASEoviiiiieiiieiei e 639
Installing MYSQLo.oiiiiii e 640
Completing the MySQL configurationcccocooiiiiiiiiiiiieiieecee e, 642

Xxi

Contents

The MySQL client interfacecooiiiiiiiiiiiiiiieei e 644
Creating MySQL database ODJECLSccooviiiiiiiiiiiii e 649

The PostgreSQL DatabDaSecooiiiiiiiiiiiiei et 651
Installing PoStGreSQLvoiiiiiiiee e 652

The PostgreSQL command interface ..., 654
Creating PostgreSQL database 0bjectscccociiiiiiiiiiii 657
Working with Tables ..o 659
Creating @ table ... 659
Inserting and deleting dataccooiiiiiiiiiii 661
QUETYING AALA ...t 663
Using the Database in YOUT SCTIPUSoviiiiiiiiiiii it 664
Connecting to the databases ..., 664
Sending commands to the SETVETcccoiiiiiiiiiiiiiiiie e 666
FOrmatting data ..o 670
SUIITIATY .ttt ettt ettt 671
Chapter 25: UsingtheWeb 673
The LynxX PTOZIAIIL ..ottt 673
Installing LYTIXooii 674

The lynx command lNe ... 675

The Lynx configuration filecoooiiiiiiiiii 676

The Lynx environment variablescocooiiiiiiiiiii 683
Capturing data from LYNX ..o 684

The CURL PTOZIAIM ...t 687
Installing CURL ..ot 687

The cURL command HNe ... 688
Exploring With CUTT ..o 688
Networking With ZSh ..o 694
The TCP MOAULE ..ot 694

The client/server Paradiginlccooovioiiiiiiii e 695
Client/server programming with zsh ... 695
SUIMIMATY ... 699
Chapter 26: UsingE-Mail 701
The Basics of Linux E-Mailcooiiiiiiiiiii s 701
E-Mail i LENUX oot 701

The Mail Transfer AZentccoiiiiiiiii e 702

The Mail Delivery AZETItccooiiiiiiiiiiiei e 703

The Mail USer AZEN ..ot 705
Stting UP YOUT SETVETiiiiiiiiiiiiii oo 708
sendmMail ... 709
POSLILX . 711
Sending a Message with MailX ..o 717
The MULE PIOZIAIN ... 720
INSEAIING MULE .ot 720

xxii

Contents

The Mutt command lNeocoiiiiiiii 721

USINEZ MIULE Lo 721

SUIMIMATY ... 723
Chapter 27: Shell Scripts for Administrators 725
Monitoring SyStem STALISHICScoiiiiiiiiiiiii e 725
Monitoring disk free SPACEccooiiiiiiiiiiiiiii e 725

Catching disk NOESc.oiviii e 728

Watching CPU and MemoTy USAZEcccooiiiiioiiiiiiiiiiiiciciccc s 732

Performing Backupsc.cocooiiiiiiiii e 739
Archiving data flles ..o 740

Storing backups Off-SIte ..o 744

SUIMIMATY ..o 746
Appendix A: Quick Guide to bash Commands 749
BUilt-Tn COMMEANAS ...t 749

Bash COMMANASoouioiiii it 749
Environment Variablesooiiiiiiiiii i 753
Appendix B: Quick Guidetosedandgawk 759
The Sed EdItOToviiiiiii e 759
Starting the sed editor ... 759

Sed COMMANGS ..ot 760

The gawk PrOGIAIILoiiiiiii e 764

The gawk command fOrmat ..o 764

USINE AWK .o 765

The gawk variables ... 766

The gawk program features ... 768
Appendix C: Comparing Shells 771
VATIADLES ... 771
Environment variables ... 771
User-defined variables ..ot 772

Array variables ... 772

Structured COMMEANGSoviiiieiiit ettt 773

The if-then, while, and until StAteMeNtsocovvieeeoe e 773

The fOr SLATEINENT ..o.i.iiiiiiieii et 774
Mathematical OPerations ...ttt 775
TIUAEX ettt 777

xxiii

irst, all glory and praise go to God, who through His Son makes all things possible, and
F gives us the gift of eternal life.

Many thanks go to the great team of people at John Wiley & Sons for their outstanding work
on this project. Thanks to Jenny Watson, the acquisitions editor, for offering me the opportunity
to work on this book. Also thanks to Tom Dinse, the development editor, for keeping things
on track and making this book more presentable. The technical editor, John Kennedy, did an
amazing job of double-checking all the work in this book, plus making suggestions to improve
the content. Thanks, John, for your hard work and diligence. I would also like to thank Carole
McClendon at Waterside Productions, Inc. for arranging this opportunity for me, and for helping
out in my writing career.

Finally, I would like to thank my parents, Mike and Joyce Blum, for their dedication and support
while raising me, and my wife, Barbara, and daughters, Katie Jane and Jessica, for their love,
patience, and understanding, especially while I was writing this book.

XXV

elcome to Linux Command Line and Shell Scripting Bible. Like all books in the Bible

series, you can expect to find both hands-on tutorials and real-world practical appli-

cation information, as well as reference and background information that provides
a context for what you are learning. This book is a fairly comprehensive resource on the Linux
command line and shell commands. By the time you have completed Linux Command Line and
Shell Scripting Bible, you will be well prepared to write your own shell scripts that can automate
practically any task on your Linux system.

Who Should Read This Book

If you're a system administrator in a Linux environment, you'll benefit greatly by knowing how to
write shell scripts. The book doesn’t walk through setting up a Linux system, but once you have
it running, you'll want to start automating some of the routine administrative tasks. That's where
shell scripting comes in, and that’s where this book will help you out. This book will demonstrate
how to automate any administrative task using shell scripts, from monitoring system statistics and
data files to generating reports for your boss.

If you're a home Linux enthusiast, you'll also benefit from Linux Command Line and Shell Scripting
Bible. Nowadays it’s easy to get lost in the graphical world of prebuilt widgets. Most desktop
Linux distributions try their best to hide the Linux system from the typical user. However, there
are times when you have to know what’s going on under the hood. This book shows you how
to access the Linux command line prompt, and what to do once you get there. Often performing
simple tasks, such as file management, can be done more quickly from the command line than
from a fancy graphical interface. There’s a wealth of commands you can use from the command
line, and this book shows you just how to use them.

How This Book Is Organized

This book is organized in a way that leads you through the basics of the Linux command line all
the way to creating your own shell scripts. The book is divided into five parts, each one building
on the previous parts.

Part I assumes that you either have a Linux system running or are looking into getting a Linux
system. Chapter 1, “Starting with Linux Shells,” describes the parts of a total Linux system and

XXv

Introduction

shows how the shell fits in. After learning the basics of the Linux system, this section
continues with:

Using a terminal emulation package to access the shell (Chapter 2)

Introducing the basic shell commands (Chapter 3)

Using more advanced shell commands to peek at system information (Chapter 4)
Working with shell variables to manipulate data (Chapter 5)

Understanding the Linux filesystem and security (Chapter 6)

Knowing how to use the Linux editors to start writing shell scripts (Chapter 7)

In Part II, you'll start writing shell scripts:

Learn how to create and run shell scripts (Chapter 8)

Alter the program flow in a shell script (Chapter 9)

Iterate through code sections (Chapter 10)

Handle data from the user in your scripts (Chapter 11)

See different methods for storing and displaying data from your script (Chapter 12)

Control how and when your shell scripts run on the system (Chapter 13)

Part III dives into more advanced areas of shell script programming;

In Part 1V, you'll get to see how to write shell scripts using some of the alternative shells available

Create your own functions to use in all your scripts (Chapter 14)

See different methods for interacting with your script users (Chapter 15)
Use advanced Linux commands to filter and parse data files (Chapter 16)
Use regular expressions to define data (Chapter 17)

Learn advanced methods of manipulating data in your scripts (Chapter 18)

See how to generate reports from raw data (Chapter 19)

in the Linux environment:

Write scripts for the ash or dash shells (Chapter 20)
See how writing scripts in the tcsh shell is different (Chapter 21)
Work with floating-point numbers in the ksh93 shell (Chapter 22)

Use advanced network and math features in the zsh shell (Chapter 23)

Introduction

The last section of the book, Part V, demonstrates how to use shell scripts in real-world
environments:

B See how to use popular open source databases in your shells scripts (Chapter 24)

B Learn how to extract data from Web sites, and send data between systems (Chapter 25)
B Use e-mail to send notifications and reports to external users (Chapter 26)
|

Write shell scripts to automate your daily system administration functions (Chapter 27)

Conventions and Features

There are many different organizational and typographical features throughout this book designed
to help you get the most out of the information.

Throughout the book, special typography indicates code and commands. Commands and code
are shown in a monospaced font. In a regular paragraph, programming code words Took 1ike
this. Lines of code are presented like this:

$ cat test?
#1/bin/bash
testing a bad command

if asdfg
then
echo "it didn't work"
fi
echo "we're outside of the if statement"
$./test?

./test?2: line 3: asdfg: command not found
we're outside of the if statement
$

Notes and Cautions
Whenever the author wants to bring something important to your attention, the information will
appear in a Note or Caution.

Notes provide additional, ancillary information that is helpful, but somewhat outside
of the current presentation of information.

& This information is important and is set off in a separate paragraph with a special
“icon. Cautions provide information about things to watch out for, whether simply
inconvenient or potentially hazardous to your data or systems.

XXIX

XXX

Introduction

Minimum Requirements

Linux Command Line and Shell Scripting Bible looks at Linux from a generic point of view, so you'll
be able to follow along in the book using any Linux system you have available. The bulk of the
book references the bash shell, which is the default shell for most Linux systems.

Where to Go from Here

Once you've completed Linux Command Line and Shell Scripting Bible, you'll be well on your way to
incorporating Linux commands in your daily Linux work. In the ever-changing world of Linux,
it’s always a good idea to stay in touch with new developments. Often Linux distributions will
change, adding new features and removing older ones. To keep your knowledge of Linux fresh,
always stay well informed. Find a good Linux forum site and monitor what’s happening in the
Linux world. There are many popular Linux news sites, such as Slashdot and Distrowatch, that
provide up-to-the-minute information about new advances in Linux.

5« '\-"}-a' X
TRk el
NI

L

Chapter 1
Starting with Linux Shells

Chapter 2
Getting to the Shell

Chapter 3
Basic bash Shell Commands

Chapter 4
More bash Shell Commands

Chapter 5
Using Linux Environment
Variables

Chapter 6
Understanding Linux File
Permissions

Chapter 7
Working with Editors

efore you can dive into working with the Linux command line and

shells, it’s a good idea to first understand what Linux is, where it

came from, and how it works. This chapter walks you through
what Linux is, and explains where the shell and command line fit in the
overall Linux picture.

What Is Linux?

If you've never worked with Linux before, you may be confused as to why
there are so many different versions of it available. I'm sure that you have
heard various terms such as distribution, LiveCD, and GNU when looking
at Linux packages and been confused. Trying to wade through the world
of Linux for the first time can be a tricky experience. This chapter will take
some of the mystery out of the Linux system before we start working on
commands and scripts.

For starters, there are four main parts that make up a Linux system:

B The Linux kernel
B The GNU utilities
B A graphical desktop environment
B Application software
Each of these four parts has a specific job in the Linux system. Each of the

parts by itself isn’t very useful. Figure 1-1 shows a basic diagram of how
the parts fit together to create the overall Linux system.

IN THIS CHAPTER

What Is Linux?

Parts of the Linux kernel

Exploring the Linux desktop

Visiting Linux distributions

10l The Linux Command Line

The Linux system

Application Software

{ { { {

Windows i i
Management
Software

GNU

System

Utilities

{ { { {

Linux kernel

, { { :

computer hardware

This section describes these four main parts in detail, and gives you an overview of how they
work together to create a complete Linux system.

Looking into the Linux kernel

The core of the Linux system is the kernel. The kernel controls all of the hardware and software on
the computer system, allocating hardware when necessary, and executing software when required.

If you've been following the Linux world at all, no doubt you've heard the name Linus Torvalds.
Linus is the person responsible for creating the first Linux kernel software while he was a student
at the University of Helsinki. He intended it to be a copy of the Unix system, at the time a popular
operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solicited
suggestions for improving it. This simple process started a revolution in the world of computer
operating systems. Soon Linus was receiving suggestions from students as well as professional
programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos. To
simplify things, Linus acted as a central point for all improvement suggestions. It was ultimately

Linus’s decision whether or not to incorporate suggested code in the kernel. This same concept is
still in place with the Linux kernel code, except that instead of just Linus controlling the kernel

code, a team of developers has taken on the task.

Starting with Linux Shells

The kernel is primarily responsible for four main functions:

M System memory management

B Software program management
B Hardware management
[|

Filesystem management

The following sections explore each of these functions in more detail.

System memory management

One of the primary functions of the operating system kernel is memory management. Not only
does the kernel manage the physical memory available on the server, it can also create and
manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the contents
of virtual memory locations back and forth from the swap space to the actual physical mem-
ory. This allows the system to think there is more memory available than what physically exists
(shown in Figure 1-2).

FIGURE 1-2

The Linux system memory map

Virtual Memory

Physical Memory

Swap Space
T

The Kernel

m The Linux Command Line

The memory locations are grouped into blocks called pages. The kernel locates each page of mem-
ory either in the physical memory or the swap space. The kernel then maintains a table of the
memory pages that indicates which pages are in physical memory, and which pages are swapped
out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory pages
that have not been accessed for a period of time to the swap space area (called swapping out), even
if there’s other memory available. When a program wants to access a memory page that has been
swapped out, the kernel must make room for it in physical memory by swapping out a different
memory page, and swap in the required page from the swap space. Obviously, this process takes
time, and can slow down a running process. The process of swapping out memory pages for
running applications continues for as long as the Linux system is running.

You can see the current status of the virtual memory on your Linux system by viewing the special
/proc/meminfo file. Here’s an example of a sample /proc/meminfo entry:

cat /proc/meminfo

MemTotal: 255392 kB
MemFree: 4336 kB
Buffers: 1236 kB
Cached: 48212 kB
SwapCached: 1028 kB
Active: 182932 kB
Inactive: 44388 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 255392 kB
LowFree: 4336 kB
SwapTotal: 524280 kB
SwapFree: 514528 kB
Dirty: 456 kB
Writeback: 0 kB
AnonPages: 176940 kB
Mapped: 40168 kB
Slab: 16080 kB
SReclaimable: 4048 kB
SUnreclaim: 12032 kB
PageTables: 4048 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
CommitLimit: 651976 kB

Committed AS: 442296 kB
VmallocTotal: 770040 kB

VmallocUsed: 3112 kB
VmaTlTocChunk: 766764 kB
HugePages Total: 0

Starting with Linux Shells

HugePages Free: 0
HugePages Rsvd: 0
Hugepagesize: 4096 kB
1

The Mem: line shows that this Linux server has 256 MB of physical memory. It also shows that
about 4 MB is not currently being used (free). The output also shows that there is about 512 MB
of swap space memory available on this system.

By default, each process running on the Linux system has its own private memory pages. One
process cannot access memory pages being used by another process. The kernel maintains its

own memory areas. For security purposes, no processes can access memory used by the kernel
processes.

To facilitate data sharing, you can create shared memory pages. Multiple processes can read and
write to and from a common shared memory area. The kernel maintains and administers the
shared memory areas and allows individual processes access to the shared area.

The special ipcs command allows you to view the current shared memory pages on the system.
Here’s the output from a sample ipcs command:

ipcs -m
ffffff Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 O rich 600 52228 6 dest
0x395echlc 1 oracle 640 5787648 6

1

Each shared memory segment has an owner that created the segment. Each segment also has a
standard Linux permissions setting that sets the availability of the segment for other users. The
key value is used to allow other users to gain access to the shared memory segment.

Software program management

The Linux operating system calls a running program a process. A process can run in the fore-
ground, displaying output on a display, or it can run in background, behind the scenes. The
kernel controls how the Linux system manages all the processes running on the system.

The kernel creates the first process, called the init process, to start all other processes on the
system. When the kernel starts, it loads the init process into virtual memory. As the kernel starts
each additional process, it gives it a unique area in virtual memory to store the data and code that
the process uses.

m The Linux Command Line

Some Linux implementations contain a table of processes to start automatically on bootup. On
Linux systems this table is usually located in the special file /etc/inittabs.

The Linux operating system uses an init system that utilizes run levels. A run level can be used to
direct the init process to run only certain types of processes, as defined in the /etc/inittabs
file. There are five init run levels in the Linux operating system.

At run level 1, only the basic system processes are started, along with one console terminal pro-
cess. This is called single user mode. Single user mode is most often used for emergency filesystem
maintenance when something is broken. Obviously, in this mode only one person (usually the
administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level most application software such as network
support software is started. Another popular run level in Linux is run level 5. This is the run
level where the system starts the graphical X Window software, and allows you to log in using a
graphical desktop window.

The Linux system can control the overall system functionality by controlling the init run level.
By changing the run level from 3 to 5, the system can change from a console-based system to an
advanced, graphical X Window system.

Later on (in Chapter 4) you'll see how to use the ps command to view the processes currently
running on the Linux system. Here’s an example of what you'll see using the ps command:

$ ps ax
PID TTY STAT ~ TIME COMMAND
17 S 0:03 init
27 SW 0:00 [kflushd]
37 SW 0:00 [kupdate]
4 7 SW 0:00 [kpiod]
57 SW 0:00 [kswapd]
243 7 SW 0:00 [portmap]
295 ? S 0:00 syslogd
305 ? S 0:00 klogd
320 7 S 0:00 /usr/sbin/atd
335 ? S 0:00 crond
350 ? S 0:00 inetd
365 ? SW 0:00 [1pd]
403 ttySO S 0:00 gpm -t ms
418 ? S 0:00 httpd
423 ? S 0:00 httpd
424 7 SW 0:00 [httpd]
425 7 SW 0:00 [httpd]
426 ? SW 0:00 [httpd]
427 7 SW 0:00 [httpd]
428 ? SW 0:00 [httpd]
429 ? SW 0:00 [httpd]
430 ? SW 0:00 [httpd]

Starting with Linux Shells

436 7 SW 0:00 [httpd]

437 2 SW 0:00 [httpd]

438 ? SW 0:00 [httpd]

470 7 S 0:02 xfs -port -1

485 ? SW 0:00 [smbd]

495 7 S 0:00 nmbd -D

533 7 SW 0:00 [postmaster]

538 ttyl SW 0:00 [mingetty]

539 tty? SW 0:00 [mingetty]

540 tty3 SW 0:00 [mingetty]

541 tty4 SW 0:00 [mingetty]

542 ttyb SW 0:00 [mingetty]

543 tty6 SW 0:00 [mingetty]

544 7 SW 0:00 [prefdm]

549 ? SW 0:00 [prefdm]

559 ? S 0:02 [kwm]

585 ? S 0:06 kikbhd

594 ? S 0:00 kwmsound

595 ? S 0:03 kpanel

596 7 S 0:02 kfm

597 ? S 0:00 krootwm

598 ? S 0:01 kbgndwm

611 ? S 0:00 kcmlaptop -daemon
666 7 S 0:00 /usr/libexec/postfix/master
668 ? S 0:00 gmgr -1 -t fifo -u
787 ? S 0:00 pickup -1 -t fifo
790 ? S 0:00 telnetd: 192.168.1.2 [vt100]
791 pts/0 S 0:00 Togin -- rich

792 pts/0 S 0:00 -bash

805 pts/0 R 0:00 ps ax

$

The first column in the output shows the process ID (or PID) of the process. Notice that the first
process is our friend the init process, and assigned PID 1 by the Linux system. All other processes
that start after the init process are assigned PIDs in numerical order. No two processes can have
the same PID.

The third column shows the current status of the process (S for sleeping, SW for sleeping and
waiting, and R for running). The process name is shown in the last column. Processes that are
in brackets are processes that have been swapped out of memory to the disk swap space due
to inactivity. You can see that some of the processes have been swapped out, but most of the
running processes have not.

Hardware management

Still another responsibility for the kernel is hardware management. Any device that the Linux
system must communicate with needs driver code inserted inside the kernel code. The driver
code allows the kernel to pass data back and forth to the device, acting as a middle man between

m The Linux Command Line

10

applications and the hardware. There are two methods used for inserting device driver code in
the Linux kernel:

M Drivers compiled in the kernel

B Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time you
added a new device to the system, you had to recompile the kernel code. This process became

even more inefficient as Linux kernels supported more hardware. Fortunately, Linux developers
devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code into a
running kernel without having to recompile the kernel. Also, a kernel module could be removed
from the kernel when the device was finished being used. This greatly simplified and expanded
using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files. There are three
different classifications of device files:

B Character
B Block
B Network

Character device files are for devices that can only handle data one character at a time. Most types
of modems and terminals are created as character files. Block files are for devices that can handle
data in large blocks at a time, such as disk drives.

The network file types are used for devices that use packets to send and receive data. This
includes network cards and a special loopback device that allows the Linux system to communi-
cate with itself using common network programming protocols.

Linux creates special files, called nodes, for each device on the system. All communication with
the device is performed through the device node. Each node has a unique number pair that identi-
fies it to the Linux kernel. The number pair includes a major and a minor device number. Similar
devices are grouped into the same major device number. The minor device number is used to
identify a specific device within the major device group. This is an example of a few device files
on a Linux server:

$ 1s -al sda* ttyS*

brw-rw---- 1 root disk 8, 0 May 5 2006 sda
brw-rw---- 1 root disk 8, 1 May 5 2006 sdal
brw-rw---- 1 root disk 8, 10 May 5 2006 sdal0
brw-rw---- 1 root disk 8, 11 May b5 2006 sdall
brw-rw---- 1 root disk 8, 12 May 5 2006 sdal?
brw-rw---- 1 root disk 8, 13 May 5 2006 sdal3

Starting with Linux Shells

brw-rw---- 1 root disk 8, 14 May 5 2006 sdal4d
brw-rw---- 1 root disk 8, 15 May b5 2006 sdalb
brw-rw---- 1 root disk 8, 2 May 5 2006 sda?
brw-rw---- 1 root disk 8, 3 May 5 2006 sda3
brw-rw---- 1 root disk 8, 4 May 5 2006 sda4
brw-rw---- 1 root disk 8, 5 May 5 2006 sdab
brw-rw---- 1 root disk 8, 6 May 5 2006 sda6b
brw-rw---- 1 root disk 8, 7 May 5 2006 sda7/
brw-rw---- 1 root disk 8, 8 May 5 2006 sda8
brw-rw---- 1 root disk 8, 9 May 5 2006 sda9
Crw------- 1 root tty 4, 64 Jun 29 16:09 ttySO
Crw------- 1 root tty 4, 65 May b5 2006 ttySl
Crw------- 1 root tty 4, 66 May 5 2006 ttyS2
Crw------- 1 root tty 4, 67 May 5 2006 ttyS3

$

Different Linux distributions handle devices using different device names. In this distribution,
the sda device is the first SCSI hard drive, and the ttyS devices are the standard IBM PC COM
ports. The listing shows all of the sda devices that were created on the sample Linux system.
Not all are actually used, but they are created in case the administrator needs them. Similarly, the
listing shows all of the ttyS devices created.

The fifth column is the major device node number. Notice that all of the sda devices have the

same major device node, 8, while all of the ttyS devices use 4. The sixth column is the minor
device node number. Each device within a major number has its own unique minor device node
number.

The first column indicates the permissions for the device file. The first character of the permis-
sions indicates the type of file. Notice that the SCSI hard drive files are all marked as block (b)
device, while the COM port device files are marked as character (¢) devices.

Filesystem management

Unlike some other operating systems, the Linux kernel can support different types of filesystems
to read and write data to and from hard drives. Besides having over a dozen filesystems of its
own, Linux can read and write to and from filesystems used by other operating systems, such as
Microsoft Windows. The kernel must be compiled with support for all types of filesystems that
the system will use. Table 1-1 lists the standard filesystems that a Linux system can use to read
and write data.

Any hard drive that a Linux server accesses must be formatted using one of the filesystem types
listed in Table 1-1.

The Linux kernel interfaces with each filesystem using the Virtual File System (VES). This
provides a standard interface for the kernel to communicate with any type of filesystem. VES
caches information in memory as each filesystem is mounted and used.

11

m The Linux Command Line
TABLE 1-1

Linux Filesystems

Filesystem Description

ext Linux Extended filesystem — the original Linux filesystem

ext2 Second extended filesystem, provided advanced features over ext
ext3 Third extended filesystem, supports journaling

hpfs OS/2 high-performance filesystem

ifs IBM’s journaling file system

509660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp Netware filesystem

nfs Network File System

ntfs Support for Microsoft NT filesystem

proc Access to system information

ReiserFS Advanced Linux file system for better performance and disk recovery
smb Samba SMB filesystem for network access

sysv Older Unix filesystem

ufs BSD filesystem

umsdos Unix-like filesystem that resides on top of MSDOS

viat Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

The GNU utilities

Besides having a kernel to control hardware devices, a computer operating system needs utilities
to perform standard functions, such as controlling files and programs. While Linus created the
Linux system kernel, he had no system utilities to run on it. Fortunately for him, at the same
time he was working, a group of people were working together on the Internet trying to develop
a standard set of computer system utilities that mimicked the popular Unix operating system.

The GNU organization (GNU stands for GNU’s Not Unix) developed a complete set of Unix
utilities, but had no kernel system to run them on. These utilities were developed under a soft-
ware philosophy called open source software (OSS).

12

Starting with Linux Shells

The concept of OSS allows programmers to develop software and then release it to the world with
no licensing fees attached. Anyone can use the software, modify it, or incorporate it into his or
her own system without having to pay a license fee. Uniting Linus’s Linux kernel with the GNU
operating system utilities created a complete, functional, free operating system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will see
some Linux purists on the Internet refer to it as the GNU/Linux system to give credit to the GNU
organization for its contributions to the cause.

The core GNU utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like envi-
ronment available. This focus resulted in the project porting many common Unix system com-
mand line utilities. The core bundle of utilities supplied for Linux systems is called the coreutils
package.

The GNU coreutils package consists of three parts:

B Utdilities for handling files
M Utilities for manipulating text

B Utilities for managing processes

These three main groups of utilities each contain several utility programs that are invaluable to
the Linux system administrator and programmer. This book covers each of the utilities contained
in the GNU coreutils package in detail.

The shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start programs,
manage files on the filesystem, and manage processes running on the Linux system. The core
of the shell is the command prompt. The command prompt is the interactive part of the shell.
It allows you to enter text commands, interprets the commands, then executes the commands in
the kernel.

The shell contains a set of internal commands that you use to control things such as copying
files, moving files, renaming files, displaying the programs currently running on the system, and
stopping programs running on the system. Besides the internal commands, the shell also allows
you to enter the name of a program at the command prompt. The shell passes the program name
off to the kernel to start it.

There are quite a few Linux shells available to use on a Linux system. Different shells have dif-
ferent characteristics, some being more useful for creating scripts and some being more useful for
managing processes. The default shell used in all Linux distributions is the bash shell. The bash
shell was developed by the GNU project as a replacement for the standard Unix shell, called the
Bourne shell (after its creator). The bash shell name is a play on this wording, referred to as
the “Bourne again shell”.

13

The Linux Command Line

14

TABLE 1-2

Linux Shells

Shell Description

ash A simple, lightweight shell that runs in low-memory environments but has full
compatibility with the bash shell

korn A programming shell compatible with the Bourne shell but supporting advanced
programming features like associative arrays and floating-point arithmetic

tcsh A shell that incorporates elements from the C programming language into shell scripts

zsh An advanced shell that incorporates features from bash, tcsh, and korn, providing

advanced programming features, shared history files, and themed prompts

Besides the bash shell we will cover several other popular shells in this book. Table 1-2 lists the
different shells we will examine.

Most Linux distributions include more than one shell, although usually they pick one of them
to be the default. If your Linux distribution includes multiple shells, feel free to experiment with
different shells and see which one fits your needs.

The Linux desktop environment

In the early days of Linux (the early 1990s) all that was available was a simple text interface to
the Linux operating system. This text interface allowed administrators to start programs, control
program operations, and move files around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text
interface to work with. This spurred more development in the OSS community, and the Linux
graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more
relevant than in graphical desktops. There are a plethora of graphical desktops you can choose
from in Linux. The following sections describe a few of the more popular ones.

The X Windows system

There are two basic elements that control your video environment — the video card in your PC
and your monitor. To display fancy graphics on your computer, the Linux software needs to
know how to talk to both of them. The X Windows software is the core element in presenting
graphics.

The X Windows software is a low-level program that works directly with the video card and
monitor in the PC, and controls how Linux applications can present fancy windows and graphics
on your computer.

Starting with Linux Shells

Linux isn't the only operating system that uses X Windows; there are versions written for many
different operating systems. In the Linux world, there are only two software packages that can
implement it.

The XFree86 software package is the older of the two, and for a long time was the only
X Windows package available for Linux. As its name implies, it's a free open source version of
the X Windows software.

Recently, a new package called X.org has come onto the Linux scene. It too provides an open
source software implementation of the X Windows system. It is becoming increasingly popular,
with many Linux distributions starting to use it instead of the older XFree86 system.

Both packages work the same way, controlling how Linux uses your video card to display con-
tent on your monitor. To do that, they have to be configured for your specific system. That is
supposed to happen automatically when you install Linux.

When you first install a Linux distribution, it attempts to detect your video card and monitor
and then creates an X Windows configuration file that contains the required information. During
installation you may notice a time when the installation program scans your monitor for sup-
ported video modes. Sometimes this causes your monitor to go blank for a few seconds. Because
there are lots of different types of video cards and monitors out there, this process can take a little
while to complete.

This is where many of the customized Linux distributions can be lifesavers. Most of them take
great effort to automatically detect video hardware and settings without asking you any technical
questions.

Unfortunately, sometimes the installation can’t autodetect what video settings to use, especially
with some of the newer, more complicated video cards. Unfortunately, some Linux distributions
will fail to install if they can’t find your specific video card settings. Others will ask a few ques-
tions during installation to help manually gather the necessary information. Still others default
to the lowest common denominator and produce a screen image that is not customized for your
video environment.

To complicate matters more, many PC users have fancy video cards, such as 3-D accelerator cards,
so they can play high-resolution games. In the past, this caused a lot of problems if you tried to
install Linux. But lately, video card companies are helping to solve this problem by providing
Linux drivers. And many of the customized Linux distributions now include drivers for specialty
video cards.

The core X Windows software produces a graphical display environment, but nothing else. While
this is fine for running individual applications, it is not too useful for day-to-day computer use.
There is no desktop environment allowing users to manipulate files or launch programs. To do
that, you need a desktop environment on top of the X Windows system software.

15

The Linux Command Line

The KDE desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project to
produce a graphical desktop similar to the Microsoft Windows environment. The KDE desk-
top incorporates all of the features you are probably familiar with if you are a Windows user.
Figure 1-3 shows a sample KDE desktop running on Linux.

The KDE desktop allows you to place both application and file icons on the desktop area. If you
single-click an application icon, the Linux system starts the application. If you single-click on a
file icon, the KDE desktop attempts to determine what application to start to handle the file.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:
B The K menu: Similarly to the Windows Start menu, the K menu contains links to start
installed applications.
B Program shortcuts: These are quick links to start applications directly from the Panel.

B The taskbar: The taskbar shows icons for applications currently running on the
desktop.

B Applets: These are small applications that have an icon in the Panel that often can
change depending on information from the application.

FIGURE 1-3

The KDE desktop on a SimplyMEPIS Linux system

test=Kongqueror
Location Edit View Bookmarks Tools Settings Help
Hesaslaaabna
: C:I' I:i)_ ﬁ_ ﬁ % B (@fhumaitast |"] wﬂ]
= It = = = =

Backups ~ Desktop ~ Decumen Mail Music
ts

2 @ =) B Bl

MERISHhelp Pictures public_ Shared Wallpape terminfo.
html r: trt

@l 11 Items - One File (126.8 KB Total) - 10 Folders

Q__@ E_@ Q_ e @ .%‘.::i;;"‘}.‘fﬁ'ﬁ'.

16

Starting with Linux Shells

KDE Applications
Application Description
amaroK Audio file player
digiKam Digital camera software
K3b CD-burning software
Kaffeine Video player
Kmail E-mail client
Koffice Office applications suite
Konqueror File and Web browser
Kontact Personal information manager
Kopete Instant messaging client

All of the Panel features are similar to what you would find in Windows. Besides the desktop
features, the KDE project has produced a wide assortment of applications that run in the KDE
environment. These applications are shown in Table 1-3. (You may notice the trend of using a
capital K in KDE application names.)

This is only a partial list of applications produced by the KDE project. There are lots more appli-
cations that are included with the KDE desktop.

The GNOME desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop envi-
ronment. First released in 1999, GNOME has become the default desktop environment for many
Linux distributions (the most popular being Red Hat Linux).

While GNOME chose to depart from the standard Microsoft Windows look-and-feel, it incorpo-
rates many features that most Windows users are comfortable with:

B A desktop area for icons
B Two panel areas
B Drag-and-drop capabilities
Figure 1-4 shows the standard GNOME desktop used in the Fedora Linux distribution.

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical appli-
cations that integrate with the GNOME desktop. These are shown in Table 1-4.

As you can see, there are also quite a few applications available for the GNOME desktop. Besides
all of these applications, most Linux distributions that use the GNOME desktop also incorporate
the KDE libraries, allowing you to run KDE applications on your GNOME desktop.

17

10l The Linux Command Line

18

A GNOME desktop on a Fedora Linux system

Rich Blum 9:04 PM

£ Applications Places System B ENE T

Computer

rich's Home

&= rich
File Edit view Places Help

Documents Download

Templates

& rich v | 8 items, Free space: 118.6 MB

@ (@rch | iheomr | - =

Other desktops

The downside to a graphical desktop environment is that they require a fair amount of system
resources to operate properly. In the early days of Linux, a hallmark and selling feature of Linux
was its ability to operate on older, less powerful PCs that the newer Microsoft desktop products
couldn’t run on. However, with the popularity of KDE and GNOME desktops, this hallmark
has changed, as it takes just as much memory to run a KDE or GNOME desktop as the latest
Microsoft desktop environment.

If you have an older PC, don’t be discouraged. The Linux developers have banded together to
take Linux back to its roots. They've created several low-memory-oriented graphical desktop
applications that provide basic features that run perfectly fine on older PCs.

While these graphical desktops don't have a plethora of applications designed around them, they
still run many basic graphical applications that support features such as word processing, spread-
sheets, databases, drawing, and, of course, multimedia support.

Starting with Linux Shells _

GNOME Applications
Application Description
epiphany Web browser
evince Document viewer
gcalc-tool Calculator
gedit GNOME text editor

gnome-panel
gnome-nettool
gnome-terminal
nautilus
nautilus-cd-burner
sound juicer
tomboy

totem

Desktop panel for launching applications
Network diagnostics tool

Terminal emulator

Graphical file manager

CD-burning tool

Audio CD-ripping tool

Note-taking software

Multimedia player

TABLE 1-5

Other Linux Graphical Desktops

Desktop Description

fluxbox A bare-bones desktop that doesn’t include a Panel, only a pop-up menu to
launch applications

xfce A desktop that’s similar to the KDE desktop, but with less graphics for
low-memory environments

fvwm Supports some advanced desktop features such as virtual desktops and Panels,
but runs in low-memory environments

fvwm95 Derived from fvwm, but made to look like a Windows 95 desktop
Table 1-5 shows some of the smaller Linux graphical desktop environments that can be used on
lower-powered PCs and laptops.

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but
they provide basic graphical functionality just fine. Figure 1-5 shows what the fluxbox desktop
used in the SimplyMEPIS antiX distribution looks like.

19

m The Linux Command Line
FIGURE 1-5

The fluxbox desktop as seen in the SimplyMEPIS antiX distribution

Office
Editors

If you are using an older PC, try a Linux distribution that uses one of these desktops and see
what happens. You may be pleasantly surprised.

Linux Distributions

Now that you have seen the four main components required for a complete Linux system, you
may be wondering how you are going to get them all put together to make a Linux system. For-
tunately, there are people who have already done that for us.

A complete Linux system package is called a distribution. There are lots of different Linux distribu-
tions available to meet just about any computing requirement you could have. Most distributions
are customized for a specific user group, such as business users, multimedia enthusiasts, software
developers, or normal home users. Each customized distribution includes the software packages
required to support specialized functions, such as audio- and video-editing software for multi-
media enthusiasts, or compilers and integrated development environments (IDEs) for software
developers.

20

Starting with Linux Shells

The different Linux distributions are often divided into three categories:

B Full core Linux distributions
B Specialized distributions
B LiveCD test distributions

The following sections describe these different types of Linux distributions, and show some
examples of Linux distributions in each category.

Core Linux distributions

A core Linux distribution contains a kernel, one or more graphical desktop environments, and just
about every Linux application that is available, precompiled for the kernel. It provides one-stop
shopping for a complete Linux installation. Table 1-6 shows some of the more popular core Linux
distributions.

In the early days of Linux, a distribution was released as a set of floppy disks. You had to down-
load groups of files and then copy them onto disks. It would usually take 20 or more disks to
make an entire distribution! Needless to say, this was a painful experience.

Nowadays, with home computers commonly having CD and DVD players built in, Linux
distributions are released as either a CD set or a single DVD. This makes installing Linux
much easier.

However, beginners still often run into problems when they install one of the core Linux distri-
butions. To cover just about any situation in which someone might want to use Linux, a single
distribution has to include lots of application software. They include everything from high-end

Internet database servers to common games. Because of the quantity of applications available for
Linux, a complete distribution often takes four or more CDs.

TABLE 1-6

Core Linux Distributions

Distribution Description

Slackware One of the original Linux distribution sets, popular with Linux geeks

Red Hat A commercial business distribution used mainly for Internet servers

Fedora A spin-off from Red Hat but designed for home use

Gentoo A distribution designed for advanced Linux users, containing only Linux
source code

Mandriva Designed mainly for home use (previously called Mandrake)

openSuSe Different distributions for business and home use (now owned by Novell)

Debian Popular with Linux experts and commercial Linux products

21

m The Linux Command Line

22

While having lots of options available in a distribution is great for Linux geeks, it can become a
nightmare for beginning Linux users. Most distributions ask a series of questions during the instal-
lation process to determine which applications to load by default, what hardware is connected to
the PC, and how to configure the hardware. Beginners often find these questions confusing. As
a result, they often either load way too many programs on their computer or don’t load enough
and later discover that their computer won't do what they want it to.

Fortunately for beginners, there’s a much simpler way to install Linux.

Specialized Linux distributions

A new subgroup of Linux distributions has started to appear. These are typically based on one
of the main distributions but contain only a subset of applications that would make sense for a
specific area of use.

Besides providing specialized software (such as only office products for business users), cus-
tomized Linux distributions also attempt to help beginning Linux users by autodetecting and
autoconfiguring common hardware devices. This makes installing Linux a much more enjoyable
process.

Table 1-7 shows some of the specialized Linux distributions available and what they specialize in.

That’s just a small sampling of specialized Linux distributions. There are literally hundreds of
specialized Linux distributions, and more are popping up all the time on the Internet. No matter
what your specialty, you'll probably find a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution. They
use the same installation files as Debian but package only a small fraction of a full-blown Debian
system.

TABLE 1-7

Specialized Linux Distributions

Distribution Description

Linspire A commercial Linux package configured to look like Windows
Xandros A commercial Linux package configured for beginners
SimplyMEPIS A free distribution for home use

Ubuntu A free distribution for school and home use

PCLinuxOS A free distribution for home and office use

dyne:bolic A free distribution designed for audio and MIDI applications
Puppy Linux A free small distribution that runs well on older PCs

Starting with Linux Shells

TABLE 1-8

Linux LiveCD Distributions

Distribution Description

Knoppix A German Linux, the first Linux LiveCD developed
SimplyMEPIS Designed for beginning home Linux users

PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages
Slax A live Linux CD based on Slackware Linux

Puppy Linux A full-featured Linux designed for older PCs

The Linux LiveCD

A relatively new phenomenon in the Linux world is the bootable Linux CD distribution. This
lets you see what a Linux system is like without actually installing it. Most modern PCs can boot
from a CD instead of the standard hard drive. To take advantage of this, some Linux distributions
create a bootable CD that contains a sample Linux system (called a Linux LiveCD). Because of the
limitations of the single CD size, the sample can’t contain a complete Linux system, but you'd be
surprised at all the software they can cram in there. The result is that you can boot your PC from
the CD and run a Linux distribution without having to install anything on your hard drive!

This is an excellent way to test various Linux distributions without having to mess with your PC.
Just pop in a CD and boot! All of the Linux software will run directly off the CD. There are lots
of Linux LiveCDs that you can download from the Internet and burn onto a CD to test drive.

Table 1-8 shows some popular Linux LiveCDs that are available.

You may notice a familiarity in this table. Many specialized Linux distributions also have a Linux
LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow you to install the
Linux distribution directly from the LiveCD. This enables you to boot with the CD, test drive
the Linux distribution, and then if you like it, install it on your hard drive. This feature is
extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Since you access everything from
the CD, applications run more slowly, especially if you're using older, slower computers and CD
drives. Also, since you can’t write to the CD, any changes you make to the Linux system will be
gone the next time you reboot.

But there are advances being made in the Linux LiveCD world that help to solve some of these
problems. These advances include the ability to:

B Copy Linux system files from the CD to memory
B Copy system files to a file on the hard drive

23

The Linux Command Line

24

B Store system settings on a USB memory stick

B Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux
system files and copy them directly into memory when the CD boots. This allows you to remove
the CD from the computer as soon as Linux boots. Not only does this make your applications
run much faster (since applications run faster from memory), but it also gives you a free CD tray
to use for ripping audio CDs or playing video DVDs from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the tray
after booting. It involves copying the core Linux files onto the Windows hard drive as a single
file. After the CD boots, it looks for that file and reads the system files from it. The dyne:bolic
Linux LiveCD uses this technique, which is called docking. Of course, you must copy the system
file to your hard drive before you can boot from the CD.

A very popular technique for storing data from a live Linux CD session is to use a common USB
memory stick (also called a flash drive and a thumb drive). Just about every Linux LiveCD can
recognize a plugged-in USB memory stick (even if the stick is formatted for Windows) and read
and write files to and from it. This allows you to boot a Linux LiveCD, use the Linux applications
to create files, store them on your memory stick, and then access them from your Windows
applications later (or from a different computer). How cool is that?

Summary

This chapter discussed where the Linux system came from and how it works. The Linux kernel is
the core of the system, controlling how memory, programs, and hardware all interact with each
other. The GNU utilities are also an important piece in the Linux system. The Linux shell, which
is the main focus of this book, is part of the GNU core utilities. The chapter also discussed the
final piece of a Linux system, the Linux desktop environment. Things have changed over the
years, and Linux now supports several graphical desktop environments.

Next, the chapter talked about the various Linux distributions. A Linux distribution bundles
the various parts of a Linux system into a simple package that you can easily install on

your PC. The Linux distribution world consists of full-blown Linux distributions that include just
about every application imaginable, as well as specialized Linux distributions that only include
applications focused on a special function. The Linux LiveCD craze has created another group of
Linux distributions that allow you to easily test drive Linux without even having to install it on
your hard drive.

In the next chapter, we'll look at what we need to start our command line and shell scripting
experience. You'll see what you need to do to get to the Linux shell utility from your fancy
graphical desktop environment. These days that’s not always an easy thing.

n the old days of Linux, all that was available to work with was the

shell. System administrators, programmers, and system users all sat at

the Linux console terminal entering text commands, and viewing text
output. These days, with our fancy graphical desktop environments, it’s
getting harder just to find a shell prompt on the system to work from. This
chapter discusses what is required to provide a command line environment,
then walks you through the terminal emulation packages you may run into
in the various Linux distributions.

Terminal Emulation

Back before the days of graphical desktops, the only way to interact with
a Unix system was through a text command line interface (CLI) provided by
the shell. The CLI allowed text input only, and could only display text and
rudimentary graphics output.

Because of this restriction, output devices did not have to be very fancy.
Often a simple dumb terminal was all that was required to interact with the
Unix system. A dumb terminal was usually nothing more than a monitor
and keyboard (although later on in life they started getting fancier by uti-
lizing a mouse) connected to the Unix system via a communication cable
(usually a multi-wire serial cable). This simple combination provided an
easy way to enter text data into the Unix system and view text results.

As you well know, things are significantly different in today’s Linux envi-
ronment. Just about every Linux distribution uses some type of graphical
desktop environment. However, to access the shell you still need a text

25

IN THIS CHAPTER

Discussing terminal emulation

Examining the terminfo file

Looking at xterm

Exploring Konsole

Playing with GNOME Terminal

The Linux Command Line

26

display to interact with a CLI. The problem now is getting to one. With all of the new graphical
Linux desktop features, sometimes finding a way to get a CLI in a Linux distribution is not an
easy task.

One way to get to a CLI is to take the Linux system out of graphical desktop mode and place it
in text mode. This provides nothing more than a simple shell CLI on the monitor, just like the
days before graphical desktops. This mode is called the Linux console, since it emulates the old

days of a hard-wired console terminal, and is a direct interface to the Linux system.

The alternative to being in the Linux console is to use a terminal emulation package from within

the graphical Linux desktop environment. A terminal emulation package simulates working on a
dumb terminal, all within a graphical window on the desktop. Figure 2-1 shows an example of

a terminal emulator running in a graphical Linux desktop environment.

Each terminal emulation package has the ability to emulate one or more specific types of dumb
terminal. If you're going to work with the shell in Linux, unfortunately you'll need to know a
little bit about terminal emulation.

Knowing the core features of the old dumb terminals will help you decide which emulation type
to select when you're using a graphical terminal emulator, and use all of the available features
to their full capabilities. The main features used in the dumb terminal can be broken down into
two areas: the graphics capabilities and the keyboard. This section describes these features and
discusses how they relate to the different types of terminal emulators.

FIGURE 2-1

A simple terminal emulator running on a Linux desktop

[Beeurnens
Shell =Konsole:
0 Session Edit View Bookmarks Settings Help
EBEVD richgll~1§ ls -1 &
CR total 68
drwxr-xr-x 2 rich users 4096 2006-05-09 09:41 Backups
-rw-r--r-- 1 rich users 1451 2007-07-02 13:31 CPUsensor
@ -rw-r--r-- 1 rich users 1495 2007-07-02 13:30 CPUsensor~
drwxr-xr-x 2 rich users 4096 2007-07-06 09:29 Desktop
Flopgy drwx------ 3 rich users 4096 2007-06-12 10:42 Documents
* drwxr-xr-x 8 rich users 4096 2007-08-20 12:53 Mail
drwxr-xr-x 2 rich users 4096 2004-03-14 10:44 Music
SIWX= - - 1 rich users 30 2007-08-22 09:01
B drwxr-xr-x 3 rich users 4096 2004-05-24 13:24 News
@ﬁl -rw-r--r-- 1 rich users 887 2007-06-25 14:24 output. txt
drwir-xr-x 2 rich users 4096 2007-06-14 10:45 Pictures
mj? drwxr-xr-x 2 rich users 4096 2006-11-08 16:27 public_html
v drwcrwirwx 2 rich users 4006 2003-09-03 23:06 i
drwcrwsr-x 2 rich testers 4096 2007-07-02 12:45 test
Q drwxr-xr-x 2 rich testers 4896 2007-06-07 13:23 test2
-rw-r--r-- 1 rich users 21 2007-06-25 14:16 testfile.txt
EE el drwxr-xr-x 2 rich users 4096 2005-09-04 07:43 Wallpapers
MIERIS help
rich@ll~13 [l
=
7]
B shell | =

&

— _— G E shell - Konsole - - 4 m
Q & E \@ C 27 . ::elém':ﬂ I AR

2007-08-31

Getting to the Shell

Graphics capabilities

The most important part of terminal emulation is how it displays information on the monitor.
When you hear the phrase “text mode,” the last thing you'd think to worry about is graphics.
However, even the most rudimentary dumb terminals supported some method of screen manipu-
lation (such as clearing the screen and displaying text at a specific location on the screen).

This section describes the graphics features that make each of the different terminal types unique,
and what to look for in the terminal emulation packages.

Character sets

All terminals must display characters on the screen (otherwise, text mode would be pretty use-
less). The trick is in what characters to display, and what codes the Linux system needs to send to
display them. A character set is a set of binary commands that the Linux system sends to a mon-
itor to display characters. There are several character sets that are supported by various terminal
emulation packages:

B ASCII The American Standard Code for Information Interchange. This character set
contains the English characters stored using a 7-bit code, and consists of 128 English
letters (both upper and lower case), numbers, and special symbols. This character set
was adopted by the American National Standards Institute (ANSI) as US-ASCIL. You
will often see it referred to in terminal emulators as the ANSI character set.

H 1SO-8859-1 (commonly called Latin-1) An extension of the ASCII character set devel-
oped by the International Organization for Standardization (ISO). It uses an 8-bit code to
support the standard ASCII characters as well as special foreign language characters
for most Western European languages. The Latin-1 character set is popular in multina-
tional terminal emulation packages.

I1SO-8859-2 1SO character set that supports Eastern European language characters.
I1SO-8859-6 1SO character set that supports Arabic language characters.
I1SO-8859-7 1SO character set that supports Greek language characters.
I1SO-8859-8 1SO character set that supports Hebrew language characters.

I1SO-10646 (commonly called Unicode) ISO 2-byte character set that contains codes
for most English and non-English languages. This single character set contains all of the
codes defined in all of the ISO-8859-x series of character sets. The Unicode character set
is quickly becoming popular among open source applications.

By far the most common character set in use today in English-speaking countries is the Latin-1
character set. The Unicode character set is becoming more popular, and may very well one day
become the new standard in character sets. Most popular terminal emulators allow you to select
which character set to use in the terminal emulation.

Control codes

Besides being able to display characters, terminals must have the ability to control special
features on the monitor and keyboard, such as the cursor location on the screen. They

27

The Linux Command Line

28

accomplish this using a system of control codes. A control code is a special code not used in
the character set, which signals the terminal to perform a special, nonprintable operation.

Common control code functions are the carriage return (return the cursor to the beginning of the
line), line feed (put the cursor on the next horizontal row), horizontal tab (shift the cursor over
a preset number of spaces), arrow keys (up, down, left, and right), and the page up/page down
keys. While these codes mainly emulate features that control where the cursor is placed on the
monitor, there are also several other codes, such as clearing the entire screen, and even a bell ring
(emulating the old typewriter end-of-carriage bell).

Control codes were also used in controlling the communication features of dumb terminals.
Dumb terminals were connected to the computer system via some type of communication chan-
nel, often a serial communication cable. Sometimes data needed to be controlled on the com-
munication channel, so developers devised special control codes just for data communication
purposes. While these codes aren’t necessarily required in modern terminal emulators, most
support these codes to maintain compatibility. The most common codes in this category are the
XON and XOFF codes, which start and stop data transmission to the terminal, respectively.

Block mode graphics

As dumb terminals became more popular, manufacturers started experimenting with rudimentary
graphics capabilities. By far the most popular type of “graphical” dumb terminal used in the
Unix world was the DEC VT series of terminals. The turning point for dumb terminals came with
the release of the DEC VT100 in 1978. The DEC VT100 terminal was the first terminal to support
the complete ANSI character set, including block mode graphic characters.

The ANSI character set contains codes that not only allowed monitors to display text but also
rudimentary graphics symbols, such as boxes, lines, and blocks. By far one of the most popular
dumb terminals used in Unix operations during the 1980s was the VT102, an upgraded version
of the VT100. Most terminal emulation programs emulate the operation of the VT102 display,
supporting all of the ANSI codes for creating block mode graphics.

Vector graphics

The Tektronix company produced a popular series of terminals that used a display method called
vector graphics. Vector graphics deviated from the DEC method of block mode graphics by mak-
ing all screen images (including characters) a series of line segments (vectors). The Tektronix
4010 terminal was the most popular graphical dumb terminal produced. Many terminal
emulation packages still emulate its capabilities.

The 4010 terminal displays images by drawing a series of vectors using an electron beam, much
like drawing with a pencil. Since vector graphics doesn’t use dots to create lines, it has the ability
to draw geometric shapes using higher precision than most dot-oriented graphics terminals. This
was a popular feature among mathematicians and scientists.

Terminal emulators use software to emulate the vector graphics drawing capabilities of
the Tektronix 4010 terminals. This is still a popular feature for people who need precise

Getting to the Shell

graphical drawings, or those who still run applications that used the vector graphics routines to
draw complicated charts and diagrams.

Display buffering
A key to graphics displays is the ability of the terminal to buffer data. Buffering data requires

having additional internal memory within the terminal itself to store characters not currently
being displayed on the monitor.

The DEC VT series of terminals utilized two types of data buffering:

B Buffering data as it scrolled off of the main display window (called a history)

B Buffering a completely separate display window (called an alternate screen)

The first type of buffering is known as a scroll region. The scroll region is the amount of memory
the terminal has that enables it to “remember” data as it scrolls off of the screen. A standard DEC
VT102 terminal contained a viewing area for 25 lines of characters. As the terminal displays a new
line of characters, the previous line is scrolled upward. When the terminal reaches the bottom line
of the display, the next line causes the top line to scroll off the display.

The internal memory in the VT102 terminal allowed it to save the last 64 lines that had scrolled
off of the display. Users had the ability to lock the current screen display and use arrow keys to
scroll backward through the previous lines that had “scrolled off” of the display. Terminal
emulation packages allow you to use either a side scrollbar or a mouse scroll button to scroll
through the saved data without having to lock the display. Of course, for full emulation compat-
ibility, most terminal emulation packages also allow you to lock the display and use arrow and
page up/page down to scroll through the saved data.

The second type of buffering is known as an alternative screen. Normally, the terminal writes
data directly to the normal display area on the monitor. A method was developed to crudely
implement animation by using two screen areas to store data. Control codes were used to signal
the terminal to write data to the alternative screen instead of the current display screen. That
data was held in memory. Another control code would signal the terminal to switch the monitor
display between the normal screen data and the data contained in the alternative screen almost
instantaneously. By storing successive data pages in the alternative screen area, then displaying it,
you could crudely simulate moving graphics.

Terminals that emulate the VTO0O series of terminals have the ability to support the alternative
screen method.

Color

Even back in the black-and-white (or green) dumb terminal days, programmers were experiment-
ing with different ways to present data. Most terminals supported special control codes to produce
the following types of special text:

B Bold characters

B Underline characters

29

The Linux Command Line

30

B Reverse video (black characters on white background)
B Blinking

B Combinations of all of the above features

Back in the old days, if you wanted to get someone’s attention, you used bold, blinking, reverse
video text. Now there’s something that could hurt your eyes!

As color terminals became available, programmers added special control codes to display text in
various colors and shades. The ANSI character set includes control codes for specifying specific
colors for both foreground text and the background color displayed on the monitor. Most terminal
emulators support the ANSI color control codes.

The keyboard

There is more to a terminal than just how the monitor operates. If you have ever worked with
different types of dumb terminals, I'm sure you have seen that they often contain different keys
on the keyboard. Trying to emulate specific keys on a specific dumb terminal has proven to be a
difficult task for terminal emulation packages.

It was impossible for the creators of the PC keyboard to include keys for every possible type
of special key found in dumb terminals. Some PC manufacturers experimented with including
special keys for special functions, but eventually the PC keyboard keys became somewhat stan-
dardized.

For a terminal emulation package to completely emulate a specific type of dumb terminal, it must
remap any dumb terminal keys that don’t appear on the PC keyboard. This remapping feature
can often become confusing, especially when different systems use different control codes for the
same key.

Some common special keys you'll see in terminal emulation packages are:

B BREAK: Sends a stream of zeroes to the host. This is often used to interrupt the
currently executing program in the shell.

B SCROLL LOCK: Also called no scroll, this stops the output on the display. Some
terminals included memory to hold the contents of the display so the user could scroll
backward through previously viewed information while the scroll lock was enabled.

B Repeat: When held down with another key, this caused the terminal to repeatedly send
the other key’s value to the host.

B Return: Commonly used to send a carriage return character to the host. Most often used
to signify the end of a command for the host to process (now called Enter on PC
keyboards).

B Delete: While basically a simple feature, the Delete key causes grief for terminal emula-
tion packages. Some terminals delete the character at the current cursor location, while

Getting to the Shell

others delete the preceding character. To resolve this dilemma, PC keyboards include
two delete keys, Backspace and Delete.

B Arrow keys: Commonly used to position the cursor at a specific place; for example,
when scrolling through a listing.

B Function keys: A combination of specialty keys that can be assigned unique values in
programs similar to the PC F1 through F12 keys). The DEC VT series of terminals
actually had two sets of function keys, F1 through F20, and PF1 through PF4.

Keyboard emulation is a crucial element in a terminal emulation package. Unfortunately, often
applications are written requiring users to hit specific keys for specific functions. I've seen many
a communications package that used the old DEC PF1 through PF4 keys, which are often a hard
thing to find on a terminal emulation keyboard.

The terminfo Database

Now that you have a terminal emulation package that can emulate different types of terminals,
you need a way for the Linux system to know exactly what terminal you're emulating. The Linux
system needs to know what control codes to use when communicating with the terminal emu-
lator. This is done by using an environment variable (see Chapter 5) and a special set of files
collectively called the terminfo database.

The terminfo database is a set of files that identify the characteristics of various terminals that
can be used on the Linux system. The Linux system stores the terminfo data for each terminal
type as a separate file in the terminfo database directory. The location of this directory often
varies from distribution to distribution. Some common locations are /usr/share/terminfo,
/etc/terminfo, and /1ib/terminfo.

To help with organization (often there are lots of different terminfo files), you will see that the
terminfo database directory contains directories for different letters of the alphabet. The individual
files for specific terminals are stored under the appropriate letter directory for their terminal name.

An individual terminfo file is a binary file that is the result of compiling a text file. This text file
contains code words that define screen functions, associated with the control code required to
implement the function on the terminal.

Since the terminfo database files are binary, you cannot see the codes within these files. However,
you can use the infocmp command to convert the binary entries into text. An example of using
this command is:

$ infocmp vt100
Reconstructed via infocmp from file: /1ib/terminfo/v/vt100
vt100|vt100-am|dec vt100 (w/advanced video),

am, msgr, xenl, xon,

31

The Linux Command Line

32

$

cols#80, it#8, Tinesi#24, vti#3,
acsc=""aaffggjjkklImmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=~G, blink=\E[5m$<2>, bold=\E[Im$<2>,
clear=\E[H\E[J$<50>, cr="M, csr=\E[%1%pl%d;%p2%dr,
cub=\E[%p1%dD, cubl=~H, cud=\E[%pl%dB, cudl="J,
cuf=\E[%pl%dC, cufl=\E[C$<2>,

cup=\E[%1%p1%d;%p2%dH$<5>, cuu=\E[%pl%dA,

cuul=\E[A$<?2>, ed=\E[J$<50>, el=\E[K$<3>, ell=\E[1K$<3>,
enacs=\E(B\E)O, home=\E[H, ht=~I, hts=\EH, ind=~J, kal=\EOq,
ka3=\EOs, kb2=\EOr, kbs="H, kcl=\EOp, kc3=\EOn, kcubl=\EOD,
kcudl=\EOB, kcufl=\EOC, kcuul=\EOA, kent=\EOM, kf0=\EOy,
kf1=\EOP, kfl0=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kfe=\EOu, kf7=\EOQv, kf8=\EOT, kf9=\EOw, rc=\E8,
rev=\E[/m$<2>, ri=\EM$<5>, rmacs="0, rmam=\E[?71,
rmkx=\E[?1T\E>, rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?31\E[?24T\E[?51\E[?7h\E[?8h,

sc=\E7,

sgrO0=\E[m\017$<2>, smacs="N, smam=\E[?7h, smkx=\E[?1h\E=,
smso=\E[7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

The terminfo entry defines the terminal name (in this case vt100), along with any alias names

that can be associated with the terminal name. Notice that the first line shows the location of the

terminfo file the values were extracted from.

Following that, the infocmp command lists the capabilities of the terminal definition, along with
the control codes used to emulate the individual capabilities. Some capabilities are either enabled

or disabled (such as the am, auto-right-margin, feature). If the capability appears in the list, it’s

enabled by the terminal definition. Other capabilities must define a specific control code sequence
to perform the task (such as clearing the monitor display). Table 2-1 shows a list of some of the

capabilities you see in the vt100 terminfo definition file listed.

The Linux shell uses the TERM environment variable to define which terminal emulation setting in
the terminfo database to use for a specific session. When the TERM environment variable is set to
vt100, the shell knows to use the control codes associated with the vt100 terminfo database

entry for sending control codes to the terminal emulator. To see the TERM environment variable,

you can just echo it from the CLI:

$ echo $TERM

xterm
$

This example shows that the current terminal type is set to the xterm entry in the terminfo

database.

Getting to the Shell

Terminfo Capability Codes

Code Description

am Set right-side auto-margin

msgr Safe to move cursor in standout mode

xenl Newline characters ignored after 80 columns

xon Terminal uses XON/XOFF characters for flow control
colsi#80 80 columns in a line

iti8 Tab character set to eight spaces

Tines{24 24 lines on a screen

vti3 Virtual terminal number 3

bel Control code to use to emulate the bell

blink Control code used to produce blinking text

bold Control code used to produce bold text

clear Control code used to clear the screen

cr Control code used to enter a carriage return

csr Control code used to change scroll region

cub Move one character to the left without erasing

cubl Move cursor back one space

cud Move cursor down one line

cudl Control code to move cursor down one line

cuf Move one character to the right without erasing
cufl Control code to move the cursor right one space without erasing
cup Control code to move to row one, column two on the display
cuu Move cursor up one line

cuul Control code to move cursor up one line

ed Clear to the end of the screen

el Clear to the end of the line

ell Clear to the beginning of the line.

continued

33

The Linux Command Line

TABLE 2-1 (continued)

Code Description

enacs Enable the alternate character set

home Control code to move cursor to the home position — row one, column two
(same as cup)

ht Tab character

hts Set tab in every row at current column

ind Scroll text up

kal Upper-left key in keypad

ka3 Upper-right key in keypad

kb2 Center key in keypad

kbs Backspace key

kcl Lower-left key in keypad

ke3 Lower-right key in keypad

kcubl The left arrow key

kcudl Control code for down arrow key

kcufl The right arrow key

kcuul The up arrow key

kent The Enter key

kfO The FO function key

kfl The F1 function key

kf10 The F10 function key

rc Restore cursor to last saved position
rev Reverse video mode

ri Scroll text down

rmacs End alternate character set
rmam Turn off automatic margins
rmkx Exit keyboard transmit mode
rmso Exit standout mode

rmul Exit underline mode

rse Reset

34

Getting to the Shell

TABLE 2-1 (continued)

Code Description

sc Save current cursor position
sgr Define video attributes

sgro Turn off all attributes

smacs Start alternate character set
smam Turn on automatic margins
smkx Start keyboard transmit mode
Smso Begin standout mode

smul Begin underline mode

thc Clear all tab stops

The Linux Console

In the early days of Linux, when you booted up your system you would see a login prompt on
your monitor, and that’s all. As mentioned earlier, this is called the Linux console. It was the only
place you could enter commands for the system.

With modern Linux systems, when the Linux system starts it automatically creates several virtual
consoles. A virtual console is a terminal session that runs in memory on the Linux system.
Instead of having six dumb terminals connected to the PC, the Linux system starts seven (or
sometimes even more) virtual consoles that you can access from the single PC keyboard and
monitor.

In most Linux distributions, you can access the virtual consoles using a simple keystroke
combination. Usually you must hold down the Ctl4+-Alt key combination, then press a function
key (F1 through F8) for the virtual console you want to use. Function key F1 produces virtual
console 1, key F2 produces virtual console 2, and so on.

The first six virtual consoles use a full-screen text terminal emulator to display a text login screen,
as shown in Figure 2-2.

After logging in with your user ID and password, you are taken to the Linux bash shell CLI. In
the Linux console you do not have the ability to run any graphical programs. You can only use
text programs to display on the Linux text consoles.

After logging in to a virtual console, you can keep it active and switch to another virtual
console without losing your active session. You can switch between all of the virtual consoles,
with multiple active sessions running.

35

m The Linux Command Line
FIGURE 2-2

36

The Linux console login screen

Fedora release 7 (Moonshine)
[Kernel 2.6.21-1.3194.fc? on an i686

localhost login: fedora
Last login: Fri Aug 31 12:55:13 on ttyl
[fedoraRlocalhost 15 Is -al

fedora fedora 4896 Z2BA7-B8-31
root root 4896 ZBA7-88-31

fedora fedora 55 2BA7-88-31 : .bash_history

fedora fedora 33 2BB7-88-31 . .bash_logout

fedora fedora 176 ZBB7-A8-31 5 .bash_profile

fedora fedora 124 ZBA7-B8-31 5 .bashrc

fedora fedora 2598 ZBA7-88-31 2 .face
[fedoraPlocalhost ~15 _

The last two virtual consoles are normally reserved for X Windows graphical desktops. Some dis-
tributions only assign one or the other, so you may have to test both Ctl4+-Alt+F7 and Ctl4+Alt+F8
to see which one your particular distribution uses. Most distributions automatically switch to one
of the graphical virtual consoles after the boot sequence completes, providing a complete graphical
login and desktop experience.

Logging in to a text virtual terminal session then switching over to a graphical one can get tedious.
Fortunately, there’s a better way to jump between graphical and text mode on the Linux system:
terminal emulation packages are a popular way to access the shell CLI from within a graphical
desktop session. The following sections describe the most common software packages that provide
terminal emulation in a graphical window.

The xterm Terminal

The oldest and most basic of X Windows terminal emulation packages is xterm. The xterm pack-
age has been around since the original days of X Windows, and is included by default in most X
Window packages.

The xterm package provides both a basic VT102/220 terminal emulation CLI and a graphical
Tektronix 4014 environment (similar to the 4010 environment). While xterm is a full terminal
emulation package, it doesn’t require many resources (such as memory) to operate. Because of
this feature, the xterm package is still popular in Linux distributions designed to run on older
hardware. Some graphical desktop environments, such as fluxbox, use it as the default terminal
emulation package.

FIGURE 2-3

Getting to the Shell

The basic xterm display

[CeeUrnEis

&

[sEiBEE]

richi2["]s 1s -1

total 68

drwxr-xr—x 2 rich users
-ru—r--r-- 1 rich users
-ru-r--r-- 1 rich users
druxr—xr—x 2 rich users
drux———- 3 rich users

% 2 rich users
= 1 rich users

xr—x 3 rich users
—ru-r—-r—= 1 rich users
drwxr—xr-x 2 rich users
drwxr-xr-x 2 rich users
druxrwxrws 2 rich users

4096 2006-05-09 03141 Rackups
1451 2007-07-02 13131 CPlsensor
1495 2007-07-02 13:30 CPlsensor™
4096 2007-07-06 09:29 Desktop
4096 2007-08-31 14:06 Documents
4036 2007-06-20 12:53 Hail
4096 2004-03-14 10144 i
30 2007-08-22 09701 »
4096 2004-05-24 13:24
867 2007-06-25 14:24 output.txt
4096 2007-06-14 10145 Pictures
4096 2006-11-08 10127 sslichhl
4096 2003-03-03 23:06

druxrwsr—x 2 rich testers 4006 2007-07-02 12:45 test
druxr-xr-x Z rich testers 4038 2007-06-07 13123 test?

—ry—r--r-- 1 rich users
druxr-xr-x 2 rich users
richi[*1s Il

21 2007-0B-26 14116 testfile,txt
4096 2008-03-04 07143 Hallpapers

QEEG® -

shell - Konsole ¥ xterm

< The GIMP

am a ; 2:06 pm

2007-08-31

While not offering many fancy features, the xterm package does one thing extremely well, and
that is emulate a VI220 terminal. The newer versions of xterm even emulate the VT series of
color control codes, allowing you to use color in your scripts (discussed in Chapter 15).

Figure 2-3 shows what the basic xterm display looks like running on a graphical Linux desktop.

The xterm package allows you to set individual features using both command line parameters and
a series of four simple graphical menus. The following sections discuss these features and how to
change them.

Command line parameters

The list of xterm command line parameters is extensive. There are lots of features you can
control to customize the terminal emulation features, such as enabling or disabling individual
VT emulations.

The xterm command line parameters use the plus (+) and minus (-) signs to signify how a feature
is set. A plus sign indicates that the feature should be returned to the default setting. A minus
sign indicates that you are setting the feature to a non-default value. Table 2-2 lists some of the
more common features that you can set using the command line parameters.

37

m The Linux Command Line
TABLE 2-2

xterm Command Line Parameters

Parameter Description

132 By default xterm does not allow 132 characters per line mode
ah Always highlight the text cursor

aw Auto-line-wrap is enabled

bc Enables text cursor blinking

bg color Specify the color to use for the background

cm Disables recognition of ANSI color change control codes

fb font Specify the font to use for bold text

fg color Specify the color to use for the foreground text

fn font Specify the font to use for text

fw font Specify the font to use for wide text

hc color Specify the color to use for highlighted text

J Use jump scrolling, scrolling multiple lines at a time

1 Enable logging screen data to a log file

1f filename Specify the file name to use for screen logging

mb Ring a margin bell when the cursor reaches the end of a line
ms color Specify the color used for the text cursor

name name Specify the name of the application that appears in the titlebar
rv Enable reverse video by swapping the background and foreground colors
sb Use a side scrollbar to allow scrolling of saved scroll data

t Start xterm in Tektronix mode

th Specify that xterm should display a toolbar at the top

It is important to note that not all implementations of xterm support all of these command line
parameters. You can determine which parameters your xterm implements by using the -help
parameter when you start xterm on your system.

The xterm main menu

The main xterm menu contains configuration items that apply to both the VT102 and Tektronix
windows. You can access the main menu by holding down the Ctrl key and clicking the mouse

38

Getting to the Shell

button once (the left button on a right-hand mouse, the right button on a left-hand mouse) while
in an xterm session window. Figure 2-4 shows what the xterm main menu looks like.

There are four sections in the xterm main menu, as described in the following sections.

X event commands

The X event commands section contains features that allow you to manage how xterm interacts
with the X Window display.

B Toolbar: If the xterm installation supports the toolbar, this entry enables or disables
displaying the toolbar in the xterm window (the same as the tb command line
parameter).

B Secure Keyboard: Restricts the keyboard keystrokes to a specific xterm window.
This is useful when typing passwords to ensure they don’t get hijacked by another
window.

B Allow SendEvents: Allows X Window events generated by other X Window
applications to be accepted by the xterm window.

B Redraw Window: Instructs X Windows to refresh the xterm window.

FIGURE 2-4

The xterm main menu

W

Deeuments

&

CHoVD
rich@2[*1¢ 1s -1
@ total B8
> druxr—xr—x 2 rich ussrs 4035 2005-05 Main Options
Heppy —rur—r— 1 rich users 1451 2007-07
= T, ot e e Koo
drux——— 3-rich users 4005 2007-08-|IEOLLOHE EndEent
. druxr—xr-x 8 rich users 4036 2007-05] Redraw Hindou
5 druxr—xr—x 2 rich users 4035 2004-03-] " Log to File
@,_A.‘ ~ru-————- 1 rich ussrs 30 2007-06-] FaTie i
MERIS druxr—xr—x 3 rich users 4035 2004-05] & o
 MEPIE, rur—r—- 1 rich users 887 2007-05-] —EranEvedivect
(GG 00 druxr—xr—x 2 rich users 4095 2007-0f G-Bik fontrods
druxe—xr—x 2 rich ussrs 4095 2006-11-{ Backarrow Key (BS/DEL)
= gmwwx g “EE e :ggg ggg?-g?- Alt/NunLock Hodifiers
« e e i o B
MERIS el -rw-r—-r—- 1 rich users 21 2007-06-] (a0 BLES T
drwxr—xr-x 2 rich users 4096 2005-05-| Delete is DEL
riche2["]s | 01d Function—Keys
Sun Function-Keys
¥T220 Keyboard
Send STOP Signal
Send CONT Signal =
Send INT Signal
Send HUP Signal
Send TERH Signal
Send KILL Signal
Quit

7 B = o - EA shell - konsole X xterm - = 2:07 pm
@ @ £ \Uﬁ! e 23 0 « The GIMP %Lﬂa = 2007-08-31

39

The Linux Command Line

Again, all of these features may not be supported by your particular xterm implementation. If
they’re not supported, they’ll appear grayed-out in the menu.

40

Output capturing

The xterm package allows you to capture data displayed in the window and either log it to
a file or send it to a default printer defined in X Windows. The features that appear in this
section are:

Log to file: Sends all data displayed in the xterm window to a text file.

Print window: Sends all data displayed in the current window to the default X Window
printer.

Redirect to printer: Sends all data displayed in the xterm window to the default X
Window printer as well. This feature must be turned off to stop printing data.

The capturing feature can get messy if you are using graphics characters or control characters
(such as colored text) in your display area. All characters sent to the display, including control
characters, are stored in the log file or sent to the printer.

The xterm print feature assumes that you define a default printer in the X Window system. If you
have no printer defined, the feature will appear grayed out in the menu.

Keyboard settings

The keyboard settings section contains features that allow you to customize how xterm sends
keyboard characters to the host system.

8-bit controls: Sends 8-bit control codes, used in VT220 terminals, rather than 7-bit
ASCII control codes.

Backarrow key: Toggles the back arrow key between sending a backspace character or
a delete character.

Alt/Numlock Modifiers: Controls whether the Alt or Numlock keys change the PC
numberpad behavior.

Alt Sends Escape: The Alt key sends an escape control code along with the other key
pressed.

Meta sends Escape: Controls whether the function keys send a two-character control
code, including the escape control code.

Delete is DEL: The PC Delete key sends a delete character instead of a backspace
character.

Old Function keys: The PC functions keys emulate the DEC VT100 function keys.
HP Function keys: The PC function keys emulate the HP terminal function keys.
Sun Function keys: The PC function keys emulate the Sun Workstation function keys.

VT220 keyboard: The PC function keys emulate the DEC VT220 function keys.

Getting to the Shell

As you can see, setting keyboard preferences often depends on the specific application and/or
environment you’re working in. There’s also a fair amount of personal preference involved as
well. Often it’s just a matter of what works best for you as to which keyboard settings to make.

The VT options menu

The VT options menu sets features xterm uses in the VT102 emulation. You access the VT options
menu by holding down the Control key and clicking the second mouse button. Normally the
second mouse button is the middle mouse button. If you're using a two-button mouse, most
Linux X Window configurations emulate the middle mouse button when you click both the left
and right mouse buttons together. Figure 2-5 shows what the VT options menu looks like.

As you can see from Figure 2-5, many of the VT features that you can set from the command line
parameters can also be set from the VT options menu. This produces quite a large list of available
options. The VT options are divided into three sets of commands, described in the following
sections.

FIGURE 2-5

The xterm VT options menu

>

[Deeuments

e

CEEVD
rich@2["1s 1s -1
4 total B8 5
@ drusr=xr—x 2 rich users 4036 2005 VT Options
Eleppy -rw-r--r-— 1 rich users 1451 2007
ISR —ru-r—-r— 1 rich users 1435 2007 Enable Scrollbar
drwxr—zr-x 2 rich users 4036 2007 +Enable Junp Scroll
dryx————— 3 rich users 4036 2007 i
druxe—xr-x & rich users 4088 2007 \,E"a:ie :e:er:e e 4
i drwsr-xr=x 2 rich users 4098 2004 ek U et i,
.E]_.t'& === 1 rich users 30 2007 Enable Reverse Hraparound
MERIS drwxr—xr—x 3 rich users 4005 2004 Enable Auto Linefeed
- ~— -ru-r--r— 1 rich users 887 2007 Enable Application Cursor Keys
[BettingEt.q. drur—xr—x 2 rich users 4036 2007 oo e (BE SRR BTS00
drwsr-xr=x 2 rich users 4098 2008 BE o
= drwxrucruz 2 rich users 4098 2003 Scroll to Botton on Key Press
Q druxrusr—x 2 rich testers 4096 20071 + Scroll to Bottom on Tty Output
drwxr-xr—x 2 rich testers 4036 2007 Allow 807132 Column Switching
HIERIS [-rumr=-r—- L rich users 21 2007 ;
HEPIE Di'dﬁl drwsr-xr—x 2 rich users 4098 2005 Enanle E‘.H‘SBS Enulaticn
riche2l*Ts I Enable Yisual Bell
Enable Pop on Bell
Enable Hargin Bell
Enable Blinking Cursor
v'Enable Rlternate Screen Switching

Ensble Sctlve oo

Do Soft Reset

Do Full Reset

Reset and Clear Saved Lines
Show Tek Hindow

Suitch to Tek Hode

Hide ¥T Hindou

Show Alternate Screen

-+ E shell-konsole ¥ xterm

%fﬂ%f’ 2:07 pm

0 & The GIMP 2007-08-31

41

The Linux Command Line

42

VT features

The VT features commands change the features of how xterm implements the VT102/220
emulation. They include:

Enable Scrollbar

Enable Jump Scrollbar

Enable Reverse Video

Enable Auto Wraparound
Enable Reverse Wraparound
Enable Auto Linefeed

Enable Application Cursor Keys
Enable Application Keypad
Scroll to Bottom on Keypress
Scroll to Bottom on TTY Output
Allow 80/132 Column Switching
Select to Clipboard

Enable Visual Bell

Enable Pop on Bell

Enable Margin Bell

Enable Blinking Cursor

Enable Alternate Screen Switching

Enable Active Icon

You can enable or disable each of these features by clicking on the feature in the menu. An
enabled feature will have a checkmark next to it.

VT commands
The VT commands section sends a specific reset command to the xterm emulation window. They
include:

B Do Soft Reset

B Do Full Reset

M Reset and Clear Saved Lines
The soft reset sends a control code to reset the screen area. This is convenient if a program sets
the scroll region incorrectly. The full reset clears the screen, resets any set tab positions, and resets

any terminal mode feature set during the session to the initial state. The Reset and Clear Saved
Lines command performs a full reset, and also clears out the scroll area history file.

Getting to the Shell

Current screen commands

The current screen commands section sends commands to the xterm emulator that affect which
screen is the currently active screen.

B Show Tek Window: Display the Tektronix terminal window along with the VT100
terminal window.

B Switch to Tek Window: Hide the VT100 terminal window and display the
Tektronix terminal window.

B Hide VT Window: Hide the VT100 terminal window while displaying the Tektronix
terminal window.

B Show Alternate Screen: Display the data currently stored in the VT100 alternate
screen area.

The xterm terminal emulator provides the ability to start in either VIT100 terminal mode (by
default) or in the Tektronix terminal mode (by using the t command line parameter). After you
start in either mode, you can use this menu area to switch to the other mode during your session.

The VT fonts menu

The VT fonts menu sets the font style used in the VT100/220 emulation window. You can access
this menu by holding the Control key and clicking on mouse button three (the right button on a
right-handed mouse, or the left button on a left-handed mouse). Figure 2-6 shows what the VT
fonts menu looks like.

FIGURE 2-6

The xterm VT fonts menu

=
COoVD
M [=])3
ich@2[~Ts 1= -1
@ fotal K8 VT Fonts
> drwroxrox 2 rich users A09 Q06054
—ru-r--r— 1 rich users 1451 2007-07- efau.
Floppy = 1 rich users 1435 2007-07 Unreadable
r=x 2 rich users 4085 Z007-07- Tiny
e 3 rich users 4095 2007081 g7y
. drier-xr—x B rich users 4096 2007-05-3 A
- druxr—xr—x 2 rich users 4035 2004-03-1) Hediun
@_-M —rux-—-— 1 rich users 30 2007-08-4 Large
e drwe-xr—x 3 rich users 4096 2004054 Huge
| PR rumr—-r—- 1 rich users 887 2007-05- Escape Sequence
drusr-xr—x 2 rich users 4086 3007-0-] :
druxe—xr—x 2 rich users 4035 200611 _ Selection
—~ drwuxru 2 rich users 4096 2003-09- LineDrawing Characters
Q drusrusr—x 2 rich testers 4036 2007-07-] . Doublesized Characters
druxr—xr—x 2 rich testers 4036 2007-06- e
MRS hellp —ru-r--r— L rich users 21 2007-05-3 A o
druse-xr=x 2 rich users 4035 2005-03-C UTE-8
riche2["1s |
9 @ E ~— e _:a e EA shell - Konsole ¥ xterm & a o 2:08pm
@ 0 « The GIMP “ 2007-08-31

43

The Linux Command Line

44

The VT fonts menu, covered in the following sections, contains three sections of selections.

Set the font

These menu options set the size of the font used in the xterm window. The available sizes are:

Default
Unreadable
Tiny

Small
Medium
Large

Huge

Escape the Sequence

Selection

The default font is the standard-sized font used to display text in the current X Window frame.
The unreadable font is pretty much what it says. It shrinks the xterm window down to a size
that is not really usable. This is handy, however, when you want to minimize the window on
your desktop without completely minimizing it on the system. The large and huge font options
produce extremely large font sizes for visually-impaired users.

The Escape the Sequence option sets the font to the last font set by the VT100 set font control
code. The Selection option allows you to save the current font with a special font name.

Display the font
This section of menu options defines the type of characters used to create the text. There are two
options available:
B Line Drawing Characters: Tells the Linux system to produce ANSI graphical lines
instead of using line characters from the chosen font
B Doublesized characters: Tells the Linux system to scale the set font to double the

normal size

The line drawing characters allow you to determine which types of graphical features to use when
drawing in text mode. You can use either characters provided by the selected font source or
characters provided by the DEC VT100 control codes.

Specify the font
This section of the menu provides options for what type of fonts are used to create the characters:

B TrueType Fonts
M UTF-8 Fonts

Getting to the Shell

The TrueType fonts are popular in graphical environments. Instead of each character taking the
same amount of space in the line, characters are proportioned by their natural sizes. Thus, the
letter i takes up less space on the line than the letter m. The UTF-8 font allows you to temporarily
switch to use the Unicode character set for applications that don’t support foreign characters.

The Konsole Terminal

The KDE Desktop Project has created its own terminal emulation package called Konsole. The
Konsole package incorporates the basic xterm features, along with more advanced features that
we now expect from a Windows application. This section describes the features of the Konsole
terminal, and shows how to use them.

Command line parameters

Often a Linux distribution provides a method for starting applications directly from the graphical
desktop menu system. If your distribution doesn’t provide this feature, you can manually start
Konsole by using the format:

konsole parameters

Just like xterm, the Konsole package uses command line parameters to set features in the new
sessions. Table 2-3 shows the available Konsole command line parameters.

Sessions

When you start Konsole, you'll notice that it has a tabbed window, with one tab open to a ter-
minal emulation session. This is the default session, and it is normally a standard bash shell CLI.
You can define many different sessions for Konsole, and even have multiple sessions open at the
same time.

The default configuration for Konsole includes several different types of sessions that you can
access from the Konsole window:
B A standard shell session using the xterm terminal emulation
A Linux console session using the text mode terminal emulation
A shell session logged in as the Linux root user (you must supply the password)

A Midnight Commander file management session (if installed in your distribution)

A session using the Python interactive CLI for testing programs written in the Python
language (if Python is installed in your distribution)

A shell started at a saved bookmark area (discussed in “The menu bar” section later
in this chapter)

45

m The Linux Command Line
TABLE 2-3

The Konsole Command Line Parameters

Parameter Description

-e command Execute command instead of a shell.

--keytab file Use the specified key fiTe to define key mappings.

--keytabs List all of the available keytabs.

--1s Start the Konsole session with a login screen.

--name name Set the name that appears in the Konsole titlebar.

--noclose Prevent the Konsole window from closing when the last session has been
closed.

--noframe Start Konsole without a frame.

--nohist Prevent Konsole from saving scroll history in sessions.

--nomenubar Start Konsole without the standard menubar options.

--noresize Prevent changing the size of the Konsole window area.

--notabbar Start Konsole without the standard tab area for sessions.

--noxft Start Konsole without support for aliasing smaller fonts.

--profile file Start Konsole with settings saved in the specified file.

--profiles List all of the available Konsole profiles.

--schema name Start Konsole using the specified schema name or file.

--schemata List the schemes available in Konsole.

-T title Set the Konsole window title.

--type type Start a Konsole session using the specified type.

--types List all of the available Konsole session types.

--vt_sz CxL Specify the terminal columns (C) and rows (L).

--workdir dir Specify the working directory for Konsole to store temporary files.

Konsole allows you to have multiple sessions active at the same time. Each session is contained
within its own tabbed window. Konsole places a tab on each session window to allow you to
easily switch between sessions. You'll notice the tabs at either the top or bottom of the window
area. This is a great feature for programmers who need to edit code in one session, while testing
the code in another session. It’s easy to {lip back and forth between different active sessions in
Konsole. Figure 2-7 shows a Konsole window with three active sessions.

46

Getting to the Shell _

The Konsole terminal emulator with three active sessions

@ shell | EShellNo. 2 | B Linux Console

- —y) - H Linux Console - Konsole 5 2:05
[/ 2 ‘ Q@ag=
@ Lj) gg \Jﬁ[@ 0 # The GIMP R

2007-08-31

There is a new session button at the left side of the tab area. Click this button to automatically
start a new session using the standard shell. Click and hold the button to see a session menu
which allows you to select the type of new session to start.

Similar to the xterm terminal emulator, Konsole provides a simple menu by right-clicking in
the active session area. If you right-click in the session area, a menu appears with the following
options:

B Set Selection End: Select the session window area from the cursor to the location of the
mouse pointer.
Copy: Copy the selected text to the clipboard.
Paste: Paste the contents of the clipboard to the selected area.

Send Signal: Send a Linux control signal to the system.

Detach session: Move a tabbed session to a new Konsole session window (only avail-
able if there is more than one session active).

Rename session: Change the X Windows name of the session.

Bookmarks: Add a session bookmark at the current session location. You can recall the
bookmark later to return to the same directory in another session.

B Close session: Terminate the session. If it is the last session in the Konsole window,
Konsole will close.

47

The Linux Command Line

48

Konsole also provides another quick way to access the new session menu by holding down the
Ctl key and right-clicking in the session area.

Besides the session tabs and new session button, by default Konsole uses a menu bar to provide
additional functionality so that you can modify and save your Konsole sessions.

The menu bar

The default Konsole setup uses a menu bar for you to easily view and change options and features
in your sessions. The menu bar consists of six items described in the following sections.

Session
The Session menu bar item provides yet another location for you to start a new session type.
Besides listing the standard session types to start a new session, it also contains the following
entries:

B Start a new Konsole window with a default session

B Print the screen of the current session

B Close the current session

B Quit the Konsole application

When you select one of the session types from the menu, the new session appears as a new tabbed
window frame in the Konsole window.

Edit
The Edit menu bar provides options for handling text in the session:
B Copy: Copies selected text (that was highlighted with the mouse) to the system
clipboard.

B Paste: Pastes text currently in the system clipboard to the current cursor location. If the
text contains newline characters, they will be processed by the shell.

B Send Signal: Sends a Linux control signal to the system. The control signals available
are:

STOP: Stops the currently running program
CONT: Continue if interrupted

HUP: Resets the currently running program
INT: Interrupts the currently running program
TERM: Terminates the current session

KILL: Kills the current session

USRI: User-defined signal 1

USR2: User-defined signal 2

Getting to the Shell

B ZModem Upload: Uploads a file to the system using the ZModem protocol.
B Clear terminal: Clears all text from the current session window.

B Reset and Clear Terminal: Sends the control code to reset the terminal emulator, and
clears the current session window.

B Find in History: Locates a text string in the previous lines of output text in the session.

B Find Next: Locates the next occurrence of the text string in the previous lines of output
text in the session.

B Find Previous: Locates the previous occurrence of the text string in the previous lines
of output text in the session.

B Save History As: Saves the current history as a file.
B Clear History: Clears the previous lines of output text in the session.

B Clear All Histories: Clears the previous lines of output text in all sessions.

Konsole retains a history area for each active session. The history area contains the output text for
lines that scroll out of the viewing area of the terminal emulator. By default Konsole retains the
last 1000 lines of output in the history area. You can scroll through the history area by using the
scrollbar in the viewing area, or by pressing the Shift key and the Up Arrow key to scroll line by
line, or the Page Up key to scroll page (24 lines) by page.

View
The View menu bar item contains items for controlling the individual sessions in the Konsole
window. These selections include:

B Detach Session: Remove the current session from the Konsole window, and start a new
Konsole window using the current session as the default session. This is only available
when more than one active session is available.

B Rename Session: Change the name of the current session. The new name appears on
the session tab, allowing you to identify tabs more easily.

B Monitor for Activity: Sets the session so that the session tab shows a special icon if new
text appears in the screen area. This is allows you to switch to another session while
waiting for output from an application, then notifies you when the output appears. This
feature is toggled between on and off.

B Monitor for Silence: Sets the session so the session tab shows a special icon when no
new text appears in the screen area for 10 seconds. This allows you to switch to another
session while waiting for output from an application to stop, such as when compiling a
large application. This feature is toggled between on and off.

B Send Input to All Sessions: Sends the text typed in one session to all the active
sessions.

Move Session Left: Moves the current session tab left in the window list.

B Move Session Right: Moves the current session tab right in the window list.

49

The Linux Command Line

50

After the standard menu options, the View menu bar area contains a list of the current active
sessions. You can switch between sessions by selecting a specific session icon.

Bookmarks

The Bookmarks menu items provide a way to manage bookmarks set in the Konsole window.

A bookmark enables you to save your directory location in an active session and then easily
return there in either the same session or a new session. Have you ever drilled down several
directories deep to find something on the Linux system, exited, and then forgotten how you got
there? Bookmarks will solve that problem. When you get to your desired directory location, just
add a new bookmark. When you want to return, look at the Bookmarks for your new bookmark,
and it'll automatically perform the directory change to the desired location for you. The bookmark
entries include:

B Add Bookmark: Create a new bookmark at the current directory location.

B Edit Bookmarks: Edit existing bookmarks.

B New Bookmark Folder: Create a new storage folder for bookmarks.
There is no limit to how many bookmarks you can store in Konsole, but having lots of bookmarks
can get confusing. By default they all appear at the same level in the Bookmark area. You can

organize them by creating new bookmark folders and moving individual bookmarks to the new
folders using the Edit Bookmarks item.

Settings
The Settings menu bar area allows you to customize the appearance of a specific session. This
area includes:

B Hide Menubar: Remove the menu bar from the Konsole window.

B Tab bar: Place the window tabs at the top or bottom of the windows, or hide them alto-
gether.

B Scrollbar: Place the scrollbar at the right or left side of the window, or hide it altogether.

B Fullscreen: Toggle between fullscreen mode (similar to the Linux console) and as a win-
dowed application.

Bell: Sets the action for the bell control code. This can set an audible tone, notify the
Linux system, flash the Konsole window, or do nothing.

Font: Set the character font, style, and size.

Encoding: Select the character set to use in the terminal emulation.
Keyboard: Select a keyboard mapping file to use for the session.
Schema: Select a color schema for the background and text colors.

Size: Set the number of columns and rows viewable in the session window.

History: Set how much (if any) data is saved in the history scroll area.

Getting to the Shell

B Save as Default: Save the current session configurations as the default.

B Save Session Profile: Save the current open sessions as a profile that you can
recall later.

B Configure Notifications: Set actions for specific session events.
B Configure Shortcuts: Create keyboard shortcuts for Konsole commands.
B Configure Konsole: Create custom Konsole schemas and sessions.
Most of these settings you should recognize from the discussion on terminal emulators. Konsole

allows you to select character sets, keyboard layouts, and colors, and even control how the bell
control code is emulated within the Konsole session window.

The Configure Notifications area is pretty cool. It allows you to associate five specific events that
can occur within a session with six different actions. When one of the events occurs, the defined
action (or actions) are taken.

The Configure Konsole settings provides for advanced control over setting session features, includ-
ing creating new color schemes. Figure 2-8 shows the main Configure Konsole dialog box.

FIGURE 2-

The Konsole configuration dialog box

General | Schema | Session
CoEVE [] Show terminal size after resizing
(%] Show frame
@ [%] Confirm guit when clesing more than cne session
Fleppy [Blinking cursor
[%] Require Ctrl key for drag and drop
[Triple click selects only from the current word forward
'i&] [] Allow pregrams to resize terminal window
[MIEPIS,_
CHRAFET 0o [] Use ctrl+S/Ctrl+Q flow control
[] Enable bidirectional text rendering
g [] Set tab title to match window title
MEPIS hlp Line spacing: [Normal B
Seconds to detect sjlence:
~Double Click
Consider the following characters part of a word when double clicking:
@/~ \
Help Defaults | Cancel
[e S v EA shell - Konsole B Confi‘gure - KDE Cont N = Z:0B pm
®UIED@ D T QEas
0 . The GIMP 2007-08-31

51

m The Linux Command Line

52

Within the configuration dialog box there are three tabbed areas:

B General: Allows you to set terminal emulation features such as a blinking cursor, allow-
ing running programs to resize the terminal window using control codes, setting the line
spacing, and setting the number of seconds before the session is considered inactive.

B Schema: Allows you to save a color schema for the session, and save it so that you can
use it in later sessions.

B Session: Allows you to configure new and existing Konsole sessions. You can configure
new sessions that start either with a standard shell or with a specific command, such as
an editor.

Help

The Help menu item provides the full Konsole handbook (if KDE handbooks were installed in
your Linux distribution), a “tip of the day” feature that shows interesting little-known shortcuts
and tips each time you start Konsole, and the standard About Konsole dialog box.

The GNOME Terminal

As you would expect, the GNOME desktop project has its own terminal emulation program. The
GNOME Terminal software package has many of the same features as Konsole and xterm. This
section walks through the various parts of configuring and using GNOME Terminal.

The command line parameters

The GNOME Terminal application also provides a wealth of command line parameters that allow
you to control its behavior when starting it. Table 2-4 lists the parameters available.

TABLE 2-4

The GNOME Terminal Command Line Parameters

Parameter Description
-e command Execute the argument inside a default terminal window.
- X Execute the entire contents of the command line after this

parameter inside a default terminal window.

--window Open a new window with a default terminal window. You
may add multiple --window parameters to start multiple
windows.

--window-with-profile= Open a new window with a specified profile. You may also

add this parameter multiple times to the command line.

continued

Getting to the Shell

TABLE 2-4 (continued)

Parameter Description

--tab Open a new tabbed terminal inside the last opened terminal
window.

--tab-with-profile= Open a new tabbed terminal inside the last opened terminal
window using the specified profile.

--role= Set the role for the last specified window.

--show-menubar Enable the menu bar at the top of the terminal window.

--hide-menubar Disable the menu bar at the top of the terminal window.

--full-screen Display the terminal window fully maximized.

--geometry= Specify the X Window geometry parameter.

--disable-factory Don’t register with the activation nameserver.

--use-factory Register with the activation nameserver.

--startup-id= Set the ID for the Linux startup notification protocol.

-t, --title= Set the window title for the terminal window.

--working-directory= Set the default working directory for the terminal window.

--zoom= Set the terminal’s zoom factor.

--active Set the last specified terminal tab as the active tab.

The GNOME Terminal command line parameters allow you to set lots of features automatically
as GNOME Terminal starts. However, you can also set most of these features from within the
GNOME Terminal window after it starts.

Tabs

The GNOME Terminal calls each session a tab, as it uses tabs to keep track of multiple sessions
running within the window. Figure 2-9 shows a GNOME Terminal window with three session
tabs active.

You can right-click in the tab window to see the tab menu. This quick menu provides a few
actions for your use in the tab session:
B Open Terminal: Open a new GNOME Terminal window with a default tab session.
B Open Tab: Open a new session tab in the existing GNOME Terminal window.
B Close Tab: Close the current session tab.
B Copy: Copy highlighted text in the current session tab to the clipboard.

53

The Linux Command Line

54

Paste: Paste data in the clipboard into the current session tab at the current cursor

location.

Change Profile: Change the profile for the current session tab.

Edit Current Profile: Edit the profile for the current session tab.

Show Menubar: Toggle whether the menubar is hidden or visible.

The quick menu provides easy access to commonly used actions that are available from the
standard menu bar in the terminal window.

The menu bar

The main operation of GNOME Terminal happens in the menu bar. The menu bar contains all of
the configuration and customization options you'll need to make your GNOME Terminal just the

way you want it. The following sections describe the different items in the menu bar.

FIGURE 2-9

The GNOME Terminal with three active sessions

£ Applications Places System & &

; 'E:\i Fedora Live 1:24 PM o

0

Faclor]

Install

fedora@localhost:~

File Edit View Terminal Tabs Help
fedora@localhost:~ X Test 2 ® Ifedara@lucaihost:- b4
[fedora@localhost ~]% 1s -1 (=]
total 2896
drwxr-xr-x 2 fedora fedora 4096 2007-88-31 13:16 Desktop
drwxr-xr-x 2 fedora fedora 4096 2007-88-31 13:13 Documents
drwxr-xr-x 2 fedora fedora 4096 2007-88-31 13:13 Download
-rw-rw-r-- 1 fedora fedora 1440334 2007-08-31 13:21 fge209.tiff
-rw-rw-r-- 1 fedora fedora 1440334 2007-08-31 13:20 fg0210.tiff
drwxr-xr-x 2 fedora fedora 4096 2007-88-31 13:13 Music
drwxr-xr-x 2 fedora fedora 4096 2007-08-31 13:13 Pictures
drwxr-xr-x 2 fedora fedora 4096 2007-08-31 13:13 Public
drwxr-xr-x 2 fedora fedora 4996 2007-08-31 13:13 Templates
drwxr-xr-x 2 fedora fedora 4096 2007-88-31 13:13 Videos
[fedora@localhost ~15 |
@ fedora@localhost:~ }[« [The GIMP] .--i

Getting to the Shell

File
The File menu item contains items to create and manage the terminal tabs:
B Open Terminal: Start a new shell session in a new GNOME Terminal window.

B Open Tab: Start a new shell session on a new tab in the existing GNOME Terminal
window.

B New Profile.. .: Allows you to customize the tab session and save it as a profile which
you can recall for use later.

B Close Tab: Close the current tab in the window.

B Close Window: Close the current GNOME Terminal session, closing all active tabs.

Most of the items in the File menu are also available by right-clicking in the session tab area. The
New Profile entry allows you to customize your session tab settings and save them for future use.

The New Profile first requests that you provide a name for the new profile, then produces the
Editing Profile dialog box, shown in Figure 2-10.

FIGURE 2-10

The GNOME Terminal Editing Profile dialog box

€5 Applications Places System & B Fedora Live 1:20 PM oo

fedora®@localhost:~
Editing Profile "test”

(9]
]

(General |Title and Command IEolors | Effects Scrolling |t’.‘m’r:pat:ihllit)‘lI

General

fad Profile name: Itest

Use the system fixed width font

Eant monospace | 1
Fedur

Profile icon:

Install Allow bold text
Cursor blinks
Show menubar by default in new terminals

Terminal bell

Select-by-word characters: |-A-Za-z0-9,./7%6&#:_]

L | (& Help 3¢ Close =

(@] [~ [The GIMP] | & fedora@localhost:~ ml

55

The Linux Command Line

56

This is the area where you can set the terminal emulation features for the session. It consists of
six areas:
B General: Provides general settings such as font, the bell, and the menubar

B Title and Command: Allows you to set the title for the session tab (displayed on the
tab) and determine if the session starts with a special command rather than a shell

B Colors: Sets the foreground and background colors used in the session tab

B Effects: Allows you to set a background image for the session tab, or make it transparent
so you can see the desktop through the session tab

B Scrolling: Controls whether a scroll region is created, and how large
B Compatibility: Allows you to set which control codes the Backspace and Delete keys

send to the system.

Once you configure a profile, you can specify it when opening new session tabs.

Edit
The Edit menu item contains items for handling text within the tabs. You can use your mouse to
copy and paste texts anywhere within the tab window. This allows you to easily copy text from
the command line output to a clipboard and import it into an editor. You can also paste text from
another GNOME application into the tab session.

B Copy: Copy selected text to the GNOME clipboard.

B Paste: Paste text from the GNOME clipboard into the tab session.
B Profiles. . .: Add, delete, or modify profiles in the GNOME Terminal.
|

Keyboard Shortcuts. . .: Create key combinations to quickly access GNOME Terminal
features.

B Current Profile. . .: Provides a quick way to edit the profile used for the current
session tab.

The profile-editing feature is an extremely powerful tool for customizing several profiles, and then
changing profiles as you change sessions.

View
The View menu item contains items for controlling how the session tab windows appear.
They include:

M Show Menubar: Either shows or hides the menu bar

B Full Screen: Enlarges the GNOME Terminal window to the entire desktop

B Zoom In: Makes the font in the session windows larger

Getting to the Shell

B Zoom Out: Makes the font in the session windows smaller
B Normal Size: Returns the session font to the default size

If you hide the menubar, you can easily get it back by right-clicking in any session tab and
toggling the Show Menubar item.

Terminal
The Terminal menu item contains items for controlling the terminal emulation features of the tab
session. They include:

B Change Profile: Allows you to switch to another configured profile in the session tab.
Set Title. . .: Sets the title on the session tab to easily identify it.
Set Character Encoding: Selects the character set used to send and display characters.

Reset: Sends the reset control code to the Linux system.

Reset and Clear: Sends the reset control code to the Linux system and clears any text
currently showing in the tab area.

The character encoding offers a large list of available character sets to choose from. This is
especially handy if you must work in a language other than English.

Tabs
The Tabs menu item provides items for controlling the location of the tabs and selecting which
tab is active.
B Previous Tab: Make the previous tab in the list active.
Next Tab: Make the next tab in the list active.
Move Tab to the Left: Shuffle the current tab in front of the previous tab.
Move Tab to the Right: Shuffle the current tab in front of the next tab.

Detach Tab: Remove the tab and start a new GNOME Terminal window using this tab
session.

B The Tab list: Lists the currently running session tabs in the terminal window. Select a
tab to quickly jump to that session.

This section allows you to manage your tabs, which can come in handy if you have several tabs
open at once.

Help

The Help menu item provides a full GNOME Terminal manual so that you can research individual
items and features used in the GNOME Terminal.

57

The Linux Command Line

58

Summary

To start learning Linux command line commands, you need access to a command line. In a world
of graphical interfaces, this can sometimes be challenging. This chapter discussed different things
you should consider when trying to get to the Linux command line from within a graphical desk-
top environment. First, the chapter covered terminal emulation and showed what features you
should know about to ensure that the Linux system can properly communicate with your terminal
emulation package, and display text and graphics properly.

After discussing terminal emulators, three different types of terminal emulators were discussed.
The xterm terminal emulator package was the first available for Linux. It emulates both the VT102
and Tektronix 4014 terminals. The KDE desktop project created the Konsole terminal emulation
package. It provides several fancy features, such as the ability to have multiple sessions in the
same window, using both console and xterm sessions, with full control of terminal emulation
parameters.

Finally, the chapter discussed the GNOME desktop project’'s GNOME Terminal emulation pack-
age. GNOME Terminal also allows multiple terminal sessions from within a single window, plus
it provides a convenient way to set many terminal features.

In the next chapter, you'll start looking at the Linux command line commands. I'll walk you
through the commands necessary to navigate around the Linux filesystem, and create, delete, and
manipulate files.

he default shell used in all Linux distributions is the GNU bash

shell. This chapter describes the basic features available in the bash

shell, and walks you through how to work with Linux files and
directories using the basic commands provided by the bash shell. If you're
already comfortable working with files and directories in the Linux environ-
ment, feel free to skip this chapter and continue with Chapter 4 to see more
advanced commands.

Starting the Shell

The GNU bash shell is a program that provides interactive access to the
Linux system. It runs as a regular program, normally started whenever a
user logs in to a terminal. The shell that the system starts depends on your
user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along
with some basic configuration information about each user. Here’s a sample
entry from a /etc/passwd file:

rich:x:501:501:Rich Blum:/home/rich:/bin/bash

Each entry has seven data fields, with each field separated by a colon. The
system uses the data in these fields to assign specific features for the user.
These fields are:

B The username

B The user’s password (or a placeholder if the password is stored in
another file)

59

IN THIS CHAPTER

Checking out the bash shell

Reading the manual

Cruising through the filesystem

Handling files and directories

Viewing file contents

m The Linux Command Line

60

The user’s system user ID number
The user’s system group ID number

The user’s full name

The user’s default home directory

B The user’s default shell program

Most of these entries will be discussed in more detail in Chapter 6. For now, just pay attention to
the shell program specified.

Most Linux systems use the default bash shell when starting a command line interface (CLI)
environment for the user. The bash program also uses command line parameters to modify the
type of shell you can start. Table 3-1 lists the command line parameters available in bash that
define what type of shell to use.

TABLE 3-1

The bash Command Line Parameters

Parameter Description

-c string Read commands from string and process them.

-r Start a restricted shell, limiting the user to the default directory.
-1 Start an interactive shell, allowing input from the user.

-s Read commands from the standard input.

By default, when the bash shell starts, it automatically processes commands in the .bashrc file in
the user’s home directory. Many Linux distributions use this file to also load a common file that
contains commands and settings for everyone on the system. This common file is normally located
in the file /etc/bashrc. This file often sets environment variables (described in Chapter 5) used
in various applications.

The Shell Prompt

Once you start a terminal emulation package or log in from the Linux console, you get access to
the shell CLI prompt. The prompt is your gateway to the shell. This is the place where you enter
shell commands.

The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates that
the shell is waiting for you to enter text. However, you can change the format of the prompt
used by your shell. The different Linux distributions use different formats for the prompt. On my
SimplyMEPIS Linux system, the bash shell prompt looks like this:

rich@1[~1%

Basic bash Shell Commands

On my Fedora Linux system, it looks like this:
[rich@testbox ~1$

You can configure the prompt to provide basic information about your environment. The first
example above shows three pieces of information in the prompt:

B The username that started the shell
B The current virtual console number

B The current directory (the tilde sign is shorthand for the home directory)

The second example provides similar information, except that it uses the hostname instead of
the virtual console number. There are two environment variables that control the format of the
command line prompt:

B PSI1: Controls the format of the default command line prompt

B PS2: Controls the format of the second-tier command line prompt

The shell uses the default PS1 prompt for initial data entry into the shell. If you enter a command
that requires additional information, the shell displays the second-tier prompt specified by the
PS2 environment variable.

To display the current settings for your prompts, use the echo command:

rich@1[~1$ echo $PS1
\U@\T[\WI\$
rich@l[~1$ echo $PS2
>

rich@l[~]$

The format of the prompt environment variables can look pretty odd. The shell uses special
characters to signify elements within the command line prompt. Table 3-2 shows the special
characters that you can use in the prompt string.

Notice that all of the special prompt characters begin with a backslash (\). This is what delineates
a prompt character from normal text in the prompt. In the earlier example, the prompt contained
both prompt characters and a normal character (the “at” sign, and the square brackets). You can
create any combination of prompt characters in your prompt. To create a new prompt, just assign
a new string to the PS1 variable:

[rich@testbox ~1$% PS1="[\tI[\ul\$ "
[14:40:32][rich]$

This new shell prompt now shows the current time, along with the username. The new PS1
definition only lasts for the duration of the shell session. When you start a new shell, the default
shell prompt definition is reloaded. In Chapter 5 you'll see how you can change the default shell
prompt for all shell sessions.

61

10l The Linux Command Line

bash Shell Prompt Characters

Character Description

\a The bell character

\d The date in the format “‘Day Month Date”’

\e The ASCII escape character

\h The local hostname

\H The fully qualified domain hostname

\J The number of jobs currently managed by the shell
\ 1 The basename of the shell’s terminal device name
\Nn The ASCII newline character

\r The ASCII carriage return

\$S The name of the shell

\t The current time in 24-hour HH:MM:SS format

\T The current time in 12-hour HH:MM:SS format

\@ The current time in 12-hour am/pm format

\u The username of the current user

\V The version of the bash shell

\V The release level of the bash shell

\W The current working directory

\W The basename of the current working directory

\! The bash shell history number of this command

\V; The command number of this command

\$ A dollar sign if a normal user, or a pound sign if the root user
\nnn The character corresponding to the octal value nnn
\\ A backslash

\\ Begins a control code sequence

\J Ends a control code sequence

62

Basic bash Shell Commands

The bash Manual

Most Linux distributions include an online manual for looking up information on shell com-
mands, as well as lots of other GNU utilities included in the distribution. It is a good idea to
become familiar with the manual, as it’s invaluable for working with utilities, especially when
trying to figure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system. Entering
the man command followed by a specific utility name provides the manual entry for that utility.
Figure 3-1 shows an example of looking up the manual pages for the date command.

The manual page divides information about the command into separate sections, shown in
Table 3-3.

You can step through the man pages by pressing the spacebar or using the arrow keys to scroll
forward and backward through the man page text (assuming that your terminal emulation pack-
age supports the arrow key functions).

FIGURE 3-1

Displaying the manual pages for the Linux date command

£ Applications Places System B ERDET W ImaTest 5:48 PM i

test@testbox:~
Fle Edit View Terminal Tabs Help
DATE(1) User Commands DATE(1)

NAME
date - print or set the system date and time

- SYNOPSIS
Trash date [OPTION]... [+FORMAT]
date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.s5]]

DESCRIPTION
Display the current time in the given FORMAT, or set the system date.

-d, --date=STRING
display time described by STRING, not ‘now’”

-f, --file=DATEFILE
like --date once for each line of DATEFILE

-r, --reference=FILE
display the last modification time of FILE

-R, --rfc-2822
output date and time in RFC 2822 format. Example: Mon, 87 Aug

|| & test@testboxi~ || <« [The GIMP] CEENE

63

m The Linux Command Line

64

TABLE 3-3

The Linux man Page Format

Section Description

Name Displays the command name and a short description

Synopsis Shows the format of the command

Description Describes each command option

Author Provides information on the person who developed the command
Reporting bugs Provides information on where to report any bugs found

Copyright Provides information on the copyright status of the command code
See Also Refers you to any similar commands available

To see information about the bash shell, look at the man pages for it using the command:
$ man bash

This allows you to step through the entire man pages for the bash shell. This is extremely handy
when building scripts, as you don’t have to refer back to books or Internet sites to look up specific
formats for commands. The manual is always there for you in your session.

Filesystem Navigation

As you can see from the shell prompt, when you start a shell session you are usually placed in
your home directory. Most often, you will want to break out of your home directory and want to
explore other areas in the Linux system. This section describes how to do that using command
line commands. Before we do that though, we should take a tour of just what the Linux fileystem
looks like so we know where we're going.

The Linux filesystem

If you're new to the Linux system, you may be confused by how it references files and directories,
especially if you're used to the way that the Microsoft Windows operating system does that. Before
exploring the Linux system, it helps to have an understanding of how it’s laid out.

The first difference you'll notice is that Linux does not use drive letters in pathnames. In the Win-
dows world, the physical drives installed on the PC determine the pathname of the file. Windows
assigns a letter to each physical disk drive, and each drive contains its own directory structure for
accessing files stored on it.

Basic bash Shell Commands

For example, in Windows you may be used to seeing the file paths such as:
c:\Documents and Settings\Rich\My Documents\test.doc.

This indicates that the file test.doc is located in the directory My Documents, which itself is
located in the directory rich. The rich directory is contained under the directory Documents
and Settings, which is located on the hard disk partition assigned the letter C (usually the first
hard drive on the PC).

The Windows file path tells you exactly which physical disk partition contains the file named
test.doc. If you wanted to save a file on a floppy disk, you would click the icon for the A
drive, which automatically uses the file path a:\test.doc. This path indicates that the file is
located at the root of the drive assigned the letter A, which is usually the PC’s floppy disk drive.

This is not the method used by Linux. Linux stores files within a single directory structure, called
a virtual directory. The virtual directory contains file paths from all the storage devices installed
on the PC, merged into a single directory structure.

The Linux virtual directory structure contains a single base directory, called the root. Directories
and files beneath the root directory are listed based on the directory path used to get to them,
similar to the way Windows does it.

*E'?’l Sase You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to
e denote directories in filepaths. The backslash character in Linux denotes an escape
character, and causes all sorts of problems when you use it in a filepath. This may take some getting
used to if you’re coming from a Windows environment.

o

For example, the Linux file path /home/rich/Documents/test.doc only indicates that the file
test.doc is in the directory Documents, under the directory rich, which is contained in the
directory home. It doesn’t provide any information as to which physical disk on the PC the file is
stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage device. The
first hard drive installed in a Linux PC is called the root drive. The root drive contains the core of
the virtual directory. Everything else builds from there.

On the root drive, Linux creates special directories called mount points. Mount points are directo-
ries in the virtual directory where you assign additional storage devices.

The virtual directory causes files and directories to appear within these mount point directories,
even though they are physically stored on a different drive.

Often the system files are physically stored on the root drive, while user files are stored on a
different drive, as shown in Figure 3-2.

In Figure 3-2, there are two hard drives on the PC. One hard drive is associated with the root
of the virtual directory (indicated by a single forward slash). Other hard drives can be mounted
anywhere in the virtual directory structure. In this example, the second hard drive is mounted at
the location /home, which is where the user directories are located.

65

The Linux Command Line

66

FIGURE 3-2

The Linux file structure

Disk 1
Disk 2
— bin
—— barbara
— etc
home — jessica
— katie
—— usr
——var — riCh

The Linux filesystem structure has evolved from the Unix file structure. Unfortunately, the Unix
file structure has been somewhat convoluted over the years by different flavors of Unix. Nowadays
it seems that no two Unix or Linux systems follow the same filesystem structure. However, there
are a few common directory names that are used for common functions. Table 3-4 lists some of
the more common Linux virtual directory names.

When you start a new shell prompt your session starts in your home directory, which is a unique
directory assigned to your user account. When you create a user account, the system normally
assigns a unique directory for the account (see Chapter 6).

In the Windows world, you're probably used to moving around the directory structure using a
graphical interface. To move around the virtual directory from a CLI prompt, you'll need to learn
to use the cd command.

Traversing directories

The change directory command (cd) is what you'll use to move your shell session to another
directory in the Linux filesystem. The format of the cd command is pretty simplistic:

cd destination

The cd command may take a single parameter, destination, which specifies the directory name
you want to go to. If you don’t specify a destination on the cd command, it will take you to your
home directory.

The destination parameter, though, can be expressed using two different methods:

B An absolute filepath
B A relative filepath

Basic bash Shell Commands

TABLE 3-4

Common Linux Directory Names

Directory Usage

/ The root of the virtual directory. Normally, no files are placed here.

/bin The binary directory, where many GNU user-level utilities are stored.

/boot The boot directory, where boot files are stored.

/dev The device directory, where Linux creates device nodes.

/etc The system configuration files directory.

/home The home directory, where Linux creates user directories.

/1ib The library directory, where system and application library files are stored.

/media The media directory, a common place for mount points used for removable media.

/mnt The mount directory, another common place for mount points used for removable
media.

/opt The optional directory, often used to store optional software packages.

/root The root home directory.

/sbin The system binary directory, where many GNU admin-level utilities are stored.

/tmp The temporary directory, where temporary work files can be created and destroyed.

/usr The user-installed software directory.

/var The variable directory, for files that change frequently, such as log files.

The following sections describe the differences between these two methods.

Absolute filepaths

You can reference a directory name within the virtual directory using an absolute filepath. The
absolute filepath defines exactly where the directory is in the virtual directory structure, starting
at the root of the virtual directory. Sort of like a full name for a directory.

Thus, to reference the apache directory, that’s contained within the 11b directory, which in turn
is contained within the usr directory, you would use the absolute filepath:

/usr/1ib/apache

With the absolute filepath there’s no doubt as to exactly where you want to go. To move to a
specific location in the filesystem using the absolute filepath, you just specify the full pathname
in the cd command:

rich@l[~]%cd /etc
rich@l[etc]$

67

The Linux Command Line

68

The prompt shows that the new directory for the shell after the cd command is now /etc.
You can move to any level within the entire Linux virtual directory structure using the absolute
filepath:

rich@1[~1$ cd /usr/lib/apache
rich@llapachel$

However, if you're just working within your own home directory structure, often using absolute
filepaths can get tedious. For example, if you're already in the directory /home/rich, it seems
somewhat cumbersome to have to type the command:

cd /home/rich/Documents

just to get to your Documents directory. Fortunately, there’s a simpler solution.

Relative filepaths

Relative filepaths allow you to specify a destination filepath relative to your current location, with-
out having to start at the root. A relative filepath doesn’t start with a forward slash, indicating the
root directory.

Instead, a relative filepath starts with either a directory name (if you're traversing to a directory
under your current directory), or a special character indicating a relative location to your current
directory location. The two special characters used for this are:

B The dot () to represent the current directory

B The double dot (..) to represent the parent directory

The double dot character is extremely handy when trying to traverse a directory hierarchy. For
example, if you are in the Documents directory under your home directory and need to go to
your Desktop directory, also under your home directory, you can do this:

rich@l[Documents]$ cd ../Desktop
rich@l[Desktop]$

The double dot character takes you back up one level to your home directory, then the /Desktop
portion then takes you back down into the Desktop directory. You can use as many double
dot characters as necessary to move around. For example, if you are in your home directory
(/home/rich) and want to go to the /etc directory, you could type:

rich@1[~1% cd ../../etc
rich@lletcl$

Of course, in a case like this, you actually have to do more typing to use the relative filepath
rather than just typing the absolute filepath, /etc!

Basic bash Shell Commands

File and Directory Listing

The most basic feature of the shell is the ability to see what files are available on the system. The
list command (15) is the tool that helps do that. This section describes the 1s command, and all
of the options available to format the information it can provide.

Basic listing

The 1s command at its most basic form displays the files and directories located in your current
directory:

$ 1s

4rich Desktop Download Music Pictures store store.zip test
backup Documents Drivers myprog Public store.sql Templates Videos
$

Notice that the 1s command produces the listing in alphabetical order (in columns rather than
rows). If you're using a terminal emulator that supports color, the 1s command may also show
different types of entries in different colors. The LS_COLORS environment variable controls this
feature. Different Linux distributions set this environment variable depending on the capabilities
of the terminal emulator.

If you don’t have a color terminal emulator, you can use the -F parameter with the 1s command
to easily distinguish files from directories. Using the -F parameter produces the following output:

$ 1s -F

4rich/ Documents/ Music/ Public/ store.zip Videos/
backup.zip Download/ myprog* store/ Templates/
Desktop/ Drivers/ Pictures/ store.sql test

$

The -F parameter now flags the directories with a forward slash, to help identify them in the
listing. Similarly, it flags executable files (like the myprog file above) with an asterisk, to help you
find the files that can be run on the system easier.

The basic 1s command can be somewhat misleading. It shows the files and directories contained
in the current directory, but not necessarily all of them. Linux often uses hidden files to store
configuration information. In Linux, hidden files are files with filenames that start with a period.
These files don’t appear in the default 1s listing (thus they are called hidden).

To display hidden files along with normal files and directories, use the -a parameter. Figure 3-3
shows an example of using the -a parameter with the 1s command.

Wow, that's quite a difference. In a home directory for a user who has logged in to the system
from a graphical desktop, you'll see lots of hidden configuration files. This particular example
is from a user logged in to a GNOME desktop session. Also notice that there are three files that

69

The Linux Command Line

begin with .bash. These files are hidden files that are used by the bash shell environment. These
features are covered in detail in Chapter 5.

The -R parameter is another command 15 parameter to use. It shows files that are contained
within directories in the current directory. If you have lots of directories, this can be quite a long
listing. Here’s a simple example of what the -R parameter produces:

$ 1s -F -R
filel testl/ test2/

./testl:
myprogl* myprog2*

./test2:
$

FIGURE 3-3

Using the -a parameter with the Is command

£ Applications Places System @ESEHE W ImaTest 5:50PM gjm

test@testbox:i~
Fle Edit View Terminal Tabs Help
[test@testbox ~]1% 1s -a

B3]

tast's Horna Download .gtk-bookmarks Public

i .fontconfig .gtkrc-1.2-gnome2 .recently-used
.bash logout .gconf .ICEauthority .recently-used.xbel
.bash profile .gconfd .lesshst .redhat

. .bashrc .gimp-2.2 .metacity Templates

Trash .config .gnome .mozilla .thumbnails
Desktop .gnome2 Music .Trash
.dmrc .gnome2_private .nautilus Videos
Documents .gstreamer-8.18 Pictures .xsession-errors

[test@testbox ~1$ [

|| [& test@testboxi= |« [The GIMP] [==]]

70

Basic bash Shell Commands

Notice that first, the -R parameter shows the contents of the current directory, which is a file
(filel) and two directories (testl and test?2). Following that, it traverses each of the two
directories, showing if any files are contained within each directory. The testl directory shows
two files (myprogl and myprog?), while the test2 directory doesn’t contain any files. If there
had been further subdirectories within the testl or test2 directories, the -R parameter would
have continued to traverse those as well. As you can see, for large directory structures this can
become quite a large output listing.

Modifying the information presented

As you can see in the basic listings, the 1s command doesn’t produce a whole lot of informa-
tion about each file. For listing additional information, another popular parameter is -1. The
-1 parameter produces a long listing format, providing more information about each file in the
directory:

drwxr-xr-x rich rich 4096 2001-11-01 04:06 Templates
drwxr-xr-x rich rich 4096 2001-11-01 04:06 Videos
[rich@testbox ~]1$

$ 1s -1
total 2064
drwxrwxr-x 2 rich rich 4096 2007-08-24 22:04 4rich
-rw-r--r-- 1 rich rich 1766205 2007-08-24 15:34 backup.zip
drwxr-xr-x 3 rich rich 4096 2007-08-31 22:24 Desktop
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Documents
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Download
drwxrwxr-x 2 rich rich 4096 2007-07-26 18:25 Drivers
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Music
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Pictures
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Public
drwxrwxr-x 5 rich rich 4096 2007-08-24 22:04 store
-rw-rw-r-- 1 rich rich 98772 2007-08-24 15:30 store.sql
-rw-r--r-- 1 rich rich 107507 2007-08-13 15:45 store.zip
2
2

The long listing format lists each file and directory contained in the directory on a single line.
Besides the filename, it shows additional useful information. The first line in the output shows
the total number of blocks contained within the directory. Following that, each line contains the
following information about each file (or directory):

B The file type (such as directory (d), file (-), character device (c), or block device (b)

B The permissions for the file (see Chapter 6)

B The number of hard links to the file (see the section “Linking files” in this chapter)

|

The username of the owner of the file

71

The Linux Command Line

72

The group name of the group the file belongs to
The size of the file in bytes

The time the file was modified last

B The file or directory name

The -1 parameter is a powerful tool to have. Armed with this information you can see just about
any information you need to for any file or directory on the system.

The complete parameter list

There are lots of parameters for the 1s command that can come in handy as you do file manage-
ment. If you use the man command for 1s, you'll see several pages of available parameters for you
to use to modify the output of the Ts command.

The Ts command uses two types of command line parameters:

B Single-letter parameters

B Full-word (long) parameters

The single-letter parameters are always preceded by a single dash. Full-word parameters are more
descriptive and are preceded by a double dash. Many parameters have both a single-letter and
full-word version, while some have only one type. Table 3-5 lists some of the more popular
parameters that'll help you out with using the bash 1s command.

You can use more than one parameter at a time if you want to. The double dash parameters must
be listed separately, but the single dash parameters can be combined together into a string behind
the dash. A common combination to use is the -a parameter to list all files, the -1 parameter to
list the inode for each file, the -1 parameter to produce a long listing, and the -s parameter to
list the block size of the files. The inode of a file or directory is a unique identification number
the kernel assigns to each object in the filesystem. Combining all of these parameters creates the
easy-to-remember -sail parameter:

$ 1s -sail
total 2360
301860 8 drwx------ 36 rich rich 4096 2007-09-03 15:12 .

65473 8 drwxr-xr-x 6 root root 4096 2007-07-29 14:20 ..
360621 8 drwxrwxr-x 2 rich rich 4096 2007-08-24 22:04 4rich
301862 8 -rw-r--r-- 1 rich rich 124 2007-02-12 10:18 .bashrc
361443 8 drwxrwxr-x 4 rich rich 4096 2007-07-26 20:31 .ccache
301879 8 drwxr-xr-x 3 rich rich 4096 2007-07-26 18:25 .config
301871 8 drwxr-xr-x 3 rich rich 4096 2007-08-31 22:24 Desktop
301870 8 -rw------- 1 rich rich 26 2001-11-01 04:06 .dmrc
301872 8 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Download
360207 8 drwxrwxr-x 2 rich rich 4096 2007-07-26 18:25 Drivers
301882 8 drwx------ 5 rich rich 4096 2007-09-02 23:40 .gconf
301883 8 drwx------ 2 rich rich 4096 2007-09-02 23:43 .gconfd
360338 8 drwx------ 3 rich rich 4096 2007-08-06 23:06 .gftp

TABLE 3-5

Basic bash Shell Commands

Some Popular Is Command Parameters

Single
Letter Full Word Description
-a --all Don’t ignore entries starting with a period.
-A --almost-all Don’t list the . and .. files.
--author Print the author of each file.
-b --escape Print octal values for nonprintable characters.
--block-size=size Calculate the block sizes using size-byte blocks.
-B --ignore-backups Don't list entries with the tilde (~) symbol (used to
denote backup copies).
-C Sort by time of last modification.
-C List entries by columns.
--color=when When to use colors (always, never, or auto).
-d --directory List directory entries instead of contents, and don’t
dereference symbolic links.
-F --classify Append file-type indicator to entries.
--file-type Only append file-type indicators to some filetypes (not
executable files).
--format=word Format output as either across, commas, horizontal, long,
single-column, verbose, or vertical.
-g List full file information except for the file’s owner.
--group-directories- List all directories before files.
first
-G --no-group In long listing don't display group names.
-h --human-readable Print sizes using K for kilobytes, M for megabytes, and G
for gigabytes.
--si Same as -h, but use powers of 1000 instead of 1024.
- --inode Display the index number (inode) of each file.
-1 Display the long listing format.
-L --dereference Show information for the original file for a linked file.
-n --numeric-uid-gid Show numeric userid and groupid instead of names.

continued

73

The Linux Command Line

74

TABLE 3-5 (continued)

Single

Letter Full Word Description

-0 In long listing don’t display owner names.

-r --reverse Reverse the sorting order when displaying files and
directories.

-R --recursive List subdirectory contents recursively.

-S --size Print the block size of each file.

-S --sort=size Sort the output by file size.

-t --sort=time Sort the output by file modification time.

-u Display file last access time instead of last modification time.

-U --sort=none Don’t sort the output listing.

-V --sort=version Sort the output by file version.

-X List entries by line instead of columns.

-X --sort=extension Sort the output by file extension.

Besides the normal -1 parameter output information, you'll see two additional numbers added
to each line. The first number in the listing is the file or directory inode number. The second
number is the block size of the file. The third entry is a diagram of the type of file, along with the
file’s permissions. We'll dive into that in more detail in Chapter 6.

Following that, the next number is the number of hard links to the file (discussed later in the
“Linking file” section), the owner of the file, the group the file belongs to, the size of the file (in
bytes), a timestamp showing the last modification time by default, and finally, the actual filename.

Filtering listing output
As you've seen in the examples, by default the 1s command lists all of the files in a directory.
Sometimes this can be overkill, especially when you're just looking for information on a single file.

Fortunately, the 1s command also provide a way for us to define a filter on the command line. It
uses the filter to determine which files or directories it should display in the output.

The filter works as a simple text-matching string. Include the filter after any command line param-
eters you want to use:

$ 1s -1 myprog
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
$

Basic bash Shell Commands

When you specify the name of specific file as the filter, the 1s command only shows the informa-
tion for that one file. Sometimes you might not know the exact name of the file you're looking for.
The 1s command also recognizes standard wildcard characters and uses them to match patterns
within the filter:

B A question mark to represent one character

B An asterisk to represent zero or more characters

The question mark can be used to replace exactly one character anywhere in the filter string. For
example:

$ 1s -1 mypro?

-rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
$

The filter mypro? matched two files in the directory. Similarly, the asterisk can be used to match
zero or more characters:

$ 1s -1 myprob*

-rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob
-rw-rw-r-- 1 rich rich 0 2007-09-03 16:40 myproblem
$

The asterisk matches zero characters in the myprob file, but it matches three characters in the
myproblem file.

This is a powerful feature to use when searching for files when you're not quite sure of the file-
names.

File Handling

The bash shell provides lots of commands for manipulating files on the Linux filesystem. This
section walks you through the basic commands you will need to work with files from the CLI for
all your file-handling needs.

Creating files

Every once in a while you will run into a situation where you need to create an empty file. Some-
times applications expect a log file to be present before they can write to it. In these situations,
you can use the touch command to easily create an empty file:

$ touch testl

$ 1s -i1 testl

1954793 -rw-r--r-- 1 rich rich 0 Sep 1 09:35 testl
$

75

m The Linux Command Line

76

The touch command creates the new file you specify, and assigns your username as the file
owner. Since I used the -11 parameters for the 1s command, the first entry in the listing shows
the inode number assigned to the file. Every file on the Linux system has a unique inode number.

Notice that the file size is zero, since the touch command just created an empty file. The touch
command can also be used to change the access and modification times on an existing file without
changing the file contents:

$ touch testl

$ 1s -1 testl

SrWer--r-- 1 rich rich 0 Sep 1 09:37 testl
$

The modification time of testl is now updated from the original time. If you want to change
only the access time, use the -a parameter. To change only the modification time, use the -m
parameter. By default touch uses the current time. You can specify the time by using the -t
parameter with a specific timestamp:

$ touch -t 200812251200 testl

$ 1s -1 testl

“rw-r--r-- 1 rich rich 0 Dec 25 2008 testl
$

Now the modification time for the file is set to a date significantly in the future from the current
time.

Copying files
Copying files and directories from one location in the filesystem to another is a common practice
for system administrators. The cp command provides this feature.

In it’s most basic form, the cp command uses two parameters: the source object and the destina-
tion object:

cp source destination

When both the source and destination parameters are filenames, the cp command copies the source
file to a new file with the filename specified as the destination. The new file acts like a brand new
file, with an updated file creation and last modified times:

$ cp testl test?

$ 1s -il

total 0

1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2008 testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 teste
$

The new file test2 shows a different inode number, indicating that it’s a completely new file.
You'll also notice that the modification time for the test?2 file shows the time that it was created.

Basic bash Shell Commands

If the destination file already exists, the cp command will prompt you to answer whether or not
you want to overwrite it:

$ cp testl test2
cp: overwrite “test2'? y
$

If you don’t answer y, the file copy will not proceed. You can also copy a file to an existing
directory:

$ cp testl dirl

$ 1s -i1 dirl

total 0

1954887 -rw-r--r-- 1 rich rich 0 Sep 6 09:42 testl
$

The new file is now under the dirl directory, using the same filename as the original. These
examples all used relative pathnames, but you can just as easily use the absolute pathname for
both the source and destination objects.

To copy a file to the current directory you're in, you can use the dot symbol:

$ cp /home/rich/dirl/testl .
cp: overwrite “./testl'?

As with most commands, the cp command has a few command line parameters to help you out.
These are shown in Table 3-6.

Use the -p parameter to preserve the file access or modification times of the original file for the
copied file.

$ cp -p testl test3

$ Is -il
total 4
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2008 testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test?
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

$

Now, even though the test3 file is a completely new file, it has the same timestamps as the
original testl file.

The -R parameter is extremely powerful. It allows you to recursively copy the contents of an
entire directory in one command:

$ cp -R dirl dir?

$ 1s -1
total 8

77

m The Linux Command Line

drwxr-xr-x 2 rich rich 4096 Sep 6 09:42 dirl/
drwxr-xr-x 2 rich rich 4096 Sep 6 09:45 dir2/
“rw-r--r-- 1 rich rich 0 Dec 25 2008 testl
SrwWer--r-- 1 rich rich 0 Sep 6 09:39 test?
SrwWer--r-- 1 rich rich 0 Dec 25 2008 test3

$

Now dir2 is a complete copy of dirl. You can also use wildcard characters in your cp com-
mands:

$ cp -f test* dir2

$ 1s -al dir2
total 12
drwxr-xr-x 2 rich rich 4096 Sep 6 10:55 ./
drwxr-xr-x 4 rich rich 4096 Sep 6 10:46 ../
“rw-r--r-- 1 rich rich 0 Dec 25 2008 testl
S G 1 rich rich 0 Sep 6 10:55 test?
rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
$
TABLE 3-6
The cp Command Parameters

Parameter Description

-a Archive files by preserving their attributes.

-b Create a backup of each existing destination file instead of overwriting it.

-d Preserve.

-f Force the overwriting of existing destination files without prompting.

- Prompt before overwriting destination files.

-1 Create a file link instead of copying the files.

-p Preserve file attributes if possible.

-r Copy files recursively.

-R Copy directories recursively.

-S Create a symbolic link instead of copying the file.

-S Override the backup feature.

-u Copy the source file only if it has a newer date and time than the destination (update).

-v Verbose mode, explaining what's happening.

-X Restrict the copy to the current filestytem.

78

Basic bash Shell Commands

This command copied all of the files that started with test to dir2. I included the -f parameter
to force the overwrite of the testl file that was already in the directory without asking.

Linking files

You may have noticed a couple of the parameters for the cp command referred to linking files.
This is a pretty cool option available in the Linux filesystems. If you need to maintain two (or
more) copies of the same file on the system, instead of having separate physical copies, you can
use one physical copy and multiple virtual copies, called links. A link is a placeholder in a direc-
tory that points to the real location of the file. There are two different types of file links in Linux:

B A symbolic, or soft, link
B A hard link

The hard link creates a separate file that contains information about the original file and where to
locate it. When you reference the hard link file, it’s just as if you're referencing the original file:

$ cp -1 testl test4d

$ 1s -1l

total 16

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test?
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test4d

$

The -1 parameter created a hard link for the testl file called test4. When I performed the
file listing, you can see that the inode number of both the testl and test4 files are the same,
indicating that, in reality, they are both the same file. Also notice that the link count (the third
item in the listing) now shows that both files have two links.

§ You can only create a hard link between files on the same physical medium. You can’t
create a hard link between files under separate mount points. In that case, you’ll have
to use a soft link.

T
RN

SSUlY

On the other hand, the -s parameter creates a symbolic, or soft, link:

$ cp -s testl testbh

$ 1s -i1 test*

total 16

1954793 -rw-r--r-- rich rich
1954794 -rw-r--r-- rich rich

2 Sep 1 09:51 testl
1
1954888 -rw-r--r-- 1 rich rich
2
1

Sep 1 09:39 test?
Dec 25 2008 test3
Sep 1 09:51 test4
Sep 1 09:56 testh -> testl

1954793 -rw-r--r-- rich rich
1954891 Trwxrwxrwx rich rich
$

o1 oy O O O

79

The Linux Command Line

There are a couple of things to notice in the file listing, First, you’ll notice that the new test5
file has a different inode number than the testl file, indicating that the Linux system treats it
as a separate file. Second, the file size is different. A linked file needs to store only information
about the source file, not the actual data in the file. The filename area of the listing shows the
relationship between the two files.

@ Instead of using the cp command, if you want to link files you can also use the 1n
“ command. By default the 1n command creates hard links. If you want to create a soft
link, you'll still need to use the -s parameter.

Be careful when copying linked files. If you use the cp command to copy a file that’s linked to
another source file, all you're doing is making another copy of the source file. This can quickly get
confusing. Instead of copying the linked file, you can create another link to the original file. You
can have many links to the same file with no problems. However, you also don’t want to create
soft links to other soft-linked files. This creates a chain of links that can not only be confusing
but also be easily broken, causing all sorts of problems.

Renaming files

In the Linux world, renaming files is called moving. The mv command is available to move both
files and directories to another location:

$ mv test? testé6
$ 1s -il test*

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 testl
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4d
1954891 Trwxrwxrwx 1 rich rich 5 Sep 1 09:56 testh -> testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 testé

$

Notice that moving the file changed the filename but kept the same inode number and the times-
tamp value. Moving a file with soft links is a problem:

$ mv testl test8
$ 1s -i1 test*

total 16

1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4d

1954891 Trwxrwxrwx 1 rich rich 5 Sep 1 09:56 testb -> testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test8

[rich@test?2 clsc]$ mv test8 testl

The test4 file that uses a hard link still uses the same inode number, which is perfectly fine.
However, the test5 file now points to an invalid file, and it is no longer a valid link.

You can also use the mv command to move directories:

$ mv dir2 dird

80

Basic bash Shell Commands

The entire contents of the directory are unchanged. The only thing that changes is the name of
the directory.

Deleting files

Most likely at some point in your Linux career you'll want to be able to delete existing files.
Whether it’s to clean up a filesystem or to remove a software package, there’s always opportunities
to delete files.

In the Linux world, deleting is called removing. The command to remove files in the bash shell is
rm. The basic form of the rm command is pretty simple:

$ rm -i test?
rm: remove “test2'? y

$ 1s -1

total 16

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
SrwWer--r-- 2 rich rich 6 Sep 1 09:51 testl
“rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
SrWer--r-- 2 rich rich 6 Sep 1 09:51 test4
Trwxrwxrwx 1 rich rich 5 Sep 1 09:56 testh -> testl
$

Notice that the command prompts you to make sure that you're serious about removing the file.
There’s no trashcan in the bash shell. Once you remove a file it's gone forever.

Now, here’s an interesting tidbit about deleting a file that has links to it:

$ rm testl

$ 1s -1

total 12

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
“rW-r--r-- 1 rich rich 0 Dec 25 2008 test3
“rw-r--r-- 1 rich rich 6 Sep 1 09:51 testd
Trwxrwxrwx 1 rich rich 5 Sep 1 09:56 testb -> testl
$ cat testd

hello

$ cat testbh

cat: testb5: No such file or directory

$

I removed the testl file, which had both a hard link with the test4 file and a soft link with the
testb file. Noticed what happened. Both of the linked files still appear, even though the testl

file is now gone (although on my color terminal the test5 filename now appears in red). When
I look at the contents of the test4 file that was a hard link, it still shows the contents of the file.
When 1 look at the contents of the testb file that was a soft link, bash indicates that it doesn’t

exist any more.

81

The Linux Command Line

82

Remember that the hard link file uses the same inode number as the original file. The hard link
file maintains that inode number until you remove the last linked file, preserving the data! All the
soft link file knows is that the underlying file is now gone, so it has nothing to point to. This is
an important feature to remember when working with linked files.

One other feature of the rm command, if you're removing lots of files and don’t want to be both-
ered with the prompt, is to use the -f parameter to force the removal. Just be careful!

& As with copying files, you can use wildcard characters with the rm command. Again,
“ use caution when doing this, as anything your remove, even by accident, is gone

forever!

Directory Handling

In Linux there are a few commands that work for both files and directories (such as the cp com-
mand), and some that only work for directories. To create a new directory, you'll need to use a

specific command, which T'll discuss in this section. Removing directories can get interesting, so

we'll look at that as well in this section.

Creating directories

There’s not much to creating a new directory in Linux, just use the mkdir command:

$ mkdir dir3

$ 1s -il

total 16

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 10:55 dir2/
1954893 drwxr-xr-x 2 rich rich 4096 Sep 1 11:01 dir3/
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4d

$

The system creates a new directory and assigns it a new inode number.

Deleting directories

Removing directories can be tricky, but there’s a reason for that. There are lots of opportunity
for bad things to happen when you start deleting directories. The bash shell tries to protect us
from accidental catastrophes as much as possible. The basic command for removing a directory
is rmdir:

$ rmdir dir3

$ rmdir dirl

rmdir: dirl: Directory not empty
$

Basic bash Shell Commands

By default, the rmdir command only works for removing empty directories. Since there is a file
in the dirl directory, the rmdir command refuses to remove it. You can remove nonempty
directories using the --ignore-fail-on-non-empty parameter.

Our friend the rm command can also help us out some when handling directories.

If you try using it with not parameters, as with files, you'll be somewhat disappointed:

$ rm dirl
rm: dirl: is a directory
$

However, if you really want to remove a directory, you can use the -r parameter to recursively
remove the files in the directory, then the directory itself:

$ rm -r dir2

rm: descend into directory “dir2'? y
rm: remove “dir2/testl'? y

rm: remove “dir2/test3'? y

rm: remove “dir2/test4'? y

rm: remove directory “dir2'? y

$

While this works, it’s somewhat awkward. Notice that you still must verify every file that gets
removed. For a directory with lots of files and subdirectories, this can become tedious.

The ultimate solution for throwing caution to the wind and removing an entire directory, contents
and all, is the rm command with both the -r and -f parameters:

$ rm -rf dir2
$

That's it. No warnings, no fanfare, just another shell prompt. This, of course, is an extremely
dangerous tool to have, especially if you're logged in as the root user account. Use it sparingly,
and only after triple checking to make sure that you're doing exactly what you want to do.

You may have noticed in the last example that I combined two command line param-
eters using one dash. This is a feature in the bash shell that allows us to combine
command line parameters to help cut down on typing.

Viewing File Contents

So far we've covered everything there is to know about files, except for how to peek inside of
them. There are several commands available for taking a look inside files without having to pull
out an editor (see Chapter 7). This section demonstrates a few of the commands you have avail-
able to help you examine files.

83

The Linux Command Line

Viewing file statistics

You've already seen that the 1s command can be used to provide lots of useful information about
files. However, there’s still more information that you can't see in the 1s command (or at least
not all at once).

The stat command provides a complete rundown of the status of a file on the filesystem:

$ stat testlO
File: "testlQ"
Size: 6 Blocks: 8 Regular File
Device: 306h/774d Inode: 1954891 Links: 2
Access: (0644/-rw-r--r--) Uid: (501/ rich) Gid: (501/ rich)
Access: Sat Sep 1 12:10:25 2007
Modify: Sat Sep 1 12:11:17 2007
Change: Sat Sep 1 12:16:42 2007

$

The results from the stat command show just about everything you'd want to know about the
file being examined, even down the major and minor device numbers of the device where the file
is being stored.

Viewing the file type

Despite all of the information the stat command produces, there’s still one piece of information
missing — the file type. Before you go charging off trying to list out a 1000-byte file, it’s usually
a good idea to get a handle on what type of file it is. If you try listing a binary file, youll get lots
of gibberish on your monitor, and possibly even lock up your terminal emulator.

The file command is a handy little utility to have around. It has the ability to peek inside of a
file and determine just what kind of file it is:

$ file testl

testl: ASCII text

$ file myscript

myscript: Bourne shell script text executable

$ file myprog

myprog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically Tinked (uses shared 1ibs), not stripped

$

The file command classifies files into three categories:

B Text files: Files that contain printable characters
B Executable files: Files that you can run on the system

B Data files: Files that contain nonprintable binary characters, but that you can’t run on
the system

84

Basic bash Shell Commands

The first example shows a text file. The file command determined not only that the file contains
text but also the character code format of the text. The second example shows a text script file.
While the file is text, since it’s a script file you can execute (run) it on the system. The final
example is a binary executable program. The file command determines the platform that the
program was compiled for and what types of libraries it requires. This is an especially handy
feature if you have a binary executable program from an unknown source.

Viewing the whole file

If you have a large text file on your hands, you may want to be able to see what's inside of it.
There are three different commands in Linux that can help you out here.

The cat command
The cat command is a handy tool for displaying all of the data inside a text file:

$ cat testl
hello

This is a test file.

That we'll use to test the cat command.
$

Nothing too exciting, just the contents of the text file. There are a few parameters you can use
with the cat command, though, that can help you out.

The -n parameter numbers all of the lines for us:

$ cat -n testl
hello

1
2
3 This is a test file.

4

5

6 That we'll use to test the cat command.
$

That feature will come in handy when you're examining scripts. If you just want to number the
lines that have text in them, the -b parameter is for you:

$ cat -b testl
1 hello
2 This is a test file.

3 That we'll use to test the cat command.

85

@i & The Linux Command Line

Fancy! If you need to compress multiple blank lines into a single
blank Tine, use the -s parameter:

$ cat -s testl

hello

This is a test file.

That we'll use to test the cat command.
$

Finally, if you don’t want tab characters to appear, use the -T parameter:

$ cat -T testl
hello

This is a test file.

That we'll use to~Itest the cat command.
$

The -T parameter replaces any tabs in the text with the *I character combination.

FIGURE 3-4

Using the more command to display a text file

£ Applications Places System S HEG W ImaTest 5:52 PM g

= test@testbox:/etc
Fle Edit View Terminal Tabs Help

root:x:0:0:root:/root: /bin/bash
Horne bin: bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin

B3]

adm: adm: /var/adm: /sbin/nologin
ﬁ Tp:x:4:7:1p:/var/spool/lpd:/sbin/nologin
B sync:x:5:0:5ync:/sbin: /bin/sync
frash shutdown:x:6:0:shutdown: /sbin:/sbin/shutdown

halt:x:7:@:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spoolfuucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games: /usr/games: /sbin/nologin
gopher:x:13:30:gopher: /var/gopher: /sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody: /: /sbin/nologin
rpm:x:37:37::/var/lib/rpm:/sbin/nologin

vesa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/sbin/nolegin
smmsp:x:51:51::/var/spool/mqueue: /sbin/nologin
apache:x:48:48:Apache: /var/www: /sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nolegin —
: /etc/ntp: /sbin/nologin =

|| [& test@testboxijete | < [The GIMP] (=) T

86

Basic bash Shell Commands

For large files, the cat command can be somewhat annoying. The text in the file will just quickly
scroll off of the monitor without stopping. Fortunately, there’s a simple way to solve this problem.

The more command

The main drawback of the cat command is that you can’t control what’s happening once you
start it. To solve that problem, developers created the more command. The more command dis-
plays a text file, but stops after it displays each page of data. A sample more screen is shown in
Figure 3-4.

Notice that at the bottom of the screen in Figure 3-4 the more command displays a tag showing
that you're still in the more application and how far along in the text file you are. This is the
prompt for the more command. At this point you can enter one of several options, shown in
Table 3-7.

TABLE 3-7

The more Command Options

Option Description

H Display a help menu.

spacebar Display the next screen of text from the file.

z Display the next screen of text from the file.

ENTER Display one more line of text from the file.

d Display a half-screen (11 lines) of text from the file.
q Exit the program.

S Skip forward one line of text.

f Skip forward one screen of text.

b Skip backward one screen of text.

/expression Search for the text expression in the file.

n Search for the next occurrence of the last specified expression.

! Go to the first occurrence of the specified expression.

lemd Execute a shell command.
v Start up the vi editor at the current line.
CTRL-L Redraw the screen at the current location in the file.

= Display the current line number in the file.

Repeat the previous command.

87

rtl

88

The Linux Command Line

FIGURE 3-5

Viewing a file using the less command

£) Applications Places system @@ QAT W ImaTest 5:54 PM g

test@testbox:/etc
Fle Edit View Terminal Tabs Help

root:x:0:0:reot:/root:/bin/bash [
Hornz bin: bin:/bin:/sbin/nologin
daemon:x:2:2:daemon: /sbin:/sbin/nelogin

adm: /var/adm:/sbin/nologin
1p:x:4:7:1p:/var/spool/1lpd:/sbin/nologin
. sync:x:5:0:sync:/sbin:/bin/sync
frash shutdown:x:6:0:shutdown: /sbin: /sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail 2:mail:/var/spool/mail:/sbin/nologin

news : :news:/etc/news:

uucp:x:18:14:uucp: /var/spool/uucp:/sbin/nologin

operator:x:11:@:operator:/root:/sbin/nologin

games:x:12:100:games: /usr/games: /sbin/nologin

gopher:x:13:30:gopher: /var/gopher: /sbin/nologin

ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

nobody :x:99:99:Nobody: /: /sbin/nologin

rpm:x:37:37::/var/lib/rpm:/sbin/nologin

vcsa:x:69:69:virtual console memery owner:/dev:/sbin/nologin

mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
:51:51::/var/spool/mqueue: /sbin/nologin

48:Apache: /var/www: /sbin/nologin

Rpcbind Daemon:/var/1lib/rpcbind:/sbin/nologin

bin/nologin

|@| | & test@testbox:jetc l| < [The GIMP] | nﬁﬁ?‘.

The more command allows some rudimentary movement through the text file. For more advanced
features, try the Tess command.

The less command

Although from its name it sounds like it shouldn’t be as advanced as the more command, the
Tess command is actually a play on words and is an advanced version of the more command
(the Tess command uses the phrase “less is more”). It provides several very handy features for
scrolling both forward and backward through a text file, as well as some pretty advanced search-
ing capabilities.

The Tess command also has the feature of being able to display the contents of a file before it
finishes reading the entire file. This is a serious drawback for both the cat and more commands
when using extremely large files.

The Tess command operates much the same as the more command, displaying one screen of
text from a file at a time. Figure 3-5 shows the 1ess command in action.

Notice that the Tess command provides additional information in its prompt, showing the total
number of lines in the file, and the range of lines currently displayed. The Tess command sup-
ports the same command set as the more command, plus lots more options. To see all of the

options available, look at the man pages for the Tess command. One set of features is that the

Basic bash Shell Commands

less command recognizes the up and down arrow keys, as well as the page up and page down
keys (assuming that you're using a properly defined terminal). This gives you full control when
viewing a file.

Viewing parts of a file

Often the data you want to view is located either right at the top or buried at the bottom of a
text file. If the information is at the top of a large file, you still need to wait for the cat or more
commands to load the entire file before you can view it. If the information is located at the bottom
of a file (such as a log file), you need to wade through thousands of lines of text just to get to the
last few entries. Fortunately, Linux has specialized commands to solve both of these problems.

The tail command

The tail command displays the last group of lines in a file. By default, it'll show the last 10 lines
in the file, but you can change that with command line parameters, shown in Table 3-8.

The -f parameter is a pretty cool feature of the tail command. It allows you to peek inside

a file as it’s being used by other processes. The tail command stays active and continues to
display new lines as they appear in the text file. This is a great way to monitor the system log file
in real-time mode.

The head command

While not as exotic as the tail command, the head command does what you'd expect, it dis-
plays the first group of lines at the start of a file. By default, it'll display the first 10 lines of text.
Similar to the tail command, it supports the -c, and -n parameters so that you can alter what's
displayed.

TABLE 3-8

The tail Command Line Parameters

Parameter Description

-C bytes Display the last bytes number of bytes in the file.

-n lines Display the last lines number of lines in the file.

-f Keeps the tail program active and continues to display new lines as

they’re added to the file.

--pid=PID Along with -f, follows a file until the process with ID PID terminates.
-s sec Along with -f, sleeps for sec seconds between iterations.

-v Always displays output headers giving the filename.

-q Never displays output headers giving the filename.

89

The Linux Command Line

90

Usually the beginning of a file doesn’t change, so the head command doesn’t support the -f
parameter feature. The head command is a handy way to just peek at the beginning of a file if
you're not sure what’s inside, without having to go through the hassle of displaying the entire file.

Summary

This chapter covered the basics for working with the Linux filesystem from a shell prompt. It
started out by discussing the bash shell and showed you how to interact with the shell. The
command line interface (CLI) uses a prompt string to indicate when it’s ready for you to enter
commands. You can customize the prompt string to display useful information about your system,
your logon 1D, and even dates and times.

The bash shell provides a wealth of utilities you can use to create and manipulate files. Before
you start playing with files, it's a good idea to understand how Linux stores them. This chapter
discussed the basics of the Linux virtual directory and showed how Linux references store media
devices. After describing the Linux filesystem, the chapter walked you through using the cd com-
mand to move around the virtual directory.

After showing you how to get to a directory, the chapter demonstrated how to use the 1s com-
mand to list the files and subdirectories. There are lots of parameters that customize the output
of the 1s command. You can obtain information on files and directories just by using the 1s
command.

The touch command is useful for creating empty files and for changing the access or modification
times on an existing file. The chapter also discussed using the cp command to copy existing files
from one location to another. It walked you through the process of linking files instead of copying
them, providing an easy way to have the same file in two locations without making a separate
copy. The cp command does this, as does the 1n command.

Next, you learned how to rename files (called moving) in Linux using the mv command, and saw
how to delete files (called removing) using the rm command. It also showed how to perform the
same tasks with directories, using the mkdir and rmdir commands.

Finally, the chapter closed with a discussion on viewing the contents of files. The cat, more, and
less commands provide easy methods for viewing the entire contents of a file, while the tail
and head commands are great for peeking inside a file to just see a small portion of it.

The next chapter continues the discussion on bash shell commands. We'll take a look at more
advanced administrator commands that'll come in handy as you administer your Linux system.

hapter 3 covered the basics of rummaging through the Linux filesys-

tem and working with the files and directories. File and directory

management is a major feature of the Linux shell; however, there
are some more things we should look at before we start our script program-
ming. This chapter digs into the Linux system management commands,
showing you how to peek inside your Linux system using command line
commands. After that, it shows you a few handy commands that you can
use to work with data files on the system.

Monitoring Programs

One of the toughest jobs of being a Linux system administrator is keeping
track of what’s running on the system — especially now, when graphical
desktops take a handful of programs just to produce a single desktop. There
are always a lot of programs running on the system.

Fortunately, there are a few command line tools that can help make life
easier for you. This section covers a few of the basic tools you'll need to
know how to use to manage programs on your Linux system.

Peeking at the processes

When a program runs on the system, it’s referred to as a process. To examine
these processes, you'll need to become familiar with the ps command, the
Swiss Army knife of utilities. It can produce lots of information about all
the programs running on your system.

91

IN THIS CHAPTER

Managing processes

Getting disk statistics

Mounting new disks

Sorting data

Archiving data

The Linux Command Line

92

NN

Unfortunately, with this robustness comes complexity — in the form of numerous parameters —
making the ps command probably one of the most difficult commands to master. Most system
administrators find a subset of these parameters that provide the information they want, and then
stick with using only those.

That said, however, the basic ps command doesn’t really provide all that much information:

$ ps
PID TTY TIME CMD
3081 pts/0 00:00:00 bash
3209 pts/0 00:00:00 ps
$

Not too exciting. By default the ps command shows only the processes that belong to the current
user and that are running on the current terminal. In this case, I only had my bash shell run-
ning (remember, the shell is just another program running on the system) and, of course, the ps
command itself.

The basic output shows the process ID (PID) of the programs, the terminal (TTY) that they are
running from, and the CPU time the process has used.

3 T % The tricky feature of the ps command (and the part that makes it so complicated)

A=A is that at one time there were two versions of it. Each version had its own set of
command line parameters controlling what information it displayed, and how. Recently, Linux
developers have combined the two ps command formats into a single ps program (and of course
added their own touches).

The GNU ps command that’s used in Linux systems supports three different types of command
line parameters:

B Unix-style parameters, which are preceded by a dash
B BSD-style parameters, which are not preceded by a dash
B GNU long parameters, which are preceded by a double dash
The following sections examine the three different parameter types and show examples of how

they work.

Unix-style parameters

The Unix-style parameters originated with the original ps command that ran on the AT&T Unix
systems invented by Bell Labs. These parameters are shown in Table 4-1.

TABLE 4-1

The ps Command Unix Parameters

Parameter Description
-A Show all processes.
-N Show the opposite of the specified parameters.

continued

More bash Shell Commands

TABLE 4-1 (continued)

Parameter Description

-a Show all processes except session headers and processes without a terminal.
-d Show all processes except session headers.

-e Show all processes.

-Ccmslist Show processes contained in the list cmdlist.

-G grplist Show processes with a group ID listed in grplist.

-Uuserlist Show processes owned by a userid listed in userlist.

-g grplist Show processes by session or by groupid contained in grplist.

-p pidlist Show processes with PIDs in the list pidlist.

-s sesslist Show processes with session 1D in the list sesslist.

-t ttylist Show processes with terminal ID in the list ttylist.

-u userlist Show processes by effective userid in the list userlist.

-F Use extra full output.

-0 format Display specific columns in the list format, along with the default columns.
-M Display security information about the process.

-C Show additional scheduler information about the process.

-f Display a full format listing.

-J Show job information.

-1 Display a long listing.

-0 format Display only specific columns listed in format.

-y Don’t show process flags.

-7 Display the security context information.

-H Display processes in a hierarchical format (showing parent processes).
-n namelist Define the values to display in the WCHAN column.

-W Use wide output format, for unlimited width displays

-L Show process threads

-V Display the version of ps

That’s a lot of parameters, and remember, there are still more! The key to using the ps command
is not to memorize all of the available parameters, only those you find most useful. Most Linux
system administrators have their own sets of commonly used parameters that they remember

93

The Linux Command Line

for extracting pertinent information. For example, if you need to see everything running on the
system, use the -ef parameter combination (the ps command lets you combine parameters
together like this):

94

$ ps -ef

uib PID PPID C STIME TTY TIME CMD

root 1 0 0 11:29 7 00:00:01 init [5]

root 2 0 0 11:29 7 00:00:00 [kthreadd]

root 3 2 0 11:29 7 00:00:00 [migration/0]

root 4 2 0 11:29 7 00:00:00 [ksoftirqd/0]

root 5 2 0 11:29 7 00:00:00 [watchdog/0]

root 6 2 011:29 7 00:00:00 [events/0]

root 7 2 0 11:29 2 00:00:00 [khelper]

root 47 2 0 11:29 7 00:00:00 [kblockd/0]

root 48 2 0 11:29 7 00:00:00 [kacpid]

68 2349 1 0 11:30 7 00:00:00 hald

root 2489 1 0 11:30 ttyl 00:00:00 /sbin/mingetty ttyl
root 2490 1 0 11:30 tty2 00:00:00 /sbin/mingetty tty?
root 2491 1 0 11:30 tty3 00:00:00 /sbin/mingetty tty3
root 2492 1 0 11:30 tty4 00:00:00 /sbin/mingetty tty4
root 2493 1 0 11:30 ttyb 00:00:00 /sbhbin/mingetty ttyb
root 2494 1 0 11:30 ttye 00:00:00 /sbin/mingetty ttyé6
root 2956 1 0 11:42 7 00:00:00 /usr/sbin/httpd
apache 2958 2956 0 11:42 ? 00:00:00 /usr/sbhin/httpd
apache 2959 2956 0 11:42 ? 00:00:00 /usr/sbin/httpd
root 2995 1 0 11:43 7 00:00:00 auditd

root 2997 2995 0 11:43 ? 00:00:00 /sbin/audispd

root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
rich 3081 3080 0 12:00 pts/0 00:00:00 -bash

rich 4445 3081 3 13:48 pts/0 00:00:00 ps -ef

$

I've cut out quite a few lines from the output to save space, but as you can see, there are lots
of processes running on a Linux system. This example uses two parameters, the -e parameter,
which shows all of the processes running on the system, and the -f parameter, which expands
the output to show a few useful columns of information:

UID: The user responsible for launching the process

PID: The process ID of the process

PPID: The PID of the parent process (if a process is started by another process)
C: Processor utilization over the lifetime of the process

STIME: The system time when the process started

TTY: The terminal device from which the process was launched

More bash Shell Commands _

B TIME: The cumulative CPU time required to run the process
B CMD: The name of the program that was started
This produces a reasonable amount of information, which is what many system administrators

would like to see. For even more information, you can use the -1 parameter, which produces the
long format output:

$ ps -1

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 500 3081 3080 0 80 O - 1173 wait pts/0 00:00:00 bash
0 R 500 4463 3081 1 80 0 - 1116 - pts/0 00:00:00 ps
$

Notice the extra columns that appear when you use the -1 parameter:

B F: System flags assigned to the process by the kernel

B S: The state of the process (O = running on processor; S = sleeping; R = runnable,
waiting to run; Z = zombie, process terminated but parent not available; T = process
stopped)

PRI: The priority of the process (higher numbers mean lower priority)
NI: The nice value, which is used for determining priorities

ADDR: The memory address of the process

SZ: Approximate amount of swap space required if the process was swapped out
B WCHAN: Address of the kernel function where the process is sleeping
Before moving on, there’s one more extremely handy parameter to remember, -H. The -H param-

eter organizes the processes in a hierarchical format, showing which processes started which other
processes. Here’s an extraction from an -efH-formatted listing:

$ ps -efH

uib PID PPID C STIME TTY TIME CMD

root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [privl]
rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
rich 3081 3080 0 12:00 pts/0 00:00:00 -bash

rich 4803 3081 1 14:31 pts/0 00:00:00 ps -efH

Notice the shifting in the CMD column output. This shows the hierarchy of the processes that are
running. First, the sshd process started by the root user (this is the Secure Shell (SSH) server
session, which listens for remote SSH connections). Next, when I connected from a remote ter-
minal to the system, the main SSH process spawned a terminal process (pts/0), which in turn
spawned a bash shell.

From there, I executed the ps command, which appears as a child process from the bash pro-
cess. On a multi-user system, this is a very useful tool when trying to troubleshoot runaway
processes, or when trying to track down which userid or terminal they belong to.

95

m The Linux Command Line

96

BSD-style parameters

Now that you've seen the Unix parameters, let’s take a look at the BSD-style parameters. The
Berkeley Software Distribution (BSD) was a version of Unix developed at (of course) the Uni-
versity of California, Berkeley. It had many subtle differences from the AT&T Unix system, thus
sparking many Unix wars over the years. The BSD version of the ps command parameters are
shown in Table 4-2.

TABLE 4-2

The ps Command BSD Parameters

Parameter Description

T Show all processes associated with this terminal.

a Show all processes associated with any terminal.

g Show all processes including session headers.

r Show only running processes.

X Show all processes, even those without a terminal device assigned.
Uuserlist Show processes owned by a userid listed in userlist.

p pidlist Show processes with a PID listed in pidlist.

t ttylist Show processes associated with a terminal listed in ttylist.

0 format List specific columns in format to display along with the standard columns.
X Display data in the register format.

z Include security information in the output.

J Show job information.

1 Use the long format.

o format Display only columns specified in format.

S Use the signal format.

u Use the user-oriented format.

v Use the virtual memory format.

N namelist Define the values to use in the WCHAN column.

0 order Define the order in which to display the information columns.

S Sum numerical information, such as CPU and memory usage, for child

processes into the parent process.

continued

More bash Shell Commands

TABLE 4-2 (continued)

Parameter Description

c Display the true command name (the name of the program used to start the
process).

e Display any environment variables used by the command.

f Display processes in a hierarchical format, showing which processes started
which processes.

h Don’t display the header information.

k sort Define the column(s) to use for sorting the output.

n Use numeric values for user and group IDs, along with WCHAN information.

W Produce wide output for wider terminals.

H Display threads as if they were processes.

m Display threads after their processes.

L List all format specifiers.

v Display the version of ps.

As you can see, there’s a lot of overlap between the Unix and BSD types of parameters. Most of
the information you can get from one you can also get from the other. Most of the time which
one you use depends on which format you’re more comfortable with (for example, if you were
used to a BSD environment before using Linux).

When you use the BSD-style parameters, the ps command automatically changes the output to
simulate the BSD format. Here’s an example using the 1 parameter:

$ ps 1

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 500 3081 3080 20 0 4692 1432 wait Ss pts/0 0:00 -bash
0 500 5104 3081 20 0 4468 844 - R+ pts/0 0:00 ps 1

$

Notice that while many of the output columns are the same as when we used the Unix-style
parameters, there are a couple of different ones:

B VSZ: The size in kilobytes of the process in memory

B RSS: The physical memory that a process has used that isn’t swapped out

B STAT: A two-character state code representing the current process state
Many system administrators like the BSD-style 1 parameter because it produces a more detailed

state code for processes (the STAT column). The two-character code more precisely defines exactly
what’s happening with the process than the single-character Unix-style output.

97

The Linux Command Line

98

The first character uses the same values as the Unix-style S output column, showing when a

process is sleeping, running, or waiting. The second character further defines the process’s status:
B <: The process is running at high priority.

N: The process is running at low priority.

L: The process has pages locked in memory.

s: The process is a session leader.

1: The process is multi-threaded.

B +: The process is running in the foreground.

From the simple example shown above, you can see that the bash command is sleeping, but it is
a session leader (it’s the main process in my session), while the ps command was running in the
foreground on the system.

The GNU long parameters

Finally, the GNU developers put their own touches on the new, improved ps command by adding
a few more options to the parameter mix. Some of the GNU long parameters copy existing
Unix- or BSD-style parameters, while others provide new features. Table 4-3 lists the GNU long
parameters available.

You can combine GNU long parameters with either Unix- or BSD-style parameters to really cus-
tomize your display. One cool feature of GNU long parameters that I really like is the --forest
parameter. It displays the hierarchical process information, but using ASCII characters to draw
cute charts:

1981 ? 00:00:00 sshd

3078 ? 00:00:00 \. sshd

3080 ? 00:00:00 \. sshd

3081 pts/0 00:00:00 \. bash
16676 pts/0 00:00:00 \- ps

This format makes tracing child and parent processes a snap!

Real-time process monitoring

The ps command is great for gleaning information about processes running on the system, but it
has one drawback. The ps command can only display information for a specific point in time. If
you're trying to find trends about processes that are frequently swapped in and out of memory,
it’s hard to do that with the ps command.

Instead, the top command can solve this problem. The top command displays process informa-
tion similarly to the ps command, but it does it in real-time mode. Figure 4-1 is a snapshot of
the top command in action.

More bash Shell Commands

TABLE 4-3

The ps Command GNU Parameters

Parameter Description

--deselect Show all processes except those listed in the command line.
--Group grplist Show processes whose group ID is listed in grplist.

--User userlist Show processes whose user ID is listed in userlist.
--group grplist Show processes whose effective group ID is listed in grplist.
--pid pidlist Show processes whose process ID is listed in pidlist.
--ppid pidlist Show processes whose parent process ID is listed in pidlist.
--sid sidlist Show processes whose session 1D is listed in sidlist.

--tty ttylist Show processes whose terminal device ID is listed in ttylist.
--user userlist Show processes whose effective user 1D is listed in userlist.
--format format Display only columns specified in the format.

--context Display additional security information.

--colsn Set screen width to n columns.

--columns n Set screen width to n columns.

--cumulative Include stopped child process information.

--forest Display processes in a hierarchical listing showing parent processes.
--headers Repeat column headers on each page of output.
--no-headers Don’t display column headers.

--lines n Set the screen height to n lines.

--rows n Set the screen height to n rows.

--sort order Define the column(s) to use for sorting the output.

--width n Set the screen width to n columns.

--help Display the help information.

--info Display debugging information.

--version Display the version of the ps program.

99

rtl

100

The Linux Command Line

FIGURE 4-1

The output of the top command