Linux

Network Servers

S Craig Hunt A

Linux Network Servers

Table of Contents

LinUX NETWOIK SEIVEIS.....iiiceeiiiiimeriiismnsinssss s s ssss s sa s s sss s e sas s e s mmn s e a s amnn e e asnmn e nananns 1
0] =T o o 2
ACKNOWIBAGMENTS ... e e e e e e e e e e n e e e e e e e e e nnnnee s 2

L oo LW 1 o o 4
Who Should Buy ThiS BOOK..........eeeiiiiiiiie et 5

How This BOOK IS OrganiZed...........oui oo 5

Part 1: The BasSIiCS...eeeiiiiiiiieee e 6

Chapter 1: The BOOt PrOCESS.ueiiiiiiiiiee ettt 6

Chapter 2: The Network INterface..........ueii i 6

Part 2: Internet Server Configuration.............oooeiiii e 6

Chapter 3: LOGIN SEIVICESceii ittt ettt et e e et e e e e nae e e e e enneeeas 6

Chapter 4: LiNUX NamMe SEIVICES.......couuiiiiiiiiiie ettt 6

Chapter 5: Configuring @ Mail SEIrVer.........oocuiiiiiiie e 7

Chapter 6: The Apache WED SErVer.......cooo i 7

Chapter 7: Network Gateway SErvICES.......oocuuiiii it 7

Part 3: Departmental Server Configuration............coooueiiiiiiiii e 7

Chapter 8: Desktop Configuration SErVers. ... e 7

Chapter 9: File SNAriNG.........eeiiiieee e 7

Chapter 10: Printer SEIVICES ... it 7

Chapter 11: More Mail SEIVICEScooiiiiiiie it 8

Part 4: Maintaining a Healthy Server............oo e 8

Chapter 12: SECUNTY.....eeii ettt et e e e e e enneee s 8

Chapter 13: TroubleShOOTING.eeiiiiiiie e 8

= LR Y o] o =T o o [[o1 S S PSP PPPPPRSPPPI 8

Appendix A: INSTAIING LINUX ...ccooiiiieeeeee e e 8

Appendix B: BIND RefEreNCe........uueiiiiiiiie et 8

Appendix C: The m4 Macros for SendmMail..........coooueiriiiiiiii e 9

(0701 1V7=T 01 110} o[- PP RPP 9

HEIP US HEIP YOU. ...t e e e e e e e e e e e e annee 10

Part I: The BasiCS.....cuiiiiiiiiemmiriiiniss s s s nm s s e n e e e nmmnnn e 11
(O] 0 F=T o] (T gl I S PR PR 11

Part OVEIVIEW. ...ttt e ettt e e ettt e e e e nb et e e e e nne e e e e aneeeae s 11
=T 1 (0]] o TSP PE PP PPPPP 11

Chapter 1: The BOOt ProCeSS.......cuucimiiiiimeriiessissssss s s s s ssss s s ssss s sssssmsssnsssmnn s 12
(@Y= VT PP 12
Loading the BOOt SECION.uiiiiiiee e 12
Loading Linux With GRUBL.........ooo e 14
Loading the Kernel With LILQ..........eiiiiiiie et 17

LILO Configuration OPtioNS.........cooiiiiii e s 17

The LinuX BOOT PromIPL. ..o 21
Hardware Device Driver INtialization............oceeieiieiiieeee e 24
Loading Linux Services—The iNit ProCESS.........uuii i 25
Understanding RUNIEVEIS..........oooi e 26
SPECIal—PUrPOSE ENLHES......eiiiiiiie e 28

1= Ta (0] o Yo] o £ PP 29

System INItAlIZAION.eeeiiie e aa e 29

Table of Contents
Chapter 1: The Boot Process

Runlevel INHaliZation.............eeeei e 30

(070] g1 o] TgTe ISTor (] o) =PRI 31
THE FC.AOCAI SCHIPL. ..t e e e e e e 33
Loadable MOQUIES...........eieee e e e e e e e e e e e e annee 33
Listing the Loaded MOAUIES...........oo e 33

LTS T o PR UUPRP 35
Chapter 2: The Network Interface.......cccooiiiirccmiinices s 36
(@Y= VTSP 36
Configuring an Ethernet INterface...........oo e 36
Loadable Ethernet DIIVEIS........coo et 36
The ifconfig COMMEAN......coiiiiii e s e e nae e e e e 39
Network Interface Configuration TOOIS..........uii i 42
The Serial INTErfaCE.ooi e e e e e 43
Connecting through the Serial Interface...........ooo i 44
Running TCP/IP Over @ Serial POr.......cooiiiie e 46
INSTAIIING PP P e e e e e e e e e e e e e e r e e e e e e e e e anne 46
The PPP Kernel MOUIE.........cooo e 47
THE PPP Da@mON.... ...t a e 48
ConfigurNg @ PPP SEIVEE...cco et 49
PPP Dial-Up Server Configuration............c.ueeeoiiiiii e 49
PPP SECUITY. ..ttt ettt e e e et e e e b e e e e nreee s 51
PPP Client ConfiQuration...........coo it s 53
(o] 0 F= S 1o 1 o =T O RRRUPPRP 54
Using an X Tool to Configure @ PPP Client...........coooiiiiii e 55

LTS T o PP RRUUPRR 57
Part II: Internet Server Configuration.........ccucceiiiiesmninnsss s 58
(O] 0 F=T o] (T gl I S PR 58
Part OVEIVIEW. ...ttt e ettt e e et e e e e s b et e e e e nae e e e e aneeeaean 58
=T 1 (0[] o AP PP PP PPPPP 58
Chapter 3: LOGIN SerViCes.....cccouiiiiiimrriiisssrisssmsssssssssssssssssssssssssss s sassssss s sssssssssassssnssssssansssssssnnnnsas 59
(@Y= VTP 59
Starting Services ON—DemMan.............ooi i 60
Protocol and Port NUMDEIS ..o 60
(070101 i{o 0T g aTo T T=] (o N SRRSO 63
(070101 i{o 0T g g o 10 d1 4 1=] o SRRSO 65
CreatiNng USEr ACCOUNTES......eiiiiiiiit ettt ettt e et e e et e e e s nbe e e e e e sne e e e e anneeas 70
The Steps to Creating @ USer ACCOUNL........coiiiiiiiiiiie et 70
THE PASSWA FilE... e e e e e e e 70
TOOIS t0 Create USEr ACCOUNTES.........eiiiiiiiie ettt ee e 75
Additional FTP Configuration..........coooiuiiii et e e 80
The FIPACCESS FilE...c et a e 82

LTS T o PP RPRUPRR 84
Chapter 4: LiNUX Name SerVIiCeS.....cccuiiirmrriirimmsisssssssssnssssssssssssss s ssssssss s sssssss s s sssss s ssssassssnssnsnnsas 86
(@Y= VT PP 86
THE NOSES Fle... et e e e e e 86

Table of Contents

Chapter 4: Linux Name Services

UNnderstanding DINS........oo et e e e e e e e s e e e e e e e neeee s 87
The DINS HIBIAICNY....... et nae e e e 87
ANSWEING QUETIES ...ttt ettt ettt e ittt e e e et e e e e s abte e e e e nbe e e e s annneeeeeeneneaeenns 88

The BIND SOftWAIE......eeiieiiee ettt et e e e se e e e e enreeeeenes 88
Configuring the RESOIVEL........ooo e 89
The Lightweight RESOIVEL ... 94

Configuring @ Domain Name SEIVET.........c.uuiii i 96
The named Configuration Fil@...........cooiuiiii e 97
A Caching—0nly ConfiguIation...........ooouieie e 101
The Slave Server Configuration....... ..o e 106
The Master Server Configuration..........c.eeio i 107

RUNNING NAMEA. ..t e e e e e e e e e e e e e e s r e e e e e e e eaaanns 119
Named SigNal PrOCESSING. .. .ccui ettt na e e e e 120
The named Control TOOIS.........ooiiiii e 121
Using the Host Table with DNS....... ..o 124

LTS T o PRI 127

Chapter 5: Configuring @ Mail Server......... i 128

(@Y= VT PP PPRP 128

USING MAaIT AlTGSES......eeeeeeee et e e e et e e e e e e e e n e e e e e e e eaaanns 128
Defining Personal Mail AlIaSES.......cuuuiii it 131

Using sendmail 1o Receive Malil..........coooiiiiiiiii e 131

The sendmail Configuration File.............ooi e 132
The Local INfO SECHON.coo i e 133
The OPtIONS SECHON.......eiiie et e e 134
The Message PrecedencCe SECHON.......o.uuiii i 135
The Trusted USErs SECHON.cooiiiiiii e 135
The Format of Headers SEeCHON ..o 136
The Rewriting RUIES SECHON.......c.uiiiii e 137
The Mailer Definitions SECHON.oii i e 139
Configuring the sendmail.Cf Fil@.......ooouiiiiii e 142
Testing Your New Configuration............c.ueei i 143

Using m4 to Configure SeNAMAIL..........ocuueiiiiiiii e 145
The M4 Macro CoNtrol File.......coo i 146
The LiNUX OSTYPE File..cc ettt 147
Creating an M4 DOMAIN Fil©........oooiiiieeeee e 148
Building the m4 Configuration File...........oouii e 151
Building a sendmail Database.c..uueiiiiiiiii e 152
Testing the M4 Configuration...........oooo e 152

LTS T o PRSPPI 153

Chapter 6: The Apache Web Server.........ccccoummmimmiismnssmnsssmsssssssss s sssssssses 154

(@Y= VTSP PPPP 154

INSTAIlING APACIE. e e e e e e e e e e e e e e e 154
RUNNING NEPA. ... 156

Configuring the APacChe SEIVEE..........eeii e 158

The NEPA.CONT FIlE.....eeeeeeeeee e 159
Loading Dynamic Shared ODJECES........ccoiiiiiiiiie e 161
BasiC Server DIir€CHVES.coi i 163

Table of Contents
Chapter 6: The Apache Web Server

Defining Where Things Are STOred.........oouuiiii i 165
Creating @ FAaNCY INAEXuiiii e e e 166
Defining File TYPES. ..eei ittt e e 167
Managing Child PrOCESSES......c.uuuiiiiiiiiie e 167
Performance Tuning DIr€CHIVES ... 169
(0= ol o] [0 To T D1 (=T1 (177 TSRO 169
Defining Virtual HOSES........eiiieeiie et 170
WED SEIVEI SECUNLY.....eiiiiiiiii ettt e e e e e s e e e e e anreeaeaan 171
The CGIl and SSITRIEAL.........eeiiiiiiee e s 172
Server Options for Documents and DireCtOries.cooiuieiiiiiiiiiiiiiee e 172
Directory—Level Configuration CONtrolS..........coouuiiiiiiiiee e 174
Defining ACCESS CONIOIS ..ot 175
Requiring User AUThentiCatioN.o.eeiiiiieee e 177
CoNfIQUIING SSL....e et e e et e e e e e s e nne e e e e nnees 179
Managing YOouUr WED SEIVEL.......coo ittt 186
MONITOIING YOUE SEIVET.... ..ttt ettt e e e e e e nne e e e e nnnes 187
JAYor=Tel a1 oo o |1 Vo PP P PP PSOPPPPPI 188

TS T o PRSPPSO 191
Chapter 7: Network Gateway ServiCes.......ccccuuirmrrmiismnrmiissssrnssssss s sssss s s ssss s s ssmss s sssssssssnssanns 192
(@Y= VT PR PP 192
Understanding ROULING.cooiiiiiiiiiieeie et e e e e e e e e e aaaes 194
Converting IP Addresses to Ethernet Addresses.........ooovvvviiiieiiieeisee e 194
Enabling IP Packet FOrwarding.............oueeiiiiiiieeee e 196
The Linux ROUtiNg Table....cooo e 197
Defining StatiC ROULES.coi it 199
The route COMMANG........ooo ittt e e e e e e e e nreeeeeans 200
UsiNg DYyNamiC ROUTING.ceeiiiiiiiee e e e e e e 201
ROUTING PrOtOCOIS....ceiiiieee e 201
Running RIP With rOULEQ.........eiiiiiiee e 204
Routing With Zebra........ooeeee e 206
6] [To e T=1 (=0 TSP PPPP P SPPPI 218
Network Address TranSIatioN..........oceeieiiiiie e 225
Configuring @ LINUX NAT SEIVET.....coo it 226

TS T o P TR ROPRRR 227
Part lll: Departmental Server Configuration..........cccceiirceemrinnismsnnnssse s 228
(O] g F=T o] (T gl I ST PPP 228
Part OVEIVIEW. ...ttt et e e e et e e e e e nbe e e e e e neeeeas 228
=T 1 (0]] o PSP PPPPPSPPPI 228
Chapter 8: Desktop Configuration Servers..........cccmriiirmsriissssr s s esssanns 229
(@Y= VTP PRP 229
Understanding Configuration ProtOCOIS.........cuueiiiiiiiii e 229
BOOLSIrap ProtOCOL........oooee e 229
Dynamic Host Configuration ProtoCOL............cooiiiiiiiee e 230
Reverse Address Resolution ProtocCol............oooeiiiiiiiii i 231
INStalling the DHCP SEIVEN.....cco e 231
RUNNING ANCPA ... e e 233

Table of Contents

Chapter 8: Desktop Configuration Servers

Initializing the dhcpd.leases File...........o oo 234
Configuring the DHCP SEIVEL.....coo e 235
Controlling Server and Protocol Operations............eeuoiiieieiiiiiiee e 235
dhcpd Configuration OPHIONS.o.eeeii e 237
Creating @ dnCpd.CONT File.....ccoiieiieeee e 242
Configuring @ ANCrelay SEIVET ... e 243
Configuring @ DHCP ClIENt........eiieeeee et 246
Using the dNCPCd ClIENL......ooo e 246
Using the pump DHCP CHENT......oo e 249
Running dhclient SOftWare..........ooo i 251

LTS T o PRI 255
(0 1T T o) (=T g T 1 (=R 4 = T g T 256
(@Y= VT RS PPPP 256
LINUX FIlESYSTEIM. ...t e e e e e e e e e e e e e e e 256
LinUX File PermiSSIONS..........ueiiiiiiiie et 256
Changing File PermiSSIONS.uuiii it 258
The chgrp COMMEANG.......ooo et e e e enreee e 260
Understanding NS 260
INSTAIlING NS ... e e e e e s e e 262
Configuring @n NFS SEIVEL........eiiie e 264
Mapping User IDS and Group IDS.........ooioiiiieiiee e 265
The exportfs COMMEANG..........uiiii e e s ee e 267
Configuring an NFS ClIENt.........oeeiee e 268
The MouNt COMMANG.......oooiiiie e e e e e e e nee e e e 269
The umouNt COMMANG........cuiiiiiee e e e ee e 270
Using fstab to Mount NFS DireCtOrieS.....cuuiiiiiiiiee e 270

JAXE | (o] 03 To U] 0] (= SR P PRSPPI 274
Understanding SMB and NetBIOS........ ..o 276
NEtBIOS NAME SEIVICE......ueiiiiiiiiii et 277
INSTAIING SAMDA. ...t e e s e e ne e e e e enreeeeeans 279
Configuring @ SAmMDa SEIVEL.......cooiiiiiii e e 280
The smb.conf VariabIes...........ooo e 281
The smb.conf GlIobal SECHON..........eiiii e 282
The smb.conf HOMES SECHON.........oiiii e 284
Sharing a Directory through Samba............ccuiiii 285
Using a Linux Samba ClIeNt............uiii i 286
USING SMDCHENT. ... e e e e 287
USING SMDIMOUNL ...t e e e e e e r e e e e e e e e e nnnnee s 287

TS T o PSRRI 289
Chapter 10: Printer ServiCesS.....ccouumiiriimsrissssss s s s ssss s s sms s s s samn s s samn s snnsnnns 290
INSTAIIING PrINTEIS. ... e e e e e e e e e e e e e e e e 290
Configuring REmMOte Printers.........eii e 295
UNAerstanding PriNTCAR. ... e eu ettt e 297
PriNICAP Parameters...... .o 298

PN T T gl o] (= o] [(o= o T PSPPSR 298
Sharing Printers With [pd..........eeiio e 300
L8] [T TN o PP SOTPPPPPPPPSTPPI 301

Vv

Table of Contents

Chapter 10: Printer Services

=T F=To 1 To 1 oo PP U OPPPPPPRPPPRN 301
Sharing Printers with Samba.............eiiii 304
Defining Printers in the smb.conf File...........ooooiii e 304
Printers Share SECHON........coo e 305
smb.conf Printer Configuration OptioNS...........cooiiiiiiiiiiie e 306
USING @N SMB PrNTEL......eeeiieeee et e 306

TS T o P RO 308
Chapter 11: More Mail ServiCes........cccccmiimmminmmnissmississrss s s 309
(@Y= VTP PPPP 309
Understanding POP and IMAP.........ooo e 309
THE POP PrOTOCOL.....c ettt e e e 309
THE IMAP ProtOCOL. ... et e e e 311
Running the POP and IMAP DaEmONS......ccoiiiiiiiiiie et 314
Using POP or IMAP from @ CHENt........cooiiiiie e 315
Stopping SPam E—Mall........coo e 316
DON't BE @ SPAM SOUICE....ciiiiiiiie ettt ettt e e e e e e e nneee s 317
Using sendmail 10 BIOCK SPam..........eiiiiiiiiiiiiiiie e 319
Filtering Out Spam at the Mailer...........cooiiiii e 324

TS T o PR RRPROPRRR 331
Part IV: Maintaining a Healthy Server........ s e 332
(O g F=T o] (T gl I SRR 332
Part OVEIVIEW. ... ettt e e st e e e st e e e s e nbe e e e e aneeeeas 332
=T 1 (0] o APPSO PPPPPSPPPI 332

L0 1 T= T =Y gl s 1= T F T 333
(@Y= VTP PRPP 333
Understanding the TRrEatS.o i e 333
The BaSiC ThrealS 333

A ReEaIItY CRECK. ... s e e 334
Keeping INTOrMEd. ... 335
CloSING the HOIES ... e e e e e e e 337
Finding the Latest SOftWare.........cooo i 337
Removing Unneeded SOfWArE............oii i 339
Controlling ACCESS WIth TCPA.......eeieiiiiiii et 340
Tracking REemMOTE ACCESS.....ceei ittt e e e e 341
tCpd ACCESS CONIIOI FilES...cciiii it e e 342
Controlling Network Access With XiNetd...........ccooiiiiiiiiiiie e 347
Controlling AcCess With IptabIleS.eeiiiiiee e 350
Maintaining Firewall Rules with iptables.............oooiii e 350
Sample iptables COMMANAS..........ooii i 352
IMProving AUtNENTICAION.ccoiiiii e 353
ShadOW PaSSWOIUS.cciiiiiiiie ittt ettt e e e s e e s be e e e e e nne e e e e enees 354
ONE—TIME PaSSWOITS......utiiieeiiiiie ettt e e s e e e s be e e e e e nae e e e e ennees 357
SECUIE SHEIL.....eeeeeee e et e e 359
MONItOFING YOUE SYSTEM....ciiiiiiiie ittt e et e e e e e e e 370
Security MoNItOring TOOIS.cui it 370

TS T o P SRRSO 371

Table of Contents

Chapter 13: TroubleShOOting......cccuucemeriiirsmriirirs s s s s e 372
(@Y= VT PP PPPP 372
Configuring the LiNUX KeIMelL.........oo e 372

Configuring the Kernel with XCONTig........oooi i 373
Compiling and Installing the Kernel............oi e 377
Troubleshooting @ NetWOrK SEIVEr.........coo i 378
DIagNOSHIC TOOIS. ...eeeeeieieei e e e e e e e e e 379
Checking the Network INterface..........eoi i 380
Checking an Ethernet Interface. ... 381
Resolving Address COoNfliCES........ooo i 384
ChecKing @ PPP INterface.......coo i 388
Testing the CONNECHION..........oii e e e 390
The Message of @ SUCCESSTUI PING....cciiuiiiiiiiie e e 390
The Message of @ Failed PiNg......cueeiiiiiiii e e 391
TESTING ROULING ...t e e e e e e e e e e e e e e e ees 392
USING TrACEIOULR.....eeeiiiiieiee et e e e e e e e e e e e e e e nnnne s 392
Analyzing NetWOrk ProtOCOIS.coiiii e 394
Checking Socket Status with netstat...........ocoooiiii 394
Watching the Protocols with tCpdumpL.......ooieeie e 397
TESHNG SOIVICES. ..ttt et e e e e e e e e rnna e e e e anreeaeaans 399
Testing DNS With NSIOOKUP......ceeiiiiiie e 400
Testing DNS With NOST.....cooiie e 402
TeStiNG DNS WIth @ig.eeeeeeiiiiee et e e e 403
TS T o PR ROTRRR 404

L 0 o T=T 3T | 405
JAY o] o 1= g T 11 G N 1 PSP PRPPPPPP 405

Appendix A: INStalling LiNUX.....ccooeeemmmmiiiiinmmnssssrmnisssssssssssssssssssssss s s sssssssss s ssssssssssssssssnes 406
(@Y= VTSP PPRP 406
INStallAtioN PIANNINGeiiiiiee e e e e e e e e e e e e e 407

Hardware INformation........ ..o e 407
NEetWOrK INFOrMEALION....coiiiiii e e e e e 408
Software CONSIAEIAtIONS........cui it e e e e 409
Selecting an Installation Method............eoii i 409
MaKing @ BOOT DISKceeeiiiiiiiiii ettt e e e e e 410
Booting the Installation Program......... ..o 411
Partitioning the DISKeeiiiiiiii e e e e 413
Partition Planningooooo e 414
Partitioning With DiSK DrUIQ........cccoiiiiiiiiee e 417
Partitioning With TAISK...........eeeeieiie e 421
Installing the BOOt LOAAEN ... 424
Configuring the Ethernet Adapter...........eoo i 425
Configuring the FIreWall...........oo i 426
INStAlliNG the SOfWEAIE. ... e 429
XOWINAOWS. ...ttt e e e e e et e e e e e e e e e e e e e e e e e e e annnnnneeeeeens 429
(3 = oo 10 (o] o] o) PP PRSPPI 431
TS T o PR RRPROTRRR 432

Vii

Table of Contents

Appendix B: BIND ReferenCe........cccccuiiiiiiiiismmmmniiiiniisssssss s ssssssssssssss s s sssssss s s ssssssssssssss s 433
(@Y= 1= PRSP 433

(aF= g l=To Mool o)l @70 1 4]0 0= a T [PSSR 433

The options StatemMENt ... e 433

The 10gging StatemMeENt......... e 440

The ZONe StateMENT........eeeiiieee e e e e e e e eeaaens 442

The server STAtEMENT........oeiiee e e e e eeaeens 445

The Key STatemMeENtt e e 446

The aCl STAtEMENT..... .. e e e e e e e eeaae s 447

The trusted—keys Statement..........eeiii e e 447

The controls StatemMENt.......coooi i 448

BIND 9 View STate€mMeENt........oeeiiiei e 449

Appendix C: The m4 Macros for sendmail.........cccccueeemmminnismsinnnss s 450
(@Y= 1= PRSP 450

(0= {1 = PRSP 452
FEATURE. ...ttt e et e e e e sttt e e e e st e e e e e nbae e e e enbe e e e e anneeeeas 461

(@ 1 I o PR PPRP 465
L@ Y | SRR 467

Y I PP PP 470

o To7= | ©o o [RSO RPRR 471
DAEMON_OPTIONS ...ttt et e e st e e e s e e e e e e nreeeas 472

LDAP Mail ROUTING ...ttt e e e e e e e e e e e e e e e 473

=3 0 1 (o 11 474
= G o 0 1= o == 476
=3 Qo 1 0L g o 478
I3 Q0] ST e [T o - T 483

viii

Linux Network Servers

Craig Hunt

Associate Publisher: Neil Edde

Acquisitions and Developmental Editor: Maureen Adams
Editor: Nancy Sixsmith

Production Editor: Kylie Johnston

Technical Editor: Matthew Miller

Book Designer: Bill Gibson

Graphic lllustrator: Tony Jonick

Electronic Publishing Specialists: Judy Fung, Nila Nichols
Proofreaders: Dave Nash, Laurie O'Connell, Nancy Riddiough
Indexer: Ted Laux

Cover Designer: Ingalls & Associates

Cover lllustrator/Photographer: Ingalls & Associates

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. No part of this publication may be stored in a retrieval system, transmitted, or reproduced
in any way, including but not limited to photocopy, photograph, magnetic, or other record, without
the prior agreement and written permission of the publisher.

An earlier version of this book was published under the title Linux Network Servers 24seven © 1999
SYBEX Inc.

Library of Congress Card Number: 2002104868
ISBN: 0-7821-4123-4

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the
United States and/ or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is
based upon final release software whenever possible. Portions of the manuscript may be based
upon pre—release versions supplied by software manufacturer(s). The author and the publisher
make no representation or warranties of any kind with regard to the completeness or accuracy of
the contents herein and accept no liability of any kind including but not limited to performance,
merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or
alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America
10987654321

To Norman Hunt and Frank McCafferty,
they showed me what it means to be a man.

Foreword

The Craig Hunt Linux Library is a series of technical books dedicated to providing professional Linux
system administrators with the information they need to do a tough job effectively. The goal of the
library is to provide highly technical books that are clear, accurate, and complete. The library
currently includes eight titles, with Linux Network Servers being the latest addition. Most of the
books in this series focus in great depth on a single subject, and a glance at titles such as Linux
Apache Web Server Administration and Linux DNS Server Administration shows that most of the
books in the Craig Hunt Linux Library focus on network services.

No matter what your involvement in networking, the Craig Hunt Linux Library has the right book for
you. Starting with Linux System Administration, which has one chapter on TCP/IP networking,
through Linux Network Servers, which has one chapter on each networking topic, to books such as
Linux Sendmail Administration that dedicate an entire book to a single network topic, the level of
detail that you need is provided by the books in this library.

The important roles that Linux plays supporting network services is not only obvious from the titles
of books in this library, it is clear from industry reports that show the strong and growing role of
Linux as a network server. The partnership of Apache and Linux has long been acknowledged by
professional web masters, but the range of network service provided by Linux goes far beyond
support for the leading web server software. Linux provides a full range of network services, and
Linux Network Servers covers them all.

| am very pleased that Linux Network Servers has now become part of the Craig Hunt Linux Library.
This book fits nicely into the mission of this library, rounds out the selection of titles, and adds a
book of highly acclaimed quality. If you know Linux, you know Alan Cox. For the uninitiated, Alan
Cox is the person that the Linux Journal called "the Linux community's own Mr. Wizard." In his
review of a previous version of this book, he said:

"If | had to pick a reference book for a new Linux administrator or to have as a reference guide to
Linux administration in the office, this would be it."

Enough said!
Craig Hunt

August 2002

Acknowledgments

This book again brought together Neil Edde and Maureen Adams, the team that first introduced me
to Sybex. Neil, who is associate publisher for the Craig Hunt Linux Library, first proposed the idea of
adding this book to the library. Maureen Adams, as the acquisitions editor for this series, got me
pointed in the right direction and gave me the kick—start needed to get this book underway. Both of
these fine people have my thanks.

The production editor for this book was Kylie Johnston. Kylie deserves special thanks for her ability
to keep the project on schedule without alienating anyone. Nancy Sixsmith was the editor. | want to
thank her for a light touch that improved the text without compromising my writing style. Matthew
Miller was the technical editor. His suggestions were very helpful in creating a more accurate book.

The Sybex production team are consummate professionals. Thanks to Judy Fung and Nila Nichols,
the compositors; Amey Garber, Dave Nash, Laurie O'Connell, and Nancy Riddiough, the
proofreaders; Tony Jonick, the illustrator; and Ted Laux, the indexer.

I'd also like to thank Karen Ruckman of KJR Design in Washington D.C. Karen is a professional
photographer and designer. | can attest to the fact that she is one of the best. Only the best of
photographers could make my mug look presentable enough for the cover of a book.

Life can be very busy and complicated, yet deadlines remain unyielding and pressure builds.
Thanks to Kathy, Sara, David, and Rebecca for enduring and diverting me. And a special thanks to
little Alana for interrupting me with a charming smile when | didn't even know | needed to be
interrupted.

Introduction

Linux is the perfect choice for an operating system on which to build a network server. Much of the
fame of Linux as a server system comes from its widespread use as a system on which Apache
web servers are built. But the power and reliability of Linux does more than provide a stable
platform for the world's most popular web server. Linux provides all of the most important network
services in a single low—cost package.

Low cost, reliability, and power are propelling the continued growth of Linux as a server system.
Linux has proven to be a cost—effective alternative to high—cost Unix servers. And it has proven
itself to be more powerful and reliable than any proprietary desktop operating system trying to
recast itself as a server operating system. Sales people might lust after the vast desktop market, but
as professional system administrators, we know that the real technical action is with the server
systems.

The tremendous range of network services provided by Linux means that it can be used for all of
your network server needs. In this book, servers are categorized as "Internet servers" and
"departmental servers." This somewhat arbitrary division is done to organize the discussion of the
various services in a rational way. We define Internet services as those services that are often
offered to the world at large or that are used to connect an organization to the worldwide Internet.
The services that are covered in this category are:

e Domain Name System (DNS) services

e sendmail

e Apache

e Login services such as FTP, Telnet, and SSH
¢ Routing protocols through Zebra and gated

e Network Address Translation (NAT)

Departmental services are those services that are usually limited to usage on the internal network.
The services that are covered under this category are:

e Dynamic Host Configuration Protocol (DHCP)
¢ Reverse Address Resolution Protocol (RARP)
e Network File System (NFS)

e Samba file and printer sharing

e L PR/LPD printer sharing

e Post Office Protocol (POP)

e Internet Message Access Protocol (IMAP)

e procmail mail filtering

In addition to these specific topics, this book contains general information on configuring network
interfaces, and important chapters on security and troubleshooting.

Linux Network Servers grew out of my earlier book, Linux Network Servers 24seven. This new
book, however, is more than a second edition. Although the character and content that drew high
praise for the original book remains, the new book has been completely reworked for the
professional system administrators who rely on the Craig Hunt Linux Library. (Much of the praise for
Linux Network Servers 24seven is still available online for your perusal.) Introductory material from
the original book was removed to make room for more technical details in this version. | believe, and
| hope you agree, that this new book is even better than its predecessor.

Who Should Buy This Book

You should! Linux Network Servers is for anyone who wants to learn how to build a departmental
server or an Internet server using Linux. The book doesn't assume that you know everything about
Linux. But it does assume that you have a good understanding of computers and IP networks, and a
basic understanding of Linux commands and Linux system administration. If you feel that you need
to brush up on these topics, start with Linux System Administration (Stanfield and Smith, Sybex,
2002). It is an excellent introduction to Linux system administration, and will give Linux users all the
background they need. If you're coming to Linux from a Windows NT background, you may want to
start with Linux for Windows NT/ 2000 Administrators (Minasi, York, and Hunt, Sybex, 2000).

Linux Network Servers does not provide yet another review of the basics. Instead, it provides insight
into how to get network service up and running quickly with information designed for professional
system administrators.

Linux growth is making sharp inroads into the currently installed base of Unix servers. If you're a
Unix professional retraining for a job as a Linux system administrator, this book is for you. You'll
benefit from the detailed information on Linux—specific commands. Additionally you'll be pleased by
the tremendous similarity between the two systems. This book may be all the information you need
to move from Unix to Linux.

Linux system administrators will find this book invaluable as their primary resource for information
on network services. Even administrators of servers dedicated to specific tasks, such as web
servers or DNS servers, will find this book a useful companion text. Although such an administrator
may rely on Linux Apache Web Server Administration or Linux DNS Server Administration as a
primary resource, this book provides the insights into how other services work and how they are
configured, which are helpful to anyone running a Linux server.

This book is not simply a reference to network server configuration options. Instead, it provides
insight into how real servers are actually configured. This book helps you understand how things
really work so that you can make intelligent configuration decisions that relate to your environment.
No book, no matter how well-thought—-out or how long, can provide accurate examples for every
possible situation. This book strives to provide you with the information you need to develop the
correct solution for your situation on your own.

How This Book Is Organized

Although this book is intended to be read as a whole, | understand that many system administrators
simply do not have the time to read an entire text. They must go to the topic in question and get a
reasonably complete picture of the "why" as well as the "how" of that topic. To facilitate that
understanding, necessary background material is summar-ized where the topic is discussed, and it
is accompanied by pointers to the part of the text where the background material is more thoroughly
discussed.

This book is divided into five parts: The Basics, Internet Server Configuration, Departmental Server
Configuration, Maintaining a Healthy Server, and Appendices. The five parts are composed of
thirteen chapters and three appendices.

The coverage of some network services spans multiple chapters. In particular, e-mail server
coverage spans Chapter 1, Chapter 5, and Appendix C; and the topic of the Domain Name System

spans Chapter 4 and Appendix B. However, most topics are covered in a single chapter.

Although individual chapters can be read alone (for example, you could jump directly to Chapter 6 to
read about the web server configuration file), the book was designed as a unit. Most chapters
reference material covered in other chapters. When such a reference is made, it contains a pointer
to the chapter that covers the referenced material. If you have a specific task to study, such as
setting up a Samba server, feel free to jump directly to that topic. But, if like many system
administrators, you need to support the entire range of Linux network services, you will benefit from
reading the entire text.

Part 1: The Basics

All network services depend on the underlying operating system and the network hardware. In this
part, we look at how the network hardware is configured, and the role that the startup process plays
in initializing the hardware and starting the desired network services. Part 1 contains two chapters.

Chapter 1: The Boot Process

A description of the boot process is provided, including a description of Linux runlevels. This chapter
describes the two most widely used Linux boot loaders (LILO and GRUB) and the lilo.conf and
grub.conf files used to configure them. The role of the kernel in initializing hardware devices and the
role of init in starting all of the system services are covered. init and the inittab configuration files are
described, with emphasis on the key startup files that a network server administrator needs to
understand.

Chapter 2: The Network Interface

An interface to the physical network is required for every network server. This chapter covers the
installation and configuration of an Ethernet interface. Linux systems can also provide network
support through the serial interface. The serial interface is described, along with the getty and login
processes that support serial communications. TCP/IP can also be supported over serial line by
PPP software. Both client and server PPP configurations are covered.

Part 2: Internet Server Configuration

Part 2 covers the configuration of the server side of traditional Internet services. The services
covered in this part include Telnet, FTP, DNS, sendmail, Apache, gated, Zebra, and NAT. Part 2 is
composed of five chapters.

Chapter 3: Login Services

Linux provides the complete range of traditional services that allow users to remotely log in to the
server. Users with valid user accounts can log in remotely using telnet and ftp, if those services are
running. Services such as telnet and ftp are started through inetd or xinetd. This chapter describes
how users are given valid login accounts, and how inetd and xinetd are configured to start services
on demand. Optional configuration for the WU-FTPD server is also touched on.

Chapter 4: Linux Name Services

The Domain Name System (DNS) is essential for the operation of your network. Linux provides the
Berkeley Internet Name Domain (BIND) software that is the most widely used and most thoroughly

tested DNS server software available. This chapter provides detailed information on configuring the
new BIND version 9 DNS software. It also covers the host table and how DNS and the host table
are used together.

Chapter 5: Configuring a Mail Server

The most powerful and complex system for handling Internet mail service is sendmail. Most Linux
distributions bundle sendmail as part of the system. This chapter shows you how to simplify a
sendmail configuration by concentrating on what is important and how to create your own custom
configuration.

Chapter 6: The Apache Web Server

The Apache web server, which is the most widely used web server in the world today, is included as
part of the Linux distribution. This chapter explains the installation and configuration of a secure,
reliable web service.

Chapter 7: Network Gateway Services

All internets require routers. Linux provides a full range of both static and dynamic routing. Various
Linux distributions include the full-featured gateway daemon (gated) and the new Zebra suite of
routing protocols. The configuration of both Zebra and gated are covered. Strengths and
weaknesses of the RIP, RIPv2, OSPF, and BGP routing protocols offered by these packages are
discussed. In addition to routing, the use of network address translation, which is available for Linux
as "address masquerading," is described, and the way it is configured with iptables is covered.

Part 3: Departmental Server Configuration

Part 3 describes the configuration of services that are essential for a departmental server that
supports desktop clients. DHCP, Samba, NFS, LPR/LPD, POP, IMAP, and procmail are covered in
this part of the text. Part 3 contains four chapters.

Chapter 8: Desktop Configuration Servers

Configuring a TCP/IP client can be complex. A configuration server relieves your users of this task.
Linux provides configuration servers for both Windows and Unix desktops through the Dynamic
Host Configuration Protocol (DHCP) server. A Linux system can also act as a DHCP client. This
chapter covers the configuration of both Linux client and server DHCP software.

Chapter 9: File Sharing

The most important feature of a departmental network is that it allows desktop computers to
transparently share files. Linux provides this capability through the SAMBA server that provides
native file sharing for Windows systems and through the NFS server that provides file sharing for

Unix clients. This chapter provides detailed information about both of these services and about the
Linux file system.

Chapter 10: Printer Services

Linux provides printer services to desktop clients through SAMBA and the Line Printer Daemon
(LPD). Chapter 10 explains how printers are shared through these services, as well as how to install

7

and configure local printers.

Chapter 11: More Mail Services

Most desktop systems cannot directly receive Internet mail. They rely on a mailbox server to collect
and hold the mail for them until they are ready to read it. Linux includes two techniques for providing
this service. Post Office Protocol (POP), the traditional mailbox protocol, is still widely used. Internet
Message Access Protocol (IMAP) has advanced features that make it very popular. Chapter 11
covers the installation, configuration, and administration of both services.

Part 4: Maintaining a Healthy Server

Part 4 focuses on tasks that are essential for maintaining a secure and reliable server, even if the
tasks are not specifically linked to network services. Part 4 contains two chapters that cover security
and troubleshooting.

Chapter 12: Security

A sad fact of life on the Internet is that there are people out there who will do you harm if they have
the chance. To run a reliable server, you must run a secure server. This chapter tells you how to
keep up-to—date on security issues, how to take advantage of the exceptionally good security
features included in Linux, how to monitor your system for security problems, and how to add extra
security features if you need them.

Chapter 13: Troubleshooting

Things can and will go wrong. When they do, you need to locate and fix the problem. Chapter 13
helps you test and debug the network, and analyze and resolve problems. It discusses when you
need to upgrade your Linux kernel and how you can do it. It also describes the tools used to
analyze network problems.

Part 5: Appendices

Part 5 concludes the book with a series of three appendices.

Appendix A: Installing Linux

This appendix provides information about installing Linux. Red Hat Linux is used as an example.

This appendix is intended to provide installation information to those readers moving to Linux from
Unix or Windows NT/2000.

Appendix B: BIND Reference

This appendix provides a summary of the BIND 9 configuration commands for the named.conf file. It
also provides a summary of the BIND 8 configuration commands for administrators of Linux
systems that are still running BIND 8. Understanding the differences between BIND 8 and BIND 9
syntax will also help administrators transitioning to the new software.

Appendix C: The m4 Macros for sendmail

This appendix provides a summary of the m4 macros that are available to build a custom sendmail
configuration.

Conventions

This book uses certain typographic styles to help you quickly identify important information and to
avoid confusion over the meaning of words. This introduction shows an example of this in the use of
a monospaced font when referring specifically to Linux commands. The following conventions are
used throughout this book:

¢ A normal, proportionally spaced font is used for the bulk of the text in the book.

e /talicized text indicates technical terms that are introduced for the first time in a chapter.
(Italics are also used for emphasis.)

e Monospaced text is used for listings and examples; and to identify the Linux commands,
flenames, and domain names that occur within the body of the text.

e /talicized monospaced text is used in command syntax to indicate a variable for which you
must provide the value. For example, a command syntax written as HelpFile=path means
that the variable name path must not be typed as shown; you must provide your own value
for path.

¢ Bold monospaced text is used to indicate something that must be typed as shown. This
might be user input in a listing, a recommended command line, or fixed values within the
syntax of a command. For example, a command syntax written as HelpFile=path means
that the value HelpFile= must be typed exactly as shown.

e The square brackets in a command's syntax enclose an item that is optional. For example,
Is [-1] means that —I is an optional part of the Is command.

e A vertical bar in a command's syntax means that you should chose one keyword or the
other. For example, true|false means choose true or false.

In addition to these text conventions, which can apply to individual words or entire paragraphs, a
few conventions are used to highlight segments of text:

Note A Note indicates information that's useful or interesting, but that's somewhat peripheral to the
main discussion. A Note might be relevant to a small number of networks, for instance, or
refer to an outdated feature.

Tip A Tip provides information that can save you time or frustration, and that may not be entirely
obvious. A Tip might describe how to get around a limitation, or how to use a feature to perform
an unusual task.

Warning Warnings describe potential pitfalls or dangers. If you fail to heed a Warning, you
may end up spending a lot of time recovering from a bug, or even restoring your
entire system from scratch.

Sidebars

A Sidebar is like a Note, but is longer. Typically, a Note is one paragraph or less in length, but
Sidebars are longer. The information in a Sidebar is useful, but doesn't fit into the main flow of the
discussion.

Help Us Help You

Things change. In the world of computers, things change rapidly. Facts described in this book will
become invalid over time. When they do, we need your help locating and correcting them.
Additionally, a 600-page book is bound to have typographical errors. Let us know when you spot
one. Send your improvements, fixes, and other corrections to support@sybex.com. To contact the
author for information about upcoming books and talks on Linux, go to
http://www.wrotethebook.com/.

10

Part I: The Basics
Chapter List

Chapter 1: The Boot Process
Chapter 2: The Network Interface

Part Overview

Featuring:

¢ The role that the ROM BIOS, MBR, and loader play in booting the system
e GRUB and LILO configuration

e How and why the kernel is passed parameters at boot time

e System runlevels and how they are configured by the inittab file

e The chkconfig and tksysv tools that control the startup scripts

¢ L oadable kernel modules and the tools that manage them

e How Ethernet device drivers are loaded and configured

e Configuring a network interface with ifconfig and the Red Hat Network Configuration tool
e How serial ports function and how they are used for networking

¢ PPP configuration and security

e Creating chat scripts

11

Chapter 1: The Boot Process

Overview

This chapter looks at what happens during a Linux boot. It examines the processes that take place
and the configuration files that are read. Booting is a critical part of the operation of a server. The
boot process brings all of the network hardware online and starts all of the network daemon
processes when the system is powered—up. If the server will not boot, it is unavailable to all of the
users and computers that depend on it. For this reason, it is essential that the administrator of a
network server understand the boot process and the configuration files involved in that process.
After all, you're the person who maintains those configuration files and who is responsible for
recovering the system when it won't boot.

The term boot comes from bootstrap loader, which in turn comes from the old saying "pull yourself
up by your bootstraps." The meaning of this expression is that you must accomplish everything on
your own without any outside help. This is an apt term for a system that must start from nothing and
finish running a full operating system. When the boot process starts, there is nothing in RAM—no
program to load the system. The loader that begins the process resides in non—volatile memory. On
PC systems, this means that the loader is part of the ROM BIOS.

Booting a Linux PC is a multistep procedure. It involves basic PC functions as well as Linux
processes. This complex process begins in the PC ROM BIOS; it starts with the ROM BIOS
program that loads the boot sector from the boot device. The boot sector either contains or loads a
Linux boot loader, which then loads the Linux kernel. Finally, the kernel starts the init process, which
loads all of the Linux services. The next few sections discuss this process in detail.

Note Two Linux loaders, LILO and GRUB, are covered in this chapter. LILO is given the bulk of the
coverage because it is the default for most Linux distributions. GRUB is covered because it is
the default loader for Red Hat Linux 7.2.

Loading the Boot Sector

The ROM BIOS is configured through the BIOS setup program. Setup programs vary among
different BIOS versions, but all of them allow the administrator to define which devices are used to
boot the system and the order in which those devices are checked. On some PC systems, the
floppy drive and the first hard drive are the boot devices, and they are checked in that order.
Systems that permit booting from the CD-ROM usually list the CD-ROM as the first boot device,
followed by the first hard drive.

For an operational Linux server, set the ROM BIOS to check the floppy first and then the hard drive,
even if you used a bootable CD—ROM for the initial installation. The reason for this is simple: The
floppy is used to reboot an operational system when the hard drive is corrupted; the CD—-ROM is
only booted to install or upgrade the system software. During an installation, the system is offline,
and you have plenty of time to fiddle with a BIOS setup program. But during an outage of an
operational server, time is critical. You want to be able to reboot Linux and fix things as quickly as
possible.

The first 512 bytes of a disk contain a boot sector. The ROM BIOS loads the boot sector from the

boot device into memory, and transfers control to it. The bootstrap program from the boot sector
then loads the operating system.

12

Floppy disks have only one boot sector, but hard disks may have more than one because each
partition on a hard drive has its own boot sector. The first boot sector on the entire hard disk is
called the master boot record (MBR). It is the only boot sector loaded from the hard drive by the
ROM BIOS. The MBR contains a small loader program and a partition table. If the standard DOS
MBR is used, it loads the boot sector from the active partition and then passes control to the boot
sector. Thus, both the MBR and the active partition's boot sector are involved in the boot process.

Figure 1.1 shows how the boot process flows from the BIOS to the MBR and then to the partition's
boot sector. This figure assumes a DOS MBR and a Linux loader in the boot sector of the active
partition. Alternatively, the Linux loader can be installed in the MBR to eliminate one step in the boot
process.

ROM BIOS

Partition boot ¢ oty
»

Figure 1.1: The boot process flow
Note Appendix A, "Installing Linux," discusses the pros and cons of placing the Linux loader in the
MBR.

The BIOS may introduce some limitations into the Linux boot process. The Linux kernel can be
installed anywhere on any of the disks available to the system, but if it is outside of those limits, the
system might not be able to boot. The Linux loader depends on BIOS services. Some versions of
BIOS only permit the loader to access the first two IDE hard drives: /dev/hda and /dev/ hdb.
Additionally, in some cases, only the first 1024 cylinders of these disks can be used when booting
the system. These limitations are at their worst on old systems. New systems have two IDE disk
controllers that provide access to four disk drives, and these controllers address up to 8GB of disk
storage within the 1024—cylinder limit. A very old system might address only 504MB in 1024
cylinders!

For a server installation, this is not a real problem. Because servers do not dual-boot, everything
can be removed from the disk, and the Linux boot files can be installed in the first partition without
difficulty.

A desktop client is a different matter. Most desktops have Microsoft Windows installed in the first
partition. If there is available space within the first 1024 cylinders on the first disk drive, use fips to
create empty space and install the Linux boot partition there. (Partitioning is discussed in detail in
Appendix A.) Otherwise, a client system that dual-boots is forced to use one of the following
methods:

13

¢ Install the Linux boot loader in the MBR of the first disk, and install the Linux boot partition in
the first 1024 cylinders of the second disk.

e Use LOADLIN, SYSLINUX, System Commander, or a similar product to boot Linux from
DOS instead of booting the system directly to Linux.

e Make a complete backup of Microsoft Windows, and repartition the disk so that both
Windows and Linux are in the first 1024 cylinders. This, of course, requires a complete
reinstallation of Windows.

e Create a Linux boot directory within the Windows directory structure that contains the Linux
kernel and all of the files from the /boot directory.

e Upgrade the BIOS. This is not as difficult as it may sound. Most systems allow the BIOS to
be upgraded, and many motherboard manufacturers and BIOS manufacturers have BIOS
upgrades on their websites. However, don't undertake this lightly! A problem during the
upgrade can leave the system unusable, and send you scurrying to the computer store to
buy a replacement BIOS chip.

e Make a boot floppy or CD-ROM, and use that to start Linux. This is frequently the easiest
option.

Don't be overly concerned about this potential problem. It is not a concern for servers, and even on
clients it is rare. | have installed many Linux systems and have only had this problem once. In that
case, it was a very old system that could directly address only 504MB per disk drive. My solution
was to give the user a 250MB drive from my junk drawer as a second disk. (I never throw anything
away.) | installed LILO in the MBR of his first disk and Linux on the second disk. The user was
happy, Linux was installed, and | had less junk in my drawer.

Even though there are several options for loading Linux, only a few are widely used. Most systems
use the Linux loader LILO. The Red Hat Linux 7.2 system defaults to using GRUB. This chapter
covers both of these commonly used loaders. We start with a close look at the default GRUB
configuration generated by the Red Hat installation program.

Loading Linux with GRUB

During the installation of Red Hat Linux 7.2, you're asked to select which boot loader should be
used. By default, Red Hat uses the Grand Unified Bootloader (GRUB), and creates a GRUB
configuration based on the values you select during the installation. Listing 1.1 shows the GRUB
configuration generated by the Red Hat installation program for a desktop client. A dual-boot client
configuration is used as an example because it is slightly more complex than a server configuration
(servers do not usually dual-boot).

Listing 1.1: The Default GRUB Configuration

root]# cat /etc/grub.conf
grub.conf generated by anaconda

[

#

#

Note that you do not have to rerun grub after making changes to this file
NOTICE: You do not have a /boot partition. This means that

all kernel and initrd paths are relative to /, eg.

root (hdo0, 2)

kernel /boot/vmlinuz-version ro root=/dev/hda3

initrd /boot/initrd-version.img
#boot=/dev/hda
default=0

timeout=10
splashimage=(hd0, 2) /boot/grub/splash.xpm.gz

14

password —-md5 1L°0OCX<E?2$qggelevUEDVVQAmMrm4 jCd31l
title Red Hat Linux (2.4.7-10)
root (hdo0, 2)
kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3
initrd /boot/initrd-2.4.7-10.1img
title DOS
rootnoverify (hd0,0)
chainloader +1

The GRUB configuration is stored in grub.conf, which is a simple text file. Lines that begin with # are
comments, and the Red Hat installation program inserts several comments at the beginning of the
file.

The first active command line in this configuration is default=0. This command identifies which
operating system should be booted by default in a dual-boot configuration. The operating systems
that are available to GRUB are defined at the end of the configuration. Each operating system is
assigned a number, sequentially starting from 0. Thus, the first operating system defined is 0, the
second is 1, the third is 2, and so on. This configuration defines two operating systems: Red Hat
Linux and DOS. Red Hat Linux is listed first; therefore, it is operating system 0, and it is the
operating system that will be booted by default. In this case, the command default=0 is not really
required because default is set to 0 whenever the default command is not included in the
configuration. However, including the command makes a clean, self-documenting configuration.

The second active line, timeout=10, also relates to the default boot. The timeout command sets the
number of seconds the operator has to interrupt the boot process before GRUB automatically loads
the default operating system. In this example, the operator has 10 seconds to select the alternate
operating system before Red Hat Linux is automatically booted. Even for systems that do not
dual-boot, set a value for timeout because this allows the operator to interrupt the boot process if it
is necessary to pass arguments to the kernel. Providing kernel input at the boot prompt is covered
later in this chapter.

The splashimage command points to a file that contains the background image displayed by GRUB.
During the timeout period, GRUB displays a boot menu. The splashimage file is the background
displayed behind that menu.

During the initial installation of Red Hat Linux 7.2, you have an opportunity to enter a GRUB
password. The password entered at that time is stored in the grub.conf file using the password
command. The password "Wats?Watt?" was entered during the installation of our sample system.
Note that the password is not stored as clear text. The password is encrypted, and the ——md5
option on the password command line lets us know that the password is encrypted with the
Message Digest 5 (MD5) algorithm. The operator must enter the correct password to gain access to
the full range of GRUB features. The operator can boot any of the operating systems listed in the
GRUB menu without entering the password; however, optional input, such as kernel parameters,
cannot be entered without the correct password. If the password command is not included in the
grub.conf file, a password is not required to access any GRUB features.

The title command defines the exact text that will be displayed in the GRUB menu to identify an
operating system. The commands that follow a title command and occur before the next title
command describe an operating system to the boot loader. The sample configuration defines the
following two operating systems:

title Red Hat Linux (2.4.7-10)
root (hdO0, 2)

15

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3
initrd /boot/initrd-2.4.7-10.1img
title DOS
rootnoverify (hd0,0)
chainloader +1

The first title command defines the menu text Red Hat Linux (2.4.7—10). The next three lines define
the operating system that is booted when that item is selected from the GRUB menu:

root (hd0,2) Defines the physical location of the filesystem root for this operating
system. The values defined for the root command are the disk device name and the
partition number. Notice that GRUB device names are slightly different from normal
Linux device names. GRUB calls the first hard disk hd0. Additionally, GRUB counts
partitions differently than Linux does. GRUB counts from 0, whereas Linux counts
from 1. Thus, the GRUB value hd0,2 on a Linux system that boots from an IDE drive
is the same as the Linux value hda,3—patrtition number 3 on the first IDE drive.

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3 Identifies the file that contains
the operating system that is to be started, and defines any arguments passed to that
operating system at run time. In this case, GRUB will load the Linux kernel stored in
vmlinuz-2.4.7-10, and it will pass the Linux kernel the arguments ro root=/dev/hda3,
which tell the kernel where the filesystem root is located, and that it should be
mounted as read-only. The ro option causes Linux to mount the root read-only
during the initial phase of the boot. (Later, the rc.sysinit script changes it to
read—write after successfully completing the filesystem checks.)

initrd /boot/initrd-2.4.7-10.img Identifies a ramdisk file for Linux to use during the
boot. Red Hat uses the ramdisk to provide Linux with critical modules that the kernel
might need to access the disk drives.

The last title command defines the DOS menu entry. Two commands define the operating system
loaded when DOS is selected from the menu:

rootnoverify (hd0,0) Like the root command, defines the physical location of the
filesystem root for this operating system. But rootnoverify tells GRUB that the
filesystem found at this location does not comply with the multiboot standards, and
thus cannot be validated.

chainloader +1 Emulates the function of the DOS MBR by simply loading the
specified sector and passing boot responsibilities to the loader found there. The
value +1 is a blocklist value, which defines the sector address of the loader relative to
the partition defined by the rootnoverify command. +1 means the first sector of the
partition. Taken together, the rootnoverify command and the chainloader command
from our sample mean that GRUB will pass control to the loader found in the first
sector of the first partition on the first IDE drive when DOS is selected from the
GRUB menu. In this example, that partition contains the DOS boot loader that will be
responsible for loading DOS.

The grub.conf file on your system will be very similar to the one in this example. The location of files
may be different, and a server system's configuration usually won't define multiple operating
systems, but the commands will be essentially the same.

GRUB is used with several different flavors of UNIX. It is not, however, the only boot loader used

16

with Linux—or even the most popular Linux boot loader. Red Hat, prior to 7.2, used LILO, and most
other versions of Linux still do. The next section takes a close look at LILO configuration.

Loading the Kernel with LILO

Although GRUB is a newer tool, LILO, the Linux loader, is still a versatile tool that can manage
multiple boot images; and can be installed on a floppy disk, in a hard disk partition, or as the master
boot record. As with GRUB, this power and flexibility comes at the price of complexity, which is
illustrated by the large number of LILO configuration options.

LILO Configuration Options

Most of the time, you don't need to think about the complexity of LILO; the installation program will
lead you through a simple LILO installation. It is for those times when the default installation doesn't
provide the service you want that you need to understand the intricacies of LILO.

LILO is configured by the /etc/lilo.conf file. Listing 1.2 is the lilo.conf file created by a Linux
installation program on a desktop client that is configured to dual-boot. Its function is very similar to
the GRUB sample shown in Listing 1.1.

Listing 1.2: A Sample lilo.conf File

global section
boot=/dev/hda3
map=/boot /map
install=/boot/boot.b
prompt
timeout=50
message=/boot/message
default=linux
The Linux boot image
image=/boot/vmlinuz-2.4.7-10
label=linux
read-only
root=/dev/hda3
additional boot image
other=/dev/hdal
optional
label=dos

With this configuration, the user has five seconds to select either dos to boot Microsoft Windows or
linux to boot Linux. If the user does not make a selection, LILO boots Linux after the five seconds
have expired. The following section examines each line in this file to see how LILO is configured.

A Sample lilo.conf File
A lilo.conf file starts with a global section that contains options that apply to the entire LILO process.
Some of these entries relate to the installation of LILO by /sbin/lilo, and are only indirectly related to

the boot process.

Note The program /sbin/lilo is not the boot loader. The LILO boot loader is a simple loader
stored in a boot sector. /sbin/lilo is the program that installs and updates the LILO boot

17

loader.

Comments in the lilo.conf file start with a sharp sign (#). The first active line of the global section in
the sample file identifies the device that contains the boot sector. The option boot=/dev/hda3 says
that LILO is stored in the boot sector of the third partition of the first IDE disk drive. This tells us two
things: where LILO is installed and where it isn't installed. LILO is not installed in the MBR of this
system; it is installed in hda3, which must be the active partition.

The configuration option map=/boot/map defines the location of the map file, which contains the
physical locations of the operating system kernels in a form that can be read by the LILO boot
loader. (GRUB does not require a map file because it can read Linux filesystems directly.) /boot/
map is the default value for the map option, so, in this case, it does not really need to be explicitly
defined in the sample configuration file.

The install=/boot/boot.b line defines the file that /sbin/lilo installs in the boot sector. (boot.b is the
LILO boot loader.) In this case, the line is not actually required because /boot/boot.b is the default
value for install.

The prompt option causes the boot prompt to be displayed. If the prompt option is not included in
the lilo.conf file, the user must press a Shift, Ctrl, or Alt key; or set the Caps Lock or Scroll Lock key
to get the boot prompt. The message displayed at the boot prompt is contained in the file identified
by the message option. In the example, message points to a file named /boot/ message that
contains a full-screen display. If the message option is not used, the default boot prompt boot: is
used.

The timeout entry defines how long the system should wait for user input before booting the default
operating system. The time is defined in tenths of seconds. Therefore, timeout=50 tells the system
to wait five seconds.

Warning Don't use prompt without timeout. If the timeout option is not specified with the
prompt option, the system will not automatically reboot. It will hang at the boot
prompt, waiting for user input, and will never time out. This could be a big
problem for an unattended server.

If the timeout is reached, the default kernel is booted. The default option identifies the default kernel.
In Listing 1.2, the operating system that has the label "linux"is the one that will be started by default.
To boot Microsoft Windows as the default operating system, simply change the default option to
default=dos. The remainder of this configuration file provides the information that LILO needs to find
and boot either Linux or Windows.

The image statement specifies the location of the Linux kernel, which is /boot/vmlinuz-2.4.7-10 in
this example. The image option allows you to put the Linux kernel anywhere and name it anything.
The ability to change the name of the kernel comes in very handy when you want to do a kernel
upgrade, which is discussed in Chapter 13, "Troubleshooting."

There are several "per—-image" options used in the configuration file, some of which are specific to
kernel images. The label=linux option defines the label that is entered at the boot prompt to load this
image. Every image defined in the sample file has an associated label entry; if the operator wants to
boot an image, they must enter its label.

The next option, read-only, is also kernel-specific. It applies to the root filesystem described
previously. The read-only option tells LILO that the root filesystem should be mounted read—only.

18

This protects the root filesystem during the boot and ensures that the filesystem check (fsck) runs
reliably. Later in the startup process, the root will be re—-mounted as read/write after fsck completes.
See the discussion of rc.sysinit later in this chapter.

The root=/dev/hda3 option is also kernel-specific. It defines the location of the root filesystem for
the kernel. The lilo.conf file should have a root option associated with the kernel image. If it is not
defined here, the root filesystem must be defined separately with the rdev command. However,
don't do that; define the root in the LILO configuration.

The last three lines in the sample file define the other operating system that LILO is able to boot.
The other OS is located in partition 1 of the first IDE drive, other=/dev/hdai. As the label=dos entry
indicates, it is Microsoft Windows. The optional command tells /sbin/lilo, which is called the mapper,
that when it builds the map file, it should consider this operating system optional. That means that
/sbin/lilo should complete building the map file, even if this operating system is not found.

Whenever you modify the LILO configuration, invoke /sbin/lilo to install the new configuration. Until
/sbin/lilo is run and maps the new configuration options, they have no effect. The grub.conf file, on
the other hand, does not require any special processing. Changes to the GRUB configuration take
effect immediately.

Only Linux and one other operating system appear in the sample file, which is the most common
case for desktop clients. However, LILO can act as the boot manager for up to 16 different
operating systems. It is possible to see several other and image options in a lilo.conf file. Multiple
image options are used when testing different Linux kernels. The most common reason for multiple
other options is a training system in which users boot different OSs to learn about them. In an
average operational environment, only one operating system is installed on a server, and no more
than two operating systems are installed on a client.

lilo.conf Hardware Options

There are many more lilo.conf configuration options than those described previously, but you won't
need to use most of them. The sample configuration file in Listing 1.2 is almost identical to the one
built by the installation program on any other system. Basically, the small subset of options just
described includes the options used to build 99 percent of all LILO configuration files.

The one percent of systems that cannot be configured with the usual commands are often those
systems with hardware difficulties. The lilo.conf file provides several options for dealing with
hardware problems.

The Iba32 option is used when the boot partition is placed above the 1024—cylinder limit. This option
requires a BIOS that supports 32-bit Logical Block Addresses (LBA32) for booting. The Red Hat
installation program displays a "Force use of LBA32" check box in the boot loader installation
screen. If this is available in your BIOS, it is the simplest way to boot from beyond the 1024—cylinder
barrier.

The linear option forces the system to use linear sector addresses—sequential sector numbers—
instead of traditional cylinder, head, and sector addresses. This is sometimes necessary to handle
large SCSI disks. It is even possible to manually define the disk geometry and linear addresses of
the partitions directly in the LILO configuration file. For example:

disk=/dev/hda
bios=0x80
sectors=63

19

heads=32
cylinders=827
partition=/dev/hdal
start=63
partition=/dev/hda2
start=153216
partition=/dev/hda3
start=219744

This example defines the geometry for the first disk drive, which normally has the BIOS address of
hexadecimal 80. The sectors, heads, and cylinders of the disk are defined. In the example, the
linear address for the start of each partition is also given. This is an extreme example of defining the
disk drive for the system; | have never had to do this.

The append command is another LILO option related to defining hardware. (I have used this one.)
The append option passes a configuration parameter to the kernel. The parameter is a
kernel-specific option used to identify hardware that the system failed to automatically detect. For
example:

append = "ether=10,0x210,eth0"

This sample command tells the kernel the nonstandard configuration of an Ethernet card. This
particular option line says that the Ethernet device eth0 uses IRQ 10 and I/O port address 210. (The
format of the parameters that can be passed to the kernel is covered in "The Linux Boot Prompt,"
later in this chapter.)

Linux is very good at detecting the configuration of Ethernet hardware, and software—configurable
cards are good at reporting their settings. Additionally, new PCI cards do not require all of these
configuration values. By and large, kernel parameters are not needed to boot the system. However,
this capability exists for those times when you do need it.

LILO Boot Security

Two LILO configuration commands enhance the security of a network server. If the server is in an
unsecured area, it is possible for an intruder to reboot the system and gain unauthorized access.
For example, an intruder could reboot the server into single—user mode and essentially have
password-free root access to part of the system. (More about single—user mode later. For now, just
take my word that this can be done.)

To prevent this, add the password and the restricted options to the lilo.conf file. The password
option defines a password that must be entered to reboot the system. The password is stored in the
configuration file in an unencrypted format, so make sure the lilo.conf file can be read only by the
root user. The restricted option softens the security a little. It says that the password is required only
when passing parameters to the system during a boot. For example, if you attempt to pass the
parameter single to the system to get it to boot into single-user mode, you must provide the
password.

Always add the restrict option when using the password option in a server's lilo.conf file. Using
password without restrict can cause the server to hang during the boot until the password is
entered. If the server console is unattended, the boot can hang for an extended period of time.
Using restrict with the password option ensures that the system reboots quickly after a crash, while
providing adequate protection from unauthorized access through the console.

20

The following example includes restricted password protection for booting the Linux kernel. The
example is based on the lilo.conf file you saw earlier, with a few lines removed that contain default
values to show that you can remove those lines and still boot without a problem. Listing 1.3 uses cat
to list the new configuration file and lilo to process it.

Listing 1.3: Adding Password Protection to LILO

[root]# cat lilo.conf

global section

boot=/dev/hda3

prompt

timeout=50

message=/boot/message

default=linux

the Linux boot image

image=/boot/vmlinuz-2.4.2-2
label=linux
read-only
root=/dev/hda3
password=Wats?Watt?
restricted

additional boot images

other=/dev/hdal
optional
label=dos

[root]# 1lilo
Added linux *
Added dos

After running /sbin/lilo, reboot. Note that you don't have to enter the password at the boot prompt
because the configuration includes the restrict option. However, if you attempt to boot the system
and provide optional input at the boot prompt, you will be asked for the password.

The Linux Boot Prompt

The LILO and GRUB processes are modified through their configuration files. The kernel boot
process is modified through input to the boot prompt. As with the LILO append option and the
GRUB kernel command, the boot prompt is used to pass parameters to the kernel. The difference,
however, is that the boot prompt is used to manually enter kernel parameters, whereas the append
and kernel commands are used to automate the process when the same parameters must be
passed to the kernel for every boot. Use the boot prompt for special situations, such as repairing a
system or getting an unruly piece of equipment running; or to debug input before it is stored in the
lilo.conf or grub.conf file.

You rarely need to pass parameters to the kernel through the boot prompt. When you do, it is either
to change the boot process or to help the system handle a piece of unknown hardware. The kernel
command from the grub.conf file shown in Listing 1.1 is an example of using boot input to change
the boot process:

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3

This line comes from the grub.conf file, but it also can be entered interactively during the boot
process. When the GRUB menu is displayed at boot time, the operator is given 10 seconds to

21

select an optional menu item, or interrupt the boot process. Interrupt the boot by pressing the
Escape key. If a password is defined in the grub.conf file, press P, and enter the GRUB password.
Then, press C for command mode, and a command line prompt appears. This is the boot prompt
that allows arguments to be sent to the kernel using the kernel command interactively. The format of
the kernel command is

kernel file arguments

where kernel is the command, file is the name of the file that contains the Linux kernel, and
arguments are any optional arguments you wish to pass to the kernel. In the preceding kernel
command example, ro root=/dev/hda3 are arguments that change the default boot behavior so that
the root filesystem is mounted read-only. The possible arguments depend on the kernel, not on
whether GRUB or LILO is used to control the boot process. Any of the kernel arguments described
in this section can be sent to the kernel in this manner on a system that uses GRUB. The LILO boot
prompt is different, but the function is the same.

When the system is booted by LILO, the string boot: is displayed as the boot prompt. The operator
can boot any operating system defined in the lilo.conf file by entering its name at the prompt (for
example, linux, or dos). Arguments are passed to the selected operating system by placing them on
the command line after the operating system name. An example of passing kernel parameters on a
system booted by LILO is

boot: linux panic=60

In this example, boot: is the prompt, linux is the kernel name, and panic=60 is the parameter passed
to that kernel. The keyword linux is the label assigned to the Linux kernel in the LILO configuration.
Use the label to tell LILO which kernel should receive the parameter. The panic argument changes
the boot behavior after a system crash. It is possible for the Linux kernel to crash from an internal
error, called a kernel panic. If the system crashes from a kernel panic, it does not automatically
reboot—it stops at the boot prompt waiting for instructions.

Normally, this is a good idea. The exception is an unattended server. If you have a system that does
not have an operator in attendance and that remote users rely on, it might be better to have it try an
automatic reboot after it crashes. The example shown previously tells the system to wait 60
seconds and then reboot.

Note This might surprise Windows administrators, but | have never had a Linux system crash. In
fact, | had one specialized system (collecting network measurement data, and providing Web
access to that data) that ran continuously for more than a year without a single problem.

In a normal boot process, the kernel starts the /sbin/init program. Using the init argument, it is
possible to tell the kernel to start another process instead of /sbin/init. For example, init=/bin/sh
causes the system to run the shell program, which then can be used to repair the system if the /
sbin/init program is corrupted.

Booting directly to the shell looks very much like booting to single-user mode with the single
argument, but there are differences. init=/bin/sh does not rely on the init program. single, on the
other hand, is passed directly to init so that init can perform selected initialization procedures before
placing the system into single—user mode. In both of these cases, the person who boots the
computer is given password—free access to the shell unless password and restrict are defined in the
lilo.conf file, as described in the previous section.

22

Handling undetected hardware is the second reason for entering data at the boot prompt, and it is
the most common reason for doing so during the initial installation. Sometimes, the system has
trouble detecting hardware or properly detecting the hardware's configuration. In those cases, the
system needs your input at the boot prompt to properly handle the unknown hardware.

A large number of the boot input statements pass parameters to device driver modules. For
example, there are about 20 different SCSI host adapter device drivers that accept boot
parameters. In most cases, the system detects the SCSI adapter configuration without a problem.
But if it doesn't, booting the system may be impossible. An example of passing kernel parameters to
Linux to identify an undetected SCSI adapter device is

boot: linux ahal52x=0x340,11,7

All hardware parameters begin with a driver name. In this case, it is the aha152x driver for Adaptec
1520 series adapters. The data after the equal sign is the information passed to the driver. In this
case, it is the 1/O port address, the IRQ, and the SCSI ID.

Another boot argument that is directly related to the configuration of device drivers is the reserve
argument. reserve defines an area of /0O port address memory that is protected from auto—probing.
To determine the configuration of their devices, most device drivers probe those regions of memory
that can be legitimately used for their devices. For example, the 3COM EtherLink Ill Ethernet card is
configured to use 1/O port address 0x300 by default, but it can be configured to use any of 21
different address settings from 0x200 to 0x3e0. If the 3¢c509 driver did not find the adapter installed
at address 0x300, it could legitimately search all 21 base address regions. Normally, this is not a
problem. On occasion, however, auto—probing can return the wrong configuration values. In
extreme cases, poorly designed adapters can even hang the system when they are probed. | have
never personally seen an adapter hang the system, but some years ago | had an Ethernet card that
returned the wrong configuration. In that case, | combined the reserve argument with device driver
input, as in this example:

boot: linux reserve=0x210,16 ether=10,0x210,ethO0

This boot input prevents device drivers from probing the 16 bytes starting at memory address
0x210. The second argument on this line passes parameters to the ether device driver. It tells that
driver that the Ethernet adapter uses interrupt 10 and I/O port address 0x210. This specific adapter
will be known as device eth0, which is the name of the first Ethernet device. Of course, you'll want
to use the Ethernet adapter every time the system boots. Once you're sure this boot input fixes the
Ethernet problem, store it as a kernel-specific option in the lilo.conf file. For example:

image = /boot/vmlinuz-2.2.5-15
label = linux
root = /dev/hda3
read-only
append = "reserve=0x210,16 ether=10,0x210,eth0O"

The ether argument is also used to force the system to locate additional Ethernet adapters.
Suppose that the system detects only one Ethernet adapter, and you have two Ethernet devices
installed: eth0 and eth1. Use this boot input to force the system to probe for the second device:

ether=0,0,ethl
Old Ethernet cards are a major reason for boot prompt input. If you have an old card and

experience a problem, read the Ethernet-HOWTO for configuration advice on your specific card.
New PCI Ethernet cards do not usually require boot input. Most current Ethernet cards use loadable

23

modules for device drivers. If your Ethernet card is not recognized during the boot, it may be that its
module is not loaded. The first step is to check the module's configuration.

Note See the "Loadable Modules" section later in this chapter for information about managing
modules and for specific examples of loadable modules used for Ethernet device drivers.

This section has barely touched upon the very large number of arguments that can be entered at
the boot prompt. See the "BootPrompt—-HOWTO" document, by Paul Grotmaker, for the details of all
of them. Most Linux systems include the HOWTO documents in /usr/doc.

Hardware Device Driver Initialization

When the system boots, several things happen. You have already seen the part that LILO and
GRUB play in loading the operating system, but that is only the beginning. These loaders start the
Linux kernel running, and then things really begin to happen.

The kernel is the heart of Linux. It loads into memory and initializes the various hardware device
drivers. Most of the possible boot prompt arguments are intended to help the kernel initialize
hardware, and the messages the kernel displays during startup help you determine what hardware
is installed in the system and whether it is properly initialized.

Use the dmesg command to display the kernel startup messages; combine it with the less
command or with grep to examine the startup messages more effectively. less allows you to scroll
through the messages, one screenful at a time; grep permits you to search for something specific in
the dmesg output. For example, combine dmesg and grep to locate kernel messages relating to the
initialization of the Ethernet device eth0:

$ dmesg | grep ethO
loading device 'ethO'...
eth0: SMC Ultra at 0x340, 00 00 CO 4F 3E DD, IRQ 10 memory 0xc8000-Oxcbfff.

This message clearly shows the type of Ethernet adapter used (SMC Ultra) and the Ethernet MAC
address assigned to the adapter (00 00 CO 4F 3E DD). Additionally, because the SMC Ultra is an
ISA bus adapter, the bus interrupt (IRQ 10), the adapter memory address (0xc8000-0xcbfff), and
the 1/O port address (0x340) are shown. All of this information is useful for debugging a hardware
configuration problem.

Most systems use Ethernet for all network communications, although some use other devices, such
as serial ports for this purpose. When the kernel initializes the serial ports, it displays the device
name, I/O port address, and IRQ of each serial port. It also displays the model of Universal
Asynchronous Receiver Transmitter (UART) that is used for the serial interface. Old systems used
8250 UARTSs, which are inadequate for use with modems and a problem for systems that need to
run PPP. As this example shows, current systems use the faster 16550A UARTSs:

ttyS00 at 0x03f8 (irg
ttyS02 at 0x03e8 (irg

4) is a 16550A
4) is a 16550A

Also of interest for a network server are the kernel components of TCP/IP. These components
include the fundamental protocols, such as IP (Internet Protocol), and the network sockets interface.
Sockets is an application protocol interface developed at Berkeley for BSD Unix. It provides a
standard method for programs to talk to the network. The TCP/IP initialization messages from a Red
Hat 7.2 system are

24

NET4: Linux TCP/IP 1.0 for NET4.0

IP Protocols: ICMP, UDP, TCP, IGMP

IP: routing cache hash table of 1024 buckets, 8Kbytes

TCP: Hash tables configured (established 16384 bind 16384)
Linux IP multicast router 0.06 plus PIM-SM

NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.

Reading the kernel messages helps you understand what occurs when the system starts up. Don't
read these messages word for word—too many details will just bog you down. What you should do
is look at the messages to gain a sense of how the system works. Of course, there are slight
variations among the messages displayed on various systems, but the messages give you a very
good idea of what is going on as the kernel initializes the hardware.

After the kernel concludes its portion of the boot process, the kernel starts the init program, which
controls the rest of the startup.

Loading Linux Services—The init Process

The init process, which is process number one, is the mother of all processes. After the kernel
initializes all of the devices, the init program runs and starts all of the software. The init program is
configured by the /etc/inittab file. Listing 1.4 shows the inittab file that comes with Red Hat 7.2:

Listing 1.4: The inittab File

#

inittab This file describes how the INIT process should set up
the system in a certain run-level.

#

Author: Miquel wvan Smoorenburg, <miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Marc Ewing and Donnie Barnes
#

Default runlevel. The runlevels used by RHS are:

0 - halt (Do NOT set initdefault to this)

1 - Single user mode

2 — Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full multiuser mode

4 — unused

5 - X11

6 — reboot (Do NOT set initdefault to this)

#

id:5:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

10:0:wait:/etc/rc.d/rc 0
1l:1:wait:/etc/rc.d/rc 1
12:2:wait:/etc/rc.d/rc 2
13:3:wait:/etc/rc.d/rc 3
14:4:wait:/etc/rc.d/rc 4
15:5:wait:/etc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6

Things to run in every runlevel.
ud: :once:/sbin/update

Trap CTRL-ALT-DELETE

25

ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, schedule a shutdown for 2 minutes.
pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"

If power was restored before the shutdown, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"

Run gettys in standard runlevels
:2345:respawn:/sbin/mingetty ttyl
:2345:respawn:/sbin/mingetty tty2
:2345:respawn:/sbin/mingetty tty3
:2345:respawn:/sbin/mingetty tty4
:2345:respawn:/sbin/mingetty tty5
:2345:respawn:/sbin/mingetty tty6

o U W N o

==

Run xdm in runlevel 5
xdm is now a separate service
:5:respawn:/etc/X11/prefdm -nodaemon

==

b

Note The comments in this sample file were edited slightly to better fit on a book page. They are a
reduced version of the actual comments from the Red Hat inittab file.

Understanding Runlevels

To understand the init process and the inittab file, you need to understand runlevels, which are used
to indicate the state of the system when the init process is complete. There is nothing inherent in the
system hardware that recognizes runlevels; they are purely a software construct. init and inittab are
the only reasons why the runlevels affect the state of the system. Because of this, the way runlevels
are used varies from distribution to distribution. This section uses Red Hat Linux as an example.

The Linux startup process is very similar to the startup process used by System V Unix. It is more
complex than the initialization on a BSD Unix system, but it is also more flexible. Like System V,
Linux defines several runlevels that run the full gamut of possible system states from not-running
(halted) to running multiple processes for multiple users. The comments at the beginning of the
sample inittab file describe the runlevels:

¢ Runlevel 0 causes init to shut down all running processes and halt the system.

¢ Runlevel 1 is used to put the system in single-user mode. Single—user mode is used by the
system administrator to perform maintenance that cannot be done when users are logged in.
This runlevel may also be indicated by the letter S instead of the number 1.

e Runlevel 2 is a special multiuser mode that supports multiple users but does not support file
sharing.

e Runlevel 3 is used to provide full multiuser support with the full range of services. It is the
default mode used on servers that use the "text only" console logon.

¢ Runlevel 4 is unused by the system. You can design your own system state and implement
it through runlevel 4.

¢ Runlevel 5 initializes the system as a dedicated X Windows terminal. This runlevel is widely
used as an alternative for systems configured to launch an X desktop environment at
startup. In fact, runlevel 5 is the default runlevel for most Red Hat systems because most
systems are desktop clients that use an X Windows console logon.

¢ Runlevel 6 causes init to shut down all running processes and reboot the system.

All of the lines in the inittab file that begin with a sharp sign (#) are comments. A liberal dose of
comments is needed to interpret the file because the syntax of actual inittab configuration lines is

26

terse and somewhat arcane. An inittab entry has this general format:

label:runlevel:action:process

The label is a one- to four—character tag that identifies the entry. Some systems support only
two—character labels. For this reason, most people limit all labels to two characters. The labels can
be any arbitrary character string, but in practice, certain labels are commonly used. The label for a
getty or other login process is usually the numeric suffix of the tty to which the process is attached.
Other labels used in the Red Hat Linux distribution are

¢ id for the line that defines the default runlevel used by init

e si for the system initialization process

e Inwhere nis a number from 1 to 6 that indicates the runlevel being initialized by this process

e ud for the update process

e ca for the process run when Ctrl+Alt+Del is pressed

e pf for the process run when the UPS indicates a power failure

e pr for the process run when power is restored by the UPS before the system is fully shut
down

e x for the process that turns the system into an X terminal

The runlevel field indicates the runlevels to which the entry applies. For example, if the field
contains a 3, the process identified by the entry must be run for the system to initialize runlevel 3.
More than one runlevel can be specified, as illustrated in the sample file by the pr entry. Entries that
have an empty runlevel field are not involved in initializing specific runlevels. For example, an entry
that is invoked by a special event, such as the three—finger salute (Ctrl+Alt+Del), does not have a
value in the runlevel field.

The action field defines the conditions under which the process is run. Table 1.1 lists all of the valid
action values and the meaning of each one.

Table 1.1: Valid Action Values

Action Meaning

Boot Runs when the system boots. Ignores runlevel.

Bootwait Runs when the system boots, and init waits for the process to complete.
Runlevels are ignored.

Ctrlaltdel Runs when Ctrl+Alt+Del is pressed, which passes the SIGINT signal to init.
Runlevels are ignored.

Initdefault Doesn't execute a process. It sets the default runlevel.

Kbrequest Runs when init receives a signal from the keyboard. This requires that a key
combination be mapped to KeyBoardSignal.

Off Disables the entry so the process is not run.

Once Runs one time for every runlevel.

Ondemand Runs when the system enters one of the special runlevels A, B, or C.

Powerfail Runs when init receives the SIGPWR signal.

Powerokwait Runs when init receives the SIGPWR signal and the file /etc/ powerstatus
contains the word OK.

Powerwait Runs when init receives the SIGPWR signal, and init waits for the process to
complete.

Respawn Restarts the process whenever it terminates.

27

sysinit Runs before any boot or bootwait processes.

wait Runs the process upon entering the run mode, and init waits for the process to
complete.

The last field in an inittab entry is the process field. It contains the process that init executes. The
process appears in the exact format that is used to execute the process from the command line.
Therefore, the process field starts with the name of the process that is to be executed, and follows it
with the arguments that will be passed to that process. For example, /sbin/shutdown —t3 —r now,
which is the process executed when Ctrl+Alt+Del is pressed, is the same command that could be
typed at the shell prompt to reboot the system.

Special-Purpose Entries

Using what you have just learned about the syntax of the inittab file, take a closer look at the sample
in Listing 1.4. You can ignore most of the file; more than half of it consists of comments. Many of the
other lines are entries that are used only for special functions:

e The id entry defines the default runlevel, which is usually 3 for a text console or 5 for an X
console.

e The ud entry calls the /sbin/update process, which cleans up the 1/O buffers before disk I/ O
starts in order to protect the integrity of the disks.

e The pf, pr, and ca entries are invoked only by special interrupts.

Warning Some administrators are tempted to change the ca entry to eliminate the
ability to reboot the system with the three—finger salute. This is not a bad
idea for server systems, but don't do it for desktop systems. Users need
to have a method to force a graceful shutdown when things go wrong. If
it is disabled, the user might resort to the power switch, which can result
in lost data and other disk troubles.

Six of the lines in the inittab file start—and when necessary, restart—the getty processes that
provide virtual terminal services. One example from Listing 1.4 explains them all:

3:2345:respawn:/sbin/mingetty tty3

The label field contains a 3, which is the numeric suffix of the device, tty3, to which the process is
attached. This getty is started for runlevels 2, 3, 4, and 5. When the process terminates (for
example, when a user terminates the connection to the device), the process is immediately
restarted by init.

The pathname of the process that is to be started is /sbin/mingetty. Red Hat uses mingetty, which is
a minimal version of getty that is specifically designed for virtual terminal support. On a Caldera 2.2
system, the pathname would be /sbin/getty with the VC command-line option, which tells getty that
it is servicing a virtual terminal. The result, however, would be the same: to start a virtual terminal
service process for tty3.

Every runlevel that accepts terminal input uses getty. Runlevel 5 has one additional entry in the
inittab file to start an X terminal:

x:5:respawn:/etc/X11/prefdm -nodaemon

28

This line starts—and when necessary, restarts—the X application used for the X-based console
logon required by runlevel 5.

Every line in the inittab file handles some important task. However, the real heart of the inittab file
consists of the seven lines that follow the comment "System initialization" near the beginning of the
inittab file (refer to Listing 1.4.) They are the lines that invoke the startup scripts. The first of these is
the si entry:

si::sysinit:/etc/rc.d/rc.sysinit

This entry tells init to initialize the system by running the boot script located at /etc/rc.d/rc.sysinit.
This script, like all startup scripts, is an executable file that contains Linux shell commands. Notice
that the entry shows the full path to the startup script. One of the most common complaints about
different Linux distributions is that the key files are stored in different locations in the filesystem.
Don't worry about memorizing these differences—just look in the /etc/inittab file. It tells you exactly
where the startup scripts are located.

The six lines that follow the si entry in inittab are used to invoke the startup scripts for each runlevel.
Except for the runlevel involved, each line is identical:

15:5:wait:/etc/rc.d/rc 5

This line starts all of the processes and services needed to provide the full multiuser support defined
by runlevel 5. The label is I5, which is symbolic of level 5. The runlevel is, of course, 5. init is
directed to wait until the startup script terminates before going on to any other entries in the inittab
file that relate to runlevel 5. init executes the script /etc/rc.d/rc, and passes that script the
command-line argument 5.

Startup Scripts

Anything that can be run from a shell prompt can be stored in a file and run as a shell script. System
administrators use this capability to automate all kinds of processes; Linux uses this capability to
automate the startup of system services. Two main types of scripts are used: the system
initialization script and the runlevel initialization script.

System Initialization

The system initialization script runs first. On a Red Hat system, this is a single script named /etc/
rc.d/rc.sysinit. Other Linux distributions might use a different filename, but all versions of Linux use
script files to initialize the system. The rc.sysinit script performs many essential system initialization
tasks, such as preparing the network and the filesystems for use.

The rc.sysinit script begins the network initialization by reading the /etc/sysconfig/network file, which
contains several network configuration values set during the initial installation. If the file is not found,
networking is disabled. If it is found, the script assigns the system the hostname stored there.

The initialization script performs many small but important tasks, such as setting the system clock,
applying any keyboard maps, and starting USB and PnP support. The bulk of the script, however, is
used to prepare the filesystem for use. The script activates the swap file, which is necessary before
the swap space is used. The rc.sysinit script also runs the filesystem check, using the fsck
command to check the structure and integrity of the Linux filesystems. If a filesystem error is

29

encountered that fsck cannot simply repair, the boot process stops, and the system reboots in
single—user mode. You then must run fsck manually, and repair the disk problems yourself. When
you finish the repairs, exit the single—user shell. The system will then attempt to restart the
interrupted boot process from where it left off.

The initialization script mounts the /proc filesystem and, after the fsck completes, mounts the root
filesystem as read-write. Recall that the root filesystem was initially mounted as read—only. The root
must be remounted as read-write before the system can be used. The script also mounts other
local filesystems listed in the /etc/fstab file. (The fstab file is described in Chapter 9, "File Sharing.")
The rc.sysinit script finishes up by loading the loadable kernel modules.

Other initialization scripts may look different from Red Hat's, but they perform very similar functions.
The order may be different, but the major functions are the same: initialize the swap file, and check
and mount the local filesystems.

Runlevel Initialization

After the system initialization script is run, init runs a script for the specific runlevel. On Red Hat,
Mandrake, and Caldera systems, this is done by running a control script and passing it the runlevel
number. The control script, /etc/rc.d/rc, then runs all of the scripts that are appropriate for the
runlevel. It does this by running the scripts that are stored in the directory /etc/rcn.d, where nis the
specified runlevel. For example, if the rc script is passed a 5, it runs the scripts found in the directory
/etc/rc.d/rc5.d. A listing of that directory from a Red Hat system shows that there are lots of scripts:

Listing 1.5: Runlevel Initialization Scripts

$ 1s /etec/rc.d

init.d rc0.d rc2.d zrcd4d.d rc6.d rc.sysinit

rc rcl.d rc3.d rcb5.d rc.local

$ 1s /ete/rc.d/re3.d

K03rhnsd K35smb K74ntpd S05kudzu S25netfs S85httpd
Klérarpd K45arpwatch K74ypserv SO6reconfig S26apmd S90crond
K20nfs K45named K74ypxfrd S08ipchains S28autofs S90xfs
K20rstatd K50snmpd K75gated S09isdn S40atd S95anacron
K20rusersd K50tux K84bgpd SlOnetwork S55sshd S991inuxconf
K20rwalld K55routed K84ospfed Sl2syslog SS56rawdevices S99local
K20rwhod Ké6lldap K84ospfd Sl3portmap S56xinetd

K28amd K65identd K84ripd Sl4nfslock S601pd

K34yppasswdd K73ypbind K84ripngd Sl7keytable S80sendmail

K35dhcpd K74nscd K85zebra S20random S85gpm

The scripts that begin with a K are used to kill processes when exiting a specific runlevel. In Listing
1.5, the K scripts are used when terminating runlevel 5. The scripts that start with an S are used
when starting runlevel 5. None of the items in rc5.d, however, is really a startup script. They are
logical links to the real scripts, which are located in the /etc/rc.d/init.d directory. For example,
S80sendmail is linked to /etc/init.d/sendmail. This raises the question of why the scripts are
executed from the directory rc5.d instead of directly from init.d, where they actual reside. The
reasons are simple. The same scripts are needed for several different runlevels. Using logical links,
the scripts can be stored in one place and still be accessed by every runlevel from the directory
used by that runlevel. Additionally, the order in which the scripts are executed is controlled by the
script name.

The scripts are executed in alphabetical order, based on name. Thus, S10network is executed

30

before S80sendmail. This allows the system to control, through a simple naming convention, the
order in which scripts are executed. Different runlevels can execute the scripts in different orders
while still allowing the real scripts in init.d to have simple, descriptive names. Listing 1.6 shows the
real script names in the init.d directory:

Listing 1.6: The init.d Script Files

S 1ls init.d

amd functions kdcrotate network rarpd rwalld xfs
anacron gated keytable nfs rawdevices rwhod xinetd
apmd gpm killall nfslock reconfig sendmail ypbind
arpwatch halt kudzu nscd rhnsd single yppasswdd
atd httpd ldap ntpd ripd smb ypserv
autofs identd linuxconf ospfé6d ripngd snmpd ypxfrd
bgpd ipchains 1lpd ospfd routed sshd zebra
crond iptables named portmap rstatd syslog

dhcpd isdn netfs random rusersd tux

Several of these scripts are clearly of interest to administrators of network servers:

e The httpd script starts the Web server.

e The xinet script starts the Extended Internet daemon (xinetd).
e The named script starts the DNS name server.

e The nfs script starts the NFS file server.

e sendmail starts the e—mail server.

It is useful to know where these services really start in case something goes wrong. All of these
scripts may be important when troubleshooting a network problem.

Controlling Scripts

You can control which scripts are executed and the order in which they are executed by directly
changing the logical links in the runlevel directory, but that's not the best way. It's easier to control
startup scripts using a tool specifically designed for this purpose. Red Hat systems use the
chkconfig command, which is a command-line tool based on the chkconfig program from the Silicon
Graphics IRIX version of Unix. The Linux version has some enhancements, such as the capability to
control which runlevels the scripts run under. The —-list option of the chkconfig command displays
the current settings:

[root]# chkconfig —--list named
named 0O:o0ff l:0ff 2:0ff 3:on 4:on 5:on 6:0ff

This example shows the structure of a chkconfig command line. chkconfig is the command, —-list is
the option, and named is the name of a script file found in the init.d directory. It is the script file that
the command affects.

To enable or disable a script for a specific runlevel, specify the runlevel with the ——level option,
followed by the name of the script you wish to control and the action you wish to take, either on to
enable the script or off to disable it. For example, to disable named for runlevel 5, enter the
following:

[root]# chkconfig —-level 5 named off
[root]# chkconfig —--list named
named O:o0ff l:0ff 2:0ff 3:0on 4:on 5:0ff 6:0ff

31

chkconfig reads the comments in the init.d script file to determine the runlevels in which the script is
run by default, and to obtain information needed to create the correct logical links in the runlevel
directory. This information must be found in the script file in a comment that contains the keyword
chkconfig. Here is an example from the ipchains script:

[root]# grep chkconfig ipchains
chkconfig: 2345 08 92

In this comment, the keyword chkconfig is followed by three values:

e First, the list of runlevels in which this script is run by default. Here, the list contains four
runlevels (2, 3, 4, and 5). If the script is not run by default at any runlevel, this field contains
a dash (-).

e Next, the numeric prefix used to name the logical link to the script file used during startup.
Here, the numeric prefix used for startup is 08. Therefore, the link placed in the runlevel
directory will be named S08ipchains.

e Finally, the numeric prefix used to name the logical link to the script file used during
shutdown. Here, the numeric prefix used for shutdown is 92. Therefore, the link placed in the
runlevel directory will be named K92ipchains.

Editing the chkconfig comment in the script in the init.d directory changes the values that chkconfig
uses to create the links. However, this is not necessary. The values selected by Red Hat were
chosen to ensure that services start in the proper order. The only time you may need to set these
values is when you write your own startup script for a custom service.

chkconfig is used on Red Hat and several other Linux systems. It is not, however, the only widely
used tool for controlling scripts. tksysv, the SYSV Runlevel Manager, is available on several
distributions; and it runs under X Windows. Figure 1.2 shows the SYSV Runlevel Manager window.

S evel Manage =T ES
File Help |
Available: 2 3 4 5
atd 2 kemeld |5 |kemeld [S|kemeld [%|kemeld [%
crond network network network network
dhcpd 2 random portmap portmap portmap
gated t syslog nfsfs nfsfs nfsfs
gpm a |crond random random random
halt r [pcmcia syslog syslog syslog
httpd t [lpd atd atd atd
inet dhcpd = |crond crond crond
innd keytable inet inet inet
kemeld sendmail 7 [named 7 Inamed 7 Inamed)
keytable
killall innd 5 gpm X gpm X gpm X
linuxconf httpd sound sound sound
Ipd Fi sound rusersd rusersd rusersd
Add I S Infs rwhod rwhod rwhod
t |rusersd snmpd snmpd shmpd
Remove I o |rwhod routed routed routed
- p dhcpd gated gated gated
Edit | smb yphind ypbind yphind
Execute l _named pcmcia pcmcia pcmcia
inet ‘ Y Y. Y

32

Figure 1.2: The SYSV Runlevel Manager Window

The SYSV Runlevel Manager lists all of the available startup scripts, as well as the scripts that are
currently being used by each runlevel. Each runlevel has a column of the display that is divided into
Start and Stop scripts. These categories correspond to the S and K scripts in the directories. Using
tksysv's simple visual interface, you can add scripts to a runlevel from the list of available scripts, or
delete scripts from a runlevel. You can even select a script from the list of available scripts and
execute it in real time to start a service without rebooting.

The rc.local Script

In general, you do not directly edit boot scripts. The exception to this rule is the rc.local script
located in the /etc/rc.d directory. It is the one customizable startup file, and it is reserved for your
use; you can put anything you want in there. After the system initialization script and the runlevel
scripts execute, the system executes rc.local. Since it is executed last, the values you set in the
rc.local script are not overridden by another script.

If you add third—party software that needs to be started at boot time, put the code to start it in the
rc.local script. Additionally, if something is not installed or configured correctly by the installation
process, it can be manually configured in rc.local.

Loadable Modules

Loadable modules are pieces of object code that can be loaded into a running kernel. This is a very
powerful feature. It allows Linux to add device drivers to a running Linux system in real time. This
means that the system can boot a generic Linux kernel and then add the drivers needed for the
hardware on a specific system. The hardware is immediately available without rebooting the
system.

Usually, you have very little involvement with loadable modules. In general, the system detects your
hardware and determines the correct modules during the initial installation. But not always.

Sometimes hardware is not detected during the installation, and other times new hardware is added
to a running system. To handle these things, you need to know how to work with loadable modules.

Listing the Loaded Modules

Use the Ismod command to check which modules are loaded in your system. Listing 1.7 shows an
example:

Listing 1.7: Listing Loaded Modules

$ lsmod

Module Size Used by

ide-cd 27072 0 (autoclean)

cdrom 28512 0 (autoclean) [ide-cd]
soundcore 4464 0 (autoclean)
parport_pc 14768 1 (autoclean)

1p 6416 0 (autoclean)

parport 25600 1 (autoclean) [parport_pc lp]
autofs 11520 0 (autoclean) (unused)
smc-ultra 5792 1

8390 6752 0 [smc—-ultra]

nls _iso8859-1 2832 1 (autoclean)
nls_cp437 4352 1 (autoclean)

33

vfat 9584 1 (autoclean)

fat 32384 0 (autoclean) [vfat]
ext3 64624 3

jbd 40992 3 [ext3]

Loadable modules perform a variety of tasks. Some modules are hardware device drivers, such as
the smc—ultra module for the SMC Ultra Ethernet card. Other modules provide support for the wide
array of filesystems available in Linux, such as the ISO8859 filesystem used on CD-ROMs or the
DOS FAT filesystem with long filename support (vfat).

Each entry in the listing produced by the Ismod command begins with the name of the module
followed by the size of the module. As the size field indicates, modules are small. Often, they work
together to get the job done. The interrelationships of modules are called module dependencies,
which are an important part of properly managing modules. The listing tells you which modules
depend on other modules. In our sample, the smc—ultra driver depends on the 8390 module. You
can tell that from the 8390 entry, but not from the smc-ultra entry. The 8390 entry lists the modules
that depend on it under the heading Used by.

Most of the lines in Listing 1.7 contain the word autoclean. This means that a module can be
removed from memory automatically if it is unused. autoclean is only one of the module options.
You can select different options when manually loading modules.

Manually Maintaining Modules

Modules can be manually loaded using the insmod command. This command is very
straightforward—it's just the command and the module name. For example, to load the 3¢509
device driver, enter insmod 3¢509. This does not install the module with the autoclean option. If
you want this driver removed from memory when it is not in use, add the —k option to the insmod
command, and enter insmod —k 3¢c509.

One limitation with the insmod command is that it does not understand module dependencies. If you
used it to load the smc—-ultra module, it would not automatically load the required 8390 module. For
this reason, modprobe is a better command for manually loading modules. As with the insmod
command, the syntax is simple. To load the smc-ultra drive, simply enter modprobe smc-ultra.

modprobe reads the module dependencies file that is produced by the depmod command.
Whenever the kernel or the module libraries are updated, run depmod to produce a new file
containing the module dependencies. The command depmod —a searches all of the standard
modules libraries and creates the necessary file. After it is run, you can use modprobe to install any
module and have the other modules it depends on automatically installed.

Use the rmmod command to remove unneeded modules. Again, the syntax is simple; rmmod
appletalk removes the appletalk driver from your system.

These manual maintenance commands have limited utility on a running system, because the
correct things are usually done by Linux without any prodding from you. For example, | booted a
small system on my home network, and immediately ran Ismod. | saw from this listing that | had
appletalk and ipx installed, and | knew | didn't need either one. | typed in rmmode appletalk, but
the message returned was rmmod: module appletalk not loaded because the system had already
removed this unneeded module faster than | could type the command. Additionally, attempting to
remove a command that is currently active returns the message Device or resource busy. For these
reasons, | have rarely needed to use the rmmod command on an operational system.

34

In Sum

This chapter has taken a network server from power up to full operation. We have gone from the
ROM BIOS to the Linux boot loader to the kernel initialization to the init process and, finally, to the
boot scripts. All of these things play an important role in starting the system, and all of them can be
configured by you.

Many operating systems hide the boot details, assuming that the administrator will be confused by
the messages. Linux hides nothing. It accepts the fact that ultimately you're in control of this
process, and you can exercise as much or as little of that control as you want. You can modify
kernel behavior with boot prompt input, and control the behavior of the Linux loader through the
lilo.conf file or the grub.conf file. You configure the init process through the inittab file and control
system services through the startup scripts. All of these configuration files are text files that are
completely under your control.

Other than the rc.local file, you will rarely change the files discussed in this chapter. But when you
do need to fix or debug something, it is good to know where and when things happen in the boot
process. Knowledge is a good thing, even if you only use it to ensure that your support contractors
know what they are talking about.

An important piece of knowledge gained from this chapter is the understanding of how startup really
works. Underneath all of the different tools provided by all of the different Linux distributions there is
a boot process that has many similarities. Knowing where the files are stored that start and
configure critical network services is very valuable information for any network administrator,
particularly when things go wrong. In the next chapter, "The Network Interface," we look even
deeper into the process that configures the server's network interface.

35

Chapter 2: The Network Interface

Overview

Nothing is more basic to network configuration than the interface the system uses to connect to the
network. On most Linux servers, the network interface is an Ethernet card. Yet Linux systems are
not limited to using Ethernet for network access. There are several types of network interfaces. One
widely used network interface is the computer's serial port. Linux provides excellent support for
serial-line communications, including a full range of tools to run TCP/IP over a serial line using
Point-to—Point Protocol (PPP).

This chapter begins the discussion of configuring a Linux system as a network server by looking at
how network interfaces are installed and configured. We begin with the Ethernet interface, which is
the most popular TCP/IP network interface, and then go on to discuss how the serial interface is
used for data communications. Finally, this chapter covers how PPP software is configured to turn
the serial port into a TCP/IP network interface.

Configuring an Ethernet Interface

A Linux Ethernet interface is composed of both a hardware adapter card and a software driver.
There are many possible brands and models of Ethernet cards. Select a card that is listed in "The
Linux Hardware Compatibility HOWTQ" by Patrick Reijnen, or listed among the approved hardware
at your Linux vendor's website. When you find a card that works well for you, stick with it until you
have a good reason to change.

Loadable Ethernet Drivers

The Ethernet interface software is a kernel driver. The driver can be compiled into the kernel or can
be loaded as a loadable module, which is the most common way to install an Ethernet driver. On a
Red Hat system, the loadable Ethernet drivers are found in the
/lib/modules/release/kernel/drivers/net directory, in which release is the kernel version number. A
directory listing of the network device drivers found on a Red Hat 7.2 system is shown in Listing 2.1.

Listing 2.1: Loadable Network Device Drivers

S ed /lib/modules/2.4.7-10/kernel/drivers/net

$ 1s *.o

3c501.0 atl1700.0 eeprol00.0 ne2k-pci.o slhc.o
3c503.0 atp.o eepro.o ne3210.0 slip.o
3c505.0 bonding.o eexpress.o ne.o smc-ultra32.0
3¢c507.0 bsd_comp.o epicl00.o0 ni5010.0 smc-ultra.o
3c509.0 cs89x0.0 eqgl.o ni52.o starfire.o
3c515.0 dedx5.0 es3210.0 ni65.o strip.o
3ch9x.0 de600.0 ethléi.o ns83820.0 sundance.o
8139too.o0 de620.0 ethertap.o pcnet32.0 sungem. o
82596.0 defxx.o ewrk3.o plip.o sunhme. o
8390.0 depca.o hamachi.o ppp_async.o tlan.o
ac3200.0 dgrs.o hpl00.0 ppp_deflate.o tun.o
acenic.o dl2k.o hp.o ppp_generic.o via-rhine.o
aironet4500_card.o dmfe.o hp-plus.o ppp_synctty.o wavelan.o
aironet4500_core.o dummy.o lance.o rcpci.o wd.o
aironet4500_proc.o €1000.0 1ne390.0 sp1000.0 winbond-840.0
arlan.o el00.0 lp486e.0 shaper.o yellowfin.o

36

arlan-proc.o e2100.0 natsemi.o sis900.0

The loadable network device drivers available on this system are listed here. A few, such as ppp_
async.o and plip.o, are not for Ethernet devices. Most are easily identifiable as Ethernet drivers,
such as the 3COM drivers, the SMC drivers, the NE2000 drivers, and the Ethernet Express drivers.

The Linux system detects the Ethernet hardware during the initial installation, and installs the
appropriate driver. Normally, this is a completely automatic process that requires no input from the
system administrator, but not always. Sometimes, Ethernet adapters are not detected by the initial
installation. Other times, the adapter is added after the initial installation or an adapter has a
non-standard configuration that must be communicated to the device driver. On rare occasions, the
device driver itself is incorrect and needs to be replaced. When these things happen, users turn to
you for help.

In general, when the system reboots newly installed hardware is configured by the hardware
detection program provided by the Linux vendor. On Red Hat systems, the hardware—detection
program is kudzu. It probes the system and creates the configuration file /etc/sysconfig/hwconf. The
file is created by kudzu at the initial system startup. All subsequent runs of kudzu probe the system
and compare the results to those found in the hwconf file. A new configuration is created only if a
new piece of hardware is discovered that is not already in the hwconf file. Listing 2.2 is an excerpt of
the hwconf file that contains an Ethernet card configuration.

Listing 2.2: An Ethernet Card Configuration Created by kudzu

class: NETWORK
bus: ISAPNP
detached: 0
device: eth
driver: smc-ultra
desc: "SMC EtherEZ (8416) :Unknown"
deviceId: SMC8416
pdeviceId: SMC8416
native: 1

active: 0

cardnum: 0

logdev: O

io: 0x200

dma: 0,0

Do not edit the hwconf file. Manually placing an entry in this file does not properly configure
hardware that was not detected by kudzu. If newly installed hardware was not detected, place an
empty file named reconfigSys in the /etc directory, as follows:

touch /etc/reconfigSys

Then, reboot the system. This flag causes the Red Hat system to rerun the powerful anaconda
hardware configuration program that is used during the initial Red Hat installation. Those readers
with a Sun Solaris background are familiar with this technique. It is almost identical to the way a
reconfiguration is forced on a Solaris system. Most systems have some technique for forcing a fresh
probe of the hardware.

37

If the Ethernet adapter is not detected during the operating system installation, by kudzu, or by
anaconda, you can manually load the device driver using the modprobe command described in
Chapter 1, "The Boot Process." After the driver is installed, it must also be properly configured.

Configuring an Ethernet Device Driver

In most cases, the system correctly configures the network device driver without any help from the
system administrator. Most drivers probe the card to discover the correct configuration. Additionally,
the Ethernet drivers expect the adapters to use the manufacturer's default configuration, and if they
do, no configuration changes are needed. But these techniques don't always work. When they don't,
Ethernet adapter configuration parameters can be passed to the kernel through the boot prompt (as
described in Chapter 1) for drivers that are compiled into the kernel. Optional configuration settings
can be passed to loadable module Ethernet drivers using the insmod command. For example, the
insmod command that tells the smc-ultra.o driver to use IRQ 10 and I/O port address 340 is

insmod smc-ultra.o i0=0x340 irg=10

Additionally, most distributions provide tools to simplify setting the hardware configuration of
Ethernet device drivers. Figure 2.1 shows you the Network Configuration tool that Red Hat provides.
In Figure 2.1, we use the tool to configure the TCP/IP software. By selecting the Hardware tab, we

could have used the Network Configuration tool to set the I/O port address and the IRQ for the
Ethernet device driver.

= |Network Configuration

Einemet Device E

Hardware DeviCBSIHostleNS| General Protocols | Hardware Device

You may configure netw

a 2 with physical hardware b Frotocolpe
A

devices can be associa| =

of hardware. E I
” Qeletel
|Nickname !Type

=[TCP/P Sefings____ -

TCP/IP | Hostname | Routing I

You can configure IP address settings for an interface
automatically if your network supports it. For manual

configuration information, contact your Network Administrator c |
or Internet Service Provider. X Cance I

[~ Automatically obtain [P address settings with: |.:ih.::;:. j

Manual IP Address Settings
——| | Address: [172.16.54

Subnet Mask: |255‘255,255.U

Default Gateway Address: |

Pok | X Cancel |

Figure 2.1: Red Hat's Network Configuration tool
It is not necessary to create a custom configuration for the driver if the card uses the manufacturer's
default configuration, or if the driver can detect the correct configuration. Configuration conflicts are

a problem only with older adapters. Manual hardware configuration is needed only in rare
circumstances.

38

Compiling a New Device Driver

An even more rare problem for an Ethernet adapter is a bad or missing device driver. It is possible
to obtain hardware that is so new there is no driver for the hardware incorporated in the Linux
distribution. This, of course, breaks one of the fundamental rules for selecting the correct hardware
for a server: never use hardware that is not listed in the Linux distribution vendor's hardware
compatibility list. Of course, sometimes we do break the rules because we must have the very latest
hardware, or because we do not have the freedom to choose our own hardware.

For a device driver to operate correctly, it must be compiled with the correct libraries for your kernel.
Sometimes, this means downloading the driver source code and compiling it yourself on your
system.

The source code for many Linux Ethernet drivers can be found at http://www.scyld.com/, which also
has complete instructions for compiling each Ethernet driver. Many Ethernet drivers depend on
other modules, such as pci_scan.c, which must also be downloaded. To simplify this,
http://www.scyld.com/ also stores the driver source files in RPM Package Manager (SRPM) format.
The RPM Package Manager is used repeatedly throughout this book as a way to simplify software
installation.

After the adapter hardware and device driver are installed, the Ethernet interface can be used for a
number of different network protocols. It can run NetWare protocols or, as described in Chapter 9,
"File Sharing," it can run Server Message Block (SMB) protocol. Both of these are useful, but the
primary network protocol used on Linux systems is TCP/IP. In the next section, we configure the
Ethernet interface for TCP/IP.

The ifconfig Command

The ifconfig command assigns TCP/IP configuration values to network interfaces. Many values can
be set with this command, but only a few are really needed: the IP address, the network mask, and
the broadcast address. Assume that we have a network that uses the private network address
172.16.0.0 with the subnet mask 255.255.255.0. Further, assume that we need to configure a
system named robin.foobird.org that is assigned the address 172.16.5.4. The ifconfig command to
configure that interface is

ifconfig eth0 172.16.5.4 netmask 255.255.255.0 \
broadcast 172.16.5.255

Note The network address 172.16.0.0, which is used as an example in this book, cannot be used to
route data across the Internet. It is a private network number that is set aside for use on
private networks.

The IP Address

The IP address is a software address specific to TCP/IP. Each device on the network has a unique
address, even if the network is as large as the global Internet. In the previous example, the ifconfig
command assigns the IP address 172.16.5.4 to the Ethernet interface eth0. You must define an IP
address for every interface, either manually or through the use of a DHCP server, because the
TCP/IP network is independent of the underlying hardware, which means that the IP address cannot
be derived from the network hardware.

This approach has advantages and disadvantages, and is different from the address approach used
by some other networks. NetBIOS uses the Ethernet hardware address as its address, and
NetWare IPX incorporates the Ethernet address into the NetWare address. Using the address that

39

is available in the hardware makes these systems simple to configure because the system
administrator does not need to be concerned with or knowledgeable about network addresses. But
these systems are dependent on the underlying Ethernet, making it difficult or impossible to run
them over global networks. TCP/IP is more difficult to configure, but it has the power to run a global
network.

The netmask Argument The IP address includes a network portion that is used to route the
packet through the Internet and a host portion that is used to deliver the packet to a computer when
it reaches the destination network. The netmask argument identifies which bits in the IP address
represent the network, and which bits represent the host. If no netmask (network mask) is defined,
the address is divided according to the old address class rules. In effect, these rules say the
following:

e |f the first byte is less than 128, use the first eight bits for the network and the next 24 bits for
the host.

e |f the value of the first byte is from 128 to 191, use the first 16 bits for the network and the
last 16 bits for the host.

e |f the value of the first byte is from 192 to 223, use the first 24 bits for the network and the
last eight bits for the host.

e Addresses with a first byte that is greater than 223 are not assigned to network hardware
interfaces.

Except for the last one, these rules are used only if you fail to provide a netmask argument. Use
netmask with the ifconfig command to define the address structure you want.

The old address classes did not provide enough flexibility for defining addresses. Three address
classes proved inadequate to handle the huge number of addresses in the Internet and the
incredible diversity of needs of the different networks connecting to the Internet. The solution is
classless IP addresses. Classless addressing treats an IP address as 32 bits that can be divided
between network and host portions in any way. The division of bits is controlled by a bit mask. If a
bit is "on" in the mask (the bit is a one), the corresponding bit in the address is a network bit. If the
bit is "off" (the bit is a zero), the corresponding bit in the address is a host bit. Here is our sample
ifconfig command again:

ifconfig eth0 172.16.5.4 netmask 255.255.255.0 \
broadcast 172.16.5.255

By the old class rules, the address 172.16.5.4 would define host 5.4 on network 172.16. The
netmask argument 255.255.255.0 says that the first 24 bits of the address are the network portion,
and that only the last eight bits are used to define the host. With this mask, the address is
interpreted as host 4 on network 172.16.5.

Address Mask, Subnet Mask, or Network Mask?

These three terms, address mask, subnet mask, and network mask, are used interchangeably to
refer to the same thing—the bit mask that is used to determine the structure of an address. Because
the ifconfig command uses the keyword netmask for the argument that defines the bit mask on the
command line, the ifconfig documentation refers to this value as the network mask. Therefore, the
term network mask is widely used by system administrators.

All IP addresses have an associated bit mask because it is needed to implement classless IP
addresses. If your organization purchased an official block of addresses from an outside agency
such as ARIN, you received an official network number and an address mask to go with it. This

40

address/mask pair defines the total address space available to your organization. Sometimes, an
organization will subdivide its official address space in order to create additional networks within that
address structure. These additional networks are used to simplify management and routing, and are
created by increasing the number of network bits in the address mask. Traditionally, network
administrators call this subnetting, and sometimes they refer to the address mask as a subnet
mask.

From the point of view of the individual network server, it makes no difference. The mask is defined
in the same way on the ifconfig command, regardless of the name it is given—address mask,
subnet mask, and network mask are all the same thing.

Even when the network you're working with uses an IP address that conforms to the class rules,
don't allow the network mask to default to the class value. Always define the network mask on the
command line. Addressing is too important to leave to chance; make sure you're in control of it. For
the same reason, it is useful to define the broadcast address.

The Broadcast Address

The broadcast address is used to send a packet to every host on a network. The standard
broadcast address is composed of the network address and a host address of 255. Given the
ifconfig statement shown previously, the default broadcast address is 172.16.5.255. Using the IP
address of 172.16.5.4 and the netmask of 255.255.255.0 gives a network address of 172.16.5.0.
Add to that the host address of 255 to get 172.16.5.255. So why did | define the broadcast address
instead of letting it default? Because you might be surprised by the default broadcast address.

You can check the configuration of an Ethernet interface by using the ifconfig command with only
the interface name as a command-line argument. This does not change any configuration values; it
displays the values that have already been set. Here is an example:

ifconfig eth0 172.16.5.4 netmask 255.255.255.0

ifconfig ethO

eth0 Link encap:Ethernet HWaddr 00:60:97:90:37:51
inet addr:172.16.5.4 Bcast:172.16.255.255

Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:319 errors:0 dropped:0 overruns:0
TX packets:76 errors:0 dropped:0 overruns:0
Interrupt:3 Base address:0x300

In this example, we configure the interface but do not define the broadcast address, expecting that
the default will be exactly what we want. Instead, the default appears to ignore the netmask
argument, and creates a broadcast address that would be correct if we used the old address class
rules. Be specific. There are several files and scripts involved in setting the network interface
configuration during the boot. Unless you're specific about it, you might not get the configuration you
want.

Configuring the Interface for Every Boot
The configuration values assigned by the ifconfig command do not survive the boot. To configure
the interface every time the system boots, the ifconfig command must be stored in a startup file.

Normally, this does not require any effort on your part. Configuring the network interface is a basic
part of the Linux installation.

41

During installation, Linux detects the network interface; and asks for the address, address mask,
broadcast address, and several other network-related parameters. The installation program stores
these values on the disk, where they are used later by the ifconfig command. Slackware stores the
values in /etc/rc.d/rc.inet1; Caldera, Mandrake, and Red Hat store the values in /etc/
sysconfig/network and /etc/sysconfig/network-scripts/ifctg.interface, where interface is the name of
the network interface, such as ifcfg.eth0. The startup scripts provided by these distributions then
use the values to configure the interface.

However, if you want to manually configure the interface, you could directly configure it by storing
the ifconfig command in the rc.local script. The rc.local script is the last startup script executed, so
anything stored there overrides the configuration done by the system. The following commands
placed in rc.local would configure the network interface on robin in exactly the manner we wanted:

ifconfig eth0 172.16.5.4 netmask 255.255.255.0 \
broadcast 172.16.5.255

The ifconfig command provides the configuration described previously.

Many administrators don't edit any of the boot script files directly, nor do they manually configure the
interface. Instead, they use a network configuration tool to correct any problems with the network
interface configuration. Configuration tools are simple to use, but they are different on every Linux
distribution, and they frequently change between releases of the same distribution. The ifconfig
command is consistent. It works on every Linux distribution and every type of Unix.

Network Interface Configuration Tools

Most Linux distributions offer menu-driven or graphical-configuration tools for the network
interface. Every distribution is different, but they all provide some tool. In this section, we used the
Network Configuration tool provided with Red Hat 7.2.

On a Red Hat 7.2 system, the network interface is configured through the Network Configuration
tool found on the Programs — System menu. The Network Configuration tool presents a window
with four tabs:

Hardware Select the Hardware tab to add, remove, or configure a network adapter.
To remove an adapter, highlight the adapter in the list presented on this tab, and
click the button labeled Delete. To add an adapter, click the Add button and select
the hardware type, which is either Ethernet, Modem, ISDN, or token ring. The
Network Adapter Configuration window then appears. It has input boxes that accept
an IRQ, the adapter memory address, the I/O port address, and the DMA request
number. To configure an adapter, select the adapter from the list and click Edit. The
same Network Adapter Configuration window used to add an adapter appears, giving
you the chance to change the various hardware configuration values.

Devices Select the Devices tab to add, remove or configure a Linux network device.
To remove a device, highlight the device in the list presented on this tab, and click
the button labeled Delete. To add a device, either copy an existing device and edit
the result, or click Add and select the device type. A device configuration window
appropriate to the device type appears. For example, the Ethernet Device window
has three tabs:

General Use this tab to enter the device name, for example, ethO,
and to select whether or not the device should be started at boot time.

42

Protocols Use this tab to add, delete, or configure the network
protocol associated with the device. TCP/IP is configured through this
tab.

Hardware Device Use this tab to associate the device to a specific
hardware adapter. For example, eth0 could be associated with the
SMC Ultra Ethernet adapter.

Hosts Select the Hosts tab to make entries in the /etc/hosts table. The hosts file is
covered in Chapter 4, "Linux Name Services."

DNS Select the DNS tab to define the Domain Name System configuration for a
DNS client. Use the tab to set the system's hostname and domain name, and to
provide the addresses of the name servers the system should use. DNS server
configuration is covered in Chapter 4.

To use the Red Hat Network Configuration tool to enter the same network interface configuration
that we created earlier with the ifconfig command; select Programs from the Start menu, System
from the Programs menu, and Network Configuration from the System menu. In the Network
Configuration window, select the Devices tab. On the Devices tab, highlight the eth0 device, and
click Edit. In the Ethernet Device window, select the Protocols tab. On the Protocols tab, highlight
TCP/IP, and click Edit. The result of this "point-and-click—fest" is shown in Figure 2.1.

The interface in the figure has already been configured. The fields and values are self-explanatory.
Less the broadcast address, this is essentially the same configuration entered previously using the
ifconfig command. Whether or not this is an easier way to enter the configuration values is a matter
of personal opinion. In all Linux distributions, the designers of the configuration tools make some
decisions about what is needed, where it should be defined, and how the interface should look. One
of the great things about Linux is that if you disagree with the tool design, or if you want to do
something differently, you can go directly to the commands that the tools really use to get the job
done.

So far in this chapter, we have configured TCP/IP only on an Ethernet interface. This might lead you
to believe that a Linux system requires TCP/IP and an Ethernet interface in order to communicate
with other systems. That's not true. A Linux system can communicate without TCP/ IP, and it can be
configured to run TCP/IP without an Ethernet interface. The next section looks at both capabilities.

Note Clearly, you want to use TCP/IP, and you want to use your Ethernet interface. The
features examined in the next section do not replace TCP/IP and Ethernet. Instead,
they are additional capabilities that permit you to use the computer's serial interface in
ways that would not be possible on some other network server systems.

The Serial Interface

Most PC hardware comes with two serial ports: a nine—pin connector or the traditional 25-pin
RS-232 connector. In both cases, these connectors provide all of the signals needed to connect a
terminal or a modem to the serial ports.

Figure 2.2 shows the RS-232 interface pin-out for the full 25—-pin connector. The right side of the

figure illustrates the electrical handshake that takes place when a PC communicates with a modem
by showing the pins that are actually used during an exchange of data. In telecommunications talk,

43

the modem is called "data communication equipment" (DCE), and the PC is called "data terminal
equipment" (DTE). The figure shows the exchange of signals between the DTE and the DCE.

RTS

— O™
- o—
— O
— N —0
F— N—O
— 0w o
— O w
- OO0o0o

N

Pin 1— —Pin 13 D \ D

T

N\

|
A
! D <
. ™\ Rp

1 FG Frame Ground 7 SG Signal Ground
2 TD Transmit Data 8 DCD Data Carrier Detect
3 RD Receive Data 15 TC Transmit Clock
4 RTS Request To Send 17 RC Receive Clock
5 CTS Clear To Send 20 DTR Data Terminal Ready
6 DSR Data Set Ready 22 Rl Ring Indicator

Figure 2.2: The RS-232 hardware handshake

Only two of the interface pins are used to move data. Transmit Data (TD) is used to send data out of
the computer, and Receive Data (RD) is used to read data into the computer. These are pins 2 and
3, respectively, on the RS-232 interface, as shown in the figure. A modem is able to directly
connect to the computer because it reads data from the TD pin that the computer writes to, and
writes data to the RD pin that the computer reads from.

A few other interface pins are used to set up and control the serial connection:

e Data Terminal Ready (DTR; pin 20) is used by the computer to signal that it is ready for the
connection.

e Data Set Ready (DSR; pin 6) is used by the modem to signal that it is ready to connect.

e Data Carrier Detect (DCD; pin 8) is used by the modem to signal that it has a good
connection to the computer at the remote end of the telephone line.

e Request To Send (RTS; pin 4) is used by the computer to indicate when it is ready to accept
and send data.

e Clear To Send (CTS; pin 5) is used by the modem to indicate when it is ready to accept
data.

Connecting a modem and a computer is straightforward because they use the interface pins in
complementary ways. However, you'll have a conflict if you attempt to connect two computers
together because they both want to use the same pins in the same way. For example, both will try
to write to TD and read from RD. If you want to make a direct connection between two computers,
buy a null-modem cable, also called a direct connect cable or a cross—over cable. The null-modem
cable simply crosses some wires so that the two computers can communicate.

Connecting through the Serial Interface
Regardless of whether data comes through a modem or from a directly attached terminal, it is

handled by the Linux system in the same way. Three programs handle the connection: init, getty,
and login.

44

init is responsible for attaching the getty program to a serial port and for restarting the getty program
whenever it terminates. You saw an example of this in the description of the inittab file in Chapter 1.

getty monitors the serial port. When getty detects a carrier signal on the port, it displays the login:
prompt. It reads in the user's name and uses it to invoke login. For example if getty received norman
in response to the login prompt, it would issue the command login norman.

login then prompts the user for a password, and checks the password using the appropriate
authentication scheme. One of a number of schemes can be selected during the initial installation,
as described in Appendix A, "Installing Linux." For example, the password might be checked against
the encrypted password in the /etc/passwd or /etc/shadow file. The Linux user is given a few tries to
enter the correct password. After the password is verified as correct, the UID and GID associated
with the username are assigned to the tty device, and the following environment variables are set:

HOME This variable defines the user's home directory. login takes the value from
the / etc/passwd file.

SHELL This variable defines the user's login shell. login takes the value from the
/etc/ passwd file.

LOGNAME This variable defines the name by which the user is identified in the
system log. login uses the username passed to it by getty.

PATH This variable defines the execution path. login defaults to a path of
/usr/local/bin:/ bin:/usr/bin.

MAIL This variable defines the path to the user's mail file. login uses the path
/var/mail/spool/username, where username is the name passed to login by getty.

TERM This variable identifies the terminal type. login keeps the TERM environment
variable set by getty. The value of TERM will be a valid terminal type from the
/etc/termcap file.

After these variables are set, login starts the shell identified in the user's /etc/passwd entry. The
shell processes the initialization files that it finds in the user's home directory. These initialization
files, such as .bash_profile and .bashrc for the bash shell, permit users to set their own environment
variables; for example, to define a more complete execution path. Finally, the shell issues the
command prompt to the user, and the user has access to the system.

All of these processes and services happen automatically and require almost no configuration on
your part beyond creating a user account for the user and configuring the modem to answer the
telephone. The basic Linux system comes with the capability to support terminal connections
through serial ports. If you have ever configured dial-up services on other PC operating systems,
you'll appreciate what an advantage this is.

Of course, even on a Linux system, things don't always work smoothly. Linux comes with some
terminal-emulation programs such as seyon and minicom that can be used to troubleshoot modems
and serial links.

Note See Chapter 13, "Troubleshooting," for information on troubleshooting with minicom.

The support for serial communications that is built into Linux is the foundation for running TCP/ IP

45

over a serial line. The next section covers just that.

Running TCP/IP Over a Serial Port

Of much greater utility than the capability to connect a terminal to your server's serial port is the
capability to run TCP/IP over a serial port. Doing so allows you to run TCP/IP over a telephone line
with a modem. This is, of course, the way that most people connect to the Internet through a local
ISP. But it is also a way for you to provide connectivity into the Internet or your enterprise network
for a remote field office or for users working at home.

Point-to—Point Protocol (PPP) provides the framing mechanism for sending IP datagrams over a
telephone line. PPP uses a three-layered architecture to accomplish this:

Data Link layer PPP uses a High-Level Data Link Control (HDLC) protocol to
provide reliable data delivery over any type of serial line.

Link Control layer A Link Control Protocol (LCP) was specifically developed for
PPP. It opens and closes connections, monitors link quality, and negotiates the link
configuration parameters.

Network Control layer PPP is designed to carry a wide variety of network
protocols. Protocols in this layer provide the control information that is necessary to
customize the PPP link for the type of network traffic it is carrying. The network
control protocol for TCP/IP is the Internet Protocol Control Protocol (IPCP).

Properly configuring a PPP service requires that all of these layers are correctly installed as well,
and that the serial port and modem over which the traffic passes are properly configured. The
remainder of this chapter looks at how these things are done on a Linux system.

Installing PPP

The layers of the Point-to—Point Protocol are implemented in Linux as a combination of kernel
drivers and a PPP daemon (pppd). The HDLC Data Link layer protocol is installed as a kernel
module, as are the Physical layer protocols for the serial devices upon which PPP depends.

The serial device drivers are usually compiled into the Linux kernel. Therefore, an external modem
can be attached to a serial port without installing any additional device drivers. An internal modem,
however, may require a special device driver. The Linux hardware detection software should detect
the internal modem during the initial operating system installation or the first time the system is
rebooted after a new internal modem is installed. Figure 2.3 shows kudzu detecting a newly
installed internal modem.

46

root@rodent.~ [FEE]
File Edit Seftings Help
Hardeare Discovery Utility 0.99.23 (C) 2001 Red Hat,

1 Harduware Added |

The following modem has been added to your system:
Rockuwell International|Riptide HCF 56k PCI Modem

You can choose to:

1) Configure the device,

2) Ignore the device, No configuration will be added, but you
will not be prompted if the device is detected on subseguent

reboots,

3) Do nothing, No configuration will be added, and the device
will show up as new if it is detected on subsequent reboots,

e

<F2> Configure / Unconfigure ALl | <F3> Ignore / Keep A1l | <F4> Cancel

Figure 2.3: kudzu installing a modem driver

Selecting the Configure button installs the device driver module that provides the physical layer
services for this modem. kudzu is a Red Hat tool, but all Linux distributions have some way to
detect newly installed hardware.

Although the Physical layer and Data Link layer portions of PPP are provided by the kernel, the Link
Control layer and the Network Control layer are provided by the PPP daemon. Thus, the lower
layers of PPP are implemented as kernel modules, and the upper layers are implemented as a
daemon process. In order for PPP to function, all of these components must be properly installed.

The PPP Kernel Module

Chapter 1 showed the kernel messages that are displayed when the serial drivers are installed.
Similarly, when PPP is compiled into the kernel, messages about PPP are displayed during startup,
as in this Caldera example:

$ dmesg | grep PPP

PPP: version 2.2.0 (dynamic channel allocation)

PPP Dynamic channel allocation code copyright 1995 Caldera, Inc.
PPP line discipline registered.

If PPP is installed by your kernel, you're ready to run the PPP daemon. On most systems, however,
the kernel component of PPP is not compiled in the kernel. If it isn't, you must install the loadable
module manually. To do so, use the commands covered in Chapter 1, and refer to the examples of
installing an Ethernet driver earlier in this chapter. The modprobe command could be used to install
the PPP kernel modules. For example, modprobe ppp_async would load the ppp_ async.o module,
the ppp_generic.o modules upon which it depends, and the slhc.o module upon which ppp_generic
depends. This would provide the kernel modules required by PPP.

As explained in Chapter 1, different Linux distributions use different tools for maintaining the

modules list. All, however, provide the modprobe commands for you to specify that PPP modules
should be included in the kernel at startup.

47

The PPP Daemon

The PPP daemon is started by the pppd command. The command can be entered at the shell
prompt, and it often is on client computers. On server systems, the command is usually stored in a
shell script to run at boot time for dedicated PPP connections or on demand for dial-up
connections. Red Hat systems provide the /etc/sysconfig/network—scripts/ifup—ppp script to start the
PPP daemon. However, the script is not edited directly. The values that control the ifup—ppp script
are found in the ifcfg—ppp0 file in the same directory. Values can be placed in the ifcfg—ppp0 file
through the same Network Configuration tool used earlier in this chapter for the Ethernet
configuration.

Some administrators find it more convenient to create a custom pppd configuration using the
standard pppd commands and configuration files. Many administrators find it just as simple as using
a graphical configuration tool, and they like the fact that the commands and files are the same on all
Linux distributions. The syntax of the pppd command is

pppd [tty-device] [speed] [options]

e {ty—device is the name of the serial device over which the PPP protocol will operate. If no
device is specified, the controlling terminal is the device that is used. As you'll see later, the
ability to use the controlling terminal is very useful when creating a dial-up PPP server.

e speed is the transmission speed of the port, written in bits per second.

e options are just that—command-line options.

There are an enormous number of pppd options. In addition to specifying options on the command
line, there are three different files available to store these options:

e /etc/ppp/options is used to store system-wide PPP options. This file is created and
maintained by the system administrator.

e .ppprc, which each user can create and store in their home directory, is used to set personal
PPP options.

e /etc/ppp/options.device sets PPP options for a specific serial device. For example,
options.ttyS0 sets PPP options for /dev/ttyS0.

The files are read in the order listed previously, which means that options in the last file read can
override options in the first file read. Thus, the order of precedence for options from all of these
sources is as follows:

1. Options defined on the command line have the highest priority.

2. Options defined in the options.device file have the next priority.

3. Options defined by the user in the .ppprc file have the next priority.
4. Options from the /etc/ppp/options file have the lowest priority.

Looking at this list raises the concern that the system-wide options defined in the /etc/ppp/options
file can be overridden by the user with the .ppprc file. Don't be overly concerned. Items that relate to
system security cannot be overridden by the user. Additionally, you can always specify important
options in the options.device file, which has a higher priority.

Note There are more than 70 options available for the pppd command. If you want to read
about all of them, see Using and Managing PPP, by Andrew Sun (O'Reilly, 1999).

The following sections cover just those pppd options that you are most likely to use. By selecting the

48

correct options, you can configure pppd for a dedicated line or for a dial-up line as either a PPP
server or as a client.

Configuring a PPP Server

A Linux system can be used as a PPP server for both dedicated connections and dial-up
connections. Configuring pppd for a dedicated line is the simplest configuration, and it provides a
good example of the structure of the pppd command. A single line inserted in the rc.local startup file
is all that is necessary to configure a PPP server for a dedicated line:

pppd /dev/ttyS1l 115700 crtscts

This command starts the PPP daemon, and attaches it to the serial device ttyS1. It sets the line
speed for this dedicated line to 115700bps.

One option, crtscts, is also selected in this command. crtscts turns on Request To Send (RTS) and
Clear To Send (CTS) hardware flow control. Hardware flow control uses the RTS and CTS pins in
the serial interface to control the flow of data.

Always use hardware flow control with PPP. The alternative, software flow control, sends special
characters in the data stream to control the flow of data. Software flow control, which is also called
in—band flow control, at best wastes bandwidth doing something that could be done with hardware,
and at worst sends control characters that can become confused with the actual data.

The pppd command for a client connected to a dedicated link would look the same as the preceding
one, except that it would also have the defaultroute option:

pppd /dev/ttySl 115700 crtscts defaultroute

defaultroute creates a default route that uses the remote PPP server as the default router. If a
default route is already defined, this option is ignored. The defaultroute option is not used on the
server end of the dedicated link because the server is the client's router, and therefore must already
have another route to the outside world. defaultroute is used when the PPP link is the only link to
the outside world, which is sometimes the case. This sample pppd command could be used to
connect a small branch office into the enterprise network.

PPP configuration for a dedicated line is simple because there are always the same two systems
connected to the line—one at each end, a single server and a single client. The line is dedicated to
this single purpose and therefore can be configured at startup and left unchanged for as long as the
system is running. There is no need to configure the server to handle multiple clients.

However, PPP clients and server are not always connected to dedicated serial lines. It is more

common for them to be connected via dial-up serial lines, and configuring a server for dial-up lines
is more complex than configuring it for dedicated lines.

PPP Dial-Up Server Configuration

There are three techniques for creating a dial-up PPP server. The key for two of them is the /etc/
passwd file. One technique is to create a shell script, often named /etc/ppp/ppplogin, and use it as
the login shell for dial-up PPP users, as in this example:

49

jane:x:522:100:Jane Resnick:/tmp:/etc/ppp/ppplogin

This looks exactly like any other /etc/passwd entry, and functions in exactly the same way. The PPP
user is prompted for a username—ijane in this case—and a password. After the user successfully
logs in, she is assigned the home directory /tmp. The /tmp directory is commonly used for PPP
users. The system then starts the user's login shell. In this case, the login shell is /etc/ppp/ ppplogin,
which is actually a shell script that starts the PPP server. Here is a sample ppplogin script:

#!/bin/sh

mesg -n

stty —echo

exec /sbin/pppd crtscts modem passive auth

Your ppplogin script will not necessarily look like this example; you create your own ppplogin script.
The mesg and stty commands are primarily to show you that you can put whatever you think is
necessary in the ppplogin script. The mesg —n line prevents users from sending messages to this
terminal with programs such as talk and write. Clearly, you don't want extraneous data being sent
over the PPP connection.

The stty —echo command turns off character echo. When echo is on, the characters typed by the
remote user are echoed back to the remote computer by the local computer. This was used on old
Teletype terminals so that the user could monitor the quality of the dial-up line. If the characters
were garbled as they appeared on the screen, the user knew that they should disconnect and redial
to get a clear line. Of course, those days are long gone. Echoing characters across a PPP line is
never used.

The real purpose of the script is, of course, to start the PPP daemon, and that is exactly what the
last line does. There are definite differences between the pppd command that you execute here and
the one that you saw in the previous section for dedicated lines. First, this command does not
specify a device name. That's intentional. When pppd is started without a device name, it attaches
to the controlling terminal, and runs in background mode. The controlling terminal is the terminal
that login was servicing when it launched the ppplogin script. This permits you to use the same
ppplogin script for every serial port. Likewise, this pppd command does not specify a line speed. In
this case, the line speed is taken from the configuration of the serial port, again allowing you to use
the same script for every serial port.

The remaining four items on the pppd command line are options:

e The crtscts option turns on hardware flow control, as discussed earlier.

e The modem option tells the PPP daemon to monitor the modem's Data Carrier Detect (DCD)
indicator. By monitoring DCD, the local system can tell if the remote system drops the line.
This is useful because it is not always possible for the remote system to gracefully close the
connection.

e The passive option tells pppd to wait until it receives a valid Link Control Protocol (LCP)
packet from the remote system. Normally, the PPP daemon attempts to initiate a connection
by sending the appropriate LCP packets. If it doesn't receive a proper reply from the remote
system, it drops the connection. Using passive gives the remote system time to initiate its
own PPP daemon. With passive set, pppd holds the line open until the remote system sends
an LCP packet.

e The auth option requires the remote system to authenticate itself. This is not the username
and password authentication required by login, and it does not replace login security. PPP
security is additional security designed to authenticate the user and the computer at the
other end of the PPP connection.

50

An alternative to the ppplogin script is to use pppd as a login shell for dial-in PPP users. In this
case, a modified /etc/passwd entry might contain

ed:wJxX.1PuPzg:101:100:Ed Oz:/etc/ppp:/usr/sbin/pppd

Here, the home directory is /etc/ppp and the login shell is the full path of the pppd program. When
the server is started in this manner, server options are generally placed in the /etc/ppp/.ppprc file.

The final technique for running PPP as a server is to allow the user to start the server from the shell
prompt. To do this, pppd must be installed setuid root, which is not the default installation. After
pppd is setuid root, a user with a standard login account can log in and then issue the following
command:

$ pppd proxyarp

This command starts the PPP daemon. After the client is authenticated, a proxy ARP entry for the
client is placed in the server's ARP table so that the client appears to other systems to be located on
the local network.

Of these three approaches, | prefer to create a shell script that is invoked by login as the user's login
shell. With this approach, | don't have to install pppd setuid root. | don't have to place the burden of
running pppd on the user. And | get all of the power of the pppd command plus all of the power of a
shell script.

PPP Security

PPP has two authentication protocols: Password Authentication Protocol (PAP) and Challenge
Handshake Authentication Protocol (CHAP). PAP is a simple password security system. CHAP is a
more advanced system that uses encrypted strings and secret keys for authentication.
Authentication helps to prevent intruders from accessing your server through its serial ports.

PAP Security

Password Authentication Protocol is vulnerable to all of the attacks of any reusable password
system. PAP is better than no security, but not by much. PAP sends the PPP the client name and
the password as clear text at the beginning of the connection setup. After this initial authentication,
the client is not reauthenticated. Although spying on a serial line is much more difficult than spying
on an Ethernet, PAP clear-text passwords can still be stolen by someone spying on your network
traffic. Additionally, an established session can be hijacked by a system spoofing addresses.

Because of these weaknesses, use PAP only when you must—for example, if you have to support a
client that can only provide PAP authentication. Unfortunately, PAP is still very widely used, and
may be your only choice.

To configure PAP, make appropriate password entries in the /etc/ppp/pap-secrets file. A
pap-secrets file might contain the following:

Listing 2.3: A Sample pap-secrets File

Secrets for authentication using PAP

client server secret IP addresses
Crow wren Wherearethestrong? 172.16.5.5
wren crow Whoarethetrusted? 172.16.5.1

51

Given the configuration shown in Listing 2.3, crow sends the PPP client name crow and the
password Wherearethestrong? when asked for authentication by wren. wren sends the client name
wren and the password Whoarethetrusted? when asked for authentication by crow. Both systems
have the same entries in their pap-secrets files. These two entries provide authentication for both
ends of the PPP connection.

The IP address field at the end of each entry defines the address from which the client name and
the password are valid. Thus, only the host at address 172.16.5.5 can use the client name crow and
the password Wherearethestrong?. Even though this is a valid client name and password
combination, if it comes from any other address, it will be rejected.

The auth option on the pppd command line forces the PPP daemon to require authentication. If it
must, it will fall back to PAP, but first it will try to use CHAP.

CHAP Security

Challenge Handshake Authentication Protocol is the default authentication protocol used by PPP.
CHAP is not vulnerable to the security attacks that threaten PAP. In fact, a PPP connection that
uses CHAP is probably more secure than your local Ethernet connection. For one, CHAP does not
send clear-text passwords. Instead, CHAP sends a string of characters called a challenge string.
The system seeking authentication encrypts the challenge string with a secret key from the
/etc/ppp/chap-secrets file, and returns the encrypted string back to the servers. The secret key
never travels across the network and therefore cannot be read off the network by a snooper.

Additionally, CHAP repeatedly reauthenticates the systems. Even if a thief steals the connection
through address spoofing, he cannot keep the connection for long without responding correctly to
the CHAP challenge.

CHAP is configured through the chap-secrets file. Entries in the chap-secrets file contain the
following fields:

respondent This is the name of the computer that will respond to the CHAP
challenge. Most documentation calls this the "client" field. However, PPP clients
require authentication from servers in the same way that servers require
authentication from clients. The first field defines the system that must respond to the
challenge in order to be authenticated.

challenger This is the name of the system that will issue the CHAP challenge. Most
documentation calls this the "server" field, but as noted earlier, servers are not the
only systems that issue CHAP challenges. The second field contains the name of the
computer that challenges the other system to authenticate itself.

secret This is the secret key that is used to encrypt and decrypt the challenge string.
The challenger sends a challenge string to the system that is being authenticated.
The respondent encrypts that string using the secret key, and sends the encrypted
string back to the challenger. Then, the challenger decrypts the string with the secret
key. If the decrypted string matches the original challenge string, the responding
system is authenticated. Using this system, the secret key never travels across the
network.

address This is an address written either as a numeric |IP address or as a

52

hostname. If an address is defined, the respondent must use the specified IP
address. Even if a system responds with the correct secret key, it will not be
authenticated unless it is also the host at the correct IP address.

Listing 2.4 shows the entries that a chap-secrets file on robin might contain:

Listing 2.4: A Sample chap-secrets File

cat chap-secrets
Secrets for authentication using CHAP

client server secret IP addresses
robin wren Peopledon'tknowyou robin.foobirds.org
wren robin ,andtrustisajoke. wren.foobirds.org

When robin is challenged by wren, it uses the secret key Peopledon'tknowyou to encrypt the
challenge string. When robin challenges wren, it expects wren to use the secret key
,andtrustisajoke.. It is very common for entries to come in pairs like this. After all, there are two ends
to a PPP connection, and both systems require authentication to create a secure link. wren
challenges robin, and robin challenges wren. When both computers are sure they are
communicating with the correct remote system, the link is established. For this to work, of course,
wren needs the same entries in its chap—secrets file.

For security reasons, it is very important to protect the /etc/ppp directory. Only the root user should
be able to read or write the chap-secrets file or the pap-secrets file. Otherwise, the secret keys
may be compromised. Additionally, only the root user should be allowed to write the options file.
Otherwise, users would be able to define system-wide PPP options.

Finally, only the root user should be able to write to the script files ip—up and ip—down. pppd runs
the ip—up script as soon as it makes the PPP connection, and it runs the ip—down script after it
closes the connection. These scripts can perform privileged functions relating to the network
connection. Thus, allowing anyone but the root user to modify these scripts compromises the
security of your system.

PPP Client Configuration

Configuring a PPP client is as complex as configuring a server. The primary reason for this
complexity is the fact that the client initiates the PPP connection. To do that, the client must be able
to dial the server's phone number and perform any necessary login procedures. A pppd command
for a client system might look like this:

pppd /dev/cual 115700 connect "chat -v dial-server" \
crtscts modem defaultroute

You have seen all but one of these options before. In fact, this command is almost identical to the
PPP client configuration we created earlier for the dedicated link except for the connect option. The
connect option identifies the command used to set up the serial-line connection. In the sample, the
command is enclosed in quotes because it contains whitespace characters. The complete
command is chat —v dial-server.

The chat program is used to communicate with devices, such as modems, attached to a serial port.
The —v option causes chat to log debugging information through syslogd. In the example,

53

dial-server is the name of the script file that chat uses to control its interaction with the modem and
the remote server.

chat Scripts

A chat script defines the steps that are necessary to successfully connect to a remote server. The
script is a list of expect/send pairs. Each pair consists of a string that the local system expects to
receive, separated by whitespace from the response that it will send when the expected string is
received. A sample script might contain the following:

Listing 2.5: A Sample chat Script

$ cat dial-server

' ' ATZ

OK ATDT301-555-1234
CONNECT \d\d\r

gin: sophie

ord: TOga!toGA

The script in Listing 2.5 contains instructions for the modem as well as the login for the remote
server. The first line, expects nothing, which is what the empty string (' ') means, and sends a reset
command to the modem. (ATZ is the standard Hayes reset command.) Next, the script expects the
modem to send the string OK, and it responds with a Hayes dial command (ATDT). When the
sample modem successfully connects to the remote modem, it displays the message CONNECT. In
response to this, the script waits two seconds (\d\d) and then sends a carriage-return (\r).

Most systems don't really require anything like this, but it provides an example of a chat escape
sequence. chat provides several escape sequences that can be used in the expect string or the
response string. Table 2.1 lists these sequences and their meanings.

Table 2.1: Escape Sequences and Their Meanings

Escape Sequence Meaning

\b The backspace character

\C Don't send a terminating carriage—return; used at the end of a send string

\d Delay for one second

\K A line break

\n A newline character

\N An ASCII null character

\p Pause for 1/10 of a second

\q Send the string, but don't record it in the log; used at the end of a send
string

\r A carriage-return

\s The space character

\t The tab character

\\ The backslash

\ddd The ASCII character with the octal value ddd (for example, \177is the
DEL character)

Acharacter A control character (for example, *Gis a Ctrl+G)

54

The last two lines of the sample script are the remote login. The script expects gin:, which are the
last four characters of the login: prompt, and responds with the username sophie. Next, ord:, which
are the last four characters of the Password: prompt is expected, and TOga!toGA is sent as a
response. Once the login is complete, the remote server runs the ppplogin script, and the PPP
connection is up and running.

Note chat is a very elementary scripting language. It is popular for setting up PPP
connections because most PPP connections do not require a complex script. If
yours does, you may need to use a more powerful scripting language. Linux
provides both dip and expect. To read more about dip, see TCP/IP Network
Administration, by Craig Hunt (O'Reilly, 2002). To read more about expect, see
Exploring Expect, by Don Libes (O'Reilly, 1997).

Using an X Tool to Configure a PPP Client

So far, we have configured PPP by editing the configuration files with a text editor. It is also possible
to configure a PPP client by using a graphical tool running under X Windows. Every Linux
distribution offers at least one tool for this purpose, and a new set of tools is released with every
new version of Linux. Red Hat 7.2 alone offers three easily accessible tools to do this one task.
Perhaps the most accessible tool is the one that is launched by double-clicking the Dialup
Configuration icon located on the GNOME desktop. This starts an installation wizard.

The first time Dialup Configuration runs, it automatically detects the modem attached to the system,
if none has been configured. It then moves on to configuring a dial-up connection for the modem,
asking for the phone number and then the user name and password. Finally, in a window labeled
Other Options appears, in which you are encouraged to select Normal ISP from a drop—down menu.
Normal ISP sets the normal defaults used for a PPP connection. These default values can be
adjusted later.

Subsequent runs of Dialup Configuration displays a window labeled Internet Connections. This
window contains two tabs: Accounts and Modems. Select the Accounts tab to add new dial-up
scripts, delete old ones, or edit the dial-up and PPP characteristics of an existing script. Select
Modems to add a new modem, delete an existing modem, or edit the characteristics of an existing
modem. Figure 2.4 shows the Internet Connections window and the Edit Internet Connections
window that appears when a current connection in the Internet Connections window is highlighted
and the Edit button is clicked.

55

= |Internet Connections [EEET

Accounts ' Iodems |

Account Mame|Phone NMumber |5tatus

Main-Office 301 555-1234 Not connected Edit._.

I

= | Edit Internet Connection x|

Account Info Advanced

hModem device hame: Default Modem

4

[Let PPP do all authentication

[~ Begin connection when computer is turned on
[« Let user start and stop connection

[«¢ Make this connection the default route

[« Configure name resolution automatically

[T Restart if connection dies

[~ Bring link up and down automatically

haximum idle time |Ei[||]

First DNS Server (Optional) | 1 1 |

Second DNS Server (Optional) | 1 1 |

ok | of Apply l X Close | 2 Help |

Figure 2.4: The Internet Connections window

The Edit Internet Connections window has two tabs. The Account Info tab defines the username,
password, and telephone number used to establish the connection. This tab also contains the
Account Name field. The Account Name is any arbitrary label that identifies this connection to the
user. In the figure, we used the account name Main-Office because this account is used to connect

a branch office into the main office.

The second tab is label Advanced. The Advanced tab is used to set various PPP parameters. The

following actions set configuration values through this tab:

e Select the modem used for this connection from the drop—down menu.

e Use the Let PPP Do All Authentication check box to set the PPP auth parameter described
earlier.

e Use the Make This Connection The Default Route check box to set the PPP defaultroute
parameter described earlier.

¢ Use the Begin Connection When the Computer Is Turned On check box to start the PPP
connection at boot time. Use this setting when the client always connects to the same server
and when the client should be "always on." This is the setting you would probably use for a
branch office connecting into headquarters. Two other settings provide alternative ways to
control when the connection is made.

e Use the Let The User Start The Connection check box to permit the user to manually make

56

the connection before using any TCP/IP services that depend on the connection. Use this
setting on clients that use multiple servers. To make the connection, the user opens the
Internet Connections window, highlights the desired connection, and clicks the Debug (or
Dial) button. There is one final way that connections are made.

e Use the Bring Link Up And Down Automatically check box to allow applications to make the
connection on demand. When this check box is selected, launching the Mozilla browser
causes the client to dial the server. The connection is brought down when it is idle for the
amount of time specified in the Maximum Idle Time box.

e The tab offers two techniques for configuring name service. Check the Configure Name
Resolution Automatically box if the configuration is provided externally. Enter the IP
addresses of two DNS servers in the boxes at the bottom of the tab if the DNS configuration
is being provided here.

Deciding whether or not to use tools such as Dialup Configuration to set up a PPP client is mostly a
matter of personal taste. Some people prefer the graphic interface, whereas others do not. Either
way, the end result is the same, and the information provided is the same as well.

In Sum

A network server requires a network interface. On most servers, including Linux systems, this is an
Ethernet interface. However, Linux systems also support a full range of network services through
the serial port. Connect a terminal or modem to a Linux serial port, and it will support user logins.
Run the Point-to—-Point Protocol (PPP), and the serial port can be used to provide TCP/IP
connections.

The same flexibility that Linux shows in the types of network connections it provides is seen in the

full range of network services offered by a Linux system. In the next chapter, we start configuring
some of these services with the basic Internet services: telnet and ftp.

57

Part Il: Internet Server Configuration
Chapter List

Chapter 3: Login Services

Chapter 4: Linux Name Services
Chapter 5: Configuring a Mail Server
Chapter 6: The Apache Web Server
Chapter 7: Network Gateway Services

Part Overview

Featuring:

e Configuring inetd and xinetd

e Managing user accounts

¢ Configuring the ftpaccess file

e Understanding the Domain Name System (DNS)
e Configuring the BIND stub resolver and the Lightweight Resolver
e Creating a DNS server with BIND

e Managing a name server with ndc and rndc

e Understanding the sendmail.cf file

e Configuring sendmail with m4

e Configuring Apache with the httpd.conf file

¢ Configuring SSL and web server access controls
e Understanding Apache log files

¢ Configuring routing with route, routed, and gated
e Configuring a network address translation server

58

Chapter 3: Login Services

Overview

At this point, Linux is installed and the network interface is running. Now we begin configuring
network services for the users. This chapter covers two traditional services that have been part of
TCP/IP networking since the beginning: Telnet and FTP.

The Telnet daemon (telnetd) allows users to log in and run any available applications directly on a
Linux server. Some would say this turns the Linux system into a compute server because the
remote system has access to the computer power of the server. However, the term compute server
is confusing because most people think it relates solely to scientific, number—crunching applications.
Others would say that remote login access turns the Linux server into a terminal server because the
remote systems act like terminals connected to the server. However, this terminology is also
confusing because many people think of the hardware adapters that increase the number of
terminals that can connect to a server when they hear the words terminal server. In this book, we
say that services such as Telnet turn the Linux server into a network login server because it allows
a user to log in and run applications directly on the Linux system. Telnet extends to the TCP/IP
network the same login service that was described for serial ports in Chapter 2, "The Network
Interface.”

The other service covered in this chapter is the File Transfer Protocol (FTP). It allows users to
transfer files to and from the server. Like Telnet, FTP requires a user to log in before using the
service.

Telnet and FTP services are usually installed during the initial Linux installation. The system
administrator then needs to ensure the following:

e The server daemons are started when they are needed
e The users have valid accounts to log in to the servers

Properly performing both of these tasks to configure network login services is the topic of this
chapter.

FTP requires the two configuration steps described previously, but it can require additional
configuration in order to provide special services, such as anonymous FTP. (Anonymous FTP
allows people who don't have a valid user account to log in to the system.) This chapter covers the
configuration of optional FTP services with examples drawn from Red Hat Linux.

Note Security issues surround both Telnet and FTP. See Chapter 12, "Security," for ways
to secure these services.

The chapter begins by looking at how telnetd, ftpd, and various other network services are started
when they are needed. Two techniques for starting services on—demand are examined: the
Extended Internet Services daemon (xinetd) used by Red Hat and the Internet Services daemon
(inetd) used by several other Linux distributions. We start with the fundamentals of why and how
services are started on-demand.

59

Starting Services On-Demand

Network services are started in two ways: at startup by a boot script or on—-demand. Chapter 1, "The
Boot Process," discusses scripts and tools that are used to control which services are started at
boot time. Listing 1.6 shows the large number of boot scripts used to start services, many of which
are easily identified by name as starting network services.

Despite the large number of services started by the boot scripts, many network services are started
on—-demand by inetd, or alternatively by xinetd. Network services that are started at boot time
continue to run, whether or not they are needed, but inetd and xinetd start services only when they
are actually needed.

Each startup technique has its own advantages. Starting services on-demand saves the resources
that are used when an unneeded service is left running. On the other hand, starting a daemon at
boot time saves the overhead associated with repeated startups for a service that is in constant
demand.

Depending on which one your system uses, either inetd or xinetd is started at boot time, and
continues to run in the background as long as the system is running. The daemon listens to the
network ports and starts the appropriate service when data arrive on the port associated with the
service. In the same way that getty detects traffic on a serial port and starts login to handle a
terminal connection, inetd and xinetd detect traffic on the network, and start the proper service to
handle that traffic. (Don't remember getty or login? See Chapter 2.) To understand this process, you
need to understand a little about TCP/IP ports.

Protocol and Port Numbers

Data travel through a TCP/IP network in packets called datagrams. Each datagram is individually
addressed with the following:

e The IP address of the host to which it should be delivered

e The protocol number of the transport protocol that should handle the packet after it is
delivered to the host

e The port number of the service for which the data in the packet are bound

For data to be delivered correctly on a global scale, as it is on the Internet, the IP address must be
globally unique, and the meaning of the protocol and port numbers must be well-known to all
systems in the network. (Chapter 2 describes how the IP address is assigned to the network
interface during the installation.) In the case of the IP address, you're the one responsible for
making sure that it is unique. (In Chapter 13, "Troubleshooting," you'll see what kinds of problems
occur when the IP address isn't unique.) Protocol and port numbers are different; they are defined
by Internet standards. Thus, the protocol numbers and port numbers can be predefined in two files,
/etc/protocols and /etc/services, that come with the Linux system.

The /etc/protocols File

Data from the network arrive at the computer as one stream. The stream may contain data packets
from multiple sources bound for multiple applications. In telecommunications terminology, we say
that the data stream is multiplexed. To deliver each packet to the correct application, it must be
demultiplexed. The first step in this process is for the Internet Protocol to pass the packet to the
correct transport protocol. IP determines the correct protocol by means of the protocol number that
is contained in the datagram packet header.

60

The /etc/protocols file identifies the protocol number of each transport protocol. Listing 3.1 is an
excerpt from the protocols file from a Red Hat system.

Listing 3.1: An Excerpt of the /etc/protocols File

$ head -33 /etc/protocols

/etc/protocols:

$Id: protocols,v 1.3 2001/07/07 07:07:15 nalin Exp $

#

Internet (IP) protocols

#

from: Q(#)protocols 5.1 (Berkeley) 4/17/89

#

Updated for NetBSD based on RFC 1340, Assigned Numbers (July 1992).

#

See also http://www.lana.org/assignments/protocol-numbers

ip 0 Ip # internet protocol, pseudo protocol number

#hopopt 0 HOPOPT # hop-by-hop options for ipvé

icmp 1 ICMP # internet control message protocol

igmp 2 IGMP # internet group management protocol

ggp 3 GGP # gateway-gateway protocol

ipencap 4 IP-ENCAP # IP encapsulated in IP (officially "IP")

st 5 ST # ST datagram mode

tcp 6 TCP # transmission control protocol

cbt 7 CBT # CBT, Tony Ballardie
<A.Ballardie@cs.ucl.ac.uk>

egp 8 EGP # exterior gateway protocol

igp 9 IGP # any private interior gateway (Cisco: for
IGRP)

bbn-rcc 10 BBN-RCC—-MON # BBN RCC Monitoring

nvp 11 NVP-IT # Network Voice Protocol

pup 12 PUP # PARC universal packet protocol

argus 13 ARGUS # ARGUS

emcon 14 EMCON # EMCON

xnet 15 XNET # Cross Net Debugger

chaos 16 CHAOS # Chaos

udp 17 UDP # user datagram protocol

mux 18 MUX # Multiplexing protocol

dcn 19 DCN-MEAS # DCN Measurement Subsystems

hmp 20 HMP # host monitoring protocol

/etc/protocols is a simple text file. Lines that begin with a sharp sign (#) are comments. Active
entries begin with the protocol name, followed by the protocol number, and optionally by alternate
names for the protocol and by a descriptive comment. The comment is often helpful for identifying
the protocol. Frequently, the alternate name of a protocol is simply the standard name in uppercase
letters, but this is not always the case. Look at protocol numbers 4, 10, 11, and 19. These alternate
names are more than just a change of case. However, protocol names are not as important as
protocol numbers. The protocol number is contained in the header of the datagram, and it is the
number that is used for data delivery.

Other than cosmetic differences, the protocols file on your Linux system, regardless of the
distribution, will look similar to the excerpt shown in Listing 3.1. In fact, you can find a similar file on
any Unix or Windows NT system because the protocol numbers are standardized. You will never
need to edit this file.

The /etc/protocols file on a Red Hat 7.2 system contains about 150 lines. Despite the size of this

61

file, only two entries are significant for most network services. One, tcp, defines the protocol number
for Transmission Control Protocol—the TCP in TCP/IP. Its protocol number is 6. The other, udp,
defines the protocol number for User Datagram Protocol as 17. Several of the entries in this file
define protocol numbers used by routing protocols. Many other entries define experimental
protocols that are not widely used. TCP and UDP carry most of the information you are interested
in.

The /etc/services File

The second stage of demultiplexing the network data is to identify the application to which the data
are addressed. The transport protocol does this using the port number from the transport protocol
header.

The standard port numbers are identified in the /etc/services file. The port numbers for well-known
services are assigned in Internet standards, so you never change the port number of an existing
service. On rare occasions, you may need to add a new service to the file, but that is the only time
you would edit this file.

Although there are many transport protocols, there is an even larger number of network services.
For that reason, Listing 3.2 is only a small piece of the complete /etc/services file found on a Red
Hat system.

Listing 3.2: An Excerpt from /etc/services

ftp 21/tcp

ftp-data 20/udp

ftp 21/tcp

ftp 21/udp

ssh 22/tcp # SSH Remote Login Protocol

ssh 22 /udp # SSH Remote Login Protocol

telnet 23/tcp

telnet 23/udp

24 - private mail system

smtp 25/tcp mail

smtp 25/udp mail

time 37/tcp timserver

time 37/udp timserver

rlp 39/tcp resource # resource location

rlp 39/udp resource # resource location

nameserver 42 /tcp name # IEN 116

nameserver 42 /udp name # IEN 116

nicname 43/tcp whois

nicname 43/udp whois

tacacs 49/tcp # Login Host Protocol (TACACS)

tacacs 49/udp # Login Host Protocol (TACACS)

re-mail-ck 50/tcp # Remote Mail Checking
Protocol

re-mail-ck 50/udp # Remote Mail Checking
Protocol

domain 53/tcp nameserver # name-domain server

domain 53/udp nameserver

whois++ 63/tcp

whois++ 63/udp

bootps 67/tcp # BOOTP server

bootps 67/udp

bootpc 68/tcp # BOOTP client

bootpc 68/udp

tftp 69/tcp

62

tftp 69/udp
gopher 70/tcp # Internet Gopher
gopher 70/udp ftp-data 20/tcp

/etc/services has a format that is very similar to the format used by /etc/protocols. Comments begin
with a sharp sign (#). Active entries begin with the name of the service, which is followed by a port
number/protocol name pair, and optionally by an alternate name for the service and by a comment.
The port number/protocol name pair defines the port number for the service, and identifies the
protocol over which the service runs. The protocol name must be a valid name defined in
/etc/protocols.

From Listing 3.2, you can tell that telnet uses port 23 and runs on top of the TCP transport protocol.
Furthermore, you can tell that Domain Name System (DNS), referred to as domain in the file, uses
port 53 on both TCP and UDP. Each transport protocol has a complete set of port numbers, so a
single port number, such as 53, can be assigned to a service for both UDP and TCP. In fact, it is
possible to assign a port number under UDP to one service and the same port number under TCP
to a completely different service; however, in order to avoid confusion, this is never done.

inetd and xinetd can monitor any port listed in the /etc/services file. Which protocol and port
numbers are monitored by these daemons are defined in the /etc/inetd.conf file for inetd or the /etc/
xinetd.conf file for xinetd. These files, in turn, define which services are started by the daemons. We
begin by looking at the inetd configuration.

Configuring inetd

The inetd configuration is defined in the /etc/inetd.conf file. The file defines the ports that inetd
monitors and the pathnames of the processes it starts when it detects network traffic on a port.
Many Linux systems use inetd. In fact, prior to version 7.0, Red Hat used inetd instead of xinetd.
Listing 3.3, which shows the active entries in an inetd.conf file, was generated on a server running
Red Hat 6.2.

Listing 3.3: Excerpts from an inetd.conf File

S grep -v '“#' /etc/inetd.conf

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -1 -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

shell stream tcp nowait root /usr/sbin/tcpd in.rshd

login stream tcp nowait root /usr/sbin/tcpd in.rlogind

talk dgram udp wait root /usr/sbin/tcpd in.talkd

ntalk dgram udp wait root /usr/sbin/tcpd in.ntalkd

imap stream tcp nowait root /usr/sbin/tcpd imapd

finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

auth stream tcp nowait nobody /usr/sbin/in.identd in.identd -1 -e -o
linuxconf stream tcp wait root /bin/linuxconf linuxconf -http

Every entry in the inetd.conf file shown in Listing 3.3 defines a service that is started by inetd. Each
entry is composed of seven fields:

Name This is the name of the service, as listed in the /etc/services file. This name
maps to the port number of the service.

Type This is the type of data delivery service used. There are only two common

63

types: dgram for the datagram service provided by UDP, and stream for the byte
stream service provided by TCP.

Protocol This is the name of the protocol, as defined in the /etc/protocols file. The
name maps to a protocol number. All of the sample entries have either tcp or udp in
this field.

Wait-status This is either wait or nowait. wait tells inetd to wait for the server to
release the port before listening for more requests. nowait tells inetd to immediately
begin listening for more connection requests on the port. wait is normally used for
UDP, and nowait is normally used for TCP.

UID This is the username under which the service is run. Normally, this is root, but
for security reasons, some processes run under the user ID nobody.

Server This is either the pathname of the server program that inetd launches to
provide the service or the keyword internal, which is used for simple services that are
provided by inetd itself. In Listing 3.3, the entries for linuxconf and auth are good
examples. Both of these entries show the full path to the appropriate server program.
All of the other entries in Listing 3.3, however, share the same server path:
/usr/sbin/tcpd. Clearly, this is not really the path to the ftp server, the telnet server,
and every other server. In reality, tcpd is a security feature used by Linux. tcpd is
called the TCP Wrapper, and it is used to wrap security protection around network
services. The details of how to use TCP Wrapper to improve security are covered in
Chapter 12. For now, it is sufficient to know that tcpd will start the correct server
when it is called by inetd.

Arguments These are the command-line arguments that are passed to the server
program. The first argument is always the name of the server program being
executed. The argument list looks exactly as the command would look if it were
being typed in at a shell prompt.

As you can see in Listing 3.3, inetd.conf comes preconfigured with several services active. The Red
Hat Linux 6.2 default inetd.conf file comes with an equal number of services inactive, as shown in
Listing 3.4.

Listing 3.4: Services Disabled by inetd

S grep '“#[a-z]' /etc/inetd.conf

#echo stream tcp nowait root internal

#echo dgram udp wait root internal

#discard stream tcp nowait root internal

#discard dgram udp wait root internal

#daytime stream tcp nowait root internal

#daytime dgram udp wait root internal

#chargen stream tcp nowait root internal

#chargen dgram udp wait root internal

#time stream tcp nowait root internal

#time dgram udp wait root internal

#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#dtalk stream tcp wait nobody /usr/sbin/tcpd in.dtalkd
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/

64

uucico -1

#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd

#bootps dgram udp wait root /usr/sbin/tcpd bootpd

#cfinger stream tcp nowait root /usr/sbin/tcpd in.cfingerd

#systat stream tcp nowait guest /usr/sbin/tcpd /bin/ps —auwwx

#netstat stream tcp nowait guest /usr/sbin/tcpd /bin/netstat
-f inet

#swat stream tcp nowait.400 root /usr/sbin/swat swat

Comments in the inetd.conf file begin with a sharp sign (#). To disable a service, insert a sharp sign
at the beginning of its entry. To enable a service, remove the sharp sign. For example, enable the
BootP server by removing the sharp sign at the beginning of the bootps entry. Likewise, to disable
the finger protocol, insert a sharp sign before the first character in the finger entry. This simple edit
gives you complete control over the services provided by your Linux system.

Disabling unneeded services is an important part of server security. Do not run services that you
don't really use. Every network service is a potential hole for a security cracker to slither through. On
our sample server, we offer ftp. Clearly, it should not be commented out of the sample configuration.
But our server does not offer gopher or pop-3 services. Those services could be commented out
without harming the users of this imaginary server. On another server, the roles might be reversed:
POP might be enabled, and FTP might be disabled. The services that are enabled are driven by
which services will be offered by the server.

The importance of controlling access to network services as a component of overall system security
is the main reason that xinetd was created. The Extended Internet Services daemon (xinetd)
performs the same task as inetd, but it offers enhanced security features.

Configuring xinetd

An alternative to inetd is the Extended Internet Services Daemon (xinetd). xinetd is configured in the
/etc/xinetd.conf file, which provides the same information to xinetd as inetd.conf provides to inetd.
But instead of using positional parameters with meanings determined by their relative location on a
configuration line, xinetd.conf uses attribute and value pairs. The attribute name clearly identifies
the purpose of each parameter. The value configures the attribute. For example, the third field in an
inetd.conf entry contains the name of the transport protocol. In an xinetd.conf file, the name of the
transport protocol is defined using the protocol attribute, for example, protocol = tcp. However,
xinetd can do much more than inetd, so there are many more attributes available to configure xinetd
than the seven positional parameters used by inetd. The best way to understand the various xinetd
attributes is to look at some realistic configurations. Listing 3.5 is the xinetd.conf file from a Red Hat
7.2 system.

Listing 3.5: The xinetd.conf File

$ cat /etc/xinetd.conf

#

Simple configuration file for xinetd
#

#

Some defaults, and include /etc/xinetd.d/

defaults

{
instances = 60
log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST

65

cps = 25 30
}

includedir /etc/xinetd.d

The lines that begin with # are comments. The defaults statement is the first active entry in this file.
The defaults statement is optional, but when it is used, only one defaults statement can appear in
the configuration. Use this statement to set default values for various attributes. Enclose the list of
attribute/value pairs in curly braces. (Lists of attribute/value pairs are always enclosed in curly
braces.) The xinetd.conf file in Listing 3.5 defines default values for five different attributes:

instances This specifies the maximum number of daemons providing any one type
of service that can be running simultaneously. Listing 3.5 sets instances to 60,
meaning that no more than 60 telnetd processes will be running at any one time.
xinetd will not start the sixty—first instance, even if an additional service request for
Telnet is received from the network. The system default for instances is to allow an
unlimited number of simultaneous processes for all types of services. instances is set
to a numeric value or to the keyword UNLIMITED.

log_type This defines where messages will be logged. There are two possible
values for this attribute:

FILE pathname [soft_limit [hard_limit]] The FILE setting tells
xinetd to log activity to the file identified by pathname. Upper limits for
the size of the file are set using soft_limit and hard_limit. When
soft_limitis exceeded, xinetd issues warning messages about the file
size. When hard_limitis exceeded, xinetd stops logging messages to
the file. The default is to have no limit on the size of the log file.

SYSLOG syslog_facility [syslog_level] The SYSLOG setting tells
xinetd to use the standard syslogd daemon to log activity.
syslog_facility must be set to one of the facilities defined in
/etc/syslog.conf. syslog level, if used, must be a standard syslogd
severity value. The example in Listing 3.5 tells xinetd to log activity
through syslogd and to use the authpriv facility.

log_on_success This defines the information that is logged when a successful
connection is made to a local service. The xinetd.conf file in Listing 3.5 logs the
address of the remote client (HOST) and the process ID of the daemon started to
service that client (PID). There are several other values that can be logged. Properly
configuring xinetd to log network activity is covered in detail in Chapter 12.

log_on_failure This defines the information that is logged when an attempt to
connect to a local service is unsuccessful. The xinetd.conf file in Listing 3.5 logs the
address of the remote system (HOST) that attempted the connection. Properly
configuring xinetd to log network activity is an important security topic covered in
detail in Chapter 12.

cps This sets connections—per—second limits for the services. The first value is the
maximum number of connection for any one service that will be accepted in a single
second. If that number is exceeded, xinetd will stop accepting connections for that
service, and will wait the number of seconds specified by the second number before

66

accepting any more connections for that service. The values in Listing 3.5 tell xinetd
to accept no more than 25 connections to any one service in a single second, and to
wait 30 seconds if more than 25 connection attempts are made before accepting
more connections for that service. cps prevents a service from taking all of the
systems resources.

Besides the defaults statement, the only other statement in the Red Hat xinetd.conf file is includedir.
The includedir statement includes by reference all of the files found in the specified directory. In
Listing 3.5, the specified directory is /etc/xinetd.d, which is the directory used most often for this
purpose. A single file can be included in the xinetd.conf configuration by using the include filename
command, where filename is the name of a single file. However, the includedir statement is more
powerful because it includes all of the files from an entire directory. This makes it possible to
maintain a separate configuration file for each service. This sounds complicated, but in practice it is
simple. The individual configuration files are very short, and because every item in a file applies to
only one service, the purpose and meaning of each item is easier to understand. A listing of the
/etc/xinetd.d directory shows the xinetd configuration files on our sample Red Hat system.

$ 1s /etc/xinetd.d

chargen echo imaps ntalk rsh talk time-udp
chargen—-udp echo-udp ipop2 pop3s rsync telnet wu-ftpd
daytime finger ipop3 rexec sgi_fam tftp
daytime-udp imap linuxconf-web rlogin swat time

The files in /etc/xinetd.d represent all of the services that can be started by xinetd on this system.
Other network services are available from this server because they are started by boot scripts, but
xinetd can only start a service for which it has a configuration file. Adding a completely new,
on-demand network service to this system would require adding a new configuration file to the
xinetd.d directory.

Most of the filenames in the /etc/xinetd.d directory clearly map to service names from the /etc/
services file, but not all. The wu-ftpd file starts the FTP service, although wu-ftpd is not a standard
service name. In this case, wu-ftpd stands for Washington University FTP Daemon (WU-FTPD),
which is the version of the FTP server that is used by default with Red Hat 7.2. The wu-ftpd file is a
good example of what most xinetd configuration files look like. Listing 3.6 shows the wu-ftpd file
from a Red Hat 7.2 system.

Listing 3.6: The /etc/xinetd.d/wu-ftpd File

$ cat /etc/xinetd.d/wu-ftpd

default: on

description: The wu-ftpd FTP server serves FTP connections. It uses \
normal, unencrypted usernames and passwords for authentication.
service ftp

{

socket_type = stream

wait = no

user = root

server = /usr/sbin/in.ftpd
server_args = -1 -a
log_on_success += DURATION USERID
log_on_failure += USERID

nice = 10

disable no

67

Again, lines that begin with # are comments. This file, like most of the files in /etc/xinetd.d, contains
just a single service statement. The format of a service statement is:

service service_name

{

attribute_list

}

The service_name is the official name of the service from the /etc/services file. The service_name
must map to a port number. In Listing 3.6, the service_name is ftp, which maps to port number 21.
(Notice in Listing 3.6 that the official service name is ftp, not wu—ftpd.) The attribute_list, just as it
was in the defaults statement, is a list of attribute/value pairs enclosed in curly braces. The ftp
service has nine attributes defined in Listing 3.6:

socket_type Specifies the type of socket used for this service. This is usually either
dgram for the datagram service provided by UDP, or stream for the byte stream
service provided by TCP. There are two other possible values: raw for a service that
connects directly to IP, and seqpacket for sequential datagram delivery. raw and
seqgpacket are not used for standard services. Every xinetd configuration file in the
xinetd.d directory on our sample Red Hat system sets socket_type to either dgram or
stream.

wait Tells xinetd whether it should wait for the service to release the port before
listening for more connections to that service. yes means wait, and no means don't
wait. Most often, dgram sockets require xinetd to wait, and stream sockets permit
xinetd to proceed without waiting.

user Defines the username used to run the service. Normally, this is root, but for
security reasons, some processes run under the username nobody.

server This is the path to the program that xinetd should start when it detects
activity on the port. In Listing 3.6, /usr/sbin/in.ftpd is the program that is started when
a connection request arrives on port 21.

server_args These are the command-line arguments that are passed to the server
program when it is started. Listing 3.6 shows two command-line options, both of
which are specific to the Washington University FTP daemon. The I option tells the
daemon to log all transactions. The —a option tells it to read its configuration from the
ftpaccess file. (More on the ftpaccess file later in this chapter.)

log_on_success This defines the information that is logged when a successful
connection is made to the FTP service. Notice the += syntax used with the attribute.
+= adds the values defined here to the values previously defined for log_on_success
in the defaults statement of the xinetd.conf file. (See Listing 3.5.) If = had been used
instead of +=, the log_on_ success values defined in the defaults statement would
have been replaced by these values for the FTP service. Instead, xinetd will combine
both attribute settings and log the client's address (HOST), the process ID of the
service (PID), the amount of time the client is connected to the server (DURATION),
and the username used to log in to the server (USERID). xinetd logging is covered

68

again in Chapter 12.

log_on_failure This defines the information that is logged when an unsuccessful
attempt to connect to the FTP service is made. Again, the += syntax is used to add
the values defined here to the values previously defined for log_on_failure in the
defaults statement of the xinetd.conf file. (See Listing 3.5.) These settings cause
xinetd to log the client's address, and the username used for the failed login. xinetd
logging is covered again in Chapter 12.

nice Defines the nice value that xinetd uses when it launches the server program.
The nice command sets the scheduling priority for server program. The nice
command, along with many other common system administration tools, is covered in
Linux System Administration, by Vicki Stanfield and Rod Smith (Sybex, 2001).

disable Tells xinetd whether or not this service has been disabled by the system
administrator. If disable is set to no, the service is enabled and xinetd runs this
service when it receives a connection request on this server's port. If disable is set to
yes, the service is disabled and xinetd does not start the service in response to
connection requests. By default, services are enabled if the disable attribute is not
included in the configuration.

This last attribute shows that a system administrator can control the services started by xinetd by
changing the value of the disable attribute. This can be done by directly editing the configuration
files found in the xinetd.d directory, yet Red Hat provides an easier way to do this. The chkconfig
command used in Chapter 2 to control boot scripts can also be used to control services started by
xinetd.

Listing 3.7: Using chkconfig to Control xinetd

[root]# chkconfig —--list wu-ftpd

wu—-ftpd on

[root]# grep disable /etc/xinetd.d/wu-ftpd
disable = no

[root]# chkconfig wu-ftpd off

[root]# chkconfig —--list wu-ftpd

wu—-ftpd off

[root]# grep disable /etc/xinetd.d/wu-ftpd
disable = yes

The first two commands in Listing 3.7 show that chkconfig believes that the FTP service is ready to
run and that the disable attribute in the wu—ftpd configuration file is set to no. Then, the chkconfig
wu-ftpd off command is entered to disable the FTP service. Another quick check with chkconfig
and grep shows that FTP is now turned off, and the disable attribute in the wu-ftpd file is set to yes.
Use the configuration filename (wu-ftpd, in this case), not the service name (ftp) when using the
chkconfig command to enable or disable a service started by xinetd.

Now that you know how telnetd and ftpd are started, let's look at how the user accounts they require

are created. The next section reviews the variety of tools that are used to create user accounts on
Linux systems.

69

Creating User Accounts

Each user who logs in to a Linux system is identified by a user account. The user account controls
access to the system by defining the username and password that authenticate the user during the
login. After the user logs in to the system, the user account's user identifier (UID) and group
identifier (GID) are used to control the user's privileges. These values, which are defined when
creating a user account, control filesystem security and identify which users control what processes.

The user account is an essential part of a Linux system, and all Linux distributions provide tools for
maintaining user accounts. This section examines several of these tools, but it first takes a look
behind the scenes to see what these tools are doing for you.

The Steps to Creating a User Account

The tools that different Linux distributions offer to simplify the process of adding a user account may
vary, but all of the tools ask for essentially the same information because the underlying process of
adding a user account is the same on all Linux systems. Adding a user account requires the
following steps:

1. Edit the /etc/passwd file to define the username, UID, GID, home directory, and login shell
for the user.

2. Run a tool, such as passwd, to create an encrypted password for the user.

3. Run mkdir to create the user's new home directory.

4. Copy the default initialization files from /etc/skel to the user's home directory. The /etc/skel
directory holds files such as .bashrc, which is used to initialize the bash environment. A
Linux system comes with a selection of files already in /etc/skel. To provide additional or
different initialization files for your users, simply add files to the /etc/skel directory, or edit the
files that you find there.

5. Change the ownership of the user's home directory and the files it contains so that the user
has full access to all of her files. For example, chown —r kathy:users
/home/kathy.

Most of these steps involve building the user's home directory. However, much of the information
about the user account is stored in the /etc/passwd file.

The passwd File
Every user on a Linux system has an entry in the /etc/passwd file. To see what accounts exist on a
Linux system, just look inside that file. Listing 3.8 is the passwd file from our sample Red Hat

system.

Listing 3.8: A Sample /etc/passwd File

cat /etc/passwd

root :gvFVXCMgxYxFw:0:0:root:/root:/bin/bash
bin:*:1:1:bin:/bin:
daemon:*:2:2:daemon:/sbin:
adm:*:3:4:adm:/var/adm:
lp:*:4:7:1p:/var/spool/lpd:
sync:*:5:0:sync:/sbin:/bin/sync
shutdown:*:6:0:shutdown:/sbin:/sbin/shutdown
halt:*:7:0:halt:/sbin:/sbin/halt
mail:*:8:12:mail:/var/spool/mail:

70

news:*:9:13:news:/var/spool/news:
uucp:*:10:14:uucp:/var/spool/uucp:
operator:*:11:0:0perator:/root:
games:*:12:100:games:/usr/games:
gopher:*:13:30:gopher:/usr/lib/gopher-data:

ftp:*:14:50:FTP User:/home/ftp:

nobody:*:99:99:Nobody:/:

craig:6VKY34PUexqgs:500:100:Craig Hunt:/home/craig:/bin/bash
sara:niuh3ghdj73bd:501:100:Sara Henson:/home/sara:/bin/bash
kathy:wvlzgw:502:100:Kathy McCafferty:/home/kathy:/bin/bash
david:94fddtUexqgs:503:100:David Craig:/home/david:/bin/bash
becky:tyebwo8bei:500:100:Rebecca Hunt:/home/becky:/bin/bash

Most of these accounts are included in the passwd file as part of the initial installation; only the last
five entries in Listing 3.8 are real user accounts added by the system administrator. The first entry is
the root account for the system administrator, but most of the others are special accounts created
for programs that need to control processes or that need to create and remove files.

Each /etc/passwd entry follows the user.password:UID.GID:comment.home:shell format, where

e user is the username. It should be no more than eight characters long, and should not
contain capital letters or special characters. kristin is a good username.

e password is the encrypted password of the user. Of course, you don't actually type an
encrypted password here. The encrypted password is stored here by the passwd command.
If you use the shadow password file, and most Linux distributions do, the encrypted
password will not actually appear here. Instead, the password will be stored in /etc/shadow.
See Chapter 12 for a description of the shadow password file.

e UID is the numeric user ID for this user account.

e GID is the numeric group ID of the primary group of this user.

e comment is text information about the user. At a minimum, you should have the user's first
and last names. Some people like to include the user's telephone number and office room
number. For historic reasons, this field is sometimes called the GECOS field.

® home is the user's home directory.

e shell is the login shell for this user.

Almost all of the information needed to create a user account appears in the passwd file. The next
few sections examine some of this information in more detalil.

Selecting a Login Shell

A login shell (or command shell) processes the command lines that are entered by the user. Linux
provides a selection of several different login shells. Several shells are included in the distribution,
and many more are available from the Internet. Despite the variety of shells, most sites standardize
on one or two; every user account added to the sample passwd file in Listing 3.8 uses /bin/bash as
the login shell.

The /etc/shells file is a list of valid shell names that is consulted by a number of programs to
determine what shells are available on the system. Listing 3.9 is the /etc/shells file on a Red Hat
system.

Listing 3.9: Available Login Shells

$ cat /etc/shells
/bin/bash?2

71

/bin/bash
/bin/sh
/bin/ash
/bin/bsh
/bin/tcsh
/bin/csh

The /etc/shells file on our sample Red Hat system provides the following login shell selections:

/bin/sh This is the Bourne Shell, which is the original Unix shell. The Bourne Shell
introduced many of the fundamental concepts of command shells, but as you can
imagine given the great age of Unix, the original Bourne Shell is seriously
out-of-date. Despite that, feel free to make this selection on a Red Hat system
because there is no Bourne Shell stored at /bin/sh. Instead, it is a link to /bin/bash.

/bin/bash This is the Bourne—Again Shell, which is the most popular shell on Linux
systems. bash is the Bourne Shell with all of the modern enhancements such as
command-line editing, command history, and filename completion that were
introduced by newer shell programs.

/bin/bash2 This is yet another version of the Bourne—Again Shell, which provides all
of the features of bash. On the Red Hat system, bash2 is exactly the same as bash
because /bin/ bash2 is just a logical link to /bin/bash.

/bin/ash This is the A Shell. ash is a very compact program—only about one-fifth
the size of bash. ash has minimal features in keeping with its very small size.

/bin/bsh This is the B Shell, which is another minimal shell designed to provide
basic features in a small-sized package. bsh is just a link to ash on a Red Hat
system.

/bin/csh This is the C Shell. csh is an early Unix shell with a command and scripting
environment inspired by the C programming language. Though the original csh is
now out-of-date, csh introduced important concepts, such as command histories,
which are still used today. On a Red Hat system, /bin/csh is a link to /bin/tcsh.

/bin/tesh This is the Tenex C Shell, which is the enhanced csh. tcsh adds filename
completion and command-line editing to the C shell.

This list of shells includes four shells that are just logical links, another one that is a minimal shell,
and only two shells that are widely used as login shells: bash and tcsh. Other Linux distributions
have other lists, and you can add the names of other shells to the /etc/shells file if you add other
shells to your system. If you have users coming to a Linux environment from other Unix operating
systems, they may demand the Korn Shell. Two versions of the Korn Shell are in widespread use:

/bin/ksh This is the Korn Shell, which is one of the most popular Unix shells, and is
the one that first introduced command-line editing.

/bin/zsh The Z Shell closely resembles the Korn Shell, and it provides advanced
features, such as command completion and built-in spell-checking.

The /etc/shells file provides default values for a number of programs. Keep in mind that the list is

72

just a suggestion; you don't have to select a shell from the list. You can type the pathname of any
shell installed on your system as the user's login shell. There was an example of this in Chapter 2,
when we used pppd as a login shell to configure PPP server accounts.

Understanding the User ID

The UID field is a unique numeric identifier for the user. The range of UID numbers on most Unix
systems is 0 to 65536. On Linux systems using the Linux 2.4 kernel, the range is 0 to 4294967295.
Numbers below 100 are reserved for special system accounts, such as uucp, news, mail, and so
on. By definition, the root account is UID 0. Other than these restrictions, you can select any
available number in the valid range.

Every user account has a UID and at least one GID. Every file and process on a Linux system also
has a UID and a GID. Matching UIDs determine ownership of files and processes. Matching GIDs
determine group access to files and processes.

On an isolated system, files are only available to users of that system. But on a network, files are
available between systems through file sharing. The most popular file-sharing technique on Unix
and Linux systems is Network File System (NFS). NFS uses the same file security mechanisms as
the Linux system—the UID and the GID—and can work only if the user IDs and group IDs assigned
on the various systems on the network are coordinated. For example, if tyler was assigned UID 505
on crow, and daniel was assigned 505 on robin, a potential conflict could exist. Mounting a
filesystem from crow on robin would give daniel ownership privileges to files that really belonged to
tyler! Because of this, care must be taken to develop a plan for assigning user IDs and group IDs
across every system on your network.

Note NFS and the issue of properly assigning user IDs and group IDs in an NFS
environment are covered in Chapter 9, "File Sharing."

Understanding the Group ID

The GID field is used to identify the primary group to which the new user belongs. When a Linux
system is first installed, several groups are included, most of which are either administrative groups,
such as adm and daemon, or groups belonging to specific services, such as news and mail. users is
a catch-all group for all users.

When you use an administrative tool to create a user account, the tool assigns a group for the user
if you don't select one. On some systems, such as Slackware, the tool defaults to the group users.
On a Red Hat system, the default is to create a brand—new group that contains only the new user
as a member. Neither approach is exactly right for all cases.

The group ID, like the user ID, is used for filesystem security. On Linux systems, there are three
levels of file permissions: ownership privileges, group privileges, and world privileges. If everyone is
included in the same group, as is the case when everyone is placed in the users group, then
everyone has the same group privileges when attempting to access anyone's files. In effect, group
privileges are no different from world privileges. This defeats the purpose of the group ID, which is
to allow groups to share files while protecting those files from people who are not in the group.

Likewise, if a group is created that contains only one user, the purpose of the group ID is
defeated—there is no point in having group privileges if there is no group. The owner of a file
already has access privileges for the file based on the UID, so the GID is unnecessary when the
group is one. Using this approach, group privileges are no different from ownership privileges.

73

To make the most effective use of group IDs, you need to create groups. Develop a plan for the
group structure you will use on your network. This plan doesn't need to be complicated. Most
network administrators use an organizational group structure in which people in the same work
group are members of the same GID. A more complex structure, based on projects, is also
possible. Be careful, however, not to create a structure that requires lots of maintenance. Projects
come and go, and you don't want to get into a situation in which you are constantly changing groups
and moving files for users.

Note For full NFS support, the group structure plan needs to be coordinated among the systems on
your network. See Chapter 9 for information on planning and coordinating a group structure.

Creating New Groups To create a group, add an entry for the new group in the /etc/group file.
Every group has one entry in the file, and all of the entries have the same format,
name:password:gid.users, where

e name is the name of the group.

e password is not usually used. Leave it blank, or fill it with a placeholder such as x.

e gidis the numeric group identifier. It is a number between 0 and 65536. GID 0 is used for the
root group. Most administrators reserve the numbers below 100 for special groups.

e users is a comma-separated list of users assigned to this group. The primary group of a
user is assigned in the /etc/passwd file. /etc/group assigns supplemental groups to a user.

Some examples from the /etc/group file on a Red Hat system illustrate this structure.

Listing 3.10: Examples from the /etc/group File

root:x:0:root
bin:x:1:root,bin, daemon
daemon:x:2:root,bin, daemon
mail:x:12:mail
news:x:13:news
uucp:x:14:uucp
users:x:100:kathy
popusers:x:45:kathy
slipusers:x:46:
kathy:x:501:

In an example later in this chapter (refer to "Tools to Create User Accounts"), we create the user
account kathy, and allow the system to create a default GID for kathy. By default, Red Hat creates a
new group for the user using the username as the group name and using the first available number
above 500 as the GID. That's where the kathy entry at the end of this file came from. Additionally,
we edited the /etc/group file to grant kathy membership in the users and the popusers groups.
That's why kathy appears in the user list of both of those entries. Note that kathy is not in the user
list of the group kathy. That is because it is her primary group, which is assigned in the /etc/passwd
file. Therefore, her primary group is kathy, and her supplemental groups are users and popusers.
She is granted the group privileges of all three of these groups.

You can create a new group or modify an existing group by directly editing the /etc/groups file.
Alternatively, you can create a group by using the tools provided by your Linux distribution. Use the
groupadd command for this purpose. For example, to create a group for the sales department with a
group name of sales and a GID of 890, enter groupadd —g 890 sales. To add a new group, simply
select an unused group name, and an available GID number, and enter them into the /etc/ group file
using the groupadd command.

74

The name or numeric GID of an existing group can be changed with the groupmod command. For
example, to change the GID assigned to the sales group created above from 890 to 980, enter
groupmod —g 980 sales. To change the group name from sales to marketing, enter groupmod -n
marketing sales. An existing group can be deleted with the groupdel command. For example, to
delete the marketing group, enter groupdel marketing.

Regardless of how you create or edit a group, the effect is the same. The updated group is listed in

the /etc/group file. In the same manner that there are tools to create or modify a group, there are
tools available for creating a user account.

Tools to Create User Accounts

All Linux distributions offer tools to help you create user accounts. Most distributions provide the
useradd command for this purpose. The useradd command in Listing 3.11 creates a user account
with the username kathy.

Listing 3.11: The Effect of the useradd Command

[root]# grep kathy /etc/passwd

[root]# grep kathy /etc/shadow

[root]# grep kathy /etc/group

[root]# 1ls —a /home/kathy

ls: /home/kathy: No such file or directory
[root]# useradd kathy

[root]# grep kathy /etc/passwd
kathy:x:501:501::/home/kathy:/bin/bash
[root]# grep kathy /etc/group

kathy:x:501:

[root]# 1ls —a /home/kathy

. .. .bash_logout .bash_profile .bashrc Desktop .gtkrc .kde .screenrc
[root]# grep kathy /etc/shadow
kathy:!1:11743:0:99999:7:::

The first four lines in Listing 3.11 show that there are no entries for the username kathy in the /
etc/passwd, /etc/shadow or /etc/group file, and that the directory /home/kathy does not exist. Then
the simple command useradd kathy is entered. The four commands after the useradd command
show that much has changed. The simple useradd command creates the correct /etc/passwd, /etc/
shadow, and /etc/group entries, it builds the new home directory (which by default is named /
home/kathy), and it copies the /etc/skel files to the new directory. It does everything required for a
successful login except create the login password. To define the login password, run passwd kathy,
and enter the user's initial password.

This new account can be used as-is, yet it is not exactly what we want. First, the comment field of
the /etc/passwd entry for kathy is empty. This field holds free form text that describes the user. We
want it to contain the full name of the user. Second, kathy is a member of three groups. We want
kathy in the groups users and popusers, as well as her primary group, which is kathy. The second
grep of /etc/group in Listing 3.11 shows that she is in only one group—kathy. The usermod
command can be used to change the settings for an existing user, as in this example:

Listing 3.12: Using the usermod Command

[root]# usermod —-c "Kathleen McCafferty" -G users,popusers kathy
[root]# grep kathy /etc/passwd
kathy:x:501:501:Kathleen McCafferty:/home/kathy:/bin/bash

75

[root]# grep kathy /etc/group
users:x:100:kathy
popusers:x:45:kathy
kathy:x:501:

The usermod command in Listing 3.12 modifies the parameters for the account identified by
username kathy. The string that follows the —c argument on the usermod command line is a text
description for this user account. usermod places the string in the comment field of the /etc/ passwd
entry for this account, as the first grep clearly shows. The -G argument defines supplement groups
for the user account. In Listing 3.12, two supplemental groups, users and popusers, are defined. A
grep of the /etc/group file shows that the usermod command added kathy to the user list for both of
these groups.

Of course, instead of fixing an account with usermod, it is better to build it correctly from the start.
The useradd command accepts the same arguments as the usermod command. Except for the fact
that | wanted a nice example of the usermod command for this book, we could have created the

kathy account with the following useradd command, and we would have had all of the settings we
desired:

useradd -c "Kathleen McCafferty" -G users,popusers kathy
The useradd command accepts a wide range of options. The full syntax of the command is:
useradd [-c comment] [-d home_dir]
[-e expire_date] [-f inactive_time]
[-g initial_group] [-G group],...]]
[-m [-k skeleton_dir] | —=M]
[-p passwd] [-s shell] [-u uid [-0]]
[-n] [-r] login
The useradd command line arguments are
—c comment The comment field of the /etc/passwd entry for this user account.
—d home_dir The path to the home directory for this user account.
—e expire_date The date on which this account will be disabled. The date is entered
as a four—digit year, a two-digit month and a two-digit day in the form yyyy—mm-dd.

By default, accounts are not automatically disabled.

—f inactive_time The number of days after the password expires that the account will
be permanently disabled. —1 turns off this feature, and -1 is the default.

—g initial_group The primary group for this user account.

-G group[,...]] A comma-separated list of supplement groups for this user account.

76

-m [-k skeleton_dir] | -M The —m option tells useradd to create the user's home
directory, if one does not already exist. If -k is defined (and it can only be used if -m
is also used), the files found in skeleton_ dir are copied to the newly created
directory. If —k is not defined, the files found in /etc/skel are copied to the newly
created directory. Alternatively, —M can be specified to tell useradd that it should not
create a home directory for the new account.

—-p passwd Defines the encrypted password for the new account. The value entered
for passwd must already be encrypted. Additionally, it must be encrypted using the
correct algorithm for your system. It is always easier to enter the password
separately with the passwd command.

—s shell The pathname of the login shell to be used by this account.

—u uid [-o] Defines the numeric UID for this user account. The —o flag tells useradd
not to reject the UID if it is a duplicate of another account's UID. Don't use duplicate
UIDs. Plan your system so that all UIDs are unique, and so that each user has only
one login account that clearly identifies that user. Doing anything else reduces
system security.

—-n Tells adduser that it should not create a group with the same name as the user
account. As we saw when we created the user kathy, the Red Hat system also
created a group named kathy. —n prevents this.

-r Indicates that the account should be created as a system account; that is, a
non-login account that is not created for a user. The /etc/passwd example in Listing
3.9 showed several such accounts, for example, news, mail, and daemon.

login The username assigned to the account. useradd documentation calls this
value the login, but it is easier and more accurate to think of it as the username.

Despite this long list of command-line options, all of the sample useradd commands shown in
Listing 3.11 are relatively simple. That is because we used the command's default values. The
useradd default values are defined in two files: /etc/default/useradd and /etc/login.defs.

Listing 3.13 shows the /etc/default/useradd file from our sample Red Hat system. The file contains
keyword/value pairs. The keywords can be easily mapped to useradd command-line options. The
values set in this file are the default values used for the command-line options. For example,
HOME=/home tells useradd that if the —d option is not provided on the command line, it should use
the login username to create a home directory for the user in the /home directory; and
SHELL=/bin/bash tells useradd to use bash as the user's login shell if the —s option is not specified
on the command line.

Listing 3.13: Contents of the /etc/default/useradd File

[root]# cat /etc/default/useradd
useradd defaults file
GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

77

However, the /etc/default/useradd file is not the whole story. Look at the first keyword/value pair in
Listing 3.13. It says GROUP=100, which tells useradd that if the —g option is not specified on the
command line, it should use 100 as the default GID. Now, look back at Listing 3.12. There is no —g
option on the useradd command line, yet the grep of the /etc/passwd file shows that the kathy
account has been assigned the GID 501. Clearly, something else is at work here. That something
else is the /etc/login.defs file. Listing 3.14 shows the /etc/login.defs file from our sample Red Hat
system.

Listing 3.14: Contents of the /etc/login.defs File

REQUIRED

Directory where mailboxes reside, _or_ name of file, relative to the

home directory. If you _do_ define both, MAIL_DIR takes precedence.

QOMAIL_DIR is for Qmail

#

#OMAIL_DIR Maildir

MAIL_DIR /var/spool/mail

#MAIL_FILE .mail

Password aging controls:

#

PASS_MAX_DAYS Maximum number of days a password may be used.

PASS_MIN_DAYS Minimum number of days allowed between password changes.
PASS_MIN_LEN Minimum acceptable password length.

PASS_WARN_AGE Number of days warning given before a password expires.
#

PASS_MAX_ DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

#

Min/max values for automatic uid selection in useradd
#

UID_MIN 500

UID_MAX 60000

#

Min/max values for automatic gid selection in groupadd
#

GID_MIN 500

GID_MAX 60000

#

If defined, this command is run when removing a user.
It should remove any at/cron/print jobs etc. owned by
the user to be removed (passed as the first argument).
#

#USERDEL_CMD /usr/sbin/userdel_local

#

If useradd should create home directories for users by default
On RH systems, we do. This option is ORed with the -m flag on
useradd command line.
#
C

REATE_HOME yes

78

The /etc/login.defs file appears much larger and more complex than the /etc/default/useradd file.
However, most of the login.defs file consists of comments. Every line that begins with a # is a
comment. A liberal dose of comments is provided to explain the purpose of the various parameters
defined in this file. Only ten parameters are really defined in Listing 3.14.

MAIL_DIR /var/spool/mail The MAIL_DIR parameter defines what type of mail
directory should be created for the new user, and where it should be created. Three
options are available: a standard mail directory (MAIL_DIR), a Qmail directory
(QMAIL_DIR), or a mail file in the user's home directory (MAIL_FILE). The Red Hat
configuration in Listing 3.14 creates a standard mail directory in /var/spool/mail. After
running the useradd command shown in Listing 3.12, an Is of /var/spool/mail would
show a new mail directory named kathy.

PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5

PASS_WARN_AGE 7 These four parameters define the values used for creating
passwords. Three of the parameters (PASS_MAX_DAYS, PASS_MIN_DAYS and
PASS_WARN_AGE) are used for password aging. Password aging is described in
Chapter 12 as part of the discussion of the /etc/shadow file. The grep of the
/etc/shadow file in Listing 3.11 shows the three values (0, 99999, and 7) in the entry
for the newly created kathy account. The fourth parameter, PASS_MIN_LEN, defines
the number of characters that a password must exceed to be acceptable. In the Red
Hat configuration, this is set to 5, meaning that a password must be at least six
characters long to be acceptable.

UID_MIN 500

UID_MAX 60000 These two parameters define the values used to automatically
assign a UID. UIDs will be automatically assigned in sequential order, starting from
500. The highest UID that will be assigned is 60000.

GID_MIN 500

GID_MAX 60000 These two parameters define the values used to automatically
assign a GID. GIDs will be automatically assigned in sequential order starting from
500. The highest GID that will be assigned is 60000. These are the parameters that
overrode the GROUP=100 setting in the /etc/default/useradd file. The kathy account
was assigned GID 501 because it was the second account created on this system.
The first account was assigned 500, and the kathy account was assigned 501.

CREATE_HOME vyes This parameter tells useradd whether or not it should create
a home directory when creating a new user account. If this parameter is set to yes,
useradd creates the home directory, whether or not the —m option is used on the
command line. If this parameter is set to no, useradd creates the home directory only
if —m is specified on the command line. Regardless of how this parameter is set,
using —M on the useradd command line prevents the home directory from being
created.

79

Although the 10 parameters listed previously were set in the sample /etc/login.defs file shown in
Listing 3.14, there is one parameter that was not set. The USERDEL_CMD parameter is
commented out of the default Red Hat login.defs file. USERDEL_CMD defines the path to the
userdel command if a non-standard userdel command is used. Because this system uses the
standard userdel command, it has no need to define a special path with the USERDEL_CMD
parameter.

Use userdel to remove an account that is unneeded or unused. To remove the kathy account,
simply enter userdel kathy, as shown in Listing 3.15.

Listing 3.15: The userdel Command

[root]# userdel kathy

[root]# grep kathy /etc/passwd
[root]# grep kathy /etc/shadow
[root]# grep kathy /etc/group
[root]# 1ls —a /home/kathy

.. .bash_logout .bash_profile .bashrc Desktop .gtkrc .kde .screenrc
[root]l# 1ls /var/spool/mail
alana kathy nfsnobody root

The userdel command removes the kathy account from all of the administrative files, as shown by
the grep searches of the passwd, shadow, and group files. It does not, however, remove any of the
user's files, as shown by the two Is commands. To force userdel to remove all of the user's files, run
it with the —r option (for example, userdel -r kathy).

The useradd, usermod, and userdel tools, simplify user account maintenance by automatically
performing the tasks described in the section "The Steps to Creating a User Account." User
accounts are a fundamental component of a complete network server. The user account identifies
and authenticates the user at login, and provides the UID and GID used for filesystem and process
security—both locally and remotely through the network.

Additional FTP Configuration

One final topic before leaving the subject of network login services: the FTP service. Like other
services, to access the FTP server, a user must provide a username and a password. The sample
user kathy could ftp to the local system, and log in. The FTP server would set her default directory
to/home/kathy, and she would be able to download and upload files to and from the system based
on her normal file read and write permissions.

In addition to its standard service, ftp provides anonymous FTP, which allows anyone to log in to the
FTP server with the username anonymous and any password. Traditionally, the password used is
your e-mail address. The purpose of anonymous FTP is, of course, to make certain files publicly
available. Many of the great Linux files available from the Internet are available through anonymous
FTP.

Anonymous FTP is a great service, but it can present a security problem—and a big headache— if
it is set up incorrectly. Several steps are involved in doing it right. The steps to create an
anonymous FTP server are as follows:

1. Add the user ftp to the /etc/passwd file.

80

N

. Create an ftp home directory owned by user ftp that cannot be written to by anyone.

3. Create a bin directory under the ftp home directory that is owned by root, and that cannot be
written to by anyone. The programs needed by FTP should be placed in this directory.

4. Create an etc directory in the ftp home directory that is owned by root, and that cannot be
written to by anyone. Create special passwd and group files in this directory, and change the
mode of both files to 444 (read-only).

5. Create a pub directory in the ftp home directory that is owned by root and is only writable by
root; that is, mode 644. Don't allow remote users to store files on your server unless it is
absolutely necessary and your system is on a private, non—connected network. If you must
allow users to store files on the server, change the ownership of this directory to ftp and the
mode to 666 (read and write). This should be the only directory in which anonymous FTP
users can store files.

6. For systems, such as Linux, that use dynamic linking, create a lib directory in the ftp home

directory that contains the runtime loader and the library modules needed by FTP.

On Linux, setting up anonymous FTP is simple because the steps described previously have
already been done for you. Most Linux systems come with anonymous FTP preconfigured and
installed. Simply select the anonymous FTP component during the initial installation, or add it later
using a package manager. Figure 3.1 shows the results of a Ghome RPM query for the anonymous
FTP package on a Red Hat 7.2 system.

£ Package Info [EEE
anonftp I
anonftp-4.0-9
Size: 132 Install Date: Sat Feh 02 07:03:02 GMT 2002
Build Host: stripples.devel.redhat.com Build Date: Wed Aug 22 12:20:38 GMT 2001
Distribution: Red Hat Linux Vendor: Red Hat, Inc.
Group: System Environment/Daemons Packager: Red Hat, Inc.

Anonftp is a fast, read-only, anonymous FTP server. Anonymous FTP
access allows anyone to download files from an FTP server. Anonymous
FTP is a popular way of making files available via the Internet.

e | I»]

o[cfsfPan |

fvariftp
Mvarfftp/hin
fvarfftp/etc

Q/Verify | @Uninstall | X Close |

Figure 3.1: The anonymous FTP RPM

Figure 3.1 shows a Red Hat system in which the anonymous FTP package has already been
installed. The effects of the installation are visible on the system. Look in the /etc/passwd file; you'll
notice that the user account ftp is already there. You'll also find the anonymous FTP home directory,
which is /var/ftp on a Red Hat 7.2 system. Finally, test the system with the command ftp localhost,
and you should be able to log in as anonymous.

K1

Properly set up, anonymous FTP is less of a security risk than regular FTP. If you don't want to offer
an FTP server at all, comment the ftp entry out of the inetd.conf file, or disable it in the xinetd
configuration. If you specifically don't want anonymous FTP, don't install it in the first place, or
comment the ftp entry out of the /etc/passwd file if it is already installed.

Basic FTP and anonymous FTP are the only FTP services offered on most Linux systems. Basic

81

service is configured by enabling the service through xinetd or inetd, and by creating user accounts.
Anonymous FTP is configured by installing the anonymous FTP package. For many Linux systems,
this is all there is to FTP configuration. However, Linux systems that use Washington University
FTP (WU-FTPD) have additional configuration options.

The ftpaccess File

WU-FTPD has an optional configuration file named /etc/ftpaccess. This file is read if the FTP
daemon is run with the —a command line option. In the discussion of Listing 3.6, we saw that Red
Hat does run the FTP daemon with the —a option, which means that Red Hat uses the ftpaccess file.
The active entries in the Red Hat 7.2 ftpaccess file are shown in Listing 3.16.

Listing 3.16: Excerpts of the Red Hat ftpaccess File

Don't allow system accounts to log in over ftp
deny-uid %$-99 %65534-

deny-gid %-99 %65534-

allow-uid ftp

allow—gid ftp

To chroot a user, modify the line below or create
the ftpchroot group and add the user to it.
guestgroup ftpchroot

User classes...

class all real,guest, anonymous *

Set this to your email address

email root@localhost

Allow 5 mistyped passwords

loginfails 5

Notify the users of README files at login and cwd

readme README* login

readme README* cwd=*

Messages displayed to the user

message /welcome.msg login
message .message cwd=*

Allow on-the-fly compression and tarring
compress yes all

tar yes all

Prevent anonymous users (and partially guest users)
from executing dangerous commands

chmod no guest, anonymous
delete no anonymous
overwrite no anonymous
rename no anonymous

Turn on logging to /var/log/xferlog

log transfers anonymous, guest,real inbound, outbound
If /etc/shutmsg exists, don't allow logins
shutdown /etc/shutmsg

Use user's email address as anonymous password
passwd-check rfc822 warn

Blank lines, inactive lines, and most of the comments have been removed from the ftpaccess file to
create a listing that is more suitable for a book. However, all of the active commands used in the
Red Hat configuration are shown in Listing 3.16.

The deny-uid and deny—gid commands define ranges of UIDs that are not allowed to log in to the

FTP server. In Listing 3.16, UIDs and GIDs that are less than 99 (%-99) or greater than 65534
(65534—%) are not allowed to log in. This blocks all of the UIDs and GIDs that are normally used for

82

system accounts. However, on the Red Hat system, this also blocks the ftp user account that is
used for anonymous FTP because that account is assigned UID 14 and GID 50. The allow-uid and
allow-gid commands define exceptions to the rules defined by the deny-uid and deny-gid
commands. Therefore, all of the system accounts except ftp are prevented from logging into this
FTP server.

To understand the next command, you need to understand that WU-FTPD offers three types of
service:

e Real FTP, in which a user logs in with a standard username and password, and is granted
access to files based on the UID and GID associated with that user's account.

e Anonymous FTP, in which the user logs in as an anonymous guest, and is limited to those
files stored in the anonymous FTP home directory.

e Guest FTP, in which the user logs in with a standard username and password, and is limited
to those files found in the user's home directory.

The guestgroup command defines the users who are limited to guest FTP service. The value that
follows the command guestgroup must be a valid group name from the /etc/group file. Every user
account listed as a member of that group is limited to the guest FTP service. As the comment
indicates, ftpchroot does not exist as a group unless you create it. The guestgroup command in the
Red Hat configuration is only an example. It has no real effect.

If you do decide to limit a user to guest FTP, you must create the same file structure in the user's
home directory as was created in the anonymous FTP home directory. See the steps outlined
previously for creating an anonymous FTP service, and duplicate all of those steps in the home
directory of each user that you limit to guest FTP.

The class command maps the source address of the FTP connection to a user "class." The format
of the command is

class name type address

where class is the keyword. name is the arbitrary name we are assigning to the class. type is the
type of FTP service being used, which is either anonymous, guest, or real. And address is the
source address of the connection, written as either a domain name or an IP address.

In Listing 3.16, the class command assigns the name all to anonymous, guest, and real connections
from all sources. The * is a wildcard character that matches anything. Therefore a * by itself
matches all addresses, whereas *.foobirds.org matches all hosts in the foobirds.org domain. After
the class all is defined, it can be used in other configuration commands.

The email command defines the email address of the FTP server system administrator. Change this
to a valid e-mail address.

Use loginfails to set a limit on the number of times a user can enter the wrong password before the
session is terminated. Three incorrect passwords is a common value. In Listing 3.16, the value is
setto 5.

The readme commands notify the user that a README file exists when the user logs in or changes
directories. The message is issued only if the directory to which the user changes contains a file
with a name that matches the filename on the readme command line. In Listing 3.16, the filename in
both commands is README*, which matches any filename that begins with the string README.

83

The message commands perform a similar task. The message commands point to files that contain
the welcome messages that are displayed when the user logs into the system and when the user
changes directories.

The compress and tar commands specify whether or not on-the-fly compressing and tarring are
allowed, and who is allowed to use these services. In Listing 3.16, both services are allowed, and
they are allowed for all types of users. Note that "all" is the class defined earlier in this ftpaccess file.

In the same way that services can be allowed, specific FTP commands can be disallowed. Listing
3.16 forbids anonymous FTP users from changing the permission of a file (chmod), deleting files
(delete), overwriting files (overwrite), and renaming files (rename); also it prevents users of the
guest FTP service from changing file permissions.

The log command specifies what FTP should log and when it should be logged. In the example,
FTP will log file transfer statistics for users of the anonymous, guest, and real FTP servers, for both
uploads and downloads. The log command can also be used to log the commands invoked by the
users and any violations of security rules.

The shutdown command points to the file that directs the FTP server to cease operations. Based on
the shutdown command in Listing 3.16, this server will shut down if instructed to do so by the file
/etc/shutmsg. The file contains the year, month, hour, and minute the server should shut down,
along with an offset from the shutdown time that the server should stop accepting connections, and
a second offset for when it should break connections that were previously established. Additionally,
the file can contain a text message to be displayed prior to the shutdown.

The last command in this sample ftpaccess file is passwd-check. It tells FTP to warn anonymous
users who do not enter an email address as their password, but to accept the user's login anyway.
To prevent users from logging in who do not enter an e—-mail address, the keyword warn at the end
of the sample passwd-check command must be changed to enforce.

The Red Hat ftpaccess file shown in Listing 3.16 is a typical WU-FTPD configuration. There are,
however, additional features available for WU-FTPD. To find out more, see the ftpaccess main
page and the HOWTO files in /usr/share/doc/wu—ftpd-2.6.1.

In Sum

Telnet service permits a user to connect to the server and run a program there. FTP allows users to
move files into and out of the server. These simple, basic services are traditional components of all
TCP/IP networks. The Internet service daemon (inetd) or the Extended Internet service daemon
(xinetd) starts these and many other network services. The system administrator must configure
inetd.conf or xinetd.conf to start the services that will be offered by his network server.

Telnet, FTP, and many other network services need to identify the user to grant access and control
file permission. Therefore, the users of many network services must have valid user accounts on
the server. Linux provides an array of tools that the system administrator can use to maintain user
accounts.

The extensive list of network services started by inetd or xinetd is not the whole story. Some of the
most important network services are started independently of inetd and xinetd. The next four
chapters discuss four of these important services: Domain Name System, sendmail, Web service,
and routing. The discussion of these Internet services begins in Chapter 4, with the configuration of

84

the Domain Name System (DNS).

85

Chapter 4: Linux Name Services

Overview

One of the most fundamental services on a TCP/IP network is name service. It is the service that
translates hostnames into IP addresses. In Chapter 3, "Login Services," we configured telnet and
ftp. Without name service, a user connecting to crow enters

telnet 172.16.5.5

With name service, that same command is

telnet crow

The result is the same. In either case, the user connects to the host at address 172.16.5.5. But most
users prefer hostnames because they are easier to remember and easier to use. This is particularly
true in the global Internet. It is possible to guess that http://www.sybex.com/ is a valid name, but
there is no intuitive way to guess the address 206.100.29.83.

Linux systems use two techniques to convert hostnames to addresses: the host table and the
Domain Name System (DNS). The /etc/hosts file is a table that maps names to addresses. It is a
simple text file that is searched sequentially to match hostnames to IP addresses. The Domain
Name System is a hierarchical, distributed database system with thousands of servers across the
Internet, handling name and address queries. DNS is far more important than the host table for the
operation of the Internet, but both services play a role. This chapter's discussion of name services
begins with a quick look at the host table.

The hosts File

Each entry in the /etc/hosts file contains an IP address and the names associated with that address.
For example, the host table on crow might contain the following entries:

Listing 4.1: A Sample Host Table

$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain

172.16.5.5 crow.foobirds.org crow
172.16.5.1 wren.foobirds.org wren
172.16.5.2 robin.foobirds.org robin
172.16.5.4 hawk.foobirds.org hawk

The first entry in this table assigns the name localhost to the address 127.0.0.1. (Every computer
running TCP/IP assigns the loopback address to the hostname localhost.) Network 127 is a special
network address reserved for the loopback network, and host 127.0.0.1 is the loopback address
reserved for the local host. The loopback address is a special convention that permits the local
computer to address itself in exactly the same way that it addresses remote computers. This
simplifies software because the same code can be used to address any system, and because the
address is assigned to a software loopback interface (lo), no traffic is sent to the physical network.

86

The second entry in the table is the entry for crow itself. The entry maps the address 172.16.5.5 to
the name crow.foobirds.org and to the alias crow. Alias hostnames are primarily used to provide for
shorter names, as in the example, but they are also used to provide generic names such as
mailhost, news, and www. Every networked computer with a permanent address has its own
hostname and address in its host table.

Every Linux system has a host table with the two entries just discussed, and some, such as the
system in Listing 4.1, have a few additional entries for other key systems on the local network. This
small table provides a backup for those times when DNS might not be running, such as during the
boot process.

Understanding DNS

The limitations of the host table become obvious when it is used for a large number of hosts. The
host table requires every computer to have a local copy of the table, and each copy must be
complete because only computers listed in the local host table can be accessed by name.

Consider today's Internet: It has millions of hosts. A host table with millions of entries is very
inefficient to search and, more important, is impossible to maintain. Hosts are added to and deleted
from the Internet every second. No system could maintain such a large and changeable table and
distribute it to every computer on the network.

DNS solves these problems by eliminating the need for an all-inclusive, centrally maintained table
by replacing it with a distributed, hierarchical database system. The current DNS database has
millions of host entries, distributed among tens of thousands of servers. Distributing the database in
this way reduces the size of the database handled by any individual server, which in turn reduces
the task of maintaining any individual piece of the database.

Additionally, DNS uses local caching to migrate information close to those who need it, without
sending unnecessary information. A caching server starts with just the information it needs to locate
the root of the hierarchical database. It then saves all of the answers to user queries that it receives
and all of the supporting information learned in gaining those answers. In this way, it builds up an
internal database of the information it needs to serve its users.

The DNS Hierarchy

The DNS hierarchy can be compared to the hierarchy of the Linux filesystem. Hostnames in
individual domains parallel filenames in individual directories, and, like the root directory of the
filesystem, DNS has a root domain.

In both the filesystem and the DNS system, the names of objects reveal the rooted hierarchical
structure. Filenames move from the most general, the root (/), to the most specific, the individual
file. Domain names start with the most specific, the host, and move to the most general, the root (.).
A domain name that starts with a host and goes all the way to the root is called a fully qualified
domain name (FQDN). For example, wren.foobirds.org is the FQDN of one of the systems on our
imaginary network.

The top-level domains (TLDs)—such as org, edu, jp, and com—are serviced by the root servers.
The second-level domain, foobirds in the example, is the domain that has been officially assigned
to our imaginary organization. When you're officially assigned a domain by your parent domain, a
pointer is placed in the parent domain that points to your server as the server responsible for your

87

domain. It is this delegation of authority that makes your domain part of the overall domain system.
How to delegate authority for subdomains is covered later in this chapter.

Note This book assumes that you already have an official domain name and IP address.
If you don't, and you need information on how to obtain a domain name or IP
address, see TCP/IP Network Administration, Third Edition, by Craig Hunt (O'Reilly,
2002).

The analogy to the filesystem goes beyond just the structure of names. Files are found by following
a path from the root directory through subordinate directories to the target directory. DNS
information is located in a similar manner. Linux learns the location of the root filesystem during the
boot process from the grub.conf file or the lilo.conf file. Similarly, your DNS server locates the root
servers during startup by reading a file, called the hints file, which contains the names and
addresses of the root servers. (You will create that file later in this chapter.) Via queries, the server
can find any host in the domain system by starting at the root and following pointers through the
domains until it reaches the target domain.

Answering Queries

To answer a query for DNS information, the local name server must either have the answer to the
query or know which name server does. No single system can have complete knowledge of all of
the names in the Internet; servers know about their local domains and build up knowledge about
other domains one query at a time.

Here's how it works. Assume you want the address of http://www.sybex.com/. In effect, you are
asking for the address record for www from the sybex.com database. A query for that address
record comes to the local name server. If the server knows the address of http://www.sybex.com/, it
answers the query directly. If it doesn't know the answer, but it knows which server handles
sybex.com, it queries that server. If it has no information at all, it queries a root server.

The root server does not directly answer the address query. Instead, it points the local server to a
server that can answer queries for the sybex.com domain. It does this by sending the local server a
name server record that tells it the name of the server for the sybex.com domain and an address
record that tells it the address of that server. The local server then queries the sybex.com domain
server and receives the address for http://www.sybex.com/.

In this way, the local server learns the address of the host as well as the name and address of the

servers for the domain. It caches these answers and will use them to directly answer queries about
the sybex.com domain without again bothering the root servers.

The BIND Software

On most Linux systems, DNS is implemented with the Berkeley Internet Name Domain (BIND)
software. Two versions of BIND are currently in widespread use:

¢ BIND 8 has been around for years, and is found in many releases of Linux.
¢ BIND 9 is the most recent version of BIND, and is found on some new Linux distributions,
such as Red Hat 7.2. This chapter focuses on BIND 9.

Note If you are running BIND 8, the information covered here is still applicable because
BIND 8 and BIND 9 are very similar. Any differences are noted in the text.

88

BIND DNS is a client/server system. The client is called the resolver, and it forms the queries and
sends them to the name server. Every computer on your network runs a resolver. Many systems
only run a resolver.

Traditionally, the BIND resolver is not implemented as a distinct process. It is a library of software
routines, called the resolver code, which is linked into any program that requires name service. Most
Linux systems use the traditional resolver implementation, which is called a stub resolver. Because
it is the most widely used, the stub resolver gets most of the coverage in this chapter. However,
BIND 9 also offers the Lightweight Resolver library and the Lightweight Resolver daemon (Ilwresd)
as an alternative to the traditional resolver. Systems running BIND 9 do not have to use Iwresd, and
Red Hat 7.2 does not use it. However, we do cover lwresd later in the chapter so that you know
when and how it is used.

The server side of BIND answers the queries that come from the resolver. The name server
daemon is a distinct process called named. The configuration of named is much more complex than
the configuration of the resolver, but there is no need to run named on every computer. (See "The
named Configuration File" section later in this chapter for more on named and the named.conf file.)

Because all of the computers on your network—whether they are clients or servers—run the
resolver, begin your DNS configuration by configuring the resolver.

Configuring the Resolver

The Linux resolver is configured by two types of files. One type tells the resolver which name
services to use and in what order to use them. That topic is discussed at the end of this chapter.
The other configuration file, /etc/resolv.conf, configures the resolver for its interaction with the
Domain Name System. Every time a process that uses the resolver starts, it reads the resolv.conf
file, and caches the configuration for the life of the process. If the /etc/resolv.conf file is not found, a
default configuration is used.

The default resolver configuration uses the hostname command to define the local domain.
Everything after the first dot in the value returned by the hostname command is used as the default
domain. For example, if hostname returns wren.foobirds.org, the default value for the local domain
is foobirds.org.

The default configuration uses the local system as the name server. This means that you must run
named if you don't create a resolv.conf file. Generally, | think you should create a resolv.conf file,
even if you do run named on the local host. There are three reasons for this. First, the resolv.conf
file provides a means of documenting the configuration. Anyone can read the file and see the
configuration you selected for the resolver. Second, the default values that work with one version of
BIND may change with a future release. If you explicitly set the values you want, you don't have to
worry about how the default values change. And third, even if you are using the local machine as a
name server, the resolv.conf file allows you to define backup servers to increase robustness.

The Resolver Configuration Commands

The BIND 9 software delivered with Red Hat 7.2 uses the same resolver configuration file as the
BIND 8 software used on many Linux systems. The commands it contains are identical to those
found in a BIND 8 resolver configuration. resolv.conf is a text file that can contain the following
commands:

nameserver address The nameserver command defines the IP address of a name

89

server the resolver should use. Up to three nameserver commands can be included
in the configuration. The servers are queried in the order that they appear in the file
until an answer is received or the resolver times out. (See the "Resolver Timeouts"
sidebar for information about these timeouts.) Normally, the first name server
answers the query. The only time the second server is queried is if the first server is
down or unreachable. The third server is queried only if both the first and second
servers are down or unreachable. If no nameserver entry is found in the resolv.conf
file, the name server running on the local host is used as the default.

domain domainname The domain command defines the local domain. The local
domain is used to expand the hostname in a query before it is sent to the name
server. If the domain command is not used, the values defined in the search
command are used. If neither command is found in the resolv.conf file, the value
derived from the hostname command is used. No matter how the local domain value
is set, it can be overridden for an individual user by setting the environment variable
LOCALDOMAIN.

search searchlist The search command defines a list of domains that are used to
expand a hostname before it is sent to the name server. searchlist contains up to six
domain names, separated by whitespace. Each domain specified in the search list is
searched in order until the query is answered. Unlike the domain command, which
creates a default search list containing only the local domain, the search command
creates an explicit search list containing every domain specified in searchlist.

options option The options command modifies the standard behavior of the
resolver. There are several options available for BIND 8 and BIND 9:

debug Turns on debugging. When the debug option is set, the
resolver prints debugging messages to standard output. These
messages are very informative for debugging resolver or server
problems, but in reality, this option is of marginal value. Turning on
debugging in the basic resolver configuration produces too much
output, and produces it at inappropriate times. Use the debugging
tools described in Chapter 13, "Troubleshooting." The DNS test tools
described there allow you to turn on resolver debugging when you're
ready to run the test so that you get the additional output at a time that
you can actually use it.

ndots:n Defines the number of dots that indicate when the resolver
should append values from the search list to the hostname before
sending the query to the name server. By default, the resolver will not
modify a hostname if it contains one dot. As a result, the hostname
crow will be extended with a value from the search list before being
sent to the name server, but the hostname sooty.terns will not. Use
the ndots option to modify this behavior. For example: ndots:2.

This option tells the resolver to use the search list on any hostname
that contains less than two dots. With this setting, both crow and
sooty.terns are extended with a value from the search list before being
sent to the name server for the first time.

The ndots option changes how the resolver handles queries, but it

90

only really changes the order in which things are done. The
unmodified hostname is either the first or the last query sent to the
name server. If ndots is set to 1 (the default setting), sooty.terns is
sent to the server without modification. When the server fails to
resolve that name, the resolver issues additional queries with the
search list values until it gets an answer or the list is exhausted. If
ndots is set to 2, sooty.terns is modified with the first value in the
search list before it is sent to the name server. If the server fails to
resolve the name, the resolver tries every value in the search list and
then sends the unmodified hostname to the name server. In either
case, exactly the same queries are made. Only the order of the
queries is changed.

About the only time that ndots is required is if some component of
your domain could be confused with a top-level domain, and you
have users who consistently truncate hostnames at that domain. In
that rare case, the queries would first be sent to the root servers for
resolution in the top-level domain before eventually getting back to
your local server. It is very bad form to bother the root servers over
nothing. Use ndots to force the resolver to extend the troublesome
hostnames with your local domain name so that they will be resolved
before ever reaching the root servers.

timeout:n Sets the initial query timeout for the resolver. By default,
the timeout is five seconds for the first query to every server.
Subsequent queries time out based on a formula that uses this initial
value and the number of servers (see the "Resolver Timeouts" sidebar
for a detailed explanation). Change this value only if you know for
certain that your name server generally takes longer than five seconds
to respond. In that rare case, increasing this value reduces the
number of duplicate queries.

attempts:n Defines the number of times the resolver will retry a
query. The default value is 2, which means the resolver will retry a
query two times with every server in its server list before returning an
error to the application. The attempt value might need to be increased
if you have a poor network connection that frequently loses queries,
such as the connection to a remote office in a developing country or at
the end of a narrow—band satellite link. In most cases, this value does
not need to be changed.

rotate Turns on round-robin selection of name servers. Normally, the
resolver sends the query to the first server in the name server list, and
only sends the query to another server if the first server does not
respond. Traditionally, the second and third name servers were
defined to provide backup name service. They were not intended to
provide load-sharing. The rotate option configures the resolver to
share the name server workload evenly among all of the servers.
Here's how it works: Assume that the resolv.conf file has the following
nameserver entries:

nameserver 172.16.5.1
nameserver 172.16.5.3

91

nameserver 172.16.55.1

Furthermore, assume that FTP has asked the resolver for the address
of crow, Telnet has asked for the address of kestrel, and Apache has
asked for the address of grackel. Without the rotate option set, all
three address queries are sent to the name server at 172.16.5.1. With
the rotate option set, the query for crow is sent to the server at
172.16.5.1, the query for kestrel is sent to the server at 172.16.5.3,
and the query for grackel is sent to 172.16.55.1. The resolver starts at
the top of the server list, sends a query to each server in the list, and
then starts at the top again.

Implementing load-sharing at the resolver level makes sense only if
you have a large number of resolvers involved, and you have more
than one robust server. For example, assume that you have a large
enterprise with 50,000 clients, and that the resolvers of all of those
clients are configured in exactly the same way. All 50,000 would send
all of their queries to the first server in the list of name servers. The
rotate option would spread the work evenly among all of the central
servers.

This, however, is not usually the case. Most resolver configurations list
a local name server (such as the name server on the local subnet)
first, and list other servers only as backup servers. With this model,
there are as many different resolver configurations as there are
subnets, and no server is targeted by more than the number of clients
on a single subnet. In this, the average case, setting the rotate option
is unnecessary and even undesirable because the topology of the
network already balances the load.

no-check-names Disables the checking of domain names for
compliance with RFC 952, "DOD Internet Host Table Specification."
By default, domain names that contain an underscore (_), non-ASCI|
characters, or ASCII control characters are considered to be in error.
Use this option to work with hostnames that contain an underscore.

Philosophically, I'm not crazy about checking for bad names during
the query process. Checking names at this point does not seem to be
in the spirit of the old interoperability adage, "Be conservative in what
you send and liberal in what you accept." Personally, | prefer to
control compliance with the RFCs at the source. The sources of
incorrect domain names are the zone files that contain those names. |
find it much better to use the name server features that check for
incorrect names when the zone file is loaded than to check the names
during a resolver query process. Therefore, | use this option to disable
checking in the resolver.

inet6 Causes the resolver to query for IPv6 addresses. The version of
the Internet Protocol (IP) used in today's Internet is IPv4. IPv4 uses
the same 32-bit addresses used in this book. IPv6 uses different
128-bit addresses. IPv6 is a future protocol toward which networks
are evolving. Use this option only if you connect to an experimental
IPv6 network. This option would not be used in an average business

92

environment.

sortlist addresslist The sortlist command defines a list of network
addresses that are preferred over other addresses. The addresslist is
a list of address and mask pairs (for example,
172.16.5.0/255.255.255.0). To be of any use, it requires that the
remote host have more than one address assigned to a single name,
that the network path to one of those addresses be clearly superior to
the others, and that you know exactly which path is superior. By
default, address preference is set by the server, and addresses are
used by the resolver in the order in which they are received.

A sortlist command that prefers the local subnet address above all
others is the only sortlist that is commonly used. Many administrators
use such a sortlist command as a matter of course. But trying to use
the sortlist command to sort addresses from remote networks can do
more harm than good unless you have a very clear understanding of
exactly how the networks are configured and how they talk to each
other. Therefore sortlist is rarely used to sort remote addresses.

Resolver Timeouts

The standard timeout for the first query is set to five seconds, and the resolver can use up to three
name servers. The resolver sends the first query to the first server in the server list with a timeout of
five seconds. If the first server fails to respond, the query is sent to the second server in the list with
a timeout of five seconds. If the second server fails to respond, the query is sent to the third server
in the list with a time-out of five seconds. Each server in the list is given a chance to respond, and
each server is given the full five—second timeout. This first round of queries can take as long as 15
seconds.

If no server responds to the first round of queries, the previous timeout is doubled and divided by
the number of servers to determine the new timeout value. The query is then sent again. By default,
the resolver retries two times, although this can be changed with the retry command. Assuming the
defaults, the resolver sends an initial query and two retries for a total of three attempts, which gives
the following timeouts:

Timeouts with one server The first query has a timeout of five seconds, the second
of 10 seconds, and the third of 20 seconds. Given this, the resolver waits up to 35
seconds before abandoning the query when one server is defined.

Timeouts with two servers The first round of queries has a timeout of five seconds
for each server, the second round is also five seconds, and the third round is 10
seconds. This gives a total timeout value of 20 seconds for each server, which
means the resolver waits up to 40 seconds before abandoning a query when two
servers are defined.

Timeouts with three servers The first round of queries has a timeout of five
seconds for each server, the second round is three seconds, and the third round is
six seconds. (Dividing 10 or 20 by 3 does not yield a whole number—the time-out
values 3 and 6 are truncated, whole number values.) This gives a total timeout value
of 14 seconds for each server, which means the resolver waits up to 42 seconds
before abandoning a query when three servers are defined.

93

Without this formula, which reduces the timeout based on the number servers, two retries with three
servers would take up to 105 seconds to time out if the resolver used the same 5-, 10—, and
20-second timeout values used for one server. Even the most patient user would become
exasperated! Additionally, when multiple name servers are used, it is not necessary to give each of
them as much time to resolve the query. It is highly unlikely that they will all be down at the same
time. A query timeout when three servers are configured probably indicates that there is something
wrong with your local network, not with all three remote servers. Because of this timeout formula,
the added reliability of three servers only costs, at most, seven seconds.

A Sample resolv.confFile

Assume you're configuring a Linux workstation named mute.swans.foobirds.org (172.16.12.3) that
does not run its own name server. Listing 4.2 shows a reasonable resolv.conf file.

Listing 4.2: A Sample /etc/resolv.conf File

$ cat /etc/resolv.conf

search swans.foobirds.org foobirds.org
nameserver 172.16.12.1

nameserver 172.16.5.1

The configuration has two nameserver entries. The address of the first name server is 172.16.12.1.
It's on the same subnet as mute. The other name server (172.16.5.1) is the main server for the
foobirds.org domain. For efficiency's sake, send queries to the server on the local subnet. For
backup purposes, send queries to the main domain server when the local server is down.

The search command tells the resolver to expand hostnames, first with the local subdomain
swans.foobirds.org and then with the parent of that domain foobirds.org. This explicit list gives the
workstation's users the behavior they have come to expect. In earlier versions of BIND, the default
was to search the local domain and its parents. The default in BIND 8 and BIND 9 is to search only
the default domain. This explicit search list emulates the old behavior.

The domain command and the search command are mutually exclusive. Whichever command
appears last in the resolv.conf file is the one that defines the search list. To have more than one
domain in the search list, use the search command. The default value derived from the hostname
command, the value entered by the domain command, and the value assigned to the
LOCALDOMAIN environment variable defines just one domain—the local domain. The local domain
then becomes the only value in the search list. The search command is the preferred method for
defining the search list.

The Lightweight Resolver

BIND 9 introduces a new, lightweight resolver library. The new library can be linked into any
application, but it was designed for applications that need to use IPv6 addresses. Support for IPv6
has increased the complexity of the resolver to the point that it is difficult to implement as a
traditional stub resolver. For this reason, the lightweight resolver splits the resolver into a library
used by the applications and a separate resolver daemon that handles the bulk of the resolver
process. The library routines send queries to UDP port 921 on the local host using the lightweight
resolver protocol. The resolver daemon takes the query, and resolves it using standard DNS
protocols.

94

The resolver daemon is lwresd. It is essentially a caching—only name server that recursively
resolves queries for the lightweight resolver library. lwresd does not require the same level of
configuration as a caching-only server because some default values, such as the list of root
servers, are compiled into Iwresd. Instead, Iwresd uses the same configuration commands as the
stub resolver, and it reads its configuration from resolv.conf. However, Iwresd interprets the
nameserver commands in a slightly different manner. If nameserver commands are defined in
resolv.conf, lwresd treats the servers listed there as forwarders. It attempts to forward all queries to
those servers for resolution.

Ilwresd is started by the Iwresd command. Red Hat does not include a boot script for Iwresd. If you
need to run lwresd to support IPv6 on your network, add a lwresd command to the rc.local startup
script. (See Chapter 1, "The Boot Process," for information on rc.local.) The Iwresd command uses
the following syntax:

lwresd [-C config-file] [-d debuglevel] [-f -g -s] [-1 pid-file]
[-n #threads] [-P listen-port] [-p port] [-t directory]
[-u user-id] [-V]

The lwresd command has several arguments, most of which you will never use. They are as
follows:

-C config-file Defines the pathname of the configuration file if /etc/resolv.conf is
not used. It is always best to use the standard configuration file to simplify
troubleshooting.

—-d debuglevel Enables debug tracing. This is the same debugging output used with
named.

-f Runs lwresd in the foreground instead of running it in the background as a
standard daemon. Generally, this is used only for debugging.

—-g Runs Iwresd in the foreground, and logs everything through stderr. Again, this is
used only for debugging.

-s Writes memory usage statistics to stdout. This is of interest only to the BIND
developers.

—i pid-file Defines the pathname of the file in which Iwresd writes its process ID.
The default is /var/run/lwresd.pid. Changing default pathnames gains nothing and
complicates troubleshooting.

-n #threads Specifies the number of threads that should be created by lwresd. By
default, Iwresd creates one thread for each CPU.

-P listen-port Specifies the port that should be used for queries from the
lightweight resolver library. The standard port is 921. Changing the port complicates
troubleshooting.

—-p port Specifies the port on which DNS queries should be sent to the name

servers. The standard port is port 53. This is changed only for special testing with a
server that uses a non-standard port.

95

—t directory Defines a chroot directory to run lwresd chroot. If -t is used, lwresd will
chroot to directory after reading /etc/resolv. This is used to limit the access that
Iwresd has to the filesystem in case the lwresd process is compromised by an
intruder.

—-u user-id Defines the user ID under which the lwresd process will run. Iwresd
starts under the root user ID, and changes to user-id after completing privileged
operations, such as binding to port 921. This is used to limit the damage an intruder
could do if he gains control of the lwresd process.

-v Reports the version number, and exits.

In most cases, the Iwresd command is run without any options. The defaults are correct for most
Iwresd configurations. And remember, Iwresd is not needed for most systems. Most applications
use the traditional stub resolver.

Configuring a Domain Name Server
There are three basic name server configurations:

e A caching server is a non-authoritative server. It gets all of its answers to name-server
queries from other name servers.

e The slave server is considered an authoritative server because it has a complete and
accurate domain database that it transfers from the master server. It is also called the
secondary server because it is the backup for the primary server.

e The master server is the primary server for the domain. It loads the domain information
directly from a local disk file maintained by the domain administrator. The master server is
considered authoritative for the domain, and its answers to queries are always considered to
be accurate.

Note Most servers combine elements of more than one configuration. All servers cache
answers, and many primary servers are secondary for some other domain. Mix and
match these server configurations on your server as needed for your network.

Create only one master server for your domain. It is the ultimate source of information about your
domain. Creating more than one master could undermine the reliability of the data. Create at least
one slave server. It shares the workload, and provides backup for the master server. Most domain
administrators create two official slave servers to increase reliability. Use caching servers
throughout the network to reduce the load on the master and secondary servers, and to reduce
network traffic by placing name servers close to your users. To enhance performance, many
network administrators place a caching server on each subnet or in each department.

Up to five different types of files are required for a named configuration. All configurations require
these three basic files:

named configuration file The named.conf configuration file defines basic
parameters, and points to the sources of domain database information, which can be
local files or remote servers.

hints file The hints, or cache, file provides the names and addresses of the root
servers that are used during startup.

96

local host file All configurations have a local domain database for resolving the
loopback address to the hostname localhost.

The other two files that are used to configure named are used only on the master server. These are
the two files that define the domain database:

zone file The zone file defines most of the information. It is used to map hostnames
to addresses, to identify the mail servers, and to provide a variety of other domain
information.

reverse zone file The reverse zone file maps IP addresses to hostnames, which is
exactly the opposite of what the zone file does.

Note A zone is the piece of the domain namespace over which a master server has
authority. The domain database file that contains the information about the zone is
called a zone file. A zone and a domain are not equivalent. For example, everything
in the database file is in a single zone, even if the file contains information about more
than one domain.

To configure DNS, you need to understand how to configure all five configuration files. Let's start by
looking at the named.conf file. It is used on every name server, and defines the basic configuration.

The named Configuration File

When BIND 8 was introduced, everything about the named configuration file changed: its name, the
commands it contains, the structure of the commands, and the structure of the file. Administrators
familiar with configuring the previous version of BIND were forced to start from scratch. But the
introduction of BIND 9 has been less traumatic. The BIND 9 named.conf file has the same structure,
a similar syntax, and only two additional commands.

The structure of the named.conf configuration commands is similar to the structure of the C
programming language. A statement ends with a semicolon (;), literals are enclosed in quotes ("),
and related items are grouped together inside curly braces ({}). BIND provides three ways to insert a
comment. A comment can be enclosed between /* and */, like a C language comment. It can begin
with two slashes (//), like a C++ comment; or it can begin with a hash mark (#), like a shell
comment. The examples in this book use C++ style comments, but you can use any of the three
valid styles that you like. The complete syntax of each command is covered in Appendix B, "BIND
Reference."

There are eleven valid configuration statements for BIND 9.1, which is the version of BIND delivered
with Red Hat 7.2. They are listed alphabetically in Table 4.1 with a short description of each
command.

Table 4.1: named.conf Configuration Statements

Command Usage

acl Defines an access control list

controls Defines the control channel for the named control program

include Includes another file into the configuration file

key Defines security keys for authentication

logging Defines what will be logged and where it will be stored

Iwres Causes the server to act as a lightweight resolver server (BIND 9 only)

97

options Defines global configuration options and defaults

server Defines a remote server's characteristics

trusted—keys Defines the DNSSEC encryption keys for the server

view Shows different views of the zone data to different clients (BIND 9 only)
zone Defines a zone

The next few sections use examples to illustrate the function and format of the most commonly used
commands. This chapter is a tutorial that focuses on the common configurations used on
operational networks. Appendix B gives the syntax of all commands, even those that are rarely
used. Additionally, "Linux DNS Server Administration," part of the Craig Hunt Linux Library from
Sybex, is a book-length treatment of DNS for readers who want even more examples.

The options Statement

Most named.conf files open with an options statement. Only one options statement can be used.
The options statement defines global parameters that affect the way BIND operates. It also sets the
defaults used by other statements in the configuration file. The most commonly used options
statement defines the working directory for the server:

options {
directory "/var/named"

bi

The statement starts with the options command. The curly braces enclose a list of options, and the
keyword directory defines the directory that named will read files from and write files to. The
directory name is also used to complete any filename specified in the configuration file. The literal
enclosed in quotes is the pathname of the directory. Notice that both the directory clause and the
options statement end with a semicolon.

As you'll see in the section on the named control tool later in this chapter, named writes several
different files that are used to check the status of the name server. The options statement can be
used to change the default pathnames of the individual files. However, it is generally best to keep
the standard name for each status file and to store these files in the directory identified by the
directory command. Doing so makes things simpler for others who attempt to diagnose a name
server problem on your system.

Several options can be set that affect all zones or all servers. In most cases, it is better to set those
values specifically for the zone or server that is being affected. The designers of BIND have set the
defaults correctly for the vast majority of zones and servers. Zones and servers that need other
values are exceptions, and they should be treated as such by defining the exceptional
characteristics directly on the zone or server statement—not in the options statement. You'll see
examples of defining options in the zone statement in the next section.

One option used on occasion is forwarders. The forwarders option causes the local server to
forward to a specific list of servers all queries that it cannot resolve from its own cache. This builds a
rich cache on the selected servers. The selected servers should be on your local network because

the point of building the rich cache is to reduce the number of queries sent over the wide area
network. This is primarily useful if your WAN charges for usage, as some ISDN networks do.

A sample forwarders option is

options {

98

directory "/var/name";

forward first;

forwarders { 172.16.5.1; 172.16.12.1; };
}i

The forward first option says that the local server should try the forwarders before it tries to get an
answer from any other external server. This is the default, so this option really didn't need to be
specified. The other possible value is forward only, which tells the server that it can talk only to the
forwarders. Even if the forwarders are not responding, the local server is not allowed to find the
answer itself when forwarders only is specified. The forwarders option lists the addresses of the
servers to which queries are forwarded.

The zone Statement

The zone statements are the most important statements in the configuration file, and they constitute
the bulk of the named.conf file. A zone statement performs the following critical configuration
functions:

e |t defines a zone that is serviced by this name server.

¢ |t defines the type of name server that this server is for the zone. A server can be a master
server or a slave server. And because this is defined on a per-zone basis, the same server
can be the master for some zones while being a slave for others.

e It defines the source of domain information for a zone. The domain database can be loaded
from a local disk file or transferred from the master server.

e |t defines special processing options for the zone.

A sample zone statement illustrates all of these functions:

Listing 4.3: A Sample zone Statement

zone "foobirds.org" in {
type master;
file "foobirds.hosts";
check—-names failj;
notify vyes;
also-notify { 172.16.80.3; };
allow-update { none; };

bi

The statement begins with the zone command. The name of the zone is written as a literal enclosed
in quotes. The in keyword means that this zone contains IP addresses and Internet domain names.
This is the default, so in is not really required. The curly braces enclose a list of options for this
zone.

The type master option says that this server is the master server for the foobirds.org domain. Other
possible values are

slave Identifies this as a slave server for the domain.

hints Identifies this as the hints file that is used to initialize the name server during
startup.

stub Identifies this as a stub server. Stub servers are slave servers that only load

99

the name server records from the master server's database. This is primarily for
non-recursive servers that want to refer a query to another server in the same way
that root servers refer questions to other servers. This is rarely used on an
operational enterprise network.

The file "foobirds.hosts" option points to the file that contains the domain database information. For
a master server, this is the file that is created by the domain administrator.

The last four options are in the example primarily to illustrate how options are used with zones. The
check-names fail option specifies what the server should do if it finds invalid hostnames in the zone
file. The default is for a master server to abort loading the zone file and display an error message.
(Because the default was chosen, this option wasn't actually needed.) Alternative values for this
option are warn and ignore. warn displays a warning message, and loads the zone anyway, which is
the default for slave servers. ignore just ignores any errors.

The notify and also—notify options determine whether the master server notifies slave servers when
the zone information is updated. Slave servers periodically check the master zone file to see
whether it has been updated. With the notify yes option, the master server sends a DNS NOTIFY
message to the slave servers to cause them to immediately check the zone file. This is done to
keep the master and slave databases tightly synchronized. The notify yes option is the default, so it
didn't need to be specified.

Normally, the DNS NOTIFY message is only sent to official name servers that are listed in the zone
file. The also-notify { 172.16.80.3; } option tells the master server to also notify 172.16.80.3. This
system is not an official slave server, but it keeps a full copy of the zone database for some other
purpose.

The allow-update option specifies which clients are allowed to dynamically update the zone file. In
Listing 4.3, allow-update is set to none, meaning that dynamic updates will not be allowed.
Because this is the default setting, the allow—update line in Listing 4.3 is not required. Alternatively,
the IP addresses of systems allowed to perform dynamic updates could be listed inside the curly
braces of the allow—update statement.

The biggest problem with the allow-update option is that it grants a powerful and dangerous
privilege on the basis of nothing more than an IP address. As everyone knows who has ever
changed the address of a network interface with the ifconfig command, it is very easy to make a
Linux system appear to be any address you wish. Trusting an IP address doesn't really provide any
security. This potentially dangerous power must be as tightly limited as possible. When using
allow-update, only the DHCP server should be allowed to perform updates, and the only acceptable
way to allow a Linux DHCP server to dynamically update a Linux DNS server is to run them on a
same host. The following allow-update command limits dynamic updates to processes running on
the name server:

allow-update { localhost; };

Prior to BIND 9, allow-update was the only way to secure dynamic updates. BIND 9 adds the
update—policy option, which is a new zone statement option that grants dynamic update privileges
based on the cryptographic signature of the update packet. update—policy and allow-update are
mutually exclusive. You can use one or the other in a zone statement, but not both. Using
update—policy to allow dynamic updates from DHCP requires a DHCP server that supports dynamic
DNS (DDNS) and provides cryptographic signatures. DHCP is covered in Chapter 8, "Desktop
Configuration Servers." To read more about DDNS, DNSSEC, and the use of cryptographic
signatures in DNS, see Linux DNS Server Administration by Craig Hunt, Sybex, 2001.

100

In most named.conf files, the zone statements are simpler than the example shown above. Let's
look at some more realistic examples of name server configurations.

A Caching-Only Configuration

The caching-only configuration is the foundation of all server configurations because all servers
cache answers. The most common caching-only configuration is shown in Listing 4.4. This
name.conf file is based on the sample found in the BIND 9 documentation with slight modifications
for our imaginary network.

Listing 4.4: A Common Caching—Only Configuration

$ cat /etc/named.conf

//
// accept queries from the local subnet
//
acl "subnetl2" { 172.16.12.0/24; };
options {
directory "/var/named";
allow—query { "subnetl2"; };
}i
//
// a caching only nameserver config
//
zone "." {
type hint;

file "named.ca";

bi

zone "0.0.127.in-addr.arpa" {
type master;
file "named.local";
}i

The named.conf file in Listing 4.4 opens with an access control list. Use the acl command to assign
an arbitrary name to a list of items that will be subsequently referenced by that name. In Listing 4.4,
the acl command assigns the name subnet12 to a list of addresses. In this case, the list contains
only one network address, but it could have contained more. The name subnet12 is then referenced
in the allow—query option in the options statement.

The allow—query option limits the clients from which DNS queries will be accepted. By default, a
BIND server accepts queries from any source. However, a caching-only server is not advertised to
the outside world, and in general is intended to service only a limited number of local systems. The
allow—query option in Listing 4.4 ensures that this server will only provide service to the clients on
network 172.16.12.0.

The directory option in the options statement defines the default directory for named. In the sample
file, it is /var/named. All subsequent file references in the named.conf file are relative to this
directory.

The two zone statements in this caching—only configuration are found in all server configurations.
The first zone statement defines the hints file that is used to help the name server locate the root
servers during startup. The second zone statement makes the server the master for its own
loopback address, and points to the local host file.

101

The Red Hat Caching-Only Configuration

The caching-only configuration is the most common DNS server configuration; so common, in fact,
that many systems are delivered with a ready—made, caching—only server configuration. Red Hat
provides a caching-only configuration in RPM format. Figure 4.1 shows a Ghome RPM query for
the Red Hat package containing the caching—only server configuration.

"Package Info (EE

caching-nameserver

caching-nameserver-7.2-1

Size: 6465 Install Date: Sat Feh 02 07:03:43 GMT 2002
Build Host: stripples.devel.redhat.com Build Date: Tue Jul 03 08:56:23 GMT 2001
Distribution: Red Hat Linux Vendor: Red Hat, Inc.
Group: System Environment/Daemons Packager: Red Hat, Inc.

Wwill make BIND, the DNS name server, act as a simple caching nameserver.
Many users on dialup connections use this package along with BIND for
such a purpose.

D|c|s|Patn
C fetc/named.conf
fust/share/doc/caching-nameserver-7.2

D fust/share/doc/caching-nameserver-7.2/Copyright

Q/Verify | @Uninstall | X Close |

Figure 4.1: A caching—only DNS server RPM
Installing the caching—nameserver-7.2-1 RPM creates the named.conf file shown in Listing 4.5.

The caching-nameserver package includes the configuration files which
v
Ll

Listing 4.5: The Red Hat named.conf File

// generated by named-bootconf.pl

options {
directory "/var/named";
/*
* If there is a firewall between you and nameservers you want
* to talk to, you might need to uncomment the query-source
* directive below. Previous versions of BIND always asked
* questions using port 53, but BIND 8.1 uses an unprivileged
* port by default.
*/
// query-source address * port 53;
}i

//

// a caching only nameserver config
//

zone "." IN {

type hint;
file "named.ca";

bi

zone "localhost"™ IN {

type master;
file "localhost.zone";
allow-update { none; };

102

bi

zone "0.0.127.in-addr.arpa" IN {
type master;
file "named.local";
allow—-update { none; };
i
key "key" {
algorithm hmac-md5;
secret "eabDFgxVnhWyhUwoSVjthOueObYtvQUCiSuBgHxDRWilSaWMoMORNLmyEbJr";
}i

Most of the configuration commands in this named.conf file are commands we have already seen.

The directory option, the zone statement for the "." zone, and the zone statement for the
"0.0.127.in—-addr.arpa" zone have all been covered. But there are a few new items.

The first is the query—source option, which is commented out of the options statement at the
beginning of the file. The comment implies that this might be needed if you have a firewall. Of
course, anything is possible with a firewall, but it is unlikely that this option will be needed. By
default, BIND 8 and BIND 9 servers send queries to remote servers using the well-known port 53
as the destination port and a randomly generated, non—privileged port as the source. This is exactly
how most TCP/IP services operate—they use well-known ports as destination ports and randomly
generated, non-privileged ports as the source. Most firewalls do not block out bound traffic that
originates on a non-privileged port; if they did, they would block essentially all outbound traffic. If,
for some reason, your firewall blocks outbound DNS traffic when it has a non-privileged source
port, use the query—source option shown in Listing 4.5 to send queries using the address of the
server and a source port number of 53.

Another new item in this configuration is the key statement. Use the key statement to assign a key
identifier to the algorithm and secret key pairing that will be used for transaction security.
Transaction security guarantees the authenticity and integrity of the DNS queries and responses
that move over the network. A query and the response to that query is a transaction. The
authenticity and integrity of DNS transactions are guaranteed by digital signatures, which in the
case of transactions are called transaction signatures (TSIGs). A TSIG is not a DNS database
record; it is a technique for digitally signing DNS messages. The key statement defines the
algorithm and secret key used to digitally sign transactions. The syntax of the key statement is

key key id {

algorithm hmac-md5;

secret secret_string;
|8
The key _idis any descriptive name you want to assign to the algorithm and secret key pairing— it is
this name that is used as the key identifier. In Listing 4.5, the algorithm/key pairing is simply named
"key". Currently, BIND only supports the hmac-md5 algorithm, so the algorithm is always that value
(although this could change in the future). The secret_string is a base-64 encoded key used by the
algorithm. Use the dnskeygen utility to generate the secret_string value, or manually create your

own value if you have another utility that can create encoded keys.

After a key identifier is defined, it can be used in an access control list or in the keys option. Notice

103

that the key defined in the example is not referenced anywhere in Listing 4.5. The Red Hat
configuration creates this key for use with the remote named control tool. Later in this chapter, we
will see this same key in the Red Hat rndc.conf file that is used to configure the remote named
control tool.

The most unique item in this configuration is the zone statement for a zone named "localhost". The
Red Hat server is the master for the "localhost" zone, so it loads the zone directly from a local file.
The file is named /var/named/localhost.zone. Listing 4.6 shows this file.

Listing 4.6: The Red Hat localhost.zone File

$ cat /var/named/localhost.zone
STTL 86400
SORIGIN localhost.

@ 1D IN SOA @ root (

42 ; serial (d. adams)
3H ; refresh
15M ; retry
1w ; expiry
1D) ; minimum

1D IN NS @

1D IN A 127.0.0.1

The purpose of this file is to map the domain name localhost. to the address 127.0.0.1. In most
cases, it is unused. Generally, users query for the hostname localhost, not the hostname localhost..
When the name is entered without the trailing dot, it is expanded with the domain names from the
search list and sent to the server for the local domain. The name localhost is either resolved on the
local system by the small /etc/hosts file found on most systems, or sent to the name server of the
local domain for resolution. Only the name localhost. with the trailing dot will not be expanded and
thus be resolved by this file. However, this file provides a nice balance to the reverse zone file that
Red Hat provides for the loopback address because that file makes multiple references to the
filename localhost.. Most systems do not have a localhost.zone file. Red Hat administrators use this
file because Red Hat has already created it for them.

Most Unix and Linux systems do not create the "localhost" zone. But all server configurations create
the hints file and the reverse zone file for the loopback address. It is the loopback address reverse
zone file that is most commonly called the local host file. The hints file and the local host file, along
with the named.conf file, are required for every server configuration.

The Hints File

The hints file contains information that named uses to initialize the cache. As indicated by the root
domain (".") name on the zone statement, the hints the file contains are the names and addresses
of the root name servers. The file helps the local server locate a root server during startup. After a
root server is located, an authoritative list of root servers is downloaded from that server. The hints

are not referred to again until the local server restarts.

The named.conf file points to the location of the hints file. The hints file can be given any filename.
Commonly used names are named.ca, named.root, and root.cache. In the Red Hat example, the
hints file is called named.ca, and is located in the /var/named directory. The hints file provided by
the Red Hat installation contains the following server names and addresses:

104

Listing 4.7: The named Hints File

. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12

. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90

. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10

. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241

. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4

. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53

. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17

. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10

. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129

. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12

. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33

The hints file contains only name server (NS) and address (A) records. Each NS record identifies a
name server for the root domain (.). The associated A record gives the IP address for each server.
The structure of these database entries will become clear later in the chapter. For now, it is
important to realize that you do not directly create or edit this file.

The sample file in Listing 4.7 is provided by the Linux installation. But even if your system doesn't
provide a hints file, it is easy to get one. The official list of root servers is available on the Internet.
Download the file /domain/named.root from ftp://ftp.rs.internic.net/ via anonymous FTP. The file that
is stored there is in the correct format for a Linux system, is ready to run, and can be downloaded
directly to your hints file.

The Local Host File

Every name server is the master of its own loopback domain, which of course makes sense. The
whole point of creating the loopback interface (lo) is to reduce network traffic. Sending domain
queries about the loopback address across the network would defeat that purpose.

The loopback domain is a reverse domain. It is used to map the loopback address 127.0.0.1 to the
hostname localhost. On our sample Red Hat system, the zone file for this domain is called
named.local, which is the most common name for the local host file. The Red Hat installation
provides the file shown in Listing 4.8.

Listing 4.8: The named.local File

$ cat /var/named/named.local
Q IN SOA localhost. root.localhost. (
1997022700 ; Serial

105

28800 ; Refresh
14400 ; Retry
3600000 ; Expire
86400) ; Minimum
IN NS localhost.
1 IN PTR localhost.

Every Linux system that runs named has an essentially identical local host file. This one was
created automatically by the Red Hat installation; if your system doesn't create one, you can copy
this one. There is really no need to edit or change this file to run it on your system. At this point, the
contents of the file don't need to be discussed because they are always the same on every system.
You will, however, see examples of all of these database records later in the chapter.

Most name servers are caching-only servers. For those servers, you:

e Configure the resolver. When running named on the local system, you can use the default
resolver configuration.

e Create the named.conf file. You can copy the one shown in Listing 4.4.

e Download the named.root from ftp:/ftp.rs.internic.net/, and use it as the hints file.

¢ Create the named.local file. You can copy the one shown in Listing 4.8.

e Start named, and add named to the system startup to ensure that named starts
automatically whenever the system reboots. See "Running named" at the end of this chapter
for more information on starting named.

This simple configuration works on most name servers, but not on all of them. The slave servers
and the master server require more effort.

The Slave Server Configuration

Configuring a slave server is almost as simple as configuring a caching—only server. It uses the
same three configuration files with only minor modifications to the named.conf file. Because of this,
you can start with a caching—-only configuration to test your system before you configure it as a
slave server. Our sample slave server will be built by modifying the common caching-only
configuration shown in Listing 4.4.

Assume that wren (172.16.5.1) is the master server for the foobirds.org domain and the
16.172.in—addr.arpa reverse domain, and that we want to configure falcon as a slave server for
those domains. To accomplish this, we add two new zone statements to the basic named.conf file
on falcon to create the configuration shown in Listing 4.9.

Listing 4.9: A DNS Slave Server Configuration

$ cat /etc/named.conf
options {
directory "/var/named";

bi

// a slave server configuration
//
zone "." {

type hint;

file "named.ca";

bi

106

zone "0.0.127.in-addr.arpa" {
type master;
file "named.local";

bi

zone "foobirds.org" {
type slave;
file "foobirds.hosts";
masters { 172.16.5.1; };
allow-updates { none; };

bi

zone "16.172.in-addr.arpa" {
type slave;
file "172.16.reverse";
masters { 172.16.5.1; };
allow—-updates { none; };

bi

The access control list and the allow—query option from Listing 4.4 have been removed from this
configuration. Authoritative servers (the master and all official slaves) should accept queries from
any source because they are advertised to the world through the domain's NS records. When you
advertise a service, you should provide it.

The configuration file contains all of the zone statements that have already been discussed because
all servers use a hints file and a loopback domain database file. The two new zone statements
declare zones for the domains foobirds.org and 0.16.172.in-addr.arpa. The type clause in each of
the new zone statements says that this is a slave server for the specified domains.

The file clause for a slave zone has a different purpose than those that you have seen before. In the
previous examples, the file identified by the file clause was the source of the zone information. In
this case, the file is the local storage for the zone information. The ultimate source for the
information is the master server.

The masters clause identifies the master server. There can be more than one IP address provided
in this clause, particularly if the master server is multihomed and thus has more than one IP
address. In most configurations, only one address is used, which is the address of the master
server for the specified zone.

The slave server downloads the entire zone file from the master server. This process is called a
zone file transfer. When the file is downloaded, it is stored in the file identified by the file clause.
Don't create or edit this file; it is created automatically by named. After the zone is downloaded, it
loads directly from the local disk. The slave will not transfer the zone again until the master server
updates the zone. How the slave knows when the zone has been updated is covered later in this
chapter.

Configuring caching servers and slave servers doesn't seem very difficult, so what's the big deal
about DNS configuration? The big deal is the master server, and that's what we tackle next.

The Master Server Configuration

The named.conf file for a master server looks very much like the configuration file for a secondary
server. In Listing 4.9, falcon was the slave server for foobirds.org and 16.172.in-addr.arpa, and

107

wren was the master server for those domains. The named.conf file for wren is shown in Listing
4.10.

Listing 4.10: A DNS Master Server Configuration

$ cat /etc/named.conf
options {

directory "/var/named";
}i

// a master nameserver config
//
zone "." {

type hint;

file "named.ca";

bi

zone "0.0.127.in-addr.arpa" {
type master;
file "named.local";
}i

zone "foobirds.org" ({
type master;
file "foobirds.hosts";
notify vyes;
allow-updates { none; };

bi

zone "16.172.in-addr.arpa" {
type master;
file "172.16.reverse";
notify vyes;
allow-updates { none; };

bi

The zone statements for the foobirds.org and 16.172.in—addr.arpa domains are almost the same as
the zone statement for the 0.0.127.in—-addr.arpa domain, and they function the same way: The
statements declare the zones, say that this is the master server for those zones, and identify the
files that contain the database records for those zones. The new zone statements also have two
options. notify was added so that the server will send DNS NOTIFY messages to the slave servers
whenever the zone file is updated. allow—update is set to none to reject dynamic updates.

So far, the configuration of the master server is the same as any other server—you create a
configuration file, a hints file, and a local host reverse zone file. The difference comes from the fact
that you must also create the real domain database files. The foobirds.hosts file and the
172.16.reverse file in our example can't be downloaded from a repository. You must create them,
and in order to do so, you must understand the syntax and purpose of the database records.

DNS Database Records

The database records used in a zone file are called standard resource records or sometimes just
RRs. All resource records have the same basic format:

[name] [ttl] IN type data

108

The name field identifies the domain object affected by this record. It could be an individual host or
an entire domain. Unless the name is a fully qualified domain name, it is relative to the current
domain.

A few special values can be used in the name field. These are

A blank name refers to the last named object. The last value of the name field stays
in force until a new value is specified.

@ An at-sign refers to the current origin. The origin is the default domain name
used inside the zone file. You can set the origin in the database file with the
$ORIGIN directive. If a SORIGIN directive is not used, the origin is the domain name
from the zone command in the named.conf file.

* An asterisk is a wildcard character that can be used to match any character string.

The time-to-live (itl) field defines the length of time that this resource record should be cached.
This permits you to decide how long remote servers should store information from your domain. You
can use a short TTL for volatile information and a long TTL for stable information. If no TTL value is
specified, the default TTL value defined by the $TTL directive is used. (Zone file directives are
discussed later in the chapter.)

The class field is always IN, which is shown in the syntax above. There really are three possible
values: HS for Hesiod servers, CH for Chaosnet servers, and IN for Internet servers. All of the
information you deal with is for TCP/IP networks and Internet servers, so you will not use the other
values.

The type field defines the type of resource record. There are 40 different types of records; almost all
of which are experimental, obsolete, or unused. The types used in this chapter, which are the most
commonly used record types, are listed in Table 4.2.

Table 4.2: DNS Database Record Types

Record Name Record Type Function

Start of Authority SOA Marks the beginning of a zone's data, and defines
parameters that affect the entire zone

Name Server NS Identifies a domain's name server

Address A Maps a hostname to an address

Pointer PTR Maps an address to a hostname

Mail Exchanger MX Identifies the mail server for a domain

Canonical Name CNAME Defines an alias for a hosthname

The last field in the resource record is the data field, which holds the data that is specific to the type
of resource record. For example, in an A record, this contains an address. The format and function
of the data field is different for every record type.

In addition to resource records, BIND provides four zone file directives that are used to simplify the
construction of the zone file or to define a value used by the resource records in the file.

109

Zone File Directives

The four directives are evenly divided into two that simplify the construction of a zone file,
$INCLUDE and $GENERATE; and two that define values used by the resource records, $ORIGIN
and $TTL.

The $TTL Directive Defines the default TTL for resource records that do not specify
an explicit time to live. The TTL value can be specified as a number of seconds, or
as a combination of numbers and letters. Defining one week as the default TTL using
seconds is

STTL 604800

Using the alphanumeric format, one week can be defined as

STTL 1w
The letter values that can be used with the alphanumeric format are

+ w for week

+ d for day

¢ h for hour

+ m for minute

¢ s for second
The $ORIGIN Directive Sets the current origin, which is the domain name used to
complete any relative domain names. By default, §ORIGIN starts out assigned the
domain name defined on the zone statement. Use the $ORIGIN directive to change
the setting. For example, the following directive changes the origin to
ducks.foobirds.org:

SORIGIN ducks.foobirds.org.

Like all names in a zone file, the domain name on the $ORIGIN directive is relative to
the current origin, unless it is fully qualified. Thus, if the zone statement defines the
domain foobirds.org and the zone file contains the following $ORIGIN directive:

SORIGIN ducks

The effect is the same as the previous $ORIGIN directive. The name ducks is
relative to the current origin foobirds.org. Therefore, the new origin is
ducks.foobirds.org. Relative names in any resource records in the zone file that
follow this $ORIGIN directive are relative to this new origin.

The SINCLUDE Directive Reads in an external file, and includes it as part of the
zone file. The external file is included in the zone file at the point where the
SINCLUDE directive occurs. The $SINCLUDE directive makes it possible to divide a
large domain into several different files. This might be done so that several different
administrators can work on various parts of a zone without having all of them try to
work on one file at the same time. The directive begins with the $INCLUDE keyword,
which is followed by the name of the file to be included. All filenames in the zone file
are relative to the directory pointed to by the directory option in the named.conf file,
unless fully qualified to the root.

110

The $SGENERATE Directive The $SGENERATE directive create a series of resource
records. The resource records generated by the SGENERATE directive are almost
identical, varying only by a numeric iterator. An example shows the structure of the
$GENERATE directive:

SORIGIN 20.16.172.in-addr.arpa.
SGENERATE 1-4 $ CNAME S$.1lto4

The $GENERATE keyword is followed by the range of records to be created. In the
example, the range is 1 through 4. The range is followed by the template of the
resource records to be generated. In this case, the template is $ CNAME $.1to4. A $
sign in the template is replaced by the current iterator value. In the example, the
value iterates from 1 to 4. This $GENERATE directive produces the following
resource records:

1 CNAME 1.1to4
2 CNAME 2.1to4
3 CNAME 3.1to4
4 CNAME 4.1to4

Given that 20.16.172.in-addr.arpa. is the value defined for the current origin, these
resource records are the same as

.20.16.172.in-addr.arpa. CNAME
.20.16.172.in-addr.arpa. CNAME
.20.16.172.in-addr.arpa. CNAME
.20.16.172.in-addr.arpa. CNAME

.1t04.20.16.172.in-addr.arpa.
.1t04.20.16.172.in-addr.arpa.
.1t04.20.16.172.in~-addr.arpa.
.1t04.20.16.172.in-addr.arpa.

SN
DS N

These odd-looking records have a very specific purpose for delegating reverse
subdomains. Delegating reverse domains is covered later in this chapter. The
purpose of these odd resource records is described there.

Now that you know what records and directives are available and what they look like, you're ready
to put them together to create a database.

The Domain Database File

The domain database file contains most of the domain information. Its primary function is to convert
hostnames to IP addresses so A records predominate, but this file contains all of the database
records except PTR records. Creating the domain database file is both the most challenging and the
most rewarding part of building a name server.

In the foobirds.org domain, wren is the master server. Based on the named.conf file shown in
Listing 4.10, the domain database file is named foobirds.hosts. Its contents are shown in Listing
4.11.

Listing 4.11: A Sample DNS Zone File

;
; The foobirds.org domain database

STTL 1w

@ IN SOA wren.foobirds.org. sara.wren.foobirds.org. (
2002030601 ; Serial
21600 ; Refresh

111

1800 ; Retry

604800 ; Expire
900) ; Negative cache TTL
; Define the nameservers
IN NS wren.foobirds.org.
IN NS falcon.foobirds.org.
IN NS bear.mammals.org.
; Define the mail servers
IN MX 10 wren.foobirds.org.
IN MX 20 parrot.foobirds.org.
7
; Define localhost
7
localhost IN A 127.0.0.1
7
; Define the hosts in this zone
7
wren IN A 172.16.5.1
parrot IN A 172.16.5.3
crow IN A 172.16.5.5
hawk IN A 172.16.5.4
falcon IN A 172.16.5.20
puffin IN A 172.16.5.17
IN MX 5 wren.foobirds.org.
robin IN A 172.16.5.2
IN MX 5 wren.foobirds.org.
redbreast IN CNAME robin.foobirds.org.
WWW IN CNAME wren.foobirds.org.
news IN CNAME parrot.foobirds.org.
7
; Delegating subdomains
7
swans IN NS trumpeter.swans.foobirds.org.
IN NS parrot.foobirds.org.
terns IN NS arctic.terns.foobirds.org.
IN NS trumpeter.swans.foobirds.org.
7
; Glue records for subdomain servers
7
trumpeter.swans IN A 172.16.12.1
arctic.terns IN A 172.16.6.1

The SOA record All zone files begin with an SOA record. The @ in the name field of the SOA
record refers to the current origin, which in this case is foobirds.org because that is the value
defined in the zone statement of the configuration file. Because it ties the domain name back to the
named configuration file, the name field of the SOA record is usually an at-sign.

The data field of the SOA record contains seven different components. It is so long, the data field of
the SOA record normally spans several lines. The parentheses are continuation characters. After an
opening parenthesis, all data on subsequent lines are considered part of the current record until a
closing parenthesis. The components of the data field in the sample SOA record contain the
following values:

wren.foobirds.org This is the hostname of the master server for this zone.
sara.wren.foobirds.org This is the e-mail address of the person responsible for

this domain. Notice that the at-sign (@) normally used between the username (sara)
and the hostname (wren.foobirds.org) in an e-mail address is replaced here with a

112

dot (.).

2002030601 This is the serial number, a numeric value that tells the slave server
that the zone file has been updated. To make this determination, the slave server
periodically queries the master server for the SOA record. If the serial number in the
master server's SOA record is greater than the serial number of the slave server's
copy of the zone, the slave transfers the entire zone from the master. Otherwise, the
slave assumes it has a current copy of the zone, and skips the zone transfer. The
serial number should be increased every time the domain is updated in order to keep
the slave servers synchronized with the master.

21600 This is the length of time in the refresh cycle. Every refresh cycle, the slave
server checks the serial number of the SOA record from the master server to
determine whether the zone needs to be transferred. The length of the refresh cycle
can be defined using either a numeric or an alphanumeric format. (See the
discussion of the $TTL directive for the details of these formats.) Listing 4.11 uses
the numeric format to set the refresh cycle to 21,600 seconds, which tells the slave
server to check four times per day. This indicates a stable database that does not
change very frequently, which is often the case. Computers are added to the network
periodically, but not usually on an hourly basis. When a new computer arrives, the
hostname and address are assigned before the system is added to the network
because the name and address are required to install and configure the system.
Thus, the domain information is disseminated to the slave servers before users begin
to query for the address of the new system. A low refresh cycle keeps the servers
tightly synchronized, but a very low value is not usually required because the DNS
NOTIFY message sent from the master server causes the slave to immediately
check the serial number of the SOA record when an update occurs. The refresh
cycle is a redundant backup for DNS NOTIFY.

1800 This is the retry cycle. The retry cycle defines the length of time that the slave
server should wait before asking again when the master server fails to respond to a
request for the SOA record. The length of time can be specified using either a
numeric or an alphanumeric format. In this example, the numeric format is used to
specify a retry time of 1800 seconds (30 minutes). Don't set the value too low—a
half-hour or 15 minutes are good retry values. If the server doesn't respond, it may
be down. Quickly retrying a down server gains nothing, and wastes network
resources.

604800 This is the expiration time, which is the length of time that the slave server
should continue to respond to queries, even if it cannot update the zone file. The idea
is that at some point in time, out-of-date data are worse than no data. This should
be a substantial amount of time. After all, the main purpose of a slave server is to
provide backup for the master server. If the master server is down and the slave
stops answering queries, the entire network is down instead of having just one server
down. A disaster, such as a fire in the central computer facility, can take the master
server down for a very long time. The time can be specified in either numeric or
alphanumeric format. In Listing 4.10, 604,800 seconds (one week) is used; an
equally common value is one month.

900 This is the default time-to-live that servers should use when caching negative

information about this zone. All servers cache answers, and use those answers to
respond to subsequent queries. Most of the answers cached by a server are

113

standard resource records, which is positive information from the DNS database. A
name server can also learn from the authoritative server for a zone that a specific
piece of information does not exist, which is negative information. For example, the
response to a query for bittern.foobirds.org would be that the domain name does not
exist. This is valuable information that also should be cached. But with no associated
resource record, and thus no explicit TTL, how long should it be cached? The
negative cache TTL from the zone's SOA record tells remote servers how long to
cache negative information. The SOA record in Listing 4.11 sets the negative cache
value to 15 minutes (900 seconds). The negative cache TTL can be defined in either
numeric or alphanumeric format. Use a negative cache of no more than 15
minutes—five minutes isn't bad either.

All of the components of the data field of the SOA record set values that affect the entire domain.
Several of these items affect remote servers. You decide how often slave servers check for
updates, and how long caching servers keep your data in their caches. The domain administrator is
responsible for the design of the entire domain.

Defining the Name Servers In Listing 4.11, the NS records that follow the SOA record define the
official name servers for the domain. Unless the also—notify option is used in the zone statement of
the named.conf file, these are the only servers that receive a DNS NOTIFY message when the zone
is updated.

Although they can appear anywhere in the file, the NS records often follow directly after the SOA
record. When they do, the name field of each NS record can be blank. Because the name field is
blank, the value of the last object named is used. In Listing 4.11, the last value to appear in the
name field was the @ that referred to the foobirds.org domain defined in the named.conf file.
Therefore, these NS records all define name servers for the foobirds.org domain.

The first two NS records point to the master server wren and the slave server falcon that we
configured earlier. The third server is external to our network. Name servers should have good
network connections, and slave name servers should have a path to the Internet that is independent
from the path used by the master server. This enables the slave server to fulfill its purpose as a
backup server, even when the network that the master server is connected to is down. Large
organizations may have independent connections for both servers; small organizations usually do
not. If possible, find a server that is external to your network to act as a slave server. Check with
your Internet Service Provider (ISP); it may offer this as a service to its customers.

Defining the Mail Servers The first two MX records in Listing 4.11 define the mail servers for this
domain. The name field is still blank, meaning that these records pertain to the last named object,
which in this case is the entire domain. The first MX record says that wren is the mail server for the
foobirds.org domain, with a preference of 10. If mail is addressed to user@foobirds.org, the mail is
directed to wren for delivery.

The second MX record identifies parrot as a mail server for foobirds.org with a preference of 20.
The lower the preference number, the more preferred the server. This means that mail addressed to
the foobirds.org domain is first sent to wren. Only if wren is unavailable is the mail sent to parrot.
parrot acts as a backup for those times when wren is down or offline.

These two MX records redirect mail addressed to the domain foobirds.org, but they do not redirect
mail addressed to an individual host. Therefore, if mail is addressed to jay@hawk.foobirds.org, it is
delivered directly to hawk; it is not sent to a mail server. This configuration permits people to use
e—mail addresses of the form user@domain when they like, or to use direct delivery to an individual

114

host when they want that. It is a very flexible configuration.

Some systems, however, may not be capable of handling direct delivery e-mail. An example is a
Microsoft Windows system that doesn't run an SMTP mail program. Mail addressed to such a
system would not be successfully delivered. To prevent this, assign an MX record to the individual
host to redirect its mail to a valid mail server.

There are two examples of this in the sample zone file. Look at the resource records for puffin and
robin. The address record of each system is followed by an MX record that directs mail to wren. The
MX records have a blank name field, but this time they don't refer to the domain. In both cases, the
last value in the name field is the name from the preceding address record. It is this name to which
the MX record applies. In one case it is puffin, and in the other it is robin. With these records, mail
addressed to daniel@puffin.foobirds.org is delivered to daniel@wren.foobirds.org.

The MX record is only the first step in creating a mail server. The MX is necessary to tell the remote
computer where it should send the mail, but for the mail server to successfully deliver the mail to the
intended user, it must be properly configured.

Note Chapter 5, "Configuring a Mail Server," looks at how sendmail is configured to
properly handle the mail.

Defining the Host Information The bulk of the zone file consists of address records that map
hostnames to IP addresses. The first address record in the domain database file in Listing 4.11
maps the name localhost.foobirds.org to the loopback address 127.0.0.1. The reason this entry is
included in the database has something to do with the way that the resolver constructs queries.
Remember that if a hostname contains no dots, the resolver extends it with the local domain. So
when a user enters telnet localhost, the resolver sends the name server a query for
localhost.foobirds.org. Without this entry in the database, the resolver would make multiple queries
before finally finding localhost in the /etc/hosts file. The localhost entry is followed by several
address entries for individual hosts in the domain.

The only other unexplained records in the section of Listing 4.11 that defines host information are
the CNAME records. The first CNAME record says that redbreast is a hostname alias for robin.
Aliases are used to map an obsolete name to a current name or to provide generic names such as
www and news. Aliases cannot be used in other resource records. Therefore, take care when
placing CNAME records in the domain database. You have seen several examples of the fact that a
blank name field refers to the previously named object. If the CNAME record is placed improperly, a
record with a blank name field can illegally reference a nickname.

For example, the file contains these records for robin:

robin IN A 172.16.5.2
IN MX 5 wren.foobirds.org.
redbreast IN CNAME robin.foobirds.org.

A mistake in placing these records could produce the following:

robin IN A 172.16.5.2
redbreast IN CNAME robin.foobirds.org.
IN MX 5 wren.foobirds.org.

This would cause named to display the error "redbreast.foobirds.com has CNAME and other data
(illegal)" because the MX record now refers to redbreast. Due to the potential for errors, many

115

domain administrators put the CNAME records together in one section of the file instead of
intermingling them with other resource records.

Delegating a Subdomain The final six resource records in Listing 4.11 delegate the subdomains
swans.foobirds.org and terns.foobirds.org. The root servers delegated the foobirds.org domain to
us. We now have the authority to delegate any domains within the foobirds.org domain that we
wish. In the example, two are delegated.

You have complete freedom to create subdomains and hostnames within your domain.
Organizations create subdomains for two basic reasons:

e To simplify the management of a large number of hostnames. This reason is easy to
understand; it is exactly why DNS was created in the first place. Delegating pieces of the
domain spreads the burden of maintaining the system to more people and computers so that
no one person or computer is overwhelmed with work.

e To recognize the structure within the organization. This reason springs from a fact of
organizational life. Some parts of the organization will want to control their own services, no
matter what. In Listing 4.11, two "organizational" subdomains are delegated—one to the
group dedicated to research on swans and one to the group that works with terns.

Subdomains usually have either geographic or organizational names. denver.foobirds.org is an
example of a geographic subdomain name while sales.foobirds.org is an example of an
organizational name. One problem with naming a subdomain is that office locations change, and
organizations reorganize. If the subdomain names you choose are too specific, you can bet that you
will have to change them. Assume that your west coast office is in Santa Clara. You're better off
naming the subdomain west or westcoast than you are calling it santaclara. If they move to a new
building in San Jose, you don't want to have to change the subdomain name.

A domain does not officially exist until it is delegated by its parent domain. The administrator of
trumpeter.swans.foobirds.org can configure the system as the master server for the swans domain,
and enter all of the necessary domain data. It doesn't matter because no one will query the system
for information about the domain. In fact, no computer in the outside world will even know that the
swans domain exists. When you think of how the domain system works, you'll see why this is true.

The DNS system is a rooted hierarchical system. If a remote server has no information at all about
the swans.foobirds.org domain, it asks a root server. The root server tells the remote server that
wren and its slave servers know about foobirds.org. The remote server then asks wren. wren finds
the answer to the query, either from its cache or by asking parrot or trumpeter, and replies with the
answer along with the NS records for swans.foobirds.org and the IP addresses of trumpeter and
parrot. Armed with the NS records and the IP addresses, the remote server can send other queries
about the swans.foobirds.org domain directly to trumpeter.

The information path is from the root to wren and then to trumpeter. There is no way for the remote
server to go directly to trumpeter or parrot for information until wren tells it where they are located. If
the delegation did not exist in the foobirds.org domain, the path to the swans.foobirds.org domain
would not exist.

NoteNotice that the root server sends the remote server to wren, whereas wren looks up the
answer for the remote server instead of just sending the remote server to trumpeter. The root
servers are non-recursive servers: If they don't have an answer, they'll tell you who does, but
they won't look it up for you. Most other servers are recursive servers: If they don't have the
answer, they'll look it up for you.

116

The first four lines of the sample delegations are NS records.

swans IN NS trumpeter.swans.foobirds.org.
IN NS parrot.foobirds.org.

terns IN NS arctic.terns.foobirds.org.
IN NS trumpeter.swans.foobirds.org.

The first two records say that trumpeter and parrot are authoritative servers for the
swans.foobirds.org domain. The last two records say that arctic and trumpeter are authoritative
servers for the terns.foobirds.org domain.

Two other records are part of the subdomain delegation. They are address records:

trumpeter.swans IN A 172.16.18.15
arctic.terns IN A 172.16.6.1

Both of these addresses are for name servers located in domains that are subordinate to the current
domain. These address records are called glue records because they help to link all of the domains
together. In order to connect to a name server, you must have its address. If the address for arctic
were only available from arctic, there'd be a problem. For this reason, the address of a name server
located in a subordinate domain is placed in the parent domain when the subordinate domain is
delegated.

The Reverse Domain File

The reverse domain file maps IP addresses to hostnames. This is the reverse of what the domain
database does when it maps hostnames to addresses.

But there is another reason this is called the reverse domain: All of the IP addresses are written in
reverse. For example, in the reverse domain, the address 172.16.5.2 is written as
2.5.16.172.in-addr.arpa. The address is reversed to make it compatible with the structure of a
domain name. An IP address is written from the most general to the most specific. It starts with a
network address, moves through a subnet address, and ends with a host address. The hostname is
just the opposite. It starts with the host, moves through subdomain and domain, and ends with a
top-level domain. To format an address like a hostname, the host part of the address is written first,
and the network is written last. The network address becomes the domain name, and the host
address becomes a hostname within the domain.

In our example, the network address 172.16.0.0 becomes the domain 16.172.in-addr.arpa. The
zone file for this domain is shown in Listing 4.12.

Listing 4.12: A DNS Reverse Zone File

; Address to hostname mappings.

STTL 1w
@ IN SOA wren.foobirds.org. sara.wren.foobirds.org. (
1999022702 ; Serial
21600 ; Refresh
1800 ; Retry
604800 ; Expire
900) ; Negative cache TTL
IN NS wren.foobirds.org.
IN NS falcon.foobirds.org.
IN NS bear.mammals.org.
1.5 IN PTR wren.foobirds.org.

117

2.5 IN PTR robin. foobirds.org.
3.5 IN PTR parrot.foobirds.org.
4.5 IN PTR hawk.foobirds.org.
5.5 IN PTR crow.foobirds.org.
17.5 IN PTR puffin.foobirds.org.
20.5 IN PTR falcon.foobirds.org.
1.12 IN PTR trumpeter.swans.foobirds.org.
1.6 IN PTR arctic.terns.foobirds.org.
6 IN NS arctic.terns.foobirds.org.
IN NS falcon.foobirds.org.

Like other zone files, the reverse zone begins with an SOA record and a few NS records. They
serve the same purpose and have the same fields as their counterparts in the domain database,
which were explained previously.

PTR records make up the bulk of the reverse domain because they are used to translate addresses
to hostnames. Look at the first PTR record. The name field contains 1.5. This is not a fully qualified
name, so it is interpreted as relative to the current domain, giving us 1.5.16.172.in—addr.arpa as the
value of the name field. The data field of a PTR record contains a hostname. The hostname in the
data field is fully qualified to prevent it from being interpreted as relative to the current domain. In
the first PTR record, the data field is wren.foobirds.org, so a PTR query for 1.5.16.172.in—addr.arpa
(172.16.5.1) returns the value wren.foobirds.org.

Delegating a Reverse Subdomain The last two resource records in Listing 4.12 are NS records
that delegate the subdomain 6.16.172.in-addr.arpa to arctic and falcon. Subdomains can be
created and delegated in the reverse domain just as they are in the hostname space. However,
limitations caused by the way that addresses are treated as hostnames in the reverse domain can
make them more difficult to set up and to use than other subdomains.

The reverse domain treats the IP address as a hostname composed of four pieces. The four bytes
of the address become the four parts of the hostname. However, addresses are really 32
contiguous bits, not four distinct bytes. In our sample network, we have delegated addresses on
byte boundaries, so it's easy to assign reverse subdomains on the same boundary. What if we had
only assigned the addresses 172.16.6.1 to 172.16.6.63 to arctic? The delegation shown in Listing
4.12 would send queries to arctic that it couldn't answer.

There is a way around the byte—boundary limitation, but it can be confusing. The technique is to
assign every possible address a CNAME that includes a new subdomain that takes into account the
real domain structure and then to delegate the new subdomain to the remote server. Assume that
we only want arctic to handle the addresses 172.16.6.1 to 172.16.6.63. We could generate 63
CNAME records in the reverse zone as follows:

SORIGIN 6.16.172.in-addr.arpa.

SGENERATE 1-63 $ CNAME $.1-63

1-63 IN NS arctic.terns.foobirds.org.
IN NS falcon.foobirds.org.

The $GENERATE directive creates 63 CNAME records for the names 1.6.16.172.in—addr.arpa to
63.6.16.172.in—addr.arpa. Each name is assigned a correspondingly numbered canonical name by
its CNAME record in the new 1-63 subdomain. Thus, 5.6.16.172.in—addr.arpa. is assigned the
canonical name 5.1-63.6.16.172.in—addr.arpa.. The new 1-63 subdomain is then delegated to
arctic and falcon. If a query comes in for 2.6.16.172.in—addr.arpa, the resolver is told that the real
name it is seeking is 2.1-63.6.16.172.in—addr.arpa, and that the servers for that name are arctic
and falcon. This technique allows you to get around the limitation of delegating reverse subdomains

118

on a byte boundary.

The reverse zone may seem like a lot of trouble for a little gain; after all, most of the action happens
in the hostname space. But keeping the reverse zone up-to—date is important. Several programs
use the reverse domain to map IP addresses to names for status displays. netstat is a good
example. Some remote systems use reverse lookup to check on who is using a service, and in
extreme cases won't allow you to use the service if they can't find your system in the reverse
domain. Keeping the reverse domain updated ensures smooth operation.

Running named

named is started at boot time by one of the startup scripts. On a Red Hat system, it is started by the
/etc/rc.d/init.d/named script. The script checks that the named program and the named.conf file are
available, and it then starts named. After the configuration files are created, named will restart
whenever the system reboots.

Of course, it is not necessary to reboot in order to run named. You can run the named boot script
from the command line. The Red Hat script accepts several arguments:

start Starts named if it is not already running.
stop Terminates the currently running named process.

restart Unconditionally terminates the running named process, and starts a new
named process.

condrestart Does the same thing as restart, but only if named is currently running. If
named is not running, no action is taken.

reload Uses the named management tool (rndc) to reload the DNS database files
into the server. If rndc fails to reload the files, the script attempts to force a reload by
sending a signal to named. (More on rndc and named signal processing later in this
chapter.)

probe Uses the named management tool (rndc) to reload the DNS database files
into the server. If rndc fails to reload the files, the script attempts to start named.

status Displays information about whether or not named is running.
Running boot scripts from the command line is so useful and popular that Red Hat provides a script
named /sbin/service for the sole purpose of running boot scripts. The syntax of the service
command is simple:

service script command

where script is the name of a script in the /etc/init.d directory, and command is an argument passed
to that script.

Here is an example of using the Red Hat startup script to check the status of named and then to
start named running:

119

[root]# service named status
named not running.

[root]# service named start
Starting named: [OK]

If your Linux system does not have a named script such as the one provided by Red Hat, you can
start named from the command line by typing named &. However, named is rarely started from the
command line because it automatically starts at every boot, and because rndc and signal
processing mean that it does not need to be stopped and started to load a new configuration.
Before discussing rndc, let's look at how signals can be used to cause named to load a new
configuration and to perform a number of other tasks.

named Signal Processing

Signal processing is one area in which the version of BIND matters. BIND 8 and earlier versions of
BIND handle several different signals. BIND 9 handles only two: SIGHUP and SIGTERM. Under
BIND 9, SIGHUP reloads the DNS database, and SIGTERM terminates the named process. You
can use signals with BIND 8, but don't use signals with BIND 9. Control BIND 9 with rndc, which is
covered in the next section. That said, BIND 8 accepts the following signals.

The SIGHUP signal causes named to reread the named.conf file and reload the name server
database. Using SIGHUP causes the reload to occur immediately. On a master server, this means
that the local database files are reloaded into memory. On a slave server, this means that the slave
immediately reloads its local disk copies and then sends a query to the master server for the SOA
record to check if there is a new configuration.

SIGINT causes named to dump its cache to named_dump.db. The dump file contains all of the
domain information that the local name server knows. Examine this file. You'll see a complete
picture of the information the server has learned. Examining the cache is an interesting exercise for
anyone who is new to DNS.

Use SIGUSR1 to turn on tracing. Each subsequent SIGUSR1 signal increases the level of tracing.
Trace information is written to named.run. Tracing can also be enabled with the —d option on the
named command line if the problem you are looking for occurs so early in the startup that the
SIGUSR1 signal is not useful. The advantage of SIGUSRT1 is that it allows tracing to be turned on
when a problem is suspected, without stopping and restarting named.

The opposite of SIGUSR1 is SIGUSR2. It turns off tracing and closes the trace file. After issuing
SIGUSR2, you can examine the file or remove it if it is getting too large.

The kill command is used to send a signal to a running process. As the hame implies, by default it
sends the Kill signal. To use it to send a different signal, specify the signal on the command line. For
example, specify —INT to send the SIGINT signal. The process ID (PID) must be provided on the Kill
command line to ensure that the signal is sent to the correct process.

You can learn the process ID by using the ps command or using the status argument with the /
etc/init.d/named script. For example:

$ ps ax | grep named
271 2 S 0:00 /usr/sbin/named
7138 p0 S 0:00 grep named

In the case of named, you can learn the process ID by listing the named.pid file:

120

$ cat /var/run/named/named.pid
271

Combining some of these commands, you can send a signal directly to named. For example, to
reload the name server, you could enter the following command:

kill -HUP 'cat /var/run/named/named.pid’

The cat /var/run/named/named.pid command that is enclosed in single quotes is processed by the
shell first. On our sample system, this returns the PID 271. That is combined with the kill command
and then is processed as kill -HUP 271. This works, but it is easier to use the named management
tools that come with BIND.

The named Control Tools

There are two versions of the named management tool—one for BIND 8 and another one for BIND
9. BIND 8 uses the Name Daemon Control (ndc) tool, and BIND 9 uses the Remote Named
Daemon Control (rndc) tool. The commands used with these tools are very similar. When there are
differences, the text points them out. Otherwise, rndc commands will work for ndc simply by
replacing rndc with ndc on the command line.

The named management tool allows you to control named with much less fuss than sending
signals. You don't need to know the correct PID, and you don't need to remember the correct signal.
For example, in the previous section, kill was used with the SIGHUP signal to reload the name
server. To do the same thing with rndc, you enter rndc reload. This command is simple and much
more intuitive than the kill command. The valid rndc command-line arguments are listed in Table
4.3. Note that a few commands in Table 4.3 are available only for ndc, and one command is
available only for rndc.

Table 4.3: rndc Commands

Argument Function

status Displays the status of named (ndc only)

dumpdb Dumps the cache to named_dump.db

reload Reloads the name server

stats Dumps statistics to named.stats (ndc only)

trace Turns on tracing to named.run (ndc only)

notrace Turns off tracing and closes named.run (ndc only)

querylog Toggles query logging, which logs each incoming query to syslog
start Starts named (ndc only)

halt Stops named without saving pending dynamic updates (rndc only)
stop Stops named

The biggest difference between ndc and rndc is not the command set. The biggest difference is that
rndc allows remote access. To use ndc on a BIND 8 name server, you must log directly into the
name server and issue the commands there. rndc can be used from a remote system. The
commands sent from the remote system must be cryptographically signed using the HMAC-MD5
algorithm and the correct key. The parameters needed to verify the remote system are defined in
the /etc/rndc.conf file.

121

The rndc.conf file and all the commands it contains apply only to BIND 9—BIND 8 does not use
rndc. Listing 4.13 shows the rndc.conf file that is delivered with Red Hat 7.2. Comments have been
deleted from the start of the file, but otherwise Listing 4.13 shows the file exactly as it is delivered.

Listing 4.13: The Red Hat rndc.conf File

/*
* Sample rndc configuration file.

*/

options {
default-server localhost;
default-key "key";

}i

server localhost {
key "key";
}i

key llkeyll {

algorithm hmac-md5;

secret "eabDFgxVnhWyhUwoSVjthOueObYtvQUC1iSuBgHxDRWilSaWMoMORNLmyEbJr";
}i

The rndc.conf file is structured like that of the named.conf file, but rndc.conf can contain, at most,
only three different statements. They are

options Like the options statement in the named.conf file, this statement defines
options that apply to the entire rndc configuration. But the rndc.conf options
statement can contain only two options:

default-server ldentifies the name server to which rndc commands
are sent if no name server is specified with the —s argument on the
rndc command line.

default-key Identifies the algorithm/key pair used if no key-id is
specified with the —y argument on the rndc command line.

server The rndc.conf server statement defines the characteristics of a server that
accepts rndc commands. Only the key option can be used with the server statement
in an rndc.conf file. The key option identifies the key used by the server. The key-id
used on the key option must match a key defined in the rndc.conf file.

key The syntax and purpose of the rndc.conf key statement are identical to those of
the key statement found in the named.conf file. The key statement assigns a key-id
to an algorithm/key pair.

The rndc.conf file is the client side of the rndc configuration. The key associated with a server in the
rndc.conf file must be the same key that the server has defined in its named.conf file. Listing 4.13 is
part of the configuration delivered by Red Hat for a caching—only server. The key defined in the
rndc.conf file is associated with the local host. Therefore, this key should match the key defined in
the named.conf file of the local host. Refer to Listing 4.5, which is the named.conf file delivered with
the Red Hat caching—only configuration. You will notice that the key defined in Listing 4.5 matches
the key defined in Listing 4.13. The keys must match for the client and server to successfully

122

communicate.

In addition to configuring the client side of rndc in the rndc.conf file, the server side must be
configured in the named.conf file. Part of the configuration has already been done. The key
statement is already defined in the named.conf file that comes from Red Hat, as shown in Listing
4.5. The other thing that is needed before rndc will work is a properly configured controls statement.
Attempting to control the named process with rndc before placing the correct controls statement in
the server's named.conf file returns an error, as in this example:

[root]# rndc reload
rndc: connect: connection refused

The controls statement defines

e the interface and port on which rndc commands are accepted
e the clients allowed to submit rndc commands
e the algorithm/key pair that must be used by the clients to sign the commands

Adding the following controls statement to the configuration shown in Listing 4.5 enables rndc on a
server running Red Hat's default caching—only configuration:

// a control channel for rndc
controls {

inet 127.0.0.1 allow { localhost; } keys { "key"; };
}i

The inet option defines the address of the network interface on which the server will accept rndc
commands. In this example, it is the address of the loopback interface, meaning that the server will
only accept rndc commands on the internal interface; commands will not be accepted from the
network. Optionally, the inet option can be followed by a port option to change the standard port
number; for example, inet 127.0.0.1 port 2020. By default, rndc uses port number 953. If a
non-standard port is used, the same port number must be specified on the client's rndc command
line using the —p argument.

The allow option defines the clients that are permitted to control the server through rndc commands.
Clients can be identified by hostname or IP address. In the example, the localhost is granted
permission to use rndc. Without this setting, rndc commands entered at the server's console are
rejected.

Finally, the keys option is used to identify the algorithm/key pair used to sign rndc transactions. The
key-id provided to this option must match a key-id defined in the client's rndc.conf file and
elsewhere in the server's named.conf file.

After this controls statement is added to the named.conf file from Listing 4.5, the server is restarted
so that it will use the new configuration:

[root]# service named restart

Stopping named: [OK]
Starting named: [OK]
[root]# rndec reload

rndc: reload command successful

After restarting the server with the new configuration, the rndc reload command that was rejected
earlier now runs successfully.

123

These steps are needed to enable rndc on BIND 9 systems because rndc requires a specific
network configuration. Special care must be taken before enabling such a powerful feature that can
potentially be accessed via the network. On the other hand, the ndc command that runs under BIND
8 can be used from the server console without any special configuration. ndc also has a controls
statement, but because ndc lacks support for strong authentication, it is not used remotely. ndc
defaults to local operation, and is ready to run from the local console.

Using the Host Table with DNS

You should always use DNS. But even though you will be using DNS, you will have a host table.
Which source of information should your system check first, DNS or the host table?

| usually configure my systems to use DNS first, and to fall back to the host table only when DNS is
not running. Your needs may be different. You may have special host aliases that are not included
in the DNS database, or local systems that are known only to a small number of computers on your
network and therefore are not registered in the official domain. In these cases, you want to check
the host table before sending an unanswerable query to the DNS server.

There are two files involved in configuring the order in which name services are queried for
information. The host.conf file is used primarily for name service. The nsswitch.conf file covers a
wider range of administrative databases, including name service.

The host.conf File

The host.conf file defines several options that control how the /etc/hosts file is processed, and how it
interacts with DNS. Listing 4.14 illustrates this with a sample host.conf file that contains every
possible option.

Listing 4.14: A Complete host.conf File

Define the order in which services are queried
order bind hosts nis

Permit multiple addresses per host

multi on

Sort addressees to prefer local addresses
reorder on

Verify reverse domain lookups

nospoof on

Log "spoof" attempts

spoofalert on

Remove the local domain for host table lookups
trim foobirds.org

The order option defines the order in which the various name services are queried for a hostname
or an IP address. The three values shown in the example are the only three values available:

e bind stands for DNS. (As noted earlier, BIND is the name of the software package that
implements DNS on Linux systems.)

e hosts stands for the /etc/hosts file.

e nis stands for the Network Information Service (NIS), which is a name service created by
Sun Microsystems.

124

These services are tried in the order they are listed. Given the order command shown in Listing
4.14, we try DNS first, then the /etc/hosts file, and finally NIS. The search stops as soon as a
service answers the query.

The multi option determines whether or not multiple addresses can be assigned to the same
hostname in the /etc/hosts file. This option is enabled when on is specified, and is disabled when off
is specified. You may be wondering why you would want to do this. Well, assume that you have a
single computer directly connected to a few different networks—this is called a multihomed host.
Each network requires an interface, and each interface requires a different IP address. Thus, you
have one host with multiple addresses. But also assume that this is your web server, and that you
want everyone to refer to it by the hostname www, regardless of the network they connect in from.
In this case, you have one hostname associated with multiple addresses, which is just what the
multi option was designed for. multi affects only host table lookups; it has no effect on DNS. DNS
inherently supports multiple addresses.

When multiple addresses are returned for a name, they are usually used in the order given. Setting
the reorder option to on tells the resolver to sort the addresses so that addresses from the local
network are preferred. This duplicates the function of the sortlist command found in the resolv.conf
file, but it does not have the power and flexibility of the sortlist command.

As you've seen, Domain Name System permits you to look up a hosthame and get an address as
well as to look up an address and get a hostname; names to addresses are in one database, and
addresses to names are in another database. The nospoof option says that the values returned
from both databases must match, or your system will reject the hostname and return an error. For
example, if the name wren.foobirds.org returns the address 172.16.5.1, but a lookup for the address
172.16.5.1 returns the hostname host0501.foobirds.org, your system will reject the host as invalid.
The keyword on enables the feature, and off disables it.

The spoofalert option is related to the nospoof option. When spoofalert is turned on, the system logs
any of the hostname/address mismatches described previously. When spoofalert is turned off, these
events are not logged.

The trim option removes the specified domain name from hostnames retrieved from DNS. Given the
trim command in Listing 4.14, the hostname hawk.foobirds.org is trimmed to hawk. Multiple trim
commands can be included in the host.conf file.

Real host.conf files don't actually use all of these commands. The host.conf file that comes with Red
Hat 7.2 has only one line:

S cat /etc/host.conf
order hosts,bind

The real heart of the host.conf file is the order command, which defines the order in which the name
services are searched. Another file, nsswitch.conf, is also used to define the order in which name
services are used, along with the ordering for many other system administration databases.

The nsswitch.conf File

The nsswitch.conf file handles much more than just the order of precedence between the host table
and DNS. It defines the sources for several different system administration databases because it is
an outgrowth of the Network Information System (NIS). NIS makes it possible to centrally control
and distribute a wide range of system administration files. Table 4.4 lists all of the administrative
databases controlled by the nsswitch.conf file. Unless you run NIS on your network, the sources of

125

all of these administrative databases, except for the hosts database, will probably be the local files.

Table 4.4: Databases Controlled by nsswitch.conf

Database Holds

aliases E-mail aliases

ethers Ethernet addresses for Reverse ARP (RARP)
group Group Ids

hosts Hostnames and |IP addresses

netgroup Network groups for NIS

network Network names and numbers

passwd User account information

protocols IP protocol numbers

publickey Keys for secure RPC (remote procedure call)
rpc RPC names and numbers

services Network service port numbers

shadow User passwords

The hosts entry is the one we are interested in because it indicates the source for hostname and IP
address information. In the following sample nsswitch.conf file, DNS is used as the primary source
with the local file as the backup source. If DNS can successfully answer the query, it's finished. If
DNS can't answer the query, the resolver tries the local file, which in this case is / etc/hosts. Listing
4.15 shows an nsswitch.conf file for a system that does not run NIS.

Listing 4.15: A Sample nsswitch.conf File

Sample for system that does not use NIS

passwd: files
shadow: files
group: files
hosts: dns files
aliases: files
services: files
networks: files
protocols: files
rpc: files
ethers: files
netgroup: files

publickey: files

Listing 4.15 shows that each database is listed, along with the source for that database. In this
example, only the hosts entry has more than one source—first DNS (dns) and then the local hosts
file (files). To check the host table before DNS, simply reverse the order:

hosts: files dns

All of the other entries in the sample nsswitch.conf file point to local files as the source of
information for those databases. You're already familiar with several of the local files: /etc/passwd,

126

/etc/group, /etc/shadow, /etc/services, /etc/protocols, /etc/networks, and /etc/hosts. Local files are
used for all of these databases unless you run NIS.

In addition to dns and files, there are some other possible source values. nis and nisplus are valid
source values if you run NIS or NIS+ on your network. db is used if the local file is a structured
database instead of a flat file. hesiod is used if the source of information is a Hesiod server. Idap is
used if the source of information is an LDAP server. Also, compat is a valid source field value that
might be of use if you run NIS. compat means that the source is a local file, but the local files should
be read in a way that is compatible with the old SunOS 4.x system. Under SunOS 4.x, NIS data
could be appended to a file by using a plus sign (+) as the last entry in a file. For example, if
/etc/passwd ended with a +, the system would use the accounts in the password file plus every
account in NIS. SunOS 4.x has been out of production for several years, and the nsswitch.conf file
supercedes the old "plus syntax." However, some people still use it, and the compat function is
there if you need it.

In Sum

Name service is a fundamental service of a Linux network. A name service converts text-based
hostnames to the numeric IP address required by the network. In the same way that the services in
Chapter 3 needed user IDs (UIDs) and group IDs (GIDs) to identify users, networks need IP
addresses to identify computers. Domain Names System (DNS) is the tool that maps hostnames to
IP addresses for the network.

DNS is implemented on most Linux systems with the Berkeley Internet Name Domain (BIND)
software, which is the most widely used DNS software in the Internet. Linux is a fairly new operating
system, but it benefits from the fact that it can run venerable software packages such as BIND that
have a very long history with many years of debugging and refinement. Linux developers wisely
used these tried—and-true packages for the most critical network servers.

E—mail is another critical service that must be provided by every modern network, and most Linux

systems use sendmail, which is the most widely used SMTP mail server software, to provide e—mail
service. In the next chapter, we configure an e-mail server using sendmail.

127

Chapter 5: Configuring a Mail Server

Overview

Electronic mail is still the most important user service on the network. The Web carries a greater
volume of traffic, but e-mail is the service used for most person-to—person communication. And
person-to—person communication is the real foundation of business. No network is complete
without e-mail, and no network server operating system is worth its salt if it doesn't include full
TCP/IP mail support.

Simple Mail Transport Protocol (SMTP) is the TCP/IP mail transport protocol. Linux provides full
SMTP support through the sendmail program, although sendmail does more than just send and
receive SMTP mail. sendmail provides mail aliases and acts as a "mail router," routing mail from all
of the different user mail programs to the various mail delivery programs while ensuring that the mail
is properly formatted for delivery.

This chapter looks at your role in configuring each of these functions. Configuring sendmail can be a
large and complex task, but it doesn't have to be. Compared to some network server systems that
require a second installation just to install the SMTP server software, Linux distributions do a lot of
the configuration for you, and for most sites, the default configuration works fine. This chapter will
give you the information you need to make intelligent decisions about when and how to change the
default configuration.

sendmail configurations are built using the m4 macro processing language. The output of the m4
process is the sendmail.cf file, which is the configuration file read by sendmail. To fully understand
and manage sendmail, you need to understand its functions, the sendmail.cf file from which it reads
its configuration, and the m4 macros used to build that file. This chapter covers all three topics.

Using Mail Aliases

Mail aliases are defined in the aliases file. The location of the aliases file is set in the sendmail
configuration file. (You'll see this configuration file later in the chapter.) On Linux systems, the file is
usually located in the /etc directory (/etc/aliases), and it is occasionally located in the /etc/ mail
directory. The basic format of entries in the file is

alias: recipient

The alias is the username in the e-mail address, and recipient is the name to which the mail should
be delivered. The recipient field can contain a username, another alias, or a final delivery address.
Additionally, there can be multiple recipients for a single alias.

sendmail aliases perform important functions that are an essential part of creating a mail server.
Mail aliases do the following:

Specify nicknames for individual users Nicknames can be used to direct mail
addressed to special names, such as postmaster or root, to the real users that do
those jobs. When used in conjunction with the domain MX records covered in
Chapter 4, "Linux Name Services," aliases can be used to create a standard e-mail
address structure for a domain.

128

Forward mail to other hosts sendmail aliases automatically forward mail to the
host address included as part of the recipient address.

Define mailing lists An alias with multiple recipients is a mailing list.

Listing 5.1 is the aliases file that comes with a Red Hat system, with a few additions to illustrate all
of these uses.

Listing 5.1: A Sample aliases File

#

@(#)aliases 8.2 (Berkeley) 3/5/94

#

Aliases in this file will NOT be expanded in the header from
Mail, but WILL be visible over networks or from /bin/mail.

#

S>>>>>>>>> The program "newaliases" must be run after
>> NOTE >> this file is updated for any changes to
>>>>>>>>>> show through to sendmail.

#

Basic system aliases ——- these MUST be present.

mailer—-daemon: postmaster

postmaster: root

General redirections for pseudo accounts.

bin: root
daemon: root
adm: root
lp: root
sync: root
shutdown: root
halt: root
mail: root
news: root
uucp: root
operator: root
games: root
gopher: root
ftp: root
nobody: root
apache: root
named: root
xfs: root
gdm: root
mailnull: root
postgres: root
squid: root
rpcuser: root
rpc: root
ingres: root
system: root
toor: root
manager: root
dumper: root
abuse: root
newsadm: news
newsadmin: news

129

usenet: news

ftpadm: ftp
ftpadmin: ftp
ftp-adm: ftp
ftp-admin: ftp
webmaster: root

trap decode to catch security attacks
decode: root

Person who should get root's mail
root: staff

System administrator mailing list

staff: kathy, craig, david@parrot, saraGhawk, becky@parrot
owner—-staff: staff-request

staff-request: craig

User aliases

norman.edwards: norm

edwardsn: norm

norm: norm@hawk.foobirds.org
rebecca.hunt: becky@parrot
andy.wright: andy@falcon.foobirds.org
sara.henson: sara@hawk
kathy.McCafferty: kathy
kathleen.McCafferty: kathy

The Red Hat /etc/aliases file opens with several comment lines. Ignore the information about which
mail programs display aliases in the headers of mail messages; it is not really significant. The
comment that is significant is the one that tells you to run newaliases every time you update this file.
sendmail does not read the /etc/aliases file directly. Instead, it reads a database file produced from
this file by the newaliases command.

The first 40 or so lines define aliases for special names. All of them, except the webmaster alias that
we added, come preconfigured in the Red Hat aliases file. The first two are aliases that people
expect to find on any system running sendmail. Most of the others are aliases assigned to the
daemon usernames that are found in the /etc/passwd file. No one can actually log in using the
daemon usernames, so any mail that might be directed to these pseudo accounts is forwarded to a
real user account. In Listing 5.1, all of this mail is forwarded to the root user account—even mail
addressed to newsadm and ftpadm, which at first glance appears to be routed to accounts other
than root. For example, newsadm appears to be routed to the user account news, but closer
examination reveals that news is itself an alias that is routed to the root account. Aliases can point
to other aliases, but eventually they must resolve to a real e-mail account for mail to be successfully
delivered.

Of course, you don't really want people logging in to the root account just to read mail, so the
aliases file also has an alias for root. In the example, we edited the root entry to forward all mail
addressed to root to staff, which is another alias. Notice how often aliases point to other aliases.
Doing this is very useful because it allows you to update one alias instead of many when the real
user account that the mail is delivered to changes.

The staff alias is a mailing list. A mailing list is simply an alias with multiple recipients. In the

example, several people are responsible for maintaining this mail server. Messages addressed to
root are delivered to all of these people through the staff mailing list.

130

Two special aliases are associated with the mailing list. The owner—staff alias is a special alias used
by sendmail for error messages relating to the staff mailing list. The format that sendmail requires
for this special alias is owner-list, where list is the name of the mailing list. The other special alias,
staff-request, is not required by sendmail, but it is expected by remote users. By convention,
manual mailing list maintenance requests, such as being added to or deleted from a list, are sent to
the alias list-request, where listis the name of the mailing list.

The last eight lines are user aliases we added to the file. These lines direct mail received at the mail
server to the computers where the users read their mail. These aliases can be in a variety of
formats to handle the various ways that e-mail is addressed to a user. The first three lines that
forward mail to norm@hawk.foobirds.org all illustrate this. Assume that this /etc/aliases file is on
wren, and that the MX record in DNS says that wren is the mail exchanger for foobirds.org. Then,
mail addressed to norman.edwards@foobirds.org would actually be delivered to
norm@hawk.foobirds.org. It is the combination of mail aliases and MX records that make possible
the simplified mail-addressing schemes used at so many organizations.

Defining Personal Mail Aliases

As the last eight lines in the Red Hat aliases file illustrate, one of the main functions of the alias file
is to forward mail to other accounts or other computers. The aliases file defines mail forwarding for
the entire system. The .forward file, which can be created in any user's home directory, defines mail
forwarding for an individual user.

It is possible to use the .forward file to do something that can be done in the /etc/aliases file. For
example, if Norman Edwards had an account on a system, but didn't really want to read his mail on
that system, he could create a .forward file in his home directory with the following entry:

norm@hawk . foobirds.org

This entry forwards all mail received in his account on the local system to the norm account at
hawk.foobirds.org. However, if you want to permanently forward mail to another account, create an
alias in the /etc/aliases file. Simple forwarding is not the primary use for the .forward file. A much
more common use for the file is to invoke special mail processing before mail is delivered to your
personal mail account.

Using sendmail to Receive Mail

sendmail runs in two different ways. When you send mail, a sendmail process starts, delivers your
mail, and then terminates. To receive mail, sendmail runs as a persistent daemon process. The -bd
option tells sendmail to run as a daemon and to listen to TCP port 25 for incoming mail. Use this
option to accept incoming TCP/IP mail. Without it, your system will not collect inbound mail. As you'll
see in Chapter 11, "More Mail Service," many systems do not collect inbound SMTP mail. Instead,
they use protocols such as POP and IMAP to move mail from the mailbox server to the mail reader.
In general, however, most Linux systems are configured to run sendmail as a daemon. The code
that runs the sendmail daemon in the Slackware Linux /etc/rc.d/ rc.M startup script is very
straightforward:

/usr/sbin/sendmail -bd -g 15m

The code runs sendmail with the —bd and —q options. In addition to listening for inbound mail, the
sendmail daemon periodically checks to see if there is mail waiting to be delivered. It's possible that

131

a sendmail process that was started to send a message was not able to successfully deliver the
mail. In that case, the process writes the message to the mail queue, and counts on the daemon to
deliver it at a later time. The —q option tells the sendmail daemon how often to check the
undelivered mail queue. In the Slackware example, the queue is processed every 15 minutes (-q
15m).

The code that Red Hat uses to start the sendmail daemon is found in the /etc/rc.d/init.d/sendmail
script. It is more complex than the code used by Slackware because Red Hat uses script variables
read from an external file to set the command-line options. The file it reads is /etc/sysconfig/
sendmail, which normally contains these two lines:

DAEMON=yes
QUEUE=1h

If the variable DAEMON is equal to yes, sendmail is started with the —bd option. The QUEUE
variable sets the time value of the —q option. In this case, it is one hour (1h), which is a value that |
like even more than the 15 minutes used by Slackware. Don't set the —q value too low. Processing
the queue too often can cause problems if the queue grows very large due to a delivery problem
such as a network outage. To change the queue value on a Red Hat system, edit the /etc/
sysconfig/sendmail file.

The sendmail Configuration File

The file that defines the sendmail runtime configuration is sendmail.cf, which is a large, complex file
that is divided into seven different sections. The file is so large and so complex that system
administrators are often intimidated by it. You needn't be. The file is designed to be easily parsed by
sendmail, not to be easily written by a system administrator. But normally, you don't directly write to
this file. Instead, you build the file with the m4 commands described later in this chapter. It is
important to have a basic understanding of the syntax and structure of the sendmail.cf file in order
to better understand the effect of the m4 commands and to gain the mastery needed for
troubleshooting. Yet it is equally important to realize that you don't have to build the sendmail.cf file
by hand.

The section labels from the Red Hat sendmail.cf file provide an overview of the structure and the
function of the file. The sections, each examined in detail in this chapter, are as follows:

Local Info This section defines the configuration information specific to the local
host.

Options This section sets the options that define the sendmail environment.

Message Precedence This section defines the sendmail message precedence
values.

Trusted Users This section defines the users who are allowed to change the sender
address when they are sending mail.

Format of Headers This section defines the headers that sendmail inserts into mail.

Rewriting Rules This section holds the commands that rewrite e-mail addresses
from user mail programs into the form required by the mail-delivery programs.

132

Mailer Definitions This section defines the programs used to deliver the mail. The
rewrite rules used by the mailers are also defined in this section.

Note All Linux sendmail.cf files have the same structure because they are all created from
the m4 macros (covered later in this chapter and in Appendix C, "The M4 Macros for
Sendmail") that come in the sendmail distribution.

The Local Info Section

Local Info, the first section in the sendmail.cf file, contains the hostname, the names of any mail
relay hosts, and the mail domain. It also contains the name that sendmail uses to identify itself when
it returns error messages, as well as the version number of the sendmail.cf file.

The local information is defined by D commands that define macros, C commands that define class
values, F commands that load class values from files, and K commands that define databases of
information. Some sample lines lifted from the Local Info section of the Red Hat sendmail.cf file are
shown in Listing 5.2. The commands have been reordered, and a comment has been added to
make the commands more understandable, but the commands themselves are just as they appear
in the original file.

Listing 5.2: Sample of the sendmail.cf Local Info Section

my name for error messages
DnMAILER-DAEMON

operators that cannot be in local usernames
Co @ % !

host name aliases for this system

Cwlocalhost

file containing names of hosts for which we receive email
Fw/etc/mail/local-host—names

Access list database (for spam stomping)
Kaccess hash -o /etc/mail/access.db

Lines that begin with # are comments. The first real command in the sample is a define macro (D)
command that defines the username that sendmail uses when sending error messages. The macro
being defined is n. Many macro names are only a single upper— or lowercase character. When a
long name is used, the name is enclosed in curly braces, for example, {verify}.

The value assigned to n is MAILER-DAEMON. After a value is stored in a macro, it can be recalled
later in the configuration using the syntax $x, where x is the name of the macro. Thus, commands
later in the configuration that need to send error messages can use $n to retrieve the correct sender
name. Setting a macro value once at the beginning of the configuration affects commands
throughout the configuration, which simplifies customization.

The first class command (C) assigns the values @, %, and ! to the class variable O. These three
values are characters that cannot be used in local usernames because they would screw up e-mail.
A class is an array of values. Classes are used in pattern-matching to check whether or not a
values matches one of the values in a class, using the syntax $=x, where x is the name of the class.
A command containing the string $=0 is testing a value to see if it is equal to @, % or !.

The second C command stores the string localhost into the class variable w, which holds a list of

133

valid hostnames for which the local computer will accept mail. Normally, if a system running
sendmail receives mail addressed to another hostname, it assumes that the mail belongs to that
host. If your system should accept the mail, even if it appears to be addressed to another host, the
name of that other host should be stored in class w. Listing 5.2 stores only one value in w. You
could add additional hostnames, separated by spaces, directly to the C command line, but there is
an easier way to add values to a class variable.

The file command (F) adds the values found in the file /etc/mail/local-host-names to the class w
variable. F is the command, w is the name of the class variable, and /etc/mail/local-host-names is
the path of the file that is to be stored in the variable. External files and databases make it possible
to control sendmail's behavior without directly modifying the sendmail configuration. Flat files such
as local-host-names are only part of the story. sendmail also uses structured database files.

The last command in Listing 5.2 defines an e-mail address database. The K command declares a
database named "access." The database is in the hash format, which is a standard Unix database
format. The file that contains the database is /etc/mail/access.db. All of this information (the internal
name, the database type, and the file that holds the database) is defined by the K command.
Subsequent commands in the sendmail.cf file use the database to match patterns, to retrieve
values, and to perform security checks. How databases are used is covered in detail in Chapter 11,
when the access database is used to control mail relaying and delivery.

These four types of commands illustrate everything that is done in the Local Info section of the
sendmail.cf file. This section is the most important section of the file from the standpoint of a system
administrator trying to understand a configuration because it is the part of the sendmail.cf file that
stores the variables used to customize the configuration.

The Options Section
Options define the sendmail environment. All of the option values are used directly by the sendmail
program. There are nearly 100 options, but a few samples from the Red Hat sendmail.cf file can
illustrate what options do.

Listing 5.3: Sample sendmail.cf Options

location of alias file
AliasFile=/etc/aliases

Forward file search path
ForwardPath=$z/.forward.S$w:$z/.forward
timeouts (many of these)

Timeout .gqueuereturn=5d

Timeout .queuewarn=4h

O O # O #* O =

These options all have something to do with sendmail functions that have already been discussed.
The first option command (O) sets the location of the aliases file to /etc/aliases. The second option
defines the location of the .forward file. Notice the $z and $w included in this option. These are
macro values. The $w macro contains the computer's hostname, indicating that it is possible to use
the computer's hostname as a filename extension on a .forward file. Given the fact that you already
know that the .forward file is found in the user's home directory, you can guess that the value of the
$z macro is the user's home directory.

The last two options in the example relate to processing the queue of undelivered mail. The first of
these options tells sendmail that if a piece of mail stays in the queue for five days (5d), it should be

134

returned to the sender as undeliverable. The second of these options tells sendmail to send the
user a warning message if a piece of mail has been undeliverable for four hours (4h). Many of the
options in the sendmail.cf file set the timer values used by sendmail.

File locations and other things that vary based on the operating system being used are handled in
the options section. The m4 macros build a sendmail.cf customized for the target operating system.
Because of this, the options in the sendmail.cf file that comes with your Linux system are probably
correct for that system.

The Message Precedence Section

Message Precedence is used to assign priority to messages entering the queue. By default, mail is
considered "first—class mail," and is given a precedence of 0. The higher the precedence number,
the higher the priority of the message.

But don't get excited. Increasing priority is essentially meaningless. About the only useful thing you
can do is to select a negative precedence number, which indicates low-priority mail. Because error
messages are not generated for mail with a negative precedence number, low priorities are useful
for mass mailings. The precedence values from the Red Hat sendmail.cf are

Pfirst-class=0
Pspecial-delivery=100
Plist=-30

Pbulk=-60

Pjunk=-100

Precedence values have very little importance. To request a precedence, mail must include a
Precedence header, which it very rarely does. The five precedence values included in the
sendmail.cf file that comes with your Linux system are more than you'll ever need.

The Trusted Users Section

Trusted users are allowed to change the sender address when they are sending mail. Trusted users
must be valid usernames from the /etc/passwd file. The trusted users defined in the sendmail.cf file
that comes with your Linux system are root, uucp, and daemon:

Troot
Tdaemon
Tuucp

The T commands define trusted users. The list of trusted users is stored in class t. Thus the three
previously listed T commands could be replaced by three C commands:

Ctroot
Ctdaemon
Ctuucp

Likewise, an F command can be used to load class t from a file. The "Trusted users" section of the
sendmail.cf file on our sample Red Hat Linux 7.2 system does exactly that with the following
command:

Ft/etc/mail/trusted-users

135

A quick check of /etc/mail/trusted—users shows that the file is empty. Therefore, the Red Hat system
uses only the three trusted users (root, daemon and uucp) used on most system. To add trusted
users to our sample system, place the usernames in the trusted-users file.

Do not modify the Trusted Users list without a very good reason. Adding users to this list is a
potential security problem.

The Format of Headers Section

Mail headers are those lines found at the beginning of a mail message that provide administrative
information about the mail message, such as when and from where it was sent. The Format of
Headers section defines the headers that sendmail inserts into mail. The header definitions from the
Red Hat sendmail.cf file are shown in Listing 5.4.

Listing 5.4: sendmail.cf Header Commands

H?P?Return—-Path: <$g>
HReceived: $?sfrom $s $.$7_($?s$|from $.S5_)
$.$?{auth_type} (authenticated$?{auth_ssf} (${auth_ssf} bits)$.)
S.by $3 ($v/$2)S$?r with r. id i?{tls_version}
(using ${tls_version} with cipher ${cipher} (${cipher_bits} bits)
verified ${verify})$.$?u
for Su; $1I;
$.Sb
H?D?Resent-Date: $Sa
H?D?Date: $Sa
H?F?Resent-From: $?x$x <$g>$|S$gs.
H?F?From: $?x$x <$g>$|5g$.
H?x?Full-Name: $x
H?M?Resent-Message—-Id: <$t.$i@$3>
H?M?Message—-Id: <$t.$i@$j>

Each header line begins with the H command, which is optionally followed by header flags enclosed
in question marks. The header flags control whether or not the header is inserted into mail that is
bound for a specific mailer. If no flags are specified, the header is used for all mailers. If a flag is
specified, the header is used only for a mailer that has the same flag set in the mailer's definition.
(Mailer definitions are covered later in this chapter.) Header flags only control header insertion. If a
header is received in the input, it is passed to the output, regardless of the flag settings.

Each line also contains a header name, a colon, and a header template. These fields define the
structure of the actual header. Macros in the header template are expanded before the header is
inserted into a message. Look at the first header in the sample. $g says to use the value stored in
the g macro, which holds the sender's e-mail address. Assume the sender is David. After the macro
expansion, the header might contain

Return-Path: <david@wren.foobirds.com>

Note The second header shows examples of long macro names, such as {auth__ type}.
The sample headers provide examples of a conditional syntax that can be used in header templates
and macro definitions. It is an if/else construct where $? is the "if," $| is the "else," and $. is the
"endif." A simple example from Listing 5.4 is

H?F?Resent-From: $?x$x <$g>$|$gs.

136

The header template $?x$x <$9>$|g says that if ($?) macro x exists, use $x <$g> as the header
template, else ($|) use $g as the template. Macro x contains the full name of the sender. Thus if it
exists, the header is

Resent-From: David Craig <david@wren.foobirds.org>
If x doesn't exist, the header is

Resent-From: david@wren.foobirds.org

The headers provided in your system's sendmail.cf file should be correct and sufficient for your
installation. Header formats are defined in RFC standards documents. There is no need to create
customized headers.

The Rewriting Rules Section

The Rewriting Rules section defines the rules used to parse e-mail addresses from user mail
programs and rewrite them into the format required by the mail delivery programs. Rewrite rules
match the input address against a pattern, and if a match is found, rewrite the address into a new
format using the rules defined in the command.

The left side of a rewrite rule contains a pattern defined by macro and literal values and by special
symbols. The right side of a rewrite rule defines the template used to rewrite addresses that match
the pattern. The template is also defined with literals, macro values, and special symbols. Literals
are simply literal string values. Macros are the macro and class values defined in the Local Info
section of the sendmail.cf file. The special symbols vary, depending on whether they are used in the
left—side pattern or the right-side template. Table 5.1 lists the pattern matching symbols and Table
5.2 lists the template symbols.

Table 5.1: Pattern Matching Symbols

Symbol Meaning

@ Match exactly zero tokens.

$* Match zero or more tokens.

$- Match exactly one token.

S+ Match one or more tokens.

$x Match all tokens in macro variable x.
$=x Match any token in class variable x.
$~x Match any token not in class variable x.

Table 5.2: Rewrite Template Symbols

Symbol Purpose

$n Insert the value from indefinite token n.

$: Terminate this rewrite rule.

@ Terminate the entire ruleset.

$>name Call the ruleset identified as name.
$[hostname$] Convert hostname to DNS canonical form.
$(database—spec$) Get the value from a database.

137

Rewrite rules divide e-mail addresses into tokens for processing. A token is a string of characters
delimited by an operator defined in the OperatorChars option. The operators also count as tokens.
Based on this, the address kathy@parrot contains three tokens: the string kathy, the operator @,
and the string parrot.

The tokens from the input address are matched against the pattern. The macro and literal values
are directly matched against values in the input address, and the special symbols match the
remaining tokens. The tokens that match the special symbols in a pattern are identified numerically,
according to their relative position in the pattern that they match. Thus, the first group of tokens to
match a special symbol is called $1, the second is $2, the third is $3, and so on. These tokens can
then be used to create the rewritten address.

An example will clarify how addresses are processed by rewrite rules. Assume the input address is
kathy@parrot
Assume the current rewrite rule is

RS$+Q@S$S— $1<@$2.$D> user@host —-> user<@host.domain>

The R is the rewrite command, $+@$- is the pattern against which the address is matched, and
$1<@%$2.$D> is the template used to rewrite the address. The remainder of the command line is a
comment that is intended to clarify what the rule does.

The input address matches the pattern because

e It contains one or more tokens before the literal @, which is what the special symbol $+
requires. The token that matches the special symbol is the string kathy. This token can now
be referred to as $1 because it matched the first special symbol.

e |t contains an @ that matches the pattern's literal @.

e |t contains exactly one token after the @, which is what the $- requires. The token that
matches this special symbol is the string parrot, which can now be referenced as $2
because it matched the second special symbol.

The template that rewrites the address contains the token $1, a literal string <@, the token $2, a
literal dot (.), the value stored in macro D, and the literal >. You know that $1 contains kathy, and $2
contains parrot. Assume that the macro D was defined elsewhere in the sendmail.cf file as
foobirds.org. Given these values, the input address is rewritten as

kathy<@parrot.foobirds.org>

A rewrite rule may process the same address several times because after being rewritten, the
address is again compared against the pattern. If it still matches, it is rewritten again. The cycle of
pattern matching and rewriting continues until the address no longer matches the pattern. In our
example, when the address is again compared to the pattern after rewriting, it fails to match the
pattern a second time because it no longer contains exactly one token after the literal @. In fact, it
now has six tokens after the @: parrot, ., foobirds, ., org, and >. So no further processing is done by
this rewrite rule, and the address is passed to the next rule in line.

Rulesets

Individual rewrite rules are grouped together in rulesets, so that related rewrite rules can be
referenced by a single name or number. The S command marks the beginning of a ruleset; and

138

identifies it with a name, number, or both. Therefore, the command S4 marks the beginning of
ruleset 4, SLocal_check_mail marks the beginning of the Local_check_mail ruleset, and
Scanonify=3 defines the beginning of the canonify ruleset, which is also known as ruleset 3.

Five rulesets are called directly by sendmail to handle normal mail processing:

e Ruleset canonify, also known as ruleset 3, is called first to prepare all addresses for
processing by the other rulesets.

e Ruleset parse, also known as ruleset 0, is applied to the mail delivery address to convert it to
the (mailer, host, user) triple, which contains the name of the mailer that will deliver the mail,
the recipient hostname, and the recipient username.

¢ Ruleset sender, also known as ruleset 1, is applied to all sender addresses.

¢ Ruleset recipient, also known as ruleset 2, is applied to all recipient addresses.

¢ Ruleset final, also known as ruleset 4, is called last to convert all addresses from internal
address formats into external address formats.

There are three basic types of addresses: delivery addresses, sender addresses, and recipient
addresses. A recipient address and a delivery address sound like the same thing, but there is a
difference. As the mailing list alias illustrated, there can be many recipients for a piece of mail, but
mail is delivered to only one person at a time. The recipient address of the one person to which the
current piece of mail is being delivered is the delivery address. Different rulesets are used to
process the different types of addresses.

Figure 5.1 shows the rulesets that handle each address type. The S and R symbols in Figure 5.1
represent rulesets that have names, just like the other rulesets, but the specific rulesets used are
identified by the S and R fields of the mailer definition. Each mailer specifies its own S and R
rulesets to process sender and recipient addresses in a manner required by the mailer.

Rulesets
Delivery : . Mail
address > & g?:}'lveery
Input Rewritten
sender —3=| Canonify |—>~| Sender |—>=| S |—>=| Final j—>= sender
address address
Input Rewritten
recipient —>| Canonify|—>| Recipient|—>| R |—>| Final |—> recipient
address address

Figure 5.1: sendmail rulesets
The Mailer Definitions Section

The Mailer Definitions section defines the instructions used by sendmail to invoke the mail delivery
programs. The specific rewrite rules associated with each individual mailer are also defined in this
section. Mailer definitions begin with the mailer command (M). Searching through the Mailer
Definitions section of the Red Hat configuration file for lines that begin with M produces the mailer
definitions in Listing 5.5.

Listing 5.5: Sample mailer Definitions

Mlocal, P=/usr/bin/procmail, F=1sDFMAw5:/|@gSPfhn9,
S=EnvFromL/HdrFromlL, R=EnvTolL/HdrTol,
T=DNS/RFC822/X-Unix,

139

A=procmail -t -Y -a $h -d $Su

Mprog, P=/usr/sbin/smrsh, F=1sDFMogeu?9,
S=EnvFromL/HdrFromL, R=EnvToL/HdrTolL,
D=$z:/, T=X-Unix/X-Unix/X-Unix,
A=smrsh -c S$u

Msmtp, P=[IPC], F=mDFMuX,
S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
E=\r\n, L=990,
T=DNS/RFC822/SMTP,
A=TCP $h

Mesmtp, P=[IPC], F=mDFMuXa,
S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
E=\r\n, L=990,
T=DNS/RFC822/SMTP,
A=TCP $h

Msmtp8, P=[IPC], F=mDFMuX8,
S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
E=\r\n, L=990,
T=DNS/RFC822/SMTP,
A=TCP $h

Mdsmtp, P=[IPC], F=mDFMuXa%,
S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,
E=\r\n, L=990,
T=DNS/RFC822/SMTP,
A=TCP $h

Mrelay, P=[IPC], F=mDFMuXa8,
S=EnvFromSMTP/HdrFromSMTP, R=MasqSMTP,
E=\r\n, L=2040,
T=DNS/RFC822/SMTP,
A=TCP $h

Mprocmail, P=/usr/bin/procmail, F=DFMSPhnu9,
S=EnvFromSMTP/HdrFromSMTP,
R=EnvToSMTP/HdrFromSMTP,
T=DNS/RFC822/X-Unix,
A=procmail -Y -m $h $f Su

The first two mailer definitions in Listing 5.5 are required by sendmail. The first of these defines a
mailer for local mail delivery. This mailer must always be called "local." The P argument defines the
path to the local mailer. In this configuration, procmail is used as the local mailer. The second
definition is for a mailer that delivers mail to programs, which is always called "prog". The P
argument points to a program named smrsh, which is the Sendmail Restricted Shell—a special shell
program specifically for handling mail. sendmail expects to find both of these mailers in the
configuration, and requires that they be given the names "local" and "prog". All other mailers can be
named anything the system administrator wishes. However, in practice, that is not the case.
Because the sendmail.cf files on Linux systems are built from the same m4 macros, they use the
same mailer names

The next five mailer commands define mailers for TCP/IP mail delivery. The first one, designed to
deliver traditional 7-bit ASCII SMTP mail, is called smtp. The next mailer definition, which is for
Extended SMTP mail, is called esmtp. The smtp8 mailer definition handles unencoded 8-bit SMTP
data. The dsmtp mailer provides support for on—-demand SMTP, which is special form of SMTP in
which the recipient downloads mail instead of the normal case in which the sender initiates mail
transfer. Finally, relay is a mailer that relays TCP/IP mail through an external mail relay host. Of
these, only esmtp, which is the default mailer, and relay are actually used anywhere in the basic
configuration.

The last mailer definition in Listing 5.5 is for procmail. procmail (covered in Chapter 11) is an

140

optional mailer found on most Linux systems. The A argument in this definition invokes procmail
with the —-m command-line argument, which allows procmail to be used for mail filtering. Like most
of the SMTP mailers, this mailer is not used anywhere in the basic sendmail.cf file. These unused
definitions provide a complete set of mailers, but they are not needed for most configurations.

Examining any one of the mailer entries, such as the entry for the smtp mailer, explains the
structure of all of them:

M Beginning a line with an M indicates that the command is a mailer definition.

smtp Immediately following the M is the name of the mailer, which can be anything
you wish. In this sample, the name is smtp.

P=[IPC] The P argument defines the path to the program used for this mailer. In this
case, it is [IPC], which means this mail is delivered by sendmail. Other mailer
definitions, such as local, have the full path of some external program in the field.

F=mDFMuX The F argument defines the sendmail flags for this mailer. Other than
knowing that these are mailer flags, the meaning of each individual mailer flag is of
little interest because the flags are correctly set by the m4 macro that builds the
mailer entry. In this example, m says that this mailer can send to multiple recipients
at once; DFM says that Date, From, and Message-ID headers are needed; u says
that uppercase should be preserved in hostnames and usernames; and X says that
message lines beginning with a dot should have an extra dot prepended.

S=EnvFromSMTP/HdrFromSMTP The S argument defines the S rulesets
illustrated in Figure 5.1. The rulesets can be different for every mailer, allowing
different mailers to process e—-mail addresses differently. In this case, the sender
address in the mail "envelope" is processed through ruleset EnvFromSMTP, also
known as ruleset 11, and the sender address in the message is processed through
ruleset HArFromSMTP, also known as ruleset 31. (You'll see more on this later when
a sendmail configuration is tested.)

R=EnvToSMTP The R argument defines the R ruleset shown in Figure 5.1. This
value can be different for every mailer to allow each mailer to handle addresses
differently. The sample mailer processes all recipient addresses through ruleset
EnvToSMTP, also known as ruleset 21. Only one ruleset is used for the R argument
with the smtp mailer; however, it is possible to specify two different rulesets, one for
envelope processing and one for header processing, in exactly the same way as two
rulesets were defined for the S argument.

E=\r\n The E argument defines how individual lines in a message are terminated. In
this case, lines are terminated with a carriage return and a line feed.

L=990 The L argument defines the maximum line length for this mailer. This mailer
can handle messages that contain individual lines up to 990 bytes long.

T=DNS/RFC822/SMTP The T argument defines the MIME types for messages
handled by this mailer. This mailer uses DNS for hostnames, RFC822 e-mail
addresses, and SMTP error codes.

A=TPC $h The A argument defines the command used to execute the mailer. In this

141

case, the argument refers to an internal sendmail process. (Note that TCP and IPC
can be used interchangeably.) In other cases (the local mailer is a good example),
the A argument is clearly a command line.

The mailer definitions that come with your Linux system will include local, prog and the SMTP
mailers. These are the correct mailer definitions to run sendmail in a TCP/IP network environment.

Configuring the sendmail.cf File

It's important to realize how rarely the sendmail.cf file needs to be modified on a typical Linux
system. The configuration file that comes with your Linux system will work. Generally, you modify
the sendmail configuration not because you need to, but because you want to. You modify it to
improve the way things operate, not to get them to operate. To illustrate this, let's look at the default
Red Hat configuration on the system parrot.foobirds.org.

Using the default configuration, the From address on outbound e-mail is user@parrot.foobirds.org.
This is a valid address, but assume that it's not exactly what you want. In the last chapter, you
defined MX records for the domain. To use them, you want people to use addresses in the form
user@foobirds.org, so you don't want the hostname in outbound e-mail addresses. To create the
new configuration, you need to understand the purpose of class M and macro M, both of which are
found in the Local Info section of the sendmail.cf file.

sendmail calls hiding the real hostname masquerading. Thus, the name of the macro used to
rewrite the sender host address is M. Set M to the domain name to replace the name of the local
host in outbound mail with the name of the domain. Class M defines other hostnames, not just the
local hostname, that also should be rewritten to the value of macro M. Class M is used on mail
servers that need to rewrite sender addresses for their clients.

Checking the Red Hat sendmail.cf file on parrot, you find that no value is assigned to macro M,
which means that masquerading is not being used. Further, you find that there is no class M
declaration in the file. To masquerade the local host as foobirds.org and to masquerade the
outbound mail from the clients robin and puffin, copy the sendmail.cf file to test.cf and then edit
test.cf, changing the macro M declaration and adding a class M declaration:

who I masquerade as (null for no masquerading)
DMfoobirds.org

class M: host names that should be converted to $M
CMpuffin.foobirds.org robin.foobirds.org

Given these macro M and class M definitions, parrot rewrites its own outbound mail to
user@foobirds.org, as well as rewriting mail from user@puffin.foobirds.org or
user@robin.foobirds.org to user@foobirds.org. parrot is a mail server. Although you might use
macro M on any system, you won't use class M on any type of system except a mail server.

A problem with using class M is that kathy@puffin.foobirds.org, kathy@robin.foobirds.org, and
kathy@parrot.foobirds.org are all rewritten as kathy@foobirds.org. That's great if there really is only
one kathy in the entire domain; otherwise, this may not be what you want. Coordinate usernames
carefully across all systems. It simplifies the configuration of several different applications.

After setting a value for the M macro in the test.cf file, run a test to see if it works. Running sendmail

with the test configuration does not affect the sendmail daemon that was started by the boot script.
A separate instantiation of sendmail is used for the test.

142

Testing Your New Configuration

Test whether or not the change made to macro M in the configuration files modifies the rewrite
process by directly testing the rewrite rulesets. First, you need to find out what rules are used to
rewrite the address.

Use your knowledge of the flow of rulesets from Figure 5.1 to determine which rulesets to test. You
know that the ruleset canonify is applied to all addresses. It is followed by different rulesets,
depending on whether the address is a delivery address, a sender address, or a recipient address.
Furthermore, the rulesets used for sender and recipient addresses vary, depending on the mailer
that is used to deliver the mail. All addresses are then processed by ruleset final.

There are two variables that determine the rulesets used to process an address: the type of address
and the mailer through which it is processed. The three address types are delivery address,
recipient address, and sender address. You know the address type because you select the address
being tested. In the example, the concern is the sender address.

There are two types of sender addresses: the sender address in the message header and the
sender address in the "envelope." The message header address is the one on the From line sent
with the mail. You probably see it in the mail headers when you view the message with your mail
reader. The "envelope" address is the address used during the SMTP protocol interactions. The one
that we're interested in is the one that remote users see in the mail—the header address.

Locating the Correct Mailer

The other variable that determines the rulesets used to process an address is the mailer. To find out
which mailer delivers the mail, run sendmail with the —bv argument:

#$ sendmail -bv craig@wrotethebook.com
craig@wrotethebook.com... deliverable: mailer esmtp, host
wrotethebook.com., user craig@wrotethebook.com

To see which mailer is used to deliver mail to remote sites, run sendmail with the —bv argument, and
give it a valid e-mail address for the remote site. In the example, the address is
craig@wrotethebook.com. sendmail displays the mail delivery triple returned by ruleset parse: the
mailer, the host, and the user. From this, you know that the mailer is esmtp.

Testing How Addresses Are Rewritten

To test the new configuration, run sendmail with the —bt option. sendmail displays a welcome
message, and waits for you to enter a test. A simple test is a list of ruleset names followed by an
e-mail address. For example, entering canonify,parse craig at the prompt would process the
e—mail address craig through the rulesets canonify and then parse. This should provide you with the
mailer, host, user delivery triple for the address.

Because you know the mailer that you want to test, you can use the /try command at the prompt to
process the sender From address for the smtp mailer. The example in Listing 5.6 illustrates the test.
First, test the existing configuration to see how the address is processed by the default
configuration.

Listing 5.6: Testing the Default sendmail Configuration

sendmail -bt

143

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

> /tryflags HS

> /try smtp craig

Trying header sender address craig for mailer esmtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasgSMTP input: craig

MasqgSMTP returns: craig < @ *LOCAL* >

MasgHdr input: craig < @ *LOCAL* >

MasgHdr returns: craig < @ parrot . foobirds . org . >
HdrFromSMTP returns: craig < @ parrot . foobirds . org >
final input: craig < @ parrot . foobirds . org . >
final returns: craig @ parrot . foobirds . org

Rcode = 0, addr = craig@parrot.foobirds.org

> /quit

Run sendmail —bt, which starts sendmail in test mode with the default configuration. Listing 5.6
shows exactly how the standard configuration processes e—-mail addresses. Specifically, it shows
how local sender addresses are rewritten for outbound mail.

The /tryflags command defines the type of address to be processed. Four flags are available: S for
sender, R for recipient, H for header, and E for envelope. By combining two of these flags, the
/tryflags command tells sendmail to process a header sender (HS) address.

The /try command tells sendmail to process the e-mail address craig through the mailer esmtp. The
address returned by ruleset final, which is always the last ruleset to process an address, shows the
address used on outbound mail after all of the rulesets have processed the address. With the
default configuration, the input address craig is converted to craig@parrot.foobirds.org.

Next, run sendmail —bt with the —C option to use the newly created test.cf configuration file. The —C
option permits you to specify the sendmail configuration file on the command line. Listing 5.7 shows
this test.

Listing 5.7: Testing sendmail Masquerading

sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

> /tryflags HS

> /try smtp craig

Trying header sender address craig for mailer esmtp

canonify input: craig
Canonify2 input: craig
Canonify2 returns: craig
canonify returns: craig
1 input: craig
1 returns: craig
HdrFromSMTP input: craig
PseudoToReal input: craig
PseudoToReal returns: craig

144

MasqgSMTP input: craig

MasgSMTP returns: craig < @ *LOCAL* >

MasgHdr input: craig < @ *LOCAL* >

MasgHdr returns: craig < @ foobirds . org . >
HdrFromSMTP returns: craig < @ foobirds . org . >
final input: craig < @ foobirds . org . >
final returns: craig @ foobirds . org

Rcode = 0, addr = craig@foobirds.org

> /quit

Running sendmail —bt —Ctest.cf starts sendmail in test mode, and tells it to use the new
configuration that is stored in test.cf. The test in Listing 5.7 shows that the value entered in the M
macro is used to rewrite the sender address in the message header. You know this because the
address returned from ruleset final is now craig@foobirds.org, which is just what you want.

Run additional tests (for example, /try esmtp kathy@robin.foobirds.org) to see if client addresses
are rewritten correctly. When you're confident that the configuration is correct and reliable, move the
test.cf configuration file to sendmail.cf to make the new configuration available to sendmail.

If you are called upon to help someone configure sendmail on a system that doesn't already have
the m4 source file installed, it may be easier to directly edit the sendmail.cf file, but only if the
change is very small. If you can avoid it, don't make changes directly to the sendmail.cf file. If you
really want to make major sendmail configuration changes, use m4 to build your configuration.

Using m4 to Configure sendmail

The sendmail distribution contains m4 source files that build the sendmail.cf file. Sample m4 source
files probably are included with your Linux system. If your Linux distribution doesn't include the m4
source files, you can download them from ftp://ftp.sendmail.org/, where they are stored as part of
the latest sendmail distribution.

This section builds a custom sendmail.cf file using the m4 source files that come with a Red Hat
system. On a Red Hat system, the m4 source files are in an RPM package separate from the
package that includes the sendmail program. If your Red Hat system does not have the m4 source
files, you need to install the RPM package. Figure 5.2 shows a gnorpm query for the sendmail—cf
RPM file on our sample Red Hat system.

145

£ Package Info [EE=E
sendmail-cf|
sendmail-cf-8.11.6-3
Size: 742866 Install Date: Sat Feh 02 07:00:20 GMT 2002
Build Host: porky.devel.redhat.com Build Date: Fri Aug 31 12:29:31 GMT 2001
Distribution: Red Hat Linux Vendor: Red Hat, Inc.
Group: System Environment/Daemons Packager: Red Hat, Inc.

This package includes the configuration files you need to generate the
sendmail.cf file distributed with the sendmail package. You will need
the sendmail-cf package if you ever need to reconfigure and rehuild
your sendmail.cf file.

D|c|s|Patn IE[

fusrisharefsendmail-cf
fustishare/sendmail-ct/README
fusrishare/sendmail-cf/cf ll

p Verity | 2 Uninstall [X Close |

Figure 5.2: Contents of the sendmail-cf RPM

The sample configuration files are contained in the /usr/share/sendmail—cf/cf directory on our Red
Hat system. Several of these are generic files preconfigured for different operating systems. The
directory contains generic configurations for BSD, Solaris, SunOS, HP Unix, Ultrix, and (of course)
Red Hat Linux. The Red Hat configuration is named redhat.mc. The directory also contains
prototype files designed for use with any operating system. Despite the fact that there is a Red Hat
source file, this book modifies the tcpproto.mc file. The tcpproto.mc file is a prototype configuration
for any system on a TCP/IP network. It is not specific to Red Hat. It comes as part of the basic
sendmail distribution, and can be modified for any operating system. It is a clean, vendor—neutral
starting point for explaining m4 configuration. In reality, you will probably use the configuration
provided by your vendor and will not build a configuration from scratch. However, it is good to know
how to build a configuration from scratch if you ever need to, and the skills used to build a
configuration are the same ones you will use to customize a vendor—provided configuration.

The m4 Macro Control File

The /usr/share/sendmail—cf/cf directory's prototype files contain m4 macro commands. In addition to
lots of comments, the tcpproto.mc file contains the macros shown in Listing 5.8.

Listing 5.8: The tcpproto.mc File

VERSIONID (" $Id: tcpproto.mc,v 8.13.22.1 2000/08/03 15:25:20 ca Exp $')
OSTYPE (" unknown')

FEATURE (" nouucp', “reject')

MAILER(local')

MAILER (" smtp')

Listing 5.8 shows the configuration macros. The file tcpproto.mc also contains divert and dnl
commands. A divert(—1) command precedes a large block of comments. m4 skips everything
between a divert(—-1) command and the next divert command. A divert(0) command ends the block
of comments. Lines following a divert(0) command are processed by m4. The dnl command is used
for single-line and partial-line comments. Everything after a dnl command up to the next newline
character is skipped. If dnl appears at the beginning of a line, the entire line is treated as a

146

comment. The comments from the tcpproto.mc file are not included in Listing 5.8.

The VERSIONID macro defines version—control information. The version—control information can be
anything you wish. Normally, it is information significant to some version control package. This
macro is optional, and is just ignored in this discussion.

The OSTYPE macro loads the m4 source file from the ../ostype directory that defines the operating
system information. The ostype directory contains more than 40 predefined operating system macro
files, one of which is linux.m4. The OSTYPE macro is required.

The FEATURE macro defines an optional sendmail feature. The nouucp feature in the tcpproto.mc
prototype file means that no UUCP address processing code will be included in the sendmail
configuration. Later, we will add our own FEATURE macros to create a complete custom
configuration.

The MAILER macros are the last macros in the sample file. The MAILER(local) macro adds the
local mailer and the prog mailer to the configuration. The MAILER(smtp) macro adds mailers for
SMTP, Extended SMTP, 8-bit SMTP, on-demand SMTP, and relayed mail. All of these mailers
were described earlier in the chapter, and are all of the mailers needed for the configuration.

Creating a sendmail.cf for a Linux system from the tcpproto.mc prototype file could be as simple as
changing the OSTYPE line from unknown to linux and then processing the file with the m4
command. The sendmail.cf file output by m4 would be ready for sendmail. In fact, it would be almost
identical to the linux.smtp.cf configuration file delivered with Slackware Linux. Every custom
configuration for Linux must begin by setting OSTYPE to linux in order to process the linux.m4
source file.

The Linux OSTYPE File

The OSTYPE file contains operating system—specific configuration values. The most common
configuration variation between the different operating systems that run sendmail is the location of
files. Variables that define pathnames are commonly stored in the OSTYPE file. However, any valid
m4 macro can be placed in the OSTYPE file.

The command OSTYPE(linux) loads a file named linux.m4 from the ostype directory. On our sample
Red Hat system, the full path of this directory is /usr/share/sendmail-cf/ostype. Listing 5.9 shows
the contents of the linux.m4 file.

Listing 5.9: The linux.m4 OSTYPE File

divert (0)
VERSIONID (" $Id: linux.m4,v 8.11.16.2 2000/09/17 17:04:22 gshapiro Exp $'")
define (" confEBINDIR', ' /usr/sbin')
ifdef (' PROCMAIL_MAILER_PATH',,
define ('PROCMAIL_MAILER_PATH', °/usr/bin/procmail'))
FEATURE (local_procmail)

The file begins with a block of comments that are bracketed by a divert(-1) statement and a
divert(0) statement. The comments were deleted from Listing 5.9 to reduce the size of the listing.
The VERSIONID macro can also be ignored.

147

The first real configuration command in the file is a define statement that assigns a value to the
confEBINDIR parameter. This parameter stores the path of the directory that holds certain
executable binary files. The sendmail default for confEBINDIR is /usr/libexec. This define changes
the setting to /usr/sbin. Both of these directories exist on Linux systems, but the /usr/sbin directory is
the one that is more commonly used to hold system binary files; and in this case, it is the correct
setting. The confEBINDIR path is used to locate the smrsh program, which is frequently used as the
prog mailer on Linux systems. A couple of quick Is commands on our sample Linux system show
that the correct value for confEBINDIR is /usr/sbin:

$ 1ls /usr/libexec/smrsh

ls: /usr/libexec/smrsh: No such file or directory
$ 1s /usr/sbin/smrsh

/usr/sbin/smrsh

The second configuration command is also a define. This one is a little more complex. This define is
contained inside an ifdef. ifdef is a built—-in m4 conditional command that checks whether or not a
variable has already been set to a value. The ifdef command has three fields:

¢ the name of the variable that is being tested
¢ the action to take if the variable has been set
¢ the action to take if the variable has not been set

In Listing 5.9, the ifdef tests the variable PROCMAIL_MAILER_PATH. If the variable has already
been defined, nothing is done. We know this by the fact that the second field of the ifdef is
empty—notice the two commas right in a row (,,). If the variable has not yet been set, the define
contained in the third field of the ifdef is executed.

The define assigns the variable PROCMAIL_MAILER_PATH the path value /usr/bin/procmail. This
overrides the sendmail default for PROCMAIL_MAILER_PATH, which is /usr/local/bin/ procmail.
Again, a quick Is shows that the new value is correct for our sample system:

$ 1ls /usr/bin/procmail
/usr/bin/procmail

As Listing 5.9 shows, the last line in linux.m4 is a FEATURE macro. The feature that this macro
adds to the configuration is local_procmail, which causes procmail to be used as the local mailer.
procmail is a very powerful mailer. The fact that Linux uses procmail as the local mailer is a plus.

The linux.m4 OSTYPE file defines the directory path for the smrsh program, the path for procmail,
and a feature that uses procmail as the local mailer. The OSTYPE file is a good place to set file
pathnames and mailer options that are specific to the operating system. Everything in the linux.m4
file is valid for all Linux systems.

In addition to creating a configuration that will run under Linux, we want to create a configuration
that is customized for our organization. Assume that we want to create a custom configuration that
converts user@ host e-mail addresses into firstname.lastname@ domain addresses. For that, we
create a second m4 source file loaded from the domain directory. Let's look at that file in detail.

Creating an m4 DOMAIN File

The domain directory is intended for m4 source files that contain information specific to your
domain. This is a perfect place to put the commands that rewrite the hostname to the domain name
on outbound mail, so we create a new m4 macro file in the domain directory and call it foobirds.m4.

148

We begin by changing to the ../domain directory and copying the file generic.m4 to foobirds.m4 to
act as a starting point for the configuration. Listing 5.10 shows these steps.

Listing 5.10: The generic.m4 DOMAIN File

cd /usr/share/sendmail-cf/domain

cp generic.m4 foobirds.m4

chmod 644 foobirds.m4

tail -6 foobirds.m4

VERSIONID (' $Id: generic.md4,v 8.15 1999/04/04 00:51:09 ca Exp $')
define (" confFORWARD_PATH', “$z/.forward.S$w+Sh:S$z/.forward+Sh
A:$z/.forward.Sw:Sz/.

forward')dnl

define (" confMAX_ HEADERS_LENGTH', "32768')dnl
FEATURE (" redirect')dnl

FEATURE ("use_cw_file')dnl

EXPOSED_USER (" root'")

After copying generic.m4 to foobirds.m4, use the chmod command to set the file access
permissions for the new file. (On some systems, the files in the domain directory are read-only.)
Make the file read and write for the owner, and read-only for the group and the world.

Note See Chapter 9, "File Sharing," for more information on Linux file permissions.

The tail command displays the last six lines in the newly created foobirds.m4 file. (All of the lines
before this are comments that are of no interest for this discussion.) You have already seen the
VERSIONID macro. The first new line is the macro that defines confFORWARD_PATH, which tells
sendmail where to look for the user's .forward file. The $z and the $w sendmail variables were
described earlier in the discussion of the sendmail.cf ForwardPath option, which contained the two
paths $z/.forward.$w:$z/.forward. Those two paths are the default value for confFORWARD_PATH.
The define in Listing 5.10 increases the complexity of the.forward path list by adding the value
$z/.forward.$w+$h:$z/.forward+$h to the default search list. The $z and $w variables serve the
same purpose as before. The $h variable contains the detail value when the user+detail addressing
syntax is used, and procmail is used as the local mailer. We know that procmail is being used as the
local mailer from the local_procmail feature in the linux.m4 OSTYPE file. Given this specific
configuration, local mail on a host named egret addressed to craig+sybex would prepend the
following .forward search path to the standard path: /home/craig/
forward.egret+sybex:/home/craig/.forward+sybex. Even though user+detail addressing is rarely
used, we decide to keep this define in the configuration because we plan to use procmail as the
local mailer.

The second define sets the maximum number of bytes allowed for all headers on any one piece of
mail. By default, no limit is set. In Listing 5.10, the maximum length is set to 32,768 bytes (32KB),
which is more than enough for any reasonable set of headers. Headers longer than that might
indicate a mail problem or some form of mail abuse. So we will keep this setting.

The FEATURE(redirect) macro adds support for the .REDIRECT pseudo—domain. The .REDIRECT
pseudo-domain handles mail for people who no longer read mail at your site, but who still get mail
sent to an old address. After enabling this feature, add aliases for each obsolete mailing address in
the form:

old-address new—address.REDIRECT

149

For example, assume that Jay Henson is no longer a valid e-mail user in your domain. His old
username, jay, should no longer accept mail. His new mailing address is HensonJ@industry.com.
Enter the following alias in the /etc/aliases file:

jay HensonJ@industry.com.REDIRECT

Now when mail is addressed to the jay account, the following error is returned to the sender telling
them to try a new address for the recipient:

551 User not local; please try <HensonJ@industry.com>
This seems like a useful feature, so we keep it in the configuration.

The next line in the file also defines a useful feature. FEATURE(use_cw_file) is equivalent to the
Fw/etc/local-host—-names command in the sendmail.cf file. As described earlier, the
local-host-names file provides a means for defining host aliases, which allow a mail server to
accept mail addressed to other hosts.

The last line in Listing 5.10 is the EXPOSED_USER macro. The EXPOSED_USER macro adds
usernames to class E that are not to be masqueraded, even when masquerading is enabled. Some
usernames, such as root, occur on many systems, and are therefore not unique across a domain.
For those usernames, converting the host portion of the address makes it difficult to sort out where
the message really came from, and makes replies impossible. For example, assume that mail from
root@wren.foobirds.org and root@ibis.foobirds.org is passed through a server that converts both
addresses to root@foobirds.org. There is no way for the recipient to know exactly where the
message really originated, and the remote user could not reply to the correct address. The
EXPOSED_USER command prevents that from happening by ensuring that root is not
masqueraded.

We discussed hosthame masquerading earlier in this chapter when we covered class M. But now
we are building a new configuration, and so far we have done nothing to enable masquerading.
However, we keep the EXPOSED_USER macro in the foobirds.m4 file because we plan to add
masquerading as part of the custom address processing for our domain. To the configuration
commands shown in Listing 5.10, we add the following lines to perform the special address
processing that we want.

MASQUERADE_AS (foobirds.orqg)
FEATURE (masquerade_envelope)
FEATURE (genericstable)

The MASQUERADE_AS line tells sendmail to hide the real hostname, and display the name
foobirds.org in its place in outbound e-mail addresses. This defines the sendmail M macro that was
used earlier in the chapter. The M macro only masqueraded header sender addresses. To do this
on "envelope" addresses as well as message header addresses, use the
FEATURE(masquerade_envelope) macro. The other FEATURE macro tells sendmail to use the
generic address conversion database to convert login usernames to the value found in the
database. This allows much more freedom in rewriting outbound addresses than was possible by
directly modifying the sendmail.cf file. Listing 5.11 shows the completed foobirds.m4 DOMAIN file.
Note that we also updated the data on the VERSIONID command line.

Listing 5.11: A Customized DOMAIN File

cat foobirds.m4
divert (0)

150

VERSIONID (" foobirds.m4 03/16/2002")

define (" confFORWARD_PATH', "~$z/.forward.$w+Sh:$z/.forward+Sh:$z/
.forward.Sw:$z/.

forward')dnl

define (" confMAX_HEADERS_LENGTH', 32768')dnl
FEATURE (" redirect')dnl

FEATURE (“use_cw_file')dnl

EXPOSED_USER (" root"')

MASQUERADE_AS (foobirds.orqg)

FEATURE (masquerade_envelope)

FEATURE (genericstable)

Building the m4 Configuration File

Now that the m4 source files have been created for the operating system and the domain, create a
new m4 configuration file to use them. All of the m4 macros related to rewriting the outbound
addresses are in the foobirds.m4 file. The macros that are specific to the Linux distribution are in the
linux.m4 file. We need to include those files in the configuration.

Begin by changing to the ../cf directory and copying the tcpproto.mc file to linux.mc. Then change
the file permission for linux.mc to 644 to make sure that the file is writable by the owner.

Now, modify the file to reflect the new configuration. To do that, change "unknown" in the OSTYPE
macro to "linux", and add a DOMAIN(foobirds) line to the linux.mc macro control file. For the sake
of clarity, we also change the information on the VERSIONID line. The tail command in Listing 5.12
shows the macros in the edited file.

Listing 5.12: A Customized Macro Control File

tail -7 linux.mc

divert (0)dnl
VERSIONID (" linux.mc 03/16/2002")
OSTYPE (" linux"')
DOMAIN (" foobirds"')
FEATURE (nouucp', “reject')
MAILER(local')

MAILER(smtp"')

The next step is to process the linux.mc file through m4:

md ../md4/cf.m4 linux.mc > linux.cf

The sample shows the m4 command format used to build a sendmail.cf file. The pathname ../m4/
cf.m4 is the path to the m4 source tree required to build a sendmail.cf file. The new macro control
file is, of course, linux.mc. m4 reads the source files ../m4/cf.m4 and linux.mc, and it outputs the file
linux.cf. The file output by the m4 command is in the correct format for a sendmail.cf file.

We used three files—ostype/linux.m4, domain/foobirds.m4, and cf/linux.mc—which together total

less than 30 lines. These files create a sendmail.cf file that contains more than 1000 lines. The m4
macros are clearly the best way to build a custom sendmail configuration.

151

Building a sendmail Database

The configuration we have just created works fine. It operates just like the sendmail.cf that was
created earlier, including masquerading hostnames as foobirds.org. But we also want to convert the
username part of outbound addresses from the login name to the user's real name written as
firstname.lastname. To do that, create a database to convert the username part of outbound e-mail
addresses. Build the database by creating a text file with the necessary data and processing that file
through the makemap command that comes with the sendmail distribution.

The genericstable database is a database that sendmail uses to convert outbound e-mail
addresses. By default, the file is built in the /etc/mail directory. Listing 5.13 shows a simple
genericstable file.

Listing 5.13: A Sample genericstable

pat Pat.Stover

mandy Amanda.Jenkins
kathy Kathy.McCafferty
sara Sara.Henson

norm Norman.Edwards
craig Craig.Hunt

Every entry in the genericstable database has two fields: The first field is the key, and the second is
the value returned by the key. In the sample database, the key is the login name, and the return
value is the user's real name. Using this database, a query for "pat" will return the value
"Pat.Stover."

Before the genericstable can be used by sendmail, it must be converted from a text file to a
database with the makemap command, which is included in the sendmail distribution. Assume that
the data shown in Listing 5.13 are stored in a file named usernames.txt. The following command
would convert that file to a genericstable database:

makemap hash genericstable < usernames.txt

The sample makemap command creates a hash type database, which is the most commonly used.
makemap can create other types of databases, but hash is the default type that sendmail uses for
most databases.

After this genericstable database is created, login names on outbound mail are converted to full
names. For example, the username mandy is converted to Amanda.Jenkins. Combining this with

domain name masquerading rewrites outbound addresses into the firstname.lastname@ domain
format.

Testing the m4 Configuration

Test the new configuration using the sendmail —bt command exactly as it was used earlier in this
chapter. Listing 5.14 shows a test of the linux.cf file that we built with m4 macros.

Listing 5.14: Testing Address Rewriting

sendmail -bt -Clinux.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

152

> /tryflags HS
> /try smtp craig
Trying header sender address craig for mailer esmtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqgSMTP input: craig

MasgSMTP returns: craig < @ *LOCAL* >

MasgHdr input: craig < @ *LOCAL* >

canonify input: Craig . Hunt @ *LOCAL*

Canonify2 input: Craig . Hunt < @ *LOCAL* >

LOCAL: Name server timeout

Canonify2 returns: Craig . Hunt < @ *LOCAL* >

canonify returns: Craig . Hunt < @ *LOCAL* >

MasgHdr returns: Craig . Hunt < @ foobirds . org . >
HdrFromSMTP returns: Craig . Hunt < @ foobirds . org . >
final input: Craig . Hunt < @ foobirds . org . >
final returns: Craig . Hunt @ foobirds . org
Rcode = 75, addr = Craig.Hunt@foobirds.org

> /quit

This time, when the sender address craig is processed through the Extended SMTP mailer, the
address is rewritten to craig.hunt@foobirds.org using the genericstable database that we created.
Again, after running several tests, copy linux.cf to /etc/sendmail.cf.

Of course, this entire configuration depends on having the m4 source files on the Linux system. If
your system doesn't have the m4 source files, you can download the latest sendmail distribution

from ftp://ftp.sendmail.org/, where it is stored in the pub/sendmail directory. The distribution includes
a complete sendmail m4 source tree.

In Sum

sendmail is just the first step in building a fully functional mail server. Chapter 11 returns to this
topic, and looks at several other software systems that are used to provide service to e-mail clients.

The next chapter, "The Apache Web Server," takes an in—depth look at a web server configuration.
Web service is as important to a corporate network service as e-mail is as a user service.

153

Chapter 6: The Apache Web Server

Overview

For most people, the World Wide Web has become synonymous with the Internet. No discussion of
Internet services is complete without mention of web servers. Web servers have become an
essential part of every networked business—they are used to advertise products and offer services
to external customers as well as to coordinate and disseminate information within the organization.

Linux systems make excellent web servers. In fact, the Apache server software that comes with
Linux is the most widely used web server in the world. The daemon that Apache installs on a Linux
system to create a web server is the Hypertext Transport Protocol daemon (httpd). This chapter
describes how you can create your own web server with Apache and Linux by installing Apache and
running httpd. It provides all the information you need to understand a default Apache configuration
and to make the adjustments needed for an average server. For more advanced needs, see Linux
Apache Web Server Administration, by Charles Aulds (Sybex, 2000).

Installing Apache

The Apache web server is part of most Linux distributions, and that includes the Red Hat Linux
distribution that we are using as an example. The Apache web server software is one of the
components that can be selected during the operating system installation. See Appendix A,
"Installing Linux," for a description of this procedure.

If Apache is not among the software you selected during the initial installation, you need to install it
now. The easiest way to install software is with a package manager. There are a couple that are
available, but the most popular (and the one used on our sample Red Hat system) is the RPM
Package Manager (RPM). In earlier chapters, we saw an example of the X-based Gnome RPM
tool. RPM can also be used from the command line to manage the installation of optional software.

Use the rpm command to install the software you need, remove software you don't want, and check
what software is installed in your system. rpm has many possible options, but most of them are for
the developers who build the packages you want to install. For a network administrator, rpm can be
reduced to three basic commands:

e rpm —i package: The —i option is used to install software.

e rpm —e package: The —e option is used to remove software.

e rpm —q: The —q option is used to list a software package already installed in the computer.
Use —ga to list all installed packages.

To find the Apache package delivered with the distribution, mount the Linux distribution CD-ROM,
and look in the RPMS directory. Here is an example from our Red Hat system:

$ ed /mnt/cdrom/RedHat/RPMS

$ 1ls *apache*
apache-1.3.20-16.1i386.rpm
apacheconf-0.8.1-1.noarch.rpm

This example assumes that the CD—ROM was mounted on /mnt/cdrom. It shows that two software
packages related to Apache are included in the Red Hat distribution. One is the web server

154

software, and the other is an X Window System Apache configuration tool. Install
apache-1.3.20-16.i386.rpm with this command:

rpm -i apache-1.3.20-16.i386.rpm
After installing the package, check that it is installed with another rpom command:

$ rpm —-q apache
apache-1.3.20-16

This example shows Apache being installed from the Red Hat distribution CD—ROM. If your Linux
distribution does not include the Apache software, or if you want the latest release, download
Apache from the Internet. It is available on the network in RPM format and in binary format for
systems that do not have rpm tools.

Apache software is available at httpd.apache.org in both source and binary forms. Open your
browser to the Apache web page and select the Download link. Then select the Binaries link and
the Linux link. This displays a list of tar files containing pre—compiled Apache software (see Figure
6.1).

= Index of /dist’httpd/binaries/linux - Mozilla {Build ID: 20010301113
:Eile Edit View Search Go Bookmarks Tasks Help

G ¥, O Y @ O |4htlp:/!wvmapache‘orgfdistfh_lI Q, Search g N

Back Forward Print

»

| »

Index of /dist/httpd/binaries/linux

Name Last modified Size Description
4’ Parent Director - HTTP Server project

apache_1.3.1-sparc-whatever-linux. README 06-Apr-2000 14:05 522 HTIP Server project —

apache_1.3. 1-sparc-vhatever-linux. tar. gz 06-Apr-2000 14:05 1.3M HITP Server project
apache_1.3 12-i686-vhatever-linux2. README 06-Apr-2000 14:05 1.8K HITP Server project

s

(N) (N o () (N o i) 2] 2)

apache 1.3 12-i686-vhatever-linux2. tar. gz 06-Apr-2000 14:05 2.6M HTTP Server project

apache 1.3 14-i686-vhatever-linux2. README 13-0ct-2000 04:57 1.8K HTTP Server project

apache 1.3 14-i686-whatever-linux2. tar. gz 13-0ct-2000 03:21 2.8M HTTP Server project

apache 1.3 14-i686-whatever-linux2. tar.gz.asc 13-0ct-2000 03:10 292 PGP signature

apache_1.3. 20-i686-wvhatever-linux22. README 20-Jun-2001 11:36 1.9K HITP Server project

apache_1.3. 20-i686-vhatever-linux22. tar. gz 20-Jun-2001 11:36 3.1M HTTP Server project

apache 1.3 20-i686-vhatever-linux22. tar. gz asc 20-Jun-2001 11:36 477 PGP signature

apache_1.3. 20-iabd-whatever-linux22. README 21-Aug-2001 08:15 2.1K HTTP Server project

apache_ 1.3 20-iabd-whatever-linux22 README.asc 21-Aug-2001 08:18 293 PGP signature ﬂ
‘ | »]
it £ ~Z (&) | Document Done (0.739 secs) ==

Figure 6.1: Linux binaries at the Apache website

The binaries are listed by "machine type." Linux runs on several different platforms. Select the
binary that is appropriate for your processor. Use the Linux uname command to find out your
server's machine type. For example, our sample system provides the following response:

S uname -m
1686

Download the correct binary file to a working directory. Rename the current daemon so that it is not

155

accidentally executed in place of the new daemon, and move the new daemon into a directory
reserved for third—party software. For example, on a Red Hat system, you might move the daemon
to /usr/local/bin/httpd. Programs that are not managed by RPM should be installed in / usr/local or
/opt. Otherwise, you impact some of the benefits of having a package manager. RPM can't verify or
upgrade binaries that it doesn't manage. Placing a binary where RPM expects to find the binary that
it manages can cause false RPM error messages, and may limit your ability to install RPM
packages properly in the future. Here, we rename the old binary, copy the new one, and make sure
to set the correct ownership and permissions for the file:

mv /usr/sbin/httpd /usr/sbin/httpd.orig
cp httpd /usr/local/bin/httpd

chown root:root /usr/local/bin/httpd
chmod 0755 /usr/local/bin/httpd

H = =

Running httpd

After the Apache RPM is installed, use a tool such as chkconfig or tksysv to add httpd to the boot
process to ensure that the server restarts when the system reboots. For example, to start httpd for
runlevels 3 and 5 on a Red Hat system, enter the following chkconfig command:

[root]# chkconfig —--level 35 httpd on
[root]# chkconfig —-list httpd
httpd O:0ff l:0ff 2:0ff 3:on 4:0ff 5:on 6:0ff

If your system doesn't have chkconfig, use another tool, such as tksysv. Figure 6.2 shows how
tksysv is used to run httpd at startup. Highlight httpd in the Available box, click Add, and then click
Done in the next two dialog boxes to add it to the startup process.

£ 5¥SV Runlevel Manager, v1.1 [EE=IE
File Help
Available: 2 3 4 5
gated [lipchains [~ [kudzu S [kudzu 3 [kudzu 3
gpm isdn reconfig reconfig reconfig
halt e network ipchains ipchains ipchains
httpd J t syslog isdn isdn isdn
identd a |keytable network network network
ipchains r |random syslog syslog syslog
iptables t [apmd portmap portmap portmap
isdn sshd nfslock nfslock nfslock
kdcrotate Ipd keytahle keytable keytahle
keytahle sendmail 7 [random 7 [random ; [random Fi
killall
kudzu rhnsd ' [rhnsd X [rhinsd X |rhnsd X
Idap httpd rarmpd httpd rarpd
linuxconf Fi rarpd nfs ramd nfs
Add l S Infs rstatd nfs rstatd
t |rstatd rusersd rstatd rusersd
Remove | o |rusersd rwalld rusersd rwalld
- p rwalld rwhod rusalld rwhod
Edit l rwhod amd rwhod amd
Execute | amd yppasswdd amd yppasswdd
yppasswdd | . |dhcpd 7 |yppasswdd | , |dhcpd Fi

Figure 6.2: Enabling Apache with tksysv
Note

156

If you don't install Apache from an RPM file, you won't have the /etc/init.d/ httpd startup script,
and you will need to add Apache to the startup on your own.
You might be surprised to find that Apache is already configured and ready to run. Try this little test.

Listing 6.1: Starting and Checking httpd

[root]# httpd &

[1] 2366
[root]# ps —Chttpd

PID TTY TIME CMD
2367 2 00:00:00 httpd
2368 ? 00:00:00 httpd
2369 2 00:00:00 httpd
2370 2 00:00:00 httpd
2371 2 00:00:00 httpd
2372 72 00:00:00 httpd
2373 2 00:00:00 httpd
2374 2 00:00:00 httpd
2375 2 00:00:00 httpd
[1]+ Done httpd

Start the httpd daemon, and use the process status (ps) command to check for all httpd processes
running on the system. (This group of httpd processes is called the swarm; we will cover the swarm
in more detail later.)

Next, launch a web browser and point it to the localhost. Figure 6.3 shows the result. Not only is
Apache installed and running, it is configured and responding with web data.

. Eile Edit View Search Go Bookmarks Tasks Help

- Q - Q@ Q [Zmwwocanw]| Qsearch g -

Back Forward Print

>

L

Test Page

This page is used to test the proper operation of the Apache Web server after it has been installed. If
you can read this page, it means that the Apache Web server installed af this site is working properly.

If you are the administrator of this website:

_ You may now add content to this directory, and replace this page. Note that until you do so, people
" visiting your website will see this page, and not your content.

[f you have upgraded from Red Hat Linux 6.2 and earlier, then you are seeing this page because the
default DocumentRoot set in fetc/httpd/conf /httpd. conf has changed. Any subdirectories which
existed under /home/httpd should now be moved to /var /wrw. Alternatively, the contents of fvar /i
can be moved to /home/httpd, and the configuration file can be updated accordingly.

If you are a member of the general public:

The fact that you are seeing this page indicates that the website you just visited is either experiencing
problems, or is undergoing routine maintenance. =

%% &b \Z [E3) | Document: Done (0.705 secs) #,ﬁa

Figure 6.3: Apache installation web page

157

Configuring the Apache Server

Normally, at this point in the discussion of server software, | say something like this: "Installation is
only the beginning. Now you must configure the software." That is not really the case for the Apache
web server running on Linux. It is configured and will run with only a little input from you. You edit
the httpd.conf file to set the web administrator's e-mail address in ServerAdmin and the server's
hostname in ServerName. Beyond that, the httpd configuration provided with a Linux distribution
should be adequate for that version of Linux.

The httpd.conf file is stored in the /etc/httpd/conf directory on Red Hat systems. Another operating
system may place the configuration file in a different directory. To find where it is located on your
system, look in the script that was used to start httpd. The location of the httpd.conf file is defined
there. The locations of other files used by httpd are defined in httpd.conf. Another very simple way
to locate the file is with the find command:

find / -name httpd.conf -print

This command tells find to search every directory from the root (/) on down for a file named
httpd.conf, and to print out the result of the search. Use find any time you need to locate a file.

After locating httpd.conf, use an editor to put valid ServerAdmin and ServerName values into the
configuration. In the Red Hat Linux 7.2 example, ServerAdmin is delivered with this default value:

ServerAdmin root@Ilocalhost

The e—mail address of root@localhost is a valid address, but it is not one we would want to
advertise to remote users. We change ServerAdmin to

ServerAdmin webmaster@www.foobirds.org
The delivered value for ServerName is:
#ServerName localhost

In this case, ServerName is commented out. We remove the hash mark (#) to activate the line, and
we change ServerName to

ServerName www.foobirds.org

In Figure 6.3, we saw that when our Apache server is running, it is serving out data. Of course, the
data in Figure 6.3 is not really the data we want to serve our clients. There are two solutions to this
problem: either put the correct data in the directory that the server is using, or configure the server
to use the directory in which the correct data is located.

The DocumentRoot directive points the server to the directory that contains web page information.
By default, the Red Hat server gets web pages from the /var/www/html directory, as you can see by
checking the value for DocumentRoot in the httpd.conf file:

$ grep '“DocumentRoot' httpd.conf
DocumentRoot "/var/www/html"

$ 1s /var/www/html

index.html manual poweredby.png

158

The /var/www/html directory contains two files and one directory. The poweredby.png file is the
"Powered by Red Hat Linux" graphic seen at the bottom of the web page that is shown in Figure
6.3. The index.html file is the HTML document that creates the web page seen in Figure 6.3. By
default, Apache looks for a file named index.html, and uses it as the "home page" if a specific page
has not been requested. The manual directory contains Apache documentation. It can be viewed by
following the documentation link that is near the bottom of the default web page shown in Figure
6.3.

You can put your own index.html file in this directory, along with any other supporting files and
directories you need, and Apache will start serving out your data. Alternatively, you can edit the
httpd.conf file to change the value in the DocumentRoot directive to point to the directory in which
you store your data. The choice is yours. Either way, you need to create HyperText Markup
Language (HTML) documents for the web server to display.

HTML and document design are beyond the scope of this book. Creating the content for a
professional website is not a job that is usually assigned to the system administrator. The people
who build professional websites are creative people with a good sense of design and an artistic eye.
That's not most of the technical people | know. If it's not you, either, the best approach for creating a
website for your business is to hire someone who has the proper talent to do it, in the same way
that your company hires professionals to produce its advertising campaigns.

Sometimes, however, you may be called upon to create a website for an organization that cannot
afford to hire a professional web designer. In that case, you should refer to Linux Apache Web
Server Administration, by Charles Aulds (Sybex, 2000) for more information about HTML authoring
tools.

After the minimal changes are made to the httpd.conf file, the server can be restarted. The easiest
way to do this on a Red Hat system is to run the /etc/init.d/httpd script file with the argument restart.
The /etc/init.d/httpd script accepts the same arguments as those described in Chapter 4, "Linux
Name Servers," for the /etc/init.d/named script.

The httpd.confFile

Despite the fact that you may change only one or two options, you need to understand how Apache
is configured, what files the server requires, and where all the files are located. Given the
importance of web servers for most networks, Apache is too essential for you to ignore. Additionally,
the assumptions made by the distribution may not match the use you plan for your server, and you
may want to fine—tune the configuration. To master Apache, you need to understand the Apache
configuration file. Traditionally, Apache was configured by three files:

httpd.conf Defines configuration settings for the HTTP protocol and for the
operation of the server. This includes defining what directory holds the configuration
files.

srm.conf Configures how server requests are managed. This includes defining
where HTTP documents and scripts are stored.

access.conf Defines access control for the server and the information it provides.

The functions of the three files overlap, and any Apache configuration directive can be used in any
of the configuration files. The traditional division of the files into server, data, and security functions

159

was essentially arbitrary. Some administrators still follow this tradition, but it is most common for the
entire configuration to be defined in the httpd.conf file. Placing the entire configuration in httpd.conf
is the recommended approach, it is the approach used on our sample Red Hat system, and it is the
one we use in this chapter. In the following sections, we examine the httpd.conf file in detail.

The httpd.conf file is an ASCII text file. Comments begin with a #, and the file is well-documented
by comments. Most of the commands in the files are written in the form of a directive, followed by
the value being assigned by the directive. For example:

Listen 443
This directive sets Listen to 443. (More about Listen later.)

In addition to basic directives, the httpd.conf file includes containers that limit the scope of the
directives they contain. For example, to limit certain directives to a specific directory, create a
Directory container for those directives. Five different types of containers found in the Red Hat
httpd.conf are:

<Directory pathname> The Directory directive creates a container for directives
that apply to the directory identified by pathname. Any configuration directives that
occur after the Directory directive and before the next </Directory> statement apply
only to the specified directory.

<Files filename> The Files directive creates a container for directives that apply to
the file identified by filename. Any configuration directives that occur after the Files
directive and before the next </Files> statement apply only to the specified file.
filename can refer to more than one file because it can contain the wildcard
characters * and ?. Additionally, if the Files directive is followed by an optional ~
(tilde), the filename field is interpreted as a regular expression.

<Location document> The Location directive creates a container for directives that
apply to a specific document. Any configuration directives that occur after the
Location directive and before the next </Location> statement apply only to the
specified document.

<lfDefine argument> The IfDefine directive creates a container for directives that
are applied to the configuration only if the specified argument exists on the httpd
command line. For example, the line <IfDefine HAVE_SSL> marks the beginning of a
container of directives that are used only if the string -DHAVE_SSL occurs on the
httpd command line. The IfDefine container ends with the next </IfDefine> statement.

<lfModule module> The IfModule directive creates a container for directives that
are applied to the configuration only if the specified module is loaded. For example,
the directives enclosed by <IfModule mod_userdir.c> and <\IfModule> are used only
if the module mod_userdir is loaded.

Directories and files are easy to understand: They are parts of the filesystem that every system
administrator knows. Documents, on the other hand, are specific to the web server. The screenful of
information that appears in response to a web query is a document. It can be made up of many files
from different directories. The Location container provides an easy way to refer to a complex
document as a single entity. (We will see examples of Directory and Files containers later in this
chapter.)

160

The Red Hat configuration contains many |fDefine and IfModule statements. The IfModule
statements enclose commands that depend on the specific module; they allow the configuration to
load without a syntax error, even if a specific module is not loaded. The IfDefine statements allow
optional Apache features to be selected from the command line. The /etc/init.d/httpd script that
starts httpd on a Red Hat system creates an argument for every module found in /usr/lib/ apache.
Therefore, the default behavior on a Red Hat system is to attempt to use every optional feature
included in /usr/lib/apache.

The Red Hat Linux httpd.conf file is more than 1400 lines long. But most of the contents of the file is
information from the Apache developers that is designed to help you understand how to configure
Apache. The file is full of comments that explain the purpose of the configuration directives, and
additional information about the directives is available in the online documentation at
http://www.apache.org/. Still, the Red Hat httpd.conf file contains more than 250 active configuration
lines. To tackle that much information, we have organized the discussion of the configuration file
into related topics. This is not the way the directives are organized inside the configuration file. The
configuration file organizes directives by scope: global environment directives, main server
directives, and virtual host directives. (Virtual hosts are explained later.) That organization is great
for httpd when it is processing the file, but not so great for a human reading the file. We bring
directives together into related groups to make the individual directives more understandable
because after you understand the individual directives, you will understand the entire configuration.

We start our look at the httpd.conf file with the directives that load dynamically loadable modules.
These modules must be loaded before the directives they provide can be used in the configuration,
so it makes sense to discuss loading the modules before we discuss using the features they
provide. Understanding dynamic loadable modules is a good place to start understanding Apache
configuration.

Loading Dynamic Shared Objects

The two directives that appear most in the Red Hat httpd.conf file are LoadModule and AddModule.
These two directives make up more than 75 of the 250 active lines in the httpd configuration file. All
75 of these lines configure the Dynamic Shared Object (DSO) modules used by the Apache web
server.

Apache is composed of many software modules. Like kernel modules, DSO modules can be
compiled into Apache or loaded at runtime. Run httpd with the —| command-line option to lists all of
the modules compiled into Apache. Listing 6.2 shows the statically linked httpd modules on our
sample Red Hat system.

Listing 6.2: Listing Statically Linked httod Modules

$ httpd -1

Compiled—-in modules:
http_core.c
mod_so.c

Some systems may have many modules compiled into the Apache daemon. Others, such as the
Red Hat Linux 7.2 system, are delivered with only two modules compiled in. These are:

http_core.c This is the core module. It is always statically linked into the Apache

kernel. It provides the basic functions that must be found in every Apache web
server. This module is required. All other modules are optional.

161

mod_so.c This module provides runtime support for Dynamic Shared Object
modules. It is required if you plan to dynamically link in other modules at runtime. If
modules are loaded through the httpd.conf file, this module must be installed in
Apache to support those modules. For this reason, it is often statically linked into the
Apache kernel.

Red Hat also uses many dynamically loaded modules. Two directives are used in the httpd.conf file
to enable dynamically loaded modules. First, each module is identified by a LoadModule directive.
For example, to request the module that handles the user agent log file, enter this line in the
httpd.conf file:

LoadModule agent_log_module modules/mod_log_agent.so
The LoadModule directive is followed by the module name and the path to the module itself.

In addition to the LoadModule directive, the Red Hat configuration identifies each module with an
AddModule directive. This adds the module name to the list of modules that are actually loaded at
runtime. The module list includes all optional modules—those that are compiled into the server and
those that are dynamically loaded—except for the core module, which is not optional. For example,
to add the agent_log_module to the module list, add the following line to the httpd.conf file:

AddModule mod_log_agent.c

The AddModule directive is followed by the source filename of the module being loaded. It is not the
module name seen on the LoadModule line; it is the name of the source file that produced the
object module, which is identical to the object filename except for the extension. On the
LoadModule line, the object filename is mod_log_agent.so. Here, the source filename is mod_
log_agent.c. Executable modules, called shared objects, use the extension .so, and the
C-language modules in the add list use the extension .c.

Table 6.1 lists the modules that Red Hat Linux 7.2 identifies in its sample httpd.conf file with
AddModule directives.

Table 6.1: DSO Modules Loaded in the Red Hat Configuration

Module Purpose

mod_access Specifies host— and domain-based access controls.
mod_actions Maps a CGl script to a MIME file type.

mod_alias Points to document directories outside the document tree.
mod_asis Defines file types returned without headers.

mod_auth Enables user authentication.

mod_auth_anon Enables anonymous logins.

mod_auth_db Enables use of a DB authentication file.

mod_autoindex

Enables automatic index generation.

mod_bandwidth

Sets bandwidth limits on server usage.

mod_cqi Enables execution of CGl programs.

mod_dav Provides WebDAV protocol extensions.

mod_dir Controls formatting of directory listings.

mod_env Allows CGI and SSI to inherit all shell environment variables.

162

mod_expires Sets the date for the Expires header.
mod_headers Enables customized response headers.
mod_imap Processes image map files.
mod_include Processes SSl files.

mod_info Enables use of the server—info handler.

mod_log_agent

Points to the agent log file.

mod_log_config

Enables use of custom log formats.

mod_log_referer

Points to the referer log, which logs information about remote sites
that refer to your site.

Module Purpose

mod_mime Provides support for MIME files.

mod_negotiation Enables MIME content negotiation.

mod_perl Provides support for the Perl language.

mod_php Provides support for the PHP language.

mod_php3 Additional PHP support.

mod_php4 Additional PHP support

mod_put Provides support for client to server file transfers using the PUT and
DELETE commands.

mod_python Provides support for the Python language.

mod_rewrite Enables URI-to—filename mapping.

mod_roaming

Provides Netscape Roaming Access support.

mod_setenvif

Sets environment variables from client information.

mod_so Provides runtime support for shared objects (DSO).
mod_ssl Provides support for Secure Sockets Layer.
mod_status Provides web—based access to the server—info report.
mod_throttle Limits the maximum usage of individual users.
mod_userdir Defines where users can create public web pages.

mod_vhost_alias

Provides support for name-based virtual hosts.

In addition to the LoadModule and AddModule directives, the Red Hat httpd.conf file contains one
other directive that relates to loading DSOs. Before the modules are added to the list of modules
that are available to Apache, the old module list can be cleared with the ClearModuleList directive.
ClearModuleList occurs in the Red Hat httpd.conf file after the last LoadModule directive and before
the first AddModule directive.

Basic Server Directives

A few directives define basic information about the server itself. We modified two of these,
ServerAdmin and ServerName, when creating the basic configuration.

ServerAdmin defines the e—-mail address of the web server administrator. In the default Red Hat
configuration, this is set to root@localhost on the assumption that there is always a root account,
and there is always the hostname localhost. Change this to the full e-mail address of the real web
administrator. For example:

ServerAdmin webmaster@www.foobirds.org

163

In this example, we use the classic web administrator e-mail address
webmaster@www.foobirds.org as the value for ServerAdmin. For this to work, we need a
webmaster entry in the sendmail aliases file, which we created in Chapter 5, "Configuring a Malil
Server"; and a CNAME record in the DNS database for www.foobirds.org, which we created in
Chapter 4. Internet services are often interrelated and dependent on proper configuration in related
services.

ServerName defines the hostname returned to clients when they read data from this server. In the
default Red Hat configuration, ServerName was commented out, and the example on the comment
line set ServerName to localhost. Change this to provide a real hostname. For example:

ServerName www.foobirds.org

When the ServerName directive is commented out, the "real" hostname is sent to clients. Thus, if
the name assigned to the first network interface is wren.foobirds.org, it is the name sent to clients
when ServerName is undefined. Defining an explicit value for ServerName documents the
configuration, and ensures that you get exactly the value you want. We set ServerName to
www.foobirds.org so that, even though the web server is running on wren, the server will be known
as www.foobirds.org during web interactions. Of course, www.foobirds.org must be a valid
hostname configured in DNS. In Chapter 4, we defined www is as a nickname for wren in the
foobirds.org zone file.

The UseCanonicalName directive controls whether or not the value defined by ServerName is used.
UseCanonicalName defines how httpd handles "self-referencing" URLs, which refer back to the
server. When this is set to on, as it is in the Red Hat configuration, the value in ServerName is used.
If it is set to off, the value that came in the query from the client is used. If your site uses multiple
hostnames, you may want to set this to off so that the user will see the name they expect in the

reply.

The ServerRoot option defines the directory that contains the httpd server files. This is different from
DocumentRoot, which is the directory that contains the information files the server presents to
clients. On Red Hat, and most other systems, this is /etc/httpd. The conf directory under the
ServerRoot contains the three configuration files. Therefore, httpd.conf is itself located under the
ServerRoot that it defines.

The ServerType option defines how the server is started. If the server starts from a startup script at
boot time, the option is set to standalone. If the server is run on demand by inetd or xinetd,
ServerType is set to inetd. Most of the time, web servers are in high demand, so it is best to start
them at boot time. It is possible, however, for a user to set up a small, rarely used website on a
Linux desktop. In that case, running the server from inetd or xinetd may be desirable.

Port defines the TCP port number used by the server. The standard number is 80. On occasion,
private web servers run on other port numbers. 8080 and 8000 are popular alternative ports for
private websites. If you change the number, you must then tell your users the non-standard port
number. For example, http://private.foobirds.org:8080 is a URL for a website running on TCP port
8080 on host private.foobirds.org.

When ServerType is set to inetd, it is usually desirable to set Port to something other than 80. The
reason for this is that the ports under 1024 are "privileged" ports. If 80 is used, httpd must be run
from inetd with the user ID root. This is a potential security problem, because an intruder might be
able to exploit the website to get root access. Using port 80 is okay when ServerType is standalone
because the initial httpd process does not provide direct client service. Instead, it starts several
other HTTP daemons to provide client services that do not run with root privilege.

164

Multi-Homed Server Configuration

A web server that is connected to more than one physical network is called a multi-homed server.
Such a server has more than one IP address. If it does, the system needs to know which address it
should listen to for incoming server requests. There are two configuration options to handle this:

BindAddress Tells httpd which address should be used for server interactions. The
default value is *, which means that the server should respond to web service
requests addressed to any of its valid IP addresses. If a specific address is used on
the BindAddress command line, only requests addressed to that address are
honored. BindAddress is not explicitly set in the Red Hat configuration.

Listen Tells httpd which additional addresses and ports should be monitored for
web service requests. Address and port pairs are separated by a colon. For example,
to monitor port 8080 on IP address 172.16.64.52, enter 172.16.64.52:8080. If a port
is entered with no address, the address of the server is used. If the Listen directive is
not used, httpd monitors only the port defined by the Port directive. The Red Hat
configuration only uses the Listen directive to provide SSL support. In that case, it
sets the standard port to 80, and sets the SSL port to 443.

Defining Where Things Are Stored

The DocumentRoot directive, which was mentioned earlier, defines the directory that contains the
web server documents. For security reasons, this is not the same directory that holds the
configuration files. The ServerRoot directive defines the location of the server configuration files. On
our sample Red Hat system, DocumentRoot and ServerRoot are

DocumentRoot "/var/www/html"
ServerRoot "/etc/httpd"

The PidFile and ScoreBoardFile directives both define the paths of files that relate to process
status. The PidFile is the file in which httpd stores its process ID; the ScoreBoardFile is the file in
which httpd writes process status information. If the ScoreBoardFile is not defined, Apache uses a
shared—-memory segment instead of a file, which improves performance.

The Alias directive and the ScriptAlias directive both map a URL path to a directory on the server.
For example:

Alias /icons/ "/var/www/icons/"
ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

The first line maps the URL path /icons/ to the directory /var/www/icons/. Thus, a request for
www.foobirds.org/icons/ is mapped to www.foobirds.org/var/www/icons/.

The Red Hat configuration contains several Alias directives to handle several different mappings,
and one global ScriptAlias directive. The ScriptAlias directive functions in exactly the same ways as
the Alias directive, except that the directory it points to contains executable CGI programs.
Therefore, httpd grants this directory execution privileges. ScriptAlias is particularly important
because it allows you to maintain executable web scripts in a directory that is separate from the
DocumentRoot. CGl scripts are the single biggest security threat to your server. Maintaining them
separately allows you to provide tighter controls on who has access to the scripts.

165

The UserDir directive enables personal user web pages, and points to the directory that contains
the user pages. UserDir usually points to public_html. With this default setting, users create a
directory named public_html in their home directories to hold their personal web pages. When a
request comes in for www.foobirds.org/~sara, it is mapped to
www.foobirds.org/home/sara/public_html .

An alternative is to define a full pathname such as /home/userpages on the UserDir command line.
Then the administrator creates the directory, and allows each user to store personal pages in
subdirectories of this directory. A request for www.foobirds.org/~sara maps to
www.foobirds.org/home/homepages/sara . The advantages of this approach are that it improves
security by making it easier for you to monitor the content of user pages, and it makes it easier to
control who can publish pages, rather than allowing all users to do so.

The Directorylndex option defines the name of the file that is retrieved if the client's request does
not include a filename. Our sample Red Hat system has the following values for this option:

DirectoryIndex index.html index.htm index.shtml index.php index.php4
index.php3 index.phtml index.cgi

Given the value defined for DocumentRoot and this value, if the server gets a request for
http://www.foobirds.org/songbirds/, it first attempts to locate a file named /var/www/html/songbirds/
index.html. Notice that the DocumentRoot is prepended to any request, and the Directorylndex is
appended to any request that doesn't end in a filename. If the server finds a file with that name, it
serves the client the file. If it does not find the file, it tries index.htm and then index.shtml, and so on
down the line to index.cgi. If none of the files defined by Directorylndex is found, httpd sends the
client a listing of the directory. Several directives control how that directory listing is formatted.

Creating a Fancy Index

If the Fancylndexing option is specified on the IndexOptions directive, httpd creates a directory list
that includes graphics, links, and other fancy features. The following options define the graphics and
features used in the fancy directory listing:

Indexlgnore Lists the files that should not be included in the directory listing. Files
can be specified by name, by partial name, by extension, or by standard wildcard
characters.

HeaderName Defines the name of a file that contains information to be displayed at
the top of the directory listing.

ReadmeName Defines the name of a file that contains information to be displayed
at the bottom of the directory listing.

Addlcon Defines the icon file used to represent a file based on the filename
extension.

Defaultlcon Defines the icon file used to represent a file that has not been given an
icon by any other option.

AddiconByEncoding Defines the icon file used to represent a file based on the
MIME encoding type of the file.

166

AddlconByType Defines the icon file used to represent a file based on the file's
MIME file type.

Defining File Types

MIME file types and file extensions play a major role in helping the server determine how a file
should be handled. Specifying MIME options is also a major part of the httpd.conf file. The options
involved are the following:

DefaultType Defines the MIME type that is used when the server cannot determine
the type of a file. By default, this is set to text/html. Thus, when a file has no file
extension, the server assumes that it is an HTML file.

AddEncoding Maps a MIME encoding type to a file extension. The Red Hat
configuration contains two AddEncoding directives:

AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

The first directive maps the file extension .Z to the MIME encoding type x—compress.
The second line maps the file extensions .gz and .tgz to MIME encoding type x—gzip.

AddLanguage Maps a MIME language type to a file extension.

LanguagePriority Sets the language encoding in case the client does not specify a
preference.

AddType Maps a MIME file type to a file extension.

AddHandler Maps a file handler to a file extension. A file handler is a program that
knows how to process a file. Simple examples of this are cgi—script, which is the
handler for CGl files; and server—parsed, which handles Server Side Includes (SSI).
(Both SSI and CGl are covered more later.)

Managing Child Processes

In the original NCSA (National Center for Supercomputer Applications) web server design, the
server would fork processes to handle individual requests. This placed a heavy load on the CPU
when the server was busy, and impacted the responsiveness of the server. It was even possible for
the entire system to be overwhelmed by HTTP daemon processes.

Apache uses another approach. A swarm of server processes starts at boot time. (The ps command
in Listing 6.1 shows several httpd processes running on a Linux system.) All of the processes in the
swarm share the workload. If all of the persistent httpd processes become busy, spare processes
are started to share the work.

Five options in the httpd.conf configuration file control how the child server processes are managed.
The options that control the management of these spare processes are as follows:

MinSpareServers Defines the minimum number of idle server processes that must

be maintained. In the Red Hat configuration, this is set to 5, which is the default value
used in the Apache distribution. With this setting, another process is created to

167

maintain the minimum number of idle process when the number of idle httpd
processes drops below 5. Set MinSpareServers higher if the server is frequently slow
to respond because of periods of high activity.

MaxSpareServers Defines the maximum number of idle server processes that may
be maintained. In the Red Hat configuration, this is set to 20. During a burst of
activity, several httpd processes may be created to handle client request. As activity
declines, the processes become idle. With the Red Hat setting, processes will be
killed if more than 20 httpd processes are sitting idle.

StartServers Defines the number of persistent httpd processes started at boot time.
In the Red Hat configuration it is set to 8. The effect of this directive can be seen in
the output of the ps command in Listing 6.1, which showed that nine httpd daemons
were running. One of these is the parent process that manages the swarm, but does
not serve client requests. The other eight are the child processes that actually handle
client requests for data.

MaxClients Defines the maximum number of clients to be serviced. Requests
beyond the maximum number are queued until a server is available. Red Hat sets
this to 150, which is the most commonly used value. The default used when
MaxClients is not defined is the value set by HARD_SERVER_LIMIT when Apache is
compiled, which is usually 256. MaxClients prevents the server from consuming all
system resources when it receives an overwhelming number of client requests. The
Red Hat MaxClients setting should be increased only if the number of simultaneous
clients using your server routinely exceeds 150, and your server is a powerful system
with fast disks and a large amount of memory. It is often better to handle additional
clients by adding additional servers than it is to pack more clients on one server.

MaxRequestsPerChild Defines the number of client requests a child process can
handle before it must terminate. Red Hat sets this to a very low 1000.
MaxRequestsPerChild is used when the operating system or libraries have memory
leaks that cause problems for persistent processes. Apache recommends a setting of
10000 if your system has memory leak problems. Set MaxRequestsPerChild to 0,
which means "unlimited"—a child process can keep handling client requests for as
long as the system is up and running—unless you know for a fact that the library you
used to compile Apache has a memory leak.

The User and Group directives define the UID and GID under which the swarm of httpd processes
are run. When httpd starts at boot time, it runs as a root process, binds to port 80, and then starts a
group of child processes that provide the actual web services. The UID and GID defined in the
httpd.conf file are assigned to these child processes. The UID and GID should provide the least
possible system privilege to the web server. On most Linux systems, this is the user nobody and the
group nobody. An alternative to using nobody is to create a user ID and group ID just for httpd. Red
Hat uses this approach, and creates a special user apache and a special group apache. The
advantage of creating a special UID and GID for the web server is that you can use group
permission for added protection, and you won't be completely dependent on the world permission
granted to nobody. If you create your own user and group for Apache, set the file permissions for
the new user account very carefully. (See Chapter 9, "File Sharing," for information on filesystem
security.)

168

Performance Tuning Directives

The KeepAlive directive enables or disables the use of persistent connections. Without a persistent
connection, the client must make a new connection to the server for every link the client wants to
explore. Because HTTP runs over TCP, every connection requires a connection setup. This adds
time to every file retrieval. With a persistent connection, the server waits to see if the client has
additional requests before it closes the connection. Therefore, the client does not need to create a
new connection to request a new document. The KeepAliveTimeout defines the number of seconds
the server holds a persistent connection open, waiting to see if the client has additional requests.

MaxKeepAliveRequests defines the maximum number of requests that will be accepted on a
"kept-alive" connection before a new TCP connection is required. The Apache default value is 100.
Setting MaxKeepAliveRequests to 0 allows unlimited requests. 100 is a good value for this
parameter. Few users request 100 document transfers, so the value essentially creates a persistent
connection for all reasonable cases. Additionally, if the client does request more than 100 document
transfers, it might indicate a problem with the client system. At that point, requiring another
connection request is probably a good idea.

Timeout defines the number of seconds the server waits for a transfer to complete. The value needs
to be large enough to handle the size of the files your site sends and the low performance of the
modem connections of your clients. But if it is set too high, the server will hold open connections for
clients that may have gone offline. The Red Hat configuration has this set to five minutes (300
seconds).

BrowserMatch is a different type of tuning parameter: It reduces performance for compatibility's
sake. The Red Hat configuration contains the following five BrowserMatch directives:

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0
BrowserMatch "RealPlayer 4\.0" force-response-1.0

BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

The BrowserMatch directives present information in a manner that is compatible with the
capabilities of different web browsers. For example, a browser may be able to handle only HTTP
1.0, not HTTP 1.1. In this case, downgrade-1.0 is used on the BrowserMatch line to ensure that the
server uses only HTTP 1.0 when dealing with that browser. In the Red Hat configuration, keepalives
are disabled for two browsers. One browser is offered only HTTP 1.0 during the connection. And
responses are formatted to be compatible with HTTP 1.0 for four different browsers.

Don't fiddle with the BrowserMatch directives. These settings are shipped as defaults in the Apache
distribution. They are already set to handle the limitations of different browsers. These are tuning
parameters, but they are used by the Apache developers to adjust to the limitation of older
browsers.

Caching Directives

Several directives control the caching behavior of the server. A cache is a locally maintained copy of
a server's web page. When firewalls are used, direct web access is often blocked. Users connect to
a proxy server through the local network, and the proxy server is trusted to connect to the remote
web server. Proxy servers do not have to maintain cached copies of web pages, but caching
improves performance by reducing the amount of traffic sent over the WAN and by reducing the
contention for popular websites. The directives that control caching behavior are as follows:

169

ProxyRequests Setting this option to on turns your server into a proxy server. By
default, this is set to off.

ProxyVia Enables or disables the use of Via: headers, which aid in tracking where
cached pages actually came from.

CacheRoot Defines the directory in which cached web pages are written. To avoid
making the directory writable by the user nobody, create a special user ID for httpd
when you run a proxy server.

CacheSize Defines the maximum size of the cache in kilobytes. The default is 5KB,
which is a very minimal size. Many system administrators consider 100MB a more
reasonable setting.

CacheGclinterval Defines the time interval at which the server prunes the cache. It
is defined in hours, and the default is 4. Given the defaults, the server prunes the
cache down to 5 kilobytes every four hours.

CacheMaxExpire Defines the maximum number of hours a document is held in the
cache without requesting a fresh copy from the remote server. The default is 24
hours. With the default, a cached document can be up to a day out-of-date.

CachelLastModifiedFactor Defines the length of time a document is cached, based
on when it was last modified. The default factor is 0.1. Therefore, if a document is
retrieved that was modified 10 hours ago, it is held in the cache for only one hour
before a fresh copy is requested. The assumption is that if a document changes
frequently, the time of its last modification will be recent. Thus, documents that
change frequently are cached only a short period of time. Regardless, nothing is
cached longer than CacheMaxExpire.

CacheDefaultExpire Defines a default cache expiration value for protocols that do
not provide the value. The default is one hour.

NoCache Defines a list of the hostnames of servers whose pages you do not want
to cache. If you know that a server has constantly changing information, you don't
want to cache information from that server because your cache will always be
out-of-date. Listing the name of that server on the NoCache directive line means
that queries are sent directly to the server, and responses from the server are not
saved in the cache.

Defining Virtual Hosts

Virtual hosts allow a server to host multiple websites known by different hostnames. The Red Hat
configuration has an entire section dedicated to virtual hosts, but it is all commented out. It is there
only to serve as an example. To use virtual hosts, you must first uncomment the NameVirtualHost
directive to enable name-based virtual hosts. There are IP-based virtual hosts, but those consume
valuable IP addresses. Name-based virtual hosts are recommended by the Apache developers,
and are preferred by most administrators.

On the sample Red Hat system, the NameVirtualHost directive is commented-out. The line is:

#NameVirtualHost *

170

The asterisk on this line stands for any address assigned to any interface on the host. To make this
more understandable, we will be more explicit. We remove the hash mark (#) to activate the line,
and set the NameVirtualHost address to the primary address of our server:

NameVirtualHost 172.16.5.1

Next, define the virtual hosts that will be served. For example, to host websites for fish.edu and
mammals.com on the wren.foobirds.org server, add the following lines to the httpd.conf file:

<VirtualHost www.fish.edu>
DocumentRoot /var/www/html/fish
ServerName www.fish.edu
</VirtualHost>

<VirtualHost www.mammals.com>
DocumentRoot /var/www/html/mammals
ServerName www.mammals.com
</VirtualHost>

Each VirtualHost directive defines a hosthame alias to which the server responds. For this to be
valid, DNS must define the alias with a CNAME record. The example requires CNAME records that
assign wren.foobirds.org the aliases of www.fish.edu and www.mammals.com. When wren receives
a server request addressed to one of these aliases, it uses the configuration parameters defined
here to override its normal settings. Therefore, when it gets a request for www.fish.edu, it uses
www.fish.edu as its ServerName value instead of its own server name, and uses /var/www/ html/fish
as the DocumentRoot.

These are simple examples. Any valid configuration directive can be placed within a VirtualHost
container.

Web Server Security

Web servers are vulnerable to all of the normal security problems that are discussed in Chapter 12,
"Security." But they also have their own special security considerations. In addition to all of the
normal threats, such as network break-ins and denial of service attacks, web servers are
responsible for protecting the integrity of the information disseminated by the server and for
protecting the information sent by the client to the server.

Access to the server information is protected by access controls. Through the httpd.conf file, you
can configure host-level and user—level access controls. Access control is important for protecting
internal and private web pages, but most web information is intended for dissemination to the world
at large. For these global web pages, you don't want to limit access in any way, but you do want to
protect the integrity of the information on all pages.

One of the unique security risks for a web server is having an intruder change the information on the
web pages. We have all heard of high—profile incidents when intruders get in and change the home
page of some government agency, inserting comical or pornographic material. These attacks are
not intended to do long-term harm to the server, but they are intended to embarrass the
organization that runs the website.

Use the Linux file permissions discussed in Chapter 9 to protect the files and directories in which

you store web documents. The server does not need write permissions, but it needs to read and
execute these files. Executable files, if they are poorly designed, are always a potential security

171

threat.

The CGIl and SSI Threat

Apache itself is very reliable and reasonably secure. The biggest threat to server security is the
code that you or your users write for the server to execute. Two sources of these problems are
Common Gateway Interface (CGl) programs and Server Side Includes (SSI).

One of the biggest threats to server security is badly written CGl programs. Intruders exploit poor
code by forcing buffer overflows or by passing shell commands through the program to the system.
The only way to avoid this and still have the benefit of CGI programs, which can be written in C,
Perl, Python, and other programming languages, is to be very careful about the code that you make
available on your system. Here are some basic preventative measures to keep in mind:

¢ Personally review all programs included in the cgi-bin directory.
e Try to write programs that do not allow free—form user input.

e Use drop—down menus instead of keyboard input.

e Limit what comes in to your system from the user.

To make it easier to review all CGl scripts, keep them all in the ScriptAlias directory. Don't allow
ExecCGl in any other directory unless you're positive no one can place a script there that you have
not personally reviewed. (The way ExecCGl and other server options are controlled is covered in
the next section.)

Server Side Includes is also called Server Parsed HTML, and the files often have the .shtml file
extension. These files are processed by the server before they are sent to the client. These files can
include other files or execute code from script files. If user input is used to dynamically modify the
SSl file, it is vulnerable to the same type of attacks as CGl scripts.

SSI| commands are embedded inside HTML comments. Therefore, each SSI command begins with
<!--and concludes with ——>. The SSI commands are listed in Table 6.2.

Table 6.2: Server Side Includes Commands

Command Purpose

#config Formats the display of file size and time.

#echo Displays variables.

#exec Executes a CGl script or a shell command.
#flastmod Displays the date a document was last modified.
#fsize Displays the size of a document.

#include Inserts another file into the current document.

The most secure way to operate a server is to disallow all SSI processing. This is the default unless
All or Includes is specified by an Options directive in the httpd.conf file. A compromise setting is to
allow SSI, but to disallow the #include and #exec commands, which are the greatest security threat.
Use IncludesNOEXEC on the Options directive for this setting.

Server Options for Documents and Directories

The httpd.conf file can define server controls for all web documents or for documents in individual

172

directories. The Options directive specifies which server options are permitted for documents.
Placing the Options directive inside a Directory container limits the scope of the directive to that
specific directory. The Red Hat Linux 7.2 configuration provides the examples shown in Listing 6.3.

Listing 6.3: Active Directory Containers in Red Hat's httpd.conf File

<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
<Directory "/var/www/html">
Options Indexes FollowSymLinks
AllowOverride None
Order allow,deny
Allow from all
</Directory>
<Directory "/var/www/icons">
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all
</Directory>
<Directory "/var/www/cgi-bin">
AllowOverride None
Options None
Order allow,deny
Allow from all
</Directory>
<Directory /usr/share/doc>
order deny,allow
deny from all
allow from localhost .localdomain
Options Indexes FollowSymLinks
</Directory>

This configuration defines server option controls for five directories: the root (/), /var/www/html,
/var/www/icons, /var/www/cgi-bin, and /usr/share/doc directories. The example shows four possible
values for the Options directive: FollowSymLinks, Indexes, None, and MultiView. The Options
directive has several possible settings:

All Permits the use of all server options.

ExecCGl Permits the execution of CGl scripts from this directory. The ExecCGl
option allows CGl scripts to be executed from directories other than the directory
pointed to by the ScriptAlias directive. Many administrators set this option for the
ScriptAlias directory, but doing so is somewhat redundant. The ScriptAlias directive
already specifies that /var/ www/cgi-bin is the script directory. In Listing 6.3, Options
is set to None for the /var/ www/cgi-bin directory without undoing the effect of the
ScriptAlias directive.

FollowSymLinks Permits the use of symbolic links. If this is allowed, the server
treats a symbolic link as if it were a document in the directory.

Includes Permits the use of Server Side Includes (SSI).

173

IncludesNOEXEC Permits Server Side Includes (SSI) that do not include #exec and
#include commands.

Indexes Permits a server—generated listing of the directory if an index.html file is not
found.

MultiViews Permits the document language to be negotiated.
None Doesn't permit any server options. This provides the highest level of security.

SymLinkslfOwnerMatch Permits the use of symbolic links if the target file of the
link is owned by the same user ID as the link itself.

Use server options with care. The None, Indexes, and MultiView options used in the Red Hat
configuration should not cause security problems, although Indexes gives remote users a listing of
the directory contents if no index.html file is found and MultiView consumes server resources.
FollowSymLinks has the potential for security problems because symbolic links can increase the
number of directories in which documents are stored. The more directories, the more difficult the
task of securing the directories because all of the directories must have the proper permissions set,
and all must be monitored for possible file corruption.

The directory containers in the example above also contain AllowOverride directives. These
directives limit the amount of configuration control given to the individual directories.

Directory-Level Configuration Controls

The httpd.conf directive AccessFileName .htaccess enables the use of a directory-level
configuration control file, and states that the name of the directory configuration file is .htaccess. If
the server finds a file with this name in a directory, it applies the configuration commands defined in
the file to the directory based on the AllowOverride directive that applies to the directory. The
.htaccess file allows you to distribute control to the individuals who create and manage the
individual data directories.

Conceptually, the .htaccess file is similar to a Directory container. In the same way that the
directives in a Directory container apply to a specific directory, the directives in the .htaccess file
apply only to the directory in which the file is found. The directives in the .htaccess file are
potentially the same ones used in the httpd.conf file that defines the system-wide configuration.

The AllowOverride directive has six keywords that set the level of configuration control granted to
the .htaccess file:

None Allows no configuration overrides. In effect, None disables the .htaccess file.
All Permits the .htaccess file to override everything defined in the httpd.conf
configuration files for which overrides are allowed. This is the same as specifying all

of the four remaining keywords: AuthConfig, Filelnfo, Indexes, and Limit.

AuthConfig Permits the .htaccess file to define user authentication directives. User
authentication is covered later in this chapter.

FileInfo Allows the file to use directives that control document types.

174

Indexes Permits .htaccess to configure fancy indexing.

Limit Allows the file to configure host-level access controls. Access controls are
discussed in the next section.

In addition to these keyword values, individual commands can be permitted through AllowOverride.
For example, to allow a directory to define its own file extension mapping, specify

AllowOverride AddType

The Options and AllowOverride directives control access to server features and configuration
overrides, which can help keep information safe from corruption. Sometimes, however, you have
information you want to keep safe from widespread distribution. Access controls limit the distribution
of information.

Defining Access Controls

In addition to the Options and AllowOverride directives, the Directory containers in Listing 6.3
enclose Order, Allow, and Deny directives. These three directives permit you to define host-level
access controls. One example taken from Listing 6.3 will make this capability clear. Listing 6.4
shows a Directory container and an associated Alias directive.

Listing 6.4: Apache Access Controls

Alias /doc/ /usr/share/doc/
<Directory /usr/share/doc>

order deny,allow

deny from all

allow from localhost .localdomain

Options Indexes FollowSymLinks
</Directory>

This example shows an Alias directive that maps the document name "doc" to the directory /usr/
share/doc, and the Directory container for /usr/share/doc, which is a directory on Linux systems that
contains a wide range of documentation. The access controls in the Directory container allow users
who are logged on to the web server to access the directory through a browser using the document
name "doc". Users who are not directly logged into the server are denied access. Figure 6.4 shows
the page displayed to users who are granted access.

175

| Index of /doc - Mozilla {BuﬁlDiiZﬁ{Diﬁiﬂﬁf}
' Eile Edit Miew Search Go Bookmarks Tasks Help
G % O @ O |¢http:r’f|ocalhosh’docf_i| Q, Search d X
i Back Forward Print
> e
Index of /doc ul
Name Last modified Size Description
a Parent Director 02-Febh-2002 14:24 -
[.3.3 4Suite-0.11/ 02-Feb-2002 13:50 -
7 [:3 GConf-1.0.4/ 02-Feb-2002 13:55 -
- @ ooy 10-Aug-2001 09:01 -
[23 ImageMagick-5.3. 8/ 02-Feb-2002 13:54 =
[:3 LPRng-3.7.4/ 02-Feb-2002 13:49 -
[:3 MAKEDEV-3. 2/ 02-Feb-2002 13:46 -
i [23 Mesa-3.4.2/ 02-Feb-2002 13:52 =
@ Mesa-devel-3.4.2/ 02-Feb-2002 14:19 -
[::3 ORBit-0.5.8/ 02-Feb-200